This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Entanglement in Bipartite Quantum Systems with Fast Local Unitary Control

Emanuel Malvetti School of Natural Sciences, Technische Universität München, 85737 Garching, Germany, and Munich Center for Quantum Science and Technology (MCQST) & Munich Quantum Valley (MQV)
Abstract.

The well-known Schmidt decomposition, or equivalently, the complex singular value decomposition, states that a pure quantum state of a bipartite system can always be brought into a “diagonal” form using local unitary transformations. In this work we consider a finite-dimensional closed bipartite system with fast local unitary control. In this setting one can define a reduced control system on the singular values of the state which is equivalent to the original control system. We explicitly describe this reduced control system and prove equivalence to the original system. Moreover, using the reduced control system, we prove that the original system is controllable and stabilizable and we deduce quantum speed limits. We also treat the fermionic and bosonic cases in parallel, which are related to the Autonne–Takagi and Hua factorization respectively.

Keywords. Bipartite entanglement, reduced control system, local unitary control, controllability, stabilizability, quantum speed limits, singular value decomposition, Autonne–Takagi factorization, Hua factorization

MSC Codes. 81Q93, 15A18, 81P42, 93B05

1. Introduction

1.1. Motivation

Entanglement is one of the distinguishing features of quantum mechanics, and it lies at the core of emerging quantum technologies. Generating sufficient entanglement is a prerequisite for pure state quantum computation [28], it is at the root of quantum cryptography [5, 11] and it can act as a resource for increasing the sensitivity of quantum sensors [7]. At the same time many basic questions about entanglement remain unanswered, and our theoretical understanding of multipartite and mixed state entanglement is limited [4]. One setting in which entanglement is well-understood is the case of a bipartite quantum system in a pure state, where the singular value decomposition (a.k.a. the Schmidt decomposition) can be employed. Similar tools can also be applied to indistinguishable subsystems [15] (bosons and fermions), where the singular value decomposition is to be replaced with the Autonne–Takagi and Hua factorization respectively.

In this paper we apply quantum control theory [8, 6] to closed bipartite quantum systems subject to fast local unitary control. Factoring out the fast controllable degrees of freedom leads to a reduced control system defined on the singular values of the state. Such reduced control systems have been addressed in [1, Ch. 22] under simplifying assumptions. In particular, there, the reduced state space is assumed to be a smooth manifold without singularities. In our case singularities occur where two singular values coincide or one singular value vanishes, and in fact they constitute the main technical difficulty. In [20] this assumption is removed such that we can apply the results therein to the present setting.

Similar ideas have been applied to open Markovian quantum systems with fast unitary control in [25, 31, 23] and by the author et al. in [22]. There, the reduced control system describes the evolution of the eigenvalues of the density matrix (a positive semidefinite matrix of unit trace) representing a mixed quantum state. In quantum thermodynamics, a natural simplification of this system has been explored in [9, 29, 24, 30].

Finally, in an upcoming paper [21] we will apply the methods derived here combined with optimal control theory to derive explicit control solutions for low dimensional systems.

1.2. Outline

We start by defining the bilinear control system describing a closed bipartite quantum system with fast local unitary control in Section 2.1. We consider the case of distinguishable subsystems, as well as that of bosonic and fermionic subsystems. In Section 2.2 we show that these systems are related to certain matrix diagonalizations (which themselves are related to symmetric Lie algebras) and we derive corresponding reduced control systems in Section 2.3. In Section 2.4 we show how some controllability assumptions can be weakened if one neglects the global phase of the quantum state. Then we turn to some applications. In Section 3.1 we use the reduced control system to prove that the full bilinear control system is always controllable and stabilizable. In Section 3.2 we derive some quantum speed limits for the evolution of the singular values. The connection between the present quantum setting and symmetric Lie algebras is drawn in Appendix A, and this allows us to apply the results from [20].

2. Control Systems

First we define what we mean by a closed bipartite quantum system with fast local unitary control before we derive the equivalent reduced control system obtained by factoring out the local unitary action. The reduced control system describes the dynamics of the singular values of the state and due to the normalization of the quantum state the reduced state space turns out to be a hypersphere. The main result of this section is the equivalence, in a precise sense which will be made clear, of the full bilinear control system and the reduced one. In particular there is no loss of information incurred by passing to the reduced control system. A brief discussion of global phases concludes the section.

2.1. Bilinear Control System

Let two finite dimensional Hilbert spaces d1\mathbb{C}^{d_{1}} and d2\mathbb{C}^{d_{2}} of dimensions d1,d22d_{1},d_{2}\geq 2 representing the subsystems be given. The total Hilbert space of the bipartite system is then d1d2\mathbb{C}^{d_{1}}\otimes\mathbb{C}^{d_{2}}.111Abstractly the symbol \otimes denotes the tensor product, but since we always work with concrete vectors and matrices we interpret \otimes as the Kronecker product. This identifies the vector spaces d1d2\mathbb{C}^{d_{1}}\otimes\mathbb{C}^{d_{2}} and d1d2\mathbb{C}^{d_{1}d_{2}} and similarly for matrices. We denote by 𝔲(d)\mathfrak{u}(d) the unitary Lie algebra consisting of skew-Hermitian matrices in dd dimensions. Our goal is to study the full bilinear control system [16, 10] defined by the following controlled Schrödinger equation222Throughout the paper we set =1\hbar=1 and thus write the (uncontrolled) Schrödinger equation as |ψ˙(t)=iH0|ψ(t)\ket{\dot{\psi}(t)}=-\mathrm{i}\mkern 1.0muH_{0}\ket{\psi(t)}. on d1d2\mathbb{C}^{d_{1}}\otimes\mathbb{C}^{d_{2}}:

(B) |ψ˙(t)=i(H0+i=1m1ui(t)Ei𝟙+j=1m2vj(t)𝟙Fj)|ψ(t),\ket{\dot{\psi}(t)}=-\mathrm{i}\mkern 1.0mu\Big{(}H_{0}+\sum_{i=1}^{m_{1}}u_{i}(t)E_{i}\otimes\mathds{1}+\sum_{j=1}^{m_{2}}v_{j}(t)\mathds{1}\otimes F_{j}\Big{)}\ket{\psi(t)},

where H0i𝔲(d1)i𝔲(d2)i𝔲(d1d2)H_{0}\in\mathrm{i}\mkern 1.0mu\mathfrak{u}(d_{1})\otimes\mathrm{i}\mkern 1.0mu\mathfrak{u}(d_{2})\cong\mathrm{i}\mkern 1.0mu\mathfrak{u}(d_{1}d_{2}) is the drift Hamiltonian (or coupling Hamiltonian), Eii𝔲(d1)E_{i}\in\mathrm{i}\mkern 1.0mu\mathfrak{u}(d_{1}) and Fji𝔲(d2)F_{j}\in\mathrm{i}\mkern 1.0mu\mathfrak{u}(d_{2}) are the control Hamiltonians, and uiu_{i} and vjv_{j} are the corresponding control functions. We make the following key assumptions:

  1. (I)

    The control functions uiu_{i} and vjv_{j} are locally integrable, in particular they may be unbounded.

  2. (II)

    The control Hamiltonians generate the full local unitary Lie algebra:

    iEi𝟙, 1iFj:i=1,,m1,j=1,,m2𝖫𝗂𝖾=𝔲loc(d1,d2),\langle\mathrm{i}\mkern 1.0muE_{i}\otimes\mathds{1},\,\mathds{1}\otimes\mathrm{i}\mkern 1.0muF_{j}:\,i=1,\ldots,m_{1},\,j=1,\ldots,m_{2}\rangle_{\mathsf{\mathsf{Lie}}}=\mathfrak{u}_{\mathrm{loc}}(d_{1},d_{2}),

where 𝔲loc(d1,d2):=(𝔲(d1)𝟙)+(𝟙𝔲(d2))\mathfrak{u}_{\mathrm{loc}}(d_{1},d_{2}):=(\mathfrak{u}(d_{1})\otimes\mathds{1})+(\mathds{1}\otimes\,\mathfrak{u}(d_{2})) is the Lie algebra of the Lie group Uloc(d1,d2):=U(d1)U(d2)\operatorname{U}_{\mathrm{loc}}(d_{1},d_{2}):=\operatorname{U}(d_{1})\otimes\operatorname{U}(d_{2}) of local unitary transformations. Put simply, we have fast control over Uloc(d1,d2)\operatorname{U}_{\mathrm{loc}}(d_{1},d_{2}).

Remark 2.1.

One may also define the group SUloc(d1,d2):=S(U(d1)U(d2))\mathrm{SU}_{\mathrm{loc}}(d_{1},d_{2}):=\mathrm{S}(\operatorname{U}(d_{1})\otimes\operatorname{U}(d_{2})) of local special unitary operations. Consider the local unitary U=eiϕ1𝟙eiϕ2𝟙U=e^{\mathrm{i}\mkern 1.0mu\phi_{1}}\mathds{1}\otimes e^{\mathrm{i}\mkern 1.0mu\phi_{2}}\mathds{1}. Then det(U)=eid1d2(ϕ1+ϕ2)\operatorname{det}(U)=e^{\mathrm{i}\mkern 1.0mud_{1}d_{2}(\phi_{1}+\phi_{2})} and hence, if USUlocU\in\mathrm{SU}_{\mathrm{loc}}, the value of the applied phase ei(ϕ1+ϕ2)e^{\mathrm{i}\mkern 1.0mu(\phi_{1}+\phi_{2})} is restricted to a discrete set. Thus, if we do not neglect the global phase of the state |ψ\ket{\psi}, fast control over SUloc(d1,d2)\mathrm{SU}_{\mathrm{loc}}(d_{1},d_{2}) is not sufficient to generate all local unitary state transfers. To simplify the exposition we assume fast control over Uloc(d1,d2)\operatorname{U}_{\mathrm{loc}}(d_{1},d_{2}), but we will revisit this issue in Section 2.4 to show how this assumption can be weakened.

This covers the case of two distinguishable subsystems. However, we also wish to treat systems composed of two indistinguishable subsystems. In this case both subsystems have the same dimension d:=d1=d2d:=d_{1}=d_{2}. In the bosonic case, the state |ψ\ket{\psi} is unchanged by swapping the two subsystems, i.e., Uswap|ψ=|ψU_{\mathrm{swap}}\ket{\psi}=\ket{\psi}, where Uswap|ψ1|ψ2=|ψ2|ψ1U_{\mathrm{swap}}\ket{\psi_{1}}\otimes\ket{\psi_{2}}=\ket{\psi_{2}}\otimes\ket{\psi_{1}}. These “symmetric” states lie in the space Sym2(d)\mathrm{Sym}^{2}(\mathbb{C}^{d}). In the fermionic case, swapping yields a phase factor of 1-1, i.e., Uswap|ψ=|ψU_{\mathrm{swap}}\ket{\psi}=-\ket{\psi}. Such “skew-symmetric” states are contained in the space 2(d)\bigwedge^{2}(\mathbb{C}^{d}). In both cases the set of local unitaries applicable to the system is restricted to symmetric local unitaries Ulocs(d):={VV:VU(d)}\operatorname{U}_{\mathrm{loc}}^{s}(d):=\{V\otimes V:V\in\operatorname{U}(d)\}. The corresponding Lie algebra is 𝔲locs(d):={iE𝟙+𝟙iE:iE𝔲(d)}\mathfrak{u}_{\mathrm{loc}}^{s}(d):=\{\mathrm{i}\mkern 1.0muE\otimes\mathds{1}+\mathds{1}\otimes\mathrm{i}\mkern 1.0muE:\mathrm{i}\mkern 1.0muE\in\mathfrak{u}(d)\} and is isomorphic to 𝔲(d)\mathfrak{u}(d).333Note however that the map U(d)Ulocs(d)\operatorname{U}(d)\to\operatorname{U}_{\mathrm{loc}}^{s}(d) given by VVVV\mapsto V\otimes V is a double cover with kernel {𝟙,𝟙}\{\mathds{1},-\mathds{1}\}. The set of all coupling Hamiltonians applicable to such systems is the set 𝔲s(d2)={iH𝔲(d2):UswapHUswap=H}\mathfrak{u}^{s}(d^{2})=\{\mathrm{i}\mkern 1.0muH\in\mathfrak{u}(d^{2}):U_{\mathrm{swap}}HU_{\mathrm{swap}}^{*}=H\}. Hence, in the case of two indistinguishable subsystems the bilinear control system takes the form:

(B’) |ψ˙(t)=i(H0+i=1mui(t)(Ei𝟙2+𝟙1Ei))|ψ(t),\ket{\dot{\psi}(t)}=-\mathrm{i}\mkern 1.0mu\Big{(}H_{0}+\sum_{i=1}^{m}u_{i}(t)(E_{i}\otimes\mathds{1}_{2}+\mathds{1}_{1}\otimes E_{i})\Big{)}\ket{\psi(t)}\,,

where H0i𝔲s(d2)H_{0}\in\mathrm{i}\mkern 1.0mu\mathfrak{u}^{s}(d^{2}) and E1,,Emi𝔲(d)E_{1},\dots,E_{m}\in\mathrm{i}\mkern 1.0mu\mathfrak{u}(d). Assumption I remains unchanged, but Assumption II is slightly modified to state:

  1. (III)

    The local control Hamiltonians iEi𝟙2+𝟙1iEi\mathrm{i}\mkern 1.0muE_{i}\otimes\mathds{1}_{2}+\mathds{1}_{1}\otimes\mathrm{i}\mkern 1.0muE_{i} for i=1,,mi=1,\ldots,m generate the full Lie algebra 𝔲loc(d)\mathfrak{u}_{\mathrm{loc}}(d).

Note that the only difference between the bosonic and fermionic case is that the initial state of the control system (B’) lies in Sym2(d)\mathrm{Sym}^{2}(\mathbb{C}^{d}) and 2(d)\bigwedge^{2}(\mathbb{C}^{d}) respectively.

Remark 2.2.

Similarly to Remark 2.1, one might consider control Hamiltonians of the form E𝟙+𝟙EE\otimes\mathds{1}+\mathds{1}\otimes E with the additional restriction of tr(E)=0\operatorname{tr}(E)=0, defining the Lie algebra 𝔰𝔲locs(d)\mathfrak{su}_{\mathrm{loc}}^{s}(d). In this case we again lose control over the global phase of the state. Thus, for simplicity, we do not make this assumption here and refer to Section 2.4 for more details.

2.2. Related Matrix Decompositions

In order to derive and understand the reduced control system (which we will introduce in the next section) obtained by factoring out the local unitary action, we must first understand the mathematical structure of this action. In the case of distinguishable subsystems, the local unitary action corresponds the complex singular value decomposition, an thus the only invariants of a state under this action are its singular values, which therefore are the natural choice for the reduced state. The bosonic and fermionic cases correspond to less well-known matrix decompositions called the Autonne–Takagi and Hua factorization respectively. Importantly all of these matrix decompositions also correspond to certain symmetric Lie algebras, and this is the key to applying the results on reduced control systems from [20] to the full bilinear control systems (B) and (B’).

Let {|i1}i=1d1\{\ket{i}_{1}\}_{i=1}^{d_{1}} and {|j2}j=1d2\{\ket{j}_{2}\}_{j=1}^{d_{2}} denote the standard orthonormal bases444In the following we will usually omit the index denoting the subsystem, since it will be clear form the order. of d1\mathbb{C}^{d_{1}} and d2\mathbb{C}^{d_{2}} respectively, and let |ψd1d2\ket{\psi}\in\mathbb{C}^{d_{1}}\otimes\mathbb{C}^{d_{2}} be a state vector. The components (ψij)i,j=1d1,d2(\psi_{ij})_{i,j=1}^{d_{1},d_{2}} of |ψ\ket{\psi} are uniquely given by

|ψ=i,j=1d1,d2ψij|i1|j2=:i,j=1d1,d2ψij|ij.\ket{\psi}=\sum_{i,j=1}^{d_{1},d_{2}}\psi_{ij}\ket{i}_{1}\otimes\ket{j}_{2}=:\sum_{i,j=1}^{d_{1},d_{2}}\psi_{ij}\ket{ij}.

Hence every bipartite state can be represented by a matrix.555Our convention is consistent with [4, Sec. 9.2] and [15]. In other contexts one often defines the vectorization operation vec()\mathrm{vec}(\cdot) which turns a matrix into a vector by stacking its columns and satisfies vec(AXB)=(BA)vec(X)\mathrm{vec}(AXB)=(B^{\top}\otimes A)\mathrm{vec}(X). Our convention is slightly different in that, identifying d1d2d1d2\mathbb{C}^{d_{1}}\otimes\mathbb{C}^{d_{2}}\cong\mathbb{C}^{d_{1}d_{2}} via the Kronecker product, we may write |ψ=vec(ψ)\ket{\psi}=\mathrm{vec}(\psi^{\top}). More precisely, we have used the canonical isomorphism

(1) d1d2d1(d2)d1,d2|i1|j2|i1j|2,\displaystyle\mathbb{C}^{d_{1}}\otimes\mathbb{C}^{d_{2}}\to\mathbb{C}^{d_{1}}\otimes(\mathbb{C}^{d_{2}})^{\prime}\cong\mathbb{C}^{d_{1},d_{2}}\quad\ket{i}_{1}\ket{j}_{2}\mapsto\ket{i}_{1}\!\bra{j}_{2},

where ()(\cdot)^{\prime} denotes the dual space. We will use ψd1,d2\psi\in\mathbb{C}^{d_{1},d_{2}} to denote the matrix corresponding to |ψ\ket{\psi} under this isomorphism and vice versa. For distinguishable subsystems, the matrix representing ψ\psi is an arbitrary complex matrix in d1,d2\mathbb{C}^{d_{1},d_{2}} (the constraint induced by the normalization of the state |ψ\ket{\psi} will be discussed in Remark 2.3 below). For indistinguishable subsystems, it holds that d:=d1=d2d:=d_{1}=d_{2}, and the matrix ψ𝔰𝔶𝔪(,d)\psi\in\mathfrak{sym}(\mathbb{C},d) is symmetric in the bosonic case and ψ𝔞𝔰𝔶𝔪(,d)\psi\in\mathfrak{asym}(\mathbb{C},d) is skew-symmetric in the fermionic case.

