This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

[1]\fnmShoki \surSugimoto

1]\orgdivDepartment of Physics, \orgnamethe University of Tokyo, \orgaddress\street7-3-1 Hongo, \cityBunkyo-ku, \stateTokyo, \postcode113-0033, \countryJapan 2]\orgnameIST Austria, \orgaddress\streetAm Campus 1, \city3400 Klosterneuburg, \countryAustria

Eigenstate Thermalisation Hypothesis for Translation Invariant Spin Systems

[email protected]    \fnmJoscha \surHenheik [email protected]    \fnmVolodymyr \surRiabov [email protected]    \fnmLászló \surErdős [email protected] [ [
Abstract

We prove the Eigenstate Thermalisation Hypothesis (ETH) for local observables in a typical translation invariant system of quantum spins with mean field interaction. This mathematically verifies the observation made in Ref. [1] that ETH may hold for systems with additional translation symmetries for a naturally restricted class of observables. We also present numerical support for the same phenomenon for Hamiltonians with local interaction.

keywords:
Eigenstate thermalisation, Microcanonical ensemble, Translational invariance, Quantum spin systems
pacs:
[

AMS Subject Classification]60B20, 82B44, 82D30

Date:

1 Introduction

Recent experiments have demonstrated thermalisation of isolated quantum systems under unitary time evolution [2, 3, 4, 5, 6, 7]. In this context, thermalisation means that, after a long time evolution, observables attain their equilibrium (thermal) values determined by statistical mechanics. The primary mechanism behind this thermalisation of isolated quantum systems is an even stronger concept, the Eigenstate Thermalisation Hypothesis (ETH) [8, 9, 10]. Informally, the ETH asserts that (i) physical observables AA take their thermal value on every eigenstate of a many-body quantum system and (ii) off-diagonal elements of AA in the energy eigenbasis are vanishingly small. In particular, the ETH ensures the thermalisation of AA for any initial state with a macroscopically definite energy, given no massive degeneracy in the energy spectrum [11, 12, 13]. The ETH has numerically been verified for individual models with several local or few-body observables [14, 15, 16, 17, 1, 18, 19]. On the other hand, recent studies have revealed several classes of systems for which the ETH breaks down: examples include systems with an extensive number of local conserved quantities [20, 21, 22], many-body localisation [23, 24], and quantum many-body scars [25, 26].

As another approach to this question, it has been proven that the ETH holds true for any deterministic observable for almost all Hamiltonians HH [8, 27, 28] sampled from a Wigner matrix ensemble which has no further unitary symmetry (see also [29, 30] for ETH for more general mean field ensembles). If the Hamiltonian has some unitary symmetry, the ETH clearly breaks down for conserved quantities related to those symmetries because we can find simultaneous eigenstates of the Hamiltonian and conserved quantities. However, Ref. [1] observed an interesting phenomenon, namely that local quantities still satisfy the ETH even in a system with translational symmetry. Therefore, the question of how generically and for what class of observables the ETH holds true in realistic situations has yet to be fully resolved.

In this paper we mathematically rigorously prove an instance of the observation from [1]. More precisely we show that, for the mean-field case of an ensemble with translational symmetry, the ETH typically holds for quantities whose support does not exceed half of the system size with the optimal speed of convergence. The ETH also typically holds for quantities whose support exceeds half the system size but with a slower convergence speed, while it typically breaks down for some observables whose support extends to the entire system. We complement our analytical results for the mean-field case with a numerical simulation for an ensemble of more realistic Hamiltonians with local interactions.

2 Setup

We consider a one-dimensional periodic quantum spin system on the LL\in\mathbb{N} sites of the standard discrete torus

𝕋L\faktorL.\mathbb{T}_{L}\coloneqq\faktor{\mathbb{Z}}{L\mathbb{Z}}\,.

On each vertex j𝕋Lj\in\mathbb{T}_{L}, the one particle Hilbert space j\mathcal{H}_{j} is given by 2\mathbb{C}^{2} and we denote its canonical basis by {|,|}\{\ket{\uparrow},\ket{\downarrow}\}. The corresponding LL-particle Hilbert space

j=1L2\mathcal{H}\coloneqq\bigotimes_{j=1}^{L}\mathbb{C}^{2}

is simply given by the tensor product with dimension 2L2^{L}. For simplicity, we restrict ourselves to the spin-1/21/2 case, but our results can straightforwardly be extended to general spin ss with one particle Hilbert space being 2s+1\mathbb{C}^{2s+1}.

Next, we introduce the ensemble of Hamiltonians, which is first introduced in Ref. [31] and shall be studied in this article. The main parameter in the definition is a tunable range L\ell\leq L of interactions, which allows us to consider how generically the ETH holds in realistic situations.

Definition 2.1 (Hamiltonian).

Let T=TLT=T_{L} be the (left) translation operator acting on LL spins at the vertices of 𝕋L\mathbb{T}_{L}. We define the ensemble of Hamiltonians with local interactions as

HL()j=0L1TLj(hIL)TLj,hp1,,p=03Jp1,,pσ1(p1)σ(p)H_{L}^{(\ell)}\coloneqq\sum_{j=0}^{L-1}T_{L}^{-j}\quantity(h_{\ell}\otimes I_{L-\ell})T_{L}^{j}\,,\quad h_{\ell}\coloneqq\sum_{p_{1},\ldots,p_{\ell}=0}^{3}J_{p_{1},\ldots,p_{\ell}}\sigma_{1}^{(p_{1})}\ldots\sigma_{\ell}^{(p_{\ell})} (2.1)

where L\ell\leq L is the interaction range, ILI_{L-\ell} is the identity on the sites +1,,L\ell+1,\ldots,L. Here σj(p)\sigma^{(p)}_{j} is the pthp^{\mathrm{th}} Pauli matrix σ(p)\sigma^{(p)} acting on the site j𝕋Lj\in\mathbb{T}_{L}, where we recall the standard Pauli matrices,

σ(0)=(1001)σ(1)=(0110)σ(2)=(0ii0)σ(3)=(1001).\sigma^{(0)}=\begin{pmatrix}1&0\\ 0&1\end{pmatrix}\quad\sigma^{(1)}=\begin{pmatrix}0&1\\ 1&0\end{pmatrix}\quad\sigma^{(2)}=\begin{pmatrix}0&-\mathrm{i}\\ \mathrm{i}&0\end{pmatrix}\quad\sigma^{(3)}=\begin{pmatrix}1&0\\ 0&-1\end{pmatrix}\,. (2.2)

The 44^{\ell} coefficients Jp1,,pJ_{p_{1},\ldots,p_{\ell}} are independent, identically distributed real Gaussian random variables with zero mean, 𝔼Jp1,,p=0\mathbb{E}J_{p_{1},\ldots,p_{\ell}}=0, and variance

v2𝔼|Jp1,,p|2.v_{\ell}^{2}\coloneqq\mathbb{E}\absolutevalue*{J_{p_{1},\ldots,p_{\ell}}}^{2}\,.

The ensemble of Hamiltonians hh_{\ell} (2.1) contains prototypical spin models such as the XYZ model, h=p=13Jpσ1(p)σ2(p)h_{\ell}=\sum_{p=1}^{3}J_{p}\sigma_{1}^{(p)}\sigma_{2}^{(p)}.

Observe that the Hamiltonian HL()H_{L}^{(\ell)} is a shifted version of the same local Hamiltonian hh_{\ell}. In particular, HL()H_{L}^{(\ell)} is translation invariant by construction, i.e., TLHL()TL1=HL()T_{L}H_{L}^{(\ell)}T_{L}^{-1}=H_{L}^{(\ell)}. We impose this structure to study a Hamiltonian with a symmetry. In the sequel we shall exploit this feature of HL()H_{L}^{(\ell)} by switching from position space to momentum space.

Lemma 2.2.

Let

Πk1Lj=1Le2πikjLTLjfork=0,,L1\Pi_{k}\coloneqq\frac{1}{L}\sum_{j=1}^{L}e^{2\pi i\frac{kj}{L}}T_{L}^{-j}\quad\text{for}\quad k=0,\ldots,L-1 (2.3)

be the projection operator onto the kk-momentum space, i.e., TLΠk=e2πikLΠkT_{L}\Pi_{k}=e^{2\pi i\frac{k}{L}}\Pi_{k}. Then HL()H_{L}^{(\ell)} is block-diagonal in the momentum space representation, i.e. in the eigenbasis of TLT_{L}, since we have

HL()=Lk=0L1Πk(hIL)Πk.H_{L}^{(\ell)}=L\sum_{k=0}^{L-1}\Pi_{k}\quantity(h_{\ell}\otimes I_{L-\ell})\Pi_{k}\,. (2.4)
Proof.

This follows immediately by substituting the spectral decomposition of TT given by T=k=0L1e2πik/LΠkT=\sum_{k=0}^{L-1}e^{2\pi ik/L}\Pi_{k} into (2.1). ∎

As we will show in Lemma 3.4, the dimensions of each of the LL momentum sectors are almost equal to each other, trLΠk2L/L\tr_{L}\Pi_{k}\approx 2^{L}/L.

In order to present our main result, the ETH in translation-invariant systems (Theorem 3.1), in a concise form, we need to introduce the microcanonical average. Below, we denote by |Eα(k)\ket*{E_{\alpha}^{(k)}} the normalised eigenvector of HL()H_{L}^{(\ell)} in the kk-momentum sector with eigenvalue EαE_{\alpha}, i.e. HL()|Eα(k)=Eα|Eα(k)H_{L}^{(\ell)}\ket*{E_{\alpha}^{(k)}}=E_{\alpha}\ket*{E_{\alpha}^{(k)}} and Πk|Eα(k)=|Eα(k)\Pi_{k}\ket*{E_{\alpha}^{(k)}}=\ket*{E_{\alpha}^{(k)}}. It is easy to see that the spectrum of HH in each momentum sector is simple almost surely.

Definition 2.3 (Microcanonical ensemble).

For every energy EE\in\mathbb{R} and energy window Δ>0\Delta>0, we define the microcanonical energy shell E,Δ\mathcal{H}_{E,\Delta} centered at energy EE with width 2Δ2\Delta by

E,Δk=0L1E,Δ(k),whereE,Δ(k)span{|Eα(k):|Eα(k)E|Δ}.\mathcal{H}_{E,\Delta}\coloneqq\bigoplus_{k=0}^{L-1}\mathcal{H}_{E,\Delta}^{(k)}\,,\quad\text{where}\quad\mathcal{H}_{E,\Delta}^{(k)}\coloneqq\mathrm{span}\Bqty{\ket*{E_{\alpha}^{(k)}}:\absolutevalue{E_{\alpha}^{(k)}-E}\leq\Delta}\,.

We denote the dimension of E,Δ(k)\mathcal{H}_{E,\Delta}^{(k)} by dE,Δ(k)d_{E,\Delta}^{(k)} and that of E,Δ\mathcal{H}_{E,\Delta} by dE,Δ=k=0L1dE,Δ(k)d_{E,\Delta}=\sum_{k=0}^{L-1}d_{E,\Delta}^{(k)}.

Whenever dE,Δ>0d_{E,\Delta}>0, we define the microcanonical average of any self-adjoint observable AN×NA\in\mathbb{C}^{N\times N} within E,Δ\mathcal{H}_{E,\Delta} by

AΔ(mc)(E)1dE,Δk=0L1|Eα(k)E,Δ(k)Eα(k)|A|Eα(k).\expectationvalue*{A}^{(\mathrm{mc})}_{\Delta}(E)\coloneqq\frac{1}{d_{E,\Delta}}\sum_{k=0}^{L-1}\sum_{\ket*{E_{\alpha}^{(k)}}\in\mathcal{H}_{E,\Delta}^{(k)}}\expectationvalue*{A}{E_{\alpha}^{(k)}}\,. (2.5)
Remark 2.4.

