This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

aainstitutetext: Center for theoretical physics, College of Physics, Sichuan University,
Chengdu, 610064, China
bbinstitutetext: The Hong Kong University of Science and Technology,
Clear Water Bay, Kowloon, Hong Kong, P.R.China
ccinstitutetext: School of Fundamental Physics and Mathematical Sciences,
Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
ddinstitutetext: Department of Physics and Chongqing Key Laboratory for Strongly Coupled Physics,
Chongqing University, Chongqing 401331, China

Elko as an inflaton candidate

Xinglong Chen [email protected] a    Cheng-Yang Lee [email protected] b    Yanjiao Ma [email protected] c    Haomin Rao [email protected] b    Wenqi Yu [email protected] d    and Siyi Zhou [email protected]
Abstract

Elko is a spin-half fermion with a two-fold Wigner degeneracy and Klein-Gordon dynamics. In this paper, we show that in a spatially flat FLRW space-time, slow-roll inflation can be initiated by the homogeneous Elko fields. The inflaton is a composite scalar field obtained by contracting the spinor field with its dual. This is possible because the background evolution as described by the Friedmann equation is completely determined by the scalar field. This approach has the advantage that we do not need to specify the initial conditions for every component of the spinor fields. We derive the equation of motion for the inflaton and also show that this solution is an attractor.

1 Introduction

Inflation is a theory of rapid spatial expansion of the early universe. It is the leading paradigm describing the early universe cosmology because it resolves the flatness, horizon, and magnetic monopole problems Guth:1980zm ; Barrow:1981pa ; Linde:1983gd ; Linde:1981mu . The slow-roll inflation driven by a real scalar field is one of the simplest models. It predicts an almost scale-invariant power spectrum which is in agreement with observations on the cosmological background radiation Mukhanov:1990me . Heavy fields may be present during inflation. Their presence leads to interesting oscillating features in the squeezed limit of non-Gaussianities as is the case in the cosmological collider physics or quasi-single field inflation Chen:2010xka ; Chen:2009we ; Chen:2009zp ; Chen:2012ge ; Noumi:2012vr ; Arkani-Hamed:2015bza ; Meerburg:2016zdz ; Chen:2016uwp ; Tong:2017iat ; Tong:2018tqf ; Alexander:2019vtb ; Lu:2019tjj ; Hook:2019zxa ; Wang:2019gbi ; Wang:2020uic ; Wang:2020ioa ; Liu:2019fag ; Lu:2021wxu ; Tong:2022cdz ; Tong:2021wai . Nowadays, there are many inflationary models. Apart slow-roll scalar inflation Martin:2013tda , one may also think about inflation driven by spinor Kinney:1995xv ; Iso:2014gka ; Pereira:2017efk ; Kumar:2018rrl ; Benisty:2019jqz ; Shokri:2021aum ; Gredat:2008qf ; Shankaranarayanan:2009sz or vector fields Golovnev:2008cf ; Koivisto:2008xf ; Chiba:2008eh ; Koh:2009ne ; Setare:2013kja ; Darabi:2014aaa .

In this work, we study the theory of Elko inflation. Elko is a massive spin-half fermionic field in the (12,0)(0,12)\left(\frac{1}{2},0\right)\oplus\left(0,\frac{1}{2}\right) representation with double Wigner degeneracy Ahluwalia:2004ab ; Ahluwalia:2004sz ; Ahluwalia:2008xi ; Ahluwalia:2009rh ; Ahluwalia:2010zn ; Lee:2012td ; Lee:2014opa ; Lee:2015sqj ; Ahluwalia:2016rwl ; Lee:2019fni ; Ahluwalia:2019etz ; Ahluwalia:2022ttu ; Ahluwalia:2022yvk ; Ahluwalia:2023slc . Double Wigner degeneracy, refers to the fact that the fermionic states belong to the irreducible unitary representation of the extended Poincaré group. These fermionic states have four degrees of freedom, two coming from spin projections and two coming from Wigner degeneracy n=1,1n=1,-1. The latter is defined by the discrete symmetry transformations where parity and time-reversal map a single state to a superposition of two states labeled by n=1n=1 and n=1n=-1.111For the Standard Model fermions, parity and time-reversal transformations map a single state to itself with momentum and spin-projections altered. Choosing Elko to drive inflation has many advantages, for example, its status as a candidate for dark matter means it could not only drive inflation but may also explain dark matter after inflation ends.

The idea of Elko inflation is not new Boehmer:2006qq ; Boehmer:2007dh ; Boehmer:2008rz ; Boehmer:2008ah ; Boehmer:2009aw ; Boehmer:2010ma ; Basak:2012sn ; Sadjadi:2012xyd ; HoffdaSilva:2014tth ; Pereira:2014wta ; S:2014woy ; Pereira:2014pqa ; Chang:2015ufa ; Pereira:2016emd ; Pereira:2016eez ; Pereira:2017efk ; Basak_2015 . But prior to Ahluwalia:2022yvk ; Ahluwalia:2023slc , the correct degrees of freedom were not known. As a result, these models are non-local and not Lorentz covariant in Minkowski space-time. The realization that Elko are fermionic fields with double Wigner degeneracy resolves the problems of non-locality and Lorentz violation in Minkowski space-time. In de Sitter space-time, it is shown that Elko can be consistently quantized where the quantum fields satisfy the canonical anti-commutations relations Lee:2024sbg .

Here we show that Elko can act as an inflaton using the methods in Benisty:2019jqz . We define a composite scalar field ϕλ¬λ\phi\equiv\overset{\>{}^{{}^{{{\neg}}}}}{\smash[t]{\lambda}}\lambda where λ\lambda is the Elko field and λ¬\overset{\>{}^{{}^{{{\neg}}}}}{\smash[t]{\lambda}} is its adjoint. To the zeroth order in perturbation, we take λ\lambda and λ¬\overset{\>{}^{{}^{{{\neg}}}}}{\smash[t]{\lambda}} to be homogeneous so ϕ\phi is also homogeneous. Their perturbations will be studied in future works. In the spatially flat FLRW space-time, all components of the Elko energy-momentum tensor can be expressed in terms of ϕ\phi. Therefore, by solving the equation of motion for ϕ\phi (which can be derived from the equations of motion for λ\lambda and λ¬\overset{\>{}^{{}^{{{\neg}}}}}{\smash[t]{\lambda}}) and the Friedmann equations, we can determine the evolution of the Hubble parameter and the scale factor.

By choosing the appropriate parameters for the Elko potential and numerically solving for ϕ\phi, we can obtain slow-roll inflation. Compared to the existing literature, the advantage of our approach is that the equation of motion for ϕ\phi is a third-order differential equation so we only need to specify three initial conditions for ϕ\phi, ϕ˙\dot{\phi} and ϕ¨\ddot{\phi}222If we solve the equations of motion for the spinor fields which are second-order differential equations, we would have to specify a total of sixteen initial conditions for λ,λ¬,λ˙,λ¬˙\lambda_{\ell},\overset{\>{}^{{}^{{{\neg}}}}}{\smash[t]{\lambda}}_{\ell},\dot{\lambda}_{\ell},\dot{\overset{\>{}^{{}^{{{\neg}}}}}{\smash[t]{\lambda}}_{\ell}} where =1,,4\ell=1,\cdots,4.

