This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Electromagnetic form factors of Σ+\Sigma^{+} and Σ\Sigma^{-} in the vector meson dominance model

Zhong-Yi Li Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 101408, China    Ju-Jun Xie [email protected] Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 101408, China School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, Henan 450001, China
Abstract

Based on the recent measurements of the e+eΣ+Σ¯e^{+}e^{-}\to\Sigma^{+}\bar{\Sigma}^{-} and e+eΣΣ¯+e^{+}e^{-}\to\Sigma^{-}\bar{\Sigma}^{+} processes by BESIII collaboration, the electromagnetic form factors of the hyperon Σ+\Sigma^{+} and Σ\Sigma^{-} in the timelike region are investigated by using the vector meson dominance model, where the contributions from the ρ\rho, ω\omega, and ϕ\phi mesons are taken into account. The model parameters are determined from the BESIII experimental data on the timelike effective form factors |Geff||G_{\rm eff}| of Σ+\Sigma^{+} and Σ{\Sigma}^{-} baryons for center-of-mass energy from 2.3864 to 3.02 GeV. It is found that we can provide quantitative descriptions of available data as few as one adjustable model parameter. We then progress to an analysis of the electromagnetic form factors in the spacelike region and evaluate the spacelike form factors of the hyperons Σ+\Sigma^{+} and Σ\Sigma^{-}. The obtained electromagnetic form factors of the Σ+\Sigma^{+} and Σ\Sigma^{-} baryons are comparable with other model calculations.

I Introduction

The study of the structure of hyperons which contain strange quark through their electromagnetic form factors (EMFFs) is crucial for deep understanding the nonperturbative quantum chromodynamics (QCD) effects that quarks are bounded in baryons Yang:2019mzq ; Ramalho:2019koj ; Yang:2020rpi ; Ablikim:2020kqp ; Haidenbauer:2020wyp . As discussed in Refs. Geng:2008mf ; Green:2014xba ; Brodsky:1974vy , the EMFFs are crucial experimental observables of baryons which are intimately related to their internal structure and dynamics. In the last few decades, there are great progress in the study of baryon EMFFs, especially for the nucleon both in timelike Akhmetshin:2015ifg ; Andreotti:2003bt ; Antonelli:1998fv ; Ablikim:2019eau ; Bardin:1994am ; Bisello:1983at ; Ambrogiani:1999bh ; Aubert:2005cb ; Lees:2013uta ; Lees:2013ebn ; Ablikim:2015vga ; Armstrong:1992wq and spacelike regions Zhu:2001md ; Passchier:2001uc ; Gayou:2001qd ; Madey:2003av ; Warren:2003ma ; Becker:1999tw ; Bermuth:2003qh ; Golak:2000nt ; Gayou:2001qt ; Ostrick:1999xa ; Rohe:1999sh . For example, in Ref. Chen:2007sa the nucleon form factors and the NN-Δ(1232)\Delta(1232) transitions were theoretically investigated in a framework of constituent quark model, where the effect of π\pi meson clound is also considered. While for the case of hyperons, since they cannot be targets, the hyperon EMFFs in the spacelike region are hardly to be measured by experiments. In the timelike region, the BESIII collaboration investigated the Σ\Sigma hyperon EMFFs from the reaction e+eΣ+Σ¯e^{+}e^{-}\to\Sigma^{+}\bar{\Sigma}^{-} and e+eΣΣ¯+e^{+}e^{-}\to\Sigma^{-}\bar{\Sigma}^{+} Ablikim:2017wlt ; Ablikim:2020kqp . From the determined high precision Born cross sections of these two above reactions for center-of-mass energy from 2.3864 to 3.02 GeV, the effective form factors |Geff||G_{\rm eff}| of Σ+\Sigma^{+} and Σ{\Sigma}^{-} and also the ratios of Σ+\Sigma^{+} electric and magnetic form factors |GE/GM||G_{E}/G_{M}|, are obtained Ablikim:2020kqp .

Very recently, the EMFFs of hyperons are investigated in the timelike region through e+eYY¯e^{+}e^{-}\to Y\bar{Y} (YY is the hyperon) reaction Haidenbauer:2020wyp , where the YY¯Y\bar{Y} final state interactions are taken into account, and the EMFFs in the timelike region are calculated for the Λ\Lambda, Σ\Sigma, and Ξ\Xi hyperons based on one-photon approximation for the elementary reaction mechanism. In Ref. Ramalho:2019koj , the timelike EMFFs of hyperons are well reproduced within a relativistic quark model. In addition, the Σ\Sigma hyperon EMFFs have been calculated within Lattice QCD Lin:2008mr , light cone sum rule (LCSR) Liu:2009mb , and chiral perturbative theory (ChPT) Kubis:2000aa . In addition to these, the vector meson dominance (VMD) model is a very successful approach to study the nucleon electromagnetic form factors both in spacelike and timelike regions Iachello:1972nu ; Iachello:2004aq ; Bijker:2004yu . Within a modified VMD model, in Ref. Yang:2019mzq the EMFFs of Λ\Lambda hyperon were studied in the timelike region from e+eΛΛ¯e^{+}e^{-}\to\Lambda\bar{\Lambda} reaction, where the contributions from ϕ\phi and ω\omega mesons, and their excited states are included. It was found that the VMD model can simultaneously describe the effective form factor and also the electromagnetic form factor ratio of the Λ\Lambda hyperon.