Let VWUloc(d1,d2)V\otimes W\in\operatorname{U}_{\mathrm{loc}}(d_{1},d_{2}) be a local unitary, and set |ϕ=VW|ψ\ket{\phi}=V\otimes W\ket{\psi}. The coordinates of VV are then defined by V=k,i=1d1Vki|ki|V=\sum_{k,i=1}^{d_{1}}V_{ki}\ket{k}\!\bra{i}, and similarly W=l,j=1d2Wlj|lj|W=\sum_{l,j=1}^{d_{2}}W_{lj}\ket{l}\!\bra{j}. Then ϕkl=i,j=1d1,d2VkiWljψij\phi_{kl}=\sum_{i,j=1}^{d_{1},d_{2}}V_{ki}W_{lj}\psi_{ij}. In matrix form this can be rewritten as ϕ=VψW\phi=V\psi W^{\top}. Another way to state this is VW|ψ=|VψWV\otimes W\ket{\psi}=\ket{V\psi W^{\top}}. Note that in the case of indistinguishable subsystems we have V=WV=W. This suggests a connection to certain matrix diagonalizations, namely:

  • The complex singular value decomposition in the distinguishable subsystems case (often referred to as the Schmidt decomposition in the context of quantum mechanics). It states that for any complex matrix ψd1,d2\psi\in\mathbb{C}^{d_{1},d_{2}} there exist unitary matrices VU(d1)V\in\operatorname{U}(d_{1}) and WU(d2)W\in\operatorname{U}(d_{2}) such that VψWV\psi W^{*} is real and diagonal. The correspondence is established by

    |ϕ=VW¯|ψϕ=VψW.\ket{\phi}=V\otimes\overline{W}\ket{\psi}\iff\phi=V\psi W^{*}.
  • The Autonne–Takagi factorization in the bosonic case. It states that for any complex symmetric matrix ψ𝔰𝔶𝔪(,d)\psi\in\mathfrak{sym}(\mathbb{C},d), there is a unitary VU(d)V\in\operatorname{U}(d) such that VψVV\psi V^{\top} is real and diagonal. The correspondence is then given by

    |ϕ=VV|ψϕ=VψV.\ket{\phi}=V\otimes V\ket{\psi}\iff\phi=V\psi V^{\top}.
  • The Hua factorization in the fermionic case. It states that for any complex skew-symmetric matrix ψ𝔞𝔰𝔶𝔪(,d)\psi\in\mathfrak{asym}(\mathbb{C},d), there is a unitary VU(d)V\in\operatorname{U}(d) such that VψVV\psi V^{\top} is real and quasi-diagonal in the following sense: if dd is even, then VψVV\psi V^{\top} is block diagonal with blocks of size 2×22\times 2, if dd is odd, there is an additional block of size 1×11\times 1 in the lower right corner. Note that the quasi-diagonal matrix is still skew-symmetric, and so the diagonal is zero. The correspondence to local unitary state transformations is as in the bosonic case.

Note that the Autonne–Takagi factorization and the Hua factorization are special cases of singular value decompositions, and hence the resulting (quasi/̄)diagonal matrix will have the singular values on its (quasi/̄)diagonal. In the first case we denote by Σd1d2\Sigma\subset\mathbb{C}^{d_{1}}\otimes\mathbb{C}^{d_{2}} the subspace of “real diagonal states” corresponding to the set of real diagonal matrices 𝔡𝔦𝔞𝔤(d1,d2,)\mathfrak{diag}(d_{1},d_{2},\mathbb{R}) under the isomorphism (1). Clearly Σ\Sigma has dimension dmin:=min(d1,d2){d_{\min}}:=\min(d_{1},d_{2}). In the second case we write ΣSym2(d)\Sigma\subset\mathrm{Sym}^{2}(\mathbb{C}^{d}) for the dd-dimensional subspace corresponding to the real diagonal matrices 𝔡𝔦𝔞𝔤(d,)\mathfrak{diag}(d,\mathbb{R}). Similarly, in the third case we write Ξ2(d)\Xi\subset\bigwedge^{2}(\mathbb{C}^{d}) for the d/2\lfloor d/2\rfloor-dimensional subspace of states corresponding to the real (skew-symmetric) quasi-diagonal matrices 𝔮𝔡𝔦𝔞𝔤(d,)\mathfrak{qdiag}(d,\mathbb{R}). We will use the following maps to send the singular values to their corresponding (quasi/̄)diagonal state:

diag\displaystyle\operatorname{diag} :dminΣ,\displaystyle:\mathbb{R}^{{d_{\min}}}\to\Sigma,\quad (σi)i=1dmin\displaystyle\,(\sigma_{i})_{i=1}^{{d_{\min}}} i=1dminσi|i|i,\displaystyle\mapsto\textstyle\sum_{i=1}^{{d_{\min}}}\sigma_{i}\ket{i}\otimes\ket{i},
qdiag\displaystyle\operatorname{qdiag} :d/2Ξ,\displaystyle:\mathbb{R}^{\lfloor d/2\rfloor}\to\Xi,\quad (ξi)i=1d/2\displaystyle\,(\xi_{i})_{i=1}^{\lfloor d/2\rfloor} 12i=1d/2ξi(|2i1|2i|2i|2i1).\displaystyle\mapsto\tfrac{1}{\sqrt{2}}\textstyle\sum_{i=1}^{\lfloor d/2\rfloor}\xi_{i}(\ket{2i-1}\otimes\ket{2i}-\ket{2i}\otimes\ket{2i-1}).

A convenient shorthand notation is |σ=diag(σ)\ket{\sigma}=\operatorname{diag}(\sigma) resp. |ξ=qdiag(ξ)\ket{\xi}=\operatorname{qdiag}(\xi). We will always use the standard Euclidean inner product on n\mathbb{R}^{n}, and on n\mathbb{C}^{n} we will use the real part Re(|)\operatorname{Re}(\braket{\cdot}{\cdot}) of the standard inner product. Then, due to the inclusion of the factor 1/21/{\sqrt{2}} it holds that the maps above are \mathbb{R}-linear isometric isomorphisms. Furthermore we denote666The symbol

-

{\mathrel{\ooalign{$\hss\shortdownarrow$\hss\cr\hss\raisebox{2.0pt}{\scalebox{0.6}{$-$}}\hss}}}
is a combination of \shortdownarrow and ++.
by Σ

-

Σ
\Sigma_{\mathrel{\ooalign{$\hss\shortdownarrow$\hss\cr\hss\raisebox{2.0pt}{\scalebox{0.6}{$-$}}\hss}}}\subset\Sigma
the cone of states diag(σ)\operatorname{diag}(\sigma) where the diagonal elements (σi)i=1dmin(\sigma_{i})_{i=1}^{d_{\min}} are non-negative and arranged in non-increasing order, and analogously we write Ξ

-

Ξ
\Xi_{\mathrel{\ooalign{$\hss\shortdownarrow$\hss\cr\hss\raisebox{2.0pt}{\scalebox{0.6}{$-$}}\hss}}}\subset\Xi
for the quasi-diagonal states qdiag(ξ)\operatorname{qdiag}(\xi) where the (ξi)i=1d/2(\xi_{i})_{i=1}^{\lfloor d/2\rfloor} are non-negative and arranged in non-increasing order. The set Σ

-

\Sigma_{\mathrel{\ooalign{$\hss\shortdownarrow$\hss\cr\hss\raisebox{2.0pt}{\scalebox{0.6}{$-$}}\hss}}}
resp. Ξ

-

\Xi_{\mathrel{\ooalign{$\hss\shortdownarrow$\hss\cr\hss\raisebox{2.0pt}{\scalebox{0.6}{$-$}}\hss}}}
is called the Weyl chamber.

Conversely to the diagonal embeddings we also define the following orthogonal projections:

ΠΣ\displaystyle\Pi_{\Sigma} :{d1d2dmin,|ψ(ii|ψ)i=1dmin for distinguishable subsystemsSym2(d)d,|ψ(ii|ψ)i=1d for bosonic subsystems\displaystyle:\begin{cases}\mathbb{C}^{d_{1}}\otimes\mathbb{C}^{d_{2}}\to\mathbb{R}^{{d_{\min}}},\,\ket{\psi}\mapsto(\braket{ii}{\psi})_{i=1}^{{d_{\min}}}&\text{ for distinguishable subsystems}\\ \mathrm{Sym}^{2}(\mathbb{C}^{d})\to\mathbb{R}^{d},\,\ket{\psi}\mapsto(\braket{ii}{\psi})_{i=1}^{d}&\text{ for bosonic subsystems}\end{cases}
ΠΞ\displaystyle\Pi_{\Xi} :2(d)d/2,|ψ2(2i|22i1|1|ψ)i=1d/2.\displaystyle:\textstyle\bigwedge^{2}(\mathbb{C}^{d})\to\mathbb{R}^{\lfloor d/2\rfloor},\,\ket{\psi}\mapsto\sqrt{2}(\bra{2i}_{2}\bra{2i-1}_{1}\ket{\psi})_{i=1}^{\lfloor d/2\rfloor}\,.

More precisely these are the orthogonal projections on Σ\Sigma and Ξ\Xi followed by diag1\operatorname{diag}^{-1} and qdiag1\operatorname{qdiag}^{-1} respectively.

Remark 2.3.

The normalization of the quantum state entails a normalization of the corresponding singular values. More precisely, the norm of the quantum state |ψ\ket{\psi} equals the Frobenius norm of the matrix ψ\psi, and hence |ψ\ket{\psi} has unit norm if and only if the singular values σ=(σi)i=1dmin\sigma=(\sigma_{i})_{i=1}^{d_{\min}} of ψ\psi satisfy i=1dminσi2=1\sum_{i=1}^{d_{\min}}\sigma_{i}^{2}=1. Hence the singular values define a point on the unit sphere of dimension dmin1{d_{\min}}-1 in the indistinguishable and d1d-1 in the bosonic case. In the fermionic case there are again dd singular values and they lie on the unit sphere of dimension d1d-1. However there is an additional restriction as the singular values come in pairs of opposite values. Taking only one singular value of each pair and multiplying it by 2\sqrt{2} (and ignoring the 0 singular value in the odd dimensional case) we find that the resulting vector lies on the unit sphere of dimension d/21\lfloor d/2\rfloor-1. In all cases will call this the Schmidt sphere, denoted Sdmin1S^{{d_{\min}}-1} in the distinguishable case, Sd1S^{d-1} in the bosonic case, and Sd/21S^{\lfloor d/2\rfloor-1} in the fermionic case. The maps diag\operatorname{diag} and qdiag\operatorname{qdiag} then yield isometric embeddings of the Schmidt sphere into Σ\Sigma and Ξ\Xi respectively. The Schmidt sphere will be the state space of our reduced control system, which we will define in the following section. The Weyl chambers Σ

-

\Sigma_{\mathrel{\ooalign{$\hss\shortdownarrow$\hss\cr\hss\raisebox{2.0pt}{\scalebox{0.6}{$-$}}\hss}}}
and Ξ

-

\Xi_{\mathrel{\ooalign{$\hss\shortdownarrow$\hss\cr\hss\raisebox{2.0pt}{\scalebox{0.6}{$-$}}\hss}}}
then yield corresponding Weyl chambers in the Schmidt sphere S

-

dmin1
S^{{d_{\min}}-1}_{\mathrel{\ooalign{$\hss\shortdownarrow$\hss\cr\hss\raisebox{2.0pt}{\scalebox{0.6}{$-$}}\hss}}}
, S

-

d1
S^{d-1}_{\mathrel{\ooalign{$\hss\shortdownarrow$\hss\cr\hss\raisebox{2.0pt}{\scalebox{0.6}{$-$}}\hss}}}
, and S

-

d/21
S^{\lfloor d/2\rfloor-1}_{\mathrel{\ooalign{$\hss\shortdownarrow$\hss\cr\hss\raisebox{2.0pt}{\scalebox{0.6}{$-$}}\hss}}}
.

Remark 2.4.

Often one considers the Schmidt values, which are the squares of the singular values, within the standard simplex, which is then called the Schmidt simplex [4, Sec. 16.4]. This is easier to visualize, but in our case would lead to unnatural dynamics, which is why we will remain on the sphere. Note also that if one of the systems is a qubit, then the Schmidt sphere is a circle parametrized by the Schmidt angle [4, p. 440].

2.3. Reduced Control System

Due to Assumptions I and II (resp. III), we can move arbitrarily quickly within the local unitary orbits of the system if we ignore the drift term [10, Prop. 2.7]. With the drift this is still approximately true. In the previous section we have shown that using local unitary transformations, we can always obtain a state of (quasi/̄)diagonal form which is completely determined by the singular values of the state. In particular, within the bilinear control systems (B) and (B’) two states are effectively equivalent if and only if they have the same singular values (up to order and sign). This strongly suggests that there should exist a “reduced” control system, defined on the singular values — or rather the Schmidt sphere (cf. Remark 2.3). This is indeed the case. The reduced control system is defined in greater generality in [20, Sec. 2.1] using symmetric Lie algebras, which unify many well-known matrix diagonalizations, such as the ones encountered in the previous section. No knowledge of symmetric Lie algebras is presupposed here, but the connections are expounded in Appendix A.

Let us briefly motivate the definition of the reduced control system. Let |ψ\ket{\psi} be a solution to the full control system (B). Assume that the corresponding matrix ψ\psi can be diagonalized in a differentiable way as ψ(t)=V(t)σ~(t)W(t)\psi(t)=V(t)\tilde{\sigma}(t)W^{\top}(t), and that it is regular777We say that ψ\psi is regular if its singular values are distinct and non-zero.. Here σ~(t)\tilde{\sigma}(t) is the diagonal matrix with diagonal elements σ(t)\sigma(t). Then by differentiating (cf. [19, Lem. 2.3]) we obtain that σ˙=HVWσ\dot{\sigma}=-H_{V\otimes W}\sigma (and analogously σ˙=HVVsσ\dot{\sigma}=-H_{V\otimes V}^{s}\sigma or ξ˙=HVVaξ\dot{\xi}=-H_{V\otimes V}^{a}\xi in the bosonic and fermionic cases) where

HVW\displaystyle-H_{V\otimes W} :=ΠΣ(VW)iH0(VW)diag,\displaystyle:=-\Pi_{\Sigma}\circ(V\otimes W)^{*}\,\mathrm{i}\mkern 1.0muH_{0}(V\otimes W)\circ\operatorname{diag},
HVVs\displaystyle-H_{V\otimes V}^{s} :=ΠΣ(VV)iH0(VV)diag,\displaystyle:=-\Pi_{\Sigma}\circ(V\otimes V)^{*}\,\mathrm{i}\mkern 1.0muH_{0}(V\otimes V)\circ\operatorname{diag},
HVVa\displaystyle-H_{V\otimes V}^{a} :=ΠΞ(VV)iH0(VV)qdiag.\displaystyle:=-\Pi_{\Xi}\circ(V\otimes V)^{*}\,\mathrm{i}\mkern 1.0muH_{0}(V\otimes V)\circ\operatorname{qdiag}.

We call HVWH_{V\otimes W}, HVVsH_{V\otimes V}^{s} and HVVaH_{V\otimes V}^{a} the induced vector fields. The collection of induced vector fields is denoted

:={HU:UUloc(d1,d2)},s:={HUs:UUlocs(d)},a:={HUa:UUlocs(d)}.\mathfrak{H}:=\{-H_{U}:U\in\operatorname{U}_{\mathrm{loc}}(d_{1},d_{2})\},\,\mathfrak{H}^{s}:=\{-H_{U}^{s}:U\in\operatorname{U}_{\mathrm{loc}}^{s}(d)\},\,\mathfrak{H}^{a}:=\{-H_{U}^{a}:U\in\operatorname{U}_{\mathrm{loc}}^{s}(d)\}.

Note that these are linear vector fields on dmin\mathbb{R}^{{d_{\min}}}, d\mathbb{R}^{d} and d/2\mathbb{R}^{\lfloor d/2\rfloor} respectively, and hence they can be represented as matrices in the respective standard basis. We will later see that these are indeed skew-symmetric matrices and that the corresponding dynamics preserve the Schmidt sphere. The following proposition gives the explicit expressions.

Proposition 2.5.

Let H0i𝔲(d1d2)H_{0}\in\mathrm{i}\mkern 1.0mu\mathfrak{u}(d_{1}d_{2}) denote an arbitrary coupling Hamiltonian and let Eki𝔲(d1)E_{k}\in\mathrm{i}\mkern 1.0mu\mathfrak{u}(d_{1}) and Fki𝔲(d2)F_{k}\in\mathrm{i}\mkern 1.0mu\mathfrak{u}(d_{2}) for k=1,,rk=1,\ldots,r be given such that H0=k=1rEkFkH_{0}=\sum_{k=1}^{r}E_{k}\otimes F_{k}. Then the induced vector field HVWH_{V\otimes W} on dmin\mathbb{R}^{{d_{\min}}} takes the form888Here \circ denotes the Hadamard (elementwise) product of two matrices. If the (square) matrices are of different size the resulting matrix will have the size of the smaller one. Similarly Im\operatorname{Im} denotes the elementwise imaginary part.

HVW=k=1rIm(VEkVWFkW).-H_{V\otimes W}=\sum_{k=1}^{r}\operatorname{Im}(V^{*}E_{k}V\circ W^{*}F_{k}W).

Now assume additionally that d:=d1=d2d:=d_{1}=d_{2} and that H0i𝔲s(d2)H_{0}\in\mathrm{i}\mkern 1.0mu\mathfrak{u}^{s}(d^{2}) is symmetric. For bosonic systems, on d\mathbb{R}^{d}, we obtain

HVVs=k=1rIm(VEkVVFkV).-H^{s}_{V\otimes V}=\sum_{k=1}^{r}\operatorname{Im}(V^{*}E_{k}V\circ V^{*}F_{k}V).

For fermionic systems, on d/2\mathbb{R}^{\lfloor d/2\rfloor}, we obtain

(HVVa)ij=k=1rIm((VEkV)2i1,2j1(VFkV)2i,2j(VEkV)2i1,2j(VFkV)2i,2j1).-(H^{a}_{V\otimes V})_{ij}=\sum_{k=1}^{r}\operatorname{Im}((V^{*}E_{k}V)_{2i-1,2j-1}(V^{*}F_{k}V)_{2i,2j}-(V^{*}E_{k}V)_{2i-1,2j}(V^{*}F_{k}V)_{2i,2j-1}).
Proof.

To simplify notation we first consider a product Hamiltonian H0=EFH_{0}=E\otimes F. Let σdmin\sigma\in\mathbb{R}^{{d_{\min}}} be given. Let i,j{1,,dmin}i,j\in\{1,\ldots,{d_{\min}}\} and compute

(HVW)ij=(ΠΣ(iVEVejejWF(W)))i=Im((VEV)ij(WFW)ij).\displaystyle-(H_{V\otimes W})_{ij}=(-\Pi_{\Sigma}(\mathrm{i}\mkern 1.0muV^{*}EVe_{j}e_{j}^{\top}W^{\top}F^{\top}(W^{*})^{\top}))_{i}=\operatorname{Im}((V^{*}EV)_{ij}(W^{*}FW)_{ij}).

The case of general H0H_{0} for distinguishable subsystems as well as the bosonic case follow by linearity.

Now let us consider the fermionic case. Again for simplicity we consider a product Hamiltonian H=EFH=E\otimes F since the general result follows by linearity. Then EE and FF can be seen as n×nn\times n block matrices with blocks of size 2×22\times 2 denoted E(ij)E_{(ij)} and F(ij)F_{(ij)} (and, in the odd-dimensional case, an additional row and column). Moreover let J=[0110]J=\big{[}\begin{smallmatrix}0&1\\ -1&0\end{smallmatrix}\big{]} denote the standard symplectic form. Then we can compute in a similar fashion

(HVVa)ij\displaystyle-(H_{V\otimes V}^{a})_{ij} =(ΠΞ(i(VEV)qdiag(ej)(VFV)))i\displaystyle=(-\Pi_{\Xi}(\mathrm{i}\mkern 1.0mu(V^{*}EV)\operatorname{qdiag}(e_{j})(V^{*}F^{\top}V)^{\top}))_{i}
=Im(((VEV)(ij)J((VFV)(ij)))12).\displaystyle=\operatorname{Im}(((V^{*}EV)_{(ij)}J((V^{*}FV)_{(ij)})^{\top})_{12})\,.