The paper is organized as follows. In sec. 2, we derive the Elko energy-momentum tensor in curved space-time. In sec. 3, we study in the spatially flat FLRW space-time. We derive the equations of motion of ϕ\phi and express the Elko energy-momentum tensor in terms of ϕ\phi. In sec. 4, we find that with the appropriate choice of parameters, Elko can act as an inflaton. Moreover, the inflation solution is also an attractor. We give a brief conclusion and outlook in sec. 5.

2 Set up

In Minkowski space-time, the equation of motion for Elko is the spinorial Klein-Gordon equation. In curved space-time, the equation of motion for Elko is

γμμ(γννλ)Vλ¬=0,\displaystyle\gamma^{\mu}\nabla_{\mu}(\gamma^{\nu}\nabla_{\nu}\lambda)-\frac{\partial V}{\partial\overset{\>{}^{{}^{{}^{{{\neg}}}}}}{\smash[t]{\lambda}}}=0\,, (1)

where λ\lambda, λ¬\overset{\>{}^{{}^{{{\neg}}}}}{\smash[t]{\lambda}} are the Elko field and its dual field and V=V(λ¬λ)V=V(\overset{\>{}^{{}^{{{\neg}}}}}{\smash[t]{\lambda}}\lambda) is the interacting potential. In this paper, we work within the framework of general relativity. Therefore, as explained in Lee:2024sbg , the complete Einstein-Elko action is

S\displaystyle S =SGR+SElko\displaystyle=S_{\text{GR}}+S_{\text{Elko}} (2)
=d4xg[12Mp2Rgμν(μλ¬)(νλ)14Rλ¬λV(λ¬λ)],\displaystyle=\int d^{4}x\sqrt{-g}\left[\frac{1}{2}M^{2}_{p}R-g^{\mu\nu}(\nabla_{\mu}\overset{\>{}^{{}^{{{\neg}}}}}{\smash[t]{\lambda}})(\nabla_{\nu}\lambda)-\frac{1}{4}R\overset{\>{}^{{}^{{{\neg}}}}}{\smash[t]{\lambda}}\lambda-V(\overset{\>{}^{{}^{{{\neg}}}}}{\smash[t]{\lambda}}\lambda)\right]\,, (3)

where MpM_{p} is the reduced Planck mass, gμνg^{\mu\nu} is the metric and RR is the Ricci scalar. The quadratic term 14Rλ¬λ\frac{1}{4}R\overset{\>{}^{{}^{{{\neg}}}}}{\smash[t]{\lambda}}\lambda is necessary to ensure that Elko satisfies the spinorial Klein-Gordon equation (1).

In the analysis of spinor fields in curved spacetime, it is convenient to use the tetrad formalism. The tetrads and the metric satisfy the following relationship

gμν=eμaeνbηab,ηab=eaμebνgμν,\displaystyle\begin{aligned} g_{\mu\nu}&=e^{a}_{~{}\mu}e^{b}_{~{}\nu}\eta_{ab}\,,\\ \eta_{ab}&=e_{a}^{~{}\mu}e_{b}^{~{}\nu}g_{\mu\nu}\,,\end{aligned} (4)

where the local and global coordinates are labeled by the Latin (a,b,a,b,\cdots) and Greek (μ,ν,\mu,\nu,\cdots) alphabets respectively. Both the metric and the tetrad are compatible with the connection,

σgμν=0,σeaν=0.\nabla_{\sigma}g_{\mu\nu}=0\,,\quad\nabla_{\sigma}{e^{a}}_{\nu}=0\,. (5)

The Dirac matrices satisfy the anti-commutation reation {γμ,γν}=2gμν𝕀4\{\gamma^{\mu},\gamma^{\nu}\}=2g^{\mu\nu}\mathbb{I}_{4} and their indices can be raised and lowered by the tetrad

γμ=eaμγa,γμ=eμbγb.\displaystyle\gamma^{\mu}=e_{a}^{~{}\mu}\gamma^{a}\,,\quad\gamma_{\mu}=e^{b}_{~{}\mu}\gamma_{b}\,. (6)

The result of the covariant derivative acting on Elko and its adjoint are

μλ¬\displaystyle\nabla_{\mu}\overset{\>{}^{{}^{{{\neg}}}}}{\smash[t]{\lambda}} =μλ¬λ¬Γμ,\displaystyle=\partial_{\mu}\overset{\>{}^{{}^{{{\neg}}}}}{\smash[t]{\lambda}}-\overset{\>{}^{{}^{{{\neg}}}}}{\smash[t]{\lambda}}\Gamma_{\mu}\,, (7)
μλ\displaystyle\nabla_{\mu}\lambda =μλ+Γμλ,\displaystyle=\partial_{\mu}\lambda+\Gamma_{\mu}\lambda\,, (8)

where

Γμ=i2ωμabΣab,\Gamma_{\mu}=\frac{i}{2}{\omega_{\mu}}^{ab}\Sigma_{ab}\,, (9)

and

Σab=i4[γa,γb]\Sigma^{ab}=-\frac{i}{4}[\gamma^{a},\gamma^{b}] (10)

is the Lorentz generator of the spinor field, and ωμab{\omega_{\mu}}^{ab} is the spin connection which has the following relationship with the Christoffel symbol Γμσν\Gamma^{\nu}_{~{}\mu\sigma}

ωμab=eaν(μebν+ebσΓμσν).{\omega_{\mu}}^{ab}={e^{a}}_{\nu}\left(\partial_{\mu}e^{b\nu}+e^{b\sigma}\Gamma^{\nu}_{~{}\mu\sigma}\right)\,. (11)

We now derive the Elko energy-momentum tensor using SElkoS_{\text{Elko}}. Firstly, we vary the tetrad δeaμ\delta e^{a}{}_{\mu} and the spin connections δωμab\delta\omega_{\mu ab} independently

δSElko=d4xg(σμνeaμδeνa+τabμδωμab),\displaystyle\delta S_{\text{Elko}}=\int d^{4}x\sqrt{-g}\,\left(\sigma^{\mu\nu}e_{a\mu}\delta e^{a}_{~{}\nu}+\tau^{ab\mu}\delta\omega_{\mu ab}\right)\,, (12)

where

σμν=\displaystyle\sigma^{\mu\nu}= 2(μλ¬ν)λgμν[(γλ¬)(γλ)+14Rλ¬λ+V(λ¬λ)]\displaystyle 2\nabla^{(\mu}\overset{\>{}^{{}^{{{\neg}}}}}{\smash[t]{\lambda}}\nabla^{\nu)}\lambda-g^{\mu\nu}\left[(\nabla^{\gamma}\overset{\>{}^{{}^{{{\neg}}}}}{\smash[t]{\lambda}})(\nabla_{\gamma}\lambda)+\frac{1}{4}R\overset{\>{}^{{}^{{{\neg}}}}}{\smash[t]{\lambda}}\lambda+V(\overset{\>{}^{{}^{{{\neg}}}}}{\smash[t]{\lambda}}\lambda)\right]
+12[Rμνλ¬λ+(gμνσσμν)λ¬λ],\displaystyle+\frac{1}{2}\left[R^{\mu\nu}\overset{\>{}^{{}^{{{\neg}}}}}{\smash[t]{\lambda}}\lambda+(g^{\mu\nu}\nabla^{\sigma}\nabla_{\sigma}-\nabla^{\mu}\nabla^{\nu})\overset{\>{}^{{}^{{{\neg}}}}}{\smash[t]{\lambda}}\lambda\right]\,, (13)

and

τabμ\displaystyle\tau^{ab\mu} =i2(λ¬Σabμλμλ¬Σabλ).\displaystyle=\frac{i}{2}\left(\overset{\>{}^{{}^{{{\neg}}}}}{\smash[t]{\lambda}}\Sigma^{ab}\nabla^{\mu}\lambda-\nabla^{\mu}\overset{\>{}^{{}^{{{\neg}}}}}{\smash[t]{\lambda}}\Sigma^{ab}\lambda\right)\,. (14)

