This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Enhancement of spin-mixing conductance by ss-dd orbital hybridization in heavy metals

Adam B. Cahaya [email protected] Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia    Rico M. Sitorus Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia    Anugrah Azhar Physics Study Program, Faculty of Sciences and Technology, Syarif Hidayatullah State Islamic University Jakarta, South Tangerang 15412, Indonesia    Ahmad R. T. Nugraha Research Center for Quantum Physics, National Research and Innovation Agency (BRIN), South Tangerang 15314, Indonesia    Muhammad Aziz Majidi Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia
Abstract

In a magnetic multilayer, the spin transfer between localized magnetization dynamics and itinerant conduction spin arises from the interaction between a normal metal and an adjacent ferromagnetic layer. The spin-mixing conductance then governs the spin-transfer torques and spin pumping at the magnetic interface. Theoretical description of spin-mixing conductance at the magnetic interface often employs a single conduction-band model. However, there is orbital hybridization between conduction ss electron and localized dd electron of the heavy transition metal, in which the single conduction-band model is insufficient to describe the ss-dd orbital hybridization. In this work, using the generalized Anderson model, we estimate the spin-mixing conductance that arises from the ss-dd orbital hybridization. We find that the orbital hybridization increases the magnitude of the spin-mixing conductance.

spin-mixing conductance, spin pumping, spin transfer torque, orbital hybridization, orbital mixing, electron-electron interaction

I Introduction

The technological potential of magnetic devices based on transition metals for spin-current manipulation has pushed research forward in the spintronics area [1]. The basic structure of a magnetic device is a magnetic multilayer. In spin-based memory systems, the interaction between normal metal and ferromagnetic metal can cause the magnetization direction to change [2].

In a magnetic multilayer, magnetization dynamics can be induced by spin current via the spin-transfer torque effect [3]. When the non magnetic layer has a finite spin accumulation 𝝁\bm{\mu}, which represents the difference of the spin-dependent electrochemical potential, the magnetization near the ferromagnetic interface experiences a torque 𝝉\bm{\tau} due to spin transfer [4]

𝝉=gm×(m×𝝁),\displaystyle\bm{\tau}=g_{\uparrow\downarrow}\textbf{m}\times\left(\textbf{m}\times\bm{\mu}\right), (1)

where gg_{\uparrow\downarrow} is spin-mixing conductance. Reciprocally, in spin pumping, the spin current can be induced by magnetization dynamic m via the exchange interaction between magnetization and spin of the conduction electron [5]. An adiabatic precession of the magnetization pumps a spin current from the ferromagnet to the nonmagnetic layer with a polarization[6, 7, 8]

J=gm×m˙.\displaystyle\textbf{J}=g_{\uparrow\downarrow}\textbf{m}\times\dot{\textbf{m}}. (2)

Both spin transfer torque and spin pumping effects are governed by the same gg_{\uparrow\downarrow}, which has a complex value with a comparably small imaginary term [9].

Spin-mixing conductance was originally described using spin-dependent scattering theory [5]. The basic theoretical models of spin-mixing conductance utilizes a non-interacting electron model for the nonmagnetic metal [10, 11]. While this is certainly appropriate for free-electron-like metals, it is less so for heavy transition metals [12]. To accommodate the localized symmetry of the dd electron, a linear response theory description of spin-mixing conductance has been developed [11]. However, there are few theoretical studies exploring the spin-mixing conductance of heavy metals with interacting electron model [13]. Therefore, a better understanding of the spin-mixing conductance of heavy metals is required.

The theoretical description of spin-mixing conductance is often simplified in order to focus on a certain aspect or interaction that dominates a particular setup [14]. In the spin-pumping setup involving a heavy-metal system discussed in this article, we focus on the effect of electron-electron interaction at the nonmagnetic heavy metal layer. While the effect of electron interaction on spin-mixing conductance has been studied using Stoner model and phenomenological Hubbard parameter UU [15, 16, 17], a more realistic model of the heavy-metal system requires orbital hybridization [18], for example, the Anderson model [19]. In the Anderson model, a dd electron is treated as an impurity, with well-localized energy dispersion [20]. For describing a heavy metal, however, we need to consider a dd electron with a more generalized dispersion [21]. This article aims to theoretically estimate the electron-electron interaction correction factor due to the ss-dd orbital hybridization of a heavy metal as illustrated in Fig. 1.

Refer to caption
Figure 1: (a) The interface of magnetic and heavy metals can be modeled as a ferromagnetic layer with localized magnetic moments and itinerant conduction electrons. The interaction of magnetic moments and conduction spin induces spin-transfer torque and spin current pumping in ferromagnetic layer and nonmagnetic layer, respectively. (b) In heavy metal, there is orbital hybridization between conduction ss electron and dd electron [19] with parabolic dispersions[21].

In this article, we first analyze the linear response theory of spin density in heavy transition metal using Anderson model in Sec. II. In Sec. III we show that the orbital hybridization enhances gg_{\uparrow\downarrow} of the interface of ferromagnet and heavy transition metal (Ta, W, Ir, Pt or Au). Lastly, we summarize our findings in Sec. IV.

II linear response theory in heavy transition metal

Near the magnetic interface, the exchange interaction between the localized magnetic moments m at the magnetic interface and the conduction spin 𝝈\bm{\sigma} can be written in the following Hamiltonian

Hex=J𝑑𝐫δ(𝐫)m𝝈(r),H_{ex}=-J\int d\mathbf{r}\delta(\mathbf{r})\textbf{m}\cdot\bm{\sigma}(\textbf{r}), (3)

where the exchange constant in the strong screening limit is J=Ms/(γ𝒩F)J=M_{s}/\left(\gamma\mathcal{N}_{F}\right) [11, 4]. MsM_{s} and γ\gamma are saturation magnetization and gyromagnetic ratio of the ferromagnetic insulator, respectively. 𝒩F\mathcal{N}_{F} is the density of states of the conduction electron at the Fermi level.

