This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Eigenvalue distributions of high-dimensional matrix processes driven by fractional Brownian motion

  Jian Songlabel=e1][email protected] [      Jianfeng Yao label=e2][email protected] [      Wangjun Yuanlabel=e3][email protected] [ Shandong University and The University of Hong Kong Research Center for Mathematics and Interdisciplinary Sciences, Shandong University, Qingdao, Shandong, 266237, China and School of Mathematics, Shandong University, Jinan, Shandong, 250100, China
Department of Statistics and Actuarial Science, The University of Hong Kong
Department of Mathematics, The University of Hong Kong
Abstract

In this article, we study high-dimensional behavior of empirical spectral distributions {LN(t),t[0,T]}\{L_{N}(t),t\in[0,T]\} for a class of N×NN\times N symmetric/Hermitian random matrices, whose entries are generated from the solution of stochastic differential equation driven by fractional Brownian motion with Hurst parameter H(1/2,1)H\in(1/2,1). For Wigner-type matrices, we obtain almost sure relative compactness of {LN(t),t[0,T]}N\{L_{N}(t),t\in[0,T]\}_{N\in\mathbb{N}} in C([0,T],𝐏())C([0,T],\mathbf{P}(\mathbb{R})) following the approach in [Anderson2010]; for Wishart-type matrices, we obtain tightness of {LN(t),t[0,T]}N\{L_{N}(t),t\in[0,T]\}_{N\in\mathbb{N}} on C([0,T],𝐏())C([0,T],\mathbf{P}(\mathbb{R})) by tightness criterions provided in Appendix B. The limit of {LN(t),t[0,T]}\{L_{N}(t),t\in[0,T]\} as NN\to\infty is also characterised.

60H15, 60F05,
matrix-valued process,
fractional Brownian motion,
empirical spectral distribution,
measure-valued process,
tightness criterion,
keywords:
[class=AMS]
keywords:
\startlocaldefs\endlocaldefs

and and

1 Introduction

There has been increasing research activity on matrix-valued stochastic differential equations (SDEs) in recent years. A prominent example is the class of generalized Wishart processes introduced in [Graczyk2013]. This class generalizes classical examples of symmetric Brownian motion [Dyson62], the Wishart process [Bru91] and the symmetric matrix-valued process whose entries are independent Ornstein-Uhlenbeck processes [Chan1992]. Recent works on generalized Wishart processes include [Song20, Song19] and [Graczyk2014, Graczyk2019]. A common feature of these processes is that they are all driven by independent Brownian motions.

In contrast, the study of SDE matrices driven by fractional Brownian motions (fBm) has a shorter history and less literature. To our best knowledge, the first paper is [Nualart20144266], where the symmetric fractional Brownian matrix was studied. The SDE for the associated eigenvalues and conditions for non-collision of the eigenvalues were obtained when the Hurst parameter H>1/2H>1/2 by using fractional calculus and Malliavin calculus. The convergence in distribution of the empirical spectral measure of a scaled symmetric fractional Brownian matrix was established in [Pardo2016] by using Malliavin calculus and a tightness argument. These results were generalized to centered Gaussian process in [Jaramillo2019]. Besides, [Pardo2017] obtained SDEs for the eigenvalues, conditions for non-collision of eigenvalues and the convergence in law of the empirical eigenvalue measure processes for a scaled fractional Wishart matrix (the product of an independent fractional Brownian matrix and its transpose). In the present paper, by adopting a different approach, we obtain stronger results on the convergence of empirical measures of eigenvalues for a significantly larger class of matrix-valued processes driven by fBms (see Remark 3.1).

More precisely, consider the following 1-dimensional SDE

dXt=σ(Xt)dBtH+b(Xt)dt,t0,\displaystyle dX_{t}=\sigma(X_{t})\circ dB_{t}^{H}+b(X_{t})dt,\quad t\geq 0, (1.1)

with initial value X0X_{0} independent of BH=(BtH)t0B^{H}=(B^{H}_{t})_{t\geq 0}. Here, BtHB_{t}^{H} is a fractional Brownian motion with Hurst parameter H(1/2,1)H\in(1/2,1), and the differential dBtH\circ dB_{t}^{H} is in the Stratonovich sense. It has been shown in [Lyons1994] that there is a unique solution to SDE (1.1) if the coefficient functions σ\sigma and bb have bounded derivatives which are Hölder continuous of order greater than 1/H11/H-1.

Let {Xij(t)}i,j1\{X_{ij}(t)\}_{i,j\geq 1} be i.i.d. copies of XtX_{t} and YN(t)=(YijN(t))1i,jNY^{N}(t)=\left(Y_{ij}^{N}(t)\right)_{1\leq i,j\leq N} be a symmetric N×NN\times N matrix with entries

YijN(t)={1NXij(t),1i<jN,2NXii(t),1iN.\displaystyle Y_{ij}^{N}(t)=\begin{cases}\dfrac{1}{\sqrt{N}}X_{ij}(t),&1\leq i<j\leq N,\\ \dfrac{\sqrt{2}}{\sqrt{N}}X_{ii}(t),&1\leq i\leq N.\end{cases} (1.2)

Let λ1N(t)λNN(t)\lambda_{1}^{N}(t)\leq\cdots\leq\lambda_{N}^{N}(t) be the eigenvalues of YN(t)Y^{N}(t) and

LN(t)(dx)=1Ni=1NδλiN(t)(dx)\displaystyle L_{N}(t)(dx)=\dfrac{1}{N}\sum_{i=1}^{N}\delta_{\lambda_{i}^{N}(t)}(dx) (1.3)

be the empirical distribution of the eigenvalues.

In this paper, we aim to study, as the dimension NN tends to infinity, the limiting behavior of the empirical measure-valued processes {LN(t),t[0,T]}\{L_{N}(t),t\in[0,T]\} defined by (1.3) and the empirical measure-valued processes arising from other related matrix-valued processes in the space C([0,T],𝐏())C([0,T],\mathbf{P}(\mathbb{R})) of continuous measure-valued processes, with 𝐏()\mathbf{P}(\mathbb{R}) being the space of probability measures equipped with its weak topology. A summary of the contents of the paper is as follows.

In Section 2, we study the solution of SDE (1.1). In [Hu2007], a pathwise upper bound for |Xt||X_{t}| on the time interval [0,T][0,T] was obtained under some boundedness and smoothness conditions on the coefficient functions. We adapt the techniques used in [Hu2007] to study the increments |XtXs||X_{t}-X_{s}| for t,s[0,T]t,s\in[0,T] and obtain the pathwise Hölder continuity for XtX_{t}. Moreover, under some integrability conditions on the initial value X0X_{0}, the Hölder norm of XtX_{t} is shown to be LpL^{p}-integrable. These results improve the previous results in [nr02] with sharper bounds for the increments of the process.

In Section 3, we prove the almost sure high-dimensional convergence in C([0,T],𝐏())C([0,T],\mathbf{P}(\mathbb{R})) for the empirical spectral measure-valued process (1.3) of the Wigner-type matrix (1.2). We also obtain the PDE for the Stieltjes transform Gt(z)G_{t}(z) of the limiting measure process μt\mu_{t}, which turns to be the complex Burgers’ equation up to a change of variable (see Remark 3.2 and Remark 3.3). This generalizes the results of [Pardo2016], where the special case of Xt=BtHX_{t}=B_{t}^{H} was studied (note that the convergence obtained therein is in law). A complex analogue is also studied at the end of this section.

In Section 4, we extend the model of Wigner-type matrix to the locally dependent symmetric matrix-valued stochastic process RN(t)=(RijN(t))1i,jNR^{N}(t)=\left(R^{N}_{ij}(t)\right)_{1\leq i,j\leq N}, where each RijN(t)R_{ij}^{N}(t) is a weighted sum of i.i.d. {X(k,l)(t)}\{X_{(k,l)}(t)\} for (k,l)(k,l) in a fixed and bounded neighborhood of (i,j)(i,j) (see (4.1) for the definition). We also establish the almost sure convergence of the empirical spectral measure-valued process in C([0,T],𝐏())C([0,T],\mathbf{P}(\mathbb{R})). Moreover, the limiting measure-valued process μt\mu_{t} is characterized by an equation satisfied by its Stieltjes transform (see Theorem 4.1). It is worth noticing that for the proofs of the almost sure convergence for the empirical spectral measure-valued processes in both Section 3 and Section 4, we follow the strategy used in [Song20] (which was inspired by [Anderson2010]).

In Section 5, we study the high-dimensional limit of the empirical spectral measure-valued processes of the Wishart-type matrix-valued processes given by (5.1) and its complex analogue (5.9). In the special case where Xt=BtHX_{t}=B_{t}^{H}, we recover the convergence result in [Pardo2017]. We also obtain the PDE for the Stieltjes transform Gt(z)G_{t}(z) of the limit measure process μt\mu_{t} (see Remarks 5.4 and 5.6).

For Wishart-type matrix-valued processes, we are not able to obtain the almost sure convergence in C([0,T],𝐏())C([0,T],\mathbf{P}(\mathbb{R})) for the empirical spectral measure-valued processes as done in Section 3 and Section 4 since the method used there heavily relies on the independence of the upper triangular entries. Instead, we obtain the convergence in law by a tightness criterion for probability measures on C([0,T],𝐏())C([0,T],\mathbf{P}(\mathbb{R})) (see Theorem B.2, Propositions B.2 and B.3 in Appendix B). The tightness criterion Theorem B.2 might be already well-known in the literature (we refer to, e.g., [Rogers1993, Pardo2016, Pardo2017, Jaramillo2019] for related arguments), however, we could not find a reference stating it explicitly, and we provide it in Appendix B.

Finally, for the reader’s convenience, some preliminaries on random matrices used in the proofs are provided in Appendix A, and some useful lemmas and tightness criterions are provided in Appendix B.

2 Hölder continuity of the solution to the SDE (1.1)

Some notations are in order. The Hölder norm of a Hölder continuous function ff of order β\beta is

fa,b;β=supax<yb|f(x)f(y)||xy|β.\displaystyle\|f\|_{a,b;\beta}=\sup_{a\leq x<y\leq b}\dfrac{|f(x)-f(y)|}{|x-y|^{\beta}}.

We also use

MF=(i,j=1N|Mij|2)1/2.\displaystyle\|M\|_{F}=\left(\sum_{i,j=1}^{N}|M_{ij}|^{2}\right)^{1/2}.

to denote the Frobenius norm (also known as the Hilbert-Schmidt norm or 22-Schatten norm) of a N×NN\times N matrix M=(Mij)1i,jNM=(M_{ij})_{1\leq i,j\leq N}.

2.1 Preliminaries on fractional calculus and fractional Brownian motion

In this subsection, we recall some basic results in fractional calculus. See [skm93] for more details. Let a,ba,b\in\mathbb{R} with a<ba<b and let α>0.\alpha>0. The left-sided and right-sided fractional Riemann-Liouville integrals of fL1([a,b])f\in L^{1}([a,b]) of order α\alpha are defined for almost all t(a,b)t\in(a,b) by

Ia+αf(t)=1Γ(α)at(ts)α1f(s)𝑑s,I_{a+}^{\alpha}f\left(t\right)=\frac{1}{\Gamma\left(\alpha\right)}\int_{a}^{t}\left(t-s\right)^{\alpha-1}f\left(s\right)ds\,,

and

Ibαf(t)=(1)αΓ(α)tb(st)α1f(s)𝑑s,I_{b-}^{\alpha}f\left(t\right)=\frac{\left(-1\right)^{-\alpha}}{\Gamma\left(\alpha\right)}\int_{t}^{b}\left(s-t\right)^{\alpha-1}f\left(s\right)ds,

respectively, where (1)α=eiπα\left(-1\right)^{-\alpha}=e^{-i\pi\alpha} and Γ(α)=0rα1er𝑑r\displaystyle\Gamma\left(\alpha\right)=\int_{0}^{\infty}r^{\alpha-1}e^{-r}dr is the Euler gamma function.

Let Ia+α(Lp)I_{a+}^{\alpha}(L^{p}) (resp. Ibα(Lp)I_{b-}^{\alpha}(L^{p})) be the image of Lp([a,b])L^{p}([a,b]) by the operator Ia+αI_{a+}^{\alpha} (resp. IbαI_{b-}^{\alpha}). If fIa+α(Lp)f\in I_{a+}^{\alpha}(L^{p}) (resp. fIbα(Lp)f\in I_{b-}^{\alpha}(L^{p}) ) and α(0,1)\alpha\in(0,1), then the left-sided and right-sided fractional derivatives are defined as

Da+αf(t)=1Γ(1α)(f(t)(ta)α+αatf(t)f(s)(ts)α+1𝑑s),\displaystyle D_{a+}^{\alpha}f\left(t\right)=\frac{1}{\Gamma\left(1-\alpha\right)}\left(\frac{f\left(t\right)}{\left(t-a\right)^{\alpha}}+\alpha\int_{a}^{t}\frac{f\left(t\right)-f\left(s\right)}{\left(t-s\right)^{\alpha+1}}ds\right),
Dbαf(t)=(1)αΓ(1α)(f(t)(bt)α+αtbf(t)f(s)(st)α+1𝑑s)\displaystyle D_{b-}^{\alpha}f\left(t\right)=\frac{\left(-1\right)^{\alpha}}{\Gamma\left(1-\alpha\right)}\left(\frac{f\left(t\right)}{\left(b-t\right)^{\alpha}}+\alpha\int_{t}^{b}\frac{f\left(t\right)-f\left(s\right)}{\left(s-t\right)^{\alpha+1}}ds\right) (2.1)

respectively, for almost all t(a,b)t\in(a,b).

Let Cα([a,b])C^{\alpha}([a,b]) denote the space of α\alpha-Hölder continuous functions of order α\alpha on the interval [a,b][a,b]. When αp>1\alpha p>1, then we have Ia+α(Lp)Cα1p([a,b])I_{a+}^{\alpha}(L^{p})\subset C^{\alpha-\frac{1}{p}}([a,b]). On the other hand, if β>α\beta>\alpha, then Cβ([a,b])Ia+α(Lp)C^{\beta}([a,b])\subset I_{a+}^{\alpha}(L^{p}) for all p>1p>1.

The following inversion formulas hold:

Ia+α(Ia+βf)=Ia+α+βf,\displaystyle I_{a+}^{\alpha}(I_{a+}^{\beta}f)=I_{a+}^{\alpha+\beta}f, fL1;\displaystyle f\in L^{1};
Da+α(Ia+αf)=f,\displaystyle D_{a+}^{\alpha}(I_{a+}^{\alpha}f)=f, fL1;\displaystyle f\in L^{1};
Ia+α(Da+αf)=f,\displaystyle I_{a+}^{\alpha}(D_{a+}^{\alpha}f)=f, fIa+α(L1);\displaystyle f\in I_{a+}^{\alpha}(L^{1});
Da+α(Da+βf)=Da+α+βf,\displaystyle D_{a+}^{\alpha}(D_{a+}^{\beta}f)=D_{a+}^{\alpha+\beta}f, fIa+α+β(L1),α+β1.\displaystyle f\in I_{a+}^{\alpha+\beta}(L^{1}),~{}\alpha+\beta\leq 1.

Similar inversion formulas hold for the operators IbαI_{b-}^{\alpha} and DbαD_{b-}^{\alpha} as well.

We also have the following integration by parts formula.

Proposition 2.1.

If fIa+α(Lp),gIbα(Lq)f\in I_{a+}^{\alpha}(L^{p}),~{}g\in I_{b-}^{\alpha}(L^{q}) and 1p+1q=1\frac{1}{p}+\frac{1}{q}=1, we have

ab(Da+αf)(s)g(s)𝑑s=abf(s)(Dbαg)(s)𝑑s.\int_{a}^{b}(D_{a+}^{\alpha}f)(s)g(s)ds=\int_{a}^{b}f(s)(D_{b-}^{\alpha}g)(s)ds. (2.2)

The following proposition indicates the relationship between Young’s integral and Lebesgue integral.

Proposition 2.2.

Suppose that fCλ(a,b)f\in C^{\lambda}(a,b) and gCμ(a,b)g\in C^{\mu}(a,b) with λ+μ>1\lambda+\mu>1. Let λ>α{\lambda}>\alpha and μ>1α\mu>1-\alpha. Then the Riemann-Stieltjes integral abf𝑑g\int_{a}^{b}fdg exists and it can be expressed as

abf𝑑g=(1)αabDa+αf(t)Db1αgb(t)𝑑t,\int_{a}^{b}fdg=(-1)^{\alpha}\int_{a}^{b}D_{a+}^{\alpha}f\left(t\right)D_{b-}^{1-\alpha}g_{b-}\left(t\right)dt\,, (2.3)

where gb(t)=g(t)g(b)g_{b-}\left(t\right)=g\left(t\right)-g\left(b\right).

It is known that almost all the paths of BHB^{H} are (Hε)(H-\varepsilon)-Hölder continuous for ε(0,H)\varepsilon\in(0,H). By the Fernique Theorem, we have the following estimation for its Hölder norm.

Lemma 2.1.

There exists a positive constant α=α(H,ε,T)\alpha=\alpha(H,\varepsilon,T) depending on (H,ε,T)(H,\varepsilon,T), such that

𝔼[eαBH0,T;Hε2]<.\displaystyle\mathbb{E}\left[e^{\alpha\|B^{H}\|_{0,T;H-\varepsilon}^{2}}\right]<\infty.

2.2 Hölder continuity

In this subsection, for the solution to (1.1), we provide some estimations for its Hölder norm, following the approach developed in [Hu2007, Theorem 2].

Theorem 2.1.

Suppose that the coefficient functions σ\sigma and bb are bounded and have bounded derivatives which are Hölder continuous of order greater than 1/(Hε)11/(H-\varepsilon)-1 for some ε(0,H12)\varepsilon\in(0,H-\frac{1}{2}). Then there exists a constant C(H,ε)C(H,\varepsilon) that depends on (H,ε)(H,\varepsilon) only, such that for all T>0T>0 and 0s<tT0\leq s<t\leq T,

|XtXs|\displaystyle|X_{t}-X_{s}| C(H,ε)σ[BH0,T;Hε(ts)HεBH0,T;Hε1/(Hε)σ1/(Hε)1(ts)]\displaystyle\leq C(H,\varepsilon)\|\sigma\|_{\infty}\Big{[}\|B^{H}\|_{0,T;H-\varepsilon}(t-s)^{H-\varepsilon}\vee\|B^{H}\|_{0,T;H-\varepsilon}^{1/(H-\varepsilon)}\|\sigma^{\prime}\|_{\infty}^{1/(H-\varepsilon)-1}(t-s)\Big{]}
+2b(ts).\displaystyle\quad+2\|b\|_{\infty}(t-s). (2.4)

Consequently, there exists a random variable ξ\xi with 𝔼|ξ|p<\mathbb{E}|\xi|^{p}<\infty for all p>1p>1 such that for 0s<tT0\leq s<t\leq T,

|Xt(ω)Xs(ω)|ξ(ω)|ts|Hε,a.s.|X_{t}(\omega)-X_{s}(\omega)|\leq\xi(\omega)|t-s|^{H-\varepsilon},a.s.
Remark 2.1.

Note that the pathwise Hölder continuity of the process XtX_{t} was established in [nr02, Theorem 2.1] under some Lipschitz conditions and growth conditions on the coefficient functions bb and σ\sigma. They also obtained the LpL^{p}-integrability of the Hölder norm of the process for H>12+γ4H>\frac{1}{2}+\frac{\gamma}{4} where γ[0,1]\gamma\in[0,1] is the growth rate of the function σ\sigma.

An upper bound for supt[0,T]|Xt|\sup_{t\in[0,T]}|X_{t}| was obtained in [Hu2007, Theorem 2], and it turns out that the techniques introduced in [Hu2007] can be used to improve the estimations for the pathwise Hölder norm. This is done in Theorem 2.1 for bounded coefficient functions, and in Theorem 2.2 for unbounded coefficient functions (with linear growth). Compared with the result in [nr02], Theorems 2.1 and 2.2 provide sharper upper bounds for the increments of the processes, which allow to establish the LpL^{p}-integrability of the Hölder norm for all H>1/2H>1/2. In contrast, [nr02, Theorem 2.1] obtained the LpL^{p}-integrability for H>3/4H>3/4 when the coefficient functions have linear growth.

Proof of Theorem 2.1.