The parenthesis on the indices is defined as

T(μ1μ2μn)ρσ=1n![Tμ1μ2μnρσ+(permutations of μ1μ2μn)].T_{(\mu_{1}\mu_{2}\cdot\cdot\cdot\mu_{n})\rho}^{\sigma}=\frac{1}{n!}\left[T_{\mu_{1}\mu_{2}\cdot\cdot\cdot\mu_{n}\rho}^{\sigma}+\left(\text{permutations of }\mu_{1}\mu_{2}\cdot\cdot\cdot\mu_{n}\right)\right]\,. (15)

In the above derivation for (13), we have used

δR\displaystyle\delta R =Rμνδgμν+(μνgμνσσ)δgμν\displaystyle=-R^{\mu\nu}\delta g_{\mu\nu}+(\nabla^{\mu}\nabla^{\nu}-g^{\mu\nu}\nabla^{\sigma}\nabla_{\sigma})\delta g_{\mu\nu}
=2Rμνea(μδea+ν)2(μνgμνσσ)[ea(μδea]ν),\displaystyle=-2R^{\mu\nu}e_{a(\mu}\delta e^{a}{}_{\nu)}+2\left(\nabla^{\mu}\nabla^{\nu}-g^{\mu\nu}\nabla^{\sigma}\nabla_{\sigma}\right)\left[e_{a(\mu}\delta e^{a}{}_{\nu)}\right], (16)

and

δgμν=2ea(μδea.ν)\delta g_{\mu\nu}=2e_{a(\mu}\delta e^{a}{}_{\nu)}\,. (17)

Since the tetrad and spin connection are not independent but satisfy (11), the variation of the spin connection can be expressed as the variation of the tetrad

τabμδωμab=(τμνρ+2τρ(μν))ρ(eaμδeνa).\tau^{ab\mu}\delta\omega_{\mu ab}=-(\tau^{\mu\nu\rho}+2\tau^{\rho(\mu\nu)})\nabla_{\rho}(e_{a\mu}\delta e^{a}_{~{}\nu})\,. (18)

Substituting (18) into (12), we obtain

δSElko=d4xg[σμν+ρ(τμνρ+2τρ(μν))]eαμδeνα.\delta S_{\text{Elko}}=\int d^{4}x\sqrt{-g}\left[\sigma^{\mu\nu}+\nabla_{\rho}(\tau^{\mu\nu\rho}+2\tau^{\rho(\mu\nu)})\right]e_{\alpha\mu}\delta e^{\alpha}_{~{}\nu}\,. (19)

Finally using (17), the Elko energy-momentum tensor is given by

Tμν\displaystyle T^{\mu\nu} =1gδSElkoea(μδeaν)\displaystyle=\frac{1}{\sqrt{-g}}\frac{\delta S_{\text{Elko}}}{e_{a(\mu}\delta e^{a}{}_{\nu)}}
=σ(μν)+ρ[τ(μν)ρ+2τρ(μν)]\displaystyle=\sigma^{(\mu\nu)}+\nabla_{\rho}\left[\tau^{(\mu\nu)\rho}+2\tau^{\rho(\mu\nu)}\right]
=2(μλ¬ν)λgμν[(γλ¬)(γλ)+14Rλ¬λ+V(λ¬λ)]+iσ[λ¬Σσ(μν)λ+(μλ¬Σν)σλ]\displaystyle=2\nabla^{(\mu}\overset{\>{}^{{}^{{{\neg}}}}}{\smash[t]{\lambda}}\nabla^{\nu)}\lambda-g^{\mu\nu}\left[(\nabla^{\gamma}\overset{\>{}^{{}^{{{\neg}}}}}{\smash[t]{\lambda}})(\nabla_{\gamma}\lambda)+\frac{1}{4}R\overset{\>{}^{{}^{{{\neg}}}}}{\smash[t]{\lambda}}\lambda+V(\overset{\>{}^{{}^{{{\neg}}}}}{\smash[t]{\lambda}}\lambda)\right]+i\nabla_{\sigma}\left[\overset{\>{}^{{}^{{{\neg}}}}}{\smash[t]{\lambda}}\Sigma^{\sigma(\mu}\nabla^{\nu)}\lambda+\nabla^{(\mu}\overset{\>{}^{{}^{{{\neg}}}}}{\smash[t]{\lambda}}\Sigma^{\nu)\sigma}\lambda\right]
+12[Rμνλ¬λ+(gμνσσμν)λ¬λ].\displaystyle~{}~{}~{}+\frac{1}{2}\left[R^{\mu\nu}\overset{\>{}^{{}^{{{\neg}}}}}{\smash[t]{\lambda}}\lambda+(g^{\mu\nu}\nabla^{\sigma}\nabla_{\sigma}-\nabla^{\mu}\nabla^{\nu})\overset{\>{}^{{}^{{{\neg}}}}}{\smash[t]{\lambda}}\lambda\right]\,. (20)

3 Elko in the spatially flat FLRW space-time

We now study Elko in the spatially flat FLRW space-time with the metric

ds2=dt2+a2(t)δijdxidxj,ds^{2}=-dt^{2}+a^{2}(t)\delta_{ij}dx^{i}dx^{j}\,, (21)

where aa is the scale factor. Here, we only consider the zeroth order in perturbation for the Elko field and its dual so they are homogeneous λ=λ(t)\lambda=\lambda(t), λ¬=λ¬(t)\overset{\>{}^{{}^{{{\neg}}}}}{\smash[t]{\lambda}}=\overset{\>{}^{{}^{{{\neg}}}}}{\smash[t]{\lambda}}(t). By solving the equations of motion for Elko and the Friedmann equations, we can determine the background evolution. They are given by

묨+3Hλ¬˙+(32H˙+94H2)λ¬+dVdλ\displaystyle\ddot{\overset{\>{}^{{}^{{}^{{{\neg}}}}}}{\smash[t]{\lambda}}}+3H\dot{\overset{\>{}^{{}^{{}^{{{\neg}}}}}}{\smash[t]{\lambda}}}+\left(\frac{3}{2}\dot{H}+\frac{9}{4}H^{2}\right)\overset{\>{}^{{}^{{{\neg}}}}}{\smash[t]{\lambda}}+\frac{dV}{d\lambda} =0,\displaystyle=0\,, (22)
λ¨+3Hλ˙+(32H˙+94H2)λ+dVdλ¬\displaystyle\ddot{\lambda}+3H\dot{\lambda}+\left(\frac{3}{2}\dot{H}+\frac{9}{4}H^{2}\right)\lambda+\frac{dV}{d\overset{\>{}^{{}^{{}^{{{\neg}}}}}}{\smash[t]{\lambda}}} =0,\displaystyle=0\,, (23)

and

3H2=Mp2ρ,\displaystyle 3H^{2}=M^{-2}_{p}\rho\,, (24)
2H˙+3H2=Mp2p,\displaystyle 2\dot{H}+3H^{2}=-M^{-2}_{p}p\,, (25)

where f˙df/dt\dot{f}\equiv df/dt and H=a˙/aH=\dot{a}/a is the Hubble parameter. In the Friedmann equations, ρ\rho and pp are the energy density and pressure of Elko which can be obtained from (2)

