This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Energetic variational approaches for multiphase flow systems with phase transition

Hajime Koba Graduate School of Engineering Science, Osaka University
1-3 Machikaneyamacho, Toyonaka, Osaka, 560-8531, Japan
[email protected]
Abstract.

We study the governing equations for the motion of the fluid particles near air-water interface from an energetic point of view. Since evaporation and condensation phenomena occur at the interface, we have to consider phase transition. This paper applies an energetic variational approach to derive multiphase flow systems with phase transition, where a multiphase flow means compressible and incompressible two-phase flow. We also research the conservation and energy laws of our system. The key ideas of deriving our systems are to acknowledge the existence of the interface and to apply an energetic variational approach. More precisely, we assume that both the coefficient of surface tension and the density of the interface are constants, and we apply an energetic variational approach to look for the dominant equations for the densities of our multiphase flow systems with phase transition. As applications, we can derive the usual Euler and Navier-Stokes systems, or a two-phase flow system with surface tension by our methods.

Key words and phrases:
Mathematical modeling, Multiphase flow, Phase transition, Surface tension, Interface
Mathematics Subject Classification:
70-10,76-10,76T10,35A15
This work was partly supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Number JP21K03326.

1. Introduction

ΩA(t)\Omega_{A}(t)ΩB(t)\Omega_{B}(t)Γ(t)\Gamma(t)AABBBBAABBAABBAABBAAAA\DownarrowvSv^{\prime}_{S}vAv_{A}BBvBv_{B}BBAABBvBv_{B}vSv_{S}vSvSv_{S}\sim v^{\prime}_{S}nΓn_{\Gamma}Γ(t)\Gamma(t)Ω=ΩA(t)Γ(t)ΩB(t)\Omega=\Omega_{A}(t)\cup\Gamma(t)\cup\Omega_{B}(t)ΩA(t)\Omega_{A}(t)ΩB(t)\Omega_{B}(t)Ω\partial\OmeganΩn_{\Omega}Incompressible fluidCompressible fluidAASSBBSSSSSSSSSS
Figure 1. Multiphase Flow and Phase Transition

We are interested in the motion of the fluid particles near the boundary between the atmosphere and the ocean. We call the boundary the air-water interface. Since evaporation and condensation phenomena occur at the interface, we have to study multiphase flow with phase transition in order to understand air-sea interaction. This paper considers the governing equations for the motion of the fluid particles in two moving domains and the interface from an energetic point of view. We employ an energetic variational approach to derive our multiphase flow systems with phase transition. Of course, this paper proposes our system as one of the models for phase transition.

Let us first introduce fundamental notations. Let t0t\geq 0 be the time variable, and x(=(x1,x2,x3)t)3x(={}^{t}(x_{1},x_{2},x_{3}))\in\mathbb{R}^{3} the spatial variable. Fix T>0T>0. Let Ω3\Omega\subset\mathbb{R}^{3} be a bounded domain with a smooth boundary Ω\partial\Omega. The symbol nΩ=nΩ(x)=(n1Ω,n2Ω,n3Ω)tn_{\Omega}=n_{\Omega}(x)={}^{t}(n^{\Omega}_{1},n^{\Omega}_{2},n^{\Omega}_{3}) denotes the unit outer normal vector at xΩx\in\partial\Omega. Let ΩA(t)(={ΩA(t)}0t<T)\Omega_{A}(t)(=\{\Omega_{A}(t)\}_{0\leq t<T}) be a bounded domain in 3\mathbb{R}^{3} with a moving boundary Γ(t)\Gamma(t). Assume that Γ(t)(={Γ(t)}0t<T)\Gamma(t)(=\{\Gamma(t)\}_{0\leq t<T}) is a smoothly evolving surface and is a closed Riemannian 2-dimensional manifold. The symbol nΓ=nΓ(x,t)=(n1Γ,n2Γ,n3Γ)tn_{\Gamma}=n_{\Gamma}(x,t)={}^{t}(n^{\Gamma}_{1},n^{\Gamma}_{2},n^{\Gamma}_{3}) denotes the unit outer normal vector at xΓ(t)x\in\Gamma(t). For each t[0,T)t\in[0,T), assume that ΩA(t)Ω\Omega_{A}(t)\Subset\Omega. Set ΩB(t)=ΩΩA(t)¯\Omega_{B}(t)=\Omega\setminus\overline{\Omega_{A}(t)}. It is clear that Ω=ΩA(t)Γ(t)ΩB(t)\Omega=\Omega_{A}(t)\cup\Gamma(t)\cup\Omega_{B}(t) (see Figure 1). Set

( 1.1) ΩA,T=0<t<T{ΩA(t)×{t}},ΩB,T=0<t<T{ΩB(t)×{t}},ΓT=0<t<T{Γ(t)×{t}},ΩT=Ω×(0,T),ΩT=Ω×(0,T).\Omega_{A,T}=\bigcup_{0<t<T}\{\Omega_{A}(t)\times\{t\}\},{\ }\Omega_{B,T}=\bigcup_{0<t<T}\{\Omega_{B}(t)\times\{t\}\},\\ \Gamma_{T}=\bigcup_{0<t<T}\{\Gamma(t)\times\{t\}\},{\ }\Omega_{T}=\Omega\times(0,T),{\ }\partial\Omega_{T}=\partial\Omega\times(0,T).

In this paper we assume that the fluid in ΩA,T\Omega_{A,T} is an incompressible one, and that the fluid in ΩB,T\Omega_{B,T} is a compressible one. Let us state physical notations. Let ρA=ρA(x,t)\rho_{A}=\rho_{A}(x,t), vA=vA(x,t)=(v1A,v2A,v3A)tv_{A}=v_{A}(x,t)={}^{t}(v^{A}_{1},v^{A}_{2},v^{A}_{3}), πA=πA(x,t)\pi_{A}=\pi_{A}(x,t), and μA=μA(x,t)\mu_{A}=\mu_{A}(x,t) be the density, the velocity, the pressure, and the viscosity of the fluid in ΩA(t)\Omega_{A}(t), respectively. Let ρB=ρB(x,t)\rho_{B}=\rho_{B}(x,t), vB=vB(x,t)=(v1B,v2B,v3B)tv_{B}=v_{B}(x,t)={}^{t}(v^{B}_{1},v^{B}_{2},v^{B}_{3}), πB=πB(x,t)\pi_{B}=\pi_{B}(x,t), and μB=μB(x,t)\mu_{B}=\mu_{B}(x,t), λB=λB(x,t)\lambda_{B}=\lambda_{B}(x,t) be the density, the velocity, the pressure, and two viscosities of the fluid in ΩB(t)\Omega_{B}(t), respectively. Let vS=vS(x,t)=(v1S,v2S,v3S)tv_{S}=v_{S}(x,t)={}^{t}(v^{S}_{1},v^{S}_{2},v^{S}_{3}) be the motion velocity of the evolving surface Γ(t)\Gamma(t). The symbol ρ0>0\rho_{0}>0 denotes the density of the interface Γ(t)\Gamma(t), and π0{0}\pi_{0}\in\mathbb{R}\setminus\{0\} denotes the surface tension (coefficient) at xΓ(t)x\in\Gamma(t). We assume that ρA\rho_{A}, vAv_{A}, πA\pi_{A}, μA\mu_{A}, ρB\rho_{B}, vBv_{B}, πB\pi_{B}, μB\mu_{B}, λB\lambda_{B}, vSv_{S} are smooth functions in 4\mathbb{R}^{4}, and that ρ0\rho_{0}, π0\pi_{0} are constants.

Let us explain the background and the ansatz of this study. Let us now consider the phase transition phenomenon on ice melting. There exists a layer between the ice and the air. The layer is called a quasi-liquid layer (see Kuroda-Lacmann [13], Furukawa-Yamamoto-Kuroda [6]). It is well-known that a quasi-liquid layer has both liquid and solid properties. Experiments in Sazaki-Zepeda-Nakatsubo-Yokoyama-Furukawa [16] showed that ice particles change into particles in the quasi-liquid layer and then the particles in the layer change into water vapor. A similar process occurs when ice forms. Therefore, we can consider a two-phase problem with a phase transition as a three-phase problem. In this paper, we admit the existence of a surface mass at the interface Γ(t)\Gamma(t), and assume that the particles at the interface can change into both particles in ΩA(t)\Omega_{A}(t) and particles in ΩB(t)\Omega_{B}(t) (see Figure 1).

Let us explain the key restriction of mathematical modeling of multiphase flow systems with phase transition. We assume that

( 1.2) {divvA=0 in ΩA,T,vBnΩ=0 on ΩT,{vAnΓ=vSnΓ on ΓT,vBnΓ=vSnΓ on ΓT.\begin{cases}{\rm{div}}v_{A}=0&\text{ in }\Omega_{A,T},\\ v_{B}\cdot n_{\Omega}=0&\text{ on }\partial\Omega_{T},\end{cases}{\ }\begin{cases}v_{A}\cdot n_{\Gamma}=v_{S}\cdot n_{\Gamma}&\text{ on }\Gamma_{T},\\ v_{B}\cdot n_{\Gamma}=v_{S}\cdot n_{\Gamma}&\text{ on }\Gamma_{T}.\end{cases}

The condition divvA=0{\rm{div}}v_{A}=0 means the incompressibility condition of the fluid in ΩA,T\Omega_{A,T}, and vBnΩ=0v_{B}\cdot n_{\Omega}=0 means that fluid particles do not go out of the domain Ω\Omega. In general, we assume several jump conditions when we make models for multiphase flow with phase transition. This paper does not use assumptions on jump conditions to derive our systems. See Slattery-Sagis-Oh [19] for several jump conditions on interfacial phenomena.

This paper has three purposes. The first one is to make the following inviscid model for multiphase flow with phase transition:

( 1.3) {DtAρA=div{ρ0π0πAvA} in ΩA,T,DtBρB+(divvB)ρB=div{ρ0π0πBvB} in ΩB,T,ρADtAvA+gradπA=div{ρ0π0πAvA}vA in ΩA,T,ρBDtBvB+gradπB=div{ρ0π0πBvB}vB in ΩB,T,π0HΓnΓπAnΓ+πBnΓ=(0,0,0)t on ΓT\begin{cases}{\displaystyle{D_{t}^{A}\rho_{A}={\rm{div}}\left\{\frac{\rho_{0}}{\pi_{0}}\pi_{A}v_{A}\right\}}}&\text{ in }\Omega_{A,T},\\ {\displaystyle{D_{t}^{B}\rho_{B}+({\rm{div}}v_{B})\rho_{B}={\rm{div}}\left\{\frac{\rho_{0}}{\pi_{0}}\pi_{B}v_{B}\right\}}}&\text{ in }\Omega_{B,T},\\ {\displaystyle{\rho_{A}D_{t}^{A}v_{A}+{\rm{grad}}\pi_{A}=-{\rm{div}}\left\{\frac{\rho_{0}}{\pi_{0}}\pi_{A}v_{A}\right\}v_{A}}}&\text{ in }\Omega_{A,T},\\ {\displaystyle{\rho_{B}D_{t}^{B}v_{B}+{\rm{grad}}\pi_{B}=-{\rm{div}}\left\{\frac{\rho_{0}}{\pi_{0}}\pi_{B}v_{B}\right\}v_{B}}}&\text{ in }\Omega_{B,T},\\ \pi_{0}H_{\Gamma}n_{\Gamma}-\pi_{A}n_{\Gamma}+\pi_{B}n_{\Gamma}={}^{t}(0,0,0)&\text{ on }\Gamma_{T}\end{cases}

with (1.2). Here DtAf=tf+(vA)fD_{t}^{A}f=\partial_{t}f+(v_{A}\cdot\nabla)f, DtBf=tf+(vB)fD_{t}^{B}f=\partial_{t}f+(v_{B}\cdot\nabla)f, (vA)f=v1A1f+v2A2f+v3A3f(v_{A}\cdot\nabla)f=v^{A}_{1}\partial_{1}f+v^{A}_{2}\partial_{2}f+v^{A}_{3}\partial_{3}f, (vB)f=v1B1f+v2B2f+v3B3f(v_{B}\cdot\nabla)f=v^{B}_{1}\partial_{1}f+v^{B}_{2}\partial_{2}f+v^{B}_{3}\partial_{3}f, divvA=vA{\rm{div}}v_{A}=\nabla\cdot v_{A}, divvB=vB{\rm{div}}v_{B}=\nabla\cdot v_{B}, gradf=f{\rm{grad}}f=\nabla f, =(1,2,3)t\nabla={}^{t}(\partial_{1},\partial_{2},\partial_{3}), i=/xi\partial_{i}=\partial/{\partial x_{i}}, and t=/t\partial_{t}=\partial/{\partial t}. The symbol HΓ=HΓ(x,t)H_{\Gamma}=H_{\Gamma}(x,t) denotes the mean curvature in the direction nΓn_{\Gamma} defined by HΓ=divΓnΓ=(1Γn1Γ+2Γn2Γ+3Γn3Γ)H_{\Gamma}=-{\rm{div}}_{\Gamma}n_{\Gamma}=-(\partial_{1}^{\Gamma}n_{1}^{\Gamma}+\partial_{2}^{\Gamma}n^{\Gamma}_{2}+\partial_{3}^{\Gamma}n^{\Gamma}_{3}), where iΓf:=j=13(δijniΓnjΓ)jf=jfnjΓ(nΓ)f\partial^{\Gamma}_{i}f:=\sum_{j=1}^{3}(\delta_{ij}-n^{\Gamma}_{i}n^{\Gamma}_{j})\partial_{j}f=\partial_{j}f-n_{j}^{\Gamma}(n_{\Gamma}\cdot\nabla)f. More precisely, under the restriction (1.2) we apply an energetic variational approach to derive system (1.3). See subsection 4.2 for details. Remark that the motion velocity vSv_{S} is given by

vS=1π0HΓ{πA(vAnΓ)πB(vBnΓ)}nΓ on ΓTv_{S}=\frac{1}{\pi_{0}H_{\Gamma}}\{\pi_{A}(v_{A}\cdot n_{\Gamma})-\pi_{B}(v_{B}\cdot n_{\Gamma})\}n_{\Gamma}\text{ on }\Gamma_{T}

if HΓ0H_{\Gamma}\neq 0 and PΓvS=(0,0,0)tP_{\Gamma}v_{S}={}^{t}(0,0,0). See the proof of Theorem 2.2 in Section 3 for details.