Fix α(1H+ε,1/2)\alpha\in(1-H+\varepsilon,1/2). By Proposition 2.2, for 0stT0\leq s\leq t\leq T,

|stσ(Xr)𝑑BrH|\displaystyle\left|\int_{s}^{t}\sigma(X_{r})\circ dB_{r}^{H}\right| st|Ds+ασ(Xr)Dt1α(BrHBtH)|𝑑r.\displaystyle\leq\int_{s}^{t}\left|D_{s+}^{\alpha}\sigma(X_{r})D_{t-}^{1-\alpha}(B_{r}^{H}-B_{t}^{H})\right|dr. (2.5)

By (2.1) and Lemma 2.1, for r[s,t]r\in[s,t], we have

|Dt1α(BrHBtH)|\displaystyle\left|D_{t-}^{1-\alpha}(B_{r}^{H}-B_{t}^{H})\right| =1Γ(α)|BrHBtH(tr)1α+(1α)rtBrHBuH(ur)2α𝑑u|\displaystyle=\dfrac{1}{\Gamma(\alpha)}\left|\dfrac{B_{r}^{H}-B_{t}^{H}}{(t-r)^{1-\alpha}}+(1-\alpha)\int_{r}^{t}\dfrac{B_{r}^{H}-B_{u}^{H}}{(u-r)^{2-\alpha}}du\right|
1Γ(α)|BrHBtH||tr|1α+1αΓ(α)rt|BrHBuH||ur|2α𝑑u\displaystyle\leq\dfrac{1}{\Gamma(\alpha)}\dfrac{\left|B_{r}^{H}-B_{t}^{H}\right|}{|t-r|^{1-\alpha}}+\dfrac{1-\alpha}{\Gamma(\alpha)}\int_{r}^{t}\dfrac{\left|B_{r}^{H}-B_{u}^{H}\right|}{|u-r|^{2-\alpha}}du
BHs,t;HεΓ(α)|tr|Hε1+α+(1α)BHs,t;HεΓ(α)rt(ur)Hε+α2𝑑u\displaystyle\leq\dfrac{\|B^{H}\|_{s,t;H-\varepsilon}}{\Gamma(\alpha)}|t-r|^{H-\varepsilon-1+\alpha}+\dfrac{(1-\alpha)\|B^{H}\|_{s,t;H-\varepsilon}}{\Gamma(\alpha)}\int_{r}^{t}(u-r)^{H-\varepsilon+\alpha-2}du
=(1Γ(α)+1α(Hε+α1)Γ(α))BHs,t;Hε|tr|Hε1+α,\displaystyle=\left(\dfrac{1}{\Gamma(\alpha)}+\dfrac{1-\alpha}{(H-\varepsilon+\alpha-1)\Gamma(\alpha)}\right)\|B^{H}\|_{s,t;H-\varepsilon}|t-r|^{H-\varepsilon-1+\alpha}\,, (2.6)

and

|Ds+ασ(Xr)|\displaystyle\left|D_{s+}^{\alpha}\sigma(X_{r})\right| 1Γ(1α)|σ(Xr)||rs|α+αΓ(1α)sr|σ(Xr)σ(Xu)||ru|α+1𝑑u\displaystyle\leq\dfrac{1}{\Gamma(1-\alpha)}\dfrac{\left|\sigma(X_{r})\right|}{|r-s|^{\alpha}}+\dfrac{\alpha}{\Gamma(1-\alpha)}\int_{s}^{r}\dfrac{\left|\sigma(X_{r})-\sigma(X_{u})\right|}{|r-u|^{\alpha+1}}du
σΓ(1α)|rs|α+ασΓ(1α)sr|XrXu||ru|α+1𝑑u\displaystyle\leq\dfrac{\|\sigma\|_{\infty}}{\Gamma(1-\alpha)}|r-s|^{-\alpha}+\dfrac{\alpha\|\sigma^{\prime}\|_{\infty}}{\Gamma(1-\alpha)}\int_{s}^{r}\dfrac{\left|X_{r}-X_{u}\right|}{|r-u|^{\alpha+1}}du
σΓ(1α)|rs|α+ασXs,t;HεΓ(1α)sr1|ru|α+1(Hε)𝑑u\displaystyle\leq\dfrac{\|\sigma\|_{\infty}}{\Gamma(1-\alpha)}|r-s|^{-\alpha}+\dfrac{\alpha\|\sigma^{\prime}\|_{\infty}\|X\|_{s,t;H-\varepsilon}}{\Gamma(1-\alpha)}\int_{s}^{r}\dfrac{1}{|r-u|^{\alpha+1-(H-\varepsilon)}}du
=σΓ(1α)|rs|α+ασXs,t;HεΓ(1α)(Hεα)|rs|Hεα,\displaystyle=\dfrac{\|\sigma\|_{\infty}}{\Gamma(1-\alpha)}|r-s|^{-\alpha}+\dfrac{\alpha\|\sigma^{\prime}\|_{\infty}\|X\|_{s,t;H-\varepsilon}}{\Gamma(1-\alpha)(H-\varepsilon-\alpha)}|r-s|^{H-\varepsilon-\alpha}\,, (2.7)

where the Hölder norm Xs,t;Hε\|X\|_{s,t;H-\varepsilon} is finite a.s. by [nr02, Theorem 2.1].

By (2.5), (2.2) and (2.2), we have

|stσ(Xr)𝑑BrH|\displaystyle\left|\int_{s}^{t}\sigma(X_{r})\circ dB_{r}^{H}\right|
\displaystyle\leq st(σΓ(1α)|rs|α+ασXs,t;HεΓ(1α)(Hεα)|rs|Hεα)\displaystyle\int_{s}^{t}\left(\dfrac{\|\sigma\|_{\infty}}{\Gamma(1-\alpha)}|r-s|^{-\alpha}+\dfrac{\alpha\|\sigma^{\prime}\|_{\infty}\|X\|_{s,t;H-\varepsilon}}{\Gamma(1-\alpha)(H-\varepsilon-\alpha)}|r-s|^{H-\varepsilon-\alpha}\right)
(1Γ(α)+1α(Hε+α1)Γ(α))BHs,t;Hε|tr|Hε1+αdr\displaystyle\qquad\quad\left(\dfrac{1}{\Gamma(\alpha)}+\dfrac{1-\alpha}{(H-\varepsilon+\alpha-1)\Gamma(\alpha)}\right)\|B^{H}\|_{s,t;H-\varepsilon}|t-r|^{H-\varepsilon-1+\alpha}dr
=\displaystyle= (1Γ(α)+1α(Hε+α1)Γ(α))σΓ(1α)BHs,t;Hεst|tr|Hε1+α|rs|α𝑑r\displaystyle\left(\dfrac{1}{\Gamma(\alpha)}+\dfrac{1-\alpha}{(H-\varepsilon+\alpha-1)\Gamma(\alpha)}\right)\dfrac{\|\sigma\|_{\infty}}{\Gamma(1-\alpha)}\|B^{H}\|_{s,t;H-\varepsilon}\int_{s}^{t}|t-r|^{H-\varepsilon-1+\alpha}|r-s|^{-\alpha}dr
+(1Γ(α)+1α(Hε+α1)Γ(α))ασXs,t;HεΓ(1α)(Hεα)BHs,t;Hεst|tr|Hε1+α|rs|Hεα𝑑r\displaystyle+\left(\dfrac{1}{\Gamma(\alpha)}+\dfrac{1-\alpha}{(H-\varepsilon+\alpha-1)\Gamma(\alpha)}\right)\dfrac{\alpha\|\sigma^{\prime}\|_{\infty}\|X\|_{s,t;H-\varepsilon}}{\Gamma(1-\alpha)(H-\varepsilon-\alpha)}\|B^{H}\|_{s,t;H-\varepsilon}\int_{s}^{t}|t-r|^{H-\varepsilon-1+\alpha}|r-s|^{H-\varepsilon-\alpha}dr
=\displaystyle= (1Γ(α)+1α(Hε+α1)Γ(α))σΓ(1α)BHs,t;Hε(ts)Hεβ(Hε+α,1α)\displaystyle\left(\dfrac{1}{\Gamma(\alpha)}+\dfrac{1-\alpha}{(H-\varepsilon+\alpha-1)\Gamma(\alpha)}\right)\dfrac{\|\sigma\|_{\infty}}{\Gamma(1-\alpha)}\|B^{H}\|_{s,t;H-\varepsilon}(t-s)^{H-\varepsilon}\beta(H-\varepsilon+\alpha,1-\alpha)
+(1Γ(α)+1α(Hε+α1)Γ(α))ασXs,t;HεΓ(1α)(Hεα)BHs,t;Hε(ts)2H2ε\displaystyle\quad+\left(\dfrac{1}{\Gamma(\alpha)}+\dfrac{1-\alpha}{(H-\varepsilon+\alpha-1)\Gamma(\alpha)}\right)\dfrac{\alpha\|\sigma^{\prime}\|_{\infty}\|X\|_{s,t;H-\varepsilon}}{\Gamma(1-\alpha)(H-\varepsilon-\alpha)}\|B^{H}\|_{s,t;H-\varepsilon}(t-s)^{2H-2\varepsilon}
×β(Hε+α,Hεα+1)\displaystyle\quad\qquad\times\beta(H-\varepsilon+\alpha,H-\varepsilon-\alpha+1)
\displaystyle\leq C1(H,ε)BH0,T;Hε[σ(ts)Hε+σXs,t;Hε(ts)2H2ε],\displaystyle C_{1}(H,\varepsilon)\|B^{H}\|_{0,T;H-\varepsilon}\Big{[}\|\sigma\|_{\infty}(t-s)^{H-\varepsilon}+\|\sigma^{\prime}\|_{\infty}\|X\|_{s,t;H-\varepsilon}(t-s)^{2H-2\varepsilon}\Big{]}, (2.8)

where β(p,q)\beta(p,q) is the Beta function, and C1(H,ε)C_{1}(H,\varepsilon) is a constant depending on (H,ε)(H,\varepsilon) only.

Hence, by (2.2), for 0stT0\leq s\leq t\leq T,

|XtXs|\displaystyle\left|X_{t}-X_{s}\right| |stσ(Xr)𝑑BrH|+|stb(Xr)𝑑r|\displaystyle\leq\left|\int_{s}^{t}\sigma(X_{r})\circ dB_{r}^{H}\right|+\left|\int_{s}^{t}b(X_{r})dr\right|
C1(H,ε)BH0,T;Hε[σ(ts)Hε+σXs,t;Hε(ts)2H2ε]\displaystyle\leq C_{1}(H,\varepsilon)\|B^{H}\|_{0,T;H-\varepsilon}\Big{[}\|\sigma\|_{\infty}(t-s)^{H-\varepsilon}+\|\sigma^{\prime}\|_{\infty}\|X\|_{s,t;H-\varepsilon}(t-s)^{2H-2\varepsilon}\Big{]}
+b(ts),\displaystyle\quad+\|b\|_{\infty}(t-s), (2.9)

and therefore,

Xs,t;Hε\displaystyle\|X\|_{s,t;H-\varepsilon} C1(H,ε)BH0,T;Hε[σ+σXs,t;Hε(ts)Hε]\displaystyle\leq C_{1}(H,\varepsilon)\|B^{H}\|_{0,T;H-\varepsilon}\Big{[}\|\sigma\|_{\infty}+\|\sigma^{\prime}\|_{\infty}\|X\|_{s,t;H-\varepsilon}(t-s)^{H-\varepsilon}\Big{]}
+b(ts)1H+ε.\displaystyle\quad+\|b\|_{\infty}(t-s)^{1-H+\varepsilon}. (2.10)

Choose Δ\Delta such that

ΔHε=12C1(H,ε)BH0,T;Hεσ,\displaystyle\Delta^{H-\varepsilon}=\dfrac{1}{2C_{1}(H,\varepsilon)\|B^{H}\|_{0,T;H-\varepsilon}\|\sigma^{\prime}\|_{\infty}}\,,

and if the denominator vanishes, we set Δ=\Delta=\infty.

If Δts\Delta\geq t-s, (2.2) yields

Xs,t;Hε\displaystyle\|X\|_{s,t;H-\varepsilon} C1(H,ε)BH0,T;Hεσ+12Xs,t;Hε+b(ts)1H+ε,\displaystyle\leq C_{1}(H,\varepsilon)\|B^{H}\|_{0,T;H-\varepsilon}\|\sigma\|_{\infty}+\dfrac{1}{2}\|X\|_{s,t;H-\varepsilon}+\|b\|_{\infty}(t-s)^{1-H+\varepsilon},

and thus,

|XtXs|\displaystyle\left|X_{t}-X_{s}\right| (ts)HεXs,t;Hε\displaystyle\leq(t-s)^{H-\varepsilon}\|X\|_{s,t;H-\varepsilon}
2C1(H,ε)BH0,T;Hεσ(ts)Hε+2b(ts).\displaystyle\leq 2C_{1}(H,\varepsilon)\|B^{H}\|_{0,T;H-\varepsilon}\|\sigma\|_{\infty}(t-s)^{H-\varepsilon}+2\|b\|_{\infty}(t-s). (2.11)

If Δ<ts\Delta<t-s, we divide the interval [s,t][s,t] into n=[(ts)/Δ]+1n=[(t-s)/\Delta]+1 subintervals, whose lengths are smaller than Δ\Delta. Let s=u0<u1<<un=ts=u_{0}<u_{1}<\cdots<u_{n}=t be the endpoints of the subintervals. Then uiui1Δu_{i}-u_{i-1}\leq\Delta for 1in1\leq i\leq n. Hence, by (2.2),

|XtXs|\displaystyle\left|X_{t}-X_{s}\right| i=1n|XuiXui1|\displaystyle\leq\sum_{i=1}^{n}\left|X_{u_{i}}-X_{u_{i-1}}\right|
2C1(H,ε)BH0,T;Hεσi=1n(uiui1)Hε+2bi=1n(uiui1)\displaystyle\leq 2C_{1}(H,\varepsilon)\|B^{H}\|_{0,T;H-\varepsilon}\|\sigma\|_{\infty}\sum_{i=1}^{n}(u_{i}-u_{i-1})^{H-\varepsilon}+2\|b\|_{\infty}\sum_{i=1}^{n}(u_{i}-u_{i-1})
2C1(H,ε)BH0,T;HεσnΔHε+2b(ts)\displaystyle\leq 2C_{1}(H,\varepsilon)\|B^{H}\|_{0,T;H-\varepsilon}\|\sigma\|_{\infty}n\Delta^{H-\varepsilon}+2\|b\|_{\infty}(t-s)
4C1(H,ε)BH0,T;Hεσ(ts)ΔHε1+2b(ts)\displaystyle\leq 4C_{1}(H,\varepsilon)\|B^{H}\|_{0,T;H-\varepsilon}\|\sigma\|_{\infty}(t-s)\Delta^{H-\varepsilon-1}+2\|b\|_{\infty}(t-s)
21+1/(Hε)C1(H,ε)1/(Hε)BH0,T;Hε1/(Hε)σσ1/(Hε)1(ts)+2b(ts).\displaystyle\leq 2^{1+1/(H-\varepsilon)}C_{1}(H,\varepsilon)^{1/(H-\varepsilon)}\|B^{H}\|_{0,T;H-\varepsilon}^{1/(H-\varepsilon)}\|\sigma\|_{\infty}\|\sigma^{\prime}\|_{\infty}^{1/(H-\varepsilon)-1}(t-s)+2\|b\|_{\infty}(t-s). (2.12)

The desired result follows from (2.2) and (2.2), and the proof is concluded. ∎

For the case where the coefficient functions σ\sigma or bb are unbounded, we have the following estimation.

Theorem 2.2.

Suppose that the coefficient functions σ\sigma and bb have bounded derivatives which are Hölder continuous of order greater than 1/(Hε)11/(H-\varepsilon)-1 for some ε(0,H12)\varepsilon\in(0,H-\frac{1}{2}). Moreover, if σ+b>0\|\sigma^{\prime}\|_{\infty}+\|b^{\prime}\|_{\infty}>0, then for all T>0T>0, for all 0s<tT0\leq s<t\leq T,

|XtXs|C(H,ε,σ,b,T)1+(BHs,t;Hε)1/(Hε)(|X0|+1)(ts)Hε,\displaystyle|X_{t}-X_{s}|\leq C(H,\varepsilon,\sigma,b,T)^{1+(\|B^{H}\|_{s,t;H-\varepsilon})^{1/(H-\varepsilon)}}(|X_{0}|+1)(t-s)^{H-\varepsilon}, (2.13)

where C(H,ε,σ,b,T)C(H,\varepsilon,\sigma,b,T) is a constant depending only on (H,ε,σ,b,T)(H,\varepsilon,\sigma,b,T).

Proof.

Obviously the function g(t)=tg(t)=t is Hölder continuous of any order β(0,1]\beta\in(0,1] with the Hölder norm g0,T;β=T1β\|g\|_{0,T;\beta}=T^{1-\beta}. Hence, by [Hu2007, Theorem 2 (i)], we have

supt[0,T]|Xt|\displaystyle\sup_{t\in[0,T]}|X_{t}| 21+C(H,ε)T[σ+b+|σ(0)|+|b(0)|]1/(Hε)(BH0,T;Hε+T1(Hε))1/(Hε)(|X0|+1)\displaystyle\leq 2^{1+C(H,\varepsilon)T\left[\|\sigma^{\prime}\|_{\infty}+\|b^{\prime}\|_{\infty}+|\sigma(0)|+|b(0)|\right]^{1/(H-\varepsilon)}\left(\|B^{H}\|_{0,T;H-\varepsilon}+T^{1-(H-\varepsilon)}\right)^{1/(H-\varepsilon)}}(|X_{0}|+1)
C(H,ε,b,σ,T)1+(BH0,t;Hε)1/(Hε)(|X0|+1).\displaystyle\leq C(H,\varepsilon,b,\sigma,T)^{1+(\|B^{H}\|_{0,t;H-\varepsilon})^{1/(H-\varepsilon)}}(|X_{0}|+1). (2.14)

In this proof, C(H,ε)C(H,\varepsilon) and C(H,ε,b,σ,T)C(H,\varepsilon,b,\sigma,T) are generic positive constants depending only on (H,ε)(H,\varepsilon) and (H,ε,b,σ,T)(H,\varepsilon,b,\sigma,T), respectively, and they may vary in different places.