This concludes the proof. ∎

Remark 2.6.

The fermionic case can be interpreted as follows. We consider the even dimensional case for simplicity. First define the matrices GkG_{k} obtained from EkE_{k} and FkF_{k} by choosing all the odd indexed rows from EkE_{k} and all the even indexed rows from FkF_{k}. More precisely, (Gk)ij=(Ek)ij(G_{k})_{ij}=(E_{k})_{ij} if ii is odd and (Gk)ij=(Fk)ij(G_{k})_{ij}=(F_{k})_{ij} if ii is even. Then we divide the GkG_{k} into blocks of size 2×22\times 2 and we define a new matrix of half the size by replacing each block by the imaginary part of its determinant.

We see immediately that if the drift Hamiltonian is local, then the induced vector fields vanish:

Corollary 2.7.

If the drift Hamiltonian H0H_{0} is local, meaning that H0i𝔲loc(d1,d2)H_{0}\in\mathrm{i}\mkern 1.0mu\mathfrak{u}_{\mathrm{loc}}(d_{1},d_{2}), then HVW=0H_{V\otimes W}=0 for every VWUloc(d1,d2)V\otimes W\in\operatorname{U}_{\mathrm{loc}}(d_{1},d_{2}). The same is true for HVVsH_{V\otimes V}^{s} and HVVaH_{V\otimes V}^{a} whenever H0i𝔲locs(d)H_{0}\in\mathrm{i}\mkern 1.0mu\mathfrak{u}_{\mathrm{loc}}^{s}(d) and VVUlocs(d)V\otimes V\in\operatorname{U}_{\mathrm{loc}}^{s}(d).

Finally we can define the reduced control systems:

Definition 2.8 (Reduced control systems).

Let II\subset\mathbb{R} be an interval of the form [0,T][0,T] with T0T\geq 0 or [0,)[0,\infty). We define three reduced control systems:

For distinguishable subsystems we set:

(R) σ˙(t)=HU(t)σ(t),σ(0)=σ0Sdmin1\dot{\sigma}(t)=-H_{U(t)}\sigma(t),\quad\sigma(0)=\sigma_{0}\in S^{{d_{\min}}-1}

A solution is an absolutely continuous path σ:ISdmin1\sigma:I\to S^{{d_{\min}}-1} satisfying (R) almost everywhere for some measurable control function U:IUloc(d1,d2)U:I\to\operatorname{U}_{\mathrm{loc}}(d_{1},d_{2}).

In the bosonic case we set:

(𝖱s{\sf R}^{s}) σ˙(t)=HU(t)sσ(t),σ(0)=σ0Sd1\dot{\sigma}(t)=-H^{s}_{U(t)}\sigma(t),\quad\sigma(0)=\sigma_{0}\in S^{d-1}

A solution is an absolutely continuous path σ:ISd1\sigma:I\to S^{d-1} satisfying (𝖱s{\sf R}^{s}) almost everywhere for some measurable control function U:IUlocs(d)U:I\to\operatorname{U}_{\mathrm{loc}}^{s}(d).

In the fermionic case we set:

(𝖱a{\sf R}^{a}) ξ˙(t)=HU(t)aξ(t),ξ(0)=ξ0Sd/21\dot{\xi}(t)=-H^{a}_{U(t)}\xi(t),\quad\xi(0)=\xi_{0}\in S^{\lfloor d/2\rfloor-1}

A solution is an absolutely continuous path ξ:ISd/21\xi:I\to S^{\lfloor d/2\rfloor-1} satisfying (𝖱a{\sf R}^{a}) almost everywhere for some measurable control function U:IUlocs(d)U:I\to\operatorname{U}_{\mathrm{loc}}^{s}(d).

As mentioned previously, and shown in Lemma 2.11 below, the induced vector fields preserve the Schmidt sphere, and hence we may define the reduced control systems directly on the Schmidt sphere.

Remark 2.9.

There are several slightly different ways of defining the reduced control system which are given in [20, Sec. 2.1]. The most intuitive definition, given above, is to consider the control system σ˙(t)=HU(t)(σ(t))\dot{\sigma}(t)=-H_{U(t)}(\sigma(t)) where the control function U:[0,T]Uloc(d1,d2)U:[0,T]\to\operatorname{U}_{\mathrm{loc}}(d_{1},d_{2}) is measurable and the solution σ:[0,T]Sdmin1\sigma:[0,T]\to S^{{d_{\min}}-1} is absolutely continuous. A more geometric definition uses the differential inclusion σ˙(t)𝖽𝖾𝗋𝗏(σ(t))\dot{\sigma}(t)\in\mathsf{derv}(\sigma(t)), where 𝖽𝖾𝗋𝗏(σ)\mathsf{derv}(\sigma) denotes the set of achievable derivatives at σ\sigma defined by 𝖽𝖾𝗋𝗏(σ)={HUσ:UUloc(d1,d2)}\mathsf{derv}(\sigma)=\{-H_{U}\sigma:U\in\operatorname{U}_{\mathrm{loc}}(d_{1},d_{2})\}. The differential inclusion is exactly equivalent to our definition by Filippov’s Theorem, cf. [26, Thm. 2.3]. Often it is convenient to consider a “relaxed” version of the differential inclusion where also convex combinations of achievable derivatives are allowed: σ˙(t)conv(𝖽𝖾𝗋𝗏(σ(t)))\dot{\sigma}(t)\in\operatorname{conv}(\mathsf{derv}(\sigma(t))). This slightly enlarges the set of solutions, but every solution to the relaxed system can still be approximated uniformly on compact time intervals by solutions to our system, cf. [2, Ch. 2.4, Thm. 2]. Analogous remarks also hold for the symmetric cases (𝖱s{\sf R}^{s}) and (𝖱a{\sf R}^{a}).

The main result of [20] is the equivalence of the full bilinear control system (B) resp. (B’) and the reduced control system (R), resp. (𝖱s{\sf R}^{s}) or (𝖱a{\sf R}^{a}), proven in Theorems 3.8 and 3.14 therein. In our case this specializes to the following result.

First we need to define the quotient maps sing

-

:d1d2dmin
\mathrm{sing}^{\mathrel{\ooalign{$\hss\shortdownarrow$\hss\cr\hss\raisebox{2.0pt}{\scalebox{0.6}{$-$}}\hss}}}:\mathbb{C}^{d_{1}}\otimes\mathbb{C}^{d_{2}}\to\mathbb{R}^{{d_{\min}}}
and qsing

-

:2(d)d/2
\mathrm{qsing}^{\mathrel{\ooalign{$\hss\shortdownarrow$\hss\cr\hss\raisebox{2.0pt}{\scalebox{0.6}{$-$}}\hss}}}:\bigwedge^{2}(\mathbb{C}^{d})\to\mathbb{R}^{\lfloor d/2\rfloor}
. Given a (possibly not normalized) vector |ψd1d2\ket{\psi}\in\mathbb{C}^{d_{1}}\otimes\mathbb{C}^{d_{2}} (or Sym2(d)\mathrm{Sym}^{2}(\mathbb{C}^{d})), the map sing

-

\mathrm{sing}^{\mathrel{\ooalign{$\hss\shortdownarrow$\hss\cr\hss\raisebox{2.0pt}{\scalebox{0.6}{$-$}}\hss}}}
yields the singular values of the corresponding matrix ψd1,d2\psi\in\mathbb{C}^{d_{1},d_{2}}, chosen non-negative and arranged in non-increasing order. Similarly, for |ξ2(d)\ket{\xi}\in\bigwedge^{2}(\mathbb{C}^{d}), the map qsing

-

\mathrm{qsing}^{\mathrel{\ooalign{$\hss\shortdownarrow$\hss\cr\hss\raisebox{2.0pt}{\scalebox{0.6}{$-$}}\hss}}}
yields the singular values of the skew-symmetric matrix ξ\xi, except that we keep only one singular value of each pair and multiply it by 2\sqrt{2} to keep the normalization. Note that when restricting the domain of sing

-

\mathrm{sing}^{\mathrel{\ooalign{$\hss\shortdownarrow$\hss\cr\hss\raisebox{2.0pt}{\scalebox{0.6}{$-$}}\hss}}}
and qsing

-

\mathrm{qsing}^{\mathrel{\ooalign{$\hss\shortdownarrow$\hss\cr\hss\raisebox{2.0pt}{\scalebox{0.6}{$-$}}\hss}}}
to (normalized) quantum states, the image will lie in the respective Schmidt sphere, and even in the Weyl chamber S

-

dmin1
S_{\mathrel{\ooalign{$\hss\shortdownarrow$\hss\cr\hss\raisebox{2.0pt}{\scalebox{0.6}{$-$}}\hss}}}^{{d_{\min}}-1}
resp. S

-

d1
S_{\mathrel{\ooalign{$\hss\shortdownarrow$\hss\cr\hss\raisebox{2.0pt}{\scalebox{0.6}{$-$}}\hss}}}^{d-1}
and S

-

d/21
S_{\mathrel{\ooalign{$\hss\shortdownarrow$\hss\cr\hss\raisebox{2.0pt}{\scalebox{0.6}{$-$}}\hss}}}^{\lfloor d/2\rfloor-1}
.

Recall that here and throughout the paper we use Assumptions I and II (resp. III), unless stated otherwise.

Theorem 2.10 (Equivalence Theorem).

Let |ψ(t)\ket{\psi(t)} be a solution on [0,T][0,T] to the bilinear control system (B), and let σ

-

:[0,T]S

-

dmin1
\sigma^{\mathrel{\ooalign{$\hss\shortdownarrow$\hss\cr\hss\raisebox{2.0pt}{\scalebox{0.6}{$-$}}\hss}}}:[0,T]\to S_{\mathrel{\ooalign{$\hss\shortdownarrow$\hss\cr\hss\raisebox{2.0pt}{\scalebox{0.6}{$-$}}\hss}}}^{{d_{\min}}-1}
be defined by σ

-

=sing

-

(|ψ)
\sigma^{\mathrel{\ooalign{$\hss\shortdownarrow$\hss\cr\hss\raisebox{2.0pt}{\scalebox{0.6}{$-$}}\hss}}}=\mathrm{sing}^{\mathrel{\ooalign{$\hss\shortdownarrow$\hss\cr\hss\raisebox{2.0pt}{\scalebox{0.6}{$-$}}\hss}}}(\ket{\psi})
. Then σ

-

\sigma^{\mathrel{\ooalign{$\hss\shortdownarrow$\hss\cr\hss\raisebox{2.0pt}{\scalebox{0.6}{$-$}}\hss}}}
is a solution to the reduced control system (R).

Conversely, let σ:[0,T]Sdmin1\sigma:[0,T]\to S^{{d_{\min}}-1} be a solution to the reduced control system (R) with control function U:[0,T]Uloc(d1,d2)U:[0,T]\to\operatorname{U}_{\mathrm{loc}}(d_{1},d_{2}) and let |σ=diag(σ)\ket{\sigma}=\operatorname{diag}(\sigma) denote the corresponding state. Then U(t)|σ(t)U(t)\ket{\sigma(t)} can be approximated by solutions to the full control system (B) arbitrarily well. More precisely, for every ε>0\varepsilon>0 there exists a solution |ψε(t)\ket{\psi_{\varepsilon}(t)} to (B) such that U|σ|ψεε\|U\ket{\sigma}-\ket{\psi_{\varepsilon}}\|_{\infty}\leq\varepsilon, where \|\cdot\|_{\infty} denotes the supremum norm.

The analogous results, mutatis mutandis999Most results in this paper hold in all three cases with only minimal differences in notation, which are summarized in Table 1., also hold in the bosonic and fermionic cases, where the full control system is (B’) and the reduced control systems are (𝖱s{\sf R}^{s}) and (𝖱a{\sf R}^{a}) respectively.

Proof.

The proof is mostly a technicality, as we simply have to show that the full control systems (B) and (B’) and their respective reduced versions (R), (𝖱s{\sf R}^{s}) and (𝖱a{\sf R}^{a}) can be interpreted as control systems on certain symmetric Lie algebras. We focus on the case of distinguishable subsystems. The corresponding symmetric Lie algebra is that of type AIII. The isomorphisms ıd\imath^{d} and ȷd\jmath^{d} defined in Appendix A.1 translate the quantum setting into the Lie algebra setting. The results of the appendix then show that all of the conditions of Proposition A.1 are satisfied and that the reduced control system (R) indeed corresponds to the reduced control system in the Lie algebraic setting. Taken together this proves the equivalence in the distinguishable case. The other cases are entirely analogous. ∎

The Equivalence Theorem 2.10 shows that the full bilinear control system (B) resp. (B’) and the reduced control system (R), resp. (𝖱s{\sf R}^{s}) or (𝖱a{\sf R}^{a}), contain essentially the same information. Hence for every control theoretic notion, such as controllability and stabilizability, there is a specialized equivalence result, see [20, Sec. 4] for an overview. As a first consequence we obtain:

Lemma 2.11.

The induced vector fields are skew-symmetric matrices:

𝔰𝔬(dmin,),s𝔰𝔬(d,),a𝔰𝔬(d/2,).\mathfrak{H}\subset\mathfrak{so}({d_{\min}},\mathbb{R}),\quad\mathfrak{H}^{s}\subset\mathfrak{so}(d,\mathbb{R}),\quad\mathfrak{H}^{a}\subset\mathfrak{so}(\lfloor d/2\rfloor,\mathbb{R}).

In particular the Schmidt sphere in invariant.

Proof.

Due to the Equivalence Theorem 2.10 this follows from [20, Prop. 4.8]. Alternatively this can also be verified by direct computation using the expressions obtained in Proposition 2.5. ∎

Let us also recall the equivalence of reachable sets here, which is arguably the most useful consequence. First we give the definitions of reachable sets in the reduced control system (R). The definitions for other control systems are entirely analogous. The reachable set of σ0\sigma_{0} at time TT is defined as

𝗋𝖾𝖺𝖼𝗁R(σ0,T)={σ(T):σ:[0,T]Sdmin1 solves (R),σ(0)=σ0}\mathsf{reach}_{\ref{eq:reduced}}(\sigma_{0},T)=\{\sigma(T):\sigma:[0,T]\to S^{{d_{\min}}-1}\text{ solves }\eqref{eq:reduced},\sigma(0)=\sigma_{0}\}

for any T0T\geq 0. By 𝗋𝖾𝖺𝖼𝗁R(σ0):=T0𝗋𝖾𝖺𝖼𝗁R(σ0,T)\mathsf{reach}_{\ref{eq:reduced}}(\sigma_{0}):=\bigcup_{T\geq 0}\mathsf{reach}_{\ref{eq:reduced}}(\sigma_{0},T) we denote the all time reachable set of σ0\sigma_{0}, and by 𝗋𝖾𝖺𝖼𝗁R(σ0,[0,T]):=t[0,T]𝗋𝖾𝖺𝖼𝗁R(σ0,t)\mathsf{reach}_{\ref{eq:reduced}}(\sigma_{0},[0,T]):=\bigcup_{t\in[0,T]}\mathsf{reach}_{\ref{eq:reduced}}(\sigma_{0},t) we denote the reachable set of σ0\sigma_{0} up to time TT.

The following result is an immediate consequence of the Equivalence Theorem 2.10 and [20, Prop. 4.3].

Proposition 2.12.

Let T>0T>0 be given and assume that |ψ0d1d2\ket{\psi_{0}}\in\mathbb{C}^{d_{1}}\otimes\mathbb{C}^{d_{2}} and σ0Sdmin1\sigma_{0}\in S^{{d_{\min}}-1} satisfy101010Here σ0

-

\sigma_{0}^{\mathrel{\ooalign{$\hss\shortdownarrow$\hss\cr\hss\raisebox{2.0pt}{\scalebox{0.6}{$-$}}\hss}}}
denotes the element of S

-

dmin1
S^{{d_{\min}}-1}_{\mathrel{\ooalign{$\hss\shortdownarrow$\hss\cr\hss\raisebox{2.0pt}{\scalebox{0.6}{$-$}}\hss}}}
whose elements are the absolute values of the elements of σ0\sigma_{0} arranged in non-increasing order.
σ0

-

=sing

-

(ψ0)
\sigma_{0}^{\mathrel{\ooalign{$\hss\shortdownarrow$\hss\cr\hss\raisebox{2.0pt}{\scalebox{0.6}{$-$}}\hss}}}=\mathrm{sing}^{\mathrel{\ooalign{$\hss\shortdownarrow$\hss\cr\hss\raisebox{2.0pt}{\scalebox{0.6}{$-$}}\hss}}}(\psi_{0})
. Then is holds that

𝗋𝖾𝖺𝖼𝗁B(|ψ0,T){U|σ:|σ𝗋𝖾𝖺𝖼𝗁R(σ0,T),UUloc(d1,d2)}𝗋𝖾𝖺𝖼𝗁B(|ψ0,T)¯.\mathsf{reach}_{\ref{eq:bilinear}}(\ket{\psi_{0}},T)\subseteq\{U\ket{\sigma}:\ket{\sigma}\in\mathsf{reach}_{\ref{eq:reduced}}(\sigma_{0},T),\,U\in\operatorname{U}_{\mathrm{loc}}(d_{1},d_{2})\}\subseteq\overline{\mathsf{reach}_{\ref{eq:bilinear}}(\ket{\psi_{0}},T)}\,.

In particular, the closures coincide:

𝗋𝖾𝖺𝖼𝗁B(|ψ0,T)¯={U|σ:|σ𝗋𝖾𝖺𝖼𝗁R(σ0,T),UUloc(d1,d2)}¯.\overline{\mathsf{reach}_{\ref{eq:bilinear}}(\ket{\psi_{0}},T)}=\overline{\{U\ket{\sigma}:\ket{\sigma}\in\mathsf{reach}_{\ref{eq:reduced}}(\sigma_{0},T),\,U\in\operatorname{U}_{\mathrm{loc}}(d_{1},d_{2})\}}\,.

The analogous result, mutatis mutandis, holds also for the bosonic and the fermionic cases.

The Equivalence Theorem 2.10 guarantees the existence of an approximate lift, but its proof also provides a way to find corresponding control functions. Under some additional assumptions we can give an explicit formula for the controls of an exact lift, see [20, Prop. 3.10]. In particular this requires the solution to be smooth and regular, and the controls of the bilinear system (B) resp. (B’) to linearly span the corresponding Lie algebra. Before stating the result we define some notation.