The microcanonical average mimics the microcanonical ensemble before taking the thermodynamic limit. In order to be physically meaningful, there are two natural requirements on the energy shell E,Δ\mathcal{H}_{E,\Delta}:

  • (i)

    The density of states is approximately constant in the interval [EΔ,E+Δ][E-\Delta,E+\Delta].

  • (ii)

    The microcanonical energy shell contains 1\gg 1 states, i.e. dE,Δd_{E,\Delta}\to\infty as LL\to\infty.

Note that for any fixed energy EE, (i) corresponds to an upper bound and (ii) corresponds to a lower bound on Δ\Delta, both being dependent on EE. We point out that very close to the spectral edges with only a few states, it is not guaranteed that both requirements can be satisfied simultaneously.

Indeed, from a physics perspective, viewing AΔ(mc)(E)\expectationvalue*{A}^{(\mathrm{mc})}_{\Delta}(E) from (2.5) as a finite dimensional approximation of the microcanonical ensemble is meaningless whenever (i) and (ii) are not satisfied. However, we will simply view Definition 2.3 for arbitrary Δ\Delta as an extension of the standard definition of the microcanonical average from the physics literature. Our main result, Theorem 3.1, will even hold with the microcanonical average in this extended sense.

We set

N2L=dimN\coloneqq 2^{L}=\mbox{dim}\mathcal{H}

for the total Hilbert space dimension. Our analytic results below will always be understood in the limit of large system size, i.e. LL\to\infty, or, equivalently NN\to\infty. We shall also use the following common notion (see, e.g., [32]) of stochastic domination.

Definition 2.5.

Given two families of non-negative random variables

X(X(N)(u):N,uU(N)) and Y(Y(N)(u):N,uU(N))X\coloneqq\quantity(X^{(N)}(u):N\in\mathbb{N},\ u\in U^{(N)})\mbox{\quad and\quad}Y\coloneqq\quantity(Y^{(N)}(u):N\in\mathbb{N},\ u\in U^{(N)})

indexed by NN, we say that XX is stochastically dominated by YY, if for all ξ\xi, D>0D>0, we have

supuU(N)[X(N)(u)>NξY(N)(u)]ND\sup_{u\in U^{(N)}}\mathbb{P}\bqty{X^{(N)}(u)>N^{\xi}Y^{(N)}(u)}\leq N^{-D}

for any sufficiently large NN0(ξ,D)N\geq N_{0}(\xi,D) and use the notation XYX\prec Y or X=𝒪(Y)X=\mathcal{O}_{\prec}(Y) in that case.

3 Main result in the mean-field case

Throughout the entire section, we are in the mean-field case =L\ell=L. For any qLq\leq L we also introduce the concept of qq-local observables for self-adjoint operators of the form A=AqILqA=A_{q}\otimes I_{L-q}, i.e. AqA_{q} is self-adjoint and only acts on the first qq sites.

Our main result in this setting is the following theorem.

Theorem 3.1 (ETH in translation-invariant systems).

Let =L\ell=L and consider the Hamiltonian HL(L)H_{L}^{(L)} from (2.1) with eigenvalues Eα(k)E_{\alpha}^{(k)} and associated normalised eigenvectors |Eα(k)\ket*{E_{\alpha}^{(k)}}. Then, for every Δ>0\Delta>0 and bounded qq-local observable A=AqILqA=A_{q}\otimes I_{L-q}, A1\norm*{A}\lesssim 1, it holds that

maxα,βmaxk,k|Eα(k)|A|Eβ(k)δαβδk,kAΔ(mc)(Eα(k))|12min{L/2,Lq},\max_{\alpha,\beta}\max_{k,k^{\prime}}\absolutevalue{\matrixelement*{E_{\alpha}^{(k)}}{A}{E_{\beta}^{(k^{\prime})}}-\delta_{\alpha\beta}\delta_{k,k^{\prime}}\expectationvalue*{A}^{(\mathrm{mc})}_{\Delta}(E_{\alpha}^{(k)})}\prec\frac{1}{2^{\min\{L/2,L-q\}}}\,, (3.1)

where the maxima are taken over all indices labeling the eigenvectors of HL(L)H_{L}^{(L)}. In particular, for qL/2q\leq L/2 the ETH holds with optimal speed of convergence of order 1/N1/\sqrt{N}.

An extension of Theorem 3.1 to arbitrary dimension d2d\geq 2 is provided in Theorem A.3 in the Appendix.

Remark 3.2 (Typicality of ETH).

Theorem 3.1 asserts that for any fixed local observable AA the ETH in the form (3.1) holds with a very high probability, i.e. apart from an event of probability ND=2LDN^{-D}=2^{-LD}, for any fixed DD, see the precise Definition 2.5. This exceptional event may depend on the observable AA. However, as long as qq is LL-independent (in fact some mild logarithmic increase is allowed), it also holds that

maxα,βmaxk,kmaxA|Eα(k)|A|Eβ(k)δαβδk,kAΔ(mc)(Eα(k))|12L/2,\max_{\alpha,\beta}\max_{k,k^{\prime}}\max_{A}\absolutevalue{\matrixelement*{E_{\alpha}^{(k)}}{A}{E_{\beta}^{(k^{\prime})}}-\delta_{\alpha\beta}\delta_{k,k^{\prime}}\expectationvalue*{A}^{(\mathrm{mc})}_{\Delta}(E_{\alpha}^{(k)})}\prec\frac{1}{2^{L/2}}\,, (3.2)

i.e. we may take the supremum over all bounded qq-local observables AA in (3.1). This extension is a simple consequence of choosing a sufficiently fine grid in the unit ball of the 4q×4q4^{q}\times 4^{q} dimensional space of qq-local observables and taking the union bound. The estimate (3.2) can be viewed as a very strong form of the typicality of ETH within our class of translation invariant mean field operators HL(L)H_{L}^{(L)}. It asserts that apart from an exceptional set of the coupling constants Jp1,,pLJ_{p_{1},\ldots,p_{L}} the Hamiltonian HL(L)H_{L}^{(L)} satisfies the ETH with optimal speed of convergence, uniformly in the entire spectrum and tested against all finite range (qq-local) observables. The exceptional set has exponentially small measure of order 2LD2^{-LD} for any DD if LL is sufficiently large.

In Lemma 3.5 we will see that in the mean–field case the Hamiltonian on each momentum sector is a GUE matrix, in particular the density of states of HH follows Wigner’s semicircle law. An elementary calculation shows that the radius of this semicircle is given by

R22LLvL(1+O(2L)).R\coloneqq 2\cdot 2^{L}\sqrt{L}v_{L}(1+O(2^{-L}))\,.

In light of Remark 2.4 we also mention that AΔ(mc)(E)\expectationvalue*{A}^{(\mathrm{mc})}_{\Delta}(E) in (3.1) can be considered as an approximation of the expectation of AA in the microcanonical ensemble at energy |E|R\absolutevalue*{E}\leq R if

RN2/3ΔR|E|.\frac{R}{N^{2/3}}\ll\Delta\ll R-\absolutevalue*{E}\,. (3.3)

The upper bound in (3.3) comes from requirement (i) in Remark 2.4, while the lower bound in (3.3) stems from (ii) using that the eigenvalue spacing near the spectral edge for Wigner matrices is of order R/N2/3R/N^{2/3}.

For the sequel we introduce the notation

AtrAtrI\expectationvalue*{A}\coloneqq\frac{\tr A}{\tr I}

for the normalised trace of an operator AA on any finite-dimensional Hilbert space, where II is the identity on that space. In particular, if A=AqILqA=A_{q}\otimes I_{L-q} is a qq-local observable, then A=Aq\expectationvalue*{A}=\expectationvalue*{A_{q}}.

The proof of Theorem 3.1 crucially relies on the fact that in our mean-field case Eα(k)|A|Eβ(k)\matrixelement*{E_{\alpha}^{(k)}}{A}{E_{\beta}^{(k^{\prime})}} converges to δαβδk,kA\delta_{\alpha\beta}\delta_{k,k^{\prime}}\expectationvalue*{A}. In other words, the thermodynamics of the system is trivial; the thermal value of AA is always given by its average trace. This is formalised in the following main proposition:

Proposition 3.3.

Under the assumptions of Theorem 3.1 it holds that

maxα,βmaxk,k|Eα(k)|A|Eβ(k)δαβδk,kA|12min{L/2,Lq}.\max_{\alpha,\beta}\max_{k,k^{\prime}}\absolutevalue{\matrixelement*{E_{\alpha}^{(k)}}{A}{E_{\beta}^{(k^{\prime})}}-\delta_{\alpha\beta}\delta_{k,k^{\prime}}\expectationvalue*{A}}\prec\frac{1}{2^{\min\{L/2,L-q\}}}\,. (3.4)

Having Proposition 3.3 at hand, we can readily prove Theorem 3.1.

Proof of Theorem 3.1.

Averaging (3.4) for α=β\alpha=\beta and k=kk=k^{\prime} according to the microcanonical average (2.5), we find that

maxαmaxk|AΔ(mc)(Eα(k))A|12min{L/2,Lq}.\max_{\alpha}\max_{k}\absolutevalue{\expectationvalue*{A}^{(\mathrm{mc})}_{\Delta}(E_{\alpha}^{(k)})-\expectationvalue*{A}}\prec\frac{1}{2^{\min\{L/2,L-q\}}}\,.

Combining this with (3.4), the claim immediately follows. ∎

The rest of this section is devoted to the proof of Proposition 3.3, which is conducted in four steps.

  1. 1.

    The momentum sectors are all of the same size with very high precision (Lemma 3.4).

  2. 2.

    In each momentum sector the mean-field Hamiltonian HL(L)H_{L}^{(L)}, represented in the eigenbasis of the translation operator TT, is a GUE matrix (Lemma 3.5).

  3. 3.

    The ETH holds within each momentum sector separately (Lemma 3.6).

  4. 4.

    The averaged trace on each momentum sector and the total averaged trace are close to each other – at least for local observables (Lemma 3.7).

We shall first formulate all the four lemmas precisely and afterwards conclude the proof of Proposition 3.3.

Lemma 3.4 (Step 1: Dimensions of momentum sectors).

The dimension trLΠk\tr_{L}\Pi_{k} of the kk-momentum sectors (k=0,,L1)(k=0,\ldots,L-1) is almost equal to each other in the sense that we have

trLΠk=2LL+(L1/22L/2).\tr_{L}\Pi_{k}=\frac{2^{L}}{L}+\order{L^{1/2}2^{L/2}}\,.

The proof is given in Section 3.1

Lemma 3.5 (Step 2: GUE in momentum blocks).

Each momentum-block of the mean-field Hamiltonian HL(L)H_{L}^{(L)}, represented in an eigenbasis of TT, is an i.i.d. complex Gaussian Wigner matrix (GUE), whose entries have mean zero and variance 2LL2vL22^{L}\,L^{2}\,v_{L}^{2}. Recall that vL2=𝔼|Jp1,,pL|2v_{L}^{2}=\mathbb{E}\absolutevalue*{J_{p_{1},\ldots,p_{L}}}^{2} from Definition 2.1.

Proof.

In the mean-field case =L\ell=L, a simple direct calculation of all first and second moments of the matrix elements shows that the interaction matrix hh_{\ell} is a complex Gaussian Wigner matrix whose entries have variance 2LvL22^{L}v_{L}^{2}. Since the transformation from the standard basis to an eigenbasis of TT is unitary, and the Gaussian distribution is invariant under unitary transformation, hh_{\ell} represented in an eigenbasis of TT is again a Gaussian Wigner matrix. Finally, the projection operators Πk\Pi_{k} in (2.4) set the off-diagonal blocks to zero. Incorporating the additional factor LL in (2.4) into the variance proves Lemma 3.5. ∎

As the next step, we show that the ETH holds within each momentum sector.

Lemma 3.6 (Step 3: ETH within each momentum sector).

