This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Electronic Correlation Effects on Stabilizing a Perfect Kagome Lattice and Ferromagnetic Fluctuation in LaRu3Si2

Yilin Wang Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
Abstract

A perfect Kagome lattice features flat bands that usually lead to strong electronic correlation effects, but how electronic correlation, in turn, stabilizes a perfect Kagome lattice has rarely been explored. Here, we study such effect in a superconducting (Tc7.8T_{c}\sim 7.8 K) Kagome metal LaRu3Si2 with a distorted Kagome plane consisting of pure Ru ions, using density functional theory plus UU and plus dynamical mean-field theory. We find that increasing electronic correlation can stabilize a perfect Kagome lattice and induce substantial ferromagnetic fluctuations in LaRu3Si2. By comparing the calculated magnetic susceptibilities to experimental data, LaRu3Si2 is found to be on the verge of becoming a perfect Kagome lattice. It thus shows moderate but non-negligible electronic correlations and ferromagnetic fluctuations, which are crucial to understanding the experimentally observed non-Fermi-liquid behavior and the pretty high superconducting TcT_{c} of LaRu3Si2.

Electronic Correlation, Kagome lattice, LaRu3Si2, Ferromagnetic Fluctuation, Flat bands

I Introduction

A perfect Kagome lattice features flat bands due to the destructive interference of electron hoppings within the geometrically frustrated structure Syôzi (1951); Mielke (1991); Tasaki (1992); Sachdev (1992); Tang et al. (2011). When flat bands are near the Fermi level, it usually induces strong electronic correlation effects such as unconventional superconductivity Cao et al. (2018); Balents et al. (2020); Aoki (2020); Heikkilä and Volovik (2016); Jiang et al. (2022); Nie et al. (2022), magnetism Mielke (1991); Tasaki (1992), topological phases Tang et al. (2011) and exotic charge density waves Jiang et al. (2021); Teng et al. (2022). In recent years, these flat-bands-induced correlation effects have been widely studied in Kagome metals, for example, FeSn Kang et al. (2020a); Lin et al. (2020), FeGe Huang and Lu (2020); Teng et al. (2022), Fe3Sn2 Ye et al. (2018); Lin et al. (2018); Yin et al. (2018), CoSn Kang et al. (2020b); Liu et al. (2020); Yin et al. (2020a); Meier et al. (2020); Huang et al. (2022), RT6Ge6 (R=rare-earth elements, T=Mn, Cr) Yin et al. (2020b); Yang et al. (2022). But how electronic correlation, in turn, stabilizes a perfect Kagome lattice has rarely been explored. Here, we study such effect in a Kagome metal LaRu3Si2 Vandenberg and Barz (1980); Li et al. (2016, 2011); Mielke et al. (2021); Gong et al. (2022), using density functional theory (DFT) plus UU Anisimov et al. (1991) and plus dynamical mean-field theory (DMFT) Georges et al. (1996); Lichtenstein et al. (2001); Kotliar et al. (2006).

LaRu3Si2 is a superconductor with a highest Tc7.8T_{c}\sim 7.8Vandenberg and Barz (1980) among the known Kagome superconductors at ambient conditions. It is a paramagnetic metal at high-temperate. Non-Fermi-liquid (NFL) behavior was inferred from transport experiments, indicating substantial electronic correlations from Ru-4d4d orbitals Li et al. (2011). A recent DFT calculation based on the electron-phonon coupling mechanism yields a Tc1.2T_{c}\sim 1.2 K, much smaller than the experimental value Mielke et al. (2021), also indicating other factors such as electronic correlations and magnetic fluctuations must be considered to understand its superconductivity.

The perfect Kagome structure of LaRu3Si2 with space group P6/mmm is shown in Fig. 1(a) and 1(c). The Kagome layer consists of pure Ru atoms, different from most other Kagome materials in which an anion usually resides in the center of the hexagon of the Kagome structure. Adjacent to the Kagome layer is a layer consisting of a triangular lattice of La and a honeycomb lattice of Si. However, a previous X-Ray diffraction study shows that LaRu3Si2, in reality, crystallizes into a slightly distorted Kagome structure with a doubling of the cc-axis and the space group P63/m Vandenberg and Barz (1980) (see Fig. 1(b) and 1(e)). Given only one kind of ion (Ru) present in the Kagome layer of LaRu3Si2, it provides an ideal platform for studying its electronic correlation effects on stabilizing a perfect Ru Kagome lattice, since it rules out possible crystalline field effects of anion on the stability of the Kagome lattice.