The estimations (2.5) and (2.2) are still valid. Instead of (2.2), we have

|Ds+ασ(Xr)|\displaystyle\left|D_{s+}^{\alpha}\sigma(X_{r})\right| =1Γ(1α)|σ(Xr)(rs)α+αsrσ(Xr)σ(Xu)(ru)α+1𝑑u|\displaystyle=\dfrac{1}{\Gamma(1-\alpha)}\left|\dfrac{\sigma(X_{r})}{(r-s)^{\alpha}}+\alpha\int_{s}^{r}\dfrac{\sigma(X_{r})-\sigma(X_{u})}{(r-u)^{\alpha+1}}du\right|
1Γ(1α)|σ(Xr)σ(0)|+|σ(0)||rs|α+αΓ(1α)sr|σ(Xr)σ(Xu)||ru|α+1𝑑u\displaystyle\leq\dfrac{1}{\Gamma(1-\alpha)}\dfrac{\left|\sigma(X_{r})-\sigma(0)\right|+|\sigma(0)|}{|r-s|^{\alpha}}+\dfrac{\alpha}{\Gamma(1-\alpha)}\int_{s}^{r}\dfrac{\left|\sigma(X_{r})-\sigma(X_{u})\right|}{|r-u|^{\alpha+1}}du
1Γ(1α)σ|Xr|+|σ(0)||rs|α+ασΓ(1α)sr|XrXu||ru|α+1𝑑u\displaystyle\leq\dfrac{1}{\Gamma(1-\alpha)}\dfrac{\|\sigma^{\prime}\|_{\infty}|X_{r}|+|\sigma(0)|}{|r-s|^{\alpha}}+\dfrac{\alpha\|\sigma^{\prime}\|_{\infty}}{\Gamma(1-\alpha)}\int_{s}^{r}\dfrac{\left|X_{r}-X_{u}\right|}{|r-u|^{\alpha+1}}du
1Γ(1α)σ|Xr|+|σ(0)||rs|α+ασXs,t;HεΓ(1α)sr1|ru|α+1(Hε)𝑑u\displaystyle\leq\dfrac{1}{\Gamma(1-\alpha)}\dfrac{\|\sigma^{\prime}\|_{\infty}|X_{r}|+|\sigma(0)|}{|r-s|^{\alpha}}+\dfrac{\alpha\|\sigma^{\prime}\|_{\infty}\|X\|_{s,t;H-\varepsilon}}{\Gamma(1-\alpha)}\int_{s}^{r}\dfrac{1}{|r-u|^{\alpha+1-(H-\varepsilon)}}du
1Γ(1α)σ|Xr|+|σ(0)||rs|α+ασXs,t;HεΓ(1α)(Hεα)|rs|Hεα.\displaystyle\leq\dfrac{1}{\Gamma(1-\alpha)}\dfrac{\|\sigma^{\prime}\|_{\infty}|X_{r}|+|\sigma(0)|}{|r-s|^{\alpha}}+\dfrac{\alpha\|\sigma^{\prime}\|_{\infty}\|X\|_{s,t;H-\varepsilon}}{\Gamma(1-\alpha)(H-\varepsilon-\alpha)}|r-s|^{H-\varepsilon-\alpha}. (2.15)

By (2.5), (2.2), (2.2) and (2.2), we have

|stσ(Xr)𝑑BrH|\displaystyle\left|\int_{s}^{t}\sigma(X_{r})\circ dB_{r}^{H}\right|
st(1Γ(α)+(1α)(Hε+α1)Γ(α))BHs,t;Hε|tr|Hε1+α\displaystyle\leq\int_{s}^{t}\left(\dfrac{1}{\Gamma(\alpha)}+\dfrac{(1-\alpha)}{(H-\varepsilon+\alpha-1)\Gamma(\alpha)}\right)\|B^{H}\|_{s,t;H-\varepsilon}|t-r|^{H-\varepsilon-1+\alpha}
(1Γ(1α)σ|Xr|+|σ(0)||rs|α+ασXs,t;HεΓ(1α)(Hεα)|rs|Hεα)dr\displaystyle\quad\left(\dfrac{1}{\Gamma(1-\alpha)}\dfrac{\|\sigma^{\prime}\|_{\infty}|X_{r}|+|\sigma(0)|}{|r-s|^{\alpha}}+\dfrac{\alpha\|\sigma^{\prime}\|_{\infty}\|X\|_{s,t;H-\varepsilon}}{\Gamma(1-\alpha)(H-\varepsilon-\alpha)}|r-s|^{H-\varepsilon-\alpha}\right)dr
(Hε)BHs,t;HεΓ(1α)Γ(α)(Hε+α1)(σsupr[0,T]|Xr|+|σ(0)|)st|tr|Hε1+α|rs|α𝑑r\displaystyle\leq\dfrac{(H-\varepsilon)\|B^{H}\|_{s,t;H-\varepsilon}}{\Gamma(1-\alpha)\Gamma(\alpha)(H-\varepsilon+\alpha-1)}\left(\|\sigma^{\prime}\|_{\infty}\sup_{r\in[0,T]}|X_{r}|+|\sigma(0)|\right)\int_{s}^{t}|t-r|^{H-\varepsilon-1+\alpha}|r-s|^{-\alpha}dr
+α(Hε)σXs,t;HεΓ(1α)Γ(α)(Hεα)(Hε+α1)BHs,t;Hεst|tr|Hε1+α|rs|Hεα𝑑r\displaystyle\quad+\dfrac{\alpha(H-\varepsilon)\|\sigma^{\prime}\|_{\infty}\|X\|_{s,t;H-\varepsilon}}{\Gamma(1-\alpha)\Gamma(\alpha)(H-\varepsilon-\alpha)(H-\varepsilon+\alpha-1)}\|B^{H}\|_{s,t;H-\varepsilon}\int_{s}^{t}|t-r|^{H-\varepsilon-1+\alpha}|r-s|^{H-\varepsilon-\alpha}dr
=(Hε)BHs,t;HεΓ(1α)Γ(α)(Hε+α1)(σsupr[0,T]|Xr|+|σ(0)|)|ts|Hεβ(Hε+α,1α)\displaystyle=\dfrac{(H-\varepsilon)\|B^{H}\|_{s,t;H-\varepsilon}}{\Gamma(1-\alpha)\Gamma(\alpha)(H-\varepsilon+\alpha-1)}\left(\|\sigma^{\prime}\|_{\infty}\sup_{r\in[0,T]}|X_{r}|+|\sigma(0)|\right)|t-s|^{H-\varepsilon}\beta(H-\varepsilon+\alpha,1-\alpha)
+α(Hε)σXs,t;HεΓ(1α)Γ(α)(Hεα)(Hε+α1)BHs,t;Hε|ts|2H2εβ(Hε+α,Hεα+1)\displaystyle\quad+\dfrac{\alpha(H-\varepsilon)\|\sigma^{\prime}\|_{\infty}\|X\|_{s,t;H-\varepsilon}}{\Gamma(1-\alpha)\Gamma(\alpha)(H-\varepsilon-\alpha)(H-\varepsilon+\alpha-1)}\|B^{H}\|_{s,t;H-\varepsilon}|t-s|^{2H-2\varepsilon}\beta(H-\varepsilon+\alpha,H-\varepsilon-\alpha+1)
C(H,ε)BHs,t;Hε|ts|Hε[σsupr[0,T]|Xr|+|σ(0)|+σXs,t;Hε|ts|Hε].\displaystyle\leq C(H,\varepsilon)\|B^{H}\|_{s,t;H-\varepsilon}|t-s|^{H-\varepsilon}\left[\|\sigma^{\prime}\|_{\infty}\sup_{r\in[0,T]}|X_{r}|+|\sigma(0)|+\|\sigma^{\prime}\|_{\infty}\|X\|_{s,t;H-\varepsilon}|t-s|^{H-\varepsilon}\right]. (2.16)

Similarly, it is easy to see that

|stb(Xr)𝑑r|\displaystyle\left|\int_{s}^{t}b(X_{r})dr\right| |ts|[bsupr[0,T]|Xr|+|b(0)|]\displaystyle\leq|t-s|\left[\|b^{\prime}\|_{\infty}\sup_{r\in[0,T]}|X_{r}|+|b(0)|\right]
|ts|HεT1(Hε)[bsupr[0,T]|Xr|+|b(0)|].\displaystyle\leq|t-s|^{H-\varepsilon}T^{1-(H-\varepsilon)}\left[\|b^{\prime}\|_{\infty}\sup_{r\in[0,T]}|X_{r}|+|b(0)|\right]. (2.17)

Hence, by (2.2) and (2.2), there exists a constant C0(H,ε)C_{0}(H,\varepsilon) such that

|XtXs|\displaystyle\left|X_{t}-X_{s}\right| |stσ(Xr)𝑑BrH|+|stb(Xr)𝑑r|\displaystyle\leq\left|\int_{s}^{t}\sigma(X_{r})\circ dB_{r}^{H}\right|+\left|\int_{s}^{t}b(X_{r})dr\right|
C0(H,ε)(BHs,t;Hε+T1(Hε))|ts|Hε[(σ+b)supr[0,T]|Xr|\displaystyle\leq C_{0}(H,\varepsilon)\left(\|B^{H}\|_{s,t;H-\varepsilon}+T^{1-(H-\varepsilon)}\right)|t-s|^{H-\varepsilon}\Big{[}\left(\|\sigma^{\prime}\|_{\infty}+\|b^{\prime}\|_{\infty}\right)\sup_{r\in[0,T]}|X_{r}|
+|σ(0)|+|b(0)|+σXs,t;Hε|ts|Hε],\displaystyle\quad+|\sigma(0)|+|b(0)|+\|\sigma^{\prime}\|_{\infty}\|X\|_{s,t;H-\varepsilon}|t-s|^{H-\varepsilon}\Big{]},

and consequently,

Xs,t;Hε\displaystyle\|X\|_{s,t;H-\varepsilon} C0(H,ε)(BHs,t;Hε+T1(Hε))[(σ+b)supr[0,T]|Xr|\displaystyle\leq C_{0}(H,\varepsilon)\left(\|B^{H}\|_{s,t;H-\varepsilon}+T^{1-(H-\varepsilon)}\right)\Big{[}\left(\|\sigma^{\prime}\|_{\infty}+\|b^{\prime}\|_{\infty}\right)\sup_{r\in[0,T]}|X_{r}|
+|σ(0)|+|b(0)|+σXs,t;Hε|ts|Hε].\displaystyle\quad+|\sigma(0)|+|b(0)|+\|\sigma^{\prime}\|_{\infty}\|X\|_{s,t;H-\varepsilon}|t-s|^{H-\varepsilon}\Big{]}. (2.18)

Fix a positive constant Δ\Delta such that

Δ(13C0(H,ε)σ(BH0,T;Hε+T1(Hε)))1/(Hε).\displaystyle\Delta\leq\left(\dfrac{1}{3C_{0}(H,\varepsilon)\|\sigma^{\prime}\|_{\infty}(\|B^{H}\|_{0,T;H-\varepsilon}+T^{1-(H-\varepsilon)})}\right)^{1/(H-\varepsilon)}\,.

If tsΔt-s\leq\Delta, we have

Xs,t;Hε32C0(H,ε)(BH0,T;Hε+T1(Hε))(|σ(0)|+|b(0)|+(σ+b)supt[0,T]|Xt|).\displaystyle\|X\|_{s,t;H-\varepsilon}\leq\dfrac{3}{2}C_{0}(H,\varepsilon)\left(\|B^{H}\|_{0,T;H-\varepsilon}+T^{1-(H-\varepsilon)}\right)\left(|\sigma(0)|+|b(0)|+\left(\|\sigma^{\prime}\|_{\infty}+\|b^{\prime}\|_{\infty}\right)\sup_{t\in[0,T]}|X_{t}|\right). (2.19)

Then by (2.2) and (2.19), we have

Xs,t;HεC(H,ε,σ,b,T)1+(BHs,t;Hε)1/(Hε)(|X0|+1).\displaystyle\|X\|_{s,t;H-\varepsilon}\leq C(H,\varepsilon,\sigma,b,T)^{1+(\|B^{H}\|_{s,t;H-\varepsilon})^{1/(H-\varepsilon)}}(|X_{0}|+1). (2.20)

If ts>Δt-s>\Delta, Similar to the proof of Theorem 2.1, we divide the interval [s,t][s,t] into n=[(ts)/Δ]+1n=[(t-s)/\Delta]+1 subintervals, whose lengths are smaller than Δ\Delta. Let s=u0<u1<<un=ts=u_{0}<u_{1}<\cdots<u_{n}=t be endpoints of the subintervals. Then by (2.2) and (2.19), we have

|XtXs|\displaystyle|X_{t}-X_{s}| i=1n|XuiXui1|\displaystyle\leq\sum_{i=1}^{n}|X_{u_{i}}-X_{u_{i-1}}|
C(H,ε,σ,b,T)1+(BHs,t;Hε)1/(Hε)(|X0|+1)i=1n(uiui1)Hε\displaystyle\leq C(H,\varepsilon,\sigma,b,T)^{1+(\|B^{H}\|_{s,t;H-\varepsilon})^{1/(H-\varepsilon)}}(|X_{0}|+1)\sum_{i=1}^{n}(u_{i}-u_{i-1})^{H-\varepsilon}
C(H,ε,σ,b,T)1+(BHs,t;Hε)1/(Hε)(|X0|+1)nΔHε\displaystyle\leq C(H,\varepsilon,\sigma,b,T)^{1+(\|B^{H}\|_{s,t;H-\varepsilon})^{1/(H-\varepsilon)}}(|X_{0}|+1)n\Delta^{H-\varepsilon}
C(H,ε,σ,b,T)1+(BHs,t;Hε)1/(Hε)(|X0|+1)(ts)ΔHε1\displaystyle\leq C(H,\varepsilon,\sigma,b,T)^{1+(\|B^{H}\|_{s,t;H-\varepsilon})^{1/(H-\varepsilon)}}(|X_{0}|+1)(t-s)\varDelta^{H-\varepsilon-1}
C(H,ε,σ,b,T)1+(BHs,t;Hε)1/(Hε)(|X0|+1)(ts)Hε.\displaystyle\leq C(H,\varepsilon,\sigma,b,T)^{1+(\|B^{H}\|_{s,t;H-\varepsilon})^{1/(H-\varepsilon)}}(|X_{0}|+1)(t-s)^{H-\varepsilon}. (2.21)

The desired result (2.13) come from (2.20) and (2.2). ∎

Combining Theorem 2.1, Theorem 2.2, and Lemma 2.1 with dominated convergence theorem, one can prove the following corollary.

Corollary 2.1.

Assume that 𝔼[|X0|p]<\mathbb{E}[|X_{0}|^{p}]<\infty for p2p\geq 2. If the conditions in Theorem 2.1 or in Theorem 2.2 hold, then 𝔼[|Xt|p]\mathbb{E}[|X_{t}|^{p}] is a continuous function of tt.

3 High-dimensional limit for Wigner-type matrices

3.1 Relative compactness of empirical spectral measure-valued processes

Denote by 𝐏()\mathbf{P}(\mathbb{R}) the space of probability measures equipped with weak topology, then 𝐏()\mathbf{P}(\mathbb{R}) is a Polish space. For T>0T>0, let C([0,T],𝐏())C([0,T],\mathbf{P}(\mathbb{R})) be the space of continuous 𝐏()\mathbf{P}(\mathbb{R})-valued processes. In this subsection, under proper conditions, we obtain the almost sure relative compactness in C([0,T],𝐏())C([0,T],\mathbf{P}(\mathbb{R})) for the set {LN(t),t[0,T]}N\{L_{N}(t),t\in[0,T]\}_{N\in\mathbb{N}} of empirical spectral measures of YN(t)Y^{N}(t) with entries given in (1.2) by using Lemma B.4([Anderson2010, Lemma 4.3.13]).

Theorem 3.1.

Assume one of the following hypotheses holds:

  • H1.

    Conditions in Theorem 2.1 hold;

  • H2.

    Conditions in Theorem 2.2 hold and 𝔼[|X0|4]<\mathbb{E}[|X_{0}|^{4}]<\infty.

Assume that there exists a positive function φ(x)C1()\varphi(x)\in C^{1}(\mathbb{R}) with bounded derivative, such that lim|x|φ(x)=\lim_{|x|\rightarrow\infty}\varphi(x)=\infty and

supNφ,LN(0)C0,\displaystyle\sup_{N\in\mathbb{N}}\langle\varphi,L_{N}(0)\rangle\leq C_{0},

for some positive constant C0C_{0} almost surely. Then for any T>0T>0, the sequence {LN(t),t[0,T]}N\{L_{N}(t),t\in[0,T]\}_{N\in\mathbb{N}} is relatively compact in C([0,T],𝐏())C([0,T],\mathbf{P}(\mathbb{R})) almost surely.

Proof.

Under hypothesis H1 (hypothesis H2, resp.), by Theorem 2.1 (Theorem 2.2, resp.), we have

|XtXs|ξ|ts|Hε\displaystyle\quad|X_{t}-X_{s}|\leq\xi|t-s|^{H-\varepsilon}

where ξ\xi is a random variable with finite moment of any order (with finite 44-th order moment, resp.).

By (1.3) and Lemma A.1, for any fC1()f\in C^{1}(\mathbb{R}) with bounded derivative,

|f,LN(t)f,LN(s)|2=|1Ni=1N(f(λiN(t))f(λiN(s)))|2\displaystyle\quad\left|\langle f,L_{N}(t)\rangle-\langle f,L_{N}(s)\rangle\right|^{2}=\left|\dfrac{1}{N}\sum_{i=1}^{N}\left(f(\lambda_{i}^{N}(t))-f(\lambda_{i}^{N}(s))\right)\right|^{2}
1Ni=1N|f(λiN(t))f(λiN(s))|21Nf2i=1N|λiN(t)λiN(s)|2\displaystyle\leq\dfrac{1}{N}\sum_{i=1}^{N}\left|f(\lambda_{i}^{N}(t))-f(\lambda_{i}^{N}(s))\right|^{2}\leq\dfrac{1}{N}\|f^{\prime}\|_{\infty}^{2}\sum_{i=1}^{N}\left|\lambda_{i}^{N}(t)-\lambda_{i}^{N}(s)\right|^{2}
1Nf2Tr(YN(t)YN(s))2=1Nf2i,j=1N(YijN(t)YijN(s))2\displaystyle\leq\dfrac{1}{N}\|f^{\prime}\|_{\infty}^{2}\mathrm{Tr}\left(Y^{N}(t)-Y^{N}(s)\right)^{2}=\dfrac{1}{N}\|f^{\prime}\|_{\infty}^{2}\sum_{i,j=1}^{N}\left(Y_{ij}^{N}(t)-Y_{ij}^{N}(s)\right)^{2}
=f2[2N2i<j(XijN(t)XijN(s))2+2N2i=1N(XiiN(t)XiiN(s))2]\displaystyle=\|f^{\prime}\|_{\infty}^{2}\left[\dfrac{2}{N^{2}}\sum_{i<j}\left(X_{ij}^{N}(t)-X_{ij}^{N}(s)\right)^{2}+\dfrac{2}{N^{2}}\sum_{i=1}^{N}\left(X_{ii}^{N}(t)-X_{ii}^{N}(s)\right)^{2}\right]
f2(ts)2H2ε(2N2i<jξij2+2N2i=1Nξii2)\displaystyle\leq\|f^{\prime}\|_{\infty}^{2}(t-s)^{2H-2\varepsilon}\left(\dfrac{2}{N^{2}}\sum_{i<j}\xi_{ij}^{2}+\dfrac{2}{N^{2}}\sum_{i=1}^{N}\xi_{ii}^{2}\right)
4N(N+1)f2(ts)2H2εijξij2,\displaystyle\leq\frac{4}{N(N+1)}\|f^{\prime}\|_{\infty}^{2}(t-s)^{2H-2\varepsilon}\sum_{i\leq j}\xi_{ij}^{2}, (3.1)

where {ξij}\{\xi_{ij}\} are i.i.d copies of ξ\xi.

Recall that by the Arzela-Ascoli Theorem (or Lemma B.3), for any number M>0M>0, the set

n=1{gC([0,T],):sups,t[0,T],|ts|ηn|g(t)g(s)|εn,supt[0,T]|g(t)|M},\displaystyle\bigcap_{n=1}^{\infty}\left\{g\in C([0,T],\mathbb{R}):\sup_{s,t\in[0,T],|t-s|\leq\eta_{n}}|g(t)-g(s)|\leq\varepsilon_{n},\quad\sup_{t\in[0,T]}|g(t)|\leq M\right\},

where {εn,n}\{\varepsilon_{n},n\in\mathbb{N}\} and {ηn,n}\{\eta_{n},n\in\mathbb{N}\} are two sequences of positive real numbers going to zero as nn goes to infinity, is compact in C([0,T],)C([0,T],\mathbb{R}).

Define

K={ν𝐏():φ(x)ν(dx)C0+M0},\displaystyle K=\left\{\nu\in\mathbf{P}(\mathbb{R}):\int\varphi(x)\nu(dx)\leq C_{0}+M_{0}\right\},

where M0M_{0} is a positive number that will be determined later. Then by Lemma B.2, KK is compact in 𝐏()\mathbf{P}(\mathbb{R}). Note that there exists a sequence of Cb1()C_{b}^{1}(\mathbb{R}) functions {fi}i\{f_{i}\}_{i\in\mathbb{N}} that it is dense in C0()C_{0}(\mathbb{R}). Choose a positive integer p0p_{0}, such that p0(Hε)>1p_{0}(H-\varepsilon)>1, and define

CT(fi)=n=1{νC([0,T],𝐏()):sups,t[0,T],|ts|np0|fi,νtfi,νs|Min1p0(Hε)},\displaystyle C_{T}(f_{i})=\bigcap_{n=1}^{\infty}\left\{\nu\in C([0,T],\mathbf{P}(\mathbb{R})):\sup_{s,t\in[0,T],|t-s|\leq n^{-p_{0}}}|\langle f_{i},\nu_{t}\rangle-\langle f_{i},\nu_{s}\rangle|\leq M_{i}n^{1-p_{0}(H-\varepsilon)}\right\},

where {Mi}i\{M_{i}\}_{i\in\mathbb{N}} is a sequence of positive numbers that are independent of nn and will be determined later. Denote

={νC([0,T],𝐏()):νtK,t[0,T]}i=1CT(fi),\displaystyle\mathfrak{C}=\left\{\nu\in C([0,T],\mathbf{P}(\mathbb{R})):\nu_{t}\in K,\forall t\in[0,T]\right\}\cap\bigcap_{i=1}^{\infty}C_{T}(f_{i}),

then \mathfrak{C} is compact in C([0,T],𝐏())C([0,T],\mathbf{P}(\mathbb{R})), according to Lemma B.4 ([Anderson2010, Lemma 4.3.13]). Hence, it is enough to show

(lim infN{LN})=1.\displaystyle\mathbb{P}\left(\liminf_{N\rightarrow\infty}\big{\{}L_{N}\in\mathfrak{C}\big{\}}\right)=1.