For an arbitrary deterministic observable AA with A1\norm*{A}\lesssim 1 it holds that

maxα,βmaxk|Eα(k)|A|Eβ(k)δαβtrL(ΠkAΠk)trLΠk|12L/2.\max_{\alpha,\beta}\max_{k}\absolutevalue{\matrixelement*{E_{\alpha}^{(k)}}{A}{E_{\beta}^{(k)}}-\delta_{\alpha\beta}\frac{\tr_{L}\quantity(\Pi_{k}A\Pi_{k})}{\tr_{L}\Pi_{k}}}\prec\frac{1}{2^{L/2}}\,. (3.5)
Proof.

For any fixed kk, Lemma 3.5 asserts that ΠkHL(L)Πk\Pi_{k}H_{L}^{(L)}\Pi_{k} is a standard GUE matrix (up to normalisation by vLv_{L}). Using [28, Theorem 2.2], therefore its eigenvectors |Eα=|Eα(k)\ket*{E_{\alpha}}=\ket*{E_{\alpha}^{(k)}} satisfy ETH in the form that Eα|A|Eβ\matrixelement*{E_{\alpha}}{A}{E_{\beta}} is approximately given by the normalised trace of AA in the kk-momentum sector

AktrL(ΠkAΠk)trLΠk\expectationvalue*{A}_{k}\coloneqq\frac{\tr_{L}\quantity(\Pi_{k}A\Pi_{k})}{\tr_{L}\Pi_{k}}

with very high probability and with an error given by the square root of the inverse of the dimension of the kk-momentum sector, 1/trLΠk1/\sqrt{\tr_{L}\Pi_{k}}. This holds in the sense of stochastic domination given in Definition 2.5. Using that trLΠk2L/L\tr_{L}\Pi_{k}\approx 2^{L}/L from Lemma 3.4, we obtain that (3.5) holds for each fixed kk, uniformly in all eigenvectors. Finally, the very high probability control in the stochastic domination allows us to take the maximum over k=1,2,,Lk=1,2,\ldots,L by a simple union bound. This completes the proof of (3.5). ∎

We remark that the essential ingredient of this proof, the Theorem 2.2 from [28], applies not only for the Gaussian ensemble but for arbitrary Wigner matrices with i.i.d. entries (with some moment condition on their entry distribution) and its proof is quite involved. However, ETH for GUE, as needed in Lemma 3.6, can also be proven with much more elementary methods using that the eigenvectors are columns of a Haar unitary matrix. Namely, moments of Eα|A|Eβ\matrixelement*{E_{\alpha}}{A}{E_{\beta}} can be directly computed using Weingarten calculus [33]. Since in (3.5) we aim at a control with very high probability, this would require to compute arbitrary high moments of Eα|A|Eβδα,βAk\matrixelement*{E_{\alpha}}{A}{E_{\beta}}-\delta_{\alpha,\beta}\expectationvalue*{A}_{k}. The Weingarten formalism gives the exact answer but it is somewhat complicated for high moments, so identifying their leading order (given by the “ladder” diagrams) requires some elementary efforts. For brevity, we therefore relied on [28, Theorem 2.2] in the proof of Lemma 3.6 above.

Finally, we formulate the fourth and last step of the proof of Proposition 3.3 in the following lemma, the proof of which is given in Section 3.2.

Lemma 3.7 (Step 4: Traces within momentum sectors).

Let A=AqILqA=A_{q}\otimes I_{L-q} be an arbitrary qq-local observable with A1\norm*{A}\lesssim 1. Then it holds that

maxk|trL(ΠkAΠk)trLΠkA|(L2min{Lq,L/2}).\max_{k}\absolutevalue{\frac{\tr_{L}\quantity(\Pi_{k}A\Pi_{k})}{\tr_{L}\Pi_{k}}-\expectationvalue*{A}}\leq\order{\frac{L}{2^{\min\Bqty{L-q,L/2}}}}\,. (3.6)

Moreover, for q>L/2+1q>L/2+1 this bound is optimal (up to the factor LL).

Armed with these four lemmas, we can now turn to the proof of Proposition 3.3.

Proof of Proposition 3.3.

First, for any qq-local observable A=AqILqA=A_{q}\otimes I_{L-q}, we conclude from Lemma 3.6 and Lemma 3.7 that

maxα,βmaxk|Eα(k)|A|Eβ(k)δαβtrL(ΠkAΠk)trLΠk|12min{Lq,L/2}.\max_{\alpha,\beta}\max_{k}\absolutevalue{\matrixelement*{E_{\alpha}^{(k)}}{A}{E_{\beta}^{(k)}}-\delta_{\alpha\beta}\frac{\tr_{L}\quantity(\Pi_{k}A\Pi_{k})}{\tr_{L}\Pi_{k}}}\prec\frac{1}{2^{\min\Bqty{L-q,L/2}}}\,. (3.7)

For the element Eα(k)|A|Eβ(k)\matrixelement*{E_{\alpha}^{(k)}}{A}{E_{\beta}^{(k^{\prime})}} with kkk\neq k^{\prime}, i.e. in off-diagonal blocks, |Eα(k)\ket*{E_{\alpha}^{(k)}} and |Eβ(k)\ket*{E_{\beta}^{(k^{\prime})}} are normalised Gaussian vectors independent of each other. Therefore standard concentration estimate shows that

maxkk|Eα(k)|A|Eβ(k)|12L/2.\displaystyle\max_{k\neq k^{\prime}}\absolutevalue{\matrixelement*{E_{\alpha}^{(k)}}{A}{E_{\beta}^{(k^{\prime})}}}\prec\frac{1}{2^{L/2}}\,. (3.8)

Combining (3.7) with (3.8), we have proven Proposition 3.3. ∎

3.1 Dimensions of momentum sectors: Proof of Lemma 3.4

In this section we prove Lemma 3.4, and establish that the sizes of the momentum sectors are almost equal. To this end, we show that the leading term in the size of each of the momentum blocks is given by the number of aperiodic elements in the product basis of \mathcal{H}.

We present the proof using group theory notation, which is not strictly necessary for the one-dimensional case under consideration since the translation group of the torus 𝕋L\mathbb{T}_{L} is cyclic. Nevertheless, we do it to allow for a more straightforward generalisation to the dd-dimensional case (cf. Lemma A.4).

Proof.

We introduce the following objects. Let 𝔖\mathfrak{S} denote the canonical product basis of \mathcal{H},

𝔖(L){σ:𝕋L{|,|}},\mathfrak{S}(L)\coloneqq\{\sigma:\mathbb{T}_{L}\to\{\ket{\uparrow},\ket{\downarrow}\}\}\,, (3.9)

and let 𝒢\mathcal{G} be the group of translations of 𝕋L\mathbb{T}_{L} generated by T=TLT=T_{L}. Note that 𝒢\mathcal{G} is a finite cyclic group of size |𝒢|=L\absolutevalue*{\mathcal{G}}=L. The action of 𝒢\mathcal{G} on 𝔖(L)\mathfrak{S}(L) is defined by

(gσ)(x)σ(g1(x)),x𝕋L,σ𝔖(L),g𝒢.(g\sigma)(x)\coloneqq\sigma(g^{-1}(x))\,,\quad x\in\mathbb{T}_{L}\,,\quad\sigma\in\mathfrak{S}(L)\,,\quad g\in\mathcal{G}\,. (3.10)

In particular, the set 𝔖(L)\mathfrak{S}(L) is a disjoint union of sets 𝔖b(L)\mathfrak{S}_{b}(L) defined by

𝔖b(L){σ𝔖(L):|𝒢σ|=b},b=1,2,,L,\mathfrak{S}_{b}(L)\coloneqq\{\sigma\in\mathfrak{S}(L)\,:\,\absolutevalue*{\mathcal{G}_{\sigma}}=b\}\,,\quad b=1,2,\ldots,L\,,

where 𝒢σ𝔖(L)\mathcal{G}_{\sigma}\subset\mathfrak{S}(L) is the stabilizer of σ\sigma under the action (3.10). By the orbit-stabilizer theorem, 𝔖b(L)=\mathfrak{S}_{b}(L)=\emptyset for all bb that do not divide LL. Since the group 𝒢\mathcal{G} is cyclic, it has a unique subgroup of size bb for all b|Lb|L, given explicitly by

𝒢(b){TL/b,T2L/b,,TL}.\mathcal{G}^{(b)}\coloneqq\{T^{L/b},T^{2L/b},\ldots,T^{L}\}\,.

Observe that each σ𝔖b(L)\sigma\in\mathfrak{S}_{b}(L) corresponds to a unique map σ~\widetilde{\sigma} on a reduced torus 𝔖(L/b)\faktor𝕋L𝒢(b)\mathfrak{S}(L/b)\coloneqq\faktor{\mathbb{T}_{L}}{\mathcal{G}^{(b)}}, which is defined by

σ~([x])σ(x),[x]𝔖(L/b).\widetilde{\sigma}([x])\coloneqq\sigma(x)\,,\quad[x]\in\mathfrak{S}(L/b)\,. (3.11)

Since σ\sigma is stabilised by 𝒢(b)\mathcal{G}^{(b)}, the map σσ~\sigma\mapsto\widetilde{\sigma} in (3.11) is well-defined and injective. In particular, |𝔖b(L)|2L/b\absolutevalue*{\mathfrak{S}_{b}(L)}\leq 2^{L/b}, and hence

2L=b|L|𝔖b(L)|=M(L)+b|L,b2|𝔖b(L)|M(L)+(L1/22L/2),2^{L}=\sum\limits_{b|L}\absolutevalue*{\mathfrak{S}_{b}(L)}=M(L)+\sum\limits_{b|L,b\geq 2}\absolutevalue*{\mathfrak{S}_{b}(L)}\leq M(L)+\order{L^{1/2}2^{L/2}}\,, (3.12)

where M(L)|𝔖1(L)|M(L)\coloneqq\absolutevalue*{\mathfrak{S}_{1}(L)} denotes the number of elements in 𝔖(L)\mathfrak{S}(L) with a trivial stabilizer. The last inequality follows from the fact that LL has at most 𝒪(L1/2)\mathcal{O}(L^{1/2}) divisors.

Since M(L)2LM(L)\leq 2^{L}, we conclude from (3.12) that

M(L)=2L+(L1/22L/2).M(L)=2^{L}+\order{L^{1/2}2^{L/2}}\,. (3.13)

For any k{0,,L1}k\in\{0,\ldots,L-1\}, we can construct an eigenvector of TT corresponding to the eigenvalue e2πik/Le^{2\pi ik/L} by defining

𝐯(σ,k)Πkσ=1Lj=0L1e2πikjLTjσ,σ𝔖1(L).\mathbf{v}(\sigma,k)\coloneqq\Pi_{k}\sigma=\frac{1}{L}\sum\limits_{j=0}^{L-1}e^{2\pi i\frac{kj}{L}}T^{-j}\sigma\,,\quad\sigma\in\mathfrak{S}_{1}(L)\,. (3.14)

Since the orbit of σ\sigma under TT consists of LL distinct basis elements, the vector 𝐯(σ,k)\mathbf{v}(\sigma,k) is non-zero. Furthermore, the vectors 𝐯(σ,k)\mathbf{v}(\sigma,k) and 𝐯(σ,k)\mathbf{v}(\sigma^{\prime},k) corresponding to σ\sigma and σ\sigma^{\prime} in disjoint orbits are linearly independent because they share no basis element. Therefore, the dimension of the kk-th momentum space is bounded from below by the number of disjoint orbits in 𝔖1(L)\mathfrak{S}_{1}(L), that is

trLΠk2LL+(L1/22L/2),\tr_{L}\Pi_{k}\geq\frac{2^{L}}{L}+\order{L^{-1/2}2^{L/2}}\,, (3.15)

where we used inequality (3.13) and the fact that all orbits in 𝔖1(L)\mathfrak{S}_{1}(L) have size LL. By means of (3.15), we obtain the following chain of inequalities

trLΠk=2LjktrLΠj2LL+(L1/22L/2),\tr_{L}\Pi_{k}=2^{L}-\sum\limits_{j\neq k}\tr_{L}\Pi_{j}\leq\frac{2^{L}}{L}+\order{L^{1/2}2^{L/2}}\,, (3.16)

which, together with (3.15) concludes the proof of Lemma 3.4. ∎

3.2 Traces within momentum sectors: Proof of Lemma 3.7

In this section, we give a proof of Lemma 3.7, which evaluates the difference of the noramalised trace trL(ΠkAΠk)/trLΠk\tr_{L}(\Pi_{k}A\Pi_{k})/\tr_{L}\Pi_{k} on a momentum sector and the full normalised trace A\expectationvalue*{A} for a qq-local observable A=AqILqA=A_{q}\otimes I_{L-q}. We separate AA into the tracial part AI\expectationvalue*{A}I and the traceless part ÅAAI\mathring{A}\coloneqq A-\expectationvalue*{A}I.