The second one is to make the following viscous model for multiphase flow with phase transition:

( 1.4) {DtAρA=ρ0π0div(𝒯AvA) in ΩA,T,DtBρB+(divvB)ρB=ρ0π0div(𝒯BvB) in ΩB,T,ρADtAvA=div𝒯A+ρ0π0div(𝒯AvA)vA in ΩA,T,ρBDtBvB=div𝒯B+ρ0π0div(𝒯BvB)vB in ΩB,T,π0HΓnΓ+𝒯~AnΓ𝒯~BnΓ=(0,0,0)t on ΓT\begin{cases}{\displaystyle{D_{t}^{A}\rho_{A}=-\frac{\rho_{0}}{\pi_{0}}{\rm{div}}(\mathcal{T}_{A}v_{A})}}&\text{ in }\Omega_{A,T},\\ {\displaystyle{D_{t}^{B}\rho_{B}+({\rm{div}}v_{B})\rho_{B}=-\frac{\rho_{0}}{\pi_{0}}{\rm{div}}(\mathcal{T}_{B}v_{B})}}&\text{ in }\Omega_{B,T},\\ {\displaystyle{\rho_{A}D_{t}^{A}v_{A}={\rm{div}}\mathcal{T}_{A}+\frac{\rho_{0}}{\pi_{0}}{\rm{div}}(\mathcal{T}_{A}v_{A})v_{A}}}&\text{ in }\Omega_{A,T},\\ {\displaystyle{\rho_{B}D_{t}^{B}v_{B}={\rm{div}}\mathcal{T}_{B}+\frac{\rho_{0}}{\pi_{0}}{\rm{div}}(\mathcal{T}_{B}v_{B})v_{B}}}&\text{ in }\Omega_{B,T},\\ \pi_{0}H_{\Gamma}n_{\Gamma}+\widetilde{\mathcal{T}}_{A}n_{\Gamma}-\widetilde{\mathcal{T}}_{B}n_{\Gamma}={}^{t}(0,0,0)&\text{ on }\Gamma_{T}\end{cases}

with

( 1.5) {divvA=0 in ΩA,T,vAnΓ=vSnΓ on ΓT,vBnΓ=vSnΓ on ΓT,{vB=(0,0,0)t in ΩT,PΓvA=(0,0,0)t on ΓT,PΓvB=(0,0,0)t on ΓT,\begin{cases}{\rm{div}}v_{A}=0&\text{ in }\Omega_{A,T},\\ v_{A}\cdot n_{\Gamma}=v_{S}\cdot n_{\Gamma}&\text{ on }\Gamma_{T},\\ v_{B}\cdot n_{\Gamma}=v_{S}\cdot n_{\Gamma}&\text{ on }\Gamma_{T},\end{cases}{\ }\begin{cases}v_{B}={}^{t}(0,0,0)&\text{ in }\partial\Omega_{T},\\ P_{\Gamma}v_{A}={}^{t}(0,0,0)&\text{ on }\Gamma_{T},\\ P_{\Gamma}v_{B}={}^{t}(0,0,0)&\text{ on }\Gamma_{T},\end{cases}

where

( 1.6) {𝒯A=𝒯A(πA,vA):=μAD(vA)πAI3×3,𝒯B=𝒯B(πB,vB):=μBD(vB)+λB(divvB)I3×3πBI3×3,𝒯~A=𝒯~A(πA,vA):=μA(nΓ(nΓ)vA)πA,𝒯~B=𝒯~B(πB,vB):=μB(nΓ(nΓ)vB)+λB(divvB)πB.\begin{cases}\mathcal{T}_{A}=\mathcal{T}_{A}(\pi_{A},v_{A}):=\mu_{A}D(v_{A})-\pi_{A}I_{3\times 3},\\ \mathcal{T}_{B}=\mathcal{T}_{B}(\pi_{B},v_{B}):=\mu_{B}D(v_{B})+\lambda_{B}({\rm{div}}v_{B})I_{3\times 3}-\pi_{B}I_{3\times 3},\\ \widetilde{\mathcal{T}}_{A}=\widetilde{\mathcal{T}}_{A}(\pi_{A},v_{A}):=\mu_{A}(n_{\Gamma}\cdot(n_{\Gamma}\cdot\nabla)v_{A})-\pi_{A},\\ \widetilde{\mathcal{T}}_{B}=\widetilde{\mathcal{T}}_{B}(\pi_{B},v_{B}):=\mu_{B}(n_{\Gamma}\cdot(n_{\Gamma}\cdot\nabla)v_{B})+\lambda_{B}({\rm{div}}v_{B})-\pi_{B}.\end{cases}

Here D(vA)={(vA)t+(vA)}/2D(v_{A})=\{{}^{t}(\nabla v_{A})+(\nabla v_{A})\}/2 and D(vB)={(vB)t+(vB)}/2D(v_{B})=\{{}^{t}(\nabla v_{B})+(\nabla v_{B})\}/2. The symbol I3×3I_{3\times 3} denotes the 3×33\times 3 identity matrix, and PΓ=PΓ(x,t)P_{\Gamma}=P_{\Gamma}(x,t) the orthogonal projection to a tangent space defined by PΓ=I3×3nΓnΓP_{\Gamma}=I_{3\times 3}-n_{\Gamma}\otimes n_{\Gamma}, where \otimes is the tensor product. More precisely, under the restriction (1.5) we apply an energetic variational approach to derive system (1.4). See subsection 4.1 for details. Remark that the motion velocity vSv_{S} is given by

vS=1π0HΓ{𝒯~A(vAnΓ)+𝒯~B(vBnΓ)}nΓ on ΓTv_{S}=\frac{1}{\pi_{0}H_{\Gamma}}\{-\widetilde{\mathcal{T}}_{A}(v_{A}\cdot n_{\Gamma})+\widetilde{\mathcal{T}}_{B}(v_{B}\cdot n_{\Gamma})\}n_{\Gamma}\text{ on }\Gamma_{T}

if HΓ0H_{\Gamma}\neq 0 and PΓvS=(0,0,0)tP_{\Gamma}v_{S}={}^{t}(0,0,0). See the proof of Theorem 2.2 in Section 3 for details. See the proof of Theorem 2.2 in Section 3 for details.

The third one is to investigate the conservation and energy laws, and the conservative form of our systems (1.3) and (1.4). In fact, any solution to system (1.4) with (1.5) satisfies that for t1<t2t_{1}<t_{2},

( 1.7) ΩA(t2)ρA(x,t2)𝑑x+ΩB(t2)ρB(x,t2)𝑑x+Γ(t2)ρ0𝑑x2=ΩA(t1)ρA(x,t1)𝑑x+ΩB(t1)ρB(x,t1)𝑑x+Γ(t1)ρ0𝑑x2,\int_{\Omega_{A}(t_{2})}\rho_{A}(x,t_{2}){\ }dx+\int_{\Omega_{B}(t_{2})}\rho_{B}(x,t_{2}){\ }dx+\int_{\Gamma(t_{2})}\rho_{0}{\ }d\mathcal{H}_{x}^{2}\\ =\int_{\Omega_{A}(t_{1})}\rho_{A}(x,t_{1}){\ }dx+\int_{\Omega_{B}(t_{1})}\rho_{B}(x,t_{1}){\ }dx+\int_{\Gamma(t_{1})}\rho_{0}{\ }d\mathcal{H}_{x}^{2},

and

( 1.8) ΩA(t2)12ρA|vA|2𝑑x+ΩB(t2)12ρB|vB|2𝑑x+t1t2ΩA(t)μA|D(vA)|2𝑑x𝑑t+t1t2ΩB(t)(μB|D(vB)|2+λB|divvB|2)𝑑x𝑑t=ΩA(t1)12ρA|vA|2𝑑x+ΩB(t1)12ρB|vB|2𝑑x+t1t2Γ(t)(divΓvS)π0𝑑x2𝑑t+t1t2ΩA(t)(ρ02π0div(𝒯AvA)|vA|2)𝑑x𝑑t+t1t2ΩB(t)((divvB)πB+ρ02π0div(𝒯BvB)|vB|2)𝑑x𝑑t.\int_{\Omega_{A}(t_{2})}\frac{1}{2}\rho_{A}|v_{A}|^{2}{\ }dx+\int_{\Omega_{B}(t_{2})}\frac{1}{2}\rho_{B}|v_{B}|^{2}{\ }dx+\int_{t_{1}}^{t_{2}}\int_{\Omega_{A}(t)}\mu_{A}|D(v_{A})|^{2}{\ }dxdt\\ +\int_{t_{1}}^{t_{2}}\int_{\Omega_{B}(t)}(\mu_{B}|D(v_{B})|^{2}+\lambda_{B}|{\rm{div}}v_{B}|^{2}){\ }dxdt\\ =\int_{\Omega_{A}(t_{1})}\frac{1}{2}\rho_{A}|v_{A}|^{2}{\ }dx+\int_{\Omega_{B}(t_{1})}\frac{1}{2}\rho_{B}|v_{B}|^{2}{\ }dx\\ +\int_{t_{1}}^{t_{2}}\int_{\Gamma(t)}({\rm{div}}_{\Gamma}v_{S})\pi_{0}{\ }d\mathcal{H}^{2}_{x}dt+\int_{t_{1}}^{t_{2}}\int_{\Omega_{A}(t)}\left(\frac{\rho_{0}}{2\pi_{0}}{\rm{div}}(\mathcal{T}_{A}v_{A})|v_{A}|^{2}\right){\ }dxdt\\ +\int_{t_{1}}^{t_{2}}\int_{\Omega_{B}(t)}\left(({\rm{div}}v_{B})\pi_{B}+\frac{\rho_{0}}{2\pi_{0}}{\rm{div}}(\mathcal{T}_{B}v_{B})|v_{B}|^{2}\right){\ }dxdt.

Moreover, any solution to system (1.3) with (1.2) satisfies (1.7) and (1.8) with μAμBλB0\mu_{A}\equiv\mu_{B}\equiv\lambda_{B}\equiv 0. Here |D(vA)|2=D(vA):D(vA)|D(v_{A})|^{2}=D(v_{A}):D(v_{A}), |D(vB)|2=D(vB):D(vB)|D(v_{B})|^{2}=D(v_{B}):D(v_{B}), and dx2d\mathcal{H}^{2}_{x} denotes the 2-dimensional Hausdorff measure. We often call (1.7) and (1.8), the law of conservation of mass and the energy equality, respectively. We easily check that system (1.4) with divvA=0{\rm{div}}v_{A}=0 satisfies the following conservative form:

( 1.9) {tρA+div(ρAvA+ρ0π0𝒯AvA)=0 in ΩA,T,tρB+div(ρBvB+ρ0π0𝒯BvB)=0 in ΩB,T,t(ρAvA)+div(ρAvAvA𝒯A)=(0,0,0)t in ΩA,T,t(ρBvB)+div(ρBvBvB𝒯B)=(0,0,0)t in ΩB,T.\begin{cases}{\displaystyle{\partial_{t}\rho_{A}+{\rm{div}}\left(\rho_{A}v_{A}+\frac{\rho_{0}}{\pi_{0}}\mathcal{T}_{A}v_{A}\right)=0}}&\text{ in }\Omega_{A,T},\\ {\displaystyle{\partial_{t}\rho_{B}+{\rm{div}}\left(\rho_{B}v_{B}+\frac{\rho_{0}}{\pi_{0}}\mathcal{T}_{B}v_{B}\right)=0}}&\text{ in }\Omega_{B,T},\\ {\displaystyle{\partial_{t}(\rho_{A}v_{A})+{\rm{div}}\left(\rho_{A}v_{A}\otimes v_{A}-\mathcal{T}_{A}\right)={}^{t}(0,0,0)}}&\text{ in }\Omega_{A,T},\\ {\displaystyle{\partial_{t}(\rho_{B}v_{B})+{\rm{div}}\left(\rho_{B}v_{B}\otimes v_{B}-\mathcal{T}_{B}\right)={}^{t}(0,0,0)}}&\text{ in }\Omega_{B,T}.\end{cases}
Remark 1.1.