In this work, based on the recently measurements of the e+eΣ+Σ¯e^{+}e^{-}\to\Sigma^{+}\bar{\Sigma}^{-} and e+eΣΣ¯+e^{+}e^{-}\to\Sigma^{-}\bar{\Sigma}^{+} reactions, we aim to determine the parameters of VMD model by fitting them to the experimental data of |Geff||G_{\rm eff}| of Σ+\Sigma^{+} and Σ{\Sigma}^{-}. We have included the contributions from the ρ\rho, ω\omega and ϕ\phi mesons. Then the ratios |GE/GM||G_{E}/G_{M}| of Σ+\Sigma^{+} are estimated with the model parameters, which are comparable with other theoretical calculations.

This article is organized as follows: formalism of Σ\Sigma hyperon form factors in VMD model are shown in the following section. In Sec. III, we introduce effective form factors and the method that analytically continue the expressions of the form factors from the timelike region to the spacelike region. Numerical results of the timelike form factors of Σ+\Sigma^{+} and Σ\Sigma^{-} hyperon and the ratios |GE/GM||G_{E}/G_{M}| of Σ+\Sigma^{+} and Σ\Sigma^{-} are presented. In Sec. IV, followed by a short summary in the last section.

II Theoretical formalism

We will study the EMFFs of Σ+\Sigma^{+} and Σ\Sigma^{-} within the VMD model. As in Ref.Yang:2019mzq , we first introduce the electromagnetic current of Σ\Sigma hyperon with spin-1/21/2 in terms of the Dirac form factor F1(Q2)F_{1}(Q^{2}) and Pauli form factors F2(Q2)F_{2}(Q^{2}) as

Jμ=γuF1(Q2)+iσμνqν2mΣF2(Q2),J^{\mu}=\gamma^{u}F_{1}(Q^{2})+{\rm i}\frac{\sigma^{\mu\nu}q_{\nu}}{2m_{\Sigma}}F_{2}(Q^{2}), (1)

where F1F_{1} and F2F_{2} are functions of the squared momentum transfer Q2=q2Q^{2}=-q^{2}. In the VMD model, the Dirac and Pauli form factors are parametrized into two parts. One is the intrinsic three-quark structure described by the form factor g(Q2)g(Q^{2}) Bijker:2004yu , the other one is the meson cloud, which is used to describe the interaction between the bare baryon and the photon through the intermediate isovector ρ\rho meson and isoscalar ω\omega and ϕ\phi mesons Iachello:1972nu . Following Refs. Iachello:1972nu ; Iachello:2004aq ; Bijker:2004yu , F1F_{1} and F2F_{2} can be decomposed as Fi=FiS+FiVF_{i}=F_{i}^{S}+F_{i}^{V}, with FiSF_{i}^{S} and FiVF_{i}^{V} the isoscalar and isovector components of the form factors, respectively. The Dirac and Pauli form factors of Σ+\Sigma^{+} and Σ\Sigma^{-} are easily obtained without considering the total decay widths of the vector mesons, as follows