Note that ξij2𝔼[ξij2]:=ξij2m\xi_{ij}^{2}-\mathbb{E}[\xi_{ij}^{2}]:=\xi_{ij}^{2}-m are i.i.d. with mean zero and finite variance denoted by σ2\sigma^{2} for 1ijN1\leq i\leq j\leq N. By (3.1) and the Markov inequality, we have

(LN{νC([0,T],𝐏()):νtK,t[0,T]})\displaystyle\quad\mathbb{P}\left(L_{N}\notin\Big{\{}\nu\in C([0,T],\mathbf{P}(\mathbb{R})):\nu_{t}\in K,\forall t\in[0,T]\Big{\}}\right)
=(t[0,T],LN(t)K)=(supt[0,T]φ,LN(t)>C0+M0)\displaystyle=\mathbb{P}\Big{(}\exists t\in[0,T],L_{N}(t)\notin K\Big{)}=\mathbb{P}\left(\sup_{t\in[0,T]}\langle\varphi,L_{N}(t)\rangle>C_{0}+M_{0}\right)
(supt[0,T]|φ,LN(t)φ,LN(0)|>M0)\displaystyle\leq\mathbb{P}\left(\sup_{t\in[0,T]}\left|\langle\varphi,L_{N}(t)\rangle-\langle\varphi,L_{N}(0)\rangle\right|>M_{0}\right)
(4N(N+1)φ2T2H2εijξij2>M02)\displaystyle\leq\mathbb{P}\left(\frac{4}{N(N+1)}\|\varphi^{\prime}\|_{\infty}^{2}T^{2H-2\varepsilon}\sum_{i\leq j}\xi_{ij}^{2}>M_{0}^{2}\right)
=(2N(N+1)ijξij2m>M022φ2T2H2εm)\displaystyle=\mathbb{P}\left(\dfrac{2}{N(N+1)}\sum_{i\leq j}\xi_{ij}^{2}-m>\dfrac{M_{0}^{2}}{2\|\varphi^{\prime}\|_{\infty}^{2}T^{2H-2\varepsilon}}-m\right)
(M022φ2T2H2εm)2𝔼[(2N(N+1)ijξij2m)2]\displaystyle\leq\left(\dfrac{M_{0}^{2}}{2\|\varphi^{\prime}\|_{\infty}^{2}T^{2H-2\varepsilon}}-m\right)^{-2}\mathbb{E}\left[\left(\dfrac{2}{N(N+1)}\sum_{i\leq j}\xi_{ij}^{2}-m\right)^{2}\right]
=(M022φ2T2H2εm)24N2(N+1)2𝔼[(ij[ξij2m])2]\displaystyle=\left(\dfrac{M_{0}^{2}}{2\|\varphi^{\prime}\|_{\infty}^{2}T^{2H-2\varepsilon}}-m\right)^{-2}\dfrac{4}{N^{2}(N+1)^{2}}\mathbb{E}\left[\left(\sum_{i\leq j}\big{[}\xi_{ij}^{2}-m\big{]}\right)^{2}\right]
=(M022φ2T2H2εm)24N2(N+1)2𝔼[ij(ξij2m)2]\displaystyle=\left(\dfrac{M_{0}^{2}}{2\|\varphi^{\prime}\|_{\infty}^{2}T^{2H-2\varepsilon}}-m\right)^{-2}\dfrac{4}{N^{2}(N+1)^{2}}\mathbb{E}\left[\sum_{i\leq j}\big{(}\xi_{ij}^{2}-m\big{)}^{2}\right]
=(M022φ2T2H2εm)22N(N+1)σ2.\displaystyle=\left(\dfrac{M_{0}^{2}}{2\|\varphi^{\prime}\|_{\infty}^{2}T^{2H-2\varepsilon}}-m\right)^{-2}\dfrac{2}{N(N+1)}\sigma^{2}. (3.2)

If we choose M0=2φTHε(1+m)M_{0}=2\|\varphi^{\prime}\|_{\infty}T^{H-\varepsilon}(1+m), then (3.1) becomes

(LN{νC([0,T],𝐏()):νtK,t[0,T]})\displaystyle\quad\mathbb{P}\left(L_{N}\notin\Big{\{}\nu\in C([0,T],\mathbf{P}(\mathbb{R})):\nu_{t}\in K,\forall t\in[0,T]\Big{\}}\right)
2σ2N(N+1)(2m2+3m+2)28σ2N(N+1).\displaystyle\leq\dfrac{2\sigma^{2}}{N(N+1)(2m^{2}+3m+2)^{2}}\leq\dfrac{8\sigma^{2}}{N(N+1)}. (3.3)

Similarly, by (3.1) and the Markov inequality, we have

(LNCT(fi))\displaystyle\quad\mathbb{P}\left(L_{N}\notin C_{T}(f_{i})\right)
n=1(LN{νC([0,T],𝐏()):sups,t[0,T],|ts|np0|fi,νtfi,νs|Min1p0(Hε)})\displaystyle\leq\sum_{n=1}^{\infty}\mathbb{P}\left(L_{N}\notin\left\{\nu\in C([0,T],\mathbf{P}(\mathbb{R})):\sup_{s,t\in[0,T],|t-s|\leq n^{-p_{0}}}|\langle f_{i},\nu_{t}\rangle-\langle f_{i},\nu_{s}\rangle|\leq M_{i}n^{1-p_{0}(H-\varepsilon)}\right\}\right)
=n=1(sups,t[0,T],|ts|np0|fi,LN(t)fi,LN(s)|>Min1p0(Hε))\displaystyle=\sum_{n=1}^{\infty}\mathbb{P}\left(\sup_{s,t\in[0,T],|t-s|\leq n^{-p_{0}}}|\langle f_{i},L_{N}(t)\rangle-\langle f_{i},L_{N}(s)\rangle|>M_{i}n^{1-p_{0}(H-\varepsilon)}\right)
n=1(2fi2np0(2H2ε)(2N(N+1)ijξij2)>Mi2n22p0(Hε))\displaystyle\leq\sum_{n=1}^{\infty}\mathbb{P}\left(2\|f_{i}^{\prime}\|_{\infty}^{2}n^{-p_{0}(2H-2\varepsilon)}\left(\dfrac{2}{N(N+1)}\sum_{i\leq j}\xi_{ij}^{2}\right)>M_{i}^{2}n^{2-2p_{0}(H-\varepsilon)}\right)
=n=1(2N(N+1)ijξij2m>Mi2n22fi2m)\displaystyle=\sum_{n=1}^{\infty}\mathbb{P}\left(\dfrac{2}{N(N+1)}\sum_{i\leq j}\xi_{ij}^{2}-m>\dfrac{M_{i}^{2}n^{2}}{2\|f_{i}^{\prime}\|_{\infty}^{2}}-m\right)
n=1(Mi2n22fi2m)2𝔼[(2N(N+1)ijξij2m)2]\displaystyle\leq\sum_{n=1}^{\infty}\left(\dfrac{M_{i}^{2}n^{2}}{2\|f_{i}^{\prime}\|_{\infty}^{2}}-m\right)^{-2}\mathbb{E}\left[\left(\dfrac{2}{N(N+1)}\sum_{i\leq j}\xi_{ij}^{2}-m\right)^{2}\right]
=n=1(Mi2n22fi2m)24N2(N+1)2𝔼[ij(ξij2m)2]\displaystyle=\sum_{n=1}^{\infty}\left(\dfrac{M_{i}^{2}n^{2}}{2\|f_{i}^{\prime}\|_{\infty}^{2}}-m\right)^{-2}\dfrac{4}{N^{2}(N+1)^{2}}\mathbb{E}\left[\sum_{i\leq j}(\xi_{ij}^{2}-m)^{2}\right]
n=1(Mi2n22fi2m)22N(N+1)σ2.\displaystyle\leq\sum_{n=1}^{\infty}\left(\dfrac{M_{i}^{2}n^{2}}{2\|f_{i}^{\prime}\|_{\infty}^{2}}-m\right)^{-2}\dfrac{2}{N(N+1)}\sigma^{2}. (3.4)

Now, we choose Mi=2ifiγM_{i}=2i\|f_{i}^{\prime}\|_{\infty}\gamma, where γ\gamma is a positive real number such that 2γ2>m2\gamma^{2}>m. Then (3.1) becomes

(LNCT(fi))\displaystyle\mathbb{P}\left(L_{N}\notin C_{T}(f_{i})\right) n=12σ2N(N+1)(2i2n2γ2m)2.\displaystyle\leq\sum_{n=1}^{\infty}\dfrac{2\sigma^{2}}{N(N+1)(2i^{2}n^{2}{\gamma}^{2}-m)^{2}}. (3.5)

Hence, by the definition of \mathfrak{C}, (3.1) and (3.5), we have

N=1(LN)\displaystyle\sum_{N=1}^{\infty}\mathbb{P}\left(L_{N}\notin\mathfrak{C}\right) N=1(LN{νC([0,T],𝐏()):νtK,t[0,T]})\displaystyle\leq\sum_{N=1}^{\infty}\mathbb{P}\left(L_{N}\notin\left\{\nu\in C([0,T],\mathbf{P}(\mathbb{R})):\nu_{t}\in K,\forall t\in[0,T]\right\}\right)
+N=1i=1(LN(t)CT(fi))\displaystyle\qquad+\sum_{N=1}^{\infty}\sum_{i=1}^{\infty}\mathbb{P}\left(L_{N}(t)\notin C_{T}(f_{i})\right)
N=18σD2N(N+1)+N=1i=1n=12σ2N(N+1)(2i2n2γ2m)2\displaystyle\leq\sum_{N=1}^{\infty}\dfrac{8\sigma_{D}^{2}}{N(N+1)}+\sum_{N=1}^{\infty}\sum_{i=1}^{\infty}\sum_{n=1}^{\infty}\dfrac{2\sigma^{2}}{N(N+1)(2i^{2}n^{2}\gamma^{2}-m)^{2}}
<.\displaystyle<\infty. (3.6)

Therefore, by the Borel-Cantelli Lemma and (3.1), we have

(lim supN{LN})=0.\displaystyle\mathbb{P}\left(\limsup_{N\rightarrow\infty}\left\{L_{N}\notin\mathfrak{C}\right\}\right)=0.

The proof is concluded. ∎

3.2 Limit of empirical spectral distributions

Recall that the celebrated semicircle distribution μsc(dx)\mu_{sc}(dx) on [2,2][-2,2] has density function

psc(x)=4x22π1[2,2](x).\displaystyle p_{sc}(x)=\dfrac{\sqrt{4-x^{2}}}{2\pi}1_{[-2,2]}(x). (3.7)
Theorem 3.2.

Suppose that the conditions in Theorem 3.1 hold. We also assume that 𝔼[|X0|2]<\mathbb{E}[|X_{0}|^{2}]<\infty and denote mt=𝔼[Xt]m_{t}=\mathbb{E}[X_{t}] and dt=(𝔼[|Xt|2]mt2)1/2d_{t}=(\mathbb{E}[|X_{t}|^{2}]-m_{t}^{2})^{1/2}. Then for any T>0T>0, the sequence {LN(t),t[0,T]}N\{L_{N}(t),t\in[0,T]\}_{N\in\mathbb{N}} converges to μ={μt,t[0,T]}\mu=\{\mu_{t},t\in[0,T]\} in C([0,T],𝐏())C([0,T],\mathbf{P}(\mathbb{R})) almost surely, as NN\to\infty. The limit measure μt\mu_{t} has density pt(x)=psc(x/dt)/dtp_{t}(x)=p_{sc}(x/d_{t})/d_{t}, where psc(x)p_{sc}(x) is given by (3.7).

Proof.

First, for fixed t[0,T]t\in[0,T], we prove the almost sure weak convergence of the empirical measure LN(t)L_{N}(t).

Note that by Corollary 2.1, mtm_{t} and dtd_{t} are continuous functions of tt on [0,T][0,T]. Let Y~N(t)=(Y~ijN(t))1i,jN\widetilde{Y}^{N}(t)=\left(\widetilde{Y}_{ij}^{N}(t)\right)_{1\leq i,j\leq N} be a symmetric matrix with entries

Y~ijN(t)=YijN(t)mt/Ndt,1ijN.\displaystyle\widetilde{Y}_{ij}^{N}(t)=\dfrac{Y_{ij}^{N}(t)-m_{t}/\sqrt{N}}{d_{t}},~{}~{}1\leq i\leq j\leq N. (3.8)

Then Y~N(t)\widetilde{Y}^{N}(t) is a Wigner matrix. Let λ~1N(t)λ~NN(t)\tilde{\lambda}_{1}^{N}(t)\leq\cdots\leq\tilde{\lambda}_{N}^{N}(t) be the eigenvalues of Y~N(t)\widetilde{Y}^{N}(t) and L~N(t)(dx)=i=1Nδλ~iN(t)(dx)/N\widetilde{L}_{N}(t)(dx)=\sum_{i=1}^{N}\delta_{\tilde{\lambda}_{i}^{N}(t)}(dx)/N be the empirical spectral measure. By Lemma A.2, L~N(t)(dx)\widetilde{L}_{N}(t)(dx) converges weakly to the semicircle distribution psc(x)dxp_{sc}(x)dx almost surely for all 0tT0\leq t\leq T. Hence the empirical measure of the eigenvalues of dtY~N(t)d_{t}\widetilde{Y}^{N}(t) converges weakly to 1dtpsc(xdt)dx\frac{1}{d_{t}}p_{sc}\left(\frac{x}{d_{t}}\right)dx almost surely.

Note that by (3.8), YN(t)=dtY~N(t)+mtNENY^{N}(t)=d_{t}\widetilde{Y}^{N}(t)+\dfrac{m_{t}}{\sqrt{N}}E_{N}, where ENE_{N} is an N×NN\times N matrix with unit entries. Then by [Tao2012, Exercise 2.4.4], we can conclude that the empirical distribution LN(t)(dx)L_{N}(t)(dx) converges weakly to 1dtpsc(xdt)dx\dfrac{1}{d_{t}}p_{sc}\left(\dfrac{x}{d_{t}}\right)dx, almost surely, for all t[0,T]t\in[0,T].

Now, we show that {LN(t),t[0,T]}N\{L_{N}(t),t\in[0,T]\}_{N\in\mathbb{N}} converges weakly to {μt,t[0,T]}N\{\mu_{t},t\in[0,T]\}_{N\in\mathbb{N}} almost surely.

Let {LNi(t),t[0,T]}N\{L_{N_{i}}(t),t\in[0,T]\}_{N\in\mathbb{N}} be an arbitrary convergent subsequence with the limit {μt,t[0,T]}\{\mu_{t},t\in[0,T]\}, then for t[0,T]t\in[0,T], μt(dx)=psc(x/dt)/dtdx\mu_{t}(dx)=p_{sc}(x/d_{t})/d_{t}dx. Therefore, noting that Theorem 3.1 yields that the sequence {LN(t),t[0,T]}N\{L_{N}(t),t\in[0,T]\}_{N\in\mathbb{N}} is relatively compact almost surely in C([0,T],𝐏())C([0,T],\mathbf{P}(\mathbb{R})), any subsequence of {LN(t),t[0,T]}N\{L_{N}(t),t\in[0,T]\}_{N\in\mathbb{N}} has a convergent subsequence with the unique limit {μt(dx)=psc(x/dt)/dtdx,t[0,T]}\{\mu_{t}(dx)=p_{sc}(x/d_{t})/d_{t}dx,t\in[0,T]\}. This implies that the total sequence {LN(t),t[0,T]}N\{L_{N}(t),t\in[0,T]\}_{N\in\mathbb{N}} converges in C([0,T],𝐏())C([0,T],\mathbf{P}(\mathbb{R})) with the limit {μt(dx)=psc(x/dt)/dtdx,t[0,T]}\{\mu_{t}(dx)=p_{sc}(x/d_{t})/d_{t}dx,t\in[0,T]\}, almost surely. ∎

Remark 3.1.

If σ(x)=1\sigma(x)=1, b(x)=0b(x)=0 and X0=0X_{0}=0, then the solution to the SDE (1.1) is the fractional Brownian motion Xt=BtHX_{t}=B_{t}^{H}, and Theorem 3.2 implies that the the empirical spectral measure converges weakly to the scaled semicircle distribution with density pt(x)=psc(x/tH)/tHp_{t}(x)=p_{sc}(x/t^{H})/t^{H} almost surely. This improves the results in [Pardo2016], where the convergence of the empirical spectral measure in law is obtained.

Remark 3.2.

The Stieltjes transform Gt(z)G_{t}(z) of the limiting measure μt\mu_{t} is

Gt(z)=μt(dx)zx=psc(x/dt)/dtzx𝑑x=psc(x)zdtx𝑑x=1dtGsc(z/dt),\displaystyle G_{t}(z)=\int\dfrac{\mu_{t}(dx)}{z-x}=\int\dfrac{p_{sc}(x/{d_{t}})/d_{t}}{z-x}dx=\int\dfrac{p_{sc}(x)}{z-d_{t}x}dx=\dfrac{1}{d_{t}}G_{sc}(z/d_{t}),

where

Gsc(z)=psc(x)zx𝑑x,\displaystyle G_{sc}(z)=\int\dfrac{p_{sc}(x)}{z-x}dx,

is the Stieltjes transform of the semi-circle distribution. If we assume that the variance dt2d_{t}^{2} of the solution XtX_{t} is continuously differentiable on (0,T)(0,T), then we have

tGt(z)\displaystyle\partial_{t}G_{t}(z) =tpsc(x)zdtx𝑑x=dtxpsc(x)(zdtx)2𝑑x\displaystyle=\partial_{t}\int\dfrac{p_{sc}(x)}{z-d_{t}x}dx=d_{t}^{\prime}\int\dfrac{xp_{sc}(x)}{(z-d_{t}x)^{2}}dx
=dtdt(1zdtx+z(zdtx)2)psc(x)𝑑x\displaystyle=\dfrac{d_{t}^{\prime}}{d_{t}}\int\left(-\dfrac{1}{z-d_{t}x}+\dfrac{z}{(z-d_{t}x)^{2}}\right)p_{sc}(x)dx
=dtdtGt(z)dtdtzzGt(z).\displaystyle=-\dfrac{d_{t}^{\prime}}{d_{t}}G_{t}(z)-\dfrac{d_{t}^{\prime}}{d_{t}}z\partial_{z}G_{t}(z). (3.9)

By [Bai2010, Lemma 2.11], it is easy to get

dt2Gt(z)2=zGt(z)1,\displaystyle d_{t}^{2}G_{t}(z)^{2}=zG_{t}(z)-1,

and by (3.9),

tGt(z)\displaystyle\partial_{t}G_{t}(z) =dtdt(Gt(z)+zzGt(z))=dtdtz(zGt(z)1)\displaystyle=-\dfrac{d_{t}^{\prime}}{d_{t}}(G_{t}(z)+z\partial_{z}G_{t}(z))=-\dfrac{d_{t}^{\prime}}{d_{t}}\partial_{z}(zG_{t}(z)-1)
=dtdtz(Gt(z)2)=(dt2)Gt(z)zGt(z).\displaystyle=-d_{t}d_{t}^{\prime}\partial_{z}(G_{t}(z)^{2})=-(d_{t}^{2})^{\prime}G_{t}(z)\partial_{z}G_{t}(z). (3.10)

For the case Xt=BtHX_{t}=B_{t}^{H} with dt2=t2Hd_{t}^{2}=t^{2H}, equation (3.2) becomes

tGt(z)=2Ht2H1Gt(z)zGt(z).\displaystyle\partial_{t}G_{t}(z)=-2Ht^{2H-1}G_{t}(z)\partial_{z}G_{t}(z). (3.11)

Denoting Ft(z)=Gt1/2H(z)F_{t}(z)=G_{t^{1/2H}}(z), by change of variable and (3.11), one can deduce that Ft(z)F_{t}(z) satisfies the complex Burgers’ equation

tFt(z)=Ft(z)zFt(z).\displaystyle\partial_{t}F_{t}(z)=-F_{t}(z)\partial_{z}F_{t}(z).

This relationship was obtained in [Jaramillo2019].

3.3 Complex case

In this subsection, we consider the following 2-dimensional SDE for Zt=(Zt(1),Zt(2))Z_{t}=(Z_{t}^{(1)},Z_{t}^{(2)}),

dZt=σ~(Zt)dBtH+b~(Zt)dt,\displaystyle dZ_{t}=\tilde{\sigma}(Z_{t})\circ dB_{t}^{H}+\tilde{b}(Z_{t})dt, (3.12)

with initial value Z0Z_{0} that is independent of BtHB_{t}^{H}. Here b~:22\tilde{b}:\mathbb{R}^{2}\rightarrow\mathbb{R}^{2}, σ~:22×2\tilde{\sigma}:\mathbb{R}^{2}\rightarrow\mathbb{R}^{2\times 2} are continuously differentiable functions and BtHB_{t}^{H} is a 2-dimensional fractional Brownian motion. By [Lyons1994], there exists a unique solution to SDE (3.12), if σ~\tilde{\sigma} and b~\tilde{b} have bounded derivatives which are Hölder continuous of order greater than 1/H11/H-1.