The group of local unitary operations Uloc(d1,d2)\operatorname{U}_{\mathrm{loc}}(d_{1},d_{2}) and its symmetric counterpart Ulocs(d)\operatorname{U}_{\mathrm{loc}}^{s}(d) act on the state spaces d1d2\mathbb{C}^{d_{1}}\otimes\mathbb{C}^{d_{2}}, Sym2(d)\mathrm{Sym}^{2}(\mathbb{C}^{d}) and 2(d)\bigwedge^{2}(\mathbb{C}^{d}) respectively. The corresponding infinitesimal action of the Lie algebras 𝔲loc(d1,d2)\mathfrak{u}_{\mathrm{loc}}(d_{1},d_{2}) and 𝔲locs(d)\mathfrak{u}_{\mathrm{loc}}^{s}(d) can be determined as in Section 2.2 using the formula (iE𝟙+𝟙iF)|ψ=|i(Eψ+ψF¯)(\mathrm{i}\mkern 1.0muE\otimes\mathds{1}+\mathds{1}\otimes\mathrm{i}\mkern 1.0muF)\ket{\psi}=\ket{\mathrm{i}\mkern 1.0mu(E\psi+\psi\overline{F})}. In the special case where the state is regular and diagonal this function (more precisely its negative) gets a special name:

adσd\displaystyle\operatorname{ad}_{\sigma}^{d} :𝔲loc(d1,d2)d1d2,\displaystyle:\mathfrak{u}_{\mathrm{loc}}(d_{1},d_{2})\to\mathbb{C}^{d_{1}}\otimes\mathbb{C}^{d_{2}}, iE𝟙+𝟙iF|i(Eσ~+σ~F¯)\displaystyle\mathrm{i}\mkern 1.0muE\otimes\mathds{1}+\mathds{1}\otimes\mathrm{i}\mkern 1.0muF\mapsto-\ket{\mathrm{i}\mkern 1.0mu(E\tilde{\sigma}+\tilde{\sigma}\overline{F})}
adσs\displaystyle\operatorname{ad}_{\sigma}^{s} :𝔲locs(d)Sym2(d),\displaystyle:\mathfrak{u}_{\mathrm{loc}}^{s}(d)\to\mathrm{Sym}^{2}(\mathbb{C}^{d}), iE𝟙+𝟙iE|i(Eσ~+σ~E¯)\displaystyle\mathrm{i}\mkern 1.0muE\otimes\mathds{1}+\mathds{1}\otimes\mathrm{i}\mkern 1.0muE\mapsto-\ket{\mathrm{i}\mkern 1.0mu(E\tilde{\sigma}+\tilde{\sigma}\overline{E})}
adξa\displaystyle\operatorname{ad}_{\xi}^{a} :𝔲locs(d)2(d),\displaystyle:\mathfrak{u}_{\mathrm{loc}}^{s}(d)\to\textstyle\bigwedge^{2}(\mathbb{C}^{d}), iE𝟙+𝟙iE|i(Eξ~+ξ~E¯),\displaystyle\mathrm{i}\mkern 1.0muE\otimes\mathds{1}+\mathds{1}\otimes\mathrm{i}\mkern 1.0muE\mapsto-\ket{\mathrm{i}\mkern 1.0mu(E\tilde{\xi}+\tilde{\xi}\overline{E})},

where σ~𝔡𝔦𝔞𝔤(d1,d2,)\tilde{\sigma}\in\mathfrak{diag}(d_{1},d_{2},\mathbb{R}) and ξ~𝔮𝔡𝔦𝔞𝔤(d,)\tilde{\xi}\in\mathfrak{qdiag}(d,\mathbb{R}) denote the (quasi-)diagonal matrices corresponding to σ\sigma and ξ\xi. Although these maps are not bijective, by restricting the domain to the orthocomplement of the kernel and the codomain to the image, inverse maps can be defined. Indeed, this is nothing but the Moore–Penrose pseudoinverse. Explicit expressions are given in Lemmas A.7, A.10 and A.13.

To use these inverse maps we have to understand the images of the maps adσd\operatorname{ad}_{\sigma}^{d}, adσs\operatorname{ad}_{\sigma}^{s}, and adξa\operatorname{ad}_{\xi}^{a}. It turns out that, for regular σ\sigma resp. ξ\xi, these images are exactly given by the orthocomplement of the diagonal subspaces Σ,Ξ\Sigma,\Xi. We denote the orthogonal projection on d1d2\mathbb{C}^{d_{1}}\otimes\mathbb{C}^{d_{2}} with kernel Σ\Sigma by ΠΣ\Pi_{\Sigma}^{\perp}, and use the same notation on Sym2(d)\mathrm{Sym}^{2}(\mathbb{C}^{d}). In the matrix picture, this map simple removes the real part of the diagonal elements of ψ\psi. Similarly, on 2(d)\bigwedge^{2}(\mathbb{C}^{d}), the orthogonal projection with kernel Ξ\Xi is denoted ΠΞ\Pi_{\Xi}^{\perp} and it removes the real part of the quasi-diagonal of ψ\psi.

With these definitions [20, Prop. 3.10] can be specialized as follows:

Proposition 2.13.

Let σ:[0,T]Sdmin1\sigma:[0,T]\to S^{{d_{\min}}-1} be a solution to the reduced control system (R) with control function U:[0,T]Uloc(d1,d2)U:[0,T]\to\operatorname{U}_{\mathrm{loc}}(d_{1},d_{2}). Assume that σ\sigma is regular and that UU is continuously differentiable. Let |ψ(t)=U(t)|σ(t)\ket{\psi(t)}=U(t)\ket{\sigma(t)} and let H:[0,T]i𝔲loc(d1,d2)H:[0,T]\to\mathrm{i}\mkern 1.0mu\mathfrak{\mathfrak{u}_{\mathrm{loc}}}(d_{1},d_{2}) be given by

iH(t)=U˙(t)U1(t)U(t)((adσ(t)d)1ΠΣ)(U(t)(iH0)U(t)|σ(t)).-\mathrm{i}\mkern 1.0muH(t)=\dot{U}(t)U^{-1}(t)-U(t)((\operatorname{ad}^{d}_{\sigma(t)})^{-1}\circ\Pi_{\Sigma}^{\perp})\big{(}U(t)^{*}(\mathrm{i}\mkern 1.0muH_{0})U(t)\ket{\sigma(t)}\big{)}.

Then |ψ\ket{\psi} satisfies |ψ˙=i(H0+H)|ψ\ket{\dot{\psi}}=-\mathrm{i}\mkern 1.0mu(H_{0}+H)\ket{\psi}. The analogous result also holds mutatis mutandis for bosonic and fermionic systems.

We call the second term in the definition of HH in Proposition 2.13 the compensating Hamiltonian since it compensated for the local Hamiltonian action induced by the drift term H0H_{0}.

If the control directions linearly span the entire Lie algebra 𝔲loc(d1,d2)\mathfrak{u}_{\mathrm{loc}}(d_{1},d_{2}), then it is easy to find the control functions from Proposition 2.13. More generally the problem of finding corresponding controls is studied under the term non-holonomic motion planning, see [18].

2.4. Global Phases

Mathematically the quantum state |ψd1d2\ket{\psi}\in\mathbb{C}^{d_{1}}\otimes\mathbb{C}^{d_{2}} has a global phase which is physically undetectable and hence may be considered irrelevant. We keep the phase throughout this paper for convenience, noting that the global phase is removed automatically in the reduced control system. This section briefly discusses how Assumptions II and III can be slightly weakened by neglecting the global phase. We denote by 𝔰𝔲loc(d1,d2)\mathfrak{su}_{\mathrm{loc}}(d_{1},d_{2}) and 𝔰𝔲locs(d)\mathfrak{su}_{\mathrm{loc}}^{s}(d) the Lie algebras obtained from 𝔲loc(d1,d2)\mathfrak{u}_{\mathrm{loc}}(d_{1},d_{2}) and 𝔲locs(d)\mathfrak{u}_{\mathrm{loc}}^{s}(d) by requiring the trace to vanish. Consider the following two weakened controllability assumptions:

  1. (II’)

    The control Hamiltonians generate the local special unitary Lie algebra:

    iEi𝟙,𝟙iFj:i=1,,m1,j=1,,m2𝖫𝗂𝖾=𝔰𝔲loc(d1,d2).\langle\mathrm{i}\mkern 1.0muE_{i}\otimes\mathds{1},\mathds{1}\otimes\mathrm{i}\mkern 1.0muF_{j}:\,i=1,\ldots,m_{1},j=1,\ldots,m_{2}\rangle_{\mathsf{\mathsf{Lie}}}=\mathfrak{su}_{\mathrm{loc}}(d_{1},d_{2}).
  2. (III’)

    The control Hamiltonians generate the symmetric local special unitary Lie algebra:

    iEi𝟙+𝟙iEi:i=1,,m𝖫𝗂𝖾=𝔰𝔲locs(d).\langle\mathrm{i}\mkern 1.0muE_{i}\otimes\mathds{1}+\mathds{1}\otimes\mathrm{i}\mkern 1.0muE_{i}:\,i=1,\ldots,m\rangle_{\mathsf{\mathsf{Lie}}}=\mathfrak{su}_{\mathrm{loc}}^{s}(d).

In both cases adding the (symmetric) local control Hamiltonian 𝟙𝟙\mathds{1}\otimes\mathds{1} is sufficient to obtain the stronger Assumptions II and III respectively. Since this Hamiltonian commutes with everything, the only effect of adding or removing the corresponding term from the control system is a change in the global phase. More concretely, if our control system is (B) (resp. (B’)) but only satisfies Assumptions I and II (resp. III), then we can add the control Hamiltonian 𝟙𝟙\mathds{1}\otimes\mathds{1} so that it satisfies Assumption II (resp. III). Now we can compute any solution in this extended system and we obtain a corresponding solution in the actual system by setting the control function of 𝟙𝟙\mathds{1}\otimes\mathds{1} to zero. The resulting solution will, at all times, be equal to the solution of the extended system up to a global phase.

3. Some Applications

In the previous section we defined the reduced control systems (R), (𝖱s{\sf R}^{s}), and (𝖱a{\sf R}^{a}) and proved that they are equivalent to the corresponding full control system (B) in the distinguishable case and (B’) in the bosonic and fermionic cases, cf. Theorem 2.10. In this section we will use the reduced control system to deduce some consequences on controllability, stabilizability and speed limits. Using the Equivalence Theorem 2.10 these results can then be translated to the full control system.

3.1. Controllability and Stabilizability

In this section we show that the reduced control system is always controllable and stabilizable. As a consequence, the full control system is also controllable and all states can be stabilized in a certain sense. For notational simplicity we focus on the case of distinguishable subsystems, noting that the bosonic and fermionic cases are entirely analogous.

First we lift the reduced control system (R) to the Lie group SO(dmin)\operatorname{SO}({d_{\min}}). Unless otherwise noted it is assumed that the initial state is R(0)=𝟙R(0)=\mathds{1}. The operator lift can be defined by

(L) R˙(t)=HU(t)R(t),\dot{R}(t)=-H_{U(t)}R(t),

and analogously with HUsH_{U}^{s} and HUaH_{U}^{a} in the bosonic and fermionic cases. A solution is absolutely continuous and satisfies (L) almost everywhere for some measurable UU.

Remark 3.1.

Note that the operator lift (L) of the reduced control system is a useful but somewhat artificial construction. Indeed, even though (B) and (R) are equivalent, the operator lift (L) is not equivalent to the operator lift of (B).

The reduced control system is controllable on Sdmin1S^{{d_{\min}}-1} if for every two states σ1,σ2Sdmin1\sigma_{1},\sigma_{2}\in S^{{d_{\min}}-1} it holds that σ2𝗋𝖾𝖺𝖼𝗁R(σ1)\sigma_{2}\in\mathsf{reach}_{\ref{eq:reduced}}(\sigma_{1}) and it is controllable on Sdmin1S^{{d_{\min}}-1} in time TT if for every two states σ1,σ2Sdmin1\sigma_{1},\sigma_{2}\in S^{{d_{\min}}-1} we have that σ2𝗋𝖾𝖺𝖼𝗁R(σ1,[0,T])\sigma_{2}\in\mathsf{reach}_{\ref{eq:reduced}}(\sigma_{1},[0,T]). Approximate controllability is defined in the same way except that one considers the closures of the respective reachable sets. The analogous definitions also holds for all other control systems.

To understand the properties of the operator lift, we study the set of generators 𝔰𝔬(dmin,)\mathfrak{H}\subset\mathfrak{so}({d_{\min}},\mathbb{R}). A key property of \mathfrak{H} is that it is invariant under conjugation by the Weyl group 𝐖=Sn2\mathbf{W}=S_{n}\wr\mathbb{Z}_{2}, see [20, Lem. A.2] and Appendix A. This fact allows us to prove the following result.

Proposition 3.2.

The Weyl group 𝐖\mathbf{W} acts irreducibly on 𝔰𝔬(dmin,)\mathfrak{so}({d_{\min}},\mathbb{R}). In particular, if the coupling Hamiltonian H0H_{0} is not local, then the operator lift (L) is controllable. The analogous result holds, mutatis mutandis, in the bosonic and fermionic cases.

Proof.

To show that the Weyl group acts irreducibly, we start with an arbitrary non-zero element Ω𝔰𝔬(dmin,)\Omega\in\mathfrak{so}({d_{\min}},\mathbb{R}) and show that the subrepresentation generated by Ω\Omega is all of 𝔰𝔬(dmin,)\mathfrak{so}({d_{\min}},\mathbb{R}). If dmin=2{d_{\min}}=2 this is trivially true since 𝔰𝔬(2,)\mathfrak{so}(2,\mathbb{R}) is one-dimensional. So assume that dmin3{d_{\min}}\geq 3. Consider the basis {eij=EijEji:1i<jdmin}\{e_{ij}=E_{ij}-E_{ji}:1\leq i<j\leq{d_{\min}}\} and let Ωij\Omega_{ij} be the coefficients of Ω\Omega in this basis. Since Ω\Omega is non-zero, at least one of the coefficients is non-zero. Using a permutation in 𝐖\mathbf{W} we may assume that Ω120\Omega_{12}\neq 0. Let Wi𝐖W_{i}\in\mathbf{W} be the diagonal matrix whose diagonal equals 11 everywhere except in the ii-th position, where it equals 1-1. Consider the matrix Ω=Ω+W3ΩW32\Omega^{\prime}=\frac{\Omega+W_{3}\Omega W_{3}^{\top}}{2}. Then Ω12=Ω12\Omega^{\prime}_{12}=\Omega_{12} and Ωi3=Ω3j=0\Omega^{\prime}_{i3}=\Omega^{\prime}_{3j}=0. Iterating this procedure with W4,,WdminW_{4},\dots,W_{{d_{\min}}} we obtain a multiple of e12e_{12}, showing that e12e_{12} lies in the subrepresentation generated by Ω\Omega. From this, using the permutations in 𝐖\mathbf{W}, all other basis elements eije_{ij} can be obtained. This shows that the representation of 𝐖\mathbf{W} is irreducible. Controllability of the operator lift then follows from [20, Prop. 4.19]. ∎

This result can now be lifted to the full bilinear system using the equivalence of the systems.

Theorem 3.3.

If the full control system (B) is controllable in time TT, then the reduced control system (R) is controllable in time TT on the Weyl chamber S

-

dmin1
S^{{d_{\min}}-1}_{\mathrel{\ooalign{$\hss\shortdownarrow$\hss\cr\hss\raisebox{2.0pt}{\scalebox{0.6}{$-$}}\hss}}}
. Conversely, if the reduced control system (R) is controllable in time TT on the Weyl chamber S

-

dmin1
S^{{d_{\min}}-1}_{\mathrel{\ooalign{$\hss\shortdownarrow$\hss\cr\hss\raisebox{2.0pt}{\scalebox{0.6}{$-$}}\hss}}}
, then the full control system (B) is controllable in time T+εT+\varepsilon for all ε>0\varepsilon>0. Moreover there exists a finite time TT such that both systems are controllable in time TT. The analogous result holds, mutatis mutandis, in the bosonic and fermionic cases.

Proof.

Clearly if (B) is controllable in time TT, so is (R) on the Weyl chamber by Proposition 2.12. The same result shows that if (R) is controllable in time TT on the Weyl chamber, then (B) is approximately controllable in time TT. Proposition 3.2 shows in particular that (R) is directly accessible at every point (see [20, Sec. 4.6] for the definitions related to accessibility) and hence by [20, Prop. 4.15] the bilinear system (B) is accessible (on the set of normalized states) at every regular state. Then [16, Ch. 3 Thm. 2] implies that (B) is controllable in time TT for regular initial states. Since regular states are dense and since we can leave the set of non-regular states in an arbitrarily short amount of time ε\varepsilon, the full control system (B) is controllable in time T+εT+\varepsilon. That (R) is controllable in finite time follows from Proposition 3.2. ∎

Now we turn to stabilizability. In accordance with the definitions given in [20, Sec. 4.3] we say that a state σSdmin1\sigma\in S^{{d_{\min}}-1} is stabilizable for (R) if 0conv(σ)0\in\operatorname{conv}(\mathfrak{H}\sigma). A direct consequence of Proposition 3.2 is that every state is stabilizable.

Corollary 3.4.

Every state is stabilizable for the reduced control systems.

Proof.

If H0H_{0} is local the statement trivially holds. Otherwise choose some non-zero HUH_{U}. Consider the uniform combination H^U=1|𝐖|w𝐖wHUw1conv()\hat{H}_{U}=\frac{1}{|\mathbf{W}|}\sum_{w\in\mathbf{W}}wH_{U}w^{-1}\in\operatorname{conv}(\mathfrak{H}) which is clearly 𝐖\mathbf{W}-invariant. If dmin=2{d_{\min}}=2, it is clear that H^U=0\hat{H}_{U}=0. In higher dimensions 𝐖\mathbf{W}-invariance and irreducibility of the action of 𝐖\mathbf{W} (Proposition 3.2) again show that H^U=0\hat{H}_{U}=0. The proof for the bosonic and fermionic cases is the same. ∎

If a state σSdmin1\sigma\in S^{{d_{\min}}-1} is stabilizable for (R), then in the bilinear control system (B), one can stay close to the local unitary orbit Uloc(d1,d2)|σ\operatorname{U}_{\mathrm{loc}}(d_{1},d_{2})\ket{\sigma} for arbitrary amount of time, cf. [20, Prop. 4.7].

Recall that a point σΣ\sigma\in\Sigma is strongly stabilizable if there is UUloc(d1,d2)U\in\operatorname{U}_{\mathrm{loc}}(d_{1},d_{2}) such that HUσ=0H_{U}\sigma=0. Specializing [20, Prop. 4.5] we obtain the following result.

Proposition 3.5.

Let σSdmin1\sigma\in S^{{d_{\min}}-1} and UUloc(d1,d2)U\in\operatorname{U}_{\mathrm{loc}}(d_{1},d_{2}) and set |ψ=U|σ\ket{\psi}=U\ket{\sigma}. If there is some Hi𝔲loc(d1,d2)H\in\mathrm{i}\mkern 1.0mu\mathfrak{u}_{\mathrm{loc}}(d_{1},d_{2}) satisfying (H0+H)|ψ=0(H_{0}+H)\ket{\psi}=0, then HUσ=0H_{U}\sigma=0 and σ\sigma is strongly stabilizable.