F1Σ+S(Q2)\displaystyle F_{1\Sigma^{+}}^{S}\left(Q^{2}\right) =\displaystyle= 12g1(Q2)[(1βωβϕ)+βωmω2mω2+Q2+βϕmϕ2mϕ2+Q2],\displaystyle\frac{1}{2}g_{1}\left(Q^{2}\right)\left[\left(1-\beta_{\omega}-\beta_{\phi}\right)+\beta_{\omega}\frac{m_{\omega}^{2}}{m_{\omega}^{2}+Q^{2}}\right.\left.+\beta_{\phi}\frac{m_{\phi}^{2}}{m_{\phi}^{2}+Q^{2}}\right], (2)
F1Σ+V(Q2)\displaystyle F_{1\Sigma^{+}}^{V}\left(Q^{2}\right) =\displaystyle= 12g1(Q2)[(1βρ)+βρmρ2mρ2+Q2],\displaystyle\frac{1}{2}g_{1}\left(Q^{2}\right)\left[\left(1-\beta_{\rho}\right)+\beta_{\rho}\frac{m_{\rho}^{2}}{m_{\rho}^{2}+Q^{2}}\right], (3)
F2Σ+S(Q2)\displaystyle F_{2\Sigma^{+}}^{S}\left(Q^{2}\right) =\displaystyle= 12g1(Q2)[(2μΣ+2αϕαρ)mω2mω2+Q2+αϕmϕ2mϕ2+Q2],\displaystyle\frac{1}{2}g_{1}\left(Q^{2}\right)\left[\left(2\mu_{\Sigma^{+}}-2-\alpha_{\phi}-\alpha_{\rho}\right)\frac{m_{\omega}^{2}}{m_{\omega}^{2}+Q^{2}}+\alpha_{\phi}\frac{m_{\phi}^{2}}{m_{\phi}^{2}+Q^{2}}\right], (4)
F2Σ+V(Q2)\displaystyle F_{2\Sigma^{+}}^{V}\left(Q^{2}\right) =\displaystyle= 12g1(Q2)[αρmρ2mρ2+Q2],\displaystyle\frac{1}{2}g_{1}\left(Q^{2}\right)\left[\alpha_{\rho}\frac{m_{\rho}^{2}}{m_{\rho}^{2}+Q^{2}}\right], (5)
F1ΣS(Q2)\displaystyle F_{1\Sigma^{-}}^{S}\left(Q^{2}\right) =\displaystyle= 12g2(Q2)[(1βωβϕ)+βωmω2mω2+Q2+βϕmϕ2mϕ2+Q2],\displaystyle\frac{1}{2}g_{2}\left(Q^{2}\right)\left[\left(-1-\beta_{\omega}-\beta_{\phi}\right)+\beta_{\omega}\frac{m_{\omega}^{2}}{m_{\omega}^{2}+Q^{2}}\right.\left.+\beta_{\phi}\frac{m_{\phi}^{2}}{m_{\phi}^{2}+Q^{2}}\right], (6)
F1ΣV(Q2)\displaystyle F_{1\Sigma^{-}}^{V}\left(Q^{2}\right) =\displaystyle= 12g2(Q2)[(1βρ)+βρmρ2mρ2+Q2],\displaystyle\frac{1}{2}g_{2}\left(Q^{2}\right)\left[\left(-1-\beta_{\rho}\right)+\beta_{\rho}\frac{m_{\rho}^{2}}{m_{\rho}^{2}+Q^{2}}\right], (7)
F2ΣS(Q2)\displaystyle F_{2\Sigma^{-}}^{S}\left(Q^{2}\right) =\displaystyle= 12g2(Q2)[(2μΣ+2αϕαρ)mω2mω2+Q2+αϕmϕ2mϕ2+Q2],\displaystyle\frac{1}{2}g_{2}\left(Q^{2}\right)\left[\left(2\mu_{\Sigma^{-}}+2-\alpha_{\phi}-\alpha_{\rho}\right)\frac{m_{\omega}^{2}}{m_{\omega}^{2}+Q^{2}}+\alpha_{\phi}\frac{m_{\phi}^{2}}{m_{\phi}^{2}+Q^{2}}\right], (8)
F2ΣV(Q2)\displaystyle F_{2\Sigma^{-}}^{V}\left(Q^{2}\right) =\displaystyle= 12g2(Q2)[αρmρ2mρ2+Q2],\displaystyle\frac{1}{2}g_{2}\left(Q^{2}\right)\left[\alpha_{\rho}\frac{m_{\rho}^{2}}{m_{\rho}^{2}+Q^{2}}\right], (9)

where we take the intrinsic form factor g(Q2)g(Q^{2}) as a dipole form

g1(Q2)\displaystyle g_{1}(Q^{2}) =\displaystyle= (1+γ1Q2)2,\displaystyle(1+\gamma_{1}Q^{2})^{-2}, (10)
g2(Q2)\displaystyle g_{2}(Q^{2}) =\displaystyle= (1+γ2Q2)2.\displaystyle(1+\gamma_{2}Q^{2})^{-2}. (11)

This form is consistent with g=1g=1 at Q2=0Q^{2}=0, and the free model parameters γ1\gamma_{1} and γ2\gamma_{2} will be determined by fitting them to the experimental data.