Denote by ι\iota the imaginary unit. Let {Zkl}k,l1\{Z_{kl}\}_{k,l\geq 1} be i.i.d. copies of Zt(1)+ιZt(2)Z_{t}^{(1)}+\iota Z_{t}^{(2)} and ZN(t)=(ZklN(t))1k,lNZ^{N}(t)=\left(Z_{kl}^{N}(t)\right)_{1\leq k,l\leq N} be a Hermitian N×NN\times N matrix with entries

ZklN(t)={1NZkl(t),1k<lN,1NXkk(t),1kN.\displaystyle Z_{kl}^{N}(t)=\begin{cases}\dfrac{1}{\sqrt{N}}Z_{kl}(t),&1\leq k<l\leq N,\\ \dfrac{1}{\sqrt{N}}X_{kk}(t),&1\leq k\leq N.\end{cases} (3.13)

Here, {Xkk(t)}\{X_{kk}(t)\} are i.i.d. copies of the real-valued process XtX_{t} satisfying (1.1) and independent of the family {Zkl(t)}k,l1\{Z_{kl}(t)\}_{k,l\geq 1}. Let λ1N(t)λNN(t)\lambda_{1}^{N}(t)\leq\cdots\leq\lambda_{N}^{N}(t) be the eigenvalues of ZN(t)Z^{N}(t) and denote the empirical spectral measure by

LN(t)(dx)=1Nk=1NδλkN(t)(dx).\displaystyle L_{N}(t)(dx)=\dfrac{1}{N}\sum_{k=1}^{N}\delta_{\lambda_{k}^{N}(t)}(dx).
Theorem 3.3.

Suppose that the coefficient functions σ~\tilde{\sigma}, b~\tilde{b}, σ\sigma and bb have bounded (partial) derivatives which are Hölder continuous of order greater than 1/(Hε)11/(H-\varepsilon)-1. Besides, assume that among the following conditions,

  • (a1)(a_{1})

    σ~\tilde{\sigma} and b~\tilde{b} are bounded and 𝔼[Z02]<\mathbb{E}[\|Z_{0}\|^{2}]<\infty;

  • (a2)(a_{2})

    (σ~x,σ~y)L(2)+(b~x,b~y)L(2)>0\|(\tilde{\sigma}_{x},\tilde{\sigma}_{y})\|_{L^{\infty}(\mathbb{R}^{2})}+\|(\tilde{b}_{x},\tilde{b}_{y})\|_{L^{\infty}(\mathbb{R}^{2})}>0, 𝔼[Z04]<\mathbb{E}[\|Z_{0}\|^{4}]<\infty;

  • (b1)(b_{1})

    σ\sigma and bb are bounded and 𝔼[|X0|2]<\mathbb{E}[|X_{0}|^{2}]<\infty;

  • (b2)(b_{2})

    σ+b>0\|\sigma^{\prime}\|_{\infty}+\|b^{\prime}\|_{\infty}>0, 𝔼[|X0|4]<\mathbb{E}[|X_{0}|^{4}]<\infty;

(a1)(a_{1}) or (a2)(a_{2}) holds and (b1)(b_{1}) or (b2)(b_{2}) holds. Furthermore, suppose that there exists a positive function φ(x)C1()\varphi(x)\in C^{1}(\mathbb{R}) with bounded derivative, such that lim|x|φ(x)=+\lim_{|x|\rightarrow\infty}\varphi(x)=+\infty and

supNφ,LN(0)C0,\displaystyle\sup_{N\in\mathbb{N}}\langle\varphi,L_{N}(0)\rangle\leq C_{0},

for some positive constant C0C_{0} almost surely.

Then for any T>0T>0, 𝔼[|Xt|2+Zt2]<\mathbb{E}[|X_{t}|^{2}+\|Z_{t}\|^{2}]<\infty for t[0,T]t\in[0,T], and the sequence {LN(t),t[0,t]}N\{L_{N}(t),t\in[0,t]\}_{N\in\mathbb{N}} converges to μ={μt,t[0,T]}\mu=\{\mu_{t},t\in[0,T]\} in C([0,T],𝐏())C([0,T],\mathbf{P}(\mathbb{R})) almost surely. The limiting measure μt\mu_{t} has density pt(x)=psc(x/dZ(t))/dZ(t)p_{t}(x)=p_{sc}(x/d_{Z}(t))/d_{Z}(t), where dZ2(t)d_{Z}^{2}(t) is the variance of the solution ZtZ_{t} to SDE (3.12).

Proof.

The proof is similar to the real case, which is sketched below.

First of all, following the proof of Theorem 2.1 or Theorem 2.2, we can still establish the pathwise Hölder continuity for the solution Zt=(Zt(1),Zt(2))Z_{t}=(Z_{t}^{(1)},Z_{t}^{(2)}) to the SDE (3.12). More specifically, for the case that condition (a1)(a_{1}) holds, we can obtain

|Zt(1)Zs(1)|+|Zt(2)Zs(2)|\displaystyle\quad\left|Z_{t}^{(1)}-Z_{s}^{(1)}\right|+\left|Z_{t}^{(2)}-Z_{s}^{(2)}\right|
C(H,ε)σ~[BH0,T;Hε(ts)HεBH0,T;Hε1/(Hε)(ts)σ~1/(Hε)1]\displaystyle\leq C(H,\varepsilon)\|\tilde{\sigma}\|_{\infty}\left[\|B^{H}\|_{0,T;H-\varepsilon}(t-s)^{H-\varepsilon}\vee\|B^{H}\|_{0,T;H-\varepsilon}^{1/(H-\varepsilon)}(t-s)\|\tilde{\sigma}^{\prime}\|_{\infty}^{1/(H-\varepsilon)-1}\right]
+2b~(ts),\displaystyle\quad+2\|\tilde{b}\|_{\infty}(t-s),

and for the case of (a2)(a_{2}),

|Zt(1)Zs(1)|+|Zt(2)Zs(2)|\displaystyle\quad\left|Z_{t}^{(1)}-Z_{s}^{(1)}\right|+\left|Z_{t}^{(2)}-Z_{s}^{(2)}\right|
C(H,ε,σ~,b~,T)1+(BHs,t;Hε)1/(Hε)(Z0+1)(ts)Hε,\displaystyle\leq C(H,\varepsilon,\tilde{\sigma},\tilde{b},T)^{1+(\|B^{H}\|_{s,t;H-\varepsilon})^{1/(H-\varepsilon)}}(||Z_{0}||+1)(t-s)^{H-\varepsilon},

for all T>0T>0, for all 0s<tT0\leq s<t\leq T. Thus, by Lemma 2.1 and the moment assumption on Z0Z_{0}, we have that for both cases, there exists a positive random variable ζ\zeta with finite second moment, such that

|Zt(1)Zs(1)|2+|Zt(2)Zs(2)|2ζ(ts)2H2ε,a.s.\displaystyle\left|Z_{t}^{(1)}-Z_{s}^{(1)}\right|^{2}+\left|Z_{t}^{(2)}-Z_{s}^{(2)}\right|^{2}\leq\zeta(t-s)^{2H-2\varepsilon},~{}~{}\text{a.s.} (3.14)

Similar to (3.1), we have

|f,LN(t)f,LN(s)|21N2f2(ts)2H2ε(k=1Nξkk2+2k<lζkl2),\displaystyle\quad\left|\langle f,L_{N}(t)\rangle-\langle f,L_{N}(s)\rangle\right|^{2}\leq\dfrac{1}{N^{2}}\|f^{\prime}\|_{\infty}^{2}(t-s)^{2H-2\varepsilon}\left(\sum_{k=1}^{N}\xi_{kk}^{2}+2\sum_{k<l}\zeta_{kl}^{2}\right),

for any fC1()f\in C^{1}(\mathbb{R}) with bounded derivative. Then following the same approach used in the proof of Theorem 3.1, we can show that the sequence of empirical spectral measures {LN(t),t[0,T]}N\{L_{N}(t),t\in[0,T]\}_{N\in\mathbb{N}} is relatively compact in C([0,T],𝐏())C([0,T],\mathbf{P}(\mathbb{R})) almost surely.

Following the proof of Corollary 2.1, it is easy to see that the mean mZ(t)=𝔼[Zt]m_{Z}(t)=\mathbb{E}[Z_{t}] and the variance dZ2(t)=𝔼[ZtmZ(t)2]d_{Z}^{2}(t)=\mathbb{E}[\|Z_{t}-m_{Z}(t)\|^{2}] are continuous functions of tt.

Next, we introduce a Hermitian matrix Z~N(t)=(Z~klN(t))1k,lN\widetilde{Z}^{N}(t)=\left(\widetilde{Z}_{kl}^{N}(t)\right)_{1\leq k,l\leq N} satisfying

ZN(t)=mZ(t)N(ENIN)+mtNIN+dZ(t)Z~N(t).\displaystyle Z^{N}(t)=\dfrac{m_{Z}(t)}{\sqrt{N}}\left(E_{N}-I_{N}\right)+\frac{m_{t}}{\sqrt{N}}I_{N}+d_{Z}(t)\widetilde{Z}^{N}(t).

Hence, Z~N(t)\widetilde{Z}^{N}(t) is a Hermitian Wigner matrix for all t[0,T]t\in[0,T]. Finally, by [Tao2012, Exercise 2.4.3, Exercise 2.4.4], we can conclude that the almost-sure limit of the empirical distribution of the eigenvalues of ZN(t)Z^{N}(t) coincides with that of dZZ~N(t)d_{Z}\widetilde{Z}^{N}(t) for all t[0,T]t\in[0,T]. Therefore, by Lemma A.3, {LN(t),t[0,T]}N\{L_{N}(t),t\in[0,T]\}_{N\in\mathbb{N}} converges towards {μt,t[0,T]}\{\mu_{t},t\in[0,T]\} in C([0,T],𝐏())C([0,T],\mathbf{P}(\mathbb{R})) with density μt(dx)=pt(x)dx=psc(x/dZ(t))/dZ(t)dx\mu_{t}(dx)=p_{t}(x)dx=p_{sc}(x/d_{Z}(t))/d_{Z}(t)dx. ∎

Remark 3.3.

Similar to Remark 3.2, the Stieltjes transform of the limiting measure μt\mu_{t} satisfies the differential equation (3.2) with dtd_{t} replaced by dZ(t)d_{Z}(t).

4 High-dimensional limit for symmetric matrices with dependent entries

Let {X(i,j)(t)}i,j\{X_{(i,j)}(t)\}_{i,j\in\mathbb{Z}} be i.i.d. copies of XtX_{t}, the solution of (1.1). Fix a finite index set I2I\subset\mathbb{Z}^{2} and a family of constants {ar:rI}\{a_{r}:r\in I\}. Let |I|=max{|i1i2||j1j2|:(i1,j1),(i2,j2)I}|I|=\max\{|i_{1}-i_{2}|\vee|j_{1}-j_{2}|:(i_{1},j_{1}),(i_{2},j_{2})\in I\} and #I\#I be the cardinality of II. Note that #I(2|I|+1)2\#I\leq(2|I|+1)^{2}. Let RN(t)=(RijN(t))1i,jNR^{N}(t)=\left(R_{ij}^{N}(t)\right)_{1\leq i,j\leq N} be an N×NN\times N real symmetric matrix with entries

RijN(t)=1NrIarX(i,j)+r(t),1ijN.\displaystyle R_{ij}^{N}(t)=\dfrac{1}{\sqrt{N}}\sum_{r\in I}a_{r}X_{(i,j)+r}(t),\quad 1\leq i\leq j\leq N. (4.1)

Let λ1N(t)λNN(t)\lambda_{1}^{N}(t)\leq\cdots\leq\lambda_{N}^{N}(t) be the eigenvalues of RN(t)R^{N}(t), and

LN(t)(dx)=1Ni=1NδλiN(t)(dx)\displaystyle L_{N}(t)(dx)=\dfrac{1}{N}\sum_{i=1}^{N}\delta_{\lambda_{i}^{N}(t)}(dx)

be the empirical spectral measure of RN(t)R^{N}(t).

Theorem 4.1.

Suppose that the conditions in Theorem 3.1 hold. Then for any T>0T>0, the sequence {LN(t),t[0,T]}N\{L_{N}(t),t\in[0,T]\}_{N\in\mathbb{N}} converges to {μt,t[0,T]}\{\mu_{t},t\in[0,T]\} in C([0,T],𝐏())C([0,T],\mathbf{P}(\mathbb{R})) almost surely. The Stieltjes transform St(z)=(zx)1μt(dx)S_{t}(z)=\int(z-x)^{-1}\mu_{t}(dx) of the limit measure is given by, for z\z\in\mathbb{C}\backslash\mathbb{R},

St(z)=01ht(x,z)𝑑x,\displaystyle S_{t}(z)=\int_{0}^{1}h_{t}(x,z)dx,

where ht(x,z)h_{t}(x,z) is the solution to the equation

ht(x,z)=(z+01ft(x,y)ht(y,z)𝑑y)1,\displaystyle h_{t}(x,z)=\left(-z+\int_{0}^{1}f_{t}(x,y)h_{t}(y,z)dy\right)^{-1},

with

ft(x,y)=k,lγt(k,l)e2πi(kx+ly),\displaystyle\quad f_{t}(x,y)=\sum_{k,l\in\mathbb{Z}}\gamma_{t}(k,l)e^{-2\pi i(kx+ly)},

where γt(k,l)=γt(l,k)=dt2rI(I+(k,l))arar(k,l)\gamma_{t}(k,l)=\gamma_{t}(l,k)=d_{t}^{2}\sum_{r\in I\cap(I+(k,l))}a_{r}a_{r-(k,l)} for klk\leq l.

Proof.

By Theorem 2.1 and Theorem 2.2, we have the estimation

|X(i,j)(t)X(i,j)(s)|ξ(i,j)|ts|Hε,i,j,\displaystyle|X_{(i,j)}(t)-X_{(i,j)}(s)|\leq\xi_{(i,j)}|t-s|^{H-\varepsilon},\forall i,j\in\mathbb{Z},

where {ξ(i,j)}i,j\{\xi_{(i,j)}\}_{i,j\in\mathbb{Z}} are i.i.d. copies of ξ\xi with 𝔼|ξ|4<\mathbb{E}|\xi|^{4}<\infty. Thus, for 1ijN1\leq i\leq j\leq N,

|RijN(t)RijN(s)|\displaystyle\left|R_{ij}^{N}(t)-R_{ij}^{N}(s)\right| 1NrI|ar||X(i,j)+r(t)X(i,j)+r(s)|\displaystyle\leq\dfrac{1}{\sqrt{N}}\sum_{r\in I}|a_{r}|\left|X_{(i,j)+r}(t)-X_{(i,j)+r}(s)\right|
1NrI|ar|ξ(i,j)+r(ts)Hε.\displaystyle\leq\dfrac{1}{\sqrt{N}}\sum_{r\in I}|a_{r}|\xi_{(i,j)+r}(t-s)^{H-\varepsilon}.

Define

Fij=(rI|ar|ξ(i,j)+r)2,1ij.\displaystyle F_{ij}=\left(\sum_{r\in I}|a_{r}|\xi_{(i,j)+r}\right)^{2},1\leq i\leq j.

Then all FijF_{ij}’s for 1ij1\leq i\leq j are distributed identically with finite second moment.

Analogous to (3.1), we have

|f,LN(t)f,LN(s)|2\displaystyle\left|\langle f,L_{N}(t)\rangle-\langle f,L_{N}(s)\rangle\right|^{2} =1Nf2i,j=1N(RijN(t)RijN(s))2\displaystyle=\dfrac{1}{N}\|f^{\prime}\|_{\infty}^{2}\sum_{i,j=1}^{N}\left(R_{ij}^{N}(t)-R_{ij}^{N}(s)\right)^{2}
2Nf2ij(RijN(t)RijN(s))2\displaystyle\leq\dfrac{2}{N}\|f^{\prime}\|_{\infty}^{2}\sum_{i\leq j}\left(R_{ij}^{N}(t)-R_{ij}^{N}(s)\right)^{2}
2N2f2ijFij(ts)2H2ε.\displaystyle\leq\dfrac{2}{N^{2}}\|f^{\prime}\|_{\infty}^{2}\sum_{i\leq j}F_{ij}(t-s)^{2H-2\varepsilon}.

Noting that the mutual independence among {ξij}\{\xi_{ij}\} implies the independence between FijF_{ij} and FklF_{kl} if k[i|I|,i+|I|]k\notin[i-|I|,i+|I|] or l[j|I|,j+|I|]l\notin[j-|I|,j+|I|], we have

𝔼[(ij(Fij𝔼[Fij]))2]=ijkl𝔼[(Fij𝔼[Fij])(Fkl𝔼[Fkl])]\displaystyle\quad\mathbb{E}\left[\left(\sum_{i\leq j}\left(F_{ij}-\mathbb{E}\left[F_{ij}\right]\right)\right)^{2}\right]=\sum_{i\leq j}\sum_{k\leq l}\mathbb{E}\left[\left(F_{ij}-\mathbb{E}\left[F_{ij}\right]\right)\left(F_{kl}-\mathbb{E}\left[F_{kl}\right]\right)\right]
=ijk=i|I|i+|I|l=j|I|j+|I|𝔼[(Fij𝔼[Fij])(Fkl𝔼[Fkl])]\displaystyle=\sum_{i\leq j}\sum_{k=i-|I|}^{i+|I|}\sum_{l=j-|I|}^{j+|I|}\mathbb{E}\left[\left(F_{ij}-\mathbb{E}\left[F_{ij}\right]\right)\left(F_{kl}-\mathbb{E}\left[F_{kl}\right]\right)\right]
ijk=i|I|i+|I|l=j|I|j+|I|(𝔼[(Fij𝔼[Fij])2]𝔼[(Fkl𝔼[Fkl])2])1/2\displaystyle\leq\sum_{i\leq j}\sum_{k=i-|I|}^{i+|I|}\sum_{l=j-|I|}^{j+|I|}\left(\mathbb{E}\left[\left(F_{ij}-\mathbb{E}\left[F_{ij}\right]\right)^{2}\right]\mathbb{E}\left[\left(F_{kl}-\mathbb{E}\left[F_{kl}\right]\right)^{2}\right]\right)^{1/2}
=(2|I|+1)2N(N+1)2(𝔼[F002](E[F00])2).\displaystyle=\dfrac{(2|I|+1)^{2}N(N+1)}{2}\left(\mathbb{E}[F_{00}^{2}]-(E[F_{00}])^{2}\right).

Thus, following the proof of Theorem 3.1, we may get estimations analogous to (3.1) and (3.1) therein, and then obtain the almost sure relatively compactness of the empirical spectral measure {LN(t),t[0,T]}N\{L_{N}(t),t\in[0,T]\}_{N\in\mathbb{N}}.

Now, let R~N(t)=(R~ijN(t))1i,jN\widetilde{R}^{N}(t)=\left(\widetilde{R}_{ij}^{N}(t)\right)_{1\leq i,j\leq N} be a symmetric matrix with entries

R~ijN(t):=RijN(t)𝔼[RijN(t)]=1NrIar(X(i,j)+r(t)𝔼[X(i,j)+r(t)]),1ijN.\displaystyle\widetilde{R}_{ij}^{N}(t):=R_{ij}^{N}(t)-\mathbb{E}[R_{ij}^{N}(t)]=\dfrac{1}{\sqrt{N}}\sum_{r\in I}a_{r}\left(X_{(i,j)+r}(t)-\mathbb{E}\left[X_{(i,j)+r}(t)\right]\right),\quad 1\leq i\leq j\leq N.

Let L~N(t)\widetilde{L}_{N}(t) be the empirical spectral measure of R~N(t)\widetilde{R}^{N}(t). Then by Lemma A.6 ([Banna2015, Theorem 3]), for each t[0,T]t\in[0,T], L~N(t)\widetilde{L}_{N}(t) converges to a deterministic probability measure μt\mu_{t} almost surely. Moreover, the Stieltjes transform of the limit measure μt\mu_{t} is given by

St(z)=01ht(x,z)𝑑x,\displaystyle S_{t}(z)=\int_{0}^{1}h_{t}(x,z)dx,

where ht(x,z)h_{t}(x,z) is the solution to the equation

h(x,z)=(z+01f(x,y)h(y,z)𝑑y)1,\displaystyle h(x,z)=\left(-z+\int_{0}^{1}f(x,y)h(y,z)dy\right)^{-1},

with

f(x,y)=k,lγk,le2πi(kx+ly),\displaystyle\quad f(x,y)=\sum_{k,l\in\mathbb{Z}}\gamma_{k,l}e^{-2\pi i(kx+ly)},

where, for klk\leq l,

γk,l=γl,k\displaystyle\gamma_{k,l}=\gamma_{l,k} =𝔼[rIar(Xr(t)𝔼[Xr(t)])rIar(X(k,l)+r(t)𝔼[X(k,l)+r(t)])]\displaystyle=\mathbb{E}\left[\sum_{r\in I}a_{r}\left(X_{r}(t)-\mathbb{E}\left[X_{r}(t)\right]\right)\sum_{r^{\prime}\in I}a_{r^{\prime}}\left(X_{(k,l)+r^{\prime}}(t)-\mathbb{E}\left[X_{(k,l)+r^{\prime}}(t)\right]\right)\right]
=𝔼[rIar(Xr(t)𝔼[Xr(t)])rI+(k,l)ar(k,l)(Xr(t)𝔼[Xr(t)])]\displaystyle=\mathbb{E}\left[\sum_{r\in I}a_{r}\left(X_{r}(t)-\mathbb{E}\left[X_{r}(t)\right]\right)\sum_{r^{\prime}\in I+(k,l)}a_{r^{\prime}-(k,l)}\left(X_{r^{\prime}}(t)-\mathbb{E}\left[X_{r^{\prime}}(t)\right]\right)\right]
=rI(I+(k,l))arar(k,l)𝔼[(Xr(t)𝔼[Xr(t)])2]\displaystyle=\sum_{r\in I\cap(I+(k,l))}a_{r}a_{r-(k,l)}\mathbb{E}\left[\left(X_{r}(t)-\mathbb{E}\left[X_{r}(t)\right]\right)^{2}\right]
=dt2rI(I+(k,l))arar(k,l).\displaystyle=d_{t}^{2}\sum_{r\in I\cap(I+(k,l))}a_{r}a_{r-(k,l)}.