Conversely let σSdmin1\sigma\in S^{{d_{\min}}-1} be strongly stabilizable and let UUloc(d1,d2)U\in\operatorname{U}_{\mathrm{loc}}(d_{1},d_{2}) be such that HUσ=0H_{U}\sigma=0. Moreover assume that σ\sigma is regular. Then there is some Hi𝔲loc(d1,d2)H\in\mathrm{i}\mkern 1.0mu\mathfrak{u}_{\mathrm{loc}}(d_{1},d_{2}) such that (H0+H)|ψ=0(H_{0}+H)\ket{\psi}=0 where we again set |ψ=U|σ\ket{\psi}=U\ket{\sigma}. In fact one can choose

iH(t)=U(t)((adσ(t)d)1ΠΣ)(U(t)(iH0)U(t)|σ(t)),-\mathrm{i}\mkern 1.0muH(t)=-U(t)((\operatorname{ad}^{d}_{\sigma(t)})^{-1}\circ\Pi_{\Sigma}^{\perp})\big{(}U(t)^{*}(\mathrm{i}\mkern 1.0muH_{0})U(t)\ket{\sigma(t)}\big{)},

where (adσd)1(\operatorname{ad}^{d}_{\sigma})^{-1} is given explicitly in Lemma A.7. The analogous result holds, mutatis mutandis, in the bosonic and fermionic cases.

Note that the assumption on regularity is necessary in general, cf. [20, Ex. 3.12].

The local Hamiltonian HH in the previous result is called a compensating Hamiltonian, and indeed this is a special case of Proposition 2.13. Note that the expressions in Lemmas A.7, A.10 and A.13, and hence the compensating Hamiltonian, blow up as σ\sigma approaches a non-regular state.

The following result yields a simple special case in which strong stabilizability is easy to determine.

Lemma 3.6.

Let H0=i=1mEiFiH_{0}=\sum_{i=1}^{m}E_{i}\otimes F_{i} and assume that all EiE_{i} commute or that all FiF_{i} commute. Then there exists UUloc(d1,d2)U\in\operatorname{U}_{\mathrm{loc}}(d_{1},d_{2}) such that HU0H_{U}\equiv 0. In particular, in this case every state is strongly stabilizable. The analogous result holds, mutatis mutandis, in the bosonic and fermionic cases.

3.2. Speed Limit and Control Time

By speed limit we simply mean an upper bound on the velocity that any solution to the given control system can achieve. Note that the full control system (B) (resp. (B’)) does not have any such speed limit, since the controls may be unbounded, but, by construction, the reduced control system (R) (resp. (𝖱s{\sf R}^{s}) and (𝖱a{\sf R}^{a})) always admits a (finite) speed limit, cf. [20, Prop. 4.1].

For any matrix Ωn×n\Omega\in\mathbb{R}^{n\times n}, we write Ω\|\Omega\|_{\infty} for the largest singular value of Ω\Omega. This is exactly the operator norm with respect to the usual Euclidean norm, and hence it is clear that for Ω𝔰𝔬(n,)\Omega\in\mathfrak{so}(n,\mathbb{R}), the norm Ω\|\Omega\|_{\infty} corresponds to the largest velocity that Ω\Omega achieves on the unit sphere. This immediately yields the following result:

Lemma 3.7.

Let σ:[0,T]Sdmin1\sigma:[0,T]\to S^{{d_{\min}}-1} be any solution to (R). Then it holds that σ˙(t)maxUHU\|\dot{\sigma}(t)\|\leq\max_{U}\|H_{U}\|_{\infty} almost everywhere.111111The maximum exists and is achieved since the map UHUU\mapsto\|H_{U}\|_{\infty} is continuous on a compact domain. The analogous result holds, mutatis mutandis, in the bosonic and fermionic cases.

Hence we need to find a good upper bound for HU\|H_{U}\|_{\infty} over all UUloc(d1,d2)U\in\operatorname{U}_{\mathrm{loc}}(d_{1},d_{2}).

Lemma 3.8.

Let H0=k=1rEkFkH_{0}=\sum_{k=1}^{r}E_{k}\otimes F_{k}. Then

maxUUloc(d1,d2)HUk=1rEk22Fk22,\max_{U\in\operatorname{U}_{\mathrm{loc}}(d_{1},d_{2})}\|H_{U}\|_{\infty}\leq\sqrt{\sum_{k=1}^{r}\|E_{k}\|^{2}_{2}\|F_{k}\|^{2}_{2}},

where A2=tr(AA)\|A\|_{2}=\sqrt{\operatorname{tr}(A^{*}A)} denotes the Frobenius norm. The same bound holds a fortiori for maxUUlocs(d)HUs\max_{U\in\operatorname{U}_{\mathrm{loc}}^{s}(d)}\|H_{U}^{s}\|_{\infty} and maxUUlocs(d)HUa\max_{U\in\operatorname{U}_{\mathrm{loc}}^{s}(d)}\|H_{U}^{a}\|_{\infty}.

Proof.

The Frobenius norm 2\|\cdot\|_{2} and the spectral norm \|\cdot\|_{\infty} are related by 2\|\cdot\|_{\infty}\leq\|\cdot\|_{2}, see [13, Prob. 5.6.P23]. Using the Cauchy-Schwarz inequality we compute for any U=VWUloc(d1,d2)U=V\otimes W\in\operatorname{U}_{\mathrm{loc}}(d_{1},d_{2}) that

HU2i,j=1dmin|(HU)ij|2k=1ri,j=1dmin|(VEkV)ij|2|(WFkW)ij|2k=1rEk22Fk22.\displaystyle\|H_{U}\|_{\infty}^{2}\leq\sum_{i,j=1}^{d_{\min}}|(H_{U})_{ij}|^{2}\leq\sum_{k=1}^{r}\sum_{i,j=1}^{d_{\min}}|(V^{*}E_{k}V)_{ij}|^{2}|(W^{*}F_{k}W)_{ij}|^{2}\leq\sum_{k=1}^{r}\|E_{k}\|^{2}_{2}\|F_{k}\|^{2}_{2}.

This concludes the proof in the case of distinguishable subsystems. The bound continues to hold in the bosonic and fermionic cases since restricting the drift or the controls cannot lead to faster evolution of the singular values. ∎

To obtain an lower limit on the time needed to reach any target state from any initial state, we also need to know the largest distance between any pair of points. This is the diameter of the space121212Note that distances in the reduced state space are computed as the length of the shortest geodesic joining two points on the sphere. Hence, somewhat unintuitively, the diameter of a unit hypersphere is π\pi, which is the distance between two antipodal points., and due to the Weyl group symmetry every state has an equivalent state in the Weyl chamber. Hence we are particularly interested in the diameter of the Weyl chamber, which is given in the following result.

Lemma 3.9.

Consider the unit sphere Sn1S^{n-1} embedded in n\mathbb{R}^{n} and let 𝐖=Sn2\mathbf{W}=S_{n}\wr\mathbb{Z}_{2} be the Weyl group acting by coordinate reflections and permutations. Then the corresponding Weyl chamber has diameter arccos(1n)[π4,π2)\arccos(\tfrac{1}{\sqrt{n}})\in[\tfrac{\pi}{4},\tfrac{\pi}{2}).

Proof.

First recall that the shortest distance on the sphere between two points x,ySn1x,y\in S^{n-1} is given by arccos(xy)\arccos(x^{\top}y). The maximal distance in the Weyl chamber is achieved by two of its corners. Then it is clear that these points are x=(1,0,,0)x=(1,0,\ldots,0) and y=(1n,,1n)y=(\tfrac{1}{\sqrt{n}},\ldots,\tfrac{1}{\sqrt{n}}) for the standard Weyl chamber S

-

n1
S^{n-1}_{\mathrel{\ooalign{$\hss\shortdownarrow$\hss\cr\hss\raisebox{2.0pt}{\scalebox{0.6}{$-$}}\hss}}}
. The result follows immediately. ∎

The control time TT^{\star} of a control system is the shortest (infimum) time sufficient to reach any state from any other state. Using the upper bound on the speed of a solution, the lower bound on the diameter of the Weyl chamber and Theorem 3.3, we can give a lower bound on the control time:

Proposition 3.10.

The control time TT^{\star} of the full control system (B) (resp. (B’)) is finite and satisfies

Tπ/4maxUHUπ4kEk22Fk22.T^{\star}\geq\frac{\pi/4}{\max_{U}\|H_{U}\|_{\infty}}\geq\frac{\pi}{4\sqrt{\sum_{k}\|E_{k}\|^{2}_{2}\|F_{k}\|^{2}_{2}}}\,.

Acknowledgments

I would like to thank Frederik vom Ende, Thomas Schulte-Herbrüggen and Gunther Dirr for valuable and constructive comments during the preparation of this manuscript. The project was funded i.a. by the Excellence Network of Bavaria ENB under the International PhD Programme of Excellence Exploring Quantum Matter (ExQM) and by the Munich Quantum Valley of the Bavarian State Government with funds from Hightech Agenda Bayern Plus.

Appendix A Relation to Symmetric Lie Algebras

In the main text we have shown that the local unitary actions on bipartite quantum states correspond to certain matrix diagonalizations, and we have stated that they themselves are related to certain symmetric Lie algebras. In this appendix we make these relations explicit and give all the relevant formulas. For a compact overview of the relation of symmetric Lie algebras to matrix diagonalizations see [19, Tab. 2].

Since we want to define a reduced control system on the singular values, a key question is how the singular values change in time. More precisely, given a differentiable path of matrices ψ(t)\psi(t), what can we say about the derivative of the singular values? This question is made more complicated by the fact that the order and signs of the singular values are not unique (and if they are chosen in a unique way, they are not guaranteed to be differentiable). These issues can be resolved, and in fact one can do so in the more general setting of semisimple orthogonal symmetric Lie algebras, see [19] and in particular [20, Ex. 1.1 & 1.2]. We will recall and adapt the pertinent results as necessary.

The reduction of control systems was proven in detail in [20] in the setting of semisimple orthogonal symmetric Lie algebras. In order to rigorously prove the Equivalence Theorem 2.10, we need to show how the control systems considered here can be interpreted as control systems in such symmetric Lie algebras. First we need the following generalization of the equivalence results proven in [20].

Proposition A.1.

Let VV be an nn-dimensional real inner product space, let 𝐋\mathbf{L} be a compact Lie group with Lie algebra 𝔩\mathfrak{l} acting on VV, and let YY be a linear vector field on VV. Consider the control system

(2) v˙=(Y+i=1mui(t)li)v\displaystyle\dot{v}=\big{(}Y+\sum_{i=1}^{m}u_{i}(t)l_{i}\big{)}v

with fast and full control on 𝐋\mathbf{L}. Moreover assume that we have a semisimple orthogonal symmetric Lie algebra 𝔤=𝔨𝔭\mathfrak{g}=\mathfrak{k}\oplus\mathfrak{p} with associated pair (𝐆,𝐊)(\mathbf{G},\mathbf{K}) and maximal Abelian subspace 𝔞\mathfrak{a}. Let ı:V𝔭\imath:V\to\mathfrak{p} be a linear isometric isomorphism and ȷ:𝐋Ad𝐊\jmath:\mathbf{L}\to\operatorname{Ad}_{\mathbf{K}} a surjective Lie group homomorphism such that

(3) ȷ(L)ı(v)=ı(Lv).\displaystyle\jmath(L)\imath(v)=\imath(Lv).

Then the control system is equivalent in the sense of Theorem 2.10 to the following reduced control system on W:=ı1(𝔞)W:=\imath^{-1}(\mathfrak{a}):

(4) w˙(t)=YL(t)(w(t))\displaystyle\dot{w}(t)=Y_{L(t)}(w(t))

where YL=ΠWL(Y)ιY_{L}=\Pi_{W}\circ L^{\star}(Y)\circ\iota, with ΠW:VW\Pi_{W}:V\to W the orthogonal projection onto WW, ι:WV\iota:W\to V the inclusion, and ()(\cdot)^{\star} the pullback.

Proof.

Let ȷ:=Dȷ(e)\jmath_{\star}:=D\jmath(e) is the surjective Lie algebra homomorphism 𝔩ad𝔨\mathfrak{l}\to\operatorname{ad}_{\mathfrak{k}} corresponding to ȷ\jmath. By surjectivity there are ki𝔨k_{i}\in\mathfrak{k} such that ȷ(li)=adki\jmath_{\star}(l_{i})=\operatorname{ad}_{k_{i}} for all i=1,,mi=1,\ldots,m. By differentiating (3) we get j(li)ı(v)=ı(li(v))j_{\star}(l_{i})\imath(v)=\imath(l_{i}(v)). Let X:=ı(Y)X:=\imath_{\star}(Y) be the drift vector field on 𝔭\mathfrak{p}. If ȷ(L)=AdK\jmath(L)=\operatorname{Ad}_{K}, then

ı(XK)=ı1XKı=ı1Π𝔞AdK1XAdKı=ΠWı1AdK1XAdKı=ΠW(ıL)1XıL=YL.\imath^{\star}(X_{K})=\imath^{-1}X_{K}\imath=\imath^{-1}\Pi_{\mathfrak{a}}\operatorname{Ad}_{K}^{-1}X\operatorname{Ad}_{K}\imath=\Pi_{W}\imath^{-1}\operatorname{Ad}_{K}^{-1}X\operatorname{Ad}_{K}\imath=\Pi_{W}(\imath L)^{-1}X\imath L=Y_{L}.

The remainder of the proof is split into two parts, the projection and the lift.

We begin with the projection. Let v:[0,T]Vv:[0,T]\to V be a solution to (2). We want to show that v:[0,T]Wv^{\shortdownarrow}:[0,T]\to W, defined by ı(v)=ı(v)\imath(v^{\shortdownarrow})=\imath(v)^{\shortdownarrow}, is a solution to (4). We get that

ddtı(v)=ı(v˙)=ı((Y+i=1muili)v)=(X+i=1madki)ı(v)\frac{d}{dt}\imath(v)=\imath(\dot{v})=\imath((Y+\sum_{i=1}^{m}u_{i}l_{i})v)=\big{(}X+\sum_{i=1}^{m}\operatorname{ad}_{k_{i}}\big{)}\imath(v)

almost everywhere. Hence ı(v)\imath(v) is a solution of the corresponding control system on 𝔭\mathfrak{p}, and we may apply [20, Thm. 3.8] to obtain that ı(v)\imath(v)^{\shortdownarrow} is a solution of the reduced control system on 𝔞\mathfrak{a}, more explicitly, for almost every t[0,T]t\in[0,T] there is some K𝐊K\in\mathbf{K} such that ddtı(v(t))=XK(ı(v(t)))\frac{d}{dt}\imath(v^{\shortdownarrow}(t))=X_{K}(\imath(v^{\shortdownarrow}(t))). Next we show that vv^{\shortdownarrow} solves (4). Indeed for the same tt we obtain by linearity of ı\imath that v˙=ı(XK)(v)=YLv\dot{v}^{\shortdownarrow}=\imath^{\star}(X_{K})(v^{\shortdownarrow})=Y_{L}v^{\shortdownarrow} for some L𝐋L\in\mathbf{L}. This concludes the projection part of the proof.

Conversely, assume that we have a solution w:[0,T]Ww:[0,T]\to W to the reduced system (4). Again we find for almost all t[0,T]t\in[0,T] some K𝐊K\in\mathbf{K} such that ddtı(w(t))=ı(w˙(t))=XK(ı(w(t)))\frac{d}{dt}\imath(w(t))=\imath(\dot{w}(t))=X_{K}(\imath(w(t))), and so a:=ı(w)a:=\imath(w) solves the corresponding control system on 𝔞\mathfrak{a}. Hence there exists a corresponding control function K:[0,T]𝐊K:[0,T]\to\mathbf{K} which is measurable. Using [20, Thm. 3.14] we find approximate lifted solutions pε:[0,T]𝔭p_{\varepsilon}:[0,T]\to\mathfrak{p} with pεAdKa\|p_{\varepsilon}-\operatorname{Ad}_{K}a\|_{\infty}\leq\infty. As above we can compute with vε:=ı1(pε)v_{\varepsilon}:=\imath^{-1}(p_{\varepsilon})

ddtvε=ı1(p˙ε)=ı1((X+i=1muiadki)pε)=(ı(X)+i=1muili)vε\frac{d}{dt}v_{\varepsilon}=\imath^{-1}(\dot{p}_{\varepsilon})=\imath^{-1}((X+\sum_{i=1}^{m}u_{i}\operatorname{ad}_{k_{i}})p_{\varepsilon})=(\imath^{\star}(X)+\sum_{i=1}^{m}u_{i}l_{i})v_{\varepsilon}

and see that vεv_{\varepsilon} is a solution to (2). Since ı\imath is an isometry, for any measurable lift LL of AdK\operatorname{Ad}_{K} along ȷ\jmath (which exists due to [19, Lem. 2.29]) we get

vεLw=ı(vεLw)=ı(vε)ȷ(L)ı(w)=pεAdK(a)ε,\|v_{\varepsilon}-Lw\|_{\infty}=\|\imath(v_{\varepsilon}-Lw)\|_{\infty}=\|\imath(v_{\varepsilon})-\jmath(L)\imath(w)\|_{\infty}=\|p_{\varepsilon}-\operatorname{Ad}_{K}(a)\|_{\infty}\leq\varepsilon,

it is also an ε\varepsilon-approximation. This concludes the proof. ∎

See Table 1 for an overview of the notation related to the different control systems.