T00=ρ,T0i=0,Tij=a2pδij,T_{00}=\rho\,,~{}~{}T_{0i}=0\,,~{}~{}T_{ij}=a^{2}p\delta_{ij}\,, (26)

where

ρ=λ¬˙λ˙+32H(λ¬˙λ+λ¬λ˙)+94H2λ¬λ+V,\displaystyle\rho=\dot{\overset{\>{}^{{}^{{}^{{{\neg}}}}}}{\smash[t]{\lambda}}}\dot{\lambda}+\frac{3}{2}H(\dot{\overset{\>{}^{{}^{{}^{{{\neg}}}}}}{\smash[t]{\lambda}}}\lambda+\overset{\>{}^{{}^{{{\neg}}}}}{\smash[t]{\lambda}}\dot{\lambda})+\frac{9}{4}H^{2}\overset{\>{}^{{}^{{{\neg}}}}}{\smash[t]{\lambda}}\lambda+V\,, (27)
p=V+12(dVdλλ+λ¬dVdλ¬).\displaystyle p=-V+\frac{1}{2}\left(\frac{dV}{d\lambda}\lambda+\overset{\>{}^{{}^{{{\neg}}}}}{\smash[t]{\lambda}}\frac{dV}{d\overset{\>{}^{{}^{{}^{{{\neg}}}}}}{\smash[t]{\lambda}}}\right)\,. (28)

They satisfy the continuity equation

ρ˙+3H(ρ+p)=0.\dot{\rho}+3H(\rho+p)=0\,. (29)

These equations are difficult to solve directly for the following reasons. Both λ\lambda and λ¬\overset{\>{}^{{}^{{{\neg}}}}}{\smash[t]{\lambda}} are four-component spinor fields so (22-23) constitute eight second-order differential equations. To solve them, we need to specify sixteen initial conditions for λ,λ¬,λ˙,λ¬˙\lambda_{\ell},\overset{\>{}^{{}^{{{\neg}}}}}{\smash[t]{\lambda}}_{\ell},\dot{\lambda}_{\ell},\dot{\overset{\>{}^{{}^{{}^{{{\neg}}}}}}{\smash[t]{\lambda}}}_{\ell} where =1,,4\ell=1,\cdots,4. It is tempting to assume that all components of λ\lambda_{\ell}, λ¬\overset{\>{}^{{}^{{{\neg}}}}}{\smash[t]{\lambda}}_{\ell} have the same initial conditions and the same for their derivatives. In this case, the number of initial conditions would be reduced to two. However, as far as we can see, there does not seem to be a good reason a priori for this assumption.

The main result of this paper is that we can study the background evolution without having to solve for λ\lambda and λ¬\overset{\>{}^{{}^{{{\neg}}}}}{\smash[t]{\lambda}}. Instead, it suffices for us to consider the dynamics of the composite scalar field

ϕλ¬λ.\phi\equiv\overset{\>{}^{{}^{{{\neg}}}}}{\smash[t]{\lambda}}\lambda\,. (30)

The equation of motion for ϕ\phi is derived by combining (22-23) to yield

ϕ˙˙˙+9Hϕ¨+(9H˙+27H2+4Vϕ+2Vϕϕϕ)ϕ˙+(3H¨+27HH˙+27H3+12HVϕ)ϕ=0,\dddot{\phi}+9H\ddot{\phi}+(9\dot{H}+27H^{2}+4V_{\phi}+2V_{\phi\phi}\phi)\dot{\phi}+(3\ddot{H}+27H\dot{H}+27H^{3}+12HV_{\phi})\phi=0\,, (31)

where

VϕdVdϕ,Vϕϕd2Vdϕ2.V_{\phi}\equiv\frac{dV}{d\phi},\quad V_{\phi\phi}\equiv\frac{d^{2}V}{d\phi^{2}}. (32)

Using the equations of motion for λ\lambda and λ¬\overset{\>{}^{{}^{{{\neg}}}}}{\smash[t]{\lambda}}, ρ\rho and pp can be expressed in terms of ϕ\phi

ρ\displaystyle\rho =12ϕ¨+3Hϕ˙+(32H˙+92H2+Vϕ)ϕ+V,\displaystyle=\frac{1}{2}\ddot{\phi}+3H\dot{\phi}+\left(\frac{3}{2}\dot{H}+\frac{9}{2}H^{2}+V_{\phi}\right)\phi+V\,, (33)
p\displaystyle p =V+Vϕϕ.\displaystyle=-V+V_{\phi}\phi\,. (34)

Therefore, the background evolution is completely determined by the scalar field ϕ\phi that satisfies (31).

4 Elko inflation is an attractor solution

We now solve the equation of motion for ϕ\phi and the Friedmann equations given in the previous section. We take the interacting potential VV to be a quadratic polynomial of ϕ\phi so that it is renormalizable. Therefore,

V=v0+v1ϕ+v2ϕ2.V=v_{0}+v_{1}\phi+v_{2}\phi^{2}\,. (35)

The coefficient v1v_{1} can be a constant or it can also be proportional to the Ricci curvature RR, corresponding to non-minimal coupling. As far as we are concerned, it is acceptable to take v1v_{1} to be constant because during slow-roll inflation, RR is approximately constant. The last term of (35) is a quartic self-interaction of λ\lambda so v2v_{2} is dimensionless. Substituting (35) into (28), we obtain

p=v0+v2ϕ2.p=-v_{0}+v_{2}\phi^{2}\,. (36)

It is worthwhile to note that if V=v1ϕV=v_{1}\phi, then p=0p=0 so Elko behaves like dust.

Substituting (33-34) into (24-25), we obtain two solutions for HH

H±=6ϕ˙±A9ϕ12Mp2,H_{\pm}=\frac{-6\dot{\phi}\pm A}{9\phi-12M_{p}^{2}}\,, (37)

where

A=36ϕ˙2(9ϕ12Mp2)[3(VϕVϕϕ2)Mp2+4(Vϕϕ+V)+2ϕ¨],A=\sqrt{36\dot{\phi}^{2}-(9\phi-12M_{p}^{2})\left[\frac{3(V\phi-V_{\phi}\phi^{2})}{M_{p}^{2}}+4(V_{\phi}\phi+V)+2\ddot{\phi}\right]}\,, (38)

and two solutions for H˙\dot{H}

H˙±=4V+ϕ¨(4Mp23ϕ)A26ϕ˙A3(4Mp23ϕ)2.\dot{H}_{\pm}=\frac{4V+\ddot{\phi}}{(4M_{p}^{2}-3\phi)}-\frac{A^{2}\mp 6\dot{\phi}A}{3(4M_{p}^{2}-3\phi)^{2}}\,. (39)

To ensure that HH is positive and H˙\dot{H} is negative, we need 0<ϕ<43Mp20<\phi<\frac{4}{3}M_{p}^{2} (the simplest solution is V=v0V=v_{0}), so the solution H+H_{+} can be ignored. From now onwards HHH_{-}\equiv H.