Finally, by [Tao2012, Exercise 2.4.4], the empirical spectral measure LN(t)(dx)L_{N}(t)(dx) of RN(t)R^{N}(t) converges to the same limit μt\mu_{t} almost surely. The proof is concluded. ∎

5 High-dimensional limit for Wishart-type matrices

5.1 Real case

Recall that {Xij(t)}i,j1\{X_{ij}(t)\}_{i,j\geq 1} are i.i.d. copies of XtX_{t} which is the solution to (1.1). Let

U^N(t)=(U^ijN(t))1ip, 1jN\widehat{U}^{N}(t)=\left(\widehat{U}_{ij}^{N}(t)\right)_{1\leq i\leq p,\,1\leq j\leq N}

be a p×Np\times N matrix with entries U^ijN(t)=Xij(t)𝔼[Xij(t)]\widehat{U}_{ij}^{N}(t)=X_{ij}(t)-\mathbb{E}\left[X_{ij}(t)\right]. Here, p=p(N)p=p(N) is a positive integer that depends on NN. Let

UN(t)=1NU^N(t)U^N(t)\displaystyle U^{N}(t)=\dfrac{1}{N}\widehat{U}^{N}(t)\widehat{U}^{N}(t)^{\intercal} (5.1)

be a p×pp\times p symmetric matrix with pp eigenvalues λ1N(t)λpN(t)\lambda_{1}^{N}(t)\leq\cdots\leq\lambda_{p}^{N}(t), and

LN(t)(dx)=1pi=1pδλiN(t)(dx)\displaystyle L_{N}(t)(dx)=\dfrac{1}{p}\sum_{i=1}^{p}\delta_{\lambda_{i}^{N}(t)}(dx)

be the empirical spectral measure of UN(t)U^{N}(t).

Theorem 5.1.

Suppose that one of the following conditions holds,

  1. (i)

    Conditions in Theorem 2.1 hold and 𝔼[|X0|2]<\mathbb{E}[|X_{0}|^{2}]<\infty;

  2. (ii)

    Conditions in Theorem 2.2 hold and 𝔼[|X0|4]<\mathbb{E}[|X_{0}|^{4}]<\infty.

Assume that there exists a positive function φ(x)C1()\varphi(x)\in C^{1}(\mathbb{R}) with bounded derivative, such that lim|x|φ(x)=+\lim_{|x|\rightarrow\infty}\varphi(x)=+\infty and

supNφ,LN(0)C0,\displaystyle\sup_{N\in\mathbb{N}}\langle\varphi,L_{N}(0)\rangle\leq C_{0},

for some positive constant C0C_{0} almost surely. Furthermore, assume that there exists a positive constant cc, such that p/Ncp/N\rightarrow c as NN\rightarrow\infty.

Then for any T>0T>0, 𝔼[|Xt|2]<\mathbb{E}[|X_{t}|^{2}]<\infty for t[0,T]t\in[0,T], and the sequence {LN(t),t[0,T]}N\{L_{N}(t),t\in[0,T]\}_{N\in\mathbb{N}} converges in probability to {μt,t[0,T]}\{\mu_{t},t\in[0,T]\} in C([0,T],𝐏())C([0,T],\mathbf{P}(\mathbb{R})), where μt(dx)=μMP(c,dt)(dx)\mu_{t}(dx)=\mu_{MP}(c,d_{t})(dx) with μMP\mu_{MP} given in (A.1).

Proof.

Noting that 𝔼[|Xij(t)|2]\mathbb{E}[|X_{ij}(t)|^{2}] exists finitely for all 1ip,1jN1\leq i\leq p,1\leq j\leq N, we have that U^ijN(t)\widehat{U}_{ij}^{N}(t) has mean 0 and finite second moment dt2:=𝔼[|U^ijN(t)|2]d_{t}^{2}:=\mathbb{E}[|\widehat{U}_{ij}^{N}(t)|^{2}]. Then by Lemma A.4, for any t[0,T]t\in[0,T], almost surely, the empirical distribution

LN(t)(dx)μMP(c,dt)(dx)\displaystyle L_{N}(t)(dx)\rightarrow\mu_{MP}(c,d_{t})(dx) (5.2)

weakly as NN\to\infty. Thus, it remains to obtain the tightness of {LN(t),t[0,T]}N\{L_{N}(t),t\in[0,T]\}_{N\in\mathbb{N}} in the space C([0,T],𝐏())C([0,T],\mathbf{P}(\mathbb{R})).

Recalled that ε(0,H1/2)\varepsilon\in(0,H-1/2), by Theorem 2.1 and Theorem 2.2, we have that |Xij(t)Xij(s)|ξij|ts|Hε|X_{ij}(t)-X_{ij}(s)|\leq\xi_{ij}|t-s|^{H-\varepsilon}, where {ξij}1ip,1jN\{\xi_{ij}\}_{1\leq i\leq p,1\leq j\leq N} are i.i.d. copies of ξ\xi with 𝔼[|ξ|4]<\mathbb{E}[|\xi|^{4}]<\infty. Thus,

|U^ijN(t)U^ijN(s)|\displaystyle\left|\widehat{U}_{ij}^{N}(t)-\widehat{U}_{ij}^{N}(s)\right| |Xij(t)Xij(s)|+|𝔼[Xij(t)]𝔼[Xij(s)]|\displaystyle\leq\left|X_{ij}(t)-X_{ij}(s)\right|+\left|\mathbb{E}\left[X_{ij}(t)\right]-\mathbb{E}\left[X_{ij}(s)\right]\right|
|Xij(t)Xij(s)|+𝔼[|Xij(t)Xij(s)|]\displaystyle\leq\left|X_{ij}(t)-X_{ij}(s)\right|+\mathbb{E}\left[\left|X_{ij}(t)-X_{ij}(s)\right|\right]
(ξij+𝔼[ξij])(ts)Hε.\displaystyle\leq\left(\xi_{ij}+\mathbb{E}\left[\xi_{ij}\right]\right)(t-s)^{H-\varepsilon}. (5.3)

Hence, by (5.1), for 0s<tT0\leq s<t\leq T,

|U^ikN(t)U^jkN(t)U^ikN(s)U^jkN(s)|2\displaystyle\quad\left|\widehat{U}_{ik}^{N}(t)\widehat{U}_{jk}^{N}(t)-\widehat{U}_{ik}^{N}(s)\widehat{U}_{jk}^{N}(s)\right|^{2}
2|U^ikN(t)U^ikN(s)|2|U^jkN(t)|2+2|U^ikN(s)|2|U^jkN(t)U^jkN(s)|2\displaystyle\leq 2\left|\widehat{U}_{ik}^{N}(t)-\widehat{U}_{ik}^{N}(s)\right|^{2}\left|\widehat{U}_{jk}^{N}(t)\right|^{2}+2\left|\widehat{U}_{ik}^{N}(s)\right|^{2}\left|\widehat{U}_{jk}^{N}(t)-\widehat{U}_{jk}^{N}(s)\right|^{2}
2(ξik+𝔼[ξik])2(|U^jkN(0)|+(ξjk+𝔼[ξjk])THε)2(ts)2H2ε\displaystyle\leq 2\left(\xi_{ik}+\mathbb{E}\left[\xi_{ik}\right]\right)^{2}\left(\left|\widehat{U}_{jk}^{N}(0)\right|+\left(\xi_{jk}+\mathbb{E}\left[\xi_{jk}\right]\right)T^{H-\varepsilon}\right)^{2}(t-s)^{2H-2\varepsilon}
+2(ξjk+𝔼[ξjk])2(|U^ikN(0)|+(ξik+𝔼[ξik])THε)2(ts)2H2ε\displaystyle\quad+2\left(\xi_{jk}+\mathbb{E}\left[\xi_{jk}\right]\right)^{2}\left(\left|\widehat{U}_{ik}^{N}(0)\right|+\left(\xi_{ik}+\mathbb{E}\left[\xi_{ik}\right]\right)T^{H-\varepsilon}\right)^{2}(t-s)^{2H-2\varepsilon}
=EH,T,ε(i,j;k)(ts)2H2ε.\displaystyle=E_{H,T,\varepsilon}^{(i,j;k)}(t-s)^{2H-2\varepsilon}. (5.4)

Here, EH,T,ε(i,j;k)E_{H,T,\varepsilon}^{(i,j;k)} is a positive random variable that has finite second moment which is given by

EH,T,ε(i,j;k)\displaystyle E_{H,T,\varepsilon}^{(i,j;k)} =2(ξik+𝔼[ξik])2(|U^jkN(0)|+(ξjk+𝔼[ξjk])THε)2\displaystyle=2\left(\xi_{ik}+\mathbb{E}\left[\xi_{ik}\right]\right)^{2}\left(\left|\widehat{U}_{jk}^{N}(0)\right|+\left(\xi_{jk}+\mathbb{E}\left[\xi_{jk}\right]\right)T^{H-\varepsilon}\right)^{2}
+2(ξjk+𝔼[ξjk])2(|U^ikN(0)|+(ξik+𝔼[ξik])THε)2.\displaystyle\quad+2\left(\xi_{jk}+\mathbb{E}\left[\xi_{jk}\right]\right)^{2}\left(\left|\widehat{U}_{ik}^{N}(0)\right|+\left(\xi_{ik}+\mathbb{E}\left[\xi_{ik}\right]\right)T^{H-\varepsilon}\right)^{2}.

Let, for iji\neq j,

E1=𝔼[EH,T,ε(i,j;k)]=4𝔼[(ξ+𝔼[ξ])2]𝔼[(|X0𝔼[X0]|+(ξ+𝔼[ξ])THε)2],\displaystyle E_{1}=\mathbb{E}\left[E_{H,T,\varepsilon}^{(i,j;k)}\right]=4\mathbb{E}\left[\left(\xi+\mathbb{E}[\xi]\right)^{2}\right]\mathbb{E}\left[\left(\left|X_{0}-\mathbb{E}[X_{0}]\right|+\left(\xi+\mathbb{E}[\xi]\right)T^{H-\varepsilon}\right)^{2}\right],

and for i=ji=j,

E2=𝔼[EH,T,ε(i,i;k)]=4𝔼[(ξ+𝔼[ξ])2(|X0𝔼[X0]|+(ξ+𝔼[ξ])THε)2].\displaystyle E_{2}=\mathbb{E}\left[E_{H,T,\varepsilon}^{(i,i;k)}\right]=4\mathbb{E}\left[\left(\xi+\mathbb{E}[\xi]\right)^{2}\left(\left|X_{0}-\mathbb{E}[X_{0}]\right|+\left(\xi+\mathbb{E}[\xi]\right)T^{H-\varepsilon}\right)^{2}\right].

Then E1,E2E_{1},E_{2} are two positive numbers depending only on (H,T,ε)(H,T,\varepsilon).

Without loss of generality, we assume that p1N1c+1\frac{p-1}{N-1}\leq c+1. Recall that the entries of U^N(t)\widehat{U}^{N}(t) are independent. Using the Cauchy-Schwarz inequality twice, the mean value theorem, Lemma A.1, and (5.1), we can obtain

𝔼[|f,LN(t)f,LN(s)|2]=𝔼[|1pi=1pf(λiN(t))f(λiN(s))|2]\displaystyle\quad\mathbb{E}\left[\left|\langle f,L_{N}(t)\rangle-\langle f,L_{N}(s)\rangle\right|^{2}\right]=\mathbb{E}\left[\left|\dfrac{1}{p}\sum_{i=1}^{p}f(\lambda_{i}^{N}(t))-f(\lambda_{i}^{N}(s))\right|^{2}\right]
1p𝔼[i=1p|f(λiN(t))f(λiN(s))|2]f2p𝔼[i=1p|λiN(t)λiN(s)|2]\displaystyle\leq\dfrac{1}{p}\mathbb{E}\left[\sum_{i=1}^{p}\left|f(\lambda_{i}^{N}(t))-f(\lambda_{i}^{N}(s))\right|^{2}\right]\leq\dfrac{\|f^{\prime}\|_{\infty}^{2}}{p}\mathbb{E}\left[\sum_{i=1}^{p}\left|\lambda_{i}^{N}(t)-\lambda_{i}^{N}(s)\right|^{2}\right]
f2p𝔼[i,j=1p(UijN(t)UijN(s))2]\displaystyle\leq\dfrac{\|f^{\prime}\|_{\infty}^{2}}{p}\mathbb{E}\left[\sum_{i,j=1}^{p}\left(U_{ij}^{N}(t)-U_{ij}^{N}(s)\right)^{2}\right]
=f2pijp𝔼[(1Nk=1N[U^ikN(t)U^jkN(t)U^ikN(s)U^jkN(s)])2]\displaystyle=\dfrac{\|f^{\prime}\|_{\infty}^{2}}{p}\sum_{i\not=j}^{p}\mathbb{E}\left[\left(\dfrac{1}{N}\sum_{k=1}^{N}\left[\widehat{U}_{ik}^{N}(t)\widehat{U}_{jk}^{N}(t)-\widehat{U}_{ik}^{N}(s)\widehat{U}_{jk}^{N}(s)\right]\right)^{2}\right]
+f2pi=1p𝔼[(1Nk=1N[U^ikN(t)2U^ikN(s)2])2]\displaystyle\qquad\quad+\dfrac{\|f^{\prime}\|_{\infty}^{2}}{p}\sum_{i=1}^{p}\mathbb{E}\left[\left(\dfrac{1}{N}\sum_{k=1}^{N}\left[\widehat{U}_{ik}^{N}(t)^{2}-\widehat{U}_{ik}^{N}(s)^{2}\right]\right)^{2}\right]
f2pN2ijpk=1N𝔼[(U^ikN(t)U^jkN(t)U^ikN(s)U^jkN(s))2]\displaystyle\leq\dfrac{\|f^{\prime}\|_{\infty}^{2}}{pN^{2}}\sum_{i\neq j}^{p}\sum_{k=1}^{N}\mathbb{E}\left[\left(\widehat{U}_{ik}^{N}(t)\widehat{U}_{jk}^{N}(t)-\widehat{U}_{ik}^{N}(s)\widehat{U}_{jk}^{N}(s)\right)^{2}\right]
+f2pNi=1pk=1N𝔼[(U^ikN(t)2U^ikN(s)2)2]\displaystyle\quad\qquad+\dfrac{\|f^{\prime}\|_{\infty}^{2}}{pN}\sum_{i=1}^{p}\sum_{k=1}^{N}\mathbb{E}\left[\left(\widehat{U}_{ik}^{N}(t)^{2}-\widehat{U}_{ik}^{N}(s)^{2}\right)^{2}\right]
f2pN2ijpk=1N𝔼[EH,T(i,j;k)](ts)2H2ε+f2pNi=1pk=1N𝔼[EH,T(i,i;k)](ts)2H2ε\displaystyle\leq\dfrac{\|f^{\prime}\|_{\infty}^{2}}{pN^{2}}\sum_{i\neq j}^{p}\sum_{k=1}^{N}\mathbb{E}\left[E_{H,T}^{(i,j;k)}\right](t-s)^{2H-2\varepsilon}+\dfrac{\|f^{\prime}\|_{\infty}^{2}}{pN}\sum_{i=1}^{p}\sum_{k=1}^{N}\mathbb{E}\left[E_{H,T}^{(i,i;k)}\right](t-s)^{2H-2\varepsilon}
=f2(p1)NE1(ts)2H2ε+f2E2(ts)2H2ε\displaystyle=\dfrac{\|f^{\prime}\|_{\infty}^{2}(p-1)}{N}E_{1}(t-s)^{2H-2\varepsilon}+\|f^{\prime}\|_{\infty}^{2}E_{2}(t-s)^{2H-2\varepsilon}
((c+1)E1+E2)f2(ts)2H2ε\displaystyle\leq\left((c+1)E_{1}+E_{2}\right)\|f^{\prime}\|_{\infty}^{2}(t-s)^{2H-2\varepsilon} (5.5)

for any fC1()f\in C^{1}(\mathbb{R}) with bounded derivative. Hence, by Proposition B.3 and (5.2), we can conclude that the sequence {LN(t),t[0,T]}N\{L_{N}(t),t\in[0,T]\}_{N\in\mathbb{N}} converges in law to {μt=μMP(c,dt),t[0,T]}\{\mu_{t}=\mu_{MP}(c,d_{t}),t\in[0,T]\}. Finally, noting that the limit measure {μt,t[0,T]}\{\mu_{t},t\in[0,T]\} is deterministic, the convergence in law actually coincides with the convergence in probability.

The proof is concluded. ∎

Remark 5.1.

In contrast, the convergences of the empirical measure-valued processes obtained in Theorem 3.1 and other subsequent results in Section 3 are almost-sure convergence, which is stronger than the in-probability convergence obtained in Theorem 5.1.

In section 3, we construct a compact set in C([0,T],𝐏())C([0,T],\mathbf{P}(\mathbb{R})) and show that the sequence {LN(t),t[0,T]}\{L_{N}(t),t\in[0,T]\} is in that compact set almost surely. However, in the Wishart case, we are not able to get an estimation analogous to (3.1) which is the key ingredient to get the almost-sure convergence, due to the lack of the independence for the upper triangular entries. Instead, we obtain the tightness on C([0,T],𝐏())C([0,T],\mathbf{P}(\mathbb{R})) for {LN(t),t[0,T]}\{L_{N}(t),t\in[0,T]\} thanks to Proposition B.2, and then the convergence in law follows consequently.

Remark 5.2.

Let σ(x)=1\sigma(x)=1, b(x)=0b(x)=0 and X0=0X_{0}=0, then the solution to (1.1) is the fractional Brownian motion Xt=BtHX_{t}=B_{t}^{H}. Then we have the convergence in law of the empirical spectral measures towards the scaled Marchenko-Pastur law μMP(c,tH)(dx)\mu_{MP}(c,t^{H})(dx), which recovers the results obtained in [Pardo2017].

Remark 5.3.

Let Y~N(t)=(Xij(t))1ip,1jN\widetilde{Y}^{N}(t)=\left(X_{ij}(t)\right)_{1\leq i\leq p,1\leq j\leq N}. Then under the conditions in Theorem 5.1, the sequence of empirical measures of the eigenvalues of 1NY~N(t)Y~N(t)\frac{1}{N}\widetilde{Y}^{N}(t)\widetilde{Y}^{N}(t)^{\intercal} converges in probability to μMP(c,dt)(dx)\mu_{MP}(c,d_{t})(dx) in C([0,T],𝐏())C([0,T],\mathbf{P}(\mathbb{R})). Indeed, by the Lidskii inequality in [Tao2012, Exercise 1.3.22 (ii)], we have

|F1NY~N(t)Y~N(t)(x)F1NU^N(t)U^N(t)(x)|1Nrank(1NY~N(t)Y~N(t)1NU^N(t)U^N(t)),\displaystyle\left|F_{\frac{1}{N}\widetilde{Y}^{N}(t)\widetilde{Y}^{N}(t)^{\intercal}}(x)-F_{\frac{1}{N}\widehat{U}^{N}(t)\widehat{U}^{N}(t)^{\intercal}}(x)\right|\leq\dfrac{1}{N}\mathrm{rank}\left(\frac{1}{N}\widetilde{Y}^{N}(t)\widetilde{Y}^{N}(t)^{\intercal}-\frac{1}{N}\widehat{U}^{N}(t)\widehat{U}^{N}(t)^{\intercal}\right),

where FA(x)F_{A}(x) is the number of the eigenvalues of AA that are smaller than xx. Noting that the rank of

1NY~N(t)Y~N(t)1NU^N(t)U^N(t)\displaystyle\quad\dfrac{1}{N}\widetilde{Y}^{N}(t)\widetilde{Y}^{N}(t)^{\intercal}-\dfrac{1}{N}\widehat{U}^{N}(t)\widehat{U}^{N}(t)^{\intercal}
=1N(U^N(t)+mtEN)(U^N(t)+mtEN)1NU^N(t)U^N(t)\displaystyle=\frac{1}{N}\left(\widehat{U}^{N}(t)+m_{t}E_{N}\right)\left(\widehat{U}^{N}(t)^{\intercal}+m_{t}E_{N}\right)-\frac{1}{N}\widehat{U}^{N}(t)\widehat{U}^{N}(t)^{\intercal}
=mtNENU^N(t)+mtNU^N(t)EN+mt2EN,\displaystyle=\dfrac{m_{t}}{N}E_{N}\widehat{U}^{N}(t)^{\intercal}+\dfrac{m_{t}}{N}\widehat{U}^{N}(t)E_{N}+m_{t}^{2}E_{N},

is at most 33 for all t[0,T]t\in[0,T], the convergence in probability of {LN(t)}N\{L_{N}(t)\}_{N\in\mathbb{N}} towards μMP(c,dt)(dx)\mu_{MP}(c,d_{t})(dx) implies that the empirical spectral measures of 1NY~N(t)Y~N(t)\frac{1}{N}\widetilde{Y}^{N}(t)\widetilde{Y}^{N}(t)^{\intercal} converges to the same limit in probability.