On the other hand, the observed electric and magnetic form factors GEG_{E} and GMG_{M} can be expressed in terms of Dirac and Pauli form factors F1F_{1} and F2F_{2} by,

GE(Q2)\displaystyle G_{E}(Q^{2})\! =\displaystyle= F1τF2=F1S+F1Vτ(F2S+F2V),\displaystyle\!F_{1}-\tau F_{2}=F^{S}_{1}+F^{V}_{1}-\tau(F^{S}_{2}+F^{V}_{2}), (12)
GM(Q2)\displaystyle G_{M}(Q^{2})\! =\displaystyle= F1+F2=F1S+F1V+F2S+F2V,\displaystyle\!F_{1}+F_{2}=F^{S}_{1}+F^{V}_{1}+F^{S}_{2}+F^{V}_{2}, (13)

where τ=Q24MΣ2\tau=\frac{Q^{2}}{4M^{2}_{\Sigma}} in this work. At Q2Q^{2} = 0, GM(Q2)G_{M}(Q^{2}) defines the value of the magnetic moment of the Σ\Sigma hyperon, μΣ=GM(0)\mu_{\Sigma}=G_{M}(0), in natural unit, i.e., μ^Σ=e/(2MΣ)\hat{\mu}_{\Sigma}=e/(2M_{\Sigma}). For easily compare magnetic moments of different particles masses it is usual to express magnetic moments in terms of μ^N=e/(2MN)\hat{\mu}_{N}=e/(2M_{N}), the nucleon magneton Tanabashi:2018oca ; Ramalho:2012pu . In this work we take μΣ+=3.112\mu_{\Sigma^{+}}=3.112 and μΣ=1.479\mu_{\Sigma^{-}}=-1.479 with natural unit Tanabashi:2018oca . In addition, we take mρm_{\rho}=0.775, mωm_{\omega}=0.782, and mϕm_{\phi}=1.019 GeV Tanabashi:2018oca .

In Eqs. (2)-(9), βρ\beta_{\rho}, βω\beta_{\omega}, βϕ\beta_{\phi}, αϕ\alpha_{\phi}, and αρ\alpha_{\rho} represent the product of a vector-meson-photon coupling constant and a VΣΣV\Sigma\Sigma coupling constant. For the VΣΣV\Sigma\Sigma coupling constants, we obtain them through SU(3) flavor symmetry as in Ref. Doring:2010ap ,

gΣΣω\displaystyle g_{\Sigma\Sigma\omega} =\displaystyle= gBBV2αBBV,\displaystyle g_{BBV}2\alpha_{BBV}, (14)
gΣΣϕ\displaystyle g_{\Sigma\Sigma\phi} =\displaystyle= gBBV2(2αBBV1),\displaystyle-g_{BBV}\sqrt{2}\left(2\alpha_{BBV}-1\right), (15)
gΣΣρ\displaystyle g_{\Sigma\Sigma\rho} =\displaystyle= gBBV2αBBV,\displaystyle g_{BBV}2\alpha_{BBV}, (16)

where gBBVg_{BBV} = gNNρg_{NN\rho} = 3.20 and αBBV=1.15\alpha_{BBV}=1.15 as used in Refs. Machleidt:1987hj ; Doring:2010ap . Then we can easily get gΣΣω=7.36g_{\Sigma\Sigma\omega}=7.36, gΣΣϕg_{\Sigma\Sigma\phi}=-5.88, gΣΣρ=g_{\Sigma\Sigma\rho}=7.36. While the tensor couplings, they are given by

fΣΣϕ=fNNρ12,fΣΣρ=fNNρ12,\displaystyle f_{\Sigma\Sigma\phi}=f_{NN\rho}\frac{1}{\sqrt{2}},~{}~{}~{}f_{\Sigma\Sigma\rho}=f_{NN\rho}\frac{1}{2}, (17)

where fNNρ=gNNρκρf_{NN\rho}=g_{NN\rho}\kappa_{\rho} with κρ\kappa_{\rho}=6.1 Machleidt:1987hj ; Doring:2010ap . Therefore we can get fΣΣϕf_{\Sigma\Sigma\phi}=13.80 and fΣΣρf_{\Sigma\Sigma\rho}=9.76.

In addition, we calculate VγV\gamma coupling constants following Refs. Zhao:2006gw ; Huang:2013jda ; Huang:2016tcr ,

Vγ=VeMV2fVVμAμ,\displaystyle\mathcal{L}_{V\gamma}=\sum_{V}\frac{eM_{V}^{2}}{f_{V}}V_{\mu}A^{\mu}, (18)
efV=[3ΓVe+e2αe|pe|]1/2.\displaystyle\frac{e}{f_{V}}=\left[\frac{3\Gamma_{V\rightarrow e^{+}e^{-}}}{2\alpha_{e}\left|\vec{p}_{e}\right|}\right]^{1/2}. (19)

where αe=e2/(4π)\alpha_{e}=e^{2}/(4\pi)=1/137 is the fine-structure constant and pe\vec{p}_{e} is the three momentum of electron in the rest frame of the vector meson. ΓVe+e\Gamma_{V\to e^{+}e^{-}} is the partial decay width of the vector meson decaying into e+ee^{+}e^{-} pair. Then, with the experimental values we get 1/fρ1/f_{\rho}=0.200, 1/fω1/f_{\omega}=0.059, and 1/fϕ1/f_{\phi}=0.075.