Using linear response theory, one can show the response of 𝝈\bm{\sigma} to m via spin susceptibility χij\chi_{ij}

σi(r,t)=\displaystyle\sigma_{i}(\textbf{r},t)= J𝑑r𝑑tχij(rr,tt)mj(t)δ(r),\displaystyle J\int d\textbf{r}^{\prime}dt^{\prime}\chi_{ij}(\textbf{r}-\textbf{r}^{\prime},t-t^{\prime})m_{j}(t^{\prime})\delta(\textbf{r}^{\prime}), (4)

where

χij(r,t)=iΘ(t)[σi(r,t),σj(0,0)]\displaystyle\chi_{ij}(\textbf{r},t)=\frac{i}{\hbar}\Theta(t)\left\langle\left[\sigma_{i}(\textbf{r},t),\sigma_{j}(\textbf{0},0)\right]\right\rangle (5)

Here Θ(t)\Theta(t) is Heaviside step function. In an ,isotropic medium χij=δijχ\chi_{ij}=\delta_{ij}\chi can be written in terms of χ+\chi^{-+} and χ+\chi^{+-}

χ=χ++χ+,\displaystyle\chi=\chi^{-+}+\chi^{+-}, (6)

where

χ+(r,t)=iΘ(t)[σ(r,t),σ+(0,0)],\displaystyle\chi^{-+}(\textbf{r},t)=\frac{i}{\hbar}\Theta(t)\left\langle\left[\sigma^{-}(\textbf{r},t),\sigma^{+}(\textbf{0},0)\right]\right\rangle,
χ+(r,t)=iΘ(t)[σ+(r,t),σ(0,0)].\displaystyle\chi^{+-}(\textbf{r},t)=\frac{i}{\hbar}\Theta(t)\left\langle\left[\sigma^{+}(\textbf{r},t),\sigma^{-}(\textbf{0},0)\right]\right\rangle.

Here σ±=(σx±iσy)/2\sigma_{\pm}=(\sigma_{x}\pm i\sigma_{y})/2 and σa\sigma_{a} (a=x,y,za=x,y,z) are Pauli matrices. Since χ+\chi^{+-} can be obtained by replacing ++ and -, it is convenient to discuss χ+\chi^{-+}.

For a noninteracting simple metal with parabolic dispersion Ek=E0+2k2/2mE_{\textbf{k}}=E_{0}+\hbar^{2}k^{2}/2m^{*}, χ\chi in a small-ω\omega limit is [11]

limω0χ0(q,ω)=limω0kfkfk+qEk+qEk+ω+i0+\displaystyle\lim_{\omega\to 0}\chi_{0}(\textbf{q},\omega)=\lim_{\omega\to 0}\sum_{\textbf{k}}\frac{f_{\textbf{k}}-f_{\textbf{k}+\textbf{q}}}{E_{\textbf{k}+\textbf{q}}-E_{\textbf{k}}+\hbar\omega+i0^{+}}
=mkFπ23(12+kF2(q2)22kFqln|1+q2kF1q2kF|)+iωm2Θ(2kFq)2π3q\displaystyle=\frac{mk_{F}}{\pi^{2}\hbar^{3}}\left(\frac{1}{2}+\frac{k_{F}^{2}-\left(\frac{q}{2}\right)^{2}}{2k_{F}q}\ln\left|\frac{1+\frac{q}{2k_{F}}}{1-\frac{q}{2k_{F}}}\right|\right)+i\omega\frac{m^{2}\Theta(2k_{F}-q)}{2\pi\hbar^{3}q}
χ0r(q)+iωχ0i(q),\displaystyle\equiv\chi_{0}^{r}(q)+i\omega\chi_{0}^{i}(q), (7)

where fkf_{\textbf{k}} is the low-temperature Fermi-Dirac distribution with wave vector k.

This single-band picture is appropriate for simple metals, such as light transition metals. Meanwhile, for heavy transition metal such as Au, W, Ta, and Pt, a localized 5d5d-electron can mixed with the 6s6s band, as illustrated in the band structure [see Fig. 1(b)]. The band structure can be obtained from density functional theory (DFT) software [22, 23] (see the appendix). Because of that, to determine the gg_{\uparrow\downarrow} of heavy metal, we need to modify the single-band Hamiltonian with an appropriate Hamiltonian that accommodates the hybridization of ss and dd electron.

In the second quantization, the interactions in a heavy-metal system near the interface that is illustrated in Fig. 1 can be written with the following Hamiltonian based on the Anderson model [19, 20]

H0=\displaystyle H_{0}= kα(akαbkα)(EksVVEkd)(akαbkα)\displaystyle\sum_{\textbf{k}\alpha}\left(\begin{array}[]{cc}a_{\textbf{k}\alpha}^{\dagger}&b_{\textbf{k}\alpha}^{\dagger}\end{array}\right)\left(\begin{array}[]{cc}E^{s}_{\textbf{k}}&V\\ V&E^{d}_{\textbf{k}}\end{array}\right)\left(\begin{array}[]{cc}a_{\textbf{k}\alpha}\\ b_{\textbf{k}\alpha}\end{array}\right) (13)

where VV is the hybridization parameter, akα(akα)a_{\textbf{k}\alpha}^{\dagger}(a_{\textbf{k}\alpha}) is the creation (annihilation) operator of ss electron with wave vector k and spin α\alpha and bjα(bjα)b_{j\alpha}^{\dagger}(b_{j\alpha}) is the creation (annihilation) operator of the dd electron with spin α\alpha. The second term corresponds to the ss-dd hybridization. Here 𝝈αβ\bm{\sigma}_{\alpha\beta} is Pauli vectors. The energy dispersion of ss and dd electrons can be assumed to be parabolic

Eks,d=E0s,d+2k22ms,d,\displaystyle E^{s,d}_{\textbf{k}}=E^{s,d}_{0}+\frac{\hbar^{2}k^{2}}{2m^{*}_{s,d}}, (14)

as illustrated in Fig. 4.