Remark 5.4.

The Stieltjes transform Gt(z)G_{t}(z) of the limiting measure μt\mu_{t} is

Gt(z)=μt(dx)zx=pMP(c,dt)(x)zx𝑑x=pMP(c,1)(x)zdt2x𝑑x,\displaystyle G_{t}(z)=\int\dfrac{\mu_{t}(dx)}{z-x}=\int\dfrac{p_{MP}(c,d_{t})(x)}{z-x}dx=\int\dfrac{p_{MP}(c,1)(x)}{z-d_{t}^{2}x}dx,

where pMP(c,dt)(x)p_{MP}(c,d_{t})(x) is the probability density of the Marchenko-Pastur distribution μMP(c,dt)\mu_{MP}(c,d_{t}) given in (A.1). Assuming that the variance dt2d_{t}^{2} of the solution XtX_{t} is continuously differentiable on (0,T)(0,T), we have

tGt(z)\displaystyle\partial_{t}G_{t}(z) =tpMP(c,1)(x)zdt2x𝑑x=(dt2)xpMP(c,1)(x)(zdt2x)2𝑑x\displaystyle=\partial_{t}\int\dfrac{p_{MP}(c,1)(x)}{z-d_{t}^{2}x}dx=(d_{t}^{2})^{\prime}\int\dfrac{xp_{MP}(c,1)(x)}{(z-d_{t}^{2}x)^{2}}dx
=(dt2)dt2(z(zdt2x)21zdt2x)pMP(c,1)(x)𝑑x\displaystyle=\dfrac{(d_{t}^{2})^{\prime}}{d_{t}^{2}}\int\left(\dfrac{z}{(z-d_{t}^{2}x)^{2}}-\dfrac{1}{z-d_{t}^{2}x}\right)p_{MP}(c,1)(x)dx
=(dt2)dt2(zzGt(z)+Gt(z)).\displaystyle=-\dfrac{(d_{t}^{2})^{\prime}}{d_{t}^{2}}\left(z\partial_{z}G_{t}(z)+G_{t}(z)\right). (5.6)

On the other hand, [Bai and Silverstein, Lemma 3.11] and some computation yield

czdt2Gt(z)2=Gt(z)(zdt2(1c))1.\displaystyle czd_{t}^{2}G_{t}(z)^{2}=G_{t}(z)\left(z-d_{t}^{2}(1-c)\right)-1.

Taking partial derivative with respect to zz, we have

cdt2Gt(z)2+2czdt2Gt(z)zGt(z)=Gt(z)+zGt(z)(zdt2(1c)).\displaystyle cd_{t}^{2}G_{t}(z)^{2}+2czd_{t}^{2}G_{t}(z)\partial_{z}G_{t}(z)=G_{t}(z)+\partial_{z}G_{t}(z)\left(z-d_{t}^{2}(1-c)\right). (5.7)

Therefore, by (5.4) and (5.7), we have

tGt(z)=(dt2)(cGt(z)2+2czGt(z)zGt(z)+(1c)zGt(z)).\displaystyle\partial_{t}G_{t}(z)=-(d_{t}^{2})^{\prime}\left(cG_{t}(z)^{2}+2czG_{t}(z)\partial_{z}G_{t}(z)+(1-c)\partial_{z}G_{t}(z)\right). (5.8)

5.2 Complex case

Recall that Z=(Z(1),Z(2))Z=(Z^{(1)},Z^{(2)}) is the solution to (3.12). Let W^N(t)=(W^ijN(t))1ip,1jN\widehat{W}^{N}(t)=\left(\widehat{W}_{ij}^{N}(t)\right)_{1\leq i\leq p,1\leq j\leq N} be a p×Np\times N matrix with entries W^ijN(t)=Zij(t)𝔼[Zij(t)]\widehat{W}_{ij}^{N}(t)=Z_{ij}(t)-\mathbb{E}\left[Z_{ij}(t)\right], where ZijZ_{ij} are i.i.d. copies of Z(1)+ιZ(2)Z^{(1)}+\iota Z^{(2)} and p=p(N)p=p(N) is a positive integer depending on NN. Let

WN(t)=1NW^N(t)W^N(t)\displaystyle W^{N}(t)=\dfrac{1}{N}\widehat{W}^{N}(t)\widehat{W}^{N}(t)^{*} (5.9)

be a p×pp\times p symmetric matrix with eigenvalue empirical measure LN(t)(dx)L_{N}(t)(dx).

Theorem 5.2.

Suppose that the coefficient functions σ~\tilde{\sigma}, b~\tilde{b} have bounded derivatives which are Hölder continuous of order greater than 1/(Hε)11/(H-\varepsilon)-1. Besides, assume that one of the following conditions holds,

  1. (a)

    (σ~x,σ~y)L(2)+(b~x,b~y)L(2)>0\|(\tilde{\sigma}_{x},\tilde{\sigma}_{y})\|_{L^{\infty}(\mathbb{R}^{2})}+\|(\tilde{b}_{x},\tilde{b}_{y})\|_{L^{\infty}(\mathbb{R}^{2})}>0, 𝔼[Z04]<\mathbb{E}[\|Z_{0}\|^{4}]<\infty.

  2. (b)

    σ~\tilde{\sigma} and b~\tilde{b} are bounded and 𝔼[Z02]<\mathbb{E}[\|Z_{0}\|^{2}]<\infty.

Moreover, suppose that there exists a positive function φ(x)C1()\varphi(x)\in C^{1}(\mathbb{R}) with bounded derivative, such that lim|x|φ(x)=+\lim_{|x|\rightarrow\infty}\varphi(x)=+\infty and

supNφ,LN(0)C0,\displaystyle\sup_{N\in\mathbb{N}}\langle\varphi,L_{N}(0)\rangle\leq C_{0},

for some positive constant C0C_{0} almost surely. Furthermore, suppose that there exists a positive constant cc, such that p/Ncp/N\rightarrow c as NN\rightarrow\infty.

Then for any T>0T>0, 𝔼[Zt2]<\mathbb{E}[\|Z_{t}\|^{2}]<\infty, and the sequence {LN(t),[0,T]}N\{L_{N}(t),[0,T]\}_{N\in\mathbb{N}} converges in probability to μMP(c,dZ(t))(dx)\mu_{MP}(c,d_{Z}(t))(dx) in C([0,T],𝐏())C([0,T],\mathbf{P}(\mathbb{R})).

Proof.

The proof is similar to the proofs of Theorem 5.1 and Theorem 3.3, which is sketched below.

From the proof of Theorem 3.3, we can obtain the finiteness of the mean mZ(t)m_{Z}(t) and dZ2(t)d_{Z}^{2}(t). Analogous to (5.2), by using Lemma A.5, we have the almost-sure convergence

LN(t)(dx)μMP(c,dZ(t))(dx).\displaystyle L_{N}(t)(dx)\rightarrow\mu_{MP}(c,d_{Z}(t))(dx). (5.10)

Note that the estimation (3.14) in the proof Theorem 3.3 is still valid. Similar to the estimation (5.1) and (5.1) in the proof of Theorem 5.1, we can obtain

𝔼[|f,LN(t)f,LN(s)|2]Cf2(ts)2H2ε.\displaystyle\mathbb{E}\left[\left|\langle f,L_{N}(t)\rangle-\langle f,L_{N}(s)\rangle\right|^{2}\right]\leq C\|f^{\prime}\|_{\infty}^{2}(t-s)^{2H-2\varepsilon}.

Then following the argument at the end of the proof of Theorem 5.1, we can obtain the tightness of the sequence {LN(t)}N\{L_{N}(t)\}_{N\in\mathbb{N}}, which implies the convergence in distribution and hence the convergence in probability, with the deterministic limit given in (5.10). ∎

Remark 5.5.

Let W~N(t)=(Zij(t))1ip,1jN\widetilde{W}^{N}(t)=\left(Z_{ij}(t)\right)_{1\leq i\leq p,1\leq j\leq N}. Then under the conditions in Theorem 5.2, the sequence of empirical spectral measures of 1NW~N(t)W~N(t)\frac{1}{N}\widetilde{W}^{N}(t)\widetilde{W}^{N}(t)^{\intercal} converges in probability to μMP(c,dZ)(dx)\mu_{MP}(c,d_{Z})(dx) in C([0,T],𝐏())C([0,T],\mathbf{P}(\mathbb{R})).

Remark 5.6.

Similar to Remark 5.4, the Stieltjes transform of the limit measure μt\mu_{t} satisfies the differential equation (5.8) with dtd_{t} replaced by dZ(t)d_{Z}(t).

Appendix A Preliminaries on (random) matrices

The following is the Hoffman-Wielandt lemma, which can be found in [Anderson2010, Lemma 2.1.19], see also [Tao2012].

Lemma A.1 (Hoffman-Wielandt).

Let A=(Aij)1i,jNA=(A_{ij})_{1\leq i,j\leq N} and B=(Bij)1i,jNB=(B_{ij})_{1\leq i,j\leq N} be N×NN\times N Hermitian matrices, with ordered eigenvalues λ1Aλ2AλNA\lambda_{1}^{A}\leq\lambda_{2}^{A}\leq\ldots\leq\lambda_{N}^{A} and λ1Bλ2BλNB\lambda_{1}^{B}\leq\lambda_{2}^{B}\leq\ldots\leq\lambda_{N}^{B}. Then

i=1N|λiAλiB|2Tr[(AB)(AB)]=i,j=1N|AijBij|2.\displaystyle\sum_{i=1}^{N}\left|\lambda_{i}^{A}-\lambda_{i}^{B}\right|^{2}\leq\mathrm{Tr}\left[(A-B)(A-B)^{*}\right]=\sum_{i,j=1}^{N}\left|A_{ij}-B_{ij}\right|^{2}.

The next two lemmas are the famous Wigner semi-circle law for the real case and complex case respectively (see, e.g., [Tao2012]).

Lemma A.2.

Let MNM_{N} be the top left N×NN\times N minors of an infinite Wigner matrix (ξij)i,j1(\xi_{ij})_{i,j\geq 1}, which is symmetric, the upper-triangular entries ξij,i>j\xi_{ij},i>j are i.i.d. real random variables with mean zero and unit variance, and the diagonal entries ξii\xi_{ii} are i.i.d. real variables, independent of the upper-triangular entries, with bounded mean and variance. Then the empirical spectral distributions μMN/N\mu_{M_{N}/\sqrt{N}} converge almost surely to the Wigner semicircular distribution

μsc(dx)=4x22π1[2,2](x)dx.\displaystyle\mu_{sc}(dx)=\dfrac{\sqrt{4-x^{2}}}{2\pi}1_{[-2,2]}(x)dx.
Lemma A.3.

Let MNM_{N} be the top left N×NN\times N minors of an infinite complex Wigner matrix (ξij)i,j1(\xi_{ij})_{i,j\geq 1}, which is Hermitian, the upper-triangular entries ξij,i>j\xi_{ij},i>j are i.i.d. complex random variables with mean zero and unit variance, and the diagonal entries ξii\xi_{ii} are i.i.d. real variables, independent of the upper-triangular entries, with bounded mean and variance. Then the conclusion of Lemma A.2 holds.

The next two lemmas concern the celebrated Marchenko-Pastur law which was introduced in [Bai2010].

Lemma A.4.

Let XNX_{N} be the top left p(N)×Np(N)\times N minors of an infinite random matrix, whose entries are i.i.d. real random variable with mean zero and variance σ2\sigma^{2}. Here, p(N)p(N) is a positive integer such that p(N)/Nc(0,)p(N)/N\rightarrow c\in(0,\infty) as NN\rightarrow\infty. Then the empirical distribution of the eigenvalues of the p×pp\times p matrix

YN=1NXNXN\displaystyle Y^{N}=\dfrac{1}{N}X_{N}X_{N}^{\intercal}

converges weakly to the Marchenko-Pastur distribution

μMP(c,σ)(dx)\displaystyle\mu_{MP}(c,\sigma)(dx) =12πσ2cx(σ2(1+c)2x)(xσ2(1c)2)1[σ2(1c)2,σ2(1+c)2](x)dx\displaystyle=\dfrac{1}{2\pi\sigma^{2}cx}\sqrt{\left(\sigma^{2}(1+\sqrt{c})^{2}-x\right)\left(x-\sigma^{2}(1-\sqrt{c})^{2}\right)}1_{[\sigma^{2}(1-\sqrt{c})^{2},\sigma^{2}(1+\sqrt{c})^{2}]}(x)dx
+(11c)δ0(x)dx1[c>1],\displaystyle\quad+\left(1-\dfrac{1}{c}\right)\delta_{0}(x)dx1_{[c>1]}\,, (A.1)

almost surely, where δ0\delta_{0} is the point mass at the origin.

Lemma A.5.

Let XNX_{N} be the top left p(N)×Np(N)\times N minors of an infinite random matrix, whose entries are i.i.d. complex random variable with mean zero and variance σ2\sigma^{2}. Here, p(N)p(N) is a positive integer such that p(N)/Nc(0,)p(N)/N\rightarrow c\in(0,\infty) as NN\rightarrow\infty. Then the empirical distribution of the p×pp\times p matrix

YN=1NXNXN\displaystyle Y^{N}=\dfrac{1}{N}X_{N}X_{N}^{*}

converges almost surely to the Marchenko-Pastur distribution μMP(c,σ)(dx)\mu_{MP}(c,\sigma)(dx) described in Lemma A.4.

The following result characterizes the limiting empirical spectral distribution of the symmetric random matrix with correlated entries, which is a direct corollary of [Banna2015, Theorem 3].

Lemma A.6.

Let (ξi,j)(i,j)2(\xi_{i,j})_{(i,j)\in\mathbb{Z}^{2}} be an array of i.i.d. real-valued random variables with finite second moment. Let II be a finite subset of 2\mathbb{Z}^{2}, {ar:rI}\{a_{r}:r\in I\} be a family of constants and

Xi,j=rIarξ(i,j)+r,1ij.\displaystyle X_{i,j}=\sum_{r\in I}a_{r}\xi_{(i,j)+r},\quad 1\leq i\leq j.

Suppose that 𝔼[X0,0]=rIar𝔼[ξ0,0]=0\mathbb{E}[X_{0,0}]=\sum_{r\in I}a_{r}\mathbb{E}[\xi_{0,0}]=0. Denote γk,l=γl,k=𝔼[X0,0Xk,l]\gamma_{k,l}=\gamma_{l,k}=\mathbb{E}[X_{0,0}X_{k,l}] for all klk\leq l. Let XN=(Xi,jN)1i,jNX^{N}=\left(X_{i,j}^{N}\right)_{1\leq i,j\leq N} be a symmetric matrix with entries Xi,jN=Xi,j/NX_{i,j}^{N}=X_{i,j}/\sqrt{N} for 1ijN1\leq i\leq j\leq N. Then the empirical spectral measure of XNX^{N} converges to a nonrandom probability measure μc\mu_{c} with Stieltjes transform Sc(z)=01h(x,z)𝑑xS_{c}(z)=\int_{0}^{1}h(x,z)dx, where h(x,z)h(x,z) is the solution to the equation

h(x,z)=(z+01f(x,y)h(y,z)𝑑y)1 with f(x,y)=k,lγk,le2πi(kx+ly).\displaystyle h(x,z)=\left(-z+\int_{0}^{1}f(x,y)h(y,z)dy\right)^{-1}~{}\text{ with }~{}f(x,y)=\sum_{k,l\in\mathbb{Z}}\gamma_{k,l}e^{-2\pi i(kx+ly)}.

Appendix B Tightness criterions for probability measures on C([0,T],𝐏())C([0,T],\mathbf{P}(\mathbb{R}))

In this section, we collect some lemmas used in the proofs, and then we provide two tightness criterions for probability measures on C([0,T],𝐏())C([0,T],\mathbf{P}(\mathbb{R})) (Theorems B.1 and B.2). We also provide sufficient conditions for tightness which can be verified by computing moments (Propositions B.1, B.2 and B.3).

Note that there has been fruitful literature on tightness of probability measures on a Skorohod space 𝒟([0,T],E)\mathcal{D}([0,T],E), where EE is a completely regular topological space. We refer the interested reader to [Mitoma, jaku, EK, Dawson1993, Perkins, KX, Kouritzin] and the references therein. Theorem B.1 is a direct consequence of Jakubowski’s criterion [jaku] (see also e.g, [Dawson1993, Theorem 3.6.4] and [Sun2011] for the statement of the criterion), noting that C([0,T],𝐏())C([0,T],\mathbf{P}(\mathbb{R})) is a closed subset of 𝒟([0,T],𝐏())\mathcal{D}([0,T],\mathbf{P}(\mathbb{R})). Theorem B.2 might be also well-known in the literature of tightness criterion for probability measures, but we could not find a reference addressing this explicitly. For both Theorems B.1 and B.2, we include self-contained proofs for the reader’s convenience.

Recall that 𝐏()\mathbf{P}(\mathbb{R}) is the set of probability measures on \mathbb{R} endowed with its weak topology, and that C([0,T],𝐏())C([0,T],\mathbf{P}(\mathbb{R})) is the space of continuous probability-measure-valued processes, both of which are Polish spaces. Denote by C0()C_{0}(\mathbb{R}) the set of continuous functions on \mathbb{R} vanishing at infinity, which is also a Polish space. Also the space 𝐏~()\tilde{\mathbf{P}}(\mathbb{R}) of sub-probabilities on \mathbb{R} endowed with its vague topology is a Polish space (see, e.g., [Kallenberg, Theorem 4.2]), and so is C([0,T],𝐏~()).C([0,T],\tilde{\mathbf{P}}(\mathbb{R})).

Let’s also recall some basic facts for probability measures on a Polish space XX (see, e.g., [Billingsley] for details). Denote by 𝐏(X)\mathbf{P}(X) the set of probability measures on (X,X)(X,\mathcal{B}_{X}) where X\mathcal{B}_{X} is the Borel σ\sigma-field on the Polish space XX. Let Π𝐏(X)\Pi\subset\mathbf{P}(X) be a family of probability measures on XX. The family Π\Pi is called tight if for every ε(0,1)\varepsilon\in(0,1), there exists a compact set KεXK^{\varepsilon}\subset X such that P(K)>1εP(K)>1-\varepsilon for all PΠP\in\Pi. The family Π\Pi is called relatively compact if every sequence of elements of Π\Pi contains a weakly convergent subsequence. The Prokhorov’s theorem guarantees the equivalence between tightness and relatively compactness. Also note that a sequence Pn𝐏(X)P_{n}\in\mathbf{P}(X) converges weakly to P𝐏(X)P\in\mathbf{P}(X) if and only if PnP_{n} converges to PP in the Polish space 𝐏(X)\mathbf{P}(X).

The following lemma (see, e.g., [Durrett2019, Theorem 3.2.14]) provides a method to obtain tightness for a set of probability measures.

Lemma B.1.

Let 𝕀\mathbb{I} be an index set. If there is a non-negative function φ\varphi so that φ(x)\varphi(x)\rightarrow\infty as |x||x|\rightarrow\infty and

supi𝕀φ(x)μn(dx)<,\displaystyle\sup_{i\in\mathbb{I}}\int_{\mathbb{R}}\varphi(x)\mu_{n}(dx)<\infty,

then the family of probability measures {μi}i𝕀\{\mu_{i}\}_{i\in\mathbb{I}} is tight.

Based on the above tightness criterion, one can construct compact subsets of 𝐏()\mathbf{P}(\mathbb{R}):

Lemma B.2.

A set of the form

K={μ𝐏():φ(x)μ(dx)M}K=\left\{\mu\in\mathbf{P}(\mathbb{R}):\int_{\mathbb{R}}\varphi(x)\mu(dx)\leq M\right\}

is compact in 𝐏()\mathbf{P}(\mathbb{R}), where MM is a positive constant and φ(x)\varphi(x) is given in Lemma B.1.

Proof.