Substituting (37) into (31) with

v0=Mp4,v1=2Mp2,v2=1,v_{0}=M_{p}^{4}\,,\quad v_{1}=-2M_{p}^{2}\,,\quad v_{2}=1\,, (40)

we obtain the potential given in fig. 1. In this case, the accelerated expansion occurs when the potential energy of the Elko field, VV is the dominant contribution to ρ\rho.

Refer to caption
Figure 1: The potential energy VV with v0=Mp4,v1=2Mp2v_{0}=M_{p}^{4},v_{1}=-2M_{p}^{2}, and v2=1v_{2}=1, where V|ϕ=Mp2=0V|_{\phi=M_{p}^{2}}=0. The ϕ\phi axis is in units of Mp2M^{2}_{p}.

Using numerical methods, substituting (37) and (39) into (31), with the initial conditions

ϕ(0)0+,ϕ˙(0)0+,ϕ¨(0)=0,\phi(0)\sim 0^{+}\,,\quad\dot{\phi}(0)\sim 0^{+}\,,\quad\ddot{\phi}(0)=0\,, (41)

we are able to numerically solve the differential equation (31) to obtain the solution as shown in fig. 2, which results in slow-roll inflation. The number of e-folds depends on the initial condition of ϕ\phi. Specifically, the closer ϕ(0)\phi(0) is to 0, the larger the number of e-folds. In general, we find that slow-roll inflation occurs when the coefficients satisfy

v00,v12v0,v2=v124v0.v_{0}\geq 0\,,\quad v_{1}\leqslant-2v_{0}\,,\quad v_{2}=\frac{v_{1}^{2}}{4v_{0}}\,. (42)
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 2: Figure 2 is the evolution of ϕ\phi over physical time tt. Figure 2 is the evolution of the Hubble parameter HH over physical time tt. Figure 2 is the evolution of ϕ\phi concerning the e-folding number NN. Figure 2 is the evolution of the Hubble parameter HH for the NN, where we can see that the total number of inflationary e-folds exceeds 5050.

Next, we consider the two Hubble slow-roll parameters:

ϵ=H˙H2,η=dϵdN,\epsilon=-\frac{\dot{H}}{H^{2}}\,,~{}\eta=\frac{d\epsilon}{dN}\,, (43)

where NN is the number of e-folds. When ϵ<1\epsilon<1, the accelerated expansion starts, and it will continue if the change of ϵ\epsilon per e-fold is small, that is η<1\eta<1. Substituting (37) and (39) into (43), the slow-roll parameters become

ϵ\displaystyle\epsilon =9ϕ0(4V+ϕ¨)3(A2+6Aϕ˙)(6ϕ˙+A)2,\displaystyle=\frac{-9\phi_{0}(4V+\ddot{\phi})-3(A^{2}+6A\dot{\phi})}{(6\dot{\phi}+A)^{2}}\,, (44)
η\displaystyle\eta =ϵ˙H=18Z2(6ϕ˙+A)427ϕ03ϕ˙ϕV,ϕϕ2Mp2(6ϕ˙+A)39Z(6ϕ˙+A)2,\displaystyle=\frac{\dot{\epsilon}}{H}=\frac{18Z^{2}}{(6\dot{\phi}+A)^{4}}-\frac{27\phi_{0}^{3}\dot{\phi}\phi V_{,\phi\phi}}{2M_{p}^{2}(6\dot{\phi}+A)^{3}}-\frac{9Z}{(6\dot{\phi}+A)^{2}}\,, (45)
Z\displaystyle Z =3ϕ0(4V+ϕ¨)+6Aϕ˙+AMp3,\displaystyle=3\phi_{0}(4V+\ddot{\phi})+6A\dot{\phi}+AM_{p}^{3}\,, (46)

where ϕ0=3ϕ4Mp2\phi_{0}=3\phi-4M_{p}^{2}. In the limit ϕ˙,ϕ¨0\dot{\phi},\ddot{\phi}\rightarrow 0, we find |η|0|\eta|\sim 0. Using numerical methods, we find that when N<50N<50, |ϵ|,|η|0|\epsilon|,|\eta|\sim 0, which can be seen from fig. 3.

Refer to caption
Refer to caption
Figure 3: The evolution of the two Hubble slow-roll parameters. Fig. 3: the evolution of ϵ\epsilon with respect to NN, and Fig. 3: the evolution of η\eta with respect to NN.

Finally, we have solved the equation of motion for ϕ\phi and confirmed that the solution is an attractor as shown in fig. 4. When the initial conditions for ϕ(0)\phi(0), ϕ˙(0)\dot{\phi}(0), ϕ¨(0)\ddot{\phi}(0) are within a certain range, the final solution is an attractor.

Refer to caption
Figure 4: The Poincaré section of the Elko as inflation candidate, where the location of the attractor is ϕ=1\phi=1, ϕ˙=0\dot{\phi}=0, and ϕ¨=0\ddot{\phi}=0.

5 Conclusion and outlook

In this paper, we have proposed an inflationary model using the Elko fields. The inflaton is a composite scalar field given by ϕλ¬λ\phi\equiv\overset{\>{}^{{}^{{{\neg}}}}}{\smash[t]{\lambda}}\lambda where λ\lambda is the Elko field and λ¬\overset{\>{}^{{}^{{{\neg}}}}}{\smash[t]{\lambda}} its dual. The equation of motion of the scalar field is a third-order differential equation, which is novel from any existing inflationary models we know.

We solved the third-order differential equation numerically and found the background evolution expressed in terms of ϕ\phi, ϕ˙\dot{\phi} and ϕ¨\ddot{\phi}. From the Poincaré section, we find that the solution describing slow-roll inflation is an attractor. There are many more interesting open problems worthy of subsequent studies. They are listed below.

It is worthwhile to investigate whether the perturbation of ϕ\phi can act as a curvaton field Lyth:2001nq ; Lyth:2002my ; Lyth_2003 ; Bartolo:2002vf ; Sasaki:2006kq . This is a crucial step in the efforts of trying to understand the cosmological observables of this model. As many curvaton models suggest, they can resolve the preheating problem Bastero-Gil:2003usx ; Sainio:2012rp . With the novel equation of motion found in this work, our model of Elko inflation may predict unique features that can be tested in future experiments. However, this is a challenging task because it remains to be known whether the equations of motion for λ\lambda and λ¬\overset{\>{}^{{}^{{{\neg}}}}}{\smash[t]{\lambda}} can be combined into a single equation of motion for the perturbation of ϕ\phi. This is an important question for further study.

The model proposed in this work is a model of slow-roll inflation in a quasi-dS space. However, inflation need not be limited to a quasi-de-sitter background. There are also scenarios such as a power-law inflation Galtsov:1997ub ; Tsujikawa:2000wc ; Feinstein:2002aj ; Glavan:2020zne , where the scale factor is a power-law function of the physical time. There are also alternatives to inflation scenarios, such as matter bounce Brandenberger:2016vhg ; Agrawal:2021rur ; Agrawal:2022vdg ; Lohakare:2022umj ; Agrawal:2022ppe , ekpyrotic Nojiri:2022xdo ; Paul:2022mup , and many others Gu:2021qwy ; Zhu:2015xsa ; Zhu:2015owa ; Basak:2014qea . It is tempting to think about whether Elko can be responsible for other types of cosmic evolution in our universe.