Refer to caption
Figure 1: Three possible crystal structures of LaRu3Si2 with a Kagome plane consisting of pure Ru atoms. (a),(c) Perfect Kagome structure. (b),(d),(e) Two possible distorted Kagome structures with a doubling of the cc-axis. (c)-(e) Top view of the Kagome planes. The angles α,β\alpha,\beta and side lengths l1,l2l_{1},l_{2} of the hexagon, the fractional coordinates of Ru atoms x,yx,y, and the space group are shown, respectively. The crystal structures are constructed by VESTA Momma and Izumi (2008).

Our calculations find that increasing electronic correlation can stabilize a perfect Kagome lattice and induce substantial ferromagnetic fluctuations in LaRu3Si2. By comparing the calculated magnetic susceptibilities to experimental data, LaRu3Si2 is found to be on the verge of the transition from a distorted to a perfect Kagome lattice. It thus shows moderate but non-negligible electronic correlations and ferromagnetic fluctuations, consistent with the experimentally observed NFL behavior Li et al. (2011). Furthermore, our calculations show that the distorted Kagome structure of LaRu3Si2 may hold higher symmetry (space group P63/mcm, see Fig. 1(d)) than that reported by previous experiment (P63/m) Vandenberg and Barz (1980), which should be further examined by high-resolution crystal structure refinement with high-quality samples.

II Methods

We perform DFT+U calculations using the VASP package Kresse and Furthmüller (1996); Blöchl (1994), with exchange-correlation functional of both local density approximation (LDA) and generalized gradient approximation (GGA) Perdew et al. (1996). The energy cutoff of the plane-wave basis is set to be 500 eV, and a Γ\Gamma-centered 21×21×2121\times 21\times 21 K-point grid is used. The internal atomic positions are relaxed in the non-magnetic states, until the force of each atom is smaller than 1 meV/Å. The rotationally invariant DFT+U method introduced by Liechtenstein et al. Liechtenstein et al. (1995) is used, which is parameterized by Hubbard UU and Hund’s coupling JHJ_{H} (LDAUTYPE=1 or 4). It turns out that the spin-orbital coupling (SOC) of Ru would not change the main conclusions, so we only present the non-SOC results in the main text, and a SOC result is presented in the Supporting Information (Fig. S1) sup . The energies of two magnetic orders, ferromagnetic (FM) and A-type anti-ferromagnetic (AFM) (Fig. S2) sup , are also calculated by GGA+U.

We also perform fully charge self-consistent LDA+DMFT calculations in the paramagnetic states of LaRu3Si2, using the code EDMFTF developed by Haule et al. Haule et al. (2010); Haule and Birol (2015) based on the WIEN2K package Blaha et al. (2020). We choose a wide hybridization energy window from -10 to 10 eV with respect to the Fermi level. All five Ru-4d4d orbitals are considered as correlated ones and a local Coulomb interaction Hamiltonian with rotationally invariant form is applied. The local Anderson impurity model is solved by the continuous time quantum Monte Carlo (CTQMC) solver Gull et al. (2011). We use an “exact” double counting scheme invented by Haule Haule (2015). The self-energy on real frequency Σ(ω)\Sigma(\omega) is obtained by the analytical continuation method of maximum entropy. We follow the method introduced by Haule et al. Haule and Pascut (2016) to perform structure relaxation in the framework of LDA+DMFT. All the calculations are preformed at T=290T=290 K. Following Ref. Haule and Birol (2015), we use the Yukawa representation of the screened Coulomb interaction, in which there is an unique relationship between UU and JHJ_{H}. If UU is specified, JHJ_{H} is uniquely determined by a code in EDMFTF tut . Their values are tabulated in the Supporting Information (Table S1) sup and are also used for the DFT+U calculations.

Refer to caption
Figure 2: Electronic correlation effects on stabilizing a perfect Kagome lattice. (a),(d) Fractional coordinates xx of Ru (Fe) relaxed by LDA+UU and GGA+UU as functions of Hubbard UU, for different lattice parameter ratio c/ac/a with the fixed crystal volume of experiment. c=7.12c=7.12 Å is the experimental value. x=0.5x=0.5 for a perfect Kagome lattice. (b),(e) xx relaxed by LDA+DMFT as functions of UU. The yellow area mark that LaRu3Si2 is on the verge of becoming a perfect Kagome lattice. (c),(f) LDA+DMFT calculated mass-enhancement of Ru-4d4d (Fe-3d3d) orbitals due to electronic correlations, as functions of UU. (a)-(c) for LaRu3Si2 and (d)-(f) for LaFe3Si2.