Proof of Lemma 3.7.

Substituting Πk1Lj=1Le2πikjLTLj\Pi_{k}\coloneqq\frac{1}{L}\sum_{j=1}^{L}e^{2\pi i\frac{kj}{L}}T_{L}^{-j}, we obtain

trL(ΠkAΠk)\displaystyle\tr_{L}(\Pi_{k}A\Pi_{k}) =AtrLΠk+trL(ΠkÅ)\displaystyle=\expectationvalue*{A}\tr_{L}\Pi_{k}+\tr_{L}(\Pi_{k}\mathring{A})
=AtrLΠk+1Lj=1L1e2πikjLtrL(TLjÅ).\displaystyle=\expectationvalue*{A}\tr_{L}\Pi_{k}+\frac{1}{L}\sum_{j=1}^{L-1}e^{2\pi i\frac{kj}{L}}\tr_{L}(T_{L}^{-j}\mathring{A})\,. (3.17)

Then, the task is to evaluate the size of the quantity trL(TLjÅ)\tr_{L}(T_{L}^{-j}\mathring{A}).

Lemma 3.8.

Let AAqILqA\coloneqq A_{q}\otimes I_{L-q} be a qq-local observable with A1\norm*{A}\lesssim 1. Then, for any j=1,,L1j=1,\ldots,L-1, we have

|trL(TLjA)|2max{q,gcd(j,L)},\absolutevalue{\tr_{L}(T_{L}^{-j}A)}\lesssim 2^{\max\Bqty{q,\gcd(j,L)}}\,, (3.18)

where gcd\gcd stands for the greatest common divisor.

Combining (3.18) with gcd(j,L)L/2\gcd(j,L)\leq L/2 for j=1,,L1j=1,\ldots,L-1 and Lemma 3.4 gives the bound (3.6). The optimality of (3.6) for q>L/2+1q>L/2+1 is proven in Lemma 3.9 below. ∎

It remains to give the proof of Lemma 3.8.

Proof of Lemma 3.8.

We choose a product basis {|s1sLsj{,}}\Bqty*{\ket*{s_{1}\ldots s_{L}}\mid s_{j}\in\Bqty*{\uparrow,\downarrow}} to calculate the trace. Then, we obtain

|trL(TLjA)|\displaystyle\absolutevalue{\tr_{L}(T_{L}^{-j}A)} =|s1sLs1+jsq+j|Aq|s1sqm=q+1Lδsmsm+j|\displaystyle=\absolutevalue{\sum_{s_{1}\ldots s_{L}}\matrixelement*{s_{1+j}\ldots s_{q+j}}{A_{q}}{s_{1}\ldots s_{q}}\prod_{m=q+1}^{L}\delta_{s_{m}s_{m+j}}}
s1sLm=q+1Lδsmsm+j.\displaystyle\lesssim\sum_{s_{1}\ldots s_{L}}\prod_{m=q+1}^{L}\delta_{s_{m}s_{m+j}}\,. (3.19)

Because of the product m=q+1Lδsmsm+j\prod_{m=q+1}^{L}\delta_{s_{m}s_{m+j}} of Kronecker deltas, not all of the summation variables s1,,sLs_{1},\ldots,s_{L} are independent.

To count the number of independent summations in the right-hand side of (3.19) and obtain an upper bound for trL(TLjA)\tr_{L}(T_{L}^{-j}A) with j=1,,L1j=1,\ldots,L-1, we count the number of independent deltas in the product

𝒢q,j(L)m=q+1Lδsmsm+j.\mathcal{G}_{q,j}^{(L)}\coloneqq\prod_{m=q+1}^{L}\delta_{s_{m}s_{m+j}}\,. (3.20)

Here, not all of the delta functions in 𝒢q,j(L)\mathcal{G}_{q,j}^{(L)} are independent in the sense that we may express 𝒢q,j(L)\mathcal{G}_{q,j}^{(L)} with a fewer number of deltas. For example, we have 𝒢1,2(4)=δs2s4δs3s1δs4s2=δs3s1δs4s2\mathcal{G}_{1,2}^{(4)}=\delta_{s_{2}s_{4}}\delta_{s_{3}s_{1}}\delta_{s_{4}s_{2}}=\delta_{s_{3}s_{1}}\delta_{s_{4}s_{2}}.

To obtain an expression of 𝒢q,j(L)\mathcal{G}_{q,j}^{(L)} with the minimal number of deltas, we graphically represent the product m=q+1Lδsmsm+j\prod_{m=q+1}^{L}\delta_{s_{m}s_{m+j}} by arranging the sites on a circle and representing the δsmsm+j\delta_{s_{m}s_{m+j}}’s with a line connecting the site mm and m+jm+j (Figure 1). A minimal representation of 𝒢q,j(L)\mathcal{G}_{q,j}^{(L)} is obtained by removing exactly one delta for every occurrence of a loop in the graph of m=q+1Lδsmsm+j\prod_{m=q+1}^{L}\delta_{s_{m}s_{m+j}}.

The graph of m=q+1Lδsmsm+j\prod_{m=q+1}^{L}\delta_{s_{m}s_{m+j}} can be obtained in two steps: First, in step (i), drawing the graph of m=1Lδsmsm+j\prod_{m=1}^{L}\delta_{s_{m}s_{m+j}} and second, in step (ii), removing the lines corresponding to the delta functions δsmsm+j(m=1,,q)\delta_{s_{m}s_{m+j}}\ (m=1,\ldots,q), which are depicted with red dashed lines in Figure 1.

In the first step (i), there are exactly gcd(j,L)\gcd(j,L) loops each starting from the sites 1,,gcd(j,L)1,\ldots,\gcd(j,L). If q>gcd(j,L)q>\gcd(j,L), there is no loop remaining after the second step (ii). Thus, we obtain a minimal representation of 𝒢q,j(L)\mathcal{G}_{q,j}^{(L)} as 𝒢q,j(L)=m=q+1Lδsmsm+j\mathcal{G}_{q,j}^{(L)}=\prod_{m=q+1}^{L}\delta_{s_{m}s_{m+j}}. If qgcd(j,L)q\leq\gcd(j,L), the loops starting from the sites q+1,,gcd(j,L)q+1,\ldots,\gcd(j,L) remain after the second step (ii), for each of which we remove one delta to obtain a minimal representation of 𝒢q,j(L)\mathcal{G}_{q,j}^{(L)} as 𝒢q,j(L)=m=gcd(j,L)+1Lδsmsm+j\mathcal{G}_{q,j}^{(L)}=\prod_{m=\gcd(j,L)+1}^{L}\delta_{s_{m}s_{m+j}}.

In summary, we obtain a minimal representation of 𝒢q,j(L)\mathcal{G}_{q,j}^{(L)} as

𝒢q,j(L)=m=max{q,gcd(j,L)}+1Lδsmsm+j.\mathcal{G}_{q,j}^{(L)}=\prod_{m=\max\Bqty{q,\gcd(j,L)}+1}^{L}\delta_{s_{m}s_{m+j}}\,. (3.21)

By substituting (3.21) into (3.19) we obtain

|trL(TLjA)|\displaystyle\absolutevalue{\tr_{L}(T_{L}^{-j}A)} s1sLm=max{q,gcd(j,L)}+1Lδsmsm+j=2max{q,gcd(j,L)}.\displaystyle\lesssim\sum_{s_{1}\ldots s_{L}}\prod_{m=\max\Bqty{q,\gcd(j,L)}+1}^{L}\delta_{s_{m}s_{m+j}}=2^{\max\Bqty{q,\gcd(j,L)}}\,.\qed
Refer to caption
Figure 1: Graphical representation of the product m=q+1Lδsm+jsm\prod_{m=q+1}^{L}\delta_{s_{m+j}s_{m}} for (a) L=12L=12, q=3q=3, j=4j=4 and (b) L=12L=12, q=5q=5, j=4j=4. For the first case (a) where q<gcd(j,L)q<\gcd(j,L), there is a loop 44-88-1212-44 remaining after the step (ii), which contains exactly one redundant delta function δs4s8\delta_{s_{4}s_{8}} depicted with a solid red line. In general, exactly one redundant delta function appears for every occurrence of a loop in the graph of m=q+1Lδsm+jsm\prod_{m=q+1}^{L}\delta_{s_{m+j}s_{m}}.

Finally, we prove the optimality of (3.6) in the regime q>L/2+1q>L/2+1.

Lemma 3.9.

Let BqTq+Tq122qIqB_{q}\coloneqq T_{q}+T_{q}^{-1}-2^{2-q}I_{q}, where TqT_{q} is the (left) translation operator acting only on the first qq spins arranged on the torus 𝕋q\mathbb{T}_{q}. Observe that BqB_{q} is Hermitian and traceless. Then, for q>L/2+1q>L/2+1, the normalised trace of BBqILqB\coloneqq B_{q}\otimes I_{L-q} within the kk-momentum sector is given by

trL(ΠkBΠk)trLΠk=22Lqcos(2πkL)+(L2L/2).\frac{\tr_{L}(\Pi_{k}B\Pi_{k})}{\tr_{L}\Pi_{k}}=\frac{2}{2^{L-q}}\cos\quantity(\frac{2\pi k}{L})+\order{\frac{L}{2^{L/2}}}\,. (3.22)

This shows that the qq-local observable BqTq+Tq122qIqB_{q}\coloneqq T_{q}+T_{q}^{-1}-2^{2-q}I_{q} saturates the bound (3.6) when q>L/2+1q>L/2+1. It also shows that the deviation of the normalised trace within a momentum sector, trL(ΠkBΠk)/trLΠk\tr_{L}(\Pi_{k}B\Pi_{k})/\tr_{L}\Pi_{k}, from B=0\langle B\rangle=0, which is of order 2(Lq)2^{-(L-q)}, becomes the dominant source of error in the ETH whenever q>L/2+1q>L/2+1.

Proof of Lemma 3.9.