(i)(\rm{i}) If we change (1.2) or (1.5) to another restriction, then we can derive another system by applying our approaches.
(ii)(\rm{ii}) If we choose ρ0=0\rho_{0}=0, then we derive the usual Euler and Navier-Stokes systems, or a two-phase flow system with surface tension by our approaches.

Let us explain three key ideas of deriving our multiphase flow systems with phase transition. The first point is to acknowledge the existence of the interface, that is, we assume that the density of the interface is a positive constant ρ0\rho_{0}. The second point is to divide the condition (vAvB)nΓ=0(v_{A}-v_{B})\cdot n_{\Gamma}=0 into vAnΓ=vSnΓv_{A}\cdot n_{\Gamma}=v_{S}\cdot n_{\Gamma} and vBnΓ=vSnΓv_{B}\cdot n_{\Gamma}=v_{S}\cdot n_{\Gamma}. The third point is to make use of an energetic variational approach. More precisely, we apply an energetic variational approach in order to look for functions ΦA\Phi_{A} and ΦB\Phi_{B} satisfying

{DtAρA=ΦA in ΩA,T,DtBρB+(divvB)ρB=ΦB in ΩB,T,\begin{cases}D_{t}^{A}\rho_{A}=\Phi_{A}&\text{ in }\Omega_{A,T},\\ D_{t}^{B}\rho_{B}+({\rm{div}}v_{B})\rho_{B}=\Phi_{B}&\text{ in }\Omega_{B,T},\end{cases}

and

ddt(ΩA(t)ρA(x,t)𝑑x+ΩB(t)ρB(x,t)𝑑x+Γ(t)ρ0𝑑x2)=0.\frac{d}{dt}\left(\int_{\Omega_{A}(t)}\rho_{A}(x,t){\ }dx+\int_{\Omega_{B}(t)}\rho_{B}(x,t){\ }dx+\int_{\Gamma(t)}\rho_{0}{\ }d\mathcal{H}^{2}_{x}\right)=0.

An energetic variational approach is a method for deriving PDEs by using the forces derived from a variation of energies. Gyarmati [7] applied an energetic variational approach, which had been studied by Strutt [21] and Onsager [14, 15], to make several models for fluid dynamics in domains. Hyon-Kwak-Liu [8] made use of their energetic variational approach to study complex fluid in domains. Koba-Sato [12] applied their energetic variational approach to make their non-Newtonian fluid systems in domains. Koba-Liu-Giga [11] and Koba [9] employed their energetic variational approaches to derive their fluid systems on an evolving closed surface. However, these papers [8, 12, 11, 9] did not consider multiphase flow. This paper improves and modifies their methods in [8, 12, 11, 9] to derive our multiphase flow systems. See Section 4 for details.

Finally, we introduce the results related to this paper. Bothe-Prüss [3, 2] considered multiphase flow with interface effects. In [3], they made their models for multiphase flow with surface tension and viscosities by applying the Boussinesq-Scriven law. In [2], they made use of their jump conditions to make models for multi-component two-phase flow system with phase transition, and to study the individual mass densities of an isothermal mixture of NN-species in a domain. Although this paper does not consider surface viscosity (surface flow), this paper considers interface effects such as surface tension and phase transition. Note that our models are different from the ones in [3, 2]. See also [11, 9] for models for surface flow.

The outline of this paper is as follows: In Section 2, we state the main results of this paper. In Section 3, we study the law of conservation of mass for multiphase flow with phase transition. In Section 4, we apply an energetic variational approach to make mathematical models for multiphase flow with phase transition. In Section 5, we investigate the conservation and energy laws of our systems. In Appendix, we provide two useful lemmas to derive our systems.

2. Main Results

We first introduce the transport theorems. Then we state the main results.

Definition 2.1 (ΩT\Omega_{T} is flowed by the velocity fields (vA,vB,vS)(v_{A},v_{B},v_{S})).

We say that ΩT\Omega_{T} is flowed by the velocity fields (vA,vB,vS)(v_{A},v_{B},v_{S}) if for each 0<t<T0<t<T, fC1(4)f\in C^{1}(\mathbb{R}^{4}), and ΛΩ\Lambda\subset\Omega,

( 2.1) ddtΩA(t)Λf(x,t)𝑑x\displaystyle\frac{d}{dt}\int_{\Omega_{A}(t)\cap\Lambda}f(x,t){\ }dx =ΩA(t)Λ{DtAf+(divvA)f}𝑑x,\displaystyle=\int_{\Omega_{A}(t)\cap\Lambda}\{D_{t}^{A}f+({\rm{div}}v_{A})f\}{\ }dx,
( 2.2) ddtΩB(t)Λf(x,t)𝑑x\displaystyle\frac{d}{dt}\int_{\Omega_{B}(t)\cap\Lambda}f(x,t){\ }dx =ΩB(t)Λ{DtBf+(divvB)f}𝑑x,\displaystyle=\int_{\Omega_{B}(t)\cap\Lambda}\{D_{t}^{B}f+({\rm{div}}v_{B})f\}{\ }dx,
( 2.3) ddtΓ(t)Λf(x,t)𝑑x2\displaystyle\frac{d}{dt}\int_{\Gamma(t)\cap\Lambda}f(x,t){\ }d\mathcal{H}^{2}_{x} =Γ(t)Λ{DtSf+(divΓvS)f}𝑑x2.\displaystyle=\int_{\Gamma(t)\cap\Lambda}\{D_{t}^{S}f+({\rm{div}}_{\Gamma}v_{S})f\}{\ }d\mathcal{H}^{2}_{x}.

Here Dtf=tf+(v)fD_{t}^{\sharp}f=\partial_{t}f+(v_{\sharp}\cdot\nabla)f, divΓvS=1Γv1S+2Γv2S+3Γv3S{\rm{div}}_{\Gamma}v_{S}=\partial_{1}^{\Gamma}v^{S}_{1}+\partial_{2}^{\Gamma}v^{S}_{2}+\partial_{3}^{\Gamma}v^{S}_{3}, jΓf=jfnjΓ(nΓ)f\partial_{j}^{\Gamma}f=\partial_{j}f-n^{\Gamma}_{j}(n_{\Gamma}\cdot\nabla)f, where =A,B,S\sharp=A,B,S, and j=1,2,3j=1,2,3. Note that divvA=0{\rm{div}}v_{A}=0 in this paper.

We often call (2.1), (2.2) the transport theorems, and (2.3) the surface transport theorem. The derivation of the surface transport theorem can be founded in [1, 5, 4, 11]. Throughout this paper we assume that ΩT\Omega_{T} is flowed by the velocity fields (vA,vB,vS)(v_{A},v_{B},v_{S}).

Now we state the main results of this paper.

Theorem 2.2 (Laws of conservation of mass).

(i)(\rm{i}) Assume that (ρA,ρB,ρ0,vA,vB,vS,πA,πB,π0)(\rho_{A},\rho_{B},\rho_{0},v_{A},v_{B},v_{S},\pi_{A},\pi_{B},\pi_{0}) satisfy

( 2.4) {DtAρA=div{ρ0π0πAvA} in ΩA,T,DtBρB+(divvB)ρB=div{ρ0π0πBvB} in ΩB,T,π0HΓnΓπAnΓ+πBnΓ=(0,0,0)t on ΓT,\begin{cases}{\displaystyle{D_{t}^{A}\rho_{A}={\rm{div}}\left\{\frac{\rho_{0}}{\pi_{0}}\pi_{A}v_{A}\right\}}}&\text{ in }\Omega_{A,T},\\ {\displaystyle{D_{t}^{B}\rho_{B}+({\rm{div}}v_{B})\rho_{B}={\rm{div}}\left\{\frac{\rho_{0}}{\pi_{0}}\pi_{B}v_{B}\right\}}}&\text{ in }\Omega_{B,T},\\ \pi_{0}H_{\Gamma}n_{\Gamma}-\pi_{A}n_{\Gamma}+\pi_{B}n_{\Gamma}={}^{t}(0,0,0)&\text{ on }\Gamma_{T},\end{cases}

and (1.2). Then (1.7) holds for all 0<t1<t2<T0<t_{1}<t_{2}<T.
(ii)(\rm{ii}) Assume that (ρA,ρB,ρ0,vA,vB,vS,πA,πB,π0,μA,μB,λB)(\rho_{A},\rho_{B},\rho_{0},v_{A},v_{B},v_{S},\pi_{A},\pi_{B},\pi_{0},\mu_{A},\mu_{B},\lambda_{B}) satisfy

( 2.5) {DtAρA=ρ0π0div(𝒯AvA) in ΩA,T,DtBρB+(divvB)ρB=ρ0π0div(𝒯BvB) in ΩB,T,π0HΓnΓ+𝒯~AnΓ𝒯~BnΓ=(0,0,0)t on ΓT,\begin{cases}{\displaystyle{D_{t}^{A}\rho_{A}=-\frac{\rho_{0}}{\pi_{0}}{\rm{div}}(\mathcal{T}_{A}v_{A})}}&\text{ in }\Omega_{A,T},\\ {\displaystyle{D_{t}^{B}\rho_{B}+({\rm{div}}v_{B})\rho_{B}=-\frac{\rho_{0}}{\pi_{0}}{\rm{div}}(\mathcal{T}_{B}v_{B})}}&\text{ in }\Omega_{B,T},\\ \pi_{0}H_{\Gamma}n_{\Gamma}+\widetilde{\mathcal{T}}_{A}n_{\Gamma}-\widetilde{\mathcal{T}}_{B}n_{\Gamma}={}^{t}(0,0,0)&\text{ on }\Gamma_{T},\end{cases}

and (1.5), where (𝒯A,𝒯B,𝒯~A,𝒯~B)(\mathcal{T}_{A},\mathcal{T}_{B},\widetilde{\mathcal{T}}_{A},\widetilde{\mathcal{T}}_{B}) are defined by (1.6). Then (1.7) holds for all 0<t1<t2<T0<t_{1}<t_{2}<T.

Theorem 2.3 (Conservative form, conservation and energy Laws).

(i)(\rm{i}) Any solution to system (1.3) with (1.2) satisfies (1.7) and (1.8) with μAμBλB0\mu_{A}\equiv\mu_{B}\equiv\lambda_{B}\equiv 0.
(ii)(\rm{ii}) Any solution to system (1.4) with (1.5) satisfies (1.7) and (1.8).
(iii)(\rm{iii}) If divvA=0{\rm{div}}v_{A}=0 in ΩA,T\Omega_{A,T}, then system (1.4) satisfies the conservative form (1.9).

We prove Theorem 2.2 in Section 3 and Theorem 2.3 in Section 5. In Section 4, we derive our systems (1.3) and (1.4).

3. Laws of Conservation of Mass

Let us immediately derive the one of the main results of this paper.

Proof of Theorem 2.2.

We first show (i)(\rm{i}). From (2.4), we have

π0HΓ(vSnΓ)πA(vSnΓ)+πB(vSnΓ)=0 on ΓT.\pi_{0}H_{\Gamma}(v_{S}\cdot n_{\Gamma})-\pi_{A}(v_{S}\cdot n_{\Gamma})+\pi_{B}(v_{S}\cdot n_{\Gamma})=0\text{ on }\Gamma_{T}.

Since π00\pi_{0}\neq 0 by assumption, we use (1.2) to derive

( 3.1) HΓ(vSnΓ)=1π0πA(vAnΓ)1π0πB(vBnΓ) on ΓT.H_{\Gamma}(v_{S}\cdot n_{\Gamma})=\frac{1}{\pi_{0}}\pi_{A}(v_{A}\cdot n_{\Gamma})-\frac{1}{\pi_{0}}\pi_{B}(v_{B}\cdot n_{\Gamma})\text{ on }\Gamma_{T}.