To reveal the role of electronic correlation effects on stabilizing a perfect Kagome lattice in LaRu3Si2, (1) we vary the Hubbard UU from 0 to 6 eV in our calculation; (2) we perform a comparative study on a hypothetical crystal structure LaFe3Si2 with the same lattice parameters and initial atomic positions as LaRu3Si2, since Fe-3d3d orbitals are expected to show stronger electronic correlations than Ru-4d4d orbitals. To uncover how the adjacent LaSi2 layers affect the stability of the Ru3 Kagome layer, we also perform comparative calculations by varying the lattice parameter ratio c/ac/a with the fixed crystal volume from experiment. The experimental lattice parameters are a=5.676a=5.676 Å, c=7.12c=7.12 Å, which gives a volume of 198.65 Å3 Vandenberg and Barz (1980). Crystal structure with space group P63/m and Ru sites at (x=0.52x=0.52, y=0.01y=0.01, z=0.25z=0.25) is constructed as the starting point for relaxation (see Fig. 1(b) and 1(e)). However, all the relaxations converge to the higher symmetry structure with space group P63/mcm (x0.5x\neq 0.5, y=0y=0, z=0.25z=0.25), where an additional C2C_{2} and mirror symmetry is present (see Fig. 1(d)). Therefore, we will only discuss the results of space group P63/mcm below.

III Results

Fig. 2(a)-(b) and (d)-(e) show the fractional coordinate xx of Ru (Fe) relaxed by LDA+U, GGA+U and LDA+DMFT methods, for different c/ac/a ratio. For LaRu3Si2, as increasing UU, all the methods yield a tendency that xx is decreasing and approaching to the value of a perfect Kagome lattice (=0.5=0.5). We note that LaFe3Si2 converges to the perfect Kagome structure even at U=0U=0. Comparing to LDA+U, the GGA+U method that is expected to better describe the correlation effects, gives smaller xx (dashed curves in Fig. 2(a)). Fig. 2(c) and (f) show the LDA+DMFT calculated orbital-resolved quasi-particle mass-enhancement, m/mDFT=1/Zm^{\star}/m^{DFT}=1/Z, due to the electronic correlation effects, where ZZ is quasi-particle weight. The system is more correlated as 1/Z1/Z deviates more from 1. The electronic correlation become stronger as increasing UU, and LaFe3Si2 shows much stronger correlation than LaRu3Si2 as expected. The most correlated orbital is dx2y2d_{x^{2}-y^{2}} which contributes to the flat bands near the Fermi level (see below). Therefore, these results indicate that strong electronic correlation would stabilize a perfect Kagome lattice consisting of transition metal ions in the system of LaX3Si2 (X=Ru, Fe).

Fig. 2(a)-(b) also show that increasing the lattice parameter ratio c/ac/a, i.e., longer distance between the Ru3 Kagome layer and LaSi2 layer, tends to increase xx and distort the Kagome plane. Thus, larger Hubbard UU is required to stabilize a perfect Kagome lattice at larger ratio of c/ac/a.

Refer to caption
Figure 3: Electronic correlation induced magnetism. (a),(d) Local magnetic susceptibilities calculated by LDA+DMFT as functions of temperate TT for different UU values. (b),(e) The energies (per unit cell) of FM and AFM orders with respect to the non-magnetic state as functions of UU, calculated by GGA+UU. (c),(f) Ordered magnetic moment in the FM and AFM states. (a)-(c) for LaRu3Si2, the crystal structures relaxed at the corresponding UU are used. (d)-(f) for LaFe3Si2. The experimental lattice parameters, a=5.676a=5.676Å  and c=7.12c=7.12Å, are used for both compounds.