Table 1: Parameters of conduction electrons and its hybridization. The values are obtained using fitting from DFT [24, 23, 22] (see the appendix)
Heavy metal crystal aa (Å) path band Without spin-orbit coupling With spin-orbit coupling
element structure VV (eV) E0s,dE^{s,d}_{0} (eV) ms,d/mem^{*}_{s,d}/m_{e} Usd𝒩FsU_{sd}\mathcal{N}_{F}^{s} VV (eV) E0s,dE^{s,d}_{0} (eV) ms,d/mem^{*}_{s,d}/m_{e} Usd𝒩FsU_{sd}\mathcal{N}_{F}^{s}
Au fcc 2.88 Γ\Gamma-L ss 2.44 -8.86 1.19 0.09 2.53 -8.23 1.28 0.15
dd -4.27 -4.19 -4.05 -5.46
W bcc 2.74 Γ\Gamma-N ss 2.38 -8.74 0.84 0.10 2.34 -8.58 0.86 0.11
dd -1.98 -2.01 -2.09 -2.17
Ta bcc 2.87 Γ\Gamma-N ss 2.28 -7.18 0.78 0.22 2.25 -7.02 0.79 0.25
dd 0.12 -1.56 -0.02 -1.70
Ir fcc 2.74 Γ\Gamma-L ss 3.76 -8.95 0.97 0.27 3.62 -9.08 1.12 0.27
dd -2.94 -2.96 -2.67 -3.33
Pt fcc 2.77 Γ\Gamma-L ss 3.22 -8.58 1.21 0.30 3.32 -8.17 1.12 0.37
dd -3.14 -5.07 -3.03 -5.01

As illustrated in Fig. 1, the ss electron dominates the spin-mixing process at the interface. Therefore, we can define 𝝈(r)\bm{\sigma}(\textbf{r}) from the spin density of the ss electron

𝝈(r)=\displaystyle\bm{\sigma}(\textbf{r})= kqαβeiqr𝝈αβak+qαakβ.\displaystyle\sum_{\textbf{kq}\alpha\beta}e^{i\textbf{q}\cdot\textbf{r}}\bm{\sigma}_{\alpha\beta}a_{\textbf{k}+\textbf{q}\alpha}^{\dagger}a_{\textbf{k}\beta}. (15)

The susceptibility and its Fourier transform χ(ω)=𝑑teiωtχ(t)\chi(\omega)=\int dte^{i\omega t}\chi(t) can be determined by evaluating its time derivation using the Heisenberg equation

F(t)t=1i[F(t),H0]ωF(ω)=[F(ω),H0].\displaystyle\frac{\partial F(t)}{\partial t}=\frac{1}{i\hbar}\left[F(t),H_{0}\right]\ \leftrightarrow\ \hbar\omega F(\omega)=\left[F(\omega),H_{0}\right]. (16)

Here H0H_{0} is the unperturbed Hamiltonian in Eq. (13). Due to the hybridization of ss and dd orbitals, combinations of creation (a,ba^{\dagger},b^{\dagger}) and annihilation (a,ba,b) operators appear when the commutations are evaluated. For convenience, we define

χabcd+(q,t)=kχabcd+(k,q,t),\chi_{abcd}^{-+}(\textbf{q},t)=\sum_{\textbf{k}}\chi_{abcd}^{-+}(\textbf{k},\textbf{q},t), (17)

where

χabcd+(k,q,t)=iΘ(t)kq[ak+q(t)bk(t),cq(0)dk(0)].\chi_{abcd}^{-+}(\textbf{k},\textbf{q},t)=\frac{i}{\hbar}\Theta(t)\sum_{\textbf{k}^{\prime}\textbf{q}^{\prime}}\left\langle\left[a_{\textbf{k}+\textbf{q}\downarrow}(t)b_{\textbf{k}\uparrow}(t),c_{\textbf{q}^{\prime}\uparrow}(0)d_{\textbf{k}^{\prime}\downarrow}(0)\right]\right\rangle. (18)

χaaaa\chi_{aaaa} in the frequency domain can now be obtained from a matrix relation

(Ek+qsEks+ω-V0VVEk+qsEkd+ω-V00VEk+qdEks+ω-VV0VEk+qdEkd+ω)(χaaaaχabaaχbaaaχbbaa)=(fksfk+qs000).\displaystyle\left(\begin{array}[]{cccc}E^{s}_{\textbf{k}+\textbf{q}}-E^{s}_{\textbf{k}}+\hbar\omega&$-$V&0&V\\ V&E^{s}_{\textbf{k}+\textbf{q}}-E^{d}_{\textbf{k}}+\hbar\omega&$-$V&0\\ 0&V&E^{d}_{\textbf{k}+\textbf{q}}-E^{s}_{\textbf{k}}+\hbar\omega&$-$V\\ -V&0&V&E^{d}_{\textbf{k}+\textbf{q}}-E^{d}_{\textbf{k}}+\hbar\omega\\ \end{array}\right)\left(\begin{array}[]{c}\chi_{aaaa}\\ \chi_{abaa}\\ \chi_{baaa}\\ \chi_{bbaa}\end{array}\right)=\left(\begin{array}[]{cccc}f^{s}_{\textbf{k}}-f^{s}_{\textbf{k}+\textbf{q}}\\ 0\\ 0\\ 0\end{array}\right). (31)