Using the transport theorems (2.1) and (2.2), we check that

( 3.2) ddt(ΩA(t)ρA(x,t)𝑑x+ΩB(t)ρB(x,t)𝑑x+Γ(t)ρ0𝑑x2)=ΩA(t)DtAρA𝑑x+ΩB(t){DtBρB+(divvB)ρB}𝑑x+ddtΓ(t)ρ0𝑑x2.\frac{d}{dt}\left(\int_{\Omega_{A}(t)}\rho_{A}(x,t){\ }dx+\int_{\Omega_{B}(t)}\rho_{B}(x,t){\ }dx+\int_{\Gamma(t)}\rho_{0}{\ }d\mathcal{H}^{2}_{x}\right)\\ =\int_{\Omega_{A}(t)}D_{t}^{A}\rho_{A}{\ }dx+\int_{\Omega_{B}(t)}\{D_{t}^{B}\rho_{B}+({\rm{div}}v_{B})\rho_{B}\}{\ }dx+\frac{d}{dt}\int_{\Gamma(t)}\rho_{0}{\ }d\mathcal{H}^{2}_{x}.

Applying the surface transport and divergence theorems (2.3), (6.1) with (3.1), we find that

ddtΓ(t)ρ0𝑑x2=Γ(t)(divΓvS)ρ0𝑑x2=Γ(t)ρ0HΓ(vSnΓ)𝑑x2=Γ(t)ρ0π0πA(vAnΓ)𝑑x2Ωρ0π0πB(vBnΩ)𝑑x2+Γ(t)ρ0π0πB(vBnΓ)𝑑x2.\frac{d}{dt}\int_{\Gamma(t)}\rho_{0}{\ }d\mathcal{H}^{2}_{x}=\int_{\Gamma(t)}({\rm{div}}_{\Gamma}v_{S})\rho_{0}{\ }d\mathcal{H}_{x}^{2}=-\int_{\Gamma(t)}\rho_{0}H_{\Gamma}(v_{S}\cdot n_{\Gamma}){\ }d\mathcal{H}_{x}^{2}\\ =-\int_{\Gamma(t)}\frac{\rho_{0}}{\pi_{0}}\pi_{A}(v_{A}\cdot n_{\Gamma}){\ }d\mathcal{H}_{x}^{2}-\int_{\partial\Omega}\frac{\rho_{0}}{\pi_{0}}\pi_{B}(v_{B}\cdot n_{\Omega}){\ }d\mathcal{H}_{x}^{2}+\int_{\Gamma(t)}\frac{\rho_{0}}{\pi_{0}}\pi_{B}(v_{B}\cdot n_{\Gamma}){\ }d\mathcal{H}_{x}^{2}.

Note that vBnΩ=0v_{B}\cdot n_{\Omega}=0. Using the divergence theorem, we have

( 3.3) ddtΓ(t)ρ0𝑑x2=ΩA(t)div{ρ0π0πAvA}𝑑xΩB(t)div{ρ0π0πBvB}𝑑x.\frac{d}{dt}\int_{\Gamma(t)}\rho_{0}{\ }d\mathcal{H}_{x}^{2}=-\int_{\Omega_{A}(t)}{\rm{div}}\left\{\frac{\rho_{0}}{\pi_{0}}\pi_{A}v_{A}\right\}{\ }dx-\int_{\Omega_{B}(t)}{\rm{div}}\left\{\frac{\rho_{0}}{\pi_{0}}\pi_{B}v_{B}\right\}{\ }dx.

By (3.2), (3.3), and (2.4), we see that

ddt(ΩA(t)ρA(x,t)𝑑x+ΩB(t)ρB(x,t)𝑑x+Γ(t)ρ0𝑑x2)=ΩA(t)(DtAρAdiv{ρ0π0πAvA})𝑑x+ΩB(t)(DtBρB+(divvB)ρBdiv{ρ0π0πBvB})𝑑x=0.\frac{d}{dt}\left(\int_{\Omega_{A}(t)}\rho_{A}(x,t){\ }dx+\int_{\Omega_{B}(t)}\rho_{B}(x,t){\ }dx+\int_{\Gamma(t)}\rho_{0}{\ }d\mathcal{H}^{2}_{x}\right)\\ =\int_{\Omega_{A}(t)}\left(D_{t}^{A}\rho_{A}-{\rm{div}}\left\{\frac{\rho_{0}}{\pi_{0}}\pi_{A}v_{A}\right\}\right){\ }dx\\ +\int_{\Omega_{B}(t)}\left(D_{t}^{B}\rho_{B}+({\rm{div}}v_{B})\rho_{B}-{\rm{div}}\left\{\frac{\rho_{0}}{\pi_{0}}\pi_{B}v_{B}\right\}\right){\ }dx=0.

Integrating with respect to tt, we have (1.7). Therefore, we see (i)(\rm{i}).

Before proving (ii)(\rm{ii}) we prepare the following lemma.

Lemma 3.1.

If PΓvA=(0,0,0)tP_{\Gamma}v_{A}={}^{t}(0,0,0) and PΓvB=(0,0,0)tP_{\Gamma}v_{B}={}^{t}(0,0,0) on Γ(t)\Gamma(t), then

( 3.4) D(vA)vAnΓ\displaystyle D(v_{A})v_{A}\cdot n_{\Gamma} =(nΓ(nΓ)vA)(vAnΓ) on Γ(t),\displaystyle=(n_{\Gamma}\cdot(n_{\Gamma}\cdot\nabla)v_{A})(v_{A}\cdot n_{\Gamma})\text{ on }\Gamma(t),
( 3.5) D(vB)vBnΓ\displaystyle D(v_{B})v_{B}\cdot n_{\Gamma} =(nΓ(nΓ)vB)(vBnΓ) on Γ(t).\displaystyle=(n_{\Gamma}\cdot(n_{\Gamma}\cdot\nabla)v_{B})(v_{B}\cdot n_{\Gamma})\text{ on }\Gamma(t).
Proof of Lemma 3.1.

We now drive (3.4). Since PΓvA=(0,0,0)tP_{\Gamma}v_{A}={}^{t}(0,0,0), we find that

vA=PΓvA+(vAnΓ)nΓ=(vAnΓ)nΓ on Γ(t).v_{A}=P_{\Gamma}v_{A}+(v_{A}\cdot n_{\Gamma})n_{\Gamma}=(v_{A}\cdot n_{\Gamma})n_{\Gamma}\text{ on }\Gamma(t).

From D(vA)={(vA)t+(vA)}/2D(v_{A})=\{{}^{t}(\nabla v_{A})+(\nabla v_{A})\}/2, we easily check that

D(vA)vAnΓ\displaystyle D(v_{A})v_{A}\cdot n_{\Gamma} ={((vA)vA)nΓ)+((nΓ)vA)vA}/2\displaystyle=\{((v_{A}\cdot\nabla)v_{A})\cdot n_{\Gamma})+((n_{\Gamma}\cdot\nabla)v_{A})\cdot v_{A}\}/2
={(([(vAnΓ)nΓ])vA)nΓ)+((nΓ)vA)[(vAnΓ)nΓ]}/2\displaystyle=\{(([(v_{A}\cdot n_{\Gamma})n_{\Gamma}]\cdot\nabla)v_{A})\cdot n_{\Gamma})+((n_{\Gamma}\cdot\nabla)v_{A})\cdot[(v_{A}\cdot n_{\Gamma})n_{\Gamma}]\}/2
=(nΓ(nΓ)vA)(vAnΓ) on Γ(t),\displaystyle=(n_{\Gamma}\cdot(n_{\Gamma}\cdot\nabla)v_{A})(v_{A}\cdot n_{\Gamma})\text{ on }\Gamma(t),

which is (3.4). Similarly, we see (3.5). Therefore, the lemma follows. ∎

Now we attack (ii)(\rm{ii}). By Lemma 3.1 and (1.6), we see that

( 3.6) {𝒯AvAnΓ=𝒯~A(vAnΓ) on Γ(t),𝒯BvBnΓ=𝒯~B(vBnΓ) on Γ(t).\begin{cases}\mathcal{T}_{A}v_{A}\cdot n_{\Gamma}=\widetilde{\mathcal{T}}_{A}(v_{A}\cdot n_{\Gamma})\text{ on }\Gamma(t),\\ \mathcal{T}_{B}v_{B}\cdot n_{\Gamma}=\widetilde{\mathcal{T}}_{B}(v_{B}\cdot n_{\Gamma})\text{ on }\Gamma(t).\end{cases}

From (2.5) and (1.5), we check that

π0HΓ(vSnΓ)\displaystyle\pi_{0}H_{\Gamma}(v_{S}\cdot n_{\Gamma}) =𝒯~A(vSnΓ)+𝒯~B(vSnΓ)\displaystyle=-\widetilde{\mathcal{T}}_{A}(v_{S}\cdot n_{\Gamma})+\widetilde{\mathcal{T}}_{B}(v_{S}\cdot n_{\Gamma})
=𝒯~A(vAnΓ)+𝒯~B(vBnΓ) on Γ(t).\displaystyle=-\widetilde{\mathcal{T}}_{A}(v_{A}\cdot n_{\Gamma})+\widetilde{\mathcal{T}}_{B}(v_{B}\cdot n_{\Gamma})\text{ on }\Gamma(t).

By (3.6), we have

( 3.7) HΓ(vSnΓ)=1π0(𝒯AvAnΓ)+1π0(𝒯BvBnΓ) on Γ(t).H_{\Gamma}(v_{S}\cdot n_{\Gamma})=-\frac{1}{\pi_{0}}(\mathcal{T}_{A}v_{A}\cdot n_{\Gamma})+\frac{1}{\pi_{0}}(\mathcal{T}_{B}v_{B}\cdot n_{\Gamma})\text{ on }\Gamma(t).

Applying the surface transport theorem (2.3), the surface divergence theorem (6.1), (3.7), and vB|Ω=(0,0,0)tv_{B}|_{\partial\Omega}={}^{t}(0,0,0), we see that

ddtΓ(t)ρ0𝑑x2=Γ(t)ρ0(divΓvS)𝑑x2=Γ(t)ρ0HΓ(vSnΓ)𝑑x2=ρ0π0Γ(t)𝒯AvAnΓ𝑑x2+ρ0π0Ω𝒯BvBnΩ𝑑x2ρ0π0Γ(t)𝒯BvBnΓ𝑑x2.\frac{d}{dt}\int_{\Gamma(t)}\rho_{0}{\ }d\mathcal{H}_{x}^{2}=\int_{\Gamma(t)}\rho_{0}({\rm{div}}_{\Gamma}v_{S}){\ }d\mathcal{H}_{x}^{2}=-\int_{\Gamma(t)}\rho_{0}H_{\Gamma}(v_{S}\cdot n_{\Gamma}){\ }d\mathcal{H}_{x}^{2}\\ =\frac{\rho_{0}}{\pi_{0}}\int_{\Gamma(t)}\mathcal{T}_{A}v_{A}\cdot n_{\Gamma}{\ }d\mathcal{H}_{x}^{2}+\frac{\rho_{0}}{\pi_{0}}\int_{\partial\Omega}\mathcal{T}_{B}v_{B}\cdot n_{\Omega}{\ }d\mathcal{H}_{x}^{2}-\frac{\rho_{0}}{\pi_{0}}\int_{\Gamma(t)}\mathcal{T}_{B}v_{B}\cdot n_{\Gamma}{\ }d\mathcal{H}_{x}^{2}.

Using the divergence theorem, we check that

ddtΓ(t)ρ0𝑑x2=ΩA(t)ρ0π0div(𝒯AvA)𝑑x+ΩB(t)ρ0π0div(𝒯BvB)𝑑x.\frac{d}{dt}\int_{\Gamma(t)}\rho_{0}{\ }d\mathcal{H}_{x}^{2}=\int_{\Omega_{A}(t)}\frac{\rho_{0}}{\pi_{0}}{\rm{div}}(\mathcal{T}_{A}v_{A}){\ }dx+\int_{\Omega_{B}(t)}\frac{\rho_{0}}{\pi_{0}}{\rm{div}}(\mathcal{T}_{B}v_{B}){\ }dx.

By the same argument as in (i)(\rm{i}), we see (ii)(\rm{ii}). Therefore, Theorem 2.2 is proved. ∎

4. Mathematical Modeling

In this section we make mathematical models for multiphase flow with phase transition. We apply our energetic variational approaches to derive system (1.4) in subsection 4.1 and system (1.3) in subsection 4.2.