Fig. 3(a) and (d) show the local magnetic susceptibilities χloc(T)\chi_{\text{loc}}(T) calculated by LDA+DMFT for different UU. For LaRu3Si2 , χloc(T)\chi_{\text{loc}}(T) shows Pauli paramagnetism behavior at U=3U=3 eV, while it shows a Curie-Weiss-like behavior at U=5U=5 eV. In between, χloc(T)\chi_{\text{loc}}(T) slightly increases as decreasing temperate, which is consistent with that measured by experiment (see Fig.7 in Ref. Li et al. (2011)). Based on this, we infer that the actual Hubbard UU for LaRu3Si2 is about 4 eV. At this UU value, LaRu3Si2 is thus found to be on the verge of crystallizing into a perfect Kagome structure, according to the relaxation results at the experimental lattice parameters shown as the orange curves in Fig. 2(a),(b). At U=4U=4 eV, the mass-enhancement of the most correlated orbital dx2y2d_{x^{2}-y^{2}} is about 1.63 (Fig. 2(c)). This indicates a moderate electronic correlation in LaRu3Si2, consistent with a slightly large Wilson ratio R=2.88R=2.88 (R=1R=1 for non-interacting electron gas) and a NFL contribution to the electronic specific heat, found by the transport experiment Li et al. (2011). In contrast, χloc(T)\chi_{\text{loc}}(T) shows a well-defined Curie-Weiss behavior for LaFe3Si2, indicating much stronger electronic correlation and magnetism.

Refer to caption
Figure 4: Flat band near Fermi level. (a),(d) LDA calculated band structures. The flat bands (FB) with dx2y2d_{x^{2}-y^{2}} character are shown in red. (b),(e) LDA+DMFT calculated spectrum function A(k,ω)A(k,\omega) at U=4U=4 eV, JH=0.782J_{H}=0.782 eV and T=290T=290 K. (c),(f) The corresponding density of states. (a)-(c) for LaRu3Si2, the crystal structure relaxed by LDA+DMFT at U=4U=4 eV, JH=0.782J_{H}=0.782 eV is used. (d)-(f) for LaFe3Si2. The experimental lattice parameters, a=5.676a=5.676Å  and c=7.12c=7.12Å, are used for both compounds.

Fig. 3(b) and (e) show the energies of the FM and AFM orders with respect to the non-magnetic phase calculated by GGA+U, and Fig. 3(c) and (f) show the corresponding ordered magnetic moments. LaFe3Si2 has very low energies in magnetic states compared to its non-magnetic state and large ordered magnetic moments, suggesting that it tends to order as decreasing temperature. Its FM and AFM states are very close in energies, indicating comparable inter-layer FM and AFM couplings. LaRu3Si2 shows much weaker magnetism compared to LaFe3Si2, but the FM and AFM states are still found to be energetically stable at the static mean-field level. Its FM state has significantly lower energy than the AFM state. Although no magnetic orders have been observed experimentally in LaRu3Si2, the stable FM state found by GGA+U calculation suggests that substantial FM fluctuations may exist in LaRu3Si2. Such FM fluctuations should be attributed to the flat bands near the Fermi level, derived from the Kagome lattice.

Fig. 4 shows the LDA and LDA+DMFT calculated band structures and density of states (DOS) at U=4U=4 eV and JH=0.782J_{H}=0.782 eV in the paramagnetic states. Extremely flat bands with dx2y2d_{x^{2}-y^{2}} characters clearly exist near the Fermi level in LaFe3Si2. However, such bands in LaRu3Si2 are not as flat as that in LaFe3Si2. By comparing the band structures between the distorted and perfect Kagome lattice of LaRu3Si2, we found that the magnitude of distortion of the Kagome lattice have small effects on the flat bands in LaRu3Si2. Actually, it is mainly caused by the more extended 4d4d orbitals that will induce non-vanishing hoppings among distant Kagome lattice sites and result in imperfect destructive interference of hoppings. In LaRu3Si2, the flat bands would induce substantial FM fluctuations, as shown in Fig. 3(b).

IV Conclusion and discussion

To summarize, by taking the Kagome system LaX3Si2 (X=Ru, Fe) as an example, we have demonstrated that strong electronic correlations could play important roles in stabilizing a perfect Kagome plane. We show that LaRu3Si2 is on the verge of becoming a perfect Kagome lattice and it thus exhibits moderate electronic correlation and substantial ferromagnetic fluctuations. Previous study has shown that the electron-phonon couplings alone are not nearly enough to account for a superconducting TcT_{c} of 7.8 K in LaRu3Si2 Mielke et al. (2021). The electronic correlations and ferromagnetic fluctuations found in our study may play significant roles in enhancing TcT_{c} of LaRu3Si2, which is worthy of further study.