Let us note that since susceptibility is a retarded response [8], ω\omega has a negligibly small imaginary term ω=limη0(ω+iη)\omega=\lim_{\eta\to 0}(\omega+i\eta) as in Eq. 7. By solving the linear equation, the following leading term of VV-dependent spin susceptibility of the conduction ss electron χaaaa\chi_{aaaa} is

χaaaa(k,q,ω)\displaystyle\chi_{aaaa}(\textbf{k},\textbf{q},\omega)\simeq χ0(k,q,ω)1Usd(k,q)χ0(k,q,ω)\displaystyle\frac{\chi_{0}(\textbf{k},\textbf{q},\omega)}{1-U_{sd}(\textbf{k},\textbf{q})\chi_{0}(\textbf{k},\textbf{q},\omega)}
χ0(k,q,ω)=\displaystyle\chi_{0}(\textbf{k},\textbf{q},\omega)= fksfk+qsEk+qsEks+ω+i0+.\displaystyle\frac{f^{s}_{\textbf{k}}-f^{s}_{\textbf{k}+\textbf{q}}}{E^{s}_{\textbf{k}+\textbf{q}}-E^{s}_{\textbf{k}}+\hbar\omega+i0^{+}}. (32)

Here UsdU_{sd} is the electron-electron interaction parameter due to ss-dd hybridization

Usd(k,q)=\displaystyle U_{sd}(\textbf{k},\textbf{q})= (Ek+qs+Ek+qdEksEkd)|V|2(fksfk+qs)(Ek+qsEkd)(EksEk+qd).\displaystyle\frac{\left(E^{s}_{\textbf{k}+\textbf{q}}+E^{d}_{\textbf{k}+\textbf{q}}-E^{s}_{\textbf{k}}-E^{d}_{\textbf{k}}\right)|V|^{2}}{\left(f^{s}_{\textbf{k}}-f^{s}_{\textbf{k}+\textbf{q}}\right)\left(E^{s}_{\textbf{k}+\textbf{q}}-E^{d}_{\textbf{k}}\right)\left(E^{s}_{\textbf{k}}-E^{d}_{\textbf{k}+\textbf{q}}\right)}. (33)

The hybridization parameter VV can be obtained by fitting the band structure obtained from DFT using wannier90 software [24]. The values of the parameters are listed in Table 1. Since the spin-orbit interaction in a heavy metal is large, we also evaluate the parameters.

Using the localization of fq/Eqδ(EEF)\partial f_{\textbf{q}}/\partial E_{\textbf{q}}\approx-\delta(E-E_{F}), one can show that

limq,ω0χ(q,ω)\displaystyle\lim_{q,\omega\to 0}\chi(\textbf{q},\omega) =limqkkχaaaa+(k,q,ω0)\displaystyle=\lim_{q\ll k}\sum_{\textbf{k}}\chi_{aaaa}^{-+}(\textbf{k},\textbf{q},\omega\to 0)
=χ0r(0)1Usd𝒩Fs+iωχ0i(q)(1Usd𝒩Fs)2,\displaystyle=\frac{\chi_{0}^{r}(0)}{1-U_{sd}\mathcal{N}_{F}^{s}}+\frac{i\omega\chi_{0}^{i}(q)}{\left(1-U_{sd}\mathcal{N}_{F}^{s}\right)^{2}}, (34)

where χ0r\chi_{0}^{r} and χ0i\chi_{0}^{i} are defined in Eq. 7 and

Usd𝒩Fs=\displaystyle U_{sd}\mathcal{N}_{F}^{s}= limqkFkUsd(k,q)χaaaa(k,q,0)\displaystyle\lim_{q\ll k_{F}}\sum_{\textbf{k}}U_{sd}(\textbf{k},\textbf{q})\chi_{aaaa}(\textbf{k},\textbf{q},0)
=\displaystyle= (md+ms)|V|2md[Es(kF)Ed(kF)]2\displaystyle\frac{\left(m^{*}_{d}+m^{*}_{s}\right)|V|^{2}}{m^{*}_{d}\left[E_{s}(k_{F})-E_{d}(k_{F})\right]^{2}} (35)

characterizes the enhancement due to the orbital hybridization. This enhancement parameter is similar to the Stoner parameter U𝒩FU\mathcal{N}_{F} that enhances the static magnetic susceptibility. Furthermore, for Au and W without spin-orbit interaction,

Usd𝒩FsU𝒩F,U_{sd}\mathcal{N}_{F}^{s}\approx U\mathcal{N}_{F},

where UU is the phenomenological Hubbard parameter [15] (see Table 2). However, Usd(kF,0)𝒩Fs<U𝒩FU_{sd}(k_{F},0)\mathcal{N}_{F}^{s}<U\mathcal{N}_{F} for Ta, Ir and Pt. Table 2 also shows that the spin-orbit interaction of the heavy metals increases Usd𝒩FsU_{sd}\mathcal{N}_{F}^{s}.