4.1. Viscous Model

Under the restriction (1.5), we apply an energetic variational approach to derive system (1.4). We assume that (vA,vB,vS)(v_{A},v_{B},v_{S}) satisfies (1.5).

Let ΦA,ΦBC(4)\Phi_{A},\Phi_{B}\in C(\mathbb{R}^{4}). We assume that the dominant equations for the densities of our system are written by

( 4.1) {DtAρA=ΦA in ΩA,T,DtBρB+(divvB)ρB=ΦB in ΩB,T.\begin{cases}D_{t}^{A}\rho_{A}=\Phi_{A}&\text{ in }\Omega_{A,T},\\ D_{t}^{B}\rho_{B}+({\rm{div}}v_{B})\rho_{B}=\Phi_{B}&\text{ in }\Omega_{B,T}.\end{cases}

From now we look for ΦA\Phi_{A}, ΦB\Phi_{B} satisfying

ddt(ΩA(t)ρA(x,t)𝑑x+ΩB(t)ρB(x,t)𝑑x+Γ(t)ρ0𝑑x2)=0\frac{d}{dt}\left(\int_{\Omega_{A}(t)}\rho_{A}(x,t){\ }dx+\int_{\Omega_{B}(t)}\rho_{B}(x,t){\ }dx+\int_{\Gamma(t)}\rho_{0}{\ }d\mathcal{H}^{2}_{x}\right)=0

by applying an energetic variational approach.

In order to derive the momentum equations of our system, we now discuss the variation of the velocities (vA,vB,vS)(v_{A},v_{B},v_{S}) to the work and dissipation energies for our viscous model. Fix 0<t<T0<t<T. We set the work EWE_{W} done by pressures πB\pi_{B} and π0\pi_{0}, and the dissipation energies EDE_{D} due to viscosities (μA,μB,λB)(\mu_{A},\mu_{B},\lambda_{B}) as follows:

EW[vA,vB,vS]=ΩA(t)(divvB)πB𝑑x+Γ(t)(divΓvS)π0𝑑x2,E_{W}[v_{A},v_{B},v_{S}]=\int_{\Omega_{A}(t)}({\rm{div}}v_{B})\pi_{B}{\ }dx+\int_{\Gamma(t)}({\rm{div}}_{\Gamma}v_{S})\pi_{0}{\ }d\mathcal{H}^{2}_{x},
ED[vA,vB,vS]=ΩA(t)(μA2|D(vA)|2)𝑑x+ΩB(t)(μB2|D(vB)|2λB2|divvB|2)𝑑x.E_{D}[v_{A},v_{B},v_{S}]=\int_{\Omega_{A}(t)}\left(-\frac{\mu_{A}}{2}|D(v_{A})|^{2}\right){\ }dx\\ +\int_{\Omega_{B}(t)}\left(-\frac{\mu_{B}}{2}|D(v_{B})|^{2}-\frac{\lambda_{B}}{2}|{\rm{div}}v_{B}|^{2}\right){\ }dx.

Set ED+W[]=ED[]+EW[]E_{D+W}[\cdot]=E_{D}[\cdot]+E_{W}[\cdot].

Remark 4.1.

(i)(\rm{i}) From divvA=0{\rm{div}}v_{A}=0 we see that (divvA)πA=0({\rm{div}}v_{A})\pi_{A}=0.
(ii)(\rm{ii}) Collectively, we call (divvB)πB({\rm{div}}v_{B})\pi_{B}, (divΓvS)π0({\rm{div}}_{\Gamma}v_{S})\pi_{0}, μA|D(vA)|2\mu_{A}|D(v_{A})|^{2}, μB|D(vB)|2\mu_{B}|D(v_{B})|^{2}, λB|divvB|2\lambda_{B}|{\rm{div}}v_{B}|^{2} the energy densities. See [12] and [9] for mathematical validity of the energy densities.

We consider the variation of ED+WE_{D+W} with respect to the velocities (vA,vB,vS)(v_{A},v_{B},v_{S}). Let φA,φB,φS[C(3)]3\varphi_{A},\varphi_{B},\varphi_{S}\in[C^{\infty}(\mathbb{R}^{3})]^{3}. For 1<ε<1-1<\varepsilon<1, vAε:=vA+εφAv_{A}^{\varepsilon}:=v_{A}+\varepsilon\varphi_{A}, vBε:=vB+εφBv_{B}^{\varepsilon}:=v_{B}+\varepsilon\varphi_{B}, vSε:=vS+εφSv_{S}^{\varepsilon}:=v_{S}+\varepsilon\varphi_{S}. We call (vAεv_{A}^{\varepsilon}, vBεv_{B}^{\varepsilon}, vSεv_{S}^{\varepsilon}) a variation of (vAv_{A}, vBv_{B}, vSv_{S}). For each variation (vAε,vBε,vSε)(v_{A}^{\varepsilon},v_{B}^{\varepsilon},v_{S}^{\varepsilon}),

ED+W[vAε,vBε,vSε]:=ΩB(t){(divvBε)πBμB2|D(vBε)|2λB2|divvBε|2}𝑑x+ΩA(t){μA2|D(vAε)|2}𝑑x+Γ(t)(divΓvSε)π0𝑑x2.E_{D+W}[v_{A}^{\varepsilon},v_{B}^{\varepsilon},v_{S}^{\varepsilon}]:=\int_{\Omega_{B}(t)}\left\{({\rm{div}}v^{\varepsilon}_{B})\pi_{B}-\frac{\mu_{B}}{2}|D(v^{\varepsilon}_{B})|^{2}-\frac{\lambda_{B}}{2}|{\rm{div}}v^{\varepsilon}_{B}|^{2}\right\}{\ }dx\\ +\int_{\Omega_{A}(t)}\left\{-\frac{\mu_{A}}{2}|D(v^{\varepsilon}_{A})|^{2}\right\}{\ }dx+\int_{\Gamma(t)}({\rm{div}}_{\Gamma}v^{\varepsilon}_{S})\pi_{0}{\ }d\mathcal{H}^{2}_{x}.

A direct calculation gives

ddε|ε=0ED+W[vAε,vBε,vSε]=ΩB(t){(divφB)πBμBD(vB):D(φB)λB(divvB)(divφB)}𝑑x+ΩA(t){μAD(vA):D(φA)}𝑑x+Γ(t)(divΓφS)π0𝑑x2.\frac{d}{d\varepsilon}\bigg{|}_{\varepsilon=0}E_{D+W}[v^{\varepsilon}_{A},v^{\varepsilon}_{B},v^{\varepsilon}_{S}]\\ =\int_{\Omega_{B}(t)}\{({\rm{div}}\varphi_{B})\pi_{B}-\mu_{B}D(v_{B}):D(\varphi_{B})-\lambda_{B}({\rm{div}}v_{B})({\rm{div}}\varphi_{B})\}{\ }dx\\ +\int_{\Omega_{A}(t)}\{-\mu_{A}D(v_{A}):D(\varphi_{A})\}{\ }dx+\int_{\Gamma(t)}({\rm{div}}_{\Gamma}\varphi_{S})\pi_{0}{\ }d\mathcal{H}^{2}_{x}.

From (1.5), we assume that for 1<ε<1-1<\varepsilon<1,

{divvAε=0 in ΩA(t),vAεnΓ=vSεnΓ on Γ(t),vBεnΓ=vSεnΓ on Γ(t),{vBε=(0,0,0)t on Ω,PΓvAε=(0,0,0)t on Γ(t),PΓvBε=(0,0,0)t on Γ(t).\begin{cases}{\rm{div}}v_{A}^{\varepsilon}=0&\text{ in }\Omega_{A}(t),\\ v^{\varepsilon}_{A}\cdot n_{\Gamma}=v^{\varepsilon}_{S}\cdot n_{\Gamma}&\text{ on }\Gamma(t),\\ v^{\varepsilon}_{B}\cdot n_{\Gamma}=v^{\varepsilon}_{S}\cdot n_{\Gamma}&\text{ on }\Gamma(t),\end{cases}{\ }\begin{cases}v^{\varepsilon}_{B}={}^{t}(0,0,0)&\text{ on }\partial\Omega,\\ P_{\Gamma}v^{\varepsilon}_{A}={}^{t}(0,0,0)&\text{ on }\Gamma(t),\\ P_{\Gamma}v^{\varepsilon}_{B}={}^{t}(0,0,0)&\text{ on }\Gamma(t).\end{cases}

Then we have

( 4.2) {divφA=0 in ΩA(t),φAnΓ=φSnΓ on Γ(t),φBnΓ=φSnΓ on Γ(t),{φB=(0,0,0)t on Ω,PΓφA=(0,0,0)t on Γ(t),PΓφB=(0,0,0)t on Γ(t).\begin{cases}{\rm{div}}\varphi_{A}=0&\text{ in }\Omega_{A}(t),\\ \varphi_{A}\cdot n_{\Gamma}=\varphi_{S}\cdot n_{\Gamma}&\text{ on }\Gamma(t),\\ \varphi_{B}\cdot n_{\Gamma}=\varphi_{S}\cdot n_{\Gamma}&\text{ on }\Gamma(t),\end{cases}{\ }\begin{cases}\varphi_{B}={}^{t}(0,0,0)&\text{ on }\partial\Omega,\\ P_{\Gamma}\varphi_{A}={}^{t}(0,0,0)&\text{ on }\Gamma(t),\\ P_{\Gamma}\varphi_{B}={}^{t}(0,0,0)&\text{ on }\Gamma(t).\end{cases}

Now we study the forces derived from a variation of the work and dissipation energies.

Lemma 4.2.

Let 0<t<T0<t<T, and FA,FB,FS[C(3)]3F_{A},F_{B},F_{S}\in[C(\mathbb{R}^{3})]^{3}. Assume that for every φA,φB,φS[C(3)]3\varphi_{A},\varphi_{B},\varphi_{S}\in[C^{\infty}(\mathbb{R}^{3})]^{3} satisfying (4.2),

ddε|ε=0ED+W[vAε,vBε,vSε]=ΩA(t)FAφA𝑑x+ΩB(t)FBφB𝑑x+Γ(t)FSφS𝑑x2.\frac{d}{d\varepsilon}\bigg{|}_{\varepsilon=0}E_{D+W}[v_{A}^{\varepsilon},v_{B}^{\varepsilon},v_{S}^{\varepsilon}]=\int_{\Omega_{A}(t)}F_{A}\cdot\varphi_{A}{\ }dx+\int_{\Omega_{B}(t)}F_{B}\cdot\varphi_{B}{\ }dx+\int_{\Gamma(t)}F_{S}\cdot\varphi_{S}{\ }d\mathcal{H}^{2}_{x}.

Then there is πAC1(ΩA(t)¯)\pi_{A}\in C^{1}(\overline{\Omega_{A}(t)}) such that

( 4.3) {FA=div𝒯A(vA,πA) in ΩA(t),FB=div𝒯B(vB,πB) in ΩB(t),FS=π0HΓnΓ𝒯~A(vA,πA)nΓ+𝒯~B(vB,πB)nΓ on Γ(t).\begin{cases}F_{A}={\rm{div}}\mathcal{T}_{A}(v_{A},\pi_{A})&\text{ in }\Omega_{A}(t),\\ F_{B}={\rm{div}}\mathcal{T}_{B}(v_{B},\pi_{B})&\text{ in }\Omega_{B}(t),\\ F_{S}=-\pi_{0}H_{\Gamma}n_{\Gamma}-\widetilde{\mathcal{T}}_{A}(v_{A},\pi_{A})n_{\Gamma}+\widetilde{\mathcal{T}}_{B}(v_{B},\pi_{B})n_{\Gamma}&\text{ on }\Gamma(t).\end{cases}

Here (𝒯A,𝒯B,𝒯~A,𝒯~B)(\mathcal{T}_{A},\mathcal{T}_{B},\widetilde{\mathcal{T}}_{A},\widetilde{\mathcal{T}}_{B}) is defined by (1.6).

Proof of Lemma 4.2.

By assumption, we find that for all φA,φB,φS[C(3)]3\varphi_{A},\varphi_{B},\varphi_{S}\in[C^{\infty}(\mathbb{R}^{3})]^{3} satisfying (4.2),

ΩB(t){(divφB)πBμBD(vB):D(φB)λB(divvB)(divφB)}𝑑x+ΩA(t){μAD(vA):D(φA)}𝑑x+Γ(t)(divΓφS)π0𝑑x2=ΩA(t)FAφA𝑑x+ΩB(t)FBφB𝑑x+Γ(t)FSφS𝑑x2.\int_{\Omega_{B}(t)}\{({\rm{div}}\varphi_{B})\pi_{B}-\mu_{B}D(v_{B}):D(\varphi_{B})-\lambda_{B}({\rm{div}}v_{B})({\rm{div}}\varphi_{B})\}{\ }dx\\ +\int_{\Omega_{A}(t)}\{-\mu_{A}D(v_{A}):D(\varphi_{A})\}{\ }dx+\int_{\Gamma(t)}({\rm{div}}_{\Gamma}\varphi_{S})\pi_{0}{\ }d\mathcal{H}^{2}_{x}\\ =\int_{\Omega_{A}(t)}F_{A}\cdot\varphi_{A}{\ }dx+\int_{\Omega_{B}(t)}F_{B}\cdot\varphi_{B}{\ }dx+\int_{\Gamma(t)}F_{S}\cdot\varphi_{S}{\ }d\mathcal{H}^{2}_{x}.