As shown in the Fig. S3 in the Supporting Information sup , the only obvious difference in the simulated powder diffraction pattern of LaRu3Si2 between the space group P63/mcm and P63/m is an additional reflection at (1 0 1) for P63/m. However, its intensity is very weak compared to the main peak such that it is very difficult to be resolved experimentally. Further high-resolution crystal structure refinement with high-quality sample is required to determine whether LaRu3Si2 crystallizes into the space group P63/mcm or not. Our result thus provides a reference for the crystal structure refinement of LaRu3Si2.

Acknowledgment

This work was supported by USTC Research Funds of the Double First-Class Initiative (No. YD2340002005). All the calculations presented in this work were preformed on TianHe-1A, the National Supercomputer Center in Tianjin, China.

References

  • Syôzi (1951) Itiro Syôzi, “Statistics of Kagomé Lattice,” Progress of Theoretical Physics 6, 306–308 (1951).
  • Mielke (1991) A Mielke, “Ferromagnetic ground states for the Hubbard model on line graphs,” Journal of Physics A: Mathematical and General 24, L73 (1991).
  • Tasaki (1992) Hal Tasaki, “Ferromagnetism in the Hubbard models with degenerate single-electron ground states,” Phys. Rev. Lett. 69, 1608–1611 (1992).
  • Sachdev (1992) Subir Sachdev, “Kagome- and triangular-lattice Heisenberg antiferromagnets: Ordering from quantum fluctuations and quantum-disordered ground states with unconfined bosonic spinons,” Phys. Rev. B 45, 12377–12396 (1992).
  • Tang et al. (2011) Evelyn Tang, Jia-Wei Mei,  and Xiao-Gang Wen, “High-temperature fractional quantum Hall states,” Phys. Rev. Lett. 106, 236802 (2011).
  • Cao et al. (2018) Yuan Cao, Valla Fatemi, Shiang Fang, Kenji Watanabe, Takashi Taniguchi, Efthimios Kaxiras,  and Pablo Jarillo-Herrero, “Unconventional superconductivity in magic-angle graphene superlattices,” Nature 556, 43–50 (2018).
  • Balents et al. (2020) Leon Balents, Cory R. Dean, Dmitri K. Efetov,  and Andrea F. Young, “Superconductivity and strong correlations in moiré flat bands,” Nature Physics 16, 725–733 (2020).
  • Aoki (2020) Hideo Aoki, “Theoretical possibilities for flat band superconductivity,” Journal of Superconductivity and Novel Magnetism 33, 2341–2346 (2020).
  • Heikkilä and Volovik (2016) Tero T. Heikkilä and Grigory E. Volovik, “Flat bands as a route to high-temperature superconductivity in graphite,” in Basic Physics of Functionalized Graphite, edited by Pablo D. Esquinazi (Springer International Publishing, Cham, 2016) pp. 123–143.
  • Jiang et al. (2022) Kun Jiang, Tao Wu, Jia-Xin Yin, Zhenyu Wang, M Zahid Hasan, Stephen D Wilson, Xianhui Chen,  and Jiangping Hu, “Kagome superconductors AV3Sb5 (A=K, Rb, Cs),” National Science Review  (2022), 10.1093/nsr/nwac199, nwac199.
  • Nie et al. (2022) Linpeng Nie, Kuanglv Sun, Wanru Ma, Dianwu Song, Lixuan Zheng, Zuowei Liang, Ping Wu, Fanghang Yu, Jian Li, Min Shan, Dan Zhao, Shunjiao Li, Baolei Kang, Zhimian Wu, Yanbing Zhou, Kai Liu, Ziji Xiang, Jianjun Ying, Zhenyu Wang, Tao Wu,  and Xianhui Chen, “Charge-density-wave-driven electronic nematicity in a kagome superconductor,” Nature 604, 59–64 (2022).