Table 1. We give a compact overview of the notation and the mathematical objects describing the various control systems presented in this paper, as well as the control systems of [20, 22].
General Distinguishable Bosonic Fermionic Lindbladian
Full System (2) (B) (B’) (B’)
Ambient space 𝔭\mathfrak{p} d1d2\mathbb{C}^{d_{1}}\otimes\mathbb{C}^{d_{2}} Sym2(d)\mathrm{Sym}^{2}(\mathbb{C}^{d}) 2(d)\bigwedge^{2}(\mathbb{C}^{d}) 𝔥𝔢𝔯𝔪1(n)\mathfrak{herm}_{1}(n)
State space SS S(d1d2)S(\mathbb{C}^{d_{1}}\otimes\mathbb{C}^{d_{2}}) S(Sym2(d))S(\mathrm{Sym}^{2}(\mathbb{C}^{d})) S(2(d))S(\bigwedge^{2}(\mathbb{C}^{d})) 𝔭𝔬𝔰1(n)\mathfrak{pos}_{1}(n)
State pp |ψ\ket{\psi} |ψ\ket{\psi} |ψ\ket{\psi} ρ\rho
Fast Controls 𝐊\mathbf{K} Uloc(d1,d2)\operatorname{U}_{\mathrm{loc}}(d_{1},d_{2}) Ulocs(d)\operatorname{U}^{s}_{\mathrm{loc}}(d) Ulocs(d)\operatorname{U}^{s}_{\mathrm{loc}}(d) SU(n)\operatorname{SU}(n)
Drift XX iH0𝔲(d1d2)-\mathrm{i}\mkern 1.0muH_{0}\in\mathfrak{u}(d_{1}d_{2}) iH0𝔲s(d2)-\mathrm{i}\mkern 1.0muH_{0}\in\mathfrak{u}^{s}(d^{2}) iH0𝔲s(d2)-\mathrm{i}\mkern 1.0muH_{0}\in\mathfrak{u}^{s}(d^{2}) L𝔴𝖪𝖫(n)-L\in\mathfrak{w}_{\mathsf{KL}}(n)
ad\operatorname{ad} action ada\operatorname{ad}_{a} adσd\operatorname{ad}^{d}_{\sigma} adσs\operatorname{ad}^{s}_{\sigma} adξa\operatorname{ad}^{a}_{\xi} adλ\operatorname{ad}_{\lambda}
Reduced System (4) (R) (𝖱s{\sf R}^{s}) (𝖱a{\sf R}^{a})
Ambient space 𝔞\mathfrak{a} Σ𝔡𝔦𝔞𝔤(d1,d2)\Sigma\cong\mathfrak{diag}(d_{1},d_{2}) Σ𝔡𝔦𝔞𝔤(d)\Sigma\cong\mathfrak{diag}(d) Ξ𝔮𝔡𝔦𝔞𝔤(d)\Xi\cong\mathfrak{qdiag}(d) Λ=𝔡𝔦𝔞𝔤1(n)\Lambda=\mathfrak{diag}_{1}(n)
State space RR Sdmin1S^{d_{\min}-1} Sd1S^{d-1} Sd/21S^{\lfloor d/2\rfloor-1} Δn1\Delta^{n-1}
State aa σ\sigma σ\sigma ξ\xi λ\lambda
Weyl group 𝐖\mathbf{W} Sdmin2S_{d_{\min}}\wr\mathbb{Z}_{2} Sd2S_{d}\wr\mathbb{Z}_{2} Sd/22S_{\lfloor d/2\rfloor}\wr\mathbb{Z}_{2} SnS_{n}
Inclusion ι\iota diag\operatorname{diag} diag\operatorname{diag} qdiag\operatorname{qdiag} diag\operatorname{diag}
Projection Π𝔞\Pi_{\mathfrak{a}} ΠΣ\Pi_{\Sigma} ΠΣ\Pi_{\Sigma} ΠΞ\Pi_{\Xi} Πdiag\Pi_{\operatorname{diag}}
Quotient map π\pi sing

-

\mathrm{sing}^{\mathrel{\ooalign{$\hss\shortdownarrow$\hss\cr\hss\raisebox{2.0pt}{\scalebox{0.6}{$-$}}\hss}}}
sing

-

\mathrm{sing}^{\mathrel{\ooalign{$\hss\shortdownarrow$\hss\cr\hss\raisebox{2.0pt}{\scalebox{0.6}{$-$}}\hss}}}
qsing

-

\mathrm{qsing}^{\mathrel{\ooalign{$\hss\shortdownarrow$\hss\cr\hss\raisebox{2.0pt}{\scalebox{0.6}{$-$}}\hss}}}
spec\mathrm{spec}^{\shortdownarrow}
Induced vector fields XK𝔛X_{K}\in\mathfrak{X} HVW-H_{V\otimes W}\in\mathfrak{H} HVVss-H^{s}_{V\otimes V}\in\mathfrak{H}^{s} HVVaa-H^{a}_{V\otimes V}\in\mathfrak{H}^{a} LU𝔏-L_{U}\in\mathfrak{L}
Natural wedge 𝔰𝔬(dmin,)\mathfrak{so}({d_{\min}},\mathbb{R}) 𝔰𝔬(d,)\mathfrak{so}(d,\mathbb{R}) 𝔰𝔬(d/2,)\mathfrak{so}(\lfloor d/2\rfloor,\mathbb{R}) 𝔰𝔱𝔬𝔠𝔥(n)\mathfrak{stoch}(n)
Decomposition Complex SVD Autonne–Takagi fact. Hua fact. Hermitian EVD
Lie Algebra AIII CI DIII A

A.1. Complex Singular Value Decomposition (Type AIII)

The complex singular value decomposition is encoded by the symmetric Lie algebra of type AIII, see for instance [17, App. A.7] and [12, Ch. X §2.3]. The standard matrix representation of this Lie algebra is the indefinite special unitary Lie algebra 𝔤𝖠𝖨𝖨𝖨=𝔰𝔲(d1,d2)\mathfrak{g}_{\mathsf{AIII}}=\mathfrak{su}(d_{1},d_{2}) with Cartan decomposition 𝔤𝖠𝖨𝖨𝖨=𝔨𝖠𝖨𝖨𝖨𝔭𝖠𝖨𝖨𝖨\mathfrak{g}_{\mathsf{AIII}}=\mathfrak{k}_{\mathsf{AIII}}\oplus\mathfrak{p}_{\mathsf{AIII}} where131313Often one denotes 𝔨𝖠𝖨𝖨𝖨=𝔰(𝔲(d1)𝔲(d2))\mathfrak{k}_{\mathsf{AIII}}=\mathfrak{s}(\mathfrak{u}(d_{1})\oplus\mathfrak{u}(d_{2})).

𝔨𝖠𝖨𝖨𝖨\displaystyle\mathfrak{k}_{\mathsf{AIII}} ={(iE00iF):iE𝔲(d1),iF𝔲(d2),tr(E)=tr(F)},\displaystyle=\Big{\{}\left(\begin{matrix}\mathrm{i}\mkern 1.0muE&0\\ 0&\mathrm{i}\mkern 1.0muF\end{matrix}\right):\mathrm{i}\mkern 1.0muE\in\mathfrak{u}(d_{1}),\,\mathrm{i}\mkern 1.0muF\in\mathfrak{u}(d_{2}),\,\operatorname{tr}(E)=-\operatorname{tr}(F)\Big{\}},
𝔭𝖠𝖨𝖨𝖨\displaystyle\mathfrak{p}_{\mathsf{AIII}} ={(0ψψ0):ψd1,d2}.\displaystyle=\Big{\{}\left(\begin{matrix}0&\psi\\ \psi^{*}&0\end{matrix}\right):\psi\in\mathbb{C}^{d_{1},d_{2}}\Big{\}}\,.

A choice of corresponding compact Lie group is 𝐊𝖠𝖨𝖨𝖨=S(U(d1)×U(d2))\mathbf{K}_{\mathsf{AIII}}=\mathrm{S}(\operatorname{U}(d_{1})\times\operatorname{U}(d_{2})).

Remark A.2.

In general we consider (semi)simple orthogonal symmetric Lie algebras 𝔤=𝔨𝔭\mathfrak{g}=\mathfrak{k}\oplus\mathfrak{p} and so we also have to provide a “compatible” inner product on 𝔤\mathfrak{g}. The inner product is (up to some irrelevant scaling) uniquely defined using the Killing form on 𝔤\mathfrak{g}, cf. [12, Ch. V, Thm. 1.1]. Due to simplicity of 𝔤\mathfrak{g} the Killing form is (again up to scaling) given by tr(AB)\operatorname{tr}(AB). In the following we will set the inner product on 𝔨\mathfrak{k} to 12tr(AB)-\tfrac{1}{2}\operatorname{tr}(AB) and on 𝔭\mathfrak{p} to +12tr(AB)+\tfrac{1}{2}\operatorname{tr}(AB), and 𝔨\mathfrak{k} and 𝔭\mathfrak{p} are orthogonal to each other. Furthermore, we always use the real inner product Re(ψ,ϕ)=Re(tr(ψϕ))\operatorname{Re}(\braket{\psi,\phi})=\operatorname{Re}(\operatorname{tr}(\psi^{*}\phi)) on states in d1d2\mathbb{C}^{d_{1}}\otimes\mathbb{C}^{d_{2}}.

The spaces d1d2\mathbb{C}^{d_{1}}\otimes\mathbb{C}^{d_{2}} and 𝔭𝖠𝖨𝖨𝖨\mathfrak{p}_{\mathsf{AIII}} are identified using the map

ıd:d1d2𝔭𝖠𝖨𝖨𝖨,|ψ(0ψψ0).\imath^{d}:\mathbb{C}^{d_{1}}\otimes\mathbb{C}^{d_{2}}\to\mathfrak{p}_{\mathsf{AIII}},\quad\ket{\psi}\mapsto\left(\begin{matrix}0&\psi\\ \psi^{*}&0\end{matrix}\right).
Lemma A.3.

The map ıd\imath^{d} is an \mathbb{R}-linear141414Note that in the Lie algebraic context we always work with real vector spaces, even if their standard representation involves complex numbers. isometric isomorphism. The subspace 𝔞𝖠𝖨𝖨𝖨:=ıd(Σ)\mathfrak{a}_{\mathsf{AIII}}:=\imath^{d}(\Sigma) is maximal Abelian and ıddiagΠΣ=Π𝔞𝖠𝖨𝖨𝖨ıd\imath^{d}\circ\operatorname{diag}\circ\Pi_{\Sigma}=\Pi_{\mathfrak{a}_{\mathsf{AIII}}}\circ\imath^{d}. The Weyl group 𝐖𝖠𝖨𝖨𝖨\mathbf{W}_{\mathsf{AIII}} is isomorphic to the generalized permutations Sdmin2S_{d_{\min}}\wr\mathbb{Z}_{2} and 𝔴𝖠𝖨𝖨𝖨:=ıd(Σ

-

)
\mathfrak{w}_{\mathsf{AIII}}:=\imath^{d}(\Sigma^{\mathrel{\ooalign{$\hss\shortdownarrow$\hss\cr\hss\raisebox{2.0pt}{\scalebox{0.6}{$-$}}\hss}}})
is a Weyl chamber.

Proof.

It is clear that ıd\imath^{d} is an \mathbb{R}-linear isomorphism. With the inner product on d1d2\mathbb{C}^{d_{1}}\otimes\mathbb{C}^{d_{2}} and 𝔭\mathfrak{p} defined as in Remark A.2 a simple computation shows that ıd\imath^{d} is even an isometry:

12tr(ıd(|ψ),ıd(|ϕ))=12tr(ψϕ+ψϕ)=Re(tr(ψϕ)).\tfrac{1}{2}\operatorname{tr}(\imath^{d}(\ket{\psi}),\imath^{d}(\ket{\phi}))=\tfrac{1}{2}\operatorname{tr}(\psi\phi^{*}+\psi^{*}\phi)=\operatorname{Re}(\operatorname{tr}(\psi^{*}\phi)).

That ıd(Σ)\imath^{d}(\Sigma) is maximal Abelian is well-known, cf. [19, Tab. 2]. The fact that ıd\imath^{d} is an isometry also proves that ıddiagΠΣ=Π𝔞𝖠𝖨𝖨𝖨ıd\imath^{d}\circ\operatorname{diag}\circ\Pi_{\Sigma}=\Pi_{\mathfrak{a}_{\mathsf{AIII}}}\circ\imath^{d}. That the Weyl group acts by generalized permutations follows from the fact that the singular values are unique up to order and sign and the fact that any generalized permutation can be implemented by choosing VV and WW appropriately. ∎

Moreover we define the following maps:

ȷd\displaystyle\jmath^{d} :Uloc(d1,d2)Ad𝐊𝖠𝖨𝖨𝖨,\displaystyle:\operatorname{U}_{\mathrm{loc}}(d_{1},d_{2})\to\operatorname{Ad}_{\mathbf{K}_{\mathsf{AIII}}}, VW\displaystyle\quad V\otimes W AdV×W¯\displaystyle\mapsto\operatorname{Ad}_{V\times\overline{W}}
ȷd\displaystyle\jmath^{d}_{\star} :𝔲loc(d1,d2)ad𝔨𝖠𝖨𝖨𝖨,\displaystyle:\mathfrak{u}_{\mathrm{loc}}(d_{1},d_{2})\to\operatorname{ad}_{\mathfrak{k}_{\mathsf{AIII}}}, iE𝟙+𝟙iF\displaystyle\quad\mathrm{i}\mkern 1.0muE\otimes\mathds{1}+\mathds{1}\otimes\mathrm{i}\mkern 1.0muF adiE×iF¯.\displaystyle\mapsto\operatorname{ad}_{\mathrm{i}\mkern 1.0muE\times\overline{\mathrm{i}\mkern 1.0muF}}.

Note that ȷd\jmath^{d}_{\star} is the derivative of ȷd\jmath^{d} at the identity.

Lemma A.4.

It holds that ȷd\jmath^{d} is a Lie group isomorphism, and so ȷd\jmath^{d}_{\star} is a Lie algebra isomorphism151515Contrary to ıd\imath^{d}, the map ȷd\jmath^{d}_{\star} is not an isometry with respect to the inner products of Remark A.2.. For UUloc(d1,d2)U\in\operatorname{U}_{\mathrm{loc}}(d_{1},d_{2}), iH𝔲loc(d1,d2)\mathrm{i}\mkern 1.0muH\in\mathfrak{u}_{\mathrm{loc}}(d_{1},d_{2}) and |ψd1d2\ket{\psi}\in\mathbb{C}^{d_{1}}\otimes\mathbb{C}^{d_{2}}, the isomorphism ıd\imath^{d} and ȷd\jmath^{d} satisfy the compatibility conditions

(5) ȷd(U)ıd(|ψ)=ıd(U|ψ),ȷd(iH)ıd(|ψ)=ıd(iH|ψ).\jmath^{d}(U)\imath^{d}(\ket{\psi})=\imath^{d}(U\ket{\psi}),\quad\jmath^{d}_{\star}(\mathrm{i}\mkern 1.0muH)\imath^{d}(\ket{\psi})=\imath^{d}(\mathrm{i}\mkern 1.0muH\ket{\psi}).

Similarly we have the correspondence of the infinitesimal action ıd(adσ(iH))=ȷd(iH)(ıd(|σ))\imath^{d}(\operatorname{ad}_{\sigma}(\mathrm{i}\mkern 1.0muH))=-\jmath^{d}_{\star}(\mathrm{i}\mkern 1.0muH)(\imath^{d}(\ket{\sigma})) and of the induced vector fields where if X:=ıd(iH0)=ıd(iH0)(ıd)1-X:=\imath^{d}_{\star}(\mathrm{i}\mkern 1.0muH_{0})=\imath^{d}\circ(\mathrm{i}\mkern 1.0muH_{0})\circ(\imath^{d})^{-1} then HU=(ıddiag)Xȷd(U)-H_{U}=(\imath^{d}\circ\operatorname{diag})^{\star}X_{\jmath^{d}(U)}. Moreover the map sing

-

\mathrm{sing}^{\mathrel{\ooalign{$\hss\shortdownarrow$\hss\cr\hss\raisebox{2.0pt}{\scalebox{0.6}{$-$}}\hss}}}
corresponds to the quotient map with image in the Weyl chamber 𝔭𝖠𝖨𝖨𝖨𝔞𝖠𝖨𝖨𝖨/𝐖𝖠𝖨𝖨𝖨𝔴𝖠𝖨𝖨𝖨\mathfrak{p}_{\mathsf{AIII}}\to\mathfrak{a}_{\mathsf{AIII}}/\mathbf{W}_{\mathsf{AIII}}\cong\mathfrak{w}_{\mathsf{AIII}}, see [19, Sec. 2.1].

Proof.

Even though V×W¯V\times\overline{W} does not always lie in 𝐊𝖠𝖨𝖨𝖨\mathbf{K}_{\mathsf{AIII}}, we can choose ϕ\phi\in\mathbb{R} such that eiϕV×eiϕW¯𝐊𝖠𝖨𝖨𝖨e^{\mathrm{i}\mkern 1.0mu\phi}V\times\overline{e^{-\mathrm{i}\mkern 1.0mu\phi}W}\in\mathbf{K}_{\mathsf{AIII}}, and this phase disappears in the tensor product and in the adjoint representation. Indeed any ϕ\phi satisfying eiϕ(d1+d2)=detW/detVe^{\mathrm{i}\mkern 1.0mu\phi(d_{1}+d_{2})}=\operatorname{det}W/\operatorname{det}V will do. Hence ȷd\jmath^{d} is well defined, and one easily verifies that it is an isomorphism. The compatibility condition (5) follows from a simple computation using the isomorphism of Section 2.2. Similarly the corresponding Lie algebra isomorphism ȷd\jmath^{d}_{\star} can be written as iE𝟙+𝟙iFadi(E+tr(F)tr(E)d1+d2𝟙)i(F+tr(F)tr(E)d1+d2𝟙)\mathrm{i}\mkern 1.0muE\otimes\mathds{1}+\mathds{1}\otimes\mathrm{i}\mkern 1.0muF\mapsto\operatorname{ad}_{\mathrm{i}\mkern 1.0mu(E+\frac{\operatorname{tr}(F)-\operatorname{tr}(E)}{d_{1}+d_{2}}\mathds{1})\oplus\mathrm{i}\mkern 1.0mu(-F+\frac{\operatorname{tr}(F)-\operatorname{tr}(E)}{d_{1}+d_{2}}\mathds{1})} to show explicitly that it is well defined. By definition adσ(iH)=iH|σ\operatorname{ad}_{\sigma}(\mathrm{i}\mkern 1.0muH)=-\mathrm{i}\mkern 1.0muH\ket{\sigma}. Using the compatibility condition (5) this immediately yields ıd(adσ(iH))=ȷd(iH)(ıd(|σ))\imath^{d}(\operatorname{ad}_{\sigma}(\mathrm{i}\mkern 1.0muH))=-\jmath^{d}_{\star}(\mathrm{i}\mkern 1.0muH)(\imath^{d}(\ket{\sigma})) as desired. Recall that we defined HU=ΠΣ(U(iH0)U)diagH_{U}=\Pi_{\Sigma}\circ(U^{*}(\mathrm{i}\mkern 1.0muH_{0})U)\circ\operatorname{diag} and in [20, Sec. 2.1] we defined XK=Π𝔞AdK(X)ιX_{K}=\Pi_{\mathfrak{a}}\operatorname{Ad}_{K}^{\star}(X)\circ\iota. (We are slightly abusing notation here by writing XAdKX_{\operatorname{Ad}_{K}}.) Using the compatibility condition (5), and Π𝔞ıd=ıddiagΠΣ\Pi_{\mathfrak{a}}\circ\imath^{d}=\imath^{d}\circ\operatorname{diag}\circ\Pi_{\Sigma}, the claim HU=(ıddiag)Xȷd(U)H_{U}=(\imath^{d}\circ\operatorname{diag})^{\star}X_{\jmath^{d}(U)} follows from a simple computation. The claim about the quotient map is just a restatement of the uniqueness of the singular values. ∎

Remark A.5.

Explicitly (5) states that ȷd(VW¯)ıd(|ψ)=ıd(|VψW)\jmath^{d}(V\otimes\overline{W})\imath^{d}(\ket{\psi})=\imath^{d}(\ket{V\psi W^{*}}). In a semisimple orthogonal symmetric Lie algebra every element in 𝔭𝖠𝖨𝖨𝖨\mathfrak{p}_{\mathsf{AIII}} can be mapped into 𝔞𝖠𝖨𝖨𝖨\mathfrak{a}_{\mathsf{AIII}} using the group action of 𝐊𝖠𝖨𝖨𝖨\mathbf{K}_{\mathsf{AIII}}, cf. [19, Lem. A.26], which one might call “diagonalization”. In our case this means that ıd(|ψ)\imath^{d}(\ket{\psi}) can be mapped to some element in ıd(|VψW)ıd(Σ)\imath^{d}(\ket{V\psi W^{*}})\in\imath^{d}(\Sigma). This exactly corresponds to the complex singular value decomposition. Note however that in the Lie algebra setting we have V×WS(U(d1)×U(d2))V\times W\in\mathrm{S}(\operatorname{U}(d_{1})\times\operatorname{U}(d_{2})) and hence there is an additional restriction on the determinants of VV and WW.

Remark A.6.