Using the surface divergence theorem (6.1), integration by parts, and (4.2), we have

( 4.4) ΩB(t)(FBπB+div{μBD(vB)+λB(divvB)I3×3})φB𝑑x+ΩA(t)(FA+div{μAD(vA)})φA𝑑x+Γ(t){FSπ0HΓnΓ+𝒯~BnΓμA(nΓ(nΓ)vA)nΓ}φS𝑑x2=0.\int_{\Omega_{B}(t)}(-F_{B}-\nabla\pi_{B}+{\rm{div}}\{\mu_{B}D(v_{B})+\lambda_{B}({\rm{div}}v_{B})I_{3\times 3}\})\cdot\varphi_{B}{\ }dx\\ +\int_{\Omega_{A}(t)}(-F_{A}+{\rm{div}}\{\mu_{A}D(v_{A})\})\cdot\varphi_{A}{\ }dx\\ +\int_{\Gamma(t)}\{-F_{S}-\pi_{0}H_{\Gamma}n_{\Gamma}+\widetilde{\mathcal{T}}_{B}n_{\Gamma}-\mu_{A}(n_{\Gamma}\cdot(n_{\Gamma}\cdot\nabla)v_{A})n_{\Gamma}\}\cdot\varphi_{S}{\ }d\mathcal{H}^{2}_{x}=0.

Here we used the facts that

D(vA)nΓφA\displaystyle D(v_{A})n_{\Gamma}\cdot\varphi_{A} =(nΓ(nΓ)vA)(nΓφA) on Γ(t),\displaystyle=(n_{\Gamma}\cdot(n_{\Gamma}\cdot\nabla)v_{A})(n_{\Gamma}\cdot\varphi_{A})\text{ on }\Gamma(t),
D(vB)nΓφB\displaystyle D(v_{B})n_{\Gamma}\cdot\varphi_{B} =(nΓ(nΓ)vB)(nΓφB) on Γ(t).\displaystyle=(n_{\Gamma}\cdot(n_{\Gamma}\cdot\nabla)v_{B})(n_{\Gamma}\cdot\varphi_{B})\text{ on }\Gamma(t).

We now consider the case when φA=(0,0,0)t\varphi_{A}={}^{t}(0,0,0) and φS=(0,0,0)t\varphi_{S}={}^{t}(0,0,0), that is, for every φB[C(3)]3\varphi_{B}\in[C^{\infty}(\mathbb{R}^{3})]^{3} satisfying φB=(0,0,0)t\varphi_{B}={}^{t}(0,0,0) on Ω\partial\Omega and φB=(0,0,0)t\varphi_{B}={}^{t}(0,0,0) on Γ(t)\Gamma(t),

ΩB(t)(FBπB+div{μBD(vB)+λB(divvB)I3×3})φB𝑑x=0.\int_{\Omega_{B}(t)}(-F_{B}-\nabla\pi_{B}+{\rm{div}}\{\mu_{B}D(v_{B})+\lambda_{B}({\rm{div}}v_{B})I_{3\times 3}\})\cdot\varphi_{B}{\ }dx=0.

This shows that

( 4.5) FB=div𝒯B(vB,πB) in ΩB(t).F_{B}={\rm{div}}\mathcal{T}_{B}(v_{B},\pi_{B})\text{ in }\Omega_{B}(t).

Next we consider the case when φB=(0,0,0)t\varphi_{B}={}^{t}(0,0,0) and φS=(0,0,0)t\varphi_{S}={}^{t}(0,0,0), that is, for every φA[C(3)]3\varphi_{A}\in[C^{\infty}(\mathbb{R}^{3})]^{3} satisfying φA=(0,0,0)t\varphi_{A}={}^{t}(0,0,0) on Γ(t)\Gamma(t) and divφA=0{\rm{div}}\varphi_{A}=0 in ΩA(t)\Omega_{A}(t),

ΩA(t)(FA+div{μAD(vA)})φA𝑑x=0.\int_{\Omega_{A}(t)}(-F_{A}+{\rm{div}}\{\mu_{A}D(v_{A})\})\cdot\varphi_{A}{\ }dx=0.

Since divφA=0{\rm{div}}\varphi_{A}=0 in ΩA(t)\Omega_{A}(t), we apply the Helmholtz-Weyl decomposition (Lemma 6.2) to find that there exists πAC1(ΩA(t)¯)\pi_{A}\in C^{1}(\overline{\Omega_{A}(t)}) such that

( 4.6) FA+div{μAD(vA)}=πA in ΩA(t).-F_{A}+{\rm{div}}\{\mu_{A}D(v_{A})\}=\nabla\pi_{A}\text{ in }\Omega_{A}(t).

Finally, we consider the case when φS(0,0,0)t\varphi_{S}\neq{}^{t}(0,0,0). By (4.4), (4.5), (4.6), we see that

ΩA(t)(πA)φA𝑑x+Γ(t){FSπ0HΓnΓ+𝒯~BnΓμA(nΓ(nΓ)vA)nΓ}φS𝑑x2=0.\int_{\Omega_{A}(t)}(\nabla\pi_{A})\cdot\varphi_{A}{\ }dx\\ +\int_{\Gamma(t)}\{-F_{S}-\pi_{0}H_{\Gamma}n_{\Gamma}+\widetilde{\mathcal{T}}_{B}n_{\Gamma}-\mu_{A}(n_{\Gamma}\cdot(n_{\Gamma}\cdot\nabla)v_{A})n_{\Gamma}\}\cdot\varphi_{S}{\ }d\mathcal{H}^{2}_{x}=0.

Using integration by parts with divφA=0{\rm{div}}\varphi_{A}=0 and φAnΓ=φSnΓ\varphi_{A}\cdot n_{\Gamma}=\varphi_{S}\cdot n_{\Gamma}, we have

Γ(t)(FSπ0HΓnΓ𝒯~AnΓ+𝒯~BnΓ)φS𝑑x2=0.\int_{\Gamma(t)}(-F_{S}-\pi_{0}H_{\Gamma}n_{\Gamma}-\widetilde{\mathcal{T}}_{A}n_{\Gamma}+\widetilde{\mathcal{T}}_{B}n_{\Gamma})\cdot\varphi_{S}{\ }d\mathcal{H}^{2}_{x}=0.

Since the above equality holds for all φS[C(3)]3\varphi_{S}\in[C^{\infty}(\mathbb{R}^{3})]^{3}, we see that

( 4.7) FS=π0HΓnΓ𝒯~AnΓ+𝒯~BnΓ on Γ(t).F_{S}=-\pi_{0}H_{\Gamma}n_{\Gamma}-\widetilde{\mathcal{T}}_{A}n_{\Gamma}+\widetilde{\mathcal{T}}_{B}n_{\Gamma}\text{ on }\Gamma(t).

Therefore, Lemma 4.2 is proved. ∎

Now we return to derive our momentum equations. We admit the fundamental principle of the dynamics of fluid motion (see Chapter B in [17]). We assume that the time rate of change of the momentum equals to the forces derived from the variation of the work done by pressures and the energies dissipation due to viscosities, that is, suppose that for every 0<t<T0<t<T and ΛΩ\Lambda\subset\Omega,

ddtΩA(t)ΛρAvA𝑑x=ΩA(t)ΛFA𝑑x,\displaystyle\frac{d}{dt}\int_{\Omega_{A}(t)\cap\Lambda}\rho_{A}v_{A}{\ }dx=\int_{\Omega_{A}(t)\cap\Lambda}F_{A}{\ }dx,
ddtΩB(t)ΛρBvB𝑑x=ΩB(t)ΛFB𝑑x,\displaystyle\frac{d}{dt}\int_{\Omega_{B}(t)\cap\Lambda}\rho_{B}v_{B}{\ }dx=\int_{\Omega_{B}(t)\cap\Lambda}F_{B}{\ }dx,
0=Γ(t)ΛFS𝑑x2.\displaystyle 0=\int_{\Gamma(t)\cap\Lambda}F_{S}{\ }d\mathcal{H}^{2}_{x}.

Here (FA,FB,FS)(F_{A},F_{B},F_{S}) is defined by (4.3). Remark that we do not consider the momentum on the surface Γ(t)\Gamma(t) since we do not consider surface flow. Applying the transport theorems with (4.1), we have

( 4.8) {ρADtAvA+ΦAvA=FA in ΩA,T,ρBDtBvB+ΦBvB=FB in ΩB,T,π0HΓnΓ+𝒯~AnΓ𝒯~BnΓ=(0,0,0)t in ΓT.\begin{cases}\rho_{A}D_{t}^{A}v_{A}+\Phi_{A}v_{A}=F_{A}&\text{ in }\Omega_{A,T},\\ \rho_{B}D_{t}^{B}v_{B}+\Phi_{B}v_{B}=F_{B}&\text{ in }\Omega_{B,T},\\ \pi_{0}H_{\Gamma}n_{\Gamma}+\widetilde{\mathcal{T}}_{A}n_{\Gamma}-\widetilde{\mathcal{T}}_{B}n_{\Gamma}={}^{t}(0,0,0)&\text{ in }\Gamma_{T}.\end{cases}

Using the transport theorems (2.1)-(2.3) with (4.1), we check that

ddt(ΩA(t)ρA(x,t)𝑑x+ΩB(t)ρB(x,t)𝑑x+Γ(t)ρ0𝑑x2)=ΩA(t)ΦA𝑑x+ΩB(t)ΦB𝑑x+Γ(t)ρ0(divΓvS)𝑑x2.\frac{d}{dt}\left(\int_{\Omega_{A}(t)}\rho_{A}(x,t){\ }dx+\int_{\Omega_{B}(t)}\rho_{B}(x,t){\ }dx+\int_{\Gamma(t)}\rho_{0}{\ }d\mathcal{H}^{2}_{x}\right)\\ =\int_{\Omega_{A}(t)}\Phi_{A}{\ }dx+\int_{\Omega_{B}(t)}\Phi_{B}{\ }dx+\int_{\Gamma(t)}\rho_{0}({\rm{div}}_{\Gamma}v_{S}){\ }d\mathcal{H}^{2}_{x}.

By the same argument in the proof of Theorem 2.2, we see that

ddt(ΩA(t)ρA(x,t)𝑑x+ΩB(t)ρB(x,t)𝑑x+Γ(t)ρ0𝑑x2)=ΩA(t)(ΦA+ρ0π0div(𝒯AvA))𝑑x+ΩB(t)(ΦB+ρ0π0div(𝒯BvB))𝑑x.\frac{d}{dt}\left(\int_{\Omega_{A}(t)}\rho_{A}(x,t){\ }dx+\int_{\Omega_{B}(t)}\rho_{B}(x,t){\ }dx+\int_{\Gamma(t)}\rho_{0}{\ }d\mathcal{H}^{2}_{x}\right)\\ =\int_{\Omega_{A}(t)}\left(\Phi_{A}+\frac{\rho_{0}}{\pi_{0}}{\rm{div}}(\mathcal{T}_{A}v_{A})\right){\ }dx+\int_{\Omega_{B}(t)}\left(\Phi_{B}+\frac{\rho_{0}}{\pi_{0}}{\rm{div}}(\mathcal{T}_{B}v_{B})\right){\ }dx.

Thus, we set ΦA=ρ0π0div(𝒯AvA)\Phi_{A}=-\frac{\rho_{0}}{\pi_{0}}{\rm{div}}(\mathcal{T}_{A}v_{A}) and ΦB=ρ0π0div(𝒯BvB)\Phi_{B}=-\frac{\rho_{0}}{\pi_{0}}{\rm{div}}(\mathcal{T}_{B}v_{B}) to derive

ddt(ΩA(t)ρA(x,t)𝑑x+ΩB(t)ρB(x,t)𝑑x+Γ(t)ρ0𝑑x2)=0.\frac{d}{dt}\left(\int_{\Omega_{A}(t)}\rho_{A}(x,t){\ }dx+\int_{\Omega_{B}(t)}\rho_{B}(x,t){\ }dx+\int_{\Gamma(t)}\rho_{0}{\ }d\mathcal{H}^{2}_{x}\right)=0.