  • Jiang et al. (2021) Yu-Xiao Jiang, Jia-Xin Yin, M. Michael Denner, Nana Shumiya, Brenden R. Ortiz, Gang Xu, Zurab Guguchia, Junyi He, Md Shafayat Hossain, Xiaoxiong Liu, Jacob Ruff, Linus Kautzsch, Songtian S. Zhang, Guoqing Chang, Ilya Belopolski, Qi Zhang, Tyler A. Cochran, Daniel Multer, Maksim Litskevich, Zi-Jia Cheng, Xian P. Yang, Ziqiang Wang, Ronny Thomale, Titus Neupert, Stephen D. Wilson,  and M. Zahid Hasan, “Unconventional chiral charge order in kagome superconductor KV3Sb5,” Nature Materials 20, 1353–1357 (2021).
  • Teng et al. (2022) Xiaokun Teng, Lebing Chen, Feng Ye, Elliott Rosenberg, Zhaoyu Liu, Jia-Xin Yin, Yu-Xiao Jiang, Ji Seop Oh, M. Zahid Hasan, Kelly J. Neubauer, Bin Gao, Yaofeng Xie, Makoto Hashimoto, Donghui Lu, Chris Jozwiak, Aaron Bostwick, Eli Rotenberg, Robert J. Birgeneau, Jiun-Haw Chu, Ming Yi,  and Pengcheng Dai, “Discovery of charge density wave in a kagome lattice antiferromagnet,” Nature 609, 490–495 (2022).
  • Kang et al. (2020a) Mingu Kang, Linda Ye, Shiang Fang, Jhih-Shih You, Abe Levitan, Minyong Han, Jorge I. Facio, Chris Jozwiak, Aaron Bostwick, Eli Rotenberg, Mun K. Chan, Ross D. McDonald, David Graf, Konstantine Kaznatcheev, Elio Vescovo, David C. Bell, Efthimios Kaxiras, Jeroen van den Brink, Manuel Richter, Madhav Prasad Ghimire, Joseph G. Checkelsky,  and Riccardo Comin, “Dirac fermions and flat bands in the ideal kagome metal FeSn,” Nature Materials 19, 163–169 (2020a).
  • Lin et al. (2020) Zhiyong Lin, Chongze Wang, Pengdong Wang, Seho Yi, Lin Li, Qiang Zhang, Yifan Wang, Zhongyi Wang, Hao Huang, Yan Sun, Yaobo Huang, Dawei Shen, Donglai Feng, Zhe Sun, Jun-Hyung Cho, Changgan Zeng,  and Zhenyu Zhang, “Dirac fermions in antiferromagnetic FeSn kagome lattices with combined space inversion and time-reversal symmetry,” Phys. Rev. B 102, 155103 (2020).
  • Huang and Lu (2020) Li Huang and Haiyan Lu, “Signatures of hundness in kagome metals,” Phys. Rev. B 102, 125130 (2020).
  • Ye et al. (2018) Linda Ye, Mingu Kang, Junwei Liu, Felix von Cube, Christina R. Wicker, Takehito Suzuki, Chris Jozwiak, Aaron Bostwick, Eli Rotenberg, David C. Bell, Liang Fu, Riccardo Comin,  and Joseph G. Checkelsky, “Massive dirac fermions in a ferromagnetic kagome metal,” Nature 555, 638–642 (2018).
  • Lin et al. (2018) Zhiyong Lin, Jin-Ho Choi, Qiang Zhang, Wei Qin, Seho Yi, Pengdong Wang, Lin Li, Yifan Wang, Hui Zhang, Zhe Sun, Laiming Wei, Shengbai Zhang, Tengfei Guo, Qingyou Lu, Jun-Hyung Cho, Changgan Zeng,  and Zhenyu Zhang, “Flatbands and emergent ferromagnetic ordering in Fe3Sn2 kagome lattices,” Phys. Rev. Lett. 121, 096401 (2018).
  • Yin et al. (2018) Jia-Xin Yin, Songtian S. Zhang, Hang Li, Kun Jiang, Guoqing Chang, Bingjing Zhang, Biao Lian, Cheng Xiang, Ilya Belopolski, Hao Zheng, Tyler A. Cochran, Su-Yang Xu, Guang Bian, Kai Liu, Tay-Rong Chang, Hsin Lin, Zhong-Yi Lu, Ziqiang Wang, Shuang Jia, Wenhong Wang,  and M. Zahid Hasan, “Giant and anisotropic many-body spin–orbit tunability in a strongly correlated kagome magnet,” Nature 562, 91–95 (2018).
  • Kang et al. (2020b) Mingu Kang, Shiang Fang, Linda Ye, Hoi Chun Po, Jonathan Denlinger, Chris Jozwiak, Aaron Bostwick, Eli Rotenberg, Efthimios Kaxiras, Joseph G. Checkelsky,  and Riccardo Comin, “Topological flat bands in frustrated kagome lattice CoSn,” Nature Communications 11, 4004 (2020b).