We first reduce the range of the summation over jj in the generally valid expression (3.17) applied to BqB_{q}. To do so, we introduce the parity operator PLP_{L} defined by PL|s1s2sL|sLs2s1P_{L}\ket*{s_{1}s_{2}\ldots s_{L}}\coloneqq\ket*{s_{L}\ldots s_{2}s_{1}}. It satisfies PLTLPL=TL1P_{L}T_{L}P_{L}=T_{L}^{-1} and PLAPL=ILq(PqAqPq)P_{L}AP_{L}=I_{L-q}\otimes(P_{q}A_{q}P_{q}) for any A=AqILqA=A_{q}\otimes I_{L-q}. Since BqB_{q} is invariant under the parity transformation, we have

trL(TLjB)=trL[TL+j(ILqBq)]=trL(TL(Lj)B),\tr_{L}(T_{L}^{-j}B)=\tr_{L}[T_{L}^{+j}(I_{L-q}\otimes B_{q})]=\tr_{L}(T_{L}^{-(L-j)}B)\,,

Therefore, we can rewrite (3.17) with the aid of (2.3) as

trL(ΠkBΠk)\displaystyle\tr_{L}(\Pi_{k}B\Pi_{k}) =2Lj=1L2trL(TLjB̊)cos(2πkjL)+{(1)kLtrL(TLL2B̊)Leven0Lodd.\displaystyle=\frac{2}{L}\sum_{j=1}^{\lfloor\frac{L}{2}\rfloor}\tr_{L}(T_{L}^{-j}\mathring{B})\cos\quantity(\frac{2\pi kj}{L})+\begin{cases}\frac{(-1)^{k}}{L}\tr_{L}(T_{L}^{-\frac{L}{2}}\mathring{B})&L\ \text{even}\\ 0&L\ \text{odd}\,.\end{cases} (3.23)

When q>L/2+1q>L/2+1, we have j<qj<q and cannot skip over the region 1,,j1,\ldots,j when going along the lines in the graph of 𝒢q,j(L)\mathcal{G}_{q,j}^{(L)} (recall (3.20)). Therefore, each line starting at one of the sites p{q+1,,q+j}p\in\{q+1,\ldots,q+j\} passes through a point in {1,,j}\{1,\ldots,j\}. Moreover, the correspondence between pp and the first intersection of the line starting at pp with {1,,j}\{1,\ldots,j\} is one-to-one. Therefore, there exists a permutation τj\tau_{j} on 1,,j1,\ldots,j such that sq+i=sτ(i)s_{q+i}=s_{\tau(i)} for i=1,,ji=1,\ldots,j due to 𝒢q,j(L)\mathcal{G}_{q,j}^{(L)}. With this permutation τ\tau, we obtain

trL(TLjB)\displaystyle\tr_{L}(T_{L}^{-j}B) =s1sLsq+1sqsq+1sq+j|Bq|s1sq𝒢q,j(L)\displaystyle=\sum_{s_{1}\ldots s_{L}}\matrixelement*{s_{q+1}\ldots s_{q}s_{q+1}s_{q+j}}{B_{q}}{s_{1}\ldots s_{q}}\mathcal{G}_{q,j}^{(L)}
=s1sqsq+1sqsτ(1)sτ(j)|Bq|s1sq\displaystyle=\sum_{s_{1}\ldots s_{q}}\matrixelement*{s_{q+1}\ldots s_{q}s_{\tau(1)}s_{\tau(j)}}{B_{q}}{s_{1}\ldots s_{q}}
=trq(τjTqjBq)\displaystyle=\tr_{q}(\tau_{j}^{\dagger}T_{q}^{-j}B_{q})
=trq(τjTq(j1))+trq(τjTq(j+1))22qtrq(τjTqj).\displaystyle=\tr_{q}(\tau_{j}^{\dagger}T_{q}^{-(j-1)})+\tr_{q}(\tau_{j}^{\dagger}T_{q}^{-(j+1)})-2^{2-q}\tr_{q}(\tau_{j}^{\dagger}T_{q}^{-j})\,. (3.24)

Because τj\tau_{j} is a jj-local operator (not necessarily self-adjoint) on the qq-site chain, we can apply Lemma 3.8 to each term in (3.24). Combined with j<q1j<q-1 and gcd(j,q)j\gcd(j,q)\leq j, we obtain

trL(TLjB)=δj12q+(2j)=δj12q+(2L/2).\tr_{L}(T_{L}^{-j}B)=\delta_{j1}2^{q}+\order{2^{j}}=\delta_{j1}2^{q}+\order{2^{L/2}}\,.

Substituting this result into (3.23) and employing trLΠk=2LL+(L1/22L/2)\tr_{L}\Pi_{k}=\frac{2^{L}}{L}+\order{L^{1/2}2^{L/2}} from Lemma 3.4, we obtain the result (3.22). ∎

4 Numerical verification of Theorem 3.1 for =𝒪(1)\ell=\mathcal{O}(1)

In this section, we numerically demonstrate that Theorem 3.1 also holds for the non-mean-field case of =2\ell=2. For that purpose, we adopt the following measure of the ETH used in Refs [31, 34]. For any self-adjoint operator AA we define

Λ=Λ(A)𝐄maxkmaxα|Eα(k)|A|Eα(k)AΔ(mc)(Eα(k))|amaxamin,\Lambda=\Lambda(A)\coloneqq\mathbf{E}\max_{k}{\max_{\alpha}}^{\prime}\frac{\absolutevalue{\matrixelement*{E_{\alpha}^{(k)}}{A}{E_{\alpha}^{(k)}}-\expectationvalue*{A}^{(\mathrm{mc})}_{\Delta}(E_{\alpha}^{(k)})}}{a_{\max}-a_{\min}}\,, (4.1)

where amax(min)a_{\max(\min)} is the maximum (minimum) eigenvalue of AA. Here, 𝐄\mathbf{E} denotes the average over the realisations of the Hamiltonian (2.1), and maxα{\max_{\alpha}}^{\prime} denotes the maximum over the eigenstates |Eα(k)\ket*{E_{\alpha}^{(k)}} in the energy shell at the center of the spectrum, i.e. those α\alpha for which

|Eα(k)H|Δ.\absolutevalue{E_{\alpha}^{(k)}-\expectationvalue*{H}}\leq\Delta\,.

The width Δ\Delta of the energy interval is set to be Δ=0.4/L\Delta=0.4/L such that it satisfies the two physical requirements mentioned in Remark 2.4 for L6L\geq 6. With this choice of Δ\Delta, the microcanonical energy shell H,Δ\mathcal{H}_{\expectationvalue*{H},\Delta} defined by (4.1) typically contains more than 10 states, while the density of states does not change too much within H,Δ\mathcal{H}_{\expectationvalue*{H},\Delta}.

As the observable, we choose A=BqILqA=B_{q}\otimes I_{L-q} with BqTq+Tq122qIqB_{q}\coloneqq T_{q}+T_{q}^{-1}-2^{2-q}I_{q} for q=2,,Lq=2,\ldots,L, which saturates the upper bound in (3.6) and thus also saturates that of (3.2). With this choice we have amaxamin4a_{\max}-a_{\min}\simeq 4 for any LL and qq. Therefore, the ETH measure Λ\Lambda is essentially the same as the diagonal part of the left-hand side of (3.2) in Theorem 3.1 – except that the maximum over α\alpha is now taken only at the center of the spectrum (and we do not take maximum over all AA). This is because the eigenstate expectation value Eα(k)|A|Eα(k)\expectationvalue*{A}{E_{\alpha}^{(k)}} of a local observable A=AqILqA=A_{q}\otimes I_{L-q} with qLq\ll L typically acquires an energy dependence when L\ell\ll L [35], and the number of states becomes not enough to calculate the microcanonical average near the edges for the computationally accessible system size. The ETH measure Λ\Lambda satisfies reasonable thermodynamical properties. It is (i) invariant under the linear transformation AaA+bA\mapsto aA+b, (ii) dimensionless, and (iii) thermodynamically intensive for additive observables AA [31].

Figures 2(a)-(c) depict the LL-dependence of the ETH measure Λ\Lambda for different values of the parameter qq. In particular, Figure 2(b) illustrates that, whenever LL is approximately equal to qq so that Lq<L/2L-q<L/2, the ETH measure Λ\Lambda decays as 2L\propto 2^{-L}. The rate of this decay is slower for smaller values of qq, but approaches 2L2^{-L} as qq becomes larger. In Figure 2(c), we take a closer look at the LL-dependence of Λ\Lambda for q=6q=6. The data indicates that for LqL/2L-q\ll L/2, Λ\Lambda decays as 1.8L\propto 1.8^{-L}, whereas for L2qL\gtrsim 2q, Λ\Lambda decays as 1.8L/2\propto 1.8^{-L/2}. These numerical observations are in agreement with our analytical results for the mean-field case in Theorem 3.1, which predicts that the exponent of the exponential decrease of Λ\Lambda in LL should be twice as large in the region LqL/2L-q\ll L/2 compared to the region L/2LqL/2\gtrsim L-q. This fact suggests that the theorem remains qualitatively valid for =(1)\ell=\order{1} in the bulk of the spectrum as long as the energy shell width is appropriately chosen.

Refer to caption
Figure 2: (a) System-size dependence of the ETH measure Λ\Lambda for the observable A=BqILqA=B_{q}\otimes I_{L-q} with BqTq+Tq122qIqB_{q}\coloneqq T_{q}+T_{q}^{-1}-2^{2-q}I_{q}. Grey curves between colored curves show intermediate values of qq, i.e., q=4,8,12q=4,8,12. (b) The same data as the panel (a) for q=2,6,10q=2,6,10 and 1414 plotted against LqL-q. When LqL\simeq q so that Lq<L/2L-q<L/2, Λ\Lambda decreases as 2L\propto 2^{-L}. (c) The same data as the panel (a) for q=6q=6. It decreases as 1.8L\propto 1.8^{-L} when LqL/2L-q\ll L/2. When L/2LqL/2\gtrsim L-q, the decrease in Λ\Lambda becomes slower and follows a different exponential decay with a base of 1.81/21.8^{-1/2}, instead of 1.811.8^{-1}. Aside from the value of the base, this behavior is consistent with (3.2), which predicts that the exponent of the exponential decrease of Λ\Lambda in LL should be twice as large in the region LqL/2L-q\ll L/2 compared to the region L/2LqL/2\gtrsim L-q. The standard errors are smaller than the size of the data points. The number of samples lies between 1000 and 10000 for each datum.
\bmhead

Acknowledgments LE, JH, and VR were supported by ERC Advanced Grant “RMTBeyond” No. 101020331. SS was supported by KAKENHI Grant Number JP22J14935 from the Japan Society for the Promotion of Science (JSPS) and Forefront Physics and Mathematics Program to Drive Transformation (FoPM), a World-leading Innovative Graduate Study (WINGS) Program, the University of Tokyo.

Declarations

\bmhead

Competing Interests The authors declare that there is no conflict of interest

Appendix A Extension to higher dimensions

In this appendix, we extend our main result, Theorem 3.1, to the dd-dimensional case.

A.1 Multidimensional setup

Let 𝐋(L1,,Ld)\mathbf{L}\coloneqq(L_{1},\ldots,L_{d}) be a vector of positive integers and set Vs=1dLsV\coloneqq\prod_{s=1}^{d}L_{s}. We consider a dd-dimensional system with VV quantum spins at the vertices of the classical discrete torus

𝕋𝐋×s=1d/Ls.\mathbb{T}_{\mathbf{L}}\coloneqq\bigtimes_{s=1}^{d}\mathbb{Z}/L_{s}\mathbb{Z}\,.

As before, on each vertex, the one particle Hilbert space is given by 2\mathbb{C}^{2} with canonical basis {|,|}\{\ket{\uparrow},\ket{\uparrow}\}. The corresponding VV-particle Hilbert space is given by

s=1V2with dimensiondim=2V.\mathcal{H}\coloneqq\bigotimes_{s=1}^{V}\mathbb{C}^{2}\quad\text{with dimension}\quad\mbox{dim}\mathcal{H}=2^{V}\,.

For a vector 𝐪=(q1,,qd)𝕋𝐋\mathbf{q}=(q_{1},\ldots,q_{d})\in\mathbb{T}_{\mathbf{L}}, we introduce a rectangular subregion 𝐪𝕋𝐋\mathcal{R}_{\mathbf{q}}\subset\mathbb{T}_{\mathbf{L}} by

𝐪{𝐱=(x1,,xd)𝕋𝐋:1xsqs,s=1,,d}.\mathcal{R}_{\mathbf{q}}\coloneqq\Bqty\Big{\mathbf{x}=(x_{1},\ldots,x_{d})\in\mathbb{T}_{\mathbf{L}}\colon 1\leq x_{s}\leq q_{s}\,,\ s=1,\ldots,d}\,.

A self-adjoint operator of the form A=A𝐪I𝕋𝐋𝐪A=A_{\mathbf{q}}\otimes I_{\mathbb{T}_{\mathbf{L}}\setminus\mathcal{R}_{\mathbf{q}}} is called a 𝐪\mathbf{q}-local observable, where A𝐪A_{\mathbf{q}} is self-adjoint and acts on the Hilbert space of the spins in 𝐪\mathcal{R}_{\mathbf{q}}, and I𝕋𝐋𝐪I_{\mathbb{T}_{\mathbf{L}}\setminus\mathcal{R}_{\mathbf{q}}} is the identity on 𝕋𝐋𝐪\mathbb{T}_{\mathbf{L}}\setminus\mathcal{R}_{\mathbf{q}}.