Table 2: spin-mixing conductance [25] and the enhancement factor due to orbital hyberidization of 5d5d heavy transition metals (HM) (see Table 1). The electron-electron interaction parameter due to ss-dd hybridization Usd𝒩FsU_{sd}\mathcal{N}_{F}^{s} (with and without SOI) is comparable to the Stoner parameter U𝒩FU\mathcal{N}_{F} due to electron-phonon interaction [15].
HM U𝒩FU\mathcal{N}_{F}[15] Usd𝒩FsU_{sd}\mathcal{N}_{F}^{s} g(1018m2)g_{\uparrow\downarrow}\left(10^{18}\mathrm{m}^{-2}\right) g(1019m2)g_{\uparrow\downarrow}\left(10^{19}\mathrm{m}^{-2}\right)
(5d5d) (with SOI) Y3Fe5O|12{}_{12}|HM[25] Co||HM[28]
Au 0.050 0.09 (0.15) 2.7±\pm 0.2 1.0±\pm 0.1
W 0.102 0.10 (0.11) 4.5±\pm 0.4 1.2±\pm 0.1
Ta 0.335 0.22 (0.25) 5.4±\pm 0.5 1.0±\pm 0.1
Ir 0.290 0.27 (0.22) - 2.4±\pm 0.2
Pt 0.590 0.30 (0.37) 6.9±\pm 0.6 6.0±\pm 0.2

III Enhancement of spin-mixing conductance

The spin current generation due to the exchange interaction between conduction spin and m can be determined from the spin angular momentum loss due to the relative direction between conduction spin s and m [7, 8]:

J(t)=Jd3r𝝈(r,t)×m(r,t).\displaystyle\textbf{J}(t)=J\int d^{3}\textbf{r}\bm{\sigma}(\textbf{r},t)\times\textbf{m}(\textbf{r},t). (36)

Using the relation of χ\chi and 𝝈\bm{\sigma}, one can obtain the spin current from Eq. (36):

J(t)=\displaystyle\textbf{J}(t)= Jd3r𝝈(r,t)×m(r,t)\displaystyle J\int d^{3}\textbf{r}\bm{\sigma}(\textbf{r},t)\times\textbf{m}(\textbf{r},t)
=\displaystyle= m(t)×m˙(t)limω0J2qkImχaaaa(k,q,ω)ω.\displaystyle\textbf{m}(t)\times\dot{\textbf{m}}(t)\lim_{\omega\to 0}J^{2}\sum_{\textbf{qk}}\frac{\partial\mathrm{Im}\chi_{aaaa}(\textbf{k},\textbf{q},\omega)}{\partial\omega}.
\displaystyle\equiv gm(t)×m˙(t).\displaystyle g_{\uparrow\downarrow}\textbf{m}(t)\times\dot{\textbf{m}}(t). (37)

Therefore, the spin-mixing conductance is enhanced by the orbital hybridization

g=\displaystyle g_{\uparrow\downarrow}= limω0J2qkImχaaaa(k,q,ω)ω=J2qχ0i(q)(1Usd(kF,0)𝒩Fs)2.\displaystyle\lim_{\omega\to 0}J^{2}\sum_{\textbf{qk}}\frac{\partial\mathrm{Im}\chi_{aaaa}(\textbf{k},\textbf{q},\omega)}{\partial\omega}=\frac{J^{2}\sum_{\textbf{q}}\chi^{i}_{0}(q)}{\left(1-U_{sd}(k_{F},0)\mathcal{N}_{F}^{s}\right)^{2}}. (38)

Therefore the spin-mixing conductance is

g=\displaystyle g_{\uparrow\downarrow}= g0(1Usd𝒩Fs)2.\displaystyle\frac{g_{\uparrow\downarrow}^{0}}{(1-U_{sd}\mathcal{N}_{F}^{s})^{2}}. (39)

Here Usd𝒩FsU_{sd}\mathcal{N}_{F}^{s} is the effective electron-electron interaction parameter described in Eq. (35) and

g0π8(Msγ)2\displaystyle g_{\uparrow\downarrow}^{0}\simeq\frac{\pi}{8}\left(\frac{M_{s}}{\gamma}\right)^{2} (40)

is independent of the heavy metal [4].

Figure 2 shows the enhancement of spin-mixing conductance of an insulating ferromagnet Y3Fe5O12 and a heavy metal (HM) as a function of Usd𝒩FsU_{sd}\mathcal{N}_{F}^{s}. For Y3Fe5O12 with the magnetic moment MY3Fe5O12=3μBM_{\rm Y_{3}Fe_{5}O_{12}}=3\mu_{B} and unit cell lattice constant aY3Fe5O12=5.4a_{\mathrm{Y_{3}Fe_{5}O_{12}}}=5.4 Å[26, 27], spin-mixing conductance per unit area g0/Ag_{\uparrow\downarrow}^{0}/A can be estimated to be

g0(Y3Fe5O12|HM)A=\displaystyle\frac{g_{\uparrow\downarrow}^{0}\left(\mathrm{Y_{3}Fe_{5}O_{12}|HM}\right)}{A}= π(MY3Fe5O12/γY3Fe5O12)28aY3Fe5O122\displaystyle~{}\frac{\pi\left(M_{\mathrm{Y_{3}Fe_{5}O_{12}}}/\gamma_{\mathrm{Y_{3}Fe_{5}O_{12}}}\right)^{2}}{8a^{2}_{\mathrm{Y_{3}Fe_{5}O_{12}}}}
\displaystyle\approx 3×1018m2.\displaystyle~{}3\times 10^{18}\mathrm{m}^{-2}. (41)

The result is in agreement with the experimental work of Ref. 25. This indicates that the ss-dd orbital hybridization induces an effective electron-electron interaction on the conduction ss electron of the heavy transition metal and increases the spin-mixing conductance at its interface with a ferromagnetic insulator.