Finally we obtain βρ\beta_{\rho}, βω\beta_{\omega}, βϕ\beta_{\phi}, αϕ\alpha_{\phi} and αρ\alpha_{\rho} through

βV=gΣΣV1fV,αV=fΣΣV1fV,\displaystyle\beta_{V}=g_{\Sigma\Sigma V}\frac{1}{f_{V}},~{}~{}\alpha_{V}=f_{\Sigma\Sigma V}\frac{1}{f_{V}}, (20)

which are summarized in Table 1.

Table 1: Parameters used in this work.
Parameter Value Parameter Value
βρ\beta_{\rho}  0.736 αρ\alpha_{\rho} 0.976
βϕ\beta_{\phi} -0.441 αϕ\alpha_{\phi} 1.035
βω\beta_{\omega}  0.434

Next we explain how the large total width of ρ\rho meson contributions are implemented. 111We will not consider the effects from the widths of ω\omega and ϕ\phi, since they are so narrow. For this purpose, one needs to replace Iachello:1972nu

mρ2mρ2+Q2\displaystyle\frac{m_{\rho}^{2}}{m_{\rho}^{2}+Q^{2}}\to
mρ2+8Γρmπ/πmρ2+Q2+(4mπ2+Q2)Γρα(Q2)/mπ,\displaystyle\frac{m_{\rho}^{2}+8\Gamma_{\rho}m_{\pi}/\pi}{m_{\rho}^{2}+Q^{2}+\left(4m_{\pi}^{2}+Q^{2}\right)\Gamma_{\rho}\alpha\left(Q^{2}\right)/m_{\pi}}, (21)

where we take Γρ=149.1\Gamma_{\rho}=149.1, and a average value of mπ=138.04m_{\pi}=138.04 MeV Tanabashi:2018oca . The function α(Q2)\alpha(Q^{2}) is given by

α(Q2)=2π(4mπ2+Q2Q2)1/2ln(4mπ2+Q2+Q22mπ).\alpha\left(Q^{2}\right)=\frac{2}{\pi}\left(\frac{4m_{\pi}^{2}+Q^{2}}{Q^{2}}\right)^{1/2}\ln\left(\frac{\sqrt{4m_{\pi}^{2}+Q^{2}}+\sqrt{Q^{2}}}{2m_{\pi}}\right).

Timelike formfactors can be obtained from the spacelike form factors by an appropriate analytic continuation. Within the above ingredients, g(q2)g\left(q^{2}\right) has the form of an analytical continuation form,

g(q2)=(1γq2)2,g\left(q^{2}\right)=\left(1-\gamma q^{2}\right)^{-2}, (22)

where Q2Q^{2} = q2-q^{2} = q2eiπq^{2}{\rm e}^{{\rm i}\pi}. We want to mention that γ\gamma has positive value, hence g(q2)g(q^{2}) will be divergent at q2=1/γq^{2}=1/\gamma. To evade this problem, one can restrict γ>1/(4mΣ2)\gamma>1/(4m_{\Sigma}^{2}).

III Numerical results and discussion

In the timelike region, the EMFFs of hyperon Σ+\Sigma^{+} and Σ\Sigma^{-} are experimental studied via electron-position annihilation processes. Under the one-photon exchange approximation, the total cross section of e+eYY¯e^{+}e^{-}\to Y\bar{Y}, with YY the Σ+\Sigma^{+} or Σ\Sigma^{-}, can be expressed in terms of the electric and magnetic form factors GEG_{E} and GMG_{M} as Denig:2012by

σ=4παe2β3q2CΣ(|GM(q2)|2+2MΣ2q2|GE(q2)|2),\sigma=\frac{4\pi\alpha_{e}^{2}\beta}{3q^{2}}C_{\Sigma}\left(\left|G_{M}\left(q^{2}\right)\right|^{2}+\frac{2M^{2}_{\Sigma}}{q^{2}}\left|G_{E}\left(q^{2}\right)\right|^{2}\right), (23)

where β=14MΣ2/q2\beta=\sqrt{1-4M_{\Sigma}^{2}/q^{2}} is a phase-space factor. q2=sq^{2}=s is the invariant mass square of the e+ee^{+}e^{-} system. In addition, the Coulomb correction factor CΣC_{\Sigma} is given by Denig:2012by

C(y)=y1ey,C(y)=\frac{y}{1-{\rm e}^{-y}}, (24)

with y=απβ2MΣqy=\frac{\alpha\pi}{\beta}\frac{2M_{\Sigma}}{q}.