Therefore, combining (4.1), (4.3), and (4.8), we have system (1.4).

4.2. Inviscid Model

Under the restriction (1.2) we apply an energetic variational approach to derive system (1.3). We assume that (vA,vB,vS)(v_{A},v_{B},v_{S}) satisfy (1.2).

Let ΨA,ΨBC(4)\Psi_{A},\Psi_{B}\in C(\mathbb{R}^{4}). We assume that the dominant equations for the densities of our system are written by

( 4.9) {DtAρA=ΨA in ΩA,T,DtBρB+(divvB)ρB=ΨB in ΩB,T.\begin{cases}D_{t}^{A}\rho_{A}=\Psi_{A}&\text{ in }\Omega_{A,T},\\ D_{t}^{B}\rho_{B}+({\rm{div}}v_{B})\rho_{B}=\Psi_{B}&\text{ in }\Omega_{B,T}.\end{cases}

From now we look for ΨA\Psi_{A}, ΨB\Psi_{B} satisfying

ddt(ΩA(t)ρA(x,t)𝑑x+ΩB(t)ρB(x,t)𝑑x+Γ(t)ρ0𝑑x2)=0\frac{d}{dt}\left(\int_{\Omega_{A}(t)}\rho_{A}(x,t){\ }dx+\int_{\Omega_{B}(t)}\rho_{B}(x,t){\ }dx+\int_{\Gamma(t)}\rho_{0}{\ }d\mathcal{H}^{2}_{x}\right)=0

by applying an energetic variational approach.

In order to derive the momentum equations of our system, we now discuss the variation of the velocities (vA,vB,vS)(v_{A},v_{B},v_{S}) to the work for our inviscid model. Fix 0<t<T0<t<T. We set the work EWE_{W} done by pressures πB\pi_{B} and π0\pi_{0} as follows:

EW[vA,vB,vS]=ΩB(t)(divvB)πB𝑑x+Γ(t)(divΓvS)π0𝑑x2.E_{W}[v_{A},v_{B},v_{S}]=\int_{\Omega_{B}(t)}({\rm{div}}v_{B})\pi_{B}{\ }dx+\int_{\Gamma(t)}({\rm{div}}_{\Gamma}v_{S})\pi_{0}{\ }d\mathcal{H}^{2}_{x}.

We consider the variation of the work EWE_{W} with respect to the velocities (vA,vB,vS)(v_{A},v_{B},v_{S}). Let 0<t<T0<t<T. Let φA,φB,φS[C(3)]3\varphi_{A},\varphi_{B},\varphi_{S}\in[C^{\infty}(\mathbb{R}^{3})]^{3}. For 1<ε<1-1<\varepsilon<1, vAε:=vA+εφAv_{A}^{\varepsilon}:=v_{A}+\varepsilon\varphi_{A}, vBε:=vB+εφBv_{B}^{\varepsilon}:=v_{B}+\varepsilon\varphi_{B}, vSε:=vS+εφSv_{S}^{\varepsilon}:=v_{S}+\varepsilon\varphi_{S}. We call (vAεv_{A}^{\varepsilon}, vBεv_{B}^{\varepsilon}, vSεv_{S}^{\varepsilon}) a variation of (vAv_{A}, vBv_{B}, vSv_{S}). For each variation (vAε,vBε,vSε)(v_{A}^{\varepsilon},v_{B}^{\varepsilon},v_{S}^{\varepsilon}),

EW[vAε,vBε,vSε]:=ΩB(t)(divvBε)πB𝑑x+Γ(t)(divΓvSε)π0𝑑x2.E_{W}[v_{A}^{\varepsilon},v_{B}^{\varepsilon},v_{S}^{\varepsilon}]:=\int_{\Omega_{B}(t)}({\rm{div}}v^{\varepsilon}_{B})\pi_{B}{\ }dx+\int_{\Gamma(t)}({\rm{div}}_{\Gamma}v^{\varepsilon}_{S})\pi_{0}{\ }d\mathcal{H}^{2}_{x}.

From (1.2), we assume that for 1<ε<1-1<\varepsilon<1,

{divvAε=0 in ΩA(t),vBεnΩ=0 on Ω,{vAεnΓ=vSεnΓ on Γ(t),vBεnΓ=vSεnΓ on Γ(t).\begin{cases}{\rm{div}}v_{A}^{\varepsilon}=0&\text{ in }\Omega_{A}(t),\\ v^{\varepsilon}_{B}\cdot n_{\Omega}=0&\text{ on }\partial\Omega,\end{cases}{\ }\begin{cases}v^{\varepsilon}_{A}\cdot n_{\Gamma}=v^{\varepsilon}_{S}\cdot n_{\Gamma}&\text{ on }\Gamma(t),\\ v^{\varepsilon}_{B}\cdot n_{\Gamma}=v^{\varepsilon}_{S}\cdot n_{\Gamma}&\text{ on }\Gamma(t).\end{cases}

Then we have

( 4.10) {divφA=0 in ΩA(t),φBnΩ=0 on Ω,{φAnΓ=φSnΓ on Γ(t),φBnΓ=φSnΓ on Γ(t).\begin{cases}{\rm{div}}\varphi_{A}=0&\text{ in }\Omega_{A}(t),\\ \varphi_{B}\cdot n_{\Omega}=0&\text{ on }\partial\Omega,\end{cases}{\ }\begin{cases}\varphi_{A}\cdot n_{\Gamma}=\varphi_{S}\cdot n_{\Gamma}&\text{ on }\Gamma(t),\\ \varphi_{B}\cdot n_{\Gamma}=\varphi_{S}\cdot n_{\Gamma}&\text{ on }\Gamma(t).\end{cases}

Now we study the forces derived from a variation of the work.

Lemma 4.3.

Let 0<t<T0<t<T, and GA,GB,GS[C(3)]3G_{A},G_{B},G_{S}\in[C(\mathbb{R}^{3})]^{3}. Assume that for every φA,φB,φS[C(3)]3\varphi_{A},\varphi_{B},\varphi_{S}\in[C^{\infty}(\mathbb{R}^{3})]^{3} satisfying (4.10),

ddε|ε=0EW[vAε,vBε,vSε]=ΩA(t)GAφA𝑑x+ΩB(t)GBφB𝑑x+Γ(t)GSφS𝑑x2.\frac{d}{d\varepsilon}\bigg{|}_{\varepsilon=0}E_{W}[v_{A}^{\varepsilon},v_{B}^{\varepsilon},v_{S}^{\varepsilon}]=\int_{\Omega_{A}(t)}G_{A}\cdot\varphi_{A}{\ }dx+\int_{\Omega_{B}(t)}G_{B}\cdot\varphi_{B}{\ }dx+\int_{\Gamma(t)}G_{S}\cdot\varphi_{S}{\ }d\mathcal{H}^{2}_{x}.

Then there is πAC1(ΩA(t)¯)\pi_{A}\in C^{1}(\overline{\Omega_{A}(t)}) such that

( 4.11) {GA=gradπA in ΩA(t),GB=gradπB in ΩB(t),GS=π0HΓnΓ+πAnΓπBnΓ on Γ(t).\begin{cases}G_{A}=-{\rm{grad}}\pi_{A}&\text{ in }\Omega_{A}(t),\\ G_{B}=-{\rm{grad}}\pi_{B}&\text{ in }\Omega_{B}(t),\\ G_{S}=-\pi_{0}H_{\Gamma}n_{\Gamma}+\pi_{A}n_{\Gamma}-\pi_{B}n_{\Gamma}&\text{ on }\Gamma(t).\end{cases}

By the same arguments in the proof of Lemma 4.2, we can prove Lemma 4.3.

Now we derive our momentum equations. We admit the principle of conservation of linear momentum (see Chapter B in [17]). We assume that the time rate of change of the momentum equals to the forces derived from the work done by pressures, that is, suppose that for every 0<t<T0<t<T and ΛΩ\Lambda\subset\Omega,

ddtΩA(t)ΛρAvA𝑑x=ΩA(t)ΛGA𝑑x,\displaystyle\frac{d}{dt}\int_{\Omega_{A}(t)\cap\Lambda}\rho_{A}v_{A}{\ }dx=\int_{\Omega_{A}(t)\cap\Lambda}G_{A}{\ }dx,
ddtΩB(t)ΛρBvB𝑑x=ΩB(t)ΛGB𝑑x,\displaystyle\frac{d}{dt}\int_{\Omega_{B}(t)\cap\Lambda}\rho_{B}v_{B}{\ }dx=\int_{\Omega_{B}(t)\cap\Lambda}G_{B}{\ }dx,
0=Γ(t)ΛGS𝑑x2.\displaystyle 0=\int_{\Gamma(t)\cap\Lambda}G_{S}{\ }d\mathcal{H}^{2}_{x}.

Here (GA,GB,GS)(G_{A},G_{B},G_{S}) is defined by (4.11). Remark that we do not consider the momentum on the surface Γ(t)\Gamma(t) since we do not consider surface flow. Applying the transport theorems with (4.9), we have

( 4.12) {ρADtAvA+ΨAvA=GA in ΩA,T,ρBDtBvB+ΨBvB=GB in ΩB,T,π0HΓnΓπAnΓ+πBnΓ=(0,0,0)t in ΓT.\begin{cases}\rho_{A}D_{t}^{A}v_{A}+\Psi_{A}v_{A}=G_{A}&\text{ in }\Omega_{A,T},\\ \rho_{B}D_{t}^{B}v_{B}+\Psi_{B}v_{B}=G_{B}&\text{ in }\Omega_{B,T},\\ \pi_{0}H_{\Gamma}n_{\Gamma}-\pi_{A}n_{\Gamma}+\pi_{B}n_{\Gamma}={}^{t}(0,0,0)&\text{ in }\Gamma_{T}.\end{cases}

Using the transport theorems (2.1)-(2.3) with (4.9), we check that

ddt(ΩA(t)ρA(x,t)𝑑x+ΩB(t)ρB(x,t)𝑑x+Γ(t)ρ0𝑑x2)=ΩA(t)ΨA𝑑x+ΩB(t)ΨB𝑑x+Γ(t)ρ0(divΓvS)𝑑x2.\frac{d}{dt}\left(\int_{\Omega_{A}(t)}\rho_{A}(x,t){\ }dx+\int_{\Omega_{B}(t)}\rho_{B}(x,t){\ }dx+\int_{\Gamma(t)}\rho_{0}{\ }d\mathcal{H}^{2}_{x}\right)\\ =\int_{\Omega_{A}(t)}\Psi_{A}{\ }dx+\int_{\Omega_{B}(t)}\Psi_{B}{\ }dx+\int_{\Gamma(t)}\rho_{0}({\rm{div}}_{\Gamma}v_{S}){\ }d\mathcal{H}^{2}_{x}.

By the same argument in the proof of Theorem 2.2, we see that

ddt(ΩA(t)ρA(x,t)𝑑x+ΩB(t)ρB(x,t)𝑑x+Γ(t)ρ0𝑑x2)=ΩA(t)(ΨAdiv{ρ0π0πAvA})𝑑x+ΩB(t)(ΨBdiv{ρ0π0πBvB})𝑑x.\frac{d}{dt}\left(\int_{\Omega_{A}(t)}\rho_{A}(x,t){\ }dx+\int_{\Omega_{B}(t)}\rho_{B}(x,t){\ }dx+\int_{\Gamma(t)}\rho_{0}{\ }d\mathcal{H}^{2}_{x}\right)\\ =\int_{\Omega_{A}(t)}\left(\Psi_{A}-{\rm{div}}\left\{\frac{\rho_{0}}{\pi_{0}}\pi_{A}v_{A}\right\}\right){\ }dx+\int_{\Omega_{B}(t)}\left(\Psi_{B}-{\rm{div}}\left\{\frac{\rho_{0}}{\pi_{0}}\pi_{B}v_{B}\right\}\right){\ }dx.

Thus, we set ΨA=div{ρ0π0πAvA}\Psi_{A}={\rm{div}}\{\frac{\rho_{0}}{\pi_{0}}\pi_{A}v_{A}\} and ΨB=div{ρ0π0πBvB}\Psi_{B}={\rm{div}}\{\frac{\rho_{0}}{\pi_{0}}\pi_{B}v_{B}\} to derive

ddt(ΩA(t)ρA(x,t)𝑑x+ΩB(t)ρB(x,t)𝑑x+Γ(t)ρ0𝑑x2)=0.\frac{d}{dt}\left(\int_{\Omega_{A}(t)}\rho_{A}(x,t){\ }dx+\int_{\Omega_{B}(t)}\rho_{B}(x,t){\ }dx+\int_{\Gamma(t)}\rho_{0}{\ }d\mathcal{H}^{2}_{x}\right)=0.