Finally, let TsT_{s} be the (left) translation operator along the ss-th coordinate acting on 𝕋𝐋\mathbb{T}_{\mathbf{L}}. For a vector 𝐣(j1,,jd)𝕋𝐋\mathbf{j}\coloneqq(j_{1},\ldots,j_{d})\in\mathbb{T}_{\mathbf{L}}, we introduce T𝐣s=1dTsjsT^{\mathbf{j}}\coloneqq\prod_{s=1}^{d}T_{s}^{j_{s}}.

The dd-dimensional version of our model in Definition 2.1 is given as follows.

Definition A.1.

Set the vector (1,,d)𝕋𝐋\boldsymbol{\ell}\coloneqq(\ell_{1},\ldots,\ell_{d})\in\mathbb{T}_{\mathbf{L}} that determines the interaction range in each coordinate direction. We define the ensemble of Hamiltonians with local interactions as

H𝐋()𝐣𝕋𝐋T𝐣(hI𝕋𝐋)T𝐣withhp𝟏,,p=03Jp𝟏,,pσ𝟏(p𝟏)σ(p)H_{\mathbf{L}}^{({\boldsymbol{\ell}})}\coloneqq\sum_{\mathbf{j}\in\mathbb{T}_{\mathbf{L}}}T^{-\mathbf{j}}\quantity(h_{\boldsymbol{\ell}}\otimes I_{\mathbb{T}_{\mathbf{L}}\setminus\mathcal{R}_{\boldsymbol{\ell}}})T^{\mathbf{j}}\,\quad\text{with}\quad h_{\boldsymbol{\ell}}\coloneqq\sum_{p_{\mathbf{1}},\ldots,p_{\boldsymbol{\ell}}=0}^{3}J_{p_{\mathbf{1}},\ldots,p_{\boldsymbol{\ell}}}\sigma_{\mathbf{1}}^{(p_{\mathbf{1}})}\ldots\sigma_{\boldsymbol{\ell}}^{(p_{\boldsymbol{\ell}})} (A.1)

where the symbols 𝟏\mathbf{1}, 𝟐\mathbf{2}, …, \boldsymbol{\ell} label the elements of \mathcal{R}_{\boldsymbol{\ell}} in an arbitrary order. As in (2.1), σ(p)\sigma^{(p)} for p{0,1,2,3}p\in\{0,1,2,3\} are the Pauli matrices (2.2).

The 4||4^{\absolutevalue*{\mathcal{R}_{\boldsymbol{\ell}}}} coefficients Jp𝟏,,pJ_{p_{\mathbf{1}},\ldots,p_{\boldsymbol{\ell}}} are i.i.d. real Gaussian random variables with zero mean, 𝔼Jp𝟏,,p=0\mathbb{E}J_{p_{\mathbf{1}},\ldots,p_{\boldsymbol{\ell}}}=0, and variance v2𝔼|Jp𝟏,,p|2v^{2}_{\boldsymbol{\ell}}\coloneqq\mathbb{E}\absolutevalue*{J_{p_{\mathbf{1}},\ldots,p_{\boldsymbol{\ell}}}}^{2}.

We have the following multidimensional analog of Lemma 2.2,

Lemma A.2.

Let

Π𝐤1V𝐣𝕋𝐋e2πis=1dksjsLsT𝐣for𝐤𝕋𝐋\Pi_{\mathbf{k}}\coloneqq\frac{1}{V}\sum_{\mathbf{j}\in\mathbb{T}_{\mathbf{L}}}e^{2\pi i\sum_{s=1}^{d}\frac{k_{s}j_{s}}{L_{s}}}T^{-\mathbf{j}}\quad\text{for}\quad\mathbf{k}\in\mathbb{T}_{\mathbf{L}}

be the projection operator onto the 𝐤\mathbf{k}-momentum space, i.e. TsΠ𝐤=e2πiksLsΠ𝐤T_{s}\Pi_{\mathbf{k}}=e^{2\pi i\frac{k_{s}}{L_{s}}}\Pi_{\mathbf{k}} for all s=1,,ds=1,\ldots,d. Then we have

H𝐋()=V𝐤𝕋𝐋Π𝐤(hI𝕋𝐋)Π𝐤.H_{\mathbf{L}}^{(\boldsymbol{\ell})}=V\sum_{\mathbf{k}\in\mathbb{T}_{\mathbf{L}}}\Pi_{\mathbf{k}}\quantity(h_{\boldsymbol{\ell}}\otimes I_{\mathbb{T}_{\mathbf{L}}\setminus\mathcal{R}_{\boldsymbol{\ell}}})\Pi_{\mathbf{k}}\,.
Proof.

This follows by Lemma 2.2 coordinatewise. ∎

Denoting by |Eα(𝐤)\ket*{E_{\alpha}^{(\mathbf{k})}} the normalised eigenvector of H𝐋()H_{\mathbf{L}}^{(\boldsymbol{\ell})} belonging to an eigenvalue EαE_{\alpha} and the 𝐤\mathbf{k}-momentum sector, i.e. H𝐋()|Eα(𝐤)=Eα|Eα(𝐤)H_{\mathbf{L}}^{(\mathbf{\ell})}\ket*{E_{\alpha}^{(\mathbf{k})}}=E_{\alpha}\ket*{E_{\alpha}^{(\mathbf{k})}} and Π𝐤|Eα(𝐤)=|Eα(𝐤)\Pi_{\mathbf{k}}\ket*{E_{\alpha}^{(\mathbf{k})}}=\ket*{E_{\alpha}^{(\mathbf{k})}}, the definition of the microcanocical average is completely analogous to Definition 2.3.

Moreover, whenever we use the notation \prec for stochastic domination (Definition 2.5), it is always understood with N2VN\coloneqq 2^{V}.

A.2 Multidimensional version of the main result

The dd-dimensional version of Theorem 3.1 is then given as follows.

Theorem A.3 (ETH in dd-dimensional translation-invariant systems).

Let =𝐋\boldsymbol{\ell}=\mathbf{L} and consider the the Hamiltonian H𝐋(𝐋)H_{\mathbf{L}}^{(\mathbf{L})} from (A.1) with eigenvalues Eα(𝐤)E_{\alpha}^{(\mathbf{k})} and normalised eigenvectors |Eα(𝐤)\ket*{E_{\alpha}^{(\mathbf{k})}}. Then, for every Δ>0\Delta>0 and bounded 𝐪\mathbf{q}-local observable A=A𝐪I𝕋𝐋𝐪A=A_{\mathbf{q}}\otimes I_{\mathbb{T}_{\mathbf{L}}\setminus\mathcal{R}_{\mathbf{q}}} with qsLs/2q_{s}\leq L_{s}/2 for all s=1,,ds=1,\ldots,d, it holds that

maxα,βmax𝐤,𝐤|Eα(𝐤)|A|Eβ(𝐤)δαβδ𝐤,𝐤AΔ(mc)(Eα(𝐤))|12V/2.\max_{\alpha,\beta}\max_{\mathbf{k},\mathbf{k^{\prime}}}\absolutevalue{\matrixelement*{E_{\alpha}^{(\mathbf{k})}}{A}{E_{\beta}^{(\mathbf{k^{\prime}})}}-\delta_{\alpha\beta}\delta_{\mathbf{k},\mathbf{k^{\prime}}}\expectationvalue*{A}^{(\mathrm{mc})}_{\Delta}(E_{\alpha}^{(\mathbf{k})})}\prec\frac{1}{2^{V/2}}\,. (A.2)

That is, the ETH holds with optimal speed of convergence.

The principal strategy for proving Theorem A.3 is exactly the same as for Theorem 3.1, which has been outlined right below Proposition 3.3. We shall hence only discuss the differences compared to the proof in Section 3, which consist solely of Step 1 (generalizing Lemma 3.4, cf. Lemma A.4) and Step 4 (generalizing Lemma 3.7, cf. Lemma A.4).

Lemma A.4 (Step 1: Dimensions of momentum sectors).

The dimension tr𝐋Π𝐤\tr_{\mathbf{L}}\Pi_{\mathbf{k}} of the 𝐤\mathbf{k}-momentum sectors for 𝐤𝕋𝐋\mathbf{k}\in\mathbb{T}_{\mathbf{L}} is almost equal to each other in the sense that we have

tr𝐋Π𝐤=2VV+(2V/2+(log2V)2).\tr_{\mathbf{L}}\Pi_{\mathbf{k}}=\frac{2^{V}}{V}+\order{2^{V/2+(\log_{2}V)^{2}}}\,.
Proof.

Let 𝔖=𝔖(𝐋)\mathfrak{S}=\mathfrak{S}(\mathbf{L}) denote the canonical product basis of \mathcal{H}, as in (3.9), and let 𝒢\mathcal{G} be the commutative group generated by the translation operators {Ts}s=1d\{T_{s}\}_{s=1}^{d}. The action of 𝒢\mathcal{G} on 𝔖\mathfrak{S} is defined by (3.10).

In general, the group 𝒢\mathcal{G} is not cyclic, hence the subgroups of 𝒢\mathcal{G} are not uniquely determined by their size. However, 𝔖\mathfrak{S} can be decomposed into a disjoint union of sets 𝔖𝒦=𝔖𝒦(𝐋)\mathfrak{S}_{\mathcal{K}}=\mathfrak{S}_{\mathcal{K}}(\mathbf{L}) defined by

𝔖𝒦{σ𝔖:𝒢σ=𝒦},\mathfrak{S}_{\mathcal{K}}\coloneqq\{\sigma\in\mathfrak{S}\,:\,\mathcal{G}_{\sigma}=\mathcal{K}\}\,,

where 𝒢σ𝒢\mathcal{G}_{\sigma}\subset\mathcal{G} is the stabilizer of σ\sigma under the action (3.10), and 𝒦𝒢\mathcal{K}\leq\mathcal{G} is a subgroup of 𝒢\mathcal{G}. Similarly to (3.11), for any subgroup 𝒦\mathcal{K} of 𝒢\mathcal{G}, we define the map

φ𝒦:𝔖𝒦(\faktor𝕋𝐋𝒦{,}),(φ𝒦(σ))([x])σ(x),[x]\faktor𝕋𝐋𝒦,\varphi_{\mathcal{K}}:\mathfrak{S}_{\mathcal{K}}\to\left(\faktor{\mathbb{T}_{\mathbf{L}}}{\mathcal{K}}\to\{\uparrow,\downarrow\}\right)\,,\quad\bigl{(}\varphi_{\mathcal{K}}(\sigma)\bigr{)}([x])\coloneqq\sigma(x)\,,\quad[x]\in\faktor{\mathbb{T}_{\mathbf{L}}}{\mathcal{K}}\,,

which is easily seen to be an injection and hence and injection, |𝔖𝒦|2V/|𝒦|\absolutevalue*{\mathfrak{S}_{\mathcal{K}}}\leq 2^{V/\absolutevalue*{\mathcal{K}}}. Therefore, denoting the number of elements in 𝔖\mathfrak{S} with a trivial stabilizer by M(𝐋)M(\mathbf{L}), we obtain

2V=𝒦G|𝔖𝒦|=M(𝐋)+KG,|𝒦|2|𝔖𝒦|M(𝐋)+s(𝒢)2V/2,2^{V}=\sum_{\mathcal{K}\leq G}\absolutevalue*{\mathfrak{S}_{\mathcal{K}}}=M(\mathbf{L})+\sum_{K\leq G,\absolutevalue*{\mathcal{K}}\geq 2}\absolutevalue*{\mathfrak{S}_{\mathcal{K}}}\leq M(\mathbf{L})+s(\mathcal{G})2^{V/2}\,,

where s(𝒢)s(\mathcal{G}) denotes the number of subgroups of 𝒢\mathcal{G}. Combining this with the following well-known bound111More precisely, in order to see that (A.3) holds, observe that for any subgroup 𝒦\mathcal{K} of 𝒢\mathcal{G} and any g𝒢\𝒦g\in\mathcal{G}\backslash\mathcal{K}, the size of the subgroup generated by 𝒦\mathcal{K} and gg is at least 2|𝒦|2\absolutevalue*{\mathcal{K}}. Therefore, any subgroup 𝒦\mathcal{K} is generated by at most log2|𝒢|\log_{2}\absolutevalue*{\mathcal{G}} elements, hence the set of all subgroups of 𝒢\mathcal{G} can be injectively mapped to 𝒢log2|𝒢|\mathcal{G}^{\log_{2}\absolutevalue*{\mathcal{G}}}.

s(𝒢)|𝒢|log2|𝒢|s(\mathcal{G})\leq\absolutevalue*{\mathcal{G}}^{\log_{2}\absolutevalue*{\mathcal{G}}} (A.3)

and the trivial estimate M(𝐋)2VM(\mathbf{L})\leq 2^{V}, we conclude that

M(𝐋)=2V+(2V/2+(log2V)2).M(\mathbf{L})=2^{V}+\order{2^{V/2+(\log_{2}V)^{2}}}. (A.4)

The construction of a linearly independent vectors with a fixed momentum 𝐤𝕋𝐋\mathbf{k}\in\mathbb{T}_{\mathbf{L}} for each disjoint orbit with a trivial stabilizer is analogous to (3.14). Using estimates analogous to (3.15) and (3.16) together with (A.4) concludes the proof of Lemma A.4. ∎

Finally, we discuss the generalisation of Step 4, i.e. Lemma 3.7.