Refer to caption
Figure 2: Enhancement of spin-mixing conductance gg_{\uparrow\downarrow} of yttrium iron garnet (Y3Fe5O12) and 5d5d heavy transition metal as a function Usd𝒩FsU_{sd}\mathcal{N}_{F}^{s}, which characterizes the orbital hybridization. Filled square points are evaluated without spin-orbit interaction (SOI) while unfilled square points are values with SOI. Dashed and full lines are the values without and with hybridization, respectively. Here g0(Y3Fe5O12)g_{\uparrow\downarrow}^{0}(\mathrm{Y_{3}Fe_{5}O_{12}}) = 3 ×1018\times 10^{18} m-2. The experimental data of the interface of Y3Fe5O12 and 5d5d transition metals are taken from Ref. 25, as summarized in Table 2.

The discussion so far focuses on the case when the ferromagnetic layer is insulating. In an insulating magnetic interface, the orbital hybridization dominates the scattering for the interface of a ferromagnetic insulator and heavy metal, because only the heavy metal contributes to the conduction electrons. However, in the case of a metallic ferromagnet, the interactions of a conduction electron near the interface is more complicated. For a metallic ferromagnet (e.g., cobalt), to capture the complexity of the heavy-metal system [14], the enhancement factor should be replaced by a phenomenological parameter of the Stoner model[29, 4].

g(Co|HM)=g0(Co|HM)(1U𝒩F)2,\displaystyle g_{\uparrow\downarrow}\left(\mathrm{Co|HM}\right)=\frac{g_{\uparrow\downarrow}^{0}\left(\mathrm{Co|HM}\right)}{\left(1-U\mathcal{N}_{F}\right)^{2}}, (42)

where

g0(Co|HM)A=πdCo8VCo(MCoγCo)21.1×1019m2\displaystyle\frac{g_{\uparrow\downarrow}^{0}\left(\mathrm{Co|HM}\right)}{A}=\frac{\pi d_{\rm Co}}{8V_{\rm Co}}\left(\frac{M_{\mathrm{Co}}}{\gamma_{\mathrm{Co}}}\right)^{2}\approx 1.1\times 10^{19}\mathrm{m}^{-2} (43)

is the unenhanced spin-mixing conductance of the bilayer of HM and Co with width dCo=10d_{\rm Co}=10 Å[28], magnetic moment MCo=1.60μBM_{\rm Co}=1.60\mu_{B}, and cell volume VCo=22V_{\rm Co}=22 Å3 [26, 30].

Refer to caption
Figure 3: Spin-mixing conductance gg_{\uparrow\downarrow} of (a) Y3Fe5O|12{}_{12}|heavy metal (HM) and (b) Co||HM. Dashed blue and red lines are the values without hybridization for Y3Fe5O12 and Co, respectively. Full blue and red lines show the values with hybridization for Y3Fe5O12 and Co, respectively. While Y3Fe5O12 is an insulating ferromagnet, Co is a metallic ferromagnet. Experimental data of Y3Fe5O|12{}_{12}|HM and Co||HM are taken from Refs. 25 and 28, respectively (see Table 2). For a metallic ferromagnet such as Co, the enhancement is characterized by Stoner parameter U𝒩FU\mathcal{N}_{F}. On the other hand, for an insulating ferromagnet such as Y3Fe5O12, the enhancement is dominated by ss-dd hybridization Usd𝒩FsU_{sd}\mathcal{N}_{F}^{s} (averaged from values in Fig. 2).

Figure 3 shows the agreement of Eq. 42 with the experiment of a metallic ferromagnet and Eq. (39) with the experiment of insulating ferromagnet. Co||HM has a larger gg_{\uparrow\downarrow} than Y3Fe5O12 because the conduction spin can penetrate into a metallic ferromagnet and interact with more magnetic moments. When the ferromagnet layer is an insulator, the conduction electron purely originates from the heavy transition metal. Therefore, ss-dd hybridization dominates the electron-electron interaction and our model is more appropriate.

IV Conclusions

To summarize, we discuss the effect of ss-dd orbital hybridization on the spin-mixing conductance of the interface of ferromagnet and heavy metal. Using a generalized Anderson model, we study the linear response theory of conduction spin near a magnetic interface. At the magnetic interface, the hybridization of the conduction ss electron and localized dd electron of a heavy transition metal increases of the spin susceptibility of a heavy transition metal and subsequently enhances the spin-mixing conductance of the interface of ferromagnetic and 5d5d transition metal.

For a bilayer of a ferromagnetic metal and a heavy metal, the enhancement of spin-mixing conductance is characterized by electron-electron interaction parameter in Stoner model U𝒩FU\mathcal{N}_{F}, as illustrated in Fig. 3. Meanwhile, for a bilayer of ferromagnet insulator and a heavy metal, the enhancement is characterized by the electron-electron interaction parameter Usd𝒩FsU_{sd}\mathcal{N}_{F}^{s} due to orbital hybridization that depends on the hybridization energy VV and the dispersion of ss and dd electrons. These parameters can be obtained by analyzing the band structure obtained from DFT. Figure 2 shows the agreement of our theory and the experimental values of the bilayer of Y3Fe5O12 and 5d5d transition metal.