Finally, as previous works have pointed out, Elko may describe the whole cosmic history Pereira:2017efk ; Pereira:2017bvq ; Pereira:2018hir . Given the problem of Hubble tension  DiValentino:2021izs ; Perivolaropoulos:2021jda ; Botke2023 ; Sakstein:2019fmf ; Niedermann:2020dwg ; Dainotti:2023yrk . There are strong motivations to go beyond the Λ\LambdaCDM model. This motivates us to investigate Elko as an alternative theory to dark energy Arun:2017uaw ; Meng:2012zza ; Wang:2024rus which may resolve the Hubble tension problem.

6 Acknowledgement

This work was supported in part by the Natural Science Foundation of China under Grant No.12347101.

References

  • (1) A. H. Guth, The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems, Phys. Rev. D 23 (1981) 347–356.
  • (2) J. D. Barrow and M. S. Turner, Inflation in the Universe, Nature 292 (1981) 35–38.
  • (3) A. D. Linde, Chaotic Inflation, Phys. Lett. B 129 (1983) 177–181.
  • (4) A. D. Linde, A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems, Phys. Lett. B 108 (1982) 389–393.
  • (5) V. F. Mukhanov, H. A. Feldman, and R. H. Brandenberger, Theory of cosmological perturbations. Part 1. Classical perturbations. Part 2. Quantum theory of perturbations. Part 3. Extensions, Phys. Rept. 215 (1992) 203–333.
  • (6) X. Chen, Primordial Non-Gaussianities from Inflation Models, Adv. Astron. 2010 (2010) 638979, [arXiv:1002.1416].
  • (7) X. Chen and Y. Wang, Large non-Gaussianities with Intermediate Shapes from Quasi-Single Field Inflation, Phys. Rev. D 81 (2010) 063511, [arXiv:0909.0496].
  • (8) X. Chen and Y. Wang, Quasi-Single Field Inflation and Non-Gaussianities, JCAP 04 (2010) 027, [arXiv:0911.3380].
  • (9) X. Chen and Y. Wang, Quasi-Single Field Inflation with Large Mass, JCAP 09 (2012) 021, [arXiv:1205.0160].
  • (10) T. Noumi, M. Yamaguchi, and D. Yokoyama, Effective field theory approach to quasi-single field inflation and effects of heavy fields, JHEP 06 (2013) 051, [arXiv:1211.1624].
  • (11) N. Arkani-Hamed and J. Maldacena, Cosmological Collider Physics, arXiv:1503.0804.
  • (12) P. D. Meerburg, M. Münchmeyer, J. B. Muñoz, and X. Chen, Prospects for Cosmological Collider Physics, JCAP 03 (2017) 050, [arXiv:1610.0655].
  • (13) X. Chen, Y. Wang, and Z.-Z. Xianyu, Standard Model Background of the Cosmological Collider, Phys. Rev. Lett. 118 (2017), no. 26 261302, [arXiv:1610.0659].
  • (14) X. Tong, Y. Wang, and S. Zhou, On the Effective Field Theory for Quasi-Single Field Inflation, JCAP 11 (2017) 045, [arXiv:1708.0170].
  • (15) X. Tong, Y. Wang, and S. Zhou, Unsuppressed primordial standard clocks in warm quasi-single field inflation, JCAP 06 (2018) 013, [arXiv:1801.0568].
  • (16) S. Alexander, S. J. Gates, L. Jenks, K. Koutrolikos, and E. McDonough, Higher Spin Supersymmetry at the Cosmological Collider: Sculpting SUSY Rilles in the CMB, JHEP 10 (2019) 156, [arXiv:1907.0582].
  • (17) S. Lu, Y. Wang, and Z.-Z. Xianyu, A Cosmological Higgs Collider, JHEP 02 (2020) 011, [arXiv:1907.0739].
  • (18) A. Hook, J. Huang, and D. Racco, Searches for other vacua. Part II. A new Higgstory at the cosmological collider, JHEP 01 (2020) 105, [arXiv:1907.1062].
  • (19) L.-T. Wang and Z.-Z. Xianyu, In Search of Large Signals at the Cosmological Collider, JHEP 02 (2020) 044, [arXiv:1910.1287].
  • (20) Y. Wang and Y. Zhu, Cosmological Collider Signatures of Massive Vectors from Non-Gaussian Gravitational Waves, JCAP 04 (2020) 049, [arXiv:2001.0387].
  • (21) L.-T. Wang and Z.-Z. Xianyu, Gauge Boson Signals at the Cosmological Collider, JHEP 11 (2020) 082, [arXiv:2004.0288].
  • (22) T. Liu, X. Tong, Y. Wang, and Z.-Z. Xianyu, Probing P and CP Violations on the Cosmological Collider, JHEP 04 (2020) 189, [arXiv:1909.0181].
  • (23) Q. Lu, M. Reece, and Z.-Z. Xianyu, Missing scalars at the cosmological collider, JHEP 12 (2021) 098, [arXiv:2108.1138].
  • (24) X. Tong and Z.-Z. Xianyu, Large spin-2 signals at the cosmological collider, JHEP 10 (2022) 194, [arXiv:2203.0634].
  • (25) X. Tong, Y. Wang, and Y. Zhu, Cutting rule for cosmological collider signals: a bulk evolution perspective, JHEP 03 (2022) 181, [arXiv:2112.0344].
  • (26) J. Martin, C. Ringeval, and V. Vennin, Encyclopædia Inflationaris, Phys. Dark Univ. 5-6 (2014) 75–235, [arXiv:1303.3787].
  • (27) W. H. Kinney and K. T. Mahanthappa, Natural inflation from Fermion loops, Phys. Rev. D 52 (1995) 5529–5537, [hep-ph/9503331].
  • (28) S. Iso, K. Kohri, and K. Shimada, Small field Coleman-Weinberg inflation driven by a fermion condensate, Phys. Rev. D 91 (2015), no. 4 044006, [arXiv:1408.2339].
  • (29) S. H. Pereira and T. M. Guimarães, From inflation to recent cosmic acceleration: The fermionic Elko field driving the evolution of the universe, JCAP 09 (2017) 038, [arXiv:1702.0738].
  • (30) A. Kumar, Inflation and Reheating with a Fermionic Field, arXiv:1811.1223.
  • (31) D. Benisty, E. I. Guendelman, E. N. Saridakis, H. Stoecker, J. Struckmeier, and D. Vasak, Inflation from fermions with curvature-dependent mass, Phys. Rev. D 100 (2019), no. 4 043523, [arXiv:1905.0373].
  • (32) M. Shokri, J. Sadeghi, and M. Reza Setare, Constant-roll inflation from a fermionic field, EPL 139 (2022), no. 1 19001, [arXiv:2107.0328].
  • (33) D. Gredat and S. Shankaranarayanan, Modified scalar and tensor spectra in spinor driven inflation, JCAP 01 (2010) 008, [arXiv:0807.3336].
  • (34) S. Shankaranarayanan, What-if inflaton is a spinor condensate?, Int. J. Mod. Phys. D 18 (2009) 2173–2179, [arXiv:0905.2573].