Lemma A.5 (Step 4: Traces within momentum sectors).

Let A=A𝐪I𝕋𝐋𝐪A=A_{\mathbf{q}}\otimes I_{\mathbb{T}_{\mathbf{L}}\setminus\mathcal{R}_{\mathbf{q}}} be a bounded 𝐪\mathbf{q}-local observable with qsLs/2q_{s}\leq L_{s}/2 for all s=1,,ds=1,\ldots,d. Then it holds that

max𝐤|tr𝐋(Π𝐤AΠ𝐤)tr𝐋Π𝐤A|(V2V/2).\max_{\mathbf{k}}\absolutevalue{\frac{\tr_{\mathbf{L}}\quantity(\Pi_{\mathbf{k}}A\Pi_{\mathbf{k}})}{\tr_{\mathbf{L}}\Pi_{\mathbf{k}}}-\expectationvalue*{A}}\leq\order{\frac{V}{2^{V/2}}}\,. (A.5)
Proof.

Substituting Π𝐤1V𝐣𝕋𝐋e2πis=1dksjsLsT𝐣\Pi_{\mathbf{k}}\coloneqq\frac{1}{V}\sum_{\mathbf{j}\in\mathbb{T}_{\mathbf{L}}}e^{2\pi i\sum_{s=1}^{d}\frac{k_{s}j_{s}}{L_{s}}}T^{-\mathbf{j}} for 𝐤𝕋𝐋\mathbf{k}\in\mathbb{T}_{\mathbf{L}}, we obtain

tr𝐋(Π𝐤AΠ𝐤)\displaystyle\tr_{\mathbf{L}}\quantity(\Pi_{\mathbf{k}}A\Pi_{\mathbf{k}}) =Atr𝐋Π𝐤+1V𝐣𝕋𝐋{𝟎}e2πis=1dksjsLstr𝐋(T𝐣Å).\displaystyle=\expectationvalue*{A}\tr_{\mathbf{L}}\Pi_{\mathbf{k}}+\frac{1}{V}\sum_{\mathbf{j}\in\mathbb{T}_{\mathbf{L}}\setminus\Bqty*{\mathbf{0}}}e^{2\pi i\sum_{s=1}^{d}\frac{k_{s}j_{s}}{L_{s}}}\tr_{\mathbf{L}}(T^{-\mathbf{j}}\mathring{A})\,.

Then, the task is to evaluate the size of the quantity tr𝐋(T𝐣Å)\tr_{\mathbf{L}}(T^{-\mathbf{j}}\mathring{A}).

Lemma A.6.

Let AA𝐪I𝕋𝐋𝐪A\coloneqq A_{\mathbf{q}}\otimes I_{\mathbb{T}_{\mathbf{L}}\setminus\mathcal{R}_{\mathbf{q}}} be a 𝐪\mathbf{q}-local observable with qsLs/2q_{s}\leq L_{s}/2 for all s=1,,ds=1,\ldots,d and A1\|A\|\lesssim 1. Then, for any 𝐣𝕋𝐋{𝟎}\mathbf{j}\in\mathbb{T}_{\mathbf{L}}\setminus\Bqty*{\mathbf{0}}, we have that

|tr𝐋(T𝐣A)|2V/2.\absolutevalue{\tr_{\mathbf{L}}(T^{-\mathbf{j}}A)}\lesssim 2^{V/2}\,. (A.6)

Combining (A.6) with Lemma A.4 gives the bound (A.5). ∎

Its remains to prove Lemma A.6.

Proof of Lemma A.6.

The d=1d=1 case is proven in Lemma 3.8. Thus, we assume d2d\geq 2 in the following. We choose an orthonormal basis of the Hilbert space on 𝕋𝐋\mathbb{T}_{\mathbf{L}} as {|ss:𝕋𝐋{,}}\Bqty*{\ket*{s}\mid s\colon\mathbb{T}_{\mathbf{L}}\to\Bqty*{\uparrow,\downarrow}} to calculate the trace. Then, similarly to (3.19), we obtain

|tr𝐋(T𝐣A)|s:𝕋𝐋{,}𝐱𝕋𝐋𝐪δs(𝐱),s(𝐱+𝐣).\displaystyle\absolutevalue{\tr_{\mathbf{L}}(T^{-\mathbf{j}}A)}\lesssim\sum_{s\colon\mathbb{T}_{\mathbf{L}}\to\Bqty*{\uparrow,\downarrow}}\prod_{\mathbf{x}\in\mathbb{T}_{\mathbf{L}}\setminus\mathcal{R}_{\mathbf{q}}}\delta_{s(\mathbf{x}),s(\mathbf{x}+\mathbf{j})}\,. (A.7)

Next, analogously to (3.20), we count the number of independent summations on the right-hand side of (A.7). To do so, we consider a graph 𝒢𝐋,𝐪,𝐣=(V,E)\mathcal{G}_{\mathbf{L},\mathbf{q},\mathbf{j}}=(V,E), whose vertices and edges are given by V𝕋𝐋V\coloneqq\mathbb{T}_{\mathbf{L}} and E{(𝐱,𝐱+𝐣):𝐱𝕋𝐋𝐪}E\coloneqq\Bqty*{(\mathbf{x},\mathbf{x}+\mathbf{j})\colon\mathbf{x}\in\mathbb{T}_{\mathbf{L}}\setminus\mathcal{R}_{\mathbf{q}}}, respectively. Exactly one redundant delta function appears in the product 𝐱𝕋𝐋𝐪δs(𝐱),s(𝐱+𝐣)\prod_{\mathbf{x}\in\mathbb{T}_{\mathbf{L}}\setminus\mathcal{R}_{\mathbf{q}}}\delta_{s(\mathbf{x}),s(\mathbf{x}+\mathbf{j})} for every occurrence of a loop in 𝒢𝐋,𝐪,𝐣\mathcal{G}_{\mathbf{L},\mathbf{q},\mathbf{j}}. Thus, by denoting the number of loops in 𝒢𝐋,𝐪,𝐣\mathcal{G}_{\mathbf{L},\mathbf{q},\mathbf{j}} by N(𝐋,𝐪,𝐣)N(\mathbf{L},\mathbf{q},\mathbf{j}), we obtain

|tr𝐋(T𝐣Å)|2|𝐪|+N(𝐋,𝐪,𝐣).\displaystyle\absolutevalue{\tr_{\mathbf{L}}(T^{-\mathbf{j}}\mathring{A})}\lesssim 2^{\absolutevalue*{\mathcal{R}_{\mathbf{q}}}+N(\mathbf{L},\mathbf{q},\mathbf{j})}\,. (A.8)

As in the one-dimensional case, Lemma 3.8, the graph 𝒢𝐋,𝐪,𝐣\mathcal{G}_{\mathbf{L},\mathbf{q},\mathbf{j}} is obtained from 𝒢𝐋,𝟎,𝐣\mathcal{G}_{\mathbf{L},\mathbf{0},\mathbf{j}} by removing the edge (𝐱,𝐱+𝐣)(\mathbf{x},\mathbf{x}+\mathbf{j}) for all 𝐱𝐪\mathbf{x}\in\mathcal{R}_{\mathbf{q}}. Therefore, we have N(𝐋,𝐪,𝐣)N(𝐋,𝟎,𝐣)N(\mathbf{L},\mathbf{q},\mathbf{j})\leq N(\mathbf{L},\mathbf{0},\mathbf{j}) for all 𝐪\mathbf{q}. Now, the number of loops in 𝒢𝐋,𝟎,𝐣\mathcal{G}_{\mathbf{L},\mathbf{0},\mathbf{j}} can be counted by considering the orbits of the cyclic group T𝐣\expectationvalue*{T^{\mathbf{j}}} on 𝕋𝐋\mathbb{T}_{\mathbf{L}}. It is clear that the size of each orbit is equal to one another. Denoting it by g(𝐣)g(\mathbf{j}), the number of loops in 𝒢𝐋,𝟎,𝐣\mathcal{G}_{\mathbf{L},\mathbf{0},\mathbf{j}} is given by

N(𝐋,𝟎,𝐣)=Vg(𝐣).N(\mathbf{L},\mathbf{0},\mathbf{j})=\frac{V}{g(\mathbf{j})}\,.

Note that, since 𝐣𝟎\mathbf{j}\neq\mathbf{0} by assumption, we have g(𝐣)2g(\mathbf{j})\geq 2.

If g(𝐣)4g(\mathbf{j})\geq 4, the bound (A.6) is already proven because

|tr𝐋(T𝐣Å)|2|𝐪|+N(𝐋,𝐪,𝐣)2V4+V4=2V2,\displaystyle\absolutevalue{\tr_{\mathbf{L}}(T^{-\mathbf{j}}\mathring{A})}\lesssim 2^{\absolutevalue*{\mathcal{R}_{\mathbf{q}}}+N(\mathbf{L},\mathbf{q},\mathbf{j})}\leq 2^{\frac{V}{4}+\frac{V}{4}}=2^{\frac{V}{2}}\,,

where we used |𝐪|V/2d\absolutevalue*{\mathcal{R}_{\mathbf{q}}}\leq V/2^{d} and d2d\geq 2 by assumption.

If g(𝐣)=2g(\mathbf{j})=2 or g(𝐣)=3g(\mathbf{j})=3, we must have g(𝐣)js0(modLs)g(\mathbf{j})j_{s}\equiv 0\,\pmod{L_{s}} for all ss. Using again that 𝐣𝟎\mathbf{j}\neq\mathbf{0}, there exists a non-zero component jtj_{t}. For such a coordinate direction t{1,,d}t\in\{1,...,d\}, we must have g(𝐣)Ltg(\mathbf{j})\mid L_{t} because g(𝐣){2,3}g(\mathbf{j})\in\{2,3\} is prime. We hence have a decomposition

𝕋𝐋=𝒜tT𝐣𝒜tT2𝐣𝒜t,𝒜t{𝐱𝕋𝐋:1xtLtg(𝐣)}.\mathbb{T}_{\mathbf{L}}=\mathcal{A}_{t}\sqcup T^{\mathbf{j}}\mathcal{A}_{t}\sqcup T^{2\mathbf{j}}\mathcal{A}_{t},\quad\mathcal{A}_{t}\coloneqq\Bqty{\mathbf{x}\in\mathbb{T}_{\mathbf{L}}\colon 1\leq x_{t}\leq\frac{L_{t}}{g(\mathbf{j})}}\,.