Refer to caption
Figure 4: Energy dispersion E(k)E(k) and density of states (DOS) of Au and W. The energy dispersion and DOS of Au are shown in panels (a) and (b), respectively, while panels (c) and (d) show those of W. Data points were obtained using DFT. In panels (a) and (c), blue and red dotted lines indicate the energy dispersion of ss and dd electron without hybridization, respectively. The hybridized dispersion are illustrated with blue and red full lines. In panels (b) and (d), the dashed and full lines illustrate DOS without and with hybridization, respectively. While the energy dispersion only shows the hybridized band, the DOS shows the total DOS obtained using DFT. The orbital hybridization increases the DOS near the Fermi level.
Acknowledgements.
We thank Universitas Indonesia for funding this research through PUTI Grant No. NKB-469/UN2.RST/HKP.05.00/2022.

Appendix: Energy dispersion and density of states of 5d transition metals

In this article we analyze the orbital mixing of Ta, W, Ir, Pt and Au. The orbital mixing occurs because of the hybridization between conduction (ss band) and localized (dd band, illustrated by DOSd) electrons [21]. The hybridized energy bands due to Hamiltonian in Eq. (13) are

E12(k)=Eks+Ekd2±(EksEkd2)2+|V|2,\displaystyle E_{12}(\textbf{k})=\frac{E^{s}_{\textbf{k}}+E^{d}_{\textbf{k}}}{2}\pm\sqrt{\left(\frac{E^{s}_{\textbf{k}}-E^{d}_{\textbf{k}}}{2}\right)^{2}+|V|^{2}}, (44)

As illustrated in Fig. 4, the partially filled band near the Fermi surface is chosen as E1(k)E_{1}(k), while the band at the bottom of the density of states is chosen as E2(k)E_{2}(k). Ir, Pt and Au have fcc structures. Figures 4(a) and 4(b) illustrate the band structure along LΓ-\Gamma-X symmetry points and density of states, respectively. On the other hand, Ta and W have bcc structure. Figures 4(c) and 4(d) illustrate the band structure along NΓ-\Gamma-H symmetry points and density of states, respectively.

By assuming EksE^{s}_{\textbf{k}} and EkdE^{d}_{\textbf{k}} to be parabolic near Γ\Gamma point, the band structure parameters can be obtained by fitting the band structure obtained from DFT. The sum of E1E_{1} and E2E_{2}

E1+E2=Eks+EkdEΓ++2k22m+E_{1}+E_{2}=E^{s}_{\textbf{k}}+E^{d}_{\textbf{k}}\equiv E^{+}_{\Gamma}+\frac{\hbar^{2}k^{2}}{2m^{*}_{+}} (45)

can be used to obtain

EΓ+=E0s+E0d\displaystyle E^{+}_{\Gamma}=E_{0}^{s}+E_{0}^{d}
1m+=1ms+1md.\displaystyle\frac{1}{m^{*}_{+}}=\frac{1}{m^{*}_{s}}+\frac{1}{m^{*}_{d}}.

On the other hand, their difference

E1E2=\displaystyle E_{1}-E_{2}= (EksEkd)2+4|V|2\displaystyle\sqrt{\left(E^{s}_{\textbf{k}}-E^{d}_{\textbf{k}}\right)^{2}+4|V|^{2}}
\displaystyle\equiv (EΓ+2k22m)2+4|V|2\displaystyle\sqrt{\left(E^{-}_{\Gamma}+\frac{\hbar^{2}k^{2}}{2m^{*}_{-}}\right)^{2}+4|V|^{2}} (46)

can be used to obtain

EΓ=E0sE0d,1m=1ms1md,\displaystyle E^{-}_{\Gamma}=E_{0}^{s}-E_{0}^{d},\ \frac{1}{m^{*}_{-}}=\frac{1}{m^{*}_{s}}-\frac{1}{m^{*}_{d}},

and hybridization energy VV. The E0sdE_{0}^{s^{\prime}d} and effective masses can then be obtained from EΓ±E^{\pm}_{\Gamma} and m±m^{*}_{\pm}, respectively.