For regular σSdmin1\sigma\in S^{{d_{\min}}-1} we have defined the map adσd\operatorname{ad}_{\sigma}^{d} in the main text and Lemma A.4 shows that it is related to the adjoint representation adσ:𝔨𝖠𝖨𝖨𝖨𝔭𝖠𝖨𝖨𝖨\operatorname{ad}_{\sigma}:\mathfrak{k}_{\mathsf{AIII}}\to\mathfrak{p}_{\mathsf{AIII}} (hence the name). Denoting by 𝔨σ\mathfrak{k}_{\sigma}^{\perp} and 𝔭σ\mathfrak{p}_{\sigma}^{\perp} the orthogonal complement of the commutant of σ\sigma in 𝔨𝖠𝖨𝖨𝖨\mathfrak{k}_{\mathsf{AIII}} and 𝔭𝖠𝖨𝖨𝖨\mathfrak{p}_{\mathsf{AIII}} respectively, it turns out that the restriction adσ:𝔨σ𝔭σ\operatorname{ad}_{\sigma}:\mathfrak{k}_{\sigma}^{\perp}\to\mathfrak{p}_{\sigma}^{\perp} becomes bijective and hence invertible, see [19, Prop. 2.14]. In fact this inverse is simply the Moore–Penrose pseudoinverse. Moreover it holds that 𝔭σ\mathfrak{p}_{\sigma}^{\perp} is just the orthocomplement of 𝔞\mathfrak{a}. Hence, the pseudoinverse (adσd)1(\operatorname{ad}_{\sigma}^{d})^{-1} is defined on Σ\Sigma^{\perp} with image in (ȷd)1(kσ)(\jmath^{d}_{\star})^{-1}(k_{\sigma}^{\perp}). Note however that ȷd\jmath^{d} is not an isometry and so the orthocomplement has to be calculated in 𝔨\mathfrak{k}. The precise definition is given in the following lemma.

Lemma A.7.

Let σSdmin1\sigma\in S^{{d_{\min}}-1} be regular. Then it holds that Σ={|ψd1d2:ψiii,1idmin}\Sigma^{\perp}=\{\ket{\psi}\in\mathbb{C}^{d_{1}}\otimes\mathbb{C}^{d_{2}}:\psi_{ii}\in\mathrm{i}\mkern 1.0mu\mathbb{R},1\leq i\leq{d_{\min}}\}, and the map (adσd)1(\operatorname{ad}_{\sigma}^{d})^{-1} can be described explicitly as

(adσd)1:Σ𝔲loc(d1,d2),|AiE𝟙+𝟙iF,(\operatorname{ad}_{\sigma}^{d})^{-1}:\Sigma^{\perp}\to\mathfrak{u}_{\mathrm{loc}}(d_{1},d_{2}),\quad\ket{A}\mapsto\mathrm{i}\mkern 1.0muE\otimes\mathds{1}+\mathds{1}\otimes\mathrm{i}\mkern 1.0muF\,,

where Eij=0E_{ij}=0 and Fij=0F_{ij}=0 whenever i>dmini>{d_{\min}} and j>dminj>{d_{\min}}, and for idmini\leq{d_{\min}} and jdminj\leq{d_{\min}} we get

(6) iEii=iFii=Aii2σi,iEij=σjAij+σiA¯jiσi2σj2,iFij=σjAji+σiA¯ijσi2σj2.\mathrm{i}\mkern 1.0muE_{ii}=\mathrm{i}\mkern 1.0muF_{ii}=-\frac{A_{ii}}{2\sigma_{i}},\quad\mathrm{i}\mkern 1.0muE_{ij}=\frac{\sigma_{j}A_{ij}+\sigma_{i}\overline{A}_{ji}}{\sigma_{i}^{2}-\sigma_{j}^{2}},\quad\mathrm{i}\mkern 1.0muF_{ij}=\frac{\sigma_{j}A_{ji}+\sigma_{i}\overline{A}_{ij}}{\sigma_{i}^{2}-\sigma_{j}^{2}}.

If d1>d2d_{1}>d_{2} resp. d1<d2d_{1}<d_{2} we additionally have

iEij={Aijσj if jd2<i0 if j>d2 resp. iFij={Ajiσj if id1<j0 if i>d1.\mathrm{i}\mkern 1.0muE_{ij}=\begin{cases}-\frac{A_{ij}}{\sigma_{j}}&\text{ if }j\leq d_{2}<i\\ 0&\text{ if }j>d_{2}\end{cases}\quad\text{ resp. }\quad\mathrm{i}\mkern 1.0muF_{ij}=\begin{cases}-\frac{A_{ji}}{\sigma_{j}}&\text{ if }i\leq d_{1}<j\\ 0&\text{ if }i>d_{1}.\end{cases}
Proof.

We only consider the case d1d2d_{1}\geq d_{2} for simplicity. Consider the map iE𝟙+𝟙iFA:=i(Eσ~+σ~F¯)\mathrm{i}\mkern 1.0muE\otimes\mathds{1}+\mathds{1}\otimes\mathrm{i}\mkern 1.0muF\mapsto A:=-\mathrm{i}\mkern 1.0mu(E\tilde{\sigma}+\tilde{\sigma}\overline{F}) where σ~\tilde{\sigma} is the corresponding diagonal matrix. Then Aii=i(Eii+Fii)σiiA_{ii}=-\mathrm{i}\mkern 1.0mu(E_{ii}+F_{ii})\sigma_{i}\in\mathrm{i}\mkern 1.0mu\mathbb{R}. Hence, when we invert the map above, we will assume that AiiiA_{ii}\in\mathrm{i}\mkern 1.0mu\mathbb{R}. Moreover we need to find the kernel of the map, i.e. solve for A=0A=0 (for all or any regular σ\sigma). This happens if Eii+Fii=0E_{ii}+F_{ii}=0, and Eij=Fij=0E_{ij}=F_{ij}=0 for jd2j\leq d_{2} and EijE_{ij}\in\mathbb{C} for j>d2j>d_{2}. The orthocomplement of the kernel is given by Eii=FiiE_{ii}=F_{ii}, and Eij,FijE_{ij},F_{ij}\in\mathbb{C} for jd2j\leq d_{2} and Eij=0E_{ij}=0 for j>d2j>d_{2}. Using, for i,jdmini,j\leq{d_{\min}}, that

Aij=i(Eijσj+Fjiσi),A¯ji=i(Eijσi+Fjiσj),A_{ij}=-\mathrm{i}\mkern 1.0mu(E_{ij}\sigma_{j}+F_{ji}\sigma_{i}),\quad\overline{A}_{ji}=\mathrm{i}\mkern 1.0mu(E_{ij}\sigma_{i}+F_{ji}\sigma_{j}),

we find

σiAij+σjA¯ji\displaystyle\sigma_{i}A_{ij}+\sigma_{j}\overline{A}_{ji} =iFji(σj2σi2) thus iFij=σjAji+σiA¯ijσi2σj2\displaystyle=\mathrm{i}\mkern 1.0muF_{ji}(\sigma_{j}^{2}-\sigma_{i}^{2})\text{ thus }\mathrm{i}\mkern 1.0muF_{ij}=\frac{\sigma_{j}A_{ji}+\sigma_{i}\overline{A}_{ij}}{\sigma_{i}^{2}-\sigma_{j}^{2}}
σjAij+σiA¯ji\displaystyle\sigma_{j}A_{ij}+\sigma_{i}\overline{A}_{ji} =iEij(σi2σj2) thus iEij=σjAij+σiA¯jiσi2σj2\displaystyle=\mathrm{i}\mkern 1.0muE_{ij}(\sigma_{i}^{2}-\sigma_{j}^{2})\text{ thus }\mathrm{i}\mkern 1.0muE_{ij}=\frac{\sigma_{j}A_{ij}+\sigma_{i}\overline{A}_{ji}}{\sigma_{i}^{2}-\sigma_{j}^{2}}

Finally for jd2<ij\leq d_{2}<i we find iEij=Aij/σj\mathrm{i}\mkern 1.0muE_{ij}=-A_{ij}/\sigma_{j} and for j>d2j>d_{2} we get iEij=0\mathrm{i}\mkern 1.0muE_{ij}=0. ∎

Note that this lemma uniquely defines iE𝟙+𝟙iF𝔲loc(d1,d2)\mathrm{i}\mkern 1.0muE\otimes\mathds{1}+\mathds{1}\otimes\mathrm{i}\mkern 1.0muF\in\mathfrak{u}_{\mathrm{loc}}(d_{1},d_{2}), although there is some freedom in the choice of EE and FF since we can shift some real multiple of the identity between them.

A.2. Autonne–Takagi Factorization (Type CI)

First discovered by Autonne [3] and Takagi [27], the Autonne–Takagi factorization [13, Sec. 4.4] states that for any complex symmetric matrix A𝔰𝔶𝔪(d,)A\in\mathfrak{sym}(d,\mathbb{C}) there exists a unitary matrix UU(d)U\in\operatorname{U}(d) such that UAUUAU^{\top} is real and diagonal. The diagonal elements are uniquely defined up to order and signs, and they are in fact the singular values of AA.

The corresponding symmetric Lie algebra is that of type CI, usually represented by the real symplectic Lie algebra 𝔤𝖢𝖨=𝔰𝔭(d,)\mathfrak{g}_{\mathsf{CI}}=\mathfrak{sp}(d,\mathbb{R}), see [17, Sec. 4.3] and again [12, Ch. X §2.3]. The Cartan decomposition 𝔤𝖢𝖨=𝔨𝖢𝖨𝔭𝖢𝖨\mathfrak{g}_{\mathsf{CI}}=\mathfrak{k}_{\mathsf{CI}}\oplus\mathfrak{p}_{\mathsf{CI}} is given explicitly by

𝔨𝖢𝖨\displaystyle\mathfrak{k}_{\mathsf{CI}} ={[ABBA]:A=A,B=B,A,Bd,d},\displaystyle=\left\{\begin{bmatrix}A&B\\ -B&A\end{bmatrix}:A=-A^{\top},B=B^{\top},\,\,A,B\in\mathbb{R}^{d,d}\right\},
𝔭𝖢𝖨\displaystyle\mathfrak{p}_{\mathsf{CI}} ={[CDDC]:C=C,D=D,C,Dd,d}.\displaystyle=\left\{\begin{bmatrix}C&D\\ D&-C\end{bmatrix}:C=C^{\top},D=D^{\top},\,\,C,D\in\mathbb{R}^{d,d}\right\}.

The corresponding state space isomorphism ıs\imath^{s} is given by

ıs:Sym2(d)𝔭𝖢𝖨,|ψ(ReψImψImψReψ).\imath^{s}:\mathrm{Sym}^{2}(\mathbb{C}^{d})\to\mathfrak{p}_{\mathsf{CI}},\,\ket{\psi}\mapsto\begin{pmatrix}\operatorname{Re}\psi&-\operatorname{Im}\psi\\ -\operatorname{Im}\psi&-\operatorname{Re}\psi\end{pmatrix}.
Lemma A.8.

The map ıs\imath^{s} is an \mathbb{R}-linear isometric isomorphism. The subspace 𝔞𝖢𝖨:=ıs(Σ)\mathfrak{a}_{\mathsf{CI}}:=\imath^{s}(\Sigma) is maximal Abelian and ısdiagΠΣ=Π𝔞𝖢𝖨ıs\imath^{s}\circ\operatorname{diag}\circ\Pi_{\Sigma}=\Pi_{\mathfrak{a}_{\mathsf{CI}}}\circ\imath^{s}. The Weyl group 𝐖𝖢𝖨\mathbf{W}_{\mathsf{CI}} is isomorphic to the generalized permutations Sd2S_{d}\wr\mathbb{Z}_{2} and 𝔴𝖢𝖨:=ıs(Σ

-

)
\mathfrak{w}_{\mathsf{CI}}:=\imath^{s}(\Sigma^{\mathrel{\ooalign{$\hss\shortdownarrow$\hss\cr\hss\raisebox{2.0pt}{\scalebox{0.6}{$-$}}\hss}}})
is a Weyl chamber.

Proof.

The proof is analogous to that of Lemma A.3 so we just compute the inner product on 𝔭𝖢𝖨\mathfrak{p}_{\mathsf{CI}}:

12tr(ıs(|ψ)ıs(|ϕ))=tr(Re(ψ)Re(ϕ)+Im(ψ)Im(ϕ))=Re(tr(ψϕ)).\frac{1}{2}\operatorname{tr}(\imath^{s}(\ket{\psi})\imath^{s}(\ket{\phi}))=\operatorname{tr}(\operatorname{Re}(\psi)\operatorname{Re}(\phi)+\operatorname{Im}(\psi)\operatorname{Im}(\phi))=\operatorname{Re}(\operatorname{tr}(\psi^{*}\phi)).

Hence ıs\imath^{s} is an isometry and this concludes the proof. ∎

Now consider the following maps

ȷs\displaystyle\jmath^{s} :Ulocs(d)Ad𝐊𝖢𝖨,\displaystyle:\operatorname{U}_{\mathrm{loc}}^{s}(d)\to\operatorname{Ad}_{\mathbf{K}_{\mathsf{CI}}},\, VV\displaystyle V\otimes V Ad(ReVImVImVReV),\displaystyle\mapsto\operatorname{Ad}_{\begin{pmatrix}\operatorname{Re}V&\operatorname{Im}V\\ -\operatorname{Im}V&\operatorname{Re}V\end{pmatrix}},
ȷs\displaystyle\jmath^{s}_{\star} :𝔲locs(d)ad𝔨𝖢𝖨,\displaystyle:\mathfrak{u}_{\mathrm{loc}}^{s}(d)\to\operatorname{ad}_{\mathfrak{k}_{\mathsf{CI}}},\, iH𝟙+𝟙iH\displaystyle\mathrm{i}\mkern 1.0muH\otimes\mathds{1}+\mathds{1}\otimes\mathrm{i}\mkern 1.0muH ad(Re(iH)Im(iH)Im(iH)Re(iH)).\displaystyle\mapsto\operatorname{ad}_{\begin{pmatrix}\operatorname{Re}(\mathrm{i}\mkern 1.0muH)&\operatorname{Im}(\mathrm{i}\mkern 1.0muH)\\ -\operatorname{Im}(\mathrm{i}\mkern 1.0muH)&\operatorname{Re}(\mathrm{i}\mkern 1.0muH)\end{pmatrix}}.
Lemma A.9.

The maps ȷs\jmath^{s} and ȷs\jmath^{s}_{\star} are Lie isomorphisms satisfying the compatibility conditions

(7) ȷs(U)ıs(|ψ)=ıs(U|ψ),ȷs(iH)ıs(|ψ)=ıs(iH|ψ).\jmath^{s}(U)\imath^{s}(\ket{\psi})=\imath^{s}(U\ket{\psi}),\quad\jmath^{s}_{\star}(\mathrm{i}\mkern 1.0muH)\imath^{s}(\ket{\psi})=\imath^{s}(\mathrm{i}\mkern 1.0muH\ket{\psi}).

As in Lemma A.4 we get the correspondence of infinitesimal action, induced vector fields and quotient map.

Proof.

Since VV=(V)(V)V\otimes V=(-V)\otimes(-V) we have to check that the map is well defined. But it is clear that AdU=AdU\operatorname{Ad}_{-U}=\operatorname{Ad}_{U} and hence ȷs\jmath^{s} is well defined. That it is an isomorphism follows from [17, Prop. 4.7]. The remainder of the proof is analogous to that of Lemma A.4. ∎

As in Remark A.5, the relation to the Autonne–Takagi factorization can be seen from (7), which explicitly states that ȷs(VV)ıs(|ψ)=ıs(|VψV)\jmath^{s}(V\otimes V)\imath^{s}(\ket{\psi})=\imath^{s}(\ket{V\psi V^{\top}}), and from the fact that ıs(Σ)=𝔞𝖢𝖨\imath^{s}(\Sigma)=\mathfrak{a}_{\mathsf{CI}}.

As described in Remark A.6 we can explicitly compute the appropriate inverse of the map adσs\operatorname{ad}^{s}_{\sigma}. Note that in this case we have 𝔨σ=𝔨𝖢𝖨\mathfrak{k}_{\sigma}^{\perp}=\mathfrak{k}_{\mathsf{CI}}.

Lemma A.10.

Let σSd1\sigma\in S^{d-1} be regular. Then it holds that Σ={|ψSym2(d):ψiii,1id}\Sigma^{\perp}=\{\ket{\psi}\in\mathrm{Sym}^{2}(\mathbb{C}^{d}):\psi_{ii}\in\mathrm{i}\mkern 1.0mu\mathbb{R},1\leq i\leq d\}, and the map (adσs)1(\operatorname{ad}_{\sigma}^{s})^{-1} can be explicitly described as

(adσs)1:Σ𝔲locs(d),|AiE𝟙+𝟙iE,(\operatorname{ad}_{\sigma}^{s})^{-1}:\Sigma^{\perp}\to\mathfrak{u}_{\mathrm{loc}}^{s}(d),\quad\ket{A}\mapsto\mathrm{i}\mkern 1.0muE\otimes\mathds{1}+\mathds{1}\otimes\mathrm{i}\mkern 1.0muE,

where

Eii=iAii2,Eij=Im(Aij)σi+σjiRe(Aij)σiσj.E_{ii}=\frac{\mathrm{i}\mkern 1.0muA_{ii}}{2},\quad E_{ij}=-\frac{\operatorname{Im}(A_{ij})}{\sigma_{i}+\sigma_{j}}-\mathrm{i}\mkern 1.0mu\frac{\operatorname{Re}(A_{ij})}{\sigma_{i}-\sigma_{j}}.
Proof.

Let A=adσs(iE)=i(Eσ~+σ~E¯)A=\operatorname{ad}_{\sigma}^{s}(\mathrm{i}\mkern 1.0muE)=-\mathrm{i}\mkern 1.0mu(E\tilde{\sigma}+\tilde{\sigma}\overline{E}). Then we have Aii=2iEiiσiA_{ii}=-2\mathrm{i}\mkern 1.0muE_{ii}\sigma_{i} and Aij=i(Eijσj+σiE¯ij)A_{ij}=-\mathrm{i}\mkern 1.0mu(E_{ij}\sigma_{j}+\sigma_{i}\overline{E}_{ij}). Hence Eii=iAii2σiE_{ii}=\frac{\mathrm{i}\mkern 1.0muA_{ii}}{2\sigma_{i}}. To invert the second equation we compute

Aij=i(Eijσj+σiE¯ij),A¯ij=+i(E¯ijσj+σiEij)\displaystyle A_{ij}=-\mathrm{i}\mkern 1.0mu(E_{ij}\sigma_{j}+\sigma_{i}\overline{E}_{ij}),\quad\overline{A}_{ij}=+\mathrm{i}\mkern 1.0mu(\overline{E}_{ij}\sigma_{j}+\sigma_{i}E_{ij})

and hence taking sum and difference we get

2Re(Aij)=i(EijE¯ij)(σiσj)=2Im(Eij)(σiσj)\displaystyle 2\operatorname{Re}(A_{ij})=\mathrm{i}\mkern 1.0mu(E_{ij}-\overline{E}_{ij})(\sigma_{i}-\sigma_{j})=-2\operatorname{Im}(E_{ij})(\sigma_{i}-\sigma_{j}) Im(Eij)=Re(Aij)σjσi,\displaystyle\Rightarrow\operatorname{Im}(E_{ij})=\frac{\operatorname{Re}(A_{ij})}{\sigma_{j}-\sigma_{i}},
2iIm(Aij)=i(Eij+E¯ij)(σi+σj)=2iRe(Eij)(σi+σj)\displaystyle 2\mathrm{i}\mkern 1.0mu\operatorname{Im}(A_{ij})=-\mathrm{i}\mkern 1.0mu(E_{ij}+\overline{E}_{ij})(\sigma_{i}+\sigma_{j})=-2\mathrm{i}\mkern 1.0mu\operatorname{Re}(E_{ij})(\sigma_{i}+\sigma_{j}) Re(Eij)=Im(Aij)σi+σj.\displaystyle\Rightarrow\operatorname{Re}(E_{ij})=-\frac{\operatorname{Im}(A_{ij})}{\sigma_{i}+\sigma_{j}}.