In general, one can easily obtain the effective form factor Geff(q2)G_{\rm eff}(q^{2}) from the total cross section of e+ee^{+}e^{-} annihilation process. The effective form factor Geff(q2)G_{\rm eff}(q^{2}) is defined as

|Geff(q2)|=2τ|GM(q2)|2+|GE(q2)|21+2τ.\left|G_{\mathrm{eff}}\left(q^{2}\right)\right|=\sqrt{\frac{2\tau\left|G_{M}\left(q^{2}\right)\right|^{2}+\left|G_{E}\left(q^{2}\right)\right|^{2}}{1+2\tau}}. (25)

We then perform a χ2\chi^{2} fit to the experimental data of the effective form factor |Geff||G_{\rm eff}| of Σ+\Sigma^{+} and Σ\Sigma^{-} taken from Ablikim:2020kqp . In the fitting we have only one free parameter: γ1\gamma_{1} for Σ+\Sigma^{+}, and γ2\gamma_{2} for Σ\Sigma^{-}. The fitted parameters are γ1=0.46±0.01GeV2\gamma_{1}=0.46\pm 0.01~{}{\rm GeV^{-2}} and γ2=1.18±0.13GeV2\gamma_{2}=1.18\pm 0.13~{}{\rm GeV^{-2}}, with χ2/dof=2.0\chi^{2}/dof=2.0 and 1.11.1, respectively. The corresponding best-fitting results for the the effective form factor |Geff||G_{\rm eff}| of Σ+\Sigma^{+} and Σ\Sigma^{-} in the energy range 2.3864 GeV <s<<\sqrt{s}<2.9884 GeV are shown in Fig. 1 with the solid curves. We also show the theoretical band obtained from the above uncertainties of the fitted parameters. The numerical results show that we can give a good description for the experimental data.

Refer to caption
Figure 1: The solid curves represent the theoretical results of |Geff||G_{\rm eff}| of the Σ+\Sigma^{+} and Σ\Sigma^{-} with the fitted parameters. The experimental data of Σ+\Sigma^{+} and Σ\Sigma^{-} are taken from Ref. Ablikim:2020kqp .

From the fitted results of the effective form factors, we can easily obtain the values of |GeffΣ+|/|GeffΣ||G^{\Sigma^{+}}_{\rm eff}|/|G^{\Sigma^{-}}_{\rm eff}|, which are shown in Fig. 2. One can see that the ratio is about three in the energy region of 2.4<s<3.02.4<\sqrt{s}<3.0 GeV. The value of 3 is just the ratio of the incoherent sum of the squared charges of the Σ+\Sigma^{+} and Σ\Sigma^{-} valence quarks.

Refer to caption
Figure 2: Theoretical results for the ratio of |Geff|Σ+/|Geff|Σ|G_{\rm eff}|_{\Sigma^{+}}/|G_{\rm eff}|_{\Sigma^{-}} compared with the experimental data taken from Ref. Ablikim:2020kqp .

Through the vector meson dominant model, with the fitted parameter γ\gamma, one can also easily calculate the ratio of |GE||G_{E}| and |GM||G_{M}|. This ratio is determined to be one at the mass threshold of a pair of baryon and anti-baryon due to the kinematical restriction. We shown our theoretical calculations in Fig. 3, where the results are obtained with γ1=0.46\gamma_{1}=0.46 and γ2=1.18\gamma_{2}=1.18. It is found that, with the reaction energy s\sqrt{s} increasing, the ratio of |GE||G_{E}| and |GM||G_{M}| for Σ+\Sigma^{+} is slowly decreased, while for the case of Σ\Sigma^{-}, it is almost flat. Our results here cannot explain well the experimental data that the ratio is larger than one within uncertainties close to threshold. This may indicated that there should be also other contributions around that energy region. For example, the electromagnetic form factors should be significantly influenced by the interaction in the final ΣΣ¯\Sigma\bar{\Sigma} system Haidenbauer:2020wyp . However, since the experimental and empirical information about the ΣΣ¯\Sigma\bar{\Sigma} final state interaction is so limited, we leave those contributions to further study when more precise data are available.

Refer to caption
Figure 3: The results for the ratio of |GE/GM||G_{E}/G_{M}| of the Σ+\Sigma^{+} and Σ\Sigma^{-}. The data are for Σ+\Sigma^{+} and taken from Ablikim:2020kqp .