Combining (4.9), (4.11), and (4.12), therefore, we have system (1.3).

5. Conservation and Energy Laws

Applying the transport theorems and integration by parts, we can prove Theorem 2.3. Therefore, we only show that any solution to system (1.4) with (1.5) satisfies (1.8).

Applying the transport theorems (2.1), (2.2), and system (1.4), we see that

( 5.1) ddt(ΩA(t)12ρA|vA|2𝑑x+ΩB(t)12ρB|vB|2𝑑x)=ΩA(t)(12|vA|2(DtAρA)+ρADtAvAvA)𝑑x+ΩB(t)(12|vB|2(DtBρB+(divvB)ρB)+ρBDtBvBvB)𝑑x=ΩA(t)((div𝒯A)vA+ρ02π0div(𝒯AvA)|vA|2)𝑑x+ΩB(t)((div𝒯B)vB+ρ02π0div(𝒯BvB)|vB|2)𝑑x.\frac{d}{dt}\left(\int_{\Omega_{A}(t)}\frac{1}{2}\rho_{A}|v_{A}|^{2}{\ }dx+\int_{\Omega_{B}(t)}\frac{1}{2}\rho_{B}|v_{B}|^{2}{\ }dx\right)\\ =\int_{\Omega_{A}(t)}\left(\frac{1}{2}|v_{A}|^{2}(D_{t}^{A}\rho_{A})+\rho_{A}D_{t}^{A}v_{A}\cdot v_{A}\right){\ }dx\\ +\int_{\Omega_{B}(t)}\left(\frac{1}{2}|v_{B}|^{2}(D_{t}^{B}\rho_{B}+({\rm{div}}v_{B})\rho_{B})+\rho_{B}D_{t}^{B}v_{B}\cdot v_{B}\right){\ }dx\\ =\int_{\Omega_{A}(t)}\left(({\rm{div}}\mathcal{T}_{A})\cdot v_{A}+\frac{\rho_{0}}{2\pi_{0}}{\rm{div}}(\mathcal{T}_{A}v_{A})|v_{A}|^{2}\right){\ }dx\\ +\int_{\Omega_{B}(t)}\left(({\rm{div}}\mathcal{T}_{B})\cdot v_{B}+\frac{\rho_{0}}{2\pi_{0}}{\rm{div}}(\mathcal{T}_{B}v_{B})|v_{B}|^{2}\right){\ }dx.

Using integration by parts with vB|Ω=(0,0,0)tv_{B}|_{\partial\Omega}={}^{t}(0,0,0), we observe that

(R.H.S.) of (5.1)=ΩB(t)((divvB)πB+ρ02π0div(𝒯BvB)|vB|2μB|D(vB)|2λB|divvB|2)𝑑x+ΩA(t)(ρ02π0div(𝒯AvA)|vA|2μA|D(vA)|2)𝑑x+Γ(t)(divΓvS)π0𝑑x2.\text{(R.H.S.) of }\eqref{eq51}\\ =\int_{\Omega_{B}(t)}\left(({\rm{div}}v_{B})\pi_{B}+\frac{\rho_{0}}{2\pi_{0}}{\rm{div}}(\mathcal{T}_{B}v_{B})|v_{B}|^{2}-\mu_{B}|D(v_{B})|^{2}-\lambda_{B}|{\rm{div}}v_{B}|^{2}\right){\ }dx\\ +\int_{\Omega_{A}(t)}\left(\frac{\rho_{0}}{2\pi_{0}}{\rm{div}}(\mathcal{T}_{A}v_{A})|v_{A}|^{2}-\mu_{A}|D(v_{A})|^{2}\right){\ }dx+\int_{\Gamma(t)}({\rm{div}}_{\Gamma}v_{S})\pi_{0}{\ }d\mathcal{H}_{x}^{2}.

Here we used the fact that

Γ(t)(𝒯AnΓvA𝒯BnΓvB)𝑑x2=Γ(t)(𝒯~A𝒯~B)vSnΓ𝑑x2\displaystyle\int_{\Gamma(t)}(\mathcal{T}_{A}n_{\Gamma}\cdot v_{A}-\mathcal{T}_{B}n_{\Gamma}\cdot v_{B}){\ }d\mathcal{H}^{2}_{x}=\int_{\Gamma(t)}(\widetilde{\mathcal{T}}_{A}-\widetilde{\mathcal{T}}_{B})v_{S}\cdot n_{\Gamma}{\ }d\mathcal{H}^{2}_{x}
=Γ(t)π0HΓ(vSnΓ)𝑑x2=Γ(t)(divΓvS)π0𝑑x2.\displaystyle=-\int_{\Gamma(t)}\pi_{0}H_{\Gamma}(v_{S}\cdot n_{\Gamma}){\ }d\mathcal{H}^{2}_{x}=\int_{\Gamma(t)}({\rm{div}}_{\Gamma}v_{S})\pi_{0}{\ }d\mathcal{H}_{x}^{2}.

Integrating with respect to tt, we have (1.8). Therefore, Theorem 2.3 is proved.

6. Appendix: Tools

We introduce useful tools to make a mathematical model for multiphase flow.

Lemma 6.1 (Surface divergence theorem).

Let Γ3\Gamma_{*}\subset\mathbb{R}^{3} be a smooth closed 22-dimensional surface. Then for each VS[C1(Γ)]3V_{S}\in[C^{1}(\Gamma_{*})]^{3},

( 6.1) ΓdivΓVS𝑑x2=ΓHΓ(VSnΓ)𝑑x2.\int_{\Gamma_{*}}{\rm{div}}_{\Gamma_{*}}V_{S}{\ }d\mathcal{H}^{2}_{x}=-\int_{\Gamma_{*}}H_{\Gamma_{*}}(V_{S}\cdot n_{\Gamma_{*}}){\ }d\mathcal{H}^{2}_{x}.

Here HΓH_{\Gamma_{*}} is the mean curvature in the direction nΓn_{\Gamma_{*}} defined by HΓ=divΓnΓH_{\Gamma_{*}}=-{\rm{div}}_{\Gamma_{*}}n_{\Gamma_{*}}, where nΓ=nΓ(x)=(n1,n2,n3)tn_{\Gamma_{*}}=n_{\Gamma_{*}}(x)={}^{t}(n^{*}_{1},n^{*}_{2},n^{*}_{3}) denotes the unit outer normal vector at xΓx\in\Gamma_{*}.

The proof of Lemma 6.1 can be founded in Simon [18] and Koba [10].

Lemma 6.2 (Helmholtz-Weyl decomposition).

Let Ω\Omega_{*} be a bounded domain in 3\mathbb{R}^{3} with smooth boundary Ω\partial\Omega_{*}. Set

C0,div(Ω)={φ[C0(Ω)]3;divφ=0}.C^{\infty}_{0,{\rm{div}}}(\Omega_{*})=\{\varphi\in[C_{0}^{\infty}(\Omega_{*})]^{3};{\ }{\rm{div}}\varphi=0\}.

Let F[C(Ω¯)]3F_{*}\in[C(\overline{\Omega_{*}})]^{3}. Assume that for each φC0,div(Ω)\varphi\in C^{\infty}_{0,{\rm{div}}}(\Omega_{*})

ΩFφ𝑑x=0.\int_{\Omega_{*}}F_{*}\cdot\varphi{\ }dx=0.

Then there is ΠC1(Ω¯)\Pi_{*}\in C^{1}(\overline{\Omega_{*}}) such that F=ΠF_{*}=\nabla\Pi_{*} in Ω\Omega_{*}.

The proof of Lemma 6.2 can be founded in Temam [22] and Sohr [20].

Acknowledgments

This work was partly supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Number JP21K03326.

References

  • [1] David E. Betounes, Kinematics of submanifolds and the mean curvature normal. Arch. Rational Mech. Anal. 96 (1986), no. 1, 1–27. MR0853973
  • [2] Dieter Bothe and Jan Prüss, Modeling and analysis of reactive multi-component two-phase flows with mass transfer and phase transition–the isothermal incompressible case. Discrete Contin. Dyn. Syst. Ser. S 10 (2017), no. 4, 673696.
  • [3] Dieter Bothe and Jan Prüss, On the two-phase Navier-Stokes equations with Boussinesq-Scriven surface fluid. J. Math. Fluid Mech. 12 (2010), no. 1, 133–150. MR2602917.
  • [4] Gerhard Dziuk and Charles M. Elliott, Finite elements on evolving surfaces. IMA J. Numer. Anal. 27 (2007), no. 2, 262–292. MR2317005.
  • [5] Morton E. Gurtin, Allan Struthers, and William O. Williams, A transport theorem for moving interfaces. Quart. Appl. Math. 47 (1989), no. 4, 773–777. MR1031691
  • [6] Yoshinori Furukawa, Masaki Yamamoto, and Toshio Kuroda, Ellipsometric study of the transition layer on the surface of an ice crystal, Journal of Crystal Growth, 82 (1987), 665-677.
  • [7] István Gyarmati. Non-equilibrium Thermodynamics. Springer, 1970. ISBN:978-3-642-51067-0
  • [8] Yunkyong Hyon, Do Y. Kwak, and Chun Liu, Energetic variational approach in complex fluids: maximum dissipation principle. Discrete Contin. Dyn. Syst. 26 (2010), no. 4, 1291–1304. MR2600746
  • [9] Hajime Koba, On Derivation of Compressible Fluid Systems on an Evolving Surface, Quart. Appl. Math. 76 (2018), no. 2, 303–359.
  • [10] Hajime Koba, On Generalized Diffusion and Heat Systems on an Evolving Surface with a Boundary, Quart. Appl. Math. 78 (2020), 617-640
  • [11] Hajime Koba, Chun Liu, and Yoshikazu Giga Energetic variational approaches for incompressible fluid systems on an evolving surface, Quart. Appl. Math. 75 (2017), no 2, 359–389. MR3614501. Errata to Energetic variational approaches for incompressible fluid systems on an evolving surface. Quart. Appl. Math. 76 (2018), no 1, 147–152.
  • [12] Hajime Koba and Kazuki Sato, Energetic variational approaches for non-Newtonian fluid systems. Z. Angew. Math. Phys (2018) 69: 143. https://doi.org/10.1007/s00033-018-1039-1.
  • [13] T. Kuroda and R. Lacmann, Growth kinetics of ice from the vapour phase and its growth forms, Journal of Crystal Growth 56 (1982), 189–205.
  • [14] Lars Onsager Reciprocal Relations in Irreversible Processes. I. Physical Review. (1931);37:405-109 DOI:https://doi.org/10.1103/PhysRev.37.405
  • [15] Lars Onsager Reciprocal Relations in Irreversible Processes. II. Physical Review. (1931);38:2265-79 DOI:https://doi.org/10.1103/PhysRev.38.2265
  • [16] Gen Sazaki, Salvador Zepeda, Shunichi Nakatsubo, Etsuro Yokoyama, and Yoshinori Furukawa, Elementary steps at the surface of ice crystals visualized by advanced optical microscopy, PNAS 107 (2010), 19702-19707.
  • [17] J. Serrin, Mathematical principles of classical fluid mechanics. 1959 Handbuch der Physik (herausgegeben von S. Flugge), Bd. 8/1, Stromungsmechanik I (Mitherausgeber C. Truesdell) pp. 125–263 Springer-Verlag, Berlin-Gottingen-Heidelberg MR0108116.[Fluid Dynamics I / Stroemungsmechanik I (Handbuch der Physik Encyclopedia of Physics) 2013]. MR0108116
  • [18] Leon Simon, Lectures on geometric measure theory. Proceedings of the Centre for Mathematical Analysis, Australian National University, 3. Australian National University, Centre for Mathematical Analysis, Canberra, 1983. vii+272 pp. ISBN: 0-86784-429-9 MR0756417.
  • [19] John C. Slattery, Leonard. Sagis, and Eun-Suok Oh, Interfacial transport phenomena. Second edition. Springer, New York, 2007. xviii+827 pp. ISBN: 978-0-387-38438-2; 0-387-38438-3 MR2284654.
  • [20] H. Sohr, The Navier-Stokes equations. An elementary functional analytic approach. Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks] Birkhäuser Verlag, Basel, 2001. x+367 pp. MR1928881
  • [21] Hon. J.W. Strutt M.A., Some General Theorems Relating to Vibrations. Proc. London. Math. Soc. (1873);IV:357-68. MR1575554
  • [22] R. Temam, Navier-Stokes equations, Theory and numerical analysis. Studies in Mathematics and its Applications, Vol. 2. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. x+500 pp. ISBN: 0-7204-2840-8. MR0609732