  • (35) A. Golovnev, V. Mukhanov, and V. Vanchurin, Vector Inflation, JCAP 06 (2008) 009, [arXiv:0802.2068].
  • (36) T. Koivisto and D. F. Mota, Vector Field Models of Inflation and Dark Energy, JCAP 08 (2008) 021, [arXiv:0805.4229].
  • (37) T. Chiba, Initial Conditions for Vector Inflation, JCAP 08 (2008) 004, [arXiv:0805.4660].
  • (38) S. Koh, Vector Field and Inflation, Int. J. Mod. Phys. Conf. Ser. 01 (2011) 120–125, [arXiv:0902.3904].
  • (39) M. R. Setare and V. Kamali, Warm Vector Inflation, Phys. Lett. B 726 (2013) 56–65, [arXiv:1309.2452].
  • (40) F. Darabi and A. Parsiya, Vector inflation by kinetic coupled gravity, Int. J. Mod. Phys. D 23 (2014), no. 08 1450069, [arXiv:1401.1280].
  • (41) D. V. Ahluwalia and D. Grumiller, Spin half fermions with mass dimension one: Theory, phenomenology, and dark matter, JCAP 07 (2005) 012, [hep-th/0412080].
  • (42) D. V. Ahluwalia and D. Grumiller, Dark matter: A Spin one half fermion field with mass dimension one?, Phys. Rev. D 72 (2005) 067701, [hep-th/0410192].
  • (43) D. V. Ahluwalia, C.-Y. Lee, and D. Schritt, Elko as self-interacting fermionic dark matter with axis of locality, Phys. Lett. B 687 (2010) 248–252, [arXiv:0804.1854].
  • (44) D. V. Ahluwalia, C.-Y. Lee, and D. Schritt, Self-interacting Elko dark matter with an axis of locality, Phys. Rev. D 83 (2011) 065017, [arXiv:0911.2947].
  • (45) D. V. Ahluwalia and S. P. Horvath, Very special relativity as relativity of dark matter: The Elko connection, JHEP 11 (2010) 078, [arXiv:1008.0436].
  • (46) C.-Y. Lee, Self-interacting mass-dimension one fields for any spin, Int. J. Mod. Phys. A 30 (2015) 1550048, [arXiv:1210.7916].
  • (47) C.-Y. Lee, A Lagrangian for mass dimension one fermionic dark matter, Phys. Lett. B 760 (2016) 164–169, [arXiv:1404.5307].
  • (48) C.-Y. Lee and M. Dias, Constraints on mass dimension one fermionic dark matter from the Yukawa interaction, Phys. Rev. D 94 (2016), no. 6 065020, [arXiv:1511.0116].
  • (49) D. V. Ahluwalia, The theory of local mass dimension one fermions of spin one half, Adv. Appl. Clifford Algebras 27 (2017), no. 3 2247–2285, [arXiv:1601.0318].
  • (50) C.-Y. Lee, Spin-half mass dimension one fermions and their higher-spin generalizations, Eur. Phys. J. ST 229 (2020), no. 11 2003–2022, [arXiv:1912.0518].
  • (51) D. Ahluwalia, Mass Dimension One Fermions, vol. 229. Cambridge University Press, 6, 2019.
  • (52) D. V. Ahluwalia, J. M. H. da Silva, C.-Y. Lee, Y.-X. Liu, S. H. Pereira, and M. M. Sorkhi, Mass dimension one fermions: Constructing darkness, Phys. Rept. 967 (2022) 1–43, [arXiv:2205.0475].
  • (53) D. V. Ahluwalia, J. M. H. da Silva, and C.-Y. Lee, Mass dimension one fields with Wigner degeneracy: A theory of dark matter, Nucl. Phys. B 987 (2023) 116092, [arXiv:2212.1311].
  • (54) D. V. Ahluwalia, G. B. de Gracia, J. M. H. da Silva, C.-Y. Lee, and B. M. Pimentel, Irreducible representations of the inhomogeneous Lorentz group with two-fold Wigner degeneracy, arXiv:2312.1703.
  • (55) C. G. Boehmer, The Einstein-Cartan-Elko system, Annalen Phys. 16 (2007) 38–44, [gr-qc/0607088].
  • (56) C. G. Boehmer, The Einstein-Elko system: Can dark matter drive inflation?, Annalen Phys. 16 (2007) 325–341, [gr-qc/0701087].
  • (57) C. G. Boehmer, Dark spinor inflation: Theory primer and dynamics, Phys. Rev. D 77 (2008) 123535, [arXiv:0804.0616].
  • (58) C. G. Boehmer and J. Burnett, Dark spinors with torsion in cosmology, Phys. Rev. D 78 (2008) 104001, [arXiv:0809.0469].
  • (59) C. G. Boehmer and J. Burnett, Dark energy with dark spinors, Mod. Phys. Lett. A 25 (2010) 101–110, [arXiv:0906.1351].
  • (60) C. G. Boehmer, J. Burnett, D. F. Mota, and D. J. Shaw, Dark spinor models in gravitation and cosmology, JHEP 07 (2010) 053, [arXiv:1003.3858].
  • (61) A. Basak, J. R. Bhatt, S. Shankaranarayanan, and K. V. Prasantha Varma, Attractor behaviour in ELKO cosmology, JCAP 04 (2013) 025, [arXiv:1212.3445].
  • (62) H. M. Sadjadi, On coincidence problem and attractor solutions in ELKO dark energy model, Gen. Rel. Grav. 44 (2012) 2329–2336, [arXiv:1109.1961].
  • (63) J. M. Hoff da Silva and S. H. Pereira, Exact solutions to Elko spinors in spatially flat Friedmann-Robertson-Walker spacetimes, JCAP 03 (2014) 009, [arXiv:1401.3252].
  • (64) S. H. Pereira, A. P. S. S., and J. M. Hoff da Silva, Some remarks on the attractor behaviour in ELKO cosmology, JCAP 08 (2014) 020, [arXiv:1402.6723].
  • (65) A. P. S. S., S. H. Pereira, and J. F. Jesus, A new approach on the stability analysis in ELKO cosmology, Eur. Phys. J. C 75 (2015), no. 1 36, [arXiv:1407.3401].
  • (66) S. H. Pereira and A. Pinho S. S., ELKO applications in cosmology, Int. J. Mod. Phys. D 23 (2014), no. 14 1444008.
  • (67) Y.-C. Chang, M. Bouhmadi-López, and P. Chen, Phantom Dark Ghost in Einstein–Cartan Gravity, Eur. Phys. J. C 77 (2017), no. 5 278, [arXiv:1507.0757].
  • (68) S. H. Pereira, A. P. S. S., J. M. Hoff da Silva, and J. F. Jesus, Λ(t)\Lambda(t) cosmology induced by a slowly varying Elko field, JCAP 01 (2017) 055, [arXiv:1608.0277].
  • (69) S. H. Pereira and R. C. Lima, Creation of mass dimension one fermionic particles in asymptotically expanding universe, Int. J. Mod. Phys. D 26 (2017), no. 12 1730028, [arXiv:1612.0224].
  • (70) A. Basak and S. Shankaranarayanan, Super-inflation and generation of first order vector perturbations in elko, Journal of Cosmology and Astroparticle Physics 2015 (May, 2015) 034–034.