Next, we pay attention to the EMFFs in the spacelike region, which can be straightforwardly calculated with the parameter γ\gamma determined by the experimental measurements in the timelike region. Since the parametrization forms shown in Eqs. (2)-(9) are valid in the low Q2Q^{2} regime, we calculate GEG_{E} and GMG_{M} below Q2=3Q^{2}=3 GeV2\rm{GeV}^{2}, and compare our numerical results with other calculations.

The numerical results for the GMG_{M} and GEG_{E} obtained with γ1=0.46\gamma_{1}=0.46 and γ2=1.18\gamma_{2}=1.18 are shown in Fig. 4 and 5, respectively. 222To compare our estimations with other calculations, we convert the unit of our results into nucleon magneton. In Fig. 4 predictions from light cone sum rules Liu:2009mb and lattice QCD calculations Lin:2008mr are also shown for comparing. Our results for the magnetic form factor of Σ+\Sigma^{+} and Σ\Sigma^{-} are somewhat quantitatively different from other theories. Our results for the magnetic form factor of Σ\Sigma^{-} are more consistent with other calculations. While for the case of Σ\Sigma^{-} electric form factor in Fig. 5, our results are disagreement with the ChPT and LCSR calculations. However, our results for the Σ+\Sigma^{+} are closer to the lattice QCD in Ref. Lin:2008mr and ChPT in the very low Q2Q^{2} region. It is expected that these theoretical calculations can be tested by future experiments on the EMFFs of hyperons Σ+\Sigma^{+} and Σ\Sigma^{-} and thus will provide new insight into the complex internal structure of the baryons.

Refer to caption
Figure 4: The results of the magnetic form factor of Σ+\Sigma^{+} and Σ\Sigma^{-}. The blue dotted line are the result of lattice QCD calculations Lin:2008mr . The red dashed curve are the results of LCSR calculations Liu:2009mb .
Refer to caption
Figure 5: Results of the electric form factor GEG_{E} of the Σ+\Sigma^{+} and Σ\Sigma^{-}. The blue dotted line are the result of lattice QCD Lin:2008mr . The red dashed curve are the result of LCSR Liu:2009mb . The purple dot dash curve are the result of chiral perturbation theory Kubis:2000aa .

IV summary

In this work, we have investigated the electromagnetic form factors of the hyperon Σ+\Sigma^{+} and Σ\Sigma^{-} within the vector meson dominance model. The contributions from the ρ\rho, ω\omega and ϕ\phi mesons are taken into account. The model parameters, γ1\gamma_{1} and γ2\gamma_{2}, are determined with the BESIII experimental data on the timelike effective form factors |Geff||G_{\rm eff}| of Σ+\Sigma^{+} and Σ{\Sigma}^{-}. It is found that the experimental data can be well reproduced with only one model parameter. Then, we analytically continue the electromagnetic form factors to spacelike region and evaluate the spacelike form factors of Σ+\Sigma^{+} and Σ\Sigma^{-}. The obtained electromagnetic form factors of the Σ+\Sigma^{+} and Σ\Sigma^{-} and their ratio are qualitatively comparable with other model calculations, but slightly different quantitatively.

Finally, we would like to stress that, the estimations of Σ\Sigma form factors in this work, the Λ\Lambda form factors in Ref. Yang:2019mzq and proton form factors in Refs. Iachello:1972nu ; Iachello:2004aq ; Bijker:2004yu indicate that the vector meson dominance model is valid to study the electromagnetic form factors of the baryons, accurate data for the e+e>e^{+}e^{-}-> baryon + anti-baryon reaction can be used to improve our knowledge of baryon form factors, which are at present poorly known.

Acknowledgments

We thank the anonymous referee for critical comments and suggestions that are valuable in improving the presentation of the present work. This work is partly supported by the National Natural Science Foundation of China under Grants Nos. 12075288, 11735003, and 11961141012.