This concludes the proof. ∎

A.3. Hua Factorization (Type DIII)

A skew-symmetric version of the Autonne–Takagi factorization also exists [13, Coro. 4.4.19]. It is called the Hua factorization, and was originally proven in [14, Thm. 7]. It states that for every skew-symmetric complex matrix A𝔞𝔰𝔶𝔪(d,)A\in\mathfrak{asym}(d,\mathbb{C}) there exists a unitary UU(d)U\in\operatorname{U}(d) such that UAUUAU^{\top} is real and block diagonal with skew-symmetric blocks of size 2×22\times 2. If dd is odd then there is an additional 1×11\times 1 block containing a zero. We call such matrices quasi-diagonal. Each 2×22\times 2 block is determined by a single real number (and its negative) which taken together yield the singular values of AA.

This matrix factorization is related to the symmetric Lie algebra of type DIII, usually represented by the 𝔰𝔬(2d)\mathfrak{so}^{*}(2d), see [17, App. A.6] and again [12, Ch. X §2.3].161616Note that [12] uses a different but isomorphic matrix representation. In this case we have the following Cartan like decomposition

𝔨𝖣𝖨𝖨𝖨={(iH00iH¯):iH𝔲(d)},𝔭𝖣𝖨𝖨𝖨={(0ψψ0):ψ=ψ,ψd,d}.\mathfrak{k}_{\mathsf{DIII}}=\left\{\begin{pmatrix}\mathrm{i}\mkern 1.0muH&0\\ 0&-\mathrm{i}\mkern 1.0mu\overline{H}\end{pmatrix}:\mathrm{i}\mkern 1.0muH\in\mathfrak{u}(d)\right\},\quad\mathfrak{p}_{\mathsf{DIII}}=\left\{\begin{pmatrix}0&\psi\\ \psi^{*}&0\end{pmatrix}:\psi=-\psi^{\top},\psi\in\mathbb{C}^{d,d}\right\}.

Clearly the state space isomorphism is

ıa:2(d)𝔭𝖣𝖨𝖨𝖨,|ψ(0ψψ0).\imath^{a}:\textstyle\bigwedge^{2}(\mathbb{C}^{d})\to\mathfrak{p}_{\mathsf{DIII}},\quad\ket{\psi}\mapsto\begin{pmatrix}0&\psi\\ \psi^{*}&0\end{pmatrix}.
Lemma A.11.

The map ıa\imath^{a} is an \mathbb{R}-linear isometric isomorphism. The subspace 𝔞𝖣𝖨𝖨𝖨:=ıa(Ξ)\mathfrak{a}_{\mathsf{DIII}}:=\imath^{a}(\Xi) is maximal Abelian and ıaqdiagΠΞ=Π𝔞ıa\imath^{a}\circ\operatorname{qdiag}\circ\Pi_{\Xi}=\Pi_{\mathfrak{a}}\circ\imath^{a}. The Weyl group 𝐖𝖣𝖨𝖨𝖨\mathbf{W}_{\mathsf{DIII}} is isomorphic to the generalized permutations Sd/22S_{\lfloor d/2\rfloor}\wr\mathbb{Z}_{2} and 𝔴𝖣𝖨𝖨𝖨:=ıa(Ξ

-

)
\mathfrak{w}_{\mathsf{DIII}}:=\imath^{a}(\Xi^{\mathrel{\ooalign{$\hss\shortdownarrow$\hss\cr\hss\raisebox{2.0pt}{\scalebox{0.6}{$-$}}\hss}}})
is a Weyl chamber.

Proof.

The proof is entirely analogous to that of Lemma A.3. ∎

The isomorphisms on the Lie group and algebra level are:

ȷa\displaystyle\jmath^{a} :Ulocs(d)Ad𝐊𝖣𝖨𝖨𝖨,\displaystyle:\operatorname{U}_{\mathrm{loc}}^{s}(d)\to\operatorname{Ad}_{\mathbf{K}_{\mathsf{DIII}}}, VV\displaystyle\quad V\otimes V Ad(V00V¯)\displaystyle\mapsto\operatorname{Ad}_{\begin{pmatrix}V&0\\ 0&\overline{V}\end{pmatrix}}
ȷa\displaystyle\jmath^{a}_{\star} :𝔲locs(d)ad𝔨𝖣𝖨𝖨𝖨,\displaystyle:\mathfrak{u}_{\mathrm{loc}}^{s}(d)\to\operatorname{ad}_{\mathfrak{k}_{\mathsf{DIII}}}, iH𝟙+𝟙iH\displaystyle\quad\mathrm{i}\mkern 1.0muH\otimes\mathds{1}+\mathds{1}\otimes\mathrm{i}\mkern 1.0muH ad(iH00iH¯)\displaystyle\mapsto\operatorname{ad}_{\begin{pmatrix}\mathrm{i}\mkern 1.0muH&0\\ 0&-\mathrm{i}\mkern 1.0mu\overline{H}\end{pmatrix}}
Lemma A.12.

The maps ȷa\jmath^{a} and ȷa\jmath^{a}_{\star} are Lie isomorphisms satisfying the compatibility conditions

(8) ȷa(U)ıa(|ψ)=ıa(U|ψ),ȷa(iH)ıa(|ψ)=ıa(iH|ψ).\jmath^{a}(U)\imath^{a}(\ket{\psi})=\imath^{a}(U\ket{\psi}),\quad\jmath^{a}_{\star}(\mathrm{i}\mkern 1.0muH)\imath^{a}(\ket{\psi})=\imath^{a}(\mathrm{i}\mkern 1.0muH\ket{\psi}).

As in Lemma A.4 we get the correspondence of infinitesimal action, induced vector fields and quotient map.

Proof.

Since AdU=AdU\operatorname{Ad}_{-U}=\operatorname{Ad}_{U} the map ȷa\jmath^{a} is well-defined, and it is clearly a Lie group isomorphism. The remainder of the proof is analogous to that of Lemma A.4. ∎

The relation to the Hua factorization can be seen form (8), which becomes ȷa(VV)ıa(|ψ)=ıa(|VψV)\jmath^{a}(V\otimes V)\imath^{a}(\ket{\psi})=\imath^{a}(\ket{V\psi V^{\top}}), and the fact that ıa(Ξ)=𝔞𝖣𝖨𝖨𝖨\imath^{a}(\Xi)=\mathfrak{a}_{\mathsf{DIII}}.

Lemma A.13.

Let ξSd/21\xi\in S^{\lfloor d/2\rfloor-1} be regular. It holds that Ξ={|ψ2(d):ψ2i1,2ii,i=1,,d/2}\Xi^{\perp}=\{\ket{\psi}\in\bigwedge^{2}(\mathbb{C}^{d}):\psi_{2i-1,2i}\in\mathrm{i}\mkern 1.0mu\mathbb{R},\,i=1,\dots,\lfloor d/2\rfloor\}. The map (adξa)1(\operatorname{ad}_{\xi}^{a})^{-1} takes the following form:

(adξa)1:Ξ𝔲locs(d),|AiE𝟙+𝟙iE,(\operatorname{ad}_{\xi}^{a})^{-1}:\Xi^{\perp}\to\mathfrak{u}_{\mathrm{loc}}^{s}(d),\quad\ket{A}\mapsto\mathrm{i}\mkern 1.0muE\otimes\mathds{1}+\mathds{1}\otimes\mathrm{i}\mkern 1.0muE,

where for 1i,jd/21\leq i,j\leq\lfloor d/2\rfloor we get

(iE)(ii)=ai2ξi𝟙2,(iE)(ij)=ξiJA¯(ij)+ξjA(ij)Jξj2ξi2,\displaystyle(\mathrm{i}\mkern 1.0muE)_{(ii)}=-\frac{a_{i}}{2\xi_{i}}\mathds{1}_{2},\quad(\mathrm{i}\mkern 1.0muE)_{(ij)}=\frac{\xi_{i}J\overline{A}_{(ij)}+\xi_{j}A_{(ij)}J}{\xi_{j}^{2}-\xi_{i}^{2}},

where (iE)(ij)(\mathrm{i}\mkern 1.0muE)_{(ij)} and A(ij)A_{(ij)} indexes the 2×22\times 2 blocks of the respective matrices, 𝟙2=(1001)\mathds{1}_{2}=\begin{pmatrix}1&0\\ 0&1\end{pmatrix} and J=(0110)J=\begin{pmatrix}0&1\\ -1&0\end{pmatrix}. By aiia_{i}\in\mathrm{i}\mkern 1.0mu\mathbb{R} we denote the value satisfying Aii=aiJA_{ii}=a_{i}J. In the case where dd is odd we additionally have

iEd,2i1=iE¯2i1,d=Ad,2iξi,iEd,2i=iE¯2i,d=Ad,2i1ξi,iEd,d=0.\mathrm{i}\mkern 1.0muE_{d,2\mathrm{i}\mkern 1.0mu-1}=\mathrm{i}\mkern 1.0mu\overline{E}_{2\mathrm{i}\mkern 1.0mu-1,d}=\frac{A_{d,2\mathrm{i}\mkern 1.0mu}}{\xi_{i}},\quad\mathrm{i}\mkern 1.0muE_{d,2\mathrm{i}\mkern 1.0mu}=\mathrm{i}\mkern 1.0mu\overline{E}_{2\mathrm{i}\mkern 1.0mu,d}=-\frac{A_{d,2\mathrm{i}\mkern 1.0mu-1}}{\xi_{i}},\quad\mathrm{i}\mkern 1.0muE_{d,d}=0.
Proof.

First consider the even-dimensional case. Let A:=adξa(iE𝟙+𝟙iE)=i(Eξ~+ξ~E¯)A:=\operatorname{ad}_{\xi}^{a}(\mathrm{i}\mkern 1.0muE\otimes\mathds{1}+\mathds{1}\otimes\mathrm{i}\mkern 1.0muE)=-\mathrm{i}\mkern 1.0mu(E\tilde{\xi}+\tilde{\xi}\overline{E}). For 1i,jd/21\leq i,j\leq\lfloor d/2\rfloor we compute the bocks A(ii)=i(E(ii)ξiJ+ξiJE¯(ii))A_{(ii)}=-\mathrm{i}\mkern 1.0mu(E_{(ii)}\xi_{i}J+\xi_{i}J\overline{E}_{(ii)}) as well as

A(ij)=i(E(ij)ξjJ+ξiJE¯(ij)),A¯(ij)=+i(E¯(ij)ξiJ+ξjJE(ij)).\displaystyle A_{(ij)}=-\mathrm{i}\mkern 1.0mu(E_{(ij)}\xi_{j}J+\xi_{i}J\overline{E}_{(ij)}),\quad\overline{A}_{(ij)}=+\mathrm{i}\mkern 1.0mu(\overline{E}_{(ij)}\xi_{i}J+\xi_{j}JE_{(ij)}).

It follows that ξiJA¯(ij)+ξjA(ij)J=i(ξj2ξi2)E(ij)\xi_{i}J\overline{A}_{(ij)}+\xi_{j}A_{(ij)}J=\mathrm{i}\mkern 1.0mu(\xi_{j}^{2}-\xi_{i}^{2})E_{(ij)}, and hence we find that

iE(ii)=ai2ξi𝟙2,iE(ij)=ξiJA¯(ij)+ξjA(ij)Jξj2ξi2.\mathrm{i}\mkern 1.0muE_{(ii)}=\frac{-a_{i}}{2\xi_{i}}\mathds{1}_{2},\quad\mathrm{i}\mkern 1.0muE_{(ij)}=\frac{\xi_{i}J\overline{A}_{(ij)}+\xi_{j}A_{(ij)}J}{\xi_{j}^{2}-\xi_{i}^{2}}.

Here we used that the for ȷ(iE𝟙+𝟙iE)\jmath_{\star}(\mathrm{i}\mkern 1.0muE\otimes\mathds{1}+\mathds{1}\otimes\mathrm{i}\mkern 1.0muE) to lie in 𝔨ξ\mathfrak{k}_{\xi}^{\perp} the diagonal blocks E(ii)E_{(ii)} must be real multiples of the identity. If dd is odd there is an additional column at the bottom and row on the right of iE\mathrm{i}\mkern 1.0muE to be determined. We find that

Ad,2i1=iEd,2iξi,Ad,2i=+iEd,2i1ξi.A_{d,2i-1}=-\mathrm{i}\mkern 1.0muE_{d,2i}\xi_{i},\quad A_{d,2i}=+\mathrm{i}\mkern 1.0muE_{d,2i-1}\xi_{i}.

The claimed results follow immediately. ∎

References

  • [1] Agrachev, A., and Sachkov, Y. Control Theory from the Geometric Viewpoint. Encyclopaedia of Mathematical Sciences. Springer, Heidelberg, 2004.
  • [2] Aubin, J.-P., and Cellina, A. Differential Inclusions: Set-Valued Maps and Viability Theory. Springer, Berlin Heidelberg, 1984.
  • [3] Autonne, L. Sur les Matrices Hypohermitiennes et sur les Matrices Unitaires. Ann. Univ. Lyon Nouvelle Ser. 38, 1 (1915).
  • [4] Bengtsson, I., and Życzkowski, K. Geometry of Quantum States: An Introduction to Quantum Entanglement, 2nd ed. Cambridge University Press, Cambridge, 2017.
  • [5] Bennett, C. H., and Brassard, G. Quantum Cryptography: Public Key Distribution and Coin Tossing. Theoretical Computer Science 560 (2014), 7–11. Theoretical Aspects of Quantum Cryptography – celebrating 30 years of BB84.
  • [6] D’Alessandro, D. Introduction to Quantum Control and Dynamics, 2nd ed. Chapman and Hall/CRC, New York, 2021.
  • [7] Degen, C. L., Reinhard, F., and Cappellaro, P. Quantum Sensing. Rev. Mod. Phys. 89 (2017), 035002.
  • [8] Dirr, G., and Helmke, U. Lie Theory for Quantum Control. GAMM-Mitteilungen 31 (2008), 59–93.
  • [9] Dirr, G., vom Ende, F., and Schulte-Herbrüggen, T. Reachable Sets from Toy Models to Controlled Markovian Quantum Systems. Proc. IEEE Conf. Decision Control (IEEE-CDC) 58 (2019), 2322.
  • [10] Elliott, D. Bilinear Control Systems: Matrices in Action. Springer, London, 2009.
  • [11] Gisin, N., Ribordy, G., Tittel, W., and Zbinden, H. Quantum Cryptography. Rev. Mod. Phys. 74 (2002), 145–195.
  • [12] Helgason, S. Differential Geometry, Lie Groups, and Symmetric Spaces. Academic Press, New York, 1978.
  • [13] Horn, R., and Johnson, C. Matrix Analysis, 2nd ed. Cambridge University Press, Cambridge, 2012.
  • [14] Hua, L. K. On the Theory of Automorphic Functions of a Matrix Variable. I: Geometrical Basis. Amer. J. Math. 66 (1944), 470–488.
  • [15] Huckleberry, A., Kuś, M., and Sawicki, A. Bipartite Entanglement, Spherical Actions, and Geometry of Local Unitary Orbits. J. Math. Phys. 54, 2 (2013), 022202.
  • [16] Jurdjevic, V. Geometric Control Theory. Cambridge University Press, Cambridge, 1997.
  • [17] Kleinsteuber, M. Jacobi-Type Methods on Semisimple Lie Algebras: A Lie Algebraic Approach to the Symmetric Eigenvalue Problem. PhD thesis, TU Munich, 2006.
  • [18] Liu, W. An Approximation Algorithm for Nonholonomic Systems. SIAM J. Control Optim. 35 (1997), 1328–1365.
  • [19] Malvetti, E., Dirr, G., vom Ende, F., and Schulte-Herbrüggen, T. Analytic, Differentiable and Measurable Diagonalizations in Symmetric Lie Algebras, 2022. arXiv:2212.00713.
  • [20] Malvetti, E., Dirr, G., vom Ende, F., and Schulte-Herbrüggen, T. Reduced Control Systems on Symmetric Lie Algebras, 2023. arXiv:2307.13664.
  • [21] Malvetti, E., and van Damme, L. Optimal Control of Bipartite Quantum Systems. In preparation.
  • [22] Malvetti, E., vom Ende, F., Dirr, G., and Schulte-Herbrüggen, T. Reachability, Coolability, and Stabilizability of Open Markovian Quantum Systems with Fast Unitary Control, 2023. arXiv:2308.00561, submitted to SIAM J. Control Optim.
  • [23] Rooney, P., Bloch, A., and Rangan, C. Steering the Eigenvalues of the Density Operator in Hamiltonian-Controlled Quantum Lindblad Systems. IEEE Trans. Automat. Contr. 63 (2018), 672–681.
  • [24] Schulte-Herbrüggen, T., vom Ende, F., and Dirr, G. Exploring the Limits of Open Quantum Dynamics I: Motivation, First Results from Toy Models to Applications. In Proc. MTNS (2022), p. 1069. arXiv:2003.06018.
  • [25] Sklarz, S., Tannor, D., and Khaneja, N. Optimal Control of Quantum Dissipative Dynamics: Analytic Solution for Cooling the Three-Level Λ\Lambda System. Phys. Rev. A 69 (2004), 053408.
  • [26] Smirnov, G. Introduction to the Theory of Differential Inclusions. Amer. Math. Soc., Providence, Rhode Island, 2002.
  • [27] Takagi, T. On an Algebraic Problem Related to an Analytic Theorem of Carathéodory and Fejér and on an Allied Theorem of Landau. Jap. J. Math. 83, 1 (1925).
  • [28] Vidal, G. Efficient Classical Simulation of Slightly Entangled Quantum Computations. Phys. Rev. Lett. 91, 14 (2003), 147902.
  • [29] vom Ende, F. Reachability in Controlled Markovian Quantum Systems: An Operator-Theoretic Approach. PhD thesis, TU Munich, 2020.
  • [30] vom Ende, F., Malvetti, E., Dirr, G., and Schulte-Herbrüggen, T. Exploring the Limits of Controlled Markovian Quantum Dynamics with Thermal Resources. Open Syst. Inf. Dyn. 30, 1 (2023), 2350005.
  • [31] Yuan, H. Characterization of Majorization Monotone Quantum Dynamics. IEEE Trans. Automat. Contr. 55 (2010), 955–959.