Every loop in 𝒢𝐋,𝟎,𝐣\mathcal{G}_{\mathbf{L},\mathbf{0},\mathbf{j}} can be considered to start from a site in 𝒜t\mathcal{A}_{t}. Therefore, removing the edge (𝐱,𝐱+𝐣)(\mathbf{x},\mathbf{x}+\mathbf{j}) for all 𝐱𝐪\mathbf{x}\in\mathcal{R}_{\mathbf{q}} from 𝒢𝐋,𝟎,𝐣\mathcal{G}_{\mathbf{L},\mathbf{0},\mathbf{j}} decreases the number of loops at least by |𝐪𝒜t|\absolutevalue{\mathcal{R}_{\mathbf{q}}\cap\mathcal{A}_{t}}, which implies

N(𝐋,𝐪,𝐣)N(𝐋,𝟎,𝐣)|𝐪𝒜t|.N(\mathbf{L},\mathbf{q},\mathbf{j})\leq N(\mathbf{L},\mathbf{0},\mathbf{j})-\absolutevalue{\mathcal{R}_{\mathbf{q}}\cap\mathcal{A}_{t}}.

Thus, from (A.8), we obtain

|tr𝐋(T𝐣Å)|2|𝐪||𝐪𝒜t|+N(𝐋,𝟎,𝐣)=2|𝐪𝒜t|+N(𝐋,𝟎,𝐣).\displaystyle\absolutevalue{\tr_{\mathbf{L}}(T^{-\mathbf{j}}\mathring{A})}\lesssim 2^{\absolutevalue*{\mathcal{R}_{\mathbf{q}}}-\absolutevalue{\mathcal{R}_{\mathbf{q}}\cap\mathcal{A}_{t}}+N(\mathbf{L},\mathbf{0},\mathbf{j})}=2^{\absolutevalue{\mathcal{R}_{\mathbf{q}}\setminus\mathcal{A}_{t}}+N(\mathbf{L},\mathbf{0},\mathbf{j})}\,.

Finally, we have

|𝐪𝒜t|+N(𝐋,𝟎,𝐣)(Lt2Ltg(𝐣))s(t)Ls2+Vg(𝐣)=V2d(12g(𝐣))+Vg(𝐣)V2,\displaystyle\absolutevalue{\mathcal{R}_{\mathbf{q}}\setminus\mathcal{A}_{t}}+N(\mathbf{L},\mathbf{0},\mathbf{j})\leq\quantity(\frac{L_{t}}{2}-\frac{L_{t}}{g(\mathbf{j})})\prod_{s(\neq t)}\frac{L_{s}}{2}+\frac{V}{g(\mathbf{j})}=\frac{V}{2^{d}}\quantity(1-\frac{2}{g(\mathbf{j})})+\frac{V}{g(\mathbf{j})}\leq\frac{V}{2}\,,

which completes the proof of Lemma A.6. ∎

References

  • \bibcommenthead
  • Santos and Rigol [2010] Santos, L.F., Rigol, M.: Localization and the effects of symmetries in the thermalization properties of one-dimensional quantum systems. Physical Review E 82(3), 031130 (2010) https://doi.org/10.1103/PhysRevE.82.031130
  • Trotzky et al. [2012] Trotzky, S., Chen, A. Yu-Ao, Flesch, A., McCulloch, I.P., Schollwöck, U., Eisert, J., Bloch, I.: Probing the relaxation towards equilibrium in an isolated strongly correlated one-dimensional Bose gas. Nature Physics 8(4), 325–330 (2012) https://doi.org/10.1038/nphys2232
  • Langen et al. [2013] Langen, T., Geiger, R., Kuhnert, M., Rauer, B., Schmiedmayer, J.: Local emergence of thermal correlations in an isolated quantum many-body system. Nature Physics 9(10), 640–643 (2013)
  • Clos et al. [2016] Clos, G., Porras, D., Warring, U., Schaetz, T.: Time-Resolved Observation of Thermalization in an Isolated Quantum System. Physical Review Letters 117(17), 170401 (2016) https://doi.org/10.1103/PhysRevLett.117.170401
  • Kaufman et al. [2016] Kaufman, A.M., Tai, M.E., Lukin, A., Rispoli, M., Schittko, R., Preiss, P.M., Greiner, M.: Quantum thermalization through entanglement in an isolated many-body system. Science 353(6301), 794–800 (2016) https://doi.org/10.1126/science.aaf6725 1603.04409
  • Neill et al. [2016] Neill, C., Roushan, P., Fang, M., Chen, Y., Kolodrubetz, M., Chen, Z., Megrant, A., Barends, R., Campbell, B., Chiaro, B., Dunsworth, A., Jeffrey, E., Kelly, J., Mutus, J., O’Malley, P.J.J., Quintana, C., Sank, D., Vainsencher, A., Wenner, J., White, T.C., Polkovnikov, A., Martinis, J.M.: Ergodic dynamics and thermalization in an isolated quantum system. Nature Physics 12(11), 1037–1041 (2016) https://doi.org/10.1038/nphys3830
  • Tang et al. [2018] Tang, Y., Kao, W., Li, K.-Y., Seo, S., Mallayya, K., Rigol, M., Gopalakrishnan, S., Lev, B.L.: Thermalization near Integrability in a Dipolar Quantum Newton’s Cradle. Physical Review X 8(2), 021030 (2018) https://doi.org/10.1103/PhysRevX.8.021030 1707.07031
  • von Neumann [2010] Neumann, J.: Proof of the ergodic theorem and the H-theorem in quantum mechanics. The European Physical Journal H 35(2), 201–237 (2010)
  • Deutsch [1991] Deutsch, J.M.: Quantum statistical mechanics in a closed system. Physical Review A 43(4), 2046 (1991)
  • Srednicki [1994] Srednicki, M.: Chaos and quantum thermalization. Physical Review E 50(2), 888 (1994)
  • D’Alessio et al. [2016] D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Advances in Physics 65(3), 239–362 (2016) https://doi.org/10.1080/00018732.2016.1198134 1509.06411
  • Mori et al. [2018] Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M.: Thermalization and prethermalization in isolated quantum systems: a theoretical overview. Journal of Physics B: Atomic, Molecular and Optical Physics 51(11), 112001 (2018) https://doi.org/10.1088/1361-6455/aabcdf
  • Deutsch [2018] Deutsch, J.M.: Eigenstate thermalization hypothesis. Reports on Progress in Physics 81(8), 082001 (2018) https://doi.org/10.1088/1361-6633/aac9f1 1805.01616
  • Rigol et al. [2008] Rigol, M., Dunjko, V., Olshanii, M.: Thermalization and its mechanism for generic isolated quantum systems. Nature 452(7189), 854–858 (2008) https://doi.org/10.1038/nature06838
  • Rigol [2009a] Rigol, M.: Breakdown of Thermalization in Finite One-Dimensional Systems. Physical Review Letters 103(10), 100403 (2009) https://doi.org/10.1103/PhysRevLett.103.100403
  • Rigol [2009b] Rigol, M.: Quantum quenches and thermalization in one-dimensional fermionic systems. Physical Review A 80(5), 053607 (2009) https://doi.org/10.1103/PhysRevA.80.053607 0908.3188
  • Biroli et al. [2010] Biroli, G., Kollath, C., Läuchli, A.M.: Effect of Rare Fluctuations on the Thermalization of Isolated Quantum Systems. Physical Review Letters 105(25), 250401 (2010) https://doi.org/10.1103/PhysRevLett.105.250401 0907.3731
  • Steinigeweg et al. [2013] Steinigeweg, R., Herbrych, J., Prelovšek, P.: Eigenstate thermalization within isolated spin-chain systems. Physical Review E 87(1), 012118 (2013) https://doi.org/10.1103/PhysRevE.87.012118
  • Beugeling et al. [2014] Beugeling, W., Moessner, R., Haque, M.: Finite-size scaling of eigenstate thermalization. Physical Review E 89(4), 042112 (2014) https://doi.org/10.1103/PhysRevE.89.042112
  • Rigol et al. [2007] Rigol, M., Dunjko, V., Yurovsky, V., Olshanii, M.: Relaxation in a Completely Integrable Many-Body Quantum System: An Ab Initio Study of the Dynamics of the Highly Excited States of 1D Lattice Hard-Core Bosons. Physical Review Letters 98(5), 050405 (2007)
  • Cassidy et al. [2011] Cassidy, A.C., Clark, C.W., Rigol, M.: Generalized Thermalization in an Integrable Lattice System. Physical Review Letters 106(14), 140405 (2011)
  • Hamazaki et al. [2016] Hamazaki, R., Ikeda, T.N., Ueda, M.: Generalized Gibbs ensemble in a nonintegrable system with an extensive number of local symmetries. Physical Review E 93(3), 032116 (2016)
  • Basko et al. [2006] Basko, D.M., Aleiner, I.L., Altshuler, B.L.: Metal–insulator transition in a weakly interacting many-electron system with localized single-particle states. Annals of physics 321(5), 1126–1205 (2006)
  • Nandkishore and Huse [2015] Nandkishore, R., Huse, D.A.: Many-Body Localization and Thermalization in Quantum Statistical Mechanics. Annual Review of Condensed Matter Physics 6(1), 15–38 (2015)
  • Turner et al. [2018] Turner, C.J., Michailidis, A.A., Abanin, D.A., Serbyn, M., Papić, Z.: Weak ergodicity breaking from quantum many-body scars. Nature Physics 14(7), 745–749 (2018)
  • Bull et al. [2019] Bull, K., Martin, I., Papić, Z.: Systematic Construction of Scarred Many-Body Dynamics in 1D Lattice Models. Physical Review Letters 123(3), 030601 (2019)
  • Reimann [2015] Reimann, P.: Generalization of von Neumann’s Approach to Thermalization. Physical Review Letters 115(1), 010403 (2015) https://doi.org/10.1103/PhysRevLett.115.010403 1507.00262
  • Cipolloni et al. [2021] Cipolloni, G., Erdős, L., Schröder, D.: Eigenstate Thermalization Hypothesis for Wigner Matrices. Communications in Mathematical Physics 388(2), 1005–1048 (2021) https://doi.org/10.1007/s00220-021-04239-z 2012.13215
  • Cipolloni et al. [2023] Cipolloni, G., Erdős, L., Henheik, J., Kolupaiev, O.: Gaussian fluctuations in the Equipartition Principle for Wigner matrices, 1 (2023) 2301.05181
  • Adhikari et al. [2023] Adhikari, A., Dubova, S., Xu, C., Yin, J.: Eigenstate Thermalization Hypothesis for Generalized Wigner Matrices (2023) 2302.00157
  • Sugimoto et al. [2021] Sugimoto, S., Hamazaki, R., Ueda, M.: Test of the Eigenstate Thermalization Hypothesis Based on Local Random Matrix Theory. Physical Review Letters 126(12), 120602 (2021) https://doi.org/10.1103/PhysRevLett.126.120602
  • Erdős et al. [2013] Erdős, L., Knowles, A., Yau, H.-T., Yin, J.: The local semicircle law for a general class of random matrices. Electronic Journal of Probability 18(59), 1 (2013) https://doi.org/10.1214/EJP.v18-2473 1212.0164
  • Collins et al. [2022] Collins, B., Matsumoto, S., Novak, J.: The Weingarten Calculus. Notices of the American Mathematical Society 69(05), 1 (2022) https://doi.org/10.1090/noti2474 2109.14890
  • Sugimoto et al. [2022] Sugimoto, S., Hamazaki, R., Ueda, M.: Eigenstate Thermalization in Long-Range Interacting Systems. Physical Review Letters 129(3), 030602 (2022) https://doi.org/%****␣manuscript.bbl␣Line␣600␣****10.1103/PhysRevLett.129.030602
  • Hamazaki and Ueda [2018] Hamazaki, R., Ueda, M.: Atypicality of Most Few-Body Observables. Physical Review Letters 120(8), 080603 (2018) https://doi.org/10.1103/PhysRevLett.120.080603