References

  • (1) Y. Yang, D. Y. Chen and Z. Lu, Phys. Rev. D 100, 073007 (2019).
  • (2) G. Ramalho, M. T. Peña and K. Tsushima, Phys. Rev. D 101, 014014 (2020).
  • (3) M. Yang and P. Wang, Phys. Rev. D 102, 056024 (2020).
  • (4) M. Ablikim et al. [BESIII Collaboration], arXiv:2009.01404 [hep-ex].
  • (5) J. Haidenbauer, U. G. Meiß ner and L. Y. Dai, arXiv:2011.06857 [nucl-th].
  • (6) L. S. Geng, J. Martin Camalich, L. Alvarez-Ruso and M. J. Vicente Vacas, Phys. Rev. Lett.  101, 222002 (2008).
  • (7) J. R. Green, J. W. Negele, A. V. Pochinsky, S. N. Syritsyn, M. Engelhardt and S. Krieg, Phys. Rev. D 90, 074507 (2014).
  • (8) S. J. Brodsky and G. R. Farrar, Phys. Rev. D 11, 1309 (1975).
  • (9) R. R. Akhmetshin et al. [CMD-3 Collaboration], Phys. Lett. B 759, 634 (2016).
  • (10) M. Andreotti et al., Phys. Lett. B 559, 20 (2003).
  • (11) A. Antonelli et al., Nucl. Phys. B 517, 3 (1998).
  • (12) M. Ablikim et al. [BESIII Collaboration], Phys. Rev. Lett.  124, 042001 (2020).
  • (13) G. Bardin et al., Nucl. Phys. B 411, 3 (1994).
  • (14) D. Bisello et al., Nucl. Phys. B 224, 379 (1983).
  • (15) M. Ambrogiani et al. [E835 Collaboration], Phys. Rev. D 60, 032002 (1999).
  • (16) B. Aubert et al. [BaBar Collaboration], Phys. Rev. D 73, 012005 (2006).
  • (17) J. P. Lees et al. [BaBar Collaboration], Phys. Rev. D 88, 072009 (2013).
  • (18) J. P. Lees et al. [BaBar Collaboration], Phys. Rev. D 87, 092005 (2013).
  • (19) M. Ablikim et al. [BESIII Collaboration], Phys. Rev. D 91, 112004 (2015).
  • (20) T. A. Armstrong et al. [E760 Collaboration], Phys. Rev. Lett.  70, 1212 (1993).
  • (21) H. Zhu et al. [E93026 Collaboration], Phys. Rev. Lett.  87, 081801 (2001).
  • (22) I. Passchier et al., Phys. Rev. Lett.  88, 102302 (2002).
  • (23) O. Gayou et al. [Jefferson Lab Hall A Collaboration], Phys. Rev. Lett.  88, 092301 (2002).
  • (24) R. Madey et al. [E93-038 Collaboration], Phys. Rev. Lett.  91, 122002 (2003).
  • (25) G. Warren et al. [Jefferson Lab E93-026 Collaboration], Phys. Rev. Lett.  92, 042301 (2004).
  • (26) J. Becker et al., Eur. Phys. J. A 6, 329 (1999).
  • (27) J. Bermuth et al., Phys. Lett. B 564, 199 (2003).
  • (28) J. Golak, G. Ziemer, H. Kamada, H. Witala and W. Gloeckle, Phys. Rev. C 63, 034006 (2001).
  • (29) O. Gayou et al., Phys. Rev. C 64, 038202 (2001).
  • (30) M. Ostrick et al., Phys. Rev. Lett.  83, 276 (1999).
  • (31) D. Rohe et al., Phys. Rev. Lett.  83, 4257 (1999).
  • (32) D. Y. Chen and Y. B. Dong, Commun. Theor. Phys.  47, 539 (2007).
  • (33) M. Ablikim et al. [BESIII Collaboration], Chin. Phys. C 41, 063001 (2017).
  • (34) H. W. Lin and K. Orginos, Phys. Rev. D 79, 074507 (2009).
  • (35) Y. L. Liu and M. Q. Huang, Phys. Rev. D 79, 114031 (2009).
  • (36) B. Kubis and U. G. Meißner, Eur. Phys. J. C 18, 747 (2001).
  • (37) F. Iachello, A. D. Jackson and A. Lande, Phys. Lett.  43B, 191 (1973).
  • (38) F. Iachello and Q. Wan, Phys. Rev. C 69, 055204 (2004).
  • (39) R. Bijker and F. Iachello, Phys. Rev. C 69, 068201 (2004).
  • (40) M. Tanabashi et al. [Particle Data Group], Phys. Rev. D 98, 030001 (2018).
  • (41) G. Ramalho, K. Tsushima and A. W. Thomas, J. Phys. G 40, 015102 (2013).
  • (42) M. Doring, C. Hanhart, F. Huang, S. Krewald, U.-G. Meissner and D. Ronchen, Nucl. Phys. A 851, 58 (2011).
  • (43) R. Machleidt, K. Holinde and C. Elster, Phys. Rept.  149, 1 (1987).
  • (44) Q. Zhao, G. Li and C. H. Chang, Phys. Lett. B 645, 173 (2007).
  • (45) Y. Huang, J. J. Xie, X. R. Chen, J. He and H. F. Zhang, Int. J. Mod. Phys. E 23, 1460002 (2014).
  • (46) Y. Huang, J. J. Xie, J. He, X. Chen and H. F. Zhang, Chin. Phys. C 40,124104 (2016).
  • (47) A. Denig and G. Salme, Prog. Part. Nucl. Phys.  68, 113 (2013).