  • (71) C.-Y. Lee, H. Rao, W. Yu, and S. Zhou, Cosmelkology: Elko fermions in FLRW space-time, arXiv:2402.0562.
  • (72) D. H. Lyth and D. Wands, Generating the curvature perturbation without an inflaton, Phys. Lett. B 524 (2002) 5–14, [hep-ph/0110002].
  • (73) D. H. Lyth, C. Ungarelli, and D. Wands, The Primordial density perturbation in the curvaton scenario, Phys. Rev. D 67 (2003) 023503, [astro-ph/0208055].
  • (74) D. H. Lyth and D. Wands, Cold dark matter isocurvature perturbation in the curvaton scenario, Physical Review D 68 (Nov., 2003).
  • (75) N. Bartolo and A. R. Liddle, The Simplest curvaton model, Phys. Rev. D 65 (2002) 121301, [astro-ph/0203076].
  • (76) M. Sasaki, J. Valiviita, and D. Wands, Non-Gaussianity of the primordial perturbation in the curvaton model, Phys. Rev. D 74 (2006) 103003, [astro-ph/0607627].
  • (77) M. Bastero-Gil, V. Di Clemente, and S. F. King, Preheating curvature perturbations with a coupled curvaton, Phys. Rev. D 70 (2004) 023501, [hep-ph/0311237].
  • (78) J. Sainio, Curvaton preheating revisited, Phys. Rev. D 85 (2012) 123515, [arXiv:1203.5316].
  • (79) D. V. Gal’tsov and E. E. Donets, Power-law mass inflation in Einstein-Yang-Mills-Higgs black holes, Compt. Rend. Acad. Sci. Ser. IIB 325 (1997), no. 11 649–657, [gr-qc/9706067].
  • (80) S. Tsujikawa and H. Yajima, New constraints on multifield inflation with nonminimal coupling, Phys. Rev. D 62 (2000) 123512, [hep-ph/0007351].
  • (81) A. Feinstein, Power law inflation from the rolling tachyon, Phys. Rev. D 66 (2002) 063511, [hep-th/0204140].
  • (82) D. Glavan, A. Marunović, T. Prokopec, and Z. Zahraee, Abelian Higgs model in power-law inflation: the propagators in the unitary gauge, JHEP 09 (2020) 165, [arXiv:2005.0543].
  • (83) R. Brandenberger and P. Peter, Bouncing Cosmologies: Progress and Problems, Found. Phys. 47 (2017), no. 6 797–850, [arXiv:1603.0583].
  • (84) A. S. Agrawal, L. Pati, S. K. Tripathy, and B. Mishra, Matter bounce scenario and the dynamical aspects in f(Q,T) gravity, Phys. Dark Univ. 33 (2021) 100863, [arXiv:2108.0257].
  • (85) A. S. Agrawal, B. Mishra, and P. K. Agrawal, Matter bounce scenario in extended symmetric teleparallel gravity, Eur. Phys. J. C 83 (2023), no. 2 113, [arXiv:2206.0278].
  • (86) S. V. Lohakare, F. Tello-Ortiz, S. K. Tripathy, and B. Mishra, Bouncing Cosmology in Modified Gravity with Higher-Order Gauss–Bonnet Curvature Term, Universe 8 (2022), no. 12 636, [arXiv:2211.0360].
  • (87) A. S. Agrawal, S. K. Tripathy, S. Pal, and B. Mishra, Role of extended gravity theory in matter bounce dynamics, Phys. Scripta 97 (2022), no. 2 025002, [arXiv:2201.0378].
  • (88) S. Nojiri, S. D. Odintsov, and T. Paul, Towards a smooth unification from an ekpyrotic bounce to the dark energy era, Phys. Dark Univ. 35 (2022) 100984, [arXiv:2202.0269].
  • (89) T. Paul and S. SenGupta, Ekpyrotic bounce driven by Kalb–Ramond field, Phys. Dark Univ. 41 (2023) 101236, [arXiv:2202.1318].
  • (90) Y.-Q. Gu, Dynamical Reason for a Cyclic Universe, Symmetry 13 (2021), no. 12 2272.
  • (91) T. Zhu, A. Wang, G. Cleaver, K. Kirsten, Q. Sheng, and Q. Wu, Detecting quantum gravitational effects of loop quantum cosmology in the early universe?, Astrophys. J. Lett. 807 (2015), no. 1 L17, [arXiv:1503.0676].
  • (92) T. Zhu, A. Wang, G. Cleaver, K. Kirsten, Q. Sheng, and Q. Wu, Scalar and tensor perturbations in loop quantum cosmology: High-order corrections, JCAP 10 (2015) 052, [arXiv:1508.0323].
  • (93) A. Basak and S. Shankaranarayanan, Super-inflation and generation of first order vector perturbations in ELKO, JCAP 05 (2015) 034, [arXiv:1410.5768].
  • (94) S. H. Pereira, R. F. L. Holanda, and A. P. S. Souza, Evolution of the universe driven by a mass dimension one fermion field, EPL 120 (2017), no. 3 31001, [arXiv:1703.0763].
  • (95) S. H. Pereira, M. E. S. Alves, and T. M. Guimarães, An unified cosmological evolution driven by a mass dimension one fermionic field, Eur. Phys. J. C 79 (2019), no. 6 543, [arXiv:1811.0039].
  • (96) E. Di Valentino, O. Mena, S. Pan, L. Visinelli, W. Yang, A. Melchiorri, D. F. Mota, A. G. Riess, and J. Silk, In the realm of the Hubble tension—a review of solutions, Class. Quant. Grav. 38 (2021), no. 15 153001, [arXiv:2103.0118].
  • (97) L. Perivolaropoulos and F. Skara, Challenges for Λ\LambdaCDM: An update, New Astron. Rev. 95 (2022) 101659, [arXiv:2105.0520].
  • (98) J. C. Botke, The origin of cosmic structures part 5 – resolution of the hubble tension problem, Journal of High Energy Physics, Gravitation and Cosmology 9 (2023) 60–82.
  • (99) J. Sakstein and M. Trodden, Early Dark Energy from Massive Neutrinos as a Natural Resolution of the Hubble Tension, Phys. Rev. Lett. 124 (2020), no. 16 161301, [arXiv:1911.1176].
  • (100) F. Niedermann and M. S. Sloth, Resolving the Hubble tension with new early dark energy, Phys. Rev. D 102 (2020), no. 6 063527, [arXiv:2006.0668].
  • (101) M. Dainotti, B. De Simone, G. Montani;, T. Schiavone;, and G. Lambiase., The Hubble constant tension: current status and future perspectives through new cosmological probes, PoS CORFU2022 (2023) 235, [arXiv:2301.1057].
  • (102) K. Arun, S. B. Gudennavar, and C. Sivaram, Dark matter, dark energy, and alternate models: A review, Adv. Space Res. 60 (2017) 166–186, [arXiv:1704.0615].
  • (103) X. Meng and X.-L. Du, Einstein-aether theory as an alternative to dark energy model?, Phys. Lett. B 710 (2012) 493–499.
  • (104) J. Wang, Z. Huang, Y. Yao, J. Liu, L. Huang, and Y. Su, A PAge-like Unified Dark Fluid Model, arXiv:2405.0579.