  • Liu et al. (2020) Zhonghao Liu, Man Li, Qi Wang, Guangwei Wang, Chenhaoping Wen, Kun Jiang, Xiangle Lu, Shichao Yan, Yaobo Huang, Dawei Shen, Jia-Xin Yin, Ziqiang Wang, Zhiping Yin, Hechang Lei,  and Shancai Wang, “Orbital-selective dirac fermions and extremely flat bands in frustrated kagome-lattice metal CoSn,” Nature Communications 11, 4002 (2020).
  • Yin et al. (2020a) J.-X. Yin, Nana Shumiya, Sougata Mardanya, Qi Wang, Songtian S. Zhang, Hung-Ju Tien, Daniel Multer, Yuxiao Jiang, Guangming Cheng, Nan Yao, Shangfei Wu, Desheng Wu, Liangzi Deng, Zhipeng Ye, Rui He, Guoqing Chang, Zhonghao Liu, Kun Jiang, Ziqiang Wang, Titus Neupert, Amit Agarwal, Tay-Rong Chang, Ching-Wu Chu, Hechang Lei,  and M. Zahid Hasan, “Fermion–boson many-body interplay in a frustrated kagome paramagnet,” Nature Communications 11, 4003 (2020a).
  • Meier et al. (2020) William R. Meier, Mao-Hua Du, Satoshi Okamoto, Narayan Mohanta, Andrew F. May, Michael A. McGuire, Craig A. Bridges, German D. Samolyuk,  and Brian C. Sales, “Flat bands in the CoSn-type compounds,” Phys. Rev. B 102, 075148 (2020).
  • Huang et al. (2022) Hao Huang, Lixuan Zheng, Zhiyong Lin, Xu Guo, Sheng Wang, Shuai Zhang, Chi Zhang, Zhe Sun, Zhengfei Wang, Hongming Weng, Lin Li, Tao Wu, Xianhui Chen,  and Changgan Zeng, “Flat-band-induced anomalous anisotropic charge transport and orbital magnetism in kagome metal CoSn,” Phys. Rev. Lett. 128, 096601 (2022).
  • Yin et al. (2020b) Jia-Xin Yin, Wenlong Ma, Tyler A. Cochran, Xitong Xu, Songtian S. Zhang, Hung-Ju Tien, Nana Shumiya, Guangming Cheng, Kun Jiang, Biao Lian, Zhida Song, Guoqing Chang, Ilya Belopolski, Daniel Multer, Maksim Litskevich, Zi-Jia Cheng, Xian P. Yang, Bianca Swidler, Huibin Zhou, Hsin Lin, Titus Neupert, Ziqiang Wang, Nan Yao, Tay-Rong Chang, Shuang Jia,  and M. Zahid Hasan, “Quantum-limit chern topological magnetism in TbMn6Sn6,” Nature 583, 533–536 (2020b).
  • Yang et al. (2022) T. Y. Yang, Q. Wan, J. P. Song, Z. Du, J. Tang, Z. W. Wang, N. C. Plumb, M. Radovic, G. W. Wang, G. Y. Wang, Z. Sun, Jia-Xin Yin, Z. H. Chen, Y. B. Huang, R. Yu, M. Shi, Y. M. Xiong,  and N. Xu, “Fermi-level flat band in a kagome magnet,” Quantum Frontiers 1, 14 (2022).
  • Vandenberg and Barz (1980) J.M. Vandenberg and H. Barz, “The crystal structure of a new ternary silicide in the system rare-earth-ruthenium-silicon,” Materials Research Bulletin 15, 1493–1498 (1980).
  • Li et al. (2016) Baoxuan Li, Sheng Li,  and Hai-Hu Wen, “Chemical doping effect in the LaRu3Si2 superconductor with a kagome lattice,” Phys. Rev. B 94, 094523 (2016).
  • Li et al. (2011) Sheng Li, Bin Zeng, Xiangang Wan, Jian Tao, Fei Han, Huan Yang, Zhihe Wang,  and Hai-Hu Wen, “Anomalous properties in the normal and superconducting states of LaRu3Si2,” Phys. Rev. B 84, 214527 (2011).
  • Mielke et al. (2021) C. Mielke, Y. Qin, J.-X. Yin, H. Nakamura, D. Das, K. Guo, R. Khasanov, J. Chang, Z. Q. Wang, S. Jia, S. Nakatsuji, A. Amato, H. Luetkens, G. Xu, M. Z. Hasan,  and Z. Guguchia, “Nodeless kagome superconductivity in LaRu3Si2,” Phys. Rev. Materials 5, 034803 (2021).
  • Gong et al. (2022) Chunsheng Gong, Shangjie Tian, Zhijun Tu, Qiangwei Yin, Yang Fu, Ruitao Luo,  and Hechang Lei, “Superconductivity in kagome metal YRu3Si2 with strong electron correlations,” Chinese Physics Letters 39, 087401 (2022).