References

  • Barnaś et al. [2005] J. Barnaś, A. Fert, M. Gmitra, I. Weymann, and V. K. Dugaev, From giant magnetoresistance to current-induced switching by spin transfer, Phys. Rev. B 72, 024426 (2005).
  • Brataas et al. [2017] A. Brataas, Y. Tserkovnyak, G. E. W. Bauer, and P. J. Kelly, Spin current (Oxford University Press, 2017) Chap. Spin Pumping and Spin Transfer.
  • Xiao et al. [2008] J. Xiao, G. E. W. Bauer, and A. Brataas, Spin-transfer torque in magnetic tunnel junctions: Scattering theory, Phys. Rev. B 77, 224419 (2008).
  • Cahaya and Majidi [2021] A. B. Cahaya and M. A. Majidi, Effects of screened coulomb interaction on spin transfer torque, Phys. Rev. B 103, 094420 (2021).
  • Tserkovnyak et al. [2002a] Y. Tserkovnyak, A. Brataas, and G. E. W. Bauer, Spin pumping and magnetization dynamics in metallic multilayers, Phys. Rev. B 66, 224403 (2002a).
  • Tserkovnyak et al. [2002b] Y. Tserkovnyak, A. Brataas, and G. E. W. Bauer, Enhanced gilbert damping in thin ferromagnetic films, Phys. Rev. Lett. 88, 117601 (2002b).
  • Cahaya [2021] A. B. Cahaya, Antiferromagnetic spin pumping via hyperfine interaction, Hyperfine Interactions 242, 46 (2021).
  • Cahaya [2022] A. B. Cahaya, Adiabatic limit of rkky range function in one dimension, J. Magn. Magn. Mater. 547, 168874 (2022).
  • Carva and Turek [2007] K. Carva and I. Turek, Spin-mixing conductances of thin magnetic films from first principles, Phys. Rev. B 76, 104409 (2007).
  • Šimánek [2003] E. Šimánek, Gilbert damping in ferromagnetic films due to adjacent normal-metal layers, Phys. Rev. B 68, 224403 (2003).
  • Cahaya et al. [2017] A. B. Cahaya, A. O. Leon, and G. E. W. Bauer, Crystal field effects on spin pumping, Phys. Rev. B 96, 144434 (2017).
  • Weiler et al. [2013] M. Weiler, M. Althammer, M. Schreier, J. Lotze, M. Pernpeintner, S. Meyer, H. Huebl, R. Gross, A. Kamra, J. Xiao, Y.-T. Chen, H. J. Jiao, G. E. W. Bauer, and S. T. B. Goennenwein, Experimental test of the spin mixing interface conductivity concept, Phys. Rev. Lett. 111, 176601 (2013).
  • Santos et al. [2013] D. L. R. Santos, P. Venezuela, R. B. Muniz, and A. T. Costa, Spin pumping and interlayer exchange coupling through palladium, Phys. Rev. B 88, 054423 (2013).
  • Zhu et al. [2019] L. Zhu, D. C. Ralph, and R. A. Buhrman, Effective spin-mixing conductance of heavy-metal–ferromagnet interfaces, Phys. Rev. Lett. 123, 057203 (2019).
  • Sigalas and Papaconstantopoulos [1994] M. M. Sigalas and D. A. Papaconstantopoulos, Calculations of the total energy, electron-phonon interaction, and Stoner parameter for metals, Phys. Rev. B 50, 7255 (1994).
  • Zellermann et al. [2004] B. Zellermann, A. Paintner, and J. Voitländer, The onsager reaction field concept applied to the temperature dependent magnetic susceptibility of the enhanced paramagnets Pd and PtJ. Phys. Condens. Matter 16, 919 (2004).
  • Povzner et al. [2010] A. A. Povzner, A. G. Volkov, and A. N. Filanovich, Electronic structure and magnetic susceptibility of nearly magnetic metals (palladium and platinum), Physics of the Solid State 52, 2012 (2010).
  • Sitorus et al. [2021] R. M. Sitorus, A. Azhar, A. B. Cahaya, A. R. T. Nugraha, and M. A. Majidi, Theoretical study of complex susceptibility of pd and pt, Journal of Physics: Conference Series 1816, 012044 (2021).
  • Anderson [1961] P. W. Anderson, Localized magnetic states in metals, Phys. Rev. 124, 41 (1961).
  • Schrieffer and Wolff [1966] J. R. Schrieffer and P. A. Wolff, Relation between the Anderson and Kondo HamiltoniansPhys. Rev. 149, 491 (1966).
  • Goodenough [1960] J. B. Goodenough, Band structure of transition metals and their alloys, Phys. Rev. 120, 67 (1960).
  • Clark et al. [2005] S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K. Refson, and M. C. Payne, First principles methods using castep, Zeitschrift für Kristallographie - Crystalline Materials 220, 567 (2005).
  • Giannozzi et al. [2009] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials, J. Phys. Condens. Matter 21, 395502 (2009).
  • Pizzi et al. [2020] G. Pizzi, V. Vitale, R. Arita, S. Blügel, F. Freimuth, G. Géranton, M. Gibertini, D. Gresch, C. Johnson, T. Koretsune, J. Ibañez-Azpiroz, H. Lee, J.-M. Lihm, D. Marchand, A. Marrazzo, Y. Mokrousov, J. I. Mustafa, Y. Nohara, Y. Nomura, L. Paulatto, S. Poncé, T. Ponweiser, J. Qiao, F. Thöle, S. S. Tsirkin, M. Wierzbowska, N. Marzari, D. Vanderbilt, I. Souza, A. A. Mostofi, and J. R. Yates, Wannier90 as a community code: new features and applications, J. Phys. Condens. Matter 32, 165902 (2020).
  • Wang et al. [2014] H. L. Wang, C. H. Du, Y. Pu, R. Adur, P. C. Hammel, and F. Y. Yang, Scaling of spin hall angle in 3d, 4d, and 5d metals from y3fe5o12{\mathrm{y}}_{3}{\mathrm{fe}}_{5}{\mathrm{o}}_{12}/metal spin pumping, Phys. Rev. Lett. 112, 197201 (2014).
  • Jain et al. [2013] A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K. a. Persson, Commentary: The Materials Project: A materials genome approach to accelerating materials innovation, APL Materials 1, 011002 (2013).
  • Rodic et al. [1999] D. Rodic, M. Mitric, R. Tellgren, H. Rundloef, and A. Kremenovic, True magnetic structure of the ferrimagnetic garnet Y3Fe5O12 and magnetic moments of iron ions, J. Magn. Magn. Mater 191, 137 (1999).
  • Ma et al. [2018] X. Ma, G. Yu, C. Tang, X. Li, C. He, J. Shi, K. L. Wang, and X. Li, Interfacial dzyaloshinskii-moriya interaction: Effect of 5d5d band filling and correlation with spin mixing conductance, Phys. Rev. Lett. 120, 157204 (2018).
  • Šimánek and Heinrich [2003] E. Šimánek and B. Heinrich, Gilbert damping in magnetic multilayers, Phys. Rev. B 67, 144418 (2003).
  • Persson [2016] K. Persson, Materials data on Co (SG:194) by materials project (2016).