By Lemma B.1 and Prokhorov’s theorem (see, e.g., [Billingsley, Theorems 5.1 and 5.2]) which claims that a subset AA of 𝐏()\mathbf{P}(\mathbb{R}) is tight if and only if the closure of AA is compact, it suffices to show that KK is a closed set in 𝐏()\mathbf{P}(\mathbb{R}), which is easy to verify. ∎

By the Arzela-Ascoli Theorem, we have the following lemma to construct compact sets in C([0,T],𝐏())C([0,T],\mathbf{P}(\mathbb{R})).

Lemma B.3.
=n{gC([0,T],):supt,s[0,T],|ts|ηn|g(t)g(s)|εn,supt[0,T]|g(t)|M},\displaystyle\mathfrak{C}=\bigcap_{n\in\mathbb{N}}\left\{g\in C([0,T],\mathbb{R}):\sup_{t,s\in[0,T],|t-s|\leq\eta_{n}}|g(t)-g(s)|\leq\varepsilon_{n},\sup_{t\in[0,T]}|g(t)|\leq M\right\},

is compact in C([0,T],𝐏())C([0,T],\mathbf{P}(\mathbb{R})), where MM is a positive constant and {εn,n}\{\varepsilon_{n},n\in\mathbb{N}\} and {ηn,n}\{\eta_{n},n\in\mathbb{N}\} are two sequences of positive numbers going to zero as nn goes to infinity.

The following lemma ([Anderson2010, Lemma 4.3.13]) provides an approach to construct compact subsets in C([0,T],𝐏())C([0,T],\mathbf{P}(\mathbb{R})). It will be used in the proof of Theorem B.1.

Lemma B.4.

Let KK be a compact subset of 𝐏()\mathbf{P}(\mathbb{R}), let {fi}i\{f_{i}\}_{i\in\mathbb{N}} be a sequence of bounded continuous functions that is dense in C0()C_{0}(\mathbb{R}), and let {Ci}i\{C_{i}\}_{i\in\mathbb{N}} be a family of compact subsets of C([0,T],)C([0,T],\mathbb{R}). Then the set

={μC([0,T],𝐏()):μtK,t[0,T]}i{tμt(fi)Ci}\displaystyle\mathfrak{C}=\Big{\{}\mu\in C([0,T],\mathbf{P}(\mathbb{R})):\mu_{t}\in K,\forall t\in[0,T]\Big{\}}\cap\bigcap_{i\in\mathbb{N}}\left\{t\rightarrow\mu_{t}(f_{i})\in C_{i}\right\}

is a compact subset of C([0,T],𝐏())C([0,T],\mathbf{P}(\mathbb{R})).

The following lemma, which constructs compacts subsets in C([0,T],P~())C([0,T],\tilde{P}(\mathbb{R})), will play a critical role in the proof of Theorem B.2.

Lemma B.5.

Let {fi}i\{f_{i}\}_{i\in\mathbb{N}} be a countable dense subset of C0()C_{0}(\mathbb{R}), and let {Ci}i\{C_{i}\}_{i\in\mathbb{N}} be a family of compact subsets of C([0,T],)C([0,T],\mathbb{R}). Then the set

𝒦=i{tμt(fi)Ci}\displaystyle\mathcal{K}=\bigcap_{i\in\mathbb{N}}\left\{t\rightarrow\mu_{t}(f_{i})\in C_{i}\right\}

is a compact subset of C([0,T],𝐏~())C([0,T],\tilde{\mathbf{P}}(\mathbb{R})).

Proof.

The proof is similar to the proof of Lemma 4.3.13 in [Anderson2010], which is provided here for the reader’s convenience.

Noting that 𝒦\mathcal{K} is a closed subset of C([0,T],𝐏~())C([0,T],\tilde{\mathbf{P}}(\mathbb{R})) which is a Polish space, it suffices to prove that 𝒦\mathcal{K} is sequentially compact.

Take a sequence μ(n)𝒦\mu^{(n)}\in\mathcal{K}. Then the functions tμt(n)(fi)Cit\rightarrow\mu_{t}^{(n)}(f_{i})\in C_{i} for \in\mathbb{N}. Let DD be a countable dense subset of [0,T][0,T]. Note that for each tDt\in D, μt(n)\mu_{t}^{(n)} has a subsequence that converges vaguely, i.e., converges in the Polish space 𝐏~()\tilde{\mathbf{P}}(\mathbb{R}). Then by the diagonal procedure and the compactness of CiC_{i}, we can find a subsequence μϕ(n)\mu^{\phi(n)} such that tμtϕ(n)(fi)t\rightarrow\mu_{t}^{\phi(n)}(f_{i}) converges in CiC_{i} for all ii\in\mathbb{N} and μtϕ(n)\mu_{t}^{\phi(n)} converges in 𝐏~()\tilde{\mathbf{P}}(\mathbb{R}) for all tDt\in D, as nn tends to infinity. Denoting φi(t):=limnμtϕ(n)(fi)\varphi_{i}(t):=\lim_{n\rightarrow\infty}\mu_{t}^{\phi(n)}(f_{i}) for all i,t[0,T]i\in\mathbb{N},t\in[0,T] and μt:=limnμtϕ(n)\mu_{t}:=\lim_{n\rightarrow\infty}\mu_{t}^{\phi(n)} for all tDt\in D, then φiCiC([0,T],)\varphi_{i}\in C_{i}\subset C([0,T],\mathbb{R}) for ii\in\mathbb{N} and μt𝐏~()\mu_{t}\in\tilde{\mathbf{P}}(\mathbb{R}) for tDt\in D. The vague convergence of the measures μtϕ(n)\mu_{t}^{\phi(n)} for tDt\in D implies that φi(t)=μt(fi)\varphi_{i}(t)=\mu_{t}(f_{i}) for all ii\in\mathbb{N} and tDt\in D. Noting that {fi}i\{f_{i}\}_{i\in\mathbb{N}} is dense in C0()C_{0}(\mathbb{R}), DD is dense in [0,T][0,T], φi(t)\varphi_{i}(t) is continuous, one can extend the family {μt,tD}\{\mu_{t},t\in D\} of sub-probability measures uniquely to a sub-probability-measure-valued process {νt,t[0,T]}C([0,T],𝐏~())\{\nu_{t},t\in[0,T]\}\in C([0,T],\tilde{\mathbf{P}}(\mathbb{R})) such that limnμϕ(n)=ν\lim_{n\rightarrow\infty}\mu^{\phi(n)}=\nu. This shows that 𝒦\mathcal{K} is sequentially compact in C([0,T],𝐏~())C([0,T],\tilde{\mathbf{P}}(\mathbb{R})), and the proof is completed. ∎

Throughout the rest of the section, let TT be a fixed positive number, and let {μ(n)}n:={μt(n),t[0,T]}nC([0,T],𝐏())\{\mu^{(n)}\}_{n\in\mathbb{N}}:=\{\mu_{t}^{(n)},t\in[0,T]\}_{n\in\mathbb{N}}\subset C([0,T],\mathbf{P}(\mathbb{R})) be a sequence of continuous probability-measure-valued stochastic processes. We assume the following conditions on {μ(n)}n\{\mu^{(n)}\}_{n\in\mathbb{N}}, which will be used in Theorems B.1 and B.2.

  1. (I)

    For any ε>0\varepsilon>0, there exists a compact set KεK^{\varepsilon} in 𝐏()\mathbf{P}(\mathbb{R}), such that for all nn\in\mathbb{N},

    (μt(n)Kε,t[0,T])1ε.\mathbb{P}\left(\mu_{t}^{(n)}\in K^{\varepsilon},\forall t\in[0,T]\right)\geq 1-\varepsilon.
  2. (I’)

    For each t[0,T]t\in[0,T], the family of 𝐏()\mathbf{P}(\mathbb{R})-valued random elements {μt(n):Ω𝐏()}n\{\mu_{t}^{(n)}:\Omega\rightarrow\mathbf{P}(\mathbb{R})\}_{n\in\mathbb{N}} is tight.

  3. (II)

    There exists a countable dense subset {fi}i\{f_{i}\}_{i\in\mathbb{N}} of C0()C_{0}(\mathbb{R}), such that for each fif_{i}, {fi,μt(n),t[0,T]}n\{\langle f_{i},\mu_{t}^{(n)}\rangle,t\in[0,T]\}_{n\in\mathbb{N}} is tight on C([0,T],)C([0,T],\mathbb{R}).

We also list some conditions that imply the above conditions.

Let φ(x)\varphi(x) a be nonnegative function such that lim|x|φ(x)=\lim\limits_{|x|\to\infty}\varphi(x)=\infty.

  1. (A)
    supn𝔼[supt[0,T]φ,μt(n)]<.\sup_{n\in\mathbb{N}}\mathbb{E}\left[\sup_{t\in[0,T]}\langle\varphi,\mu_{t}^{(n)}\rangle\right]<\infty. (B.1)
  2. (A’)

    For each t[0,T]t\in[0,T], the family {φ,μt(n)}n\{\langle\varphi,\mu_{t}^{(n)}\rangle\}_{n\in\mathbb{N}} of random variables is tight.

  3. (A”)

    For each t[0,T]t\in[0,T],

    supn𝔼[|φ,μt(n)|α]<,\sup_{n\in\mathbb{N}}\mathbb{E}\left[\left|\langle\varphi,\mu_{t}^{(n)}\rangle\right|^{\alpha}\right]<\infty, (B.2)

    for some α>0\alpha>0,

  4. (B)

    There exists a countable dense subset {fi}i\{f_{i}\}_{i\in\mathbb{N}} of C0()C_{0}(\mathbb{R}), such that there exist positive constants α\alpha, β\beta,

    𝔼[|f,μt(n)f,μs(n)|1+α]Cf,T|ts|1+β,t,s[0,T],n,\displaystyle\mathbb{E}\left[\left|\langle f,\mu_{t}^{(n)}\rangle-\langle f,\mu_{s}^{(n)}\rangle\right|^{1+\alpha}\right]\leq C_{f,T}|t-s|^{1+\beta},\quad\forall t,s\in[0,T],\forall n\in\mathbb{N}, (B.3)

    for all f{fi}i0f\in\{f_{i}\}_{i\geq 0}, where Cf,TC_{f,T} is a constant depending only on ff and TT.

Lemma B.6.

(A) \Rightarrow (I); (A”)\Rightarrow (A’)(I)\Rightarrow(I^{\prime}); (B)\Rightarrow(II).

Proof.

By (B.1), let M:=supn𝔼[supt[0,T]φ,μt(n)]<M:=\sup_{n\in\mathbb{N}}\mathbb{E}\left[\sup_{t\in[0,T]}\langle\varphi,\mu_{t}^{(n)}\rangle\right]<\infty. For any ε>0\varepsilon>0, choose Mε=M/εM_{\varepsilon}=M/\varepsilon. The set Kε:={μ𝐏():φ,μMε}K^{\varepsilon}:=\{\mu\in\mathbf{P}(\mathbb{R}):\langle\varphi,\mu\rangle\leq M_{\varepsilon}\} is a compact subset of 𝐏()\mathbf{P}(\mathbb{R}) by Lemma B.2. Then, by Markov inequality we have, for n,n\in\mathbb{N},

(μt(n)Kε, for some t[0,T])=(supt[0,T]φ,μt(n)>Mε)M/Mε=ε.\displaystyle\mathbb{P}\left(\mu_{t}^{(n)}\notin K^{\varepsilon},\text{ for some }t\in[0,T]\right)=\mathbb{P}\left(\sup_{t\in[0,T]}\langle\varphi,\mu_{t}^{(n)}\rangle>M_{\varepsilon}\right)\leq M/M_{\varepsilon}=\varepsilon.

Thus, (A) \Rightarrow (I).

(A”)\Rightarrow(A’) follows directly from Lemma B.1. Now we show (A’)\Rightarrow(I’). Fix an arbitrary t[0,T]t\in[0,T]. For any ε>0\varepsilon>0, due to the tightness of {φ,μt(n)}n\{\varphi,\mu_{t}^{(n)}\}_{n\in\mathbb{N}}, one can find a positive constant NεN_{\varepsilon} such that for all nn\in\mathbb{N},

(φ,μt(n)Nε)>1ε.\displaystyle\mathbb{P}\left(\langle\varphi,\mu_{t}^{(n)}\rangle\leq N_{\varepsilon}\right)>1-\varepsilon.

This implies that for all nn\in\mathbb{N},

(μt(n)Cε)>1ε,\mathbb{P}\left(\mu_{t}^{(n)}\in C^{\varepsilon}\right)>1-\varepsilon,

where Cε={ν𝐏():φ,νNε}C^{\varepsilon}=\{\nu\in\mathbf{P}(\mathbb{R}):\langle\varphi,\nu\rangle\leq N_{\varepsilon}\} is a compact subset of 𝐏()\mathbf{P}(\mathbb{R}) by Lemma B.2. Therefore, {μt(n)}n\{\mu_{t}^{(n)}\}_{n\in\mathbb{N}} is tight, and hence (A’)\Rightarrow(I’).

Finally, (B)\Rightarrow(II) follows directly from the Kolomogorov tightness criterion (see, e.g., [Ikeda1981, Theorem 4.2 and Theorem 4.3]). ∎

The following is Jakubowski’ tightness criterion for probability measures on C([0,T],𝐏())C([0,T],\mathbf{P}(\mathbb{R})).

Theorem B.1.

Assume that conditions (I) and (II) are satisfied. Then the set {μt(n),t[0,T]}n\{\mu_{t}^{(n)},t\in[0,T]\}_{n\in\mathbb{N}} induces a tight family of probability measures on C([0,T],𝐏())C([0,T],\mathbf{P}(\mathbb{R})).

Proof.

By condition (II), for any ε>0\varepsilon>0, there exist compact subsets CiεC_{i}^{\varepsilon} of C([0,T],)C([0,T],\mathbb{R}) for ii\in\mathbb{N}, such that for each ii\in\mathbb{N}, for all nn\in\mathbb{N},

(fi,μt(n)Ciε)1ε/2i,\displaystyle\mathbb{P}\left(\langle f_{i},\mu_{t}^{(n)}\rangle\in C_{i}^{\varepsilon}\right)\geq 1-\varepsilon/2^{i},

and hence, for all nn\in\mathbb{N},

(i{fi,μt(n)Ciε})1i({f,μt(n)Ciε})1ε.\displaystyle\mathbb{P}\left(\bigcap_{i\in\mathbb{N}}\left\{\langle f_{i},\mu_{t}^{(n)}\rangle\in C_{i}^{\varepsilon}\right\}\right)\geq 1-\sum_{i\in\mathbb{N}}\mathbb{P}\left(\left\{\langle f,\mu_{t}^{(n)}\rangle\in C_{i}^{\varepsilon}\right\}^{\complement}\right)\geq 1-\varepsilon. (B.4)

By Lemma B.4, the set

(ε)={μC([0,T],𝐏()):μtKε,t[0,t]}i0{tfi,μtCiε},\displaystyle\mathfrak{C}(\varepsilon)=\Big{\{}\mu\in C([0,T],\mathbf{P}(\mathbb{R})):\mu_{t}\in K^{\varepsilon},\forall t\in[0,t]\Big{\}}\cap\bigcap_{i\geq 0}\left\{t\rightarrow\langle f_{i},\mu_{t}\rangle\in C_{i}^{\varepsilon}\right\},

is compact in C([0,T],𝐏())C([0,T],\mathbf{P}(\mathbb{R})) for any ε>0\varepsilon>0. By condition (I) and (B.4), we have for all nn\in\mathbb{N},

(μ(n)(ε))12ε.\displaystyle\mathbb{P}\left(\mu^{(n)}\in\mathfrak{C}(\varepsilon)\right)\geq 1-2\varepsilon.

This implies the tightness of {μ(n)}n\{\mu^{(n)}\}_{n\in\mathbb{N}} on C([0,T],𝐏())C([0,T],\mathbf{P}(\mathbb{R})). The proof is concluded. ∎

Remark B.1.

Following the proof of [jaku, Theorem 3.1], one can easily show that conditions (I) and (II) are also necessary conditions for tightness of probability measures on C([0,T],𝐏()).C([0,T],\mathbf{P}(\mathbb{R})).

The criterion in Theorem B.1 can be verified by computing moments:

Proposition B.1.

Assume that conditions (A) and (B) are satisfied. Then the set {μt(n),t[0,T]}n\{\mu_{t}^{(n)},t\in[0,T]\}_{n\in\mathbb{N}} induces a tight family of probability measures on C([0,T],𝐏())C([0,T],\mathbf{P}(\mathbb{R})).

Proof.

The desired result follows directly from Theorem B.1 and Lemma B.6. ∎

In general situations, it might not be easy to check condition (I) or (A). Below, we provide another tightness criterion which weakens condition (I).

Theorem B.2.

Assume conditions (I’) and (II) are satisfied. Then the set {μt(n),t[0,T]}n\{\mu_{t}^{(n)},t\in[0,T]\}_{n\in\mathbb{N}} induces a tight family of probability measures on C([0,T],𝐏())C([0,T],\mathbf{P}(\mathbb{R})).

Proof.

By condition (II), we can choose the same compact subsets CiεC_{i}^{\varepsilon} of C([0,T],)C([0,T],\mathbb{R}) for ii\in\mathbb{N} as in the proof of Theorem B.1, and hence (B.4) still holds. By Lemma B.5, the set

𝒦(ε)=i{tfi,μtCiε},\displaystyle\mathcal{K}(\varepsilon)=\bigcap_{i\in\mathbb{N}}\left\{t\rightarrow\langle f_{i},\mu_{t}\rangle\in C_{i}^{\varepsilon}\right\},

is compact in C([0,T],𝐏~())C([0,T],\tilde{\mathbf{P}}(\mathbb{R})) for any ε>0\varepsilon>0. By (B.4), we have, for all nn\in\mathbb{N},

(μ(n)𝒦(ε))1ε.\displaystyle\mathbb{P}\left(\mu^{(n)}\in\mathcal{K}(\varepsilon)\right)\geq 1-\varepsilon.

This implies the tightness of {μ(n)}n\{\mu^{(n)}\}_{n\in\mathbb{N}} on C([0,T],𝐏~())C([0,T],\tilde{\mathbf{P}}(\mathbb{R})). Therefore, for any subsequence of μ(n)\mu^{(n)}, by Prokhorov’s theorem, there exists a subsequence μ(nk)\mu^{(n_{k})} which converge weakly to some ν={νt,t[0,T]}C([0,T],𝐏~())\nu=\{\nu_{t},t\in[0,T]\}\in C([0,T],\tilde{\mathbf{P}}(\mathbb{R})) which is a continuous sub-probability-measure-valued process. Thus, for each t[0,T]t\in[0,T], the sequence μt(nk)\mu_{t}^{(n_{k})} (as 𝐏~()\tilde{\mathbf{P}}(\mathbb{R})-valued random elements) converges weakly to νt𝐏~()\nu_{t}\in\tilde{\mathbf{P}}(\mathbb{R}). This together with the tightness of {μt(n)}n\{\mu^{(n)}_{t}\}_{n\in\mathbb{N}} (as 𝐏()\mathbf{P}(\mathbb{R})-valued random elements) in condition (I’) implies that νt𝐏()\nu_{t}\in\mathbf{P}(\mathbb{R}) and hence νC([0,T],𝐏())\nu\in C([0,T],\mathbf{P}(\mathbb{R})). Therefore, Prokhorov’s theorem implies that {μ(n)}n\{\mu^{(n)}\}_{n\in\mathbb{N}} is tight on C([0,T],𝐏())C([0,T],\mathbf{P}(\mathbb{R})). The proof is concluded. ∎

Remark B.2.

Noting that condition (I) implies condition (I’), then by Remark B.1, conditions (I’) and (II) are also necessary conditions for tightness of probability measures on C([0,T],𝐏())C([0,T],\mathbf{P}(\mathbb{R})).

Similarly, we can justify the criterion in Theorem B.2 by computing moments. The two Propositions below are direct consequences of Theorem B.2 and Lemma B.6.

Proposition B.2.

Assume that conditions (A’) and (B) are satisfied. Then the set {μt(n),t[0,T]}n\{\mu_{t}^{(n)},t\in[0,T]\}_{n\in\mathbb{N}} induces a tight family of probability measures on C([0,T],𝐏())C([0,T],\mathbf{P}(\mathbb{R})).

Proposition B.3.

Assume that conditions (A”) and (B) are satisfied. Then the set {μt(n),t[0,T]}n\{\mu_{t}^{(n)},t\in[0,T]\}_{n\in\mathbb{N}} induces a tight family of probability measures on C([0,T],𝐏())C([0,T],\mathbf{P}(\mathbb{R})).

Acknowledgment: We would like to thank Rongfeng Sun for reminding us of the Jakubowski’s tightness criterion. J. Yao is partially supported by HKSAR-RGC-Grant GRF-17307319.

References