  • Anisimov et al. (1991) Vladimir I. Anisimov, Jan Zaanen,  and Ole K. Andersen, “Band theory and mott insulators: Hubbard U instead of Stoner I,” Phys. Rev. B 44, 943–954 (1991).
  • Georges et al. (1996) Antoine Georges, Gabriel Kotliar, Werner Krauth,  and Marcelo J. Rozenberg, “Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions,” Rev. Mod. Phys. 68, 13–125 (1996).
  • Lichtenstein et al. (2001) A. I. Lichtenstein, M. I. Katsnelson,  and G. Kotliar, “Finite-temperature magnetism of transition metals: An ab initio dynamical mean-field theory,” Phys. Rev. Lett. 87, 067205 (2001).
  • Kotliar et al. (2006) G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O. Parcollet,  and C. A. Marianetti, “Electronic structure calculations with dynamical mean-field theory,” Rev. Mod. Phys. 78, 865–951 (2006).
  • Momma and Izumi (2008) Koichi Momma and Fujio Izumi, “VESTA: a three-dimensional visualization system for electronic and structural analysis,” Journal of Applied Crystallography 41, 653–658 (2008).
  • Kresse and Furthmüller (1996) G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54, 11169–11186 (1996).
  • Blöchl (1994) P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B 50, 17953–17979 (1994).
  • Perdew et al. (1996) John P. Perdew, Kieron Burke,  and Matthias Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865–3868 (1996).
  • Liechtenstein et al. (1995) A. I. Liechtenstein, V. I. Anisimov,  and J. Zaanen, “Density-functional theory and strong interactions: Orbital ordering in mott-hubbard insulators,” Phys. Rev. B 52, R5467–R5470 (1995).
  • (41) See Supporting Information at [url] for: (1) Values of UU and JHJ_{H}; (2) Magnetic configurations; (3) Results of crystal relaxation of LaRu3Si2 by GGA+SOC+U; (4) Simulated XRD pattern of LaRu3Si2 for space group P63/mcm and P63/m .
  • Haule et al. (2010) Kristjan Haule, Chuck-Hou Yee,  and Kyoo Kim, “Dynamical mean-field theory within the full-potential methods: Electronic structure of CeIrIn5, CeCoIn5, and CeRhIn5,” Phys. Rev. B 81, 195107 (2010).
  • Haule and Birol (2015) Kristjan Haule and Turan Birol, “Free energy from stationary implementation of the DFT+DMFT\mathrm{DFT}+\mathrm{DMFT} functional,” Phys. Rev. Lett. 115, 256402 (2015).
  • Blaha et al. (2020) Peter Blaha, Karlheinz Schwarz, Fabien Tran, Robert Laskowski, Georg K. H. Madsen,  and Laurence D. Marks, “WIEN2k: An APW+lo program for calculating the properties of solids,” The Journal of Chemical Physics 152, 074101 (2020).
  • Gull et al. (2011) Emanuel Gull, Andrew J. Millis, Alexander I. Lichtenstein, Alexey N. Rubtsov, Matthias Troyer,  and Philipp Werner, “Continuous-time monte carlo methods for quantum impurity models,” Rev. Mod. Phys. 83, 349–404 (2011).
  • Haule (2015) Kristjan Haule, “Exact double counting in combining the dynamical mean field theory and the density functional theory,” Phys. Rev. Lett. 115, 196403 (2015).
  • Haule and Pascut (2016) Kristjan Haule and Gheorghe L. Pascut, “Forces for structural optimizations in correlated materials within a dft+embedded dmft functional approach,” Phys. Rev. B 94, 195146 (2016).
  • (48) See how to use RCoulombU.py on EDMFTF’s website .