This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Efficient Iterative Decoupling Methods for Thermo-Poroelasticity Based on a Four-Field Formulation

Cai Mingchao Morgan State University    Li Jingzhi South University of Science and Technology    Li Ziliang 22footnotemark: 2    Liu Qiang33footnotemark: 3 Shenzhen University
Abstract

This paper studies the thermo-poroelasticity model. By introducing an intermediate variable, we transform the original three-field model into a four-field model. Building upon this four-field model, we present both a coupled finite element method and a decoupled iterative finite element method. We prove the stability and optimal convergence of the coupled finite element method. Furthermore, we establish the convergence of the decoupled iterative method. This paper focuses primarily on analyzing the iterative decoupled algorithm. It demonstrates that the algorithm’s convergence does not require any additional assumptions about physical parameters or stabilization parameters. Numerical results are provided to demonstrate the effectiveness and theoretical validity of these new methods.

Keywords thermo-poroelasticity, decoupled algorithms, finite element method.

1 Introduction

The thermo-poroelasticity model provides a comprehensive framework for describing the interplay between mechanical deformation, fluid flow, and heat transfer in porous media. By integrating Biot’s poroelasticity theory with the heat equation, this model captures the effects of temperature variations on stress and displacement, accounting for the compressibility and thermal expansion of both fluid and solid components. The foundational work in poroelasticity was pioneered by Terzaghi and later expanded by Biot [22, 3, 4], who developed a coupled model to describe solid-fluid and fluid-solid interactions. Extending these concepts to non-isothermal scenarios, the thermo-poroelasticity model comprises a force balance equation, a mass conservation equation, and a heat conduction equation, effectively representing the complex interactions among these physical processes. This model’s broad applicability across various engineering and environmental disciplines has driven significant research interest. Applications span various areas such as soil mechanics, pharmaceutical tablet analysis, nuclear waste management [24], geothermal energy systems [23], biomedical engineering, and carbon dioxide sequestration [21].

In recent years, there has been significant progress in computational research on the thermo-poroelasticity model. Studies such as [9] have demonstrated the existence and uniqueness of solutions for nonlinear thermo-poroelasticity, along with deriving a priori energy estimates and regularity properties. To overcome computational challenges, the classical three-field formulation has been expanded to a four-field model by introducing the divergence of displacement as an auxiliary variable [10], which has also been extended to nonlinear thermo-poroelasticity incorporating convective transport [13]. Various numerical methods have been proposed for these models, including Galerkin methods and combined Galerkin-mixed finite element methods for nonlinear formulations [27, 25]. Additional approaches include a hybrid finite element method utilizing mixed finite elements for pressure, characteristic finite elements for temperature, and Galerkin finite elements for displacement [26], as well as discontinuous Galerkin methods and related algorithms for fully coupled nonlinear problems [5, 1].

Among recent numerical algorithms, iteratively decoupled algorithms have been extensively explored. For instance, unconditionally stable sequential methods for all-ways coupled thermo-poromechanics were proposed in [17]. Splitting schemes for decoupling poroelasticity and thermoelasticity [18], and monolithic, partially decoupled, and fully decoupled schemes based on a five-field formulation incorporating heat and Darcy fluxes [8] have also been investigated. Furthermore, a decoupled iterative solution approach combined with reduced-order modeling has been developed to improve computational efficiency [2]. While convergence proofs for coupled and decoupled iterative schemes exist [18, 8], analysis of the convergence order of these methods remains limited.

This work focuses on developing an unconditionally stable and optimally convergent algorithm rooted in a novel four-field formulation of the thermo-poroelasticity model. To mitigate the issue of Poisson locking, we introduce an auxiliary variable ξ=λ𝒖+αp+βT\xi=-\lambda\nabla\cdot\bm{u}+\alpha p+\beta T, transforming the original three-field model into a robust four-field framework. Building upon this reformulation, we design and rigorously analyze an iteratively decoupled method tailored for linear thermo-poroelastic problems. Theoretical analysis establishes the method’s unconditional stability and optimal convergence. Unlike earlier approaches, such as time-extrapolation-based decoupling algorithms for Biot’s model [16], which often face stability limitations and reduced accuracy due to explicit extrapolation, our method overcomes these drawbacks. By iteratively solving each subproblem while incorporating time extrapolation, we ensure not only stability but also maintain optimal convergence rates. This approach provides a more reliable and accurate computational framework for addressing coupled thermo-poroelastic processes.

The structure of the paper is as follows: In Section 2, we provide an overview of the thermo-poroelastic problem. We introduce a four-field model and give its a priori estimates. In Section 3, we present two algorithms: the coupled algorithm and the decoupled algorithm. In Section 4, we analyze the convergence of the decoupled algorithm. Furthermore, we derive the convergence rate for the discrete coupled problem relative to the continuous coupled problem. Finally, Section 5 showcases the numerical results.

2 Mathematical model and its reformulation

We introduce some notations that will be utilized throughout the subsequent text. Let Ωd,d=2,3\Omega\in\mathbb{R}^{d},~{}d=2,3 be a bounded domain and J=(0,τ)J=(0,\tau) with τ\tau being the final time. For 1s<1\leq s<\infty, let Ls(Ω)={v:Ω|v|s<}L^{s}(\Omega)=\{v:\int_{\Omega}|v|^{s}<\infty\} represent the standard Banach space, with the associated norm vLs(Ω)=(Ω|v|s)1s\|v\|_{L^{s}(\Omega)}=(\int_{\Omega}|v|^{s})^{\frac{1}{s}}. Usually, without special emphasis, L2(Ω)\|\cdot\|_{L^{2}(\Omega)} can alternatively be substituted with L2(Ω)\|\cdot\|_{L^{2}(\Omega)}. We use (,)(\cdot,\cdot) to denote the L2L^{2}-inner product. For s=s=\infty, let L(Ω)={v:Ω:ess supxΩ|v(x)|<}L^{\infty}(\Omega)=\{v:\Omega\to\mathbb{R}:\text{ess sup}_{x\in\Omega}|v(x)|<\infty\} be the space of uniformly bounded measurable functions on Ω\Omega, with norm vL(Ω)=ess supxΩ|v|\|v\|_{L^{\infty}(\Omega)}=\text{ess sup}_{x\in\Omega}|v|. Let Wsm(Ω)={v:DαvLs(Ω),0|α|m,v}W_{s}^{m}(\Omega)=\{v:D^{\alpha}v\in L^{s}(\Omega),0\leq|\alpha|\leq m,\|v\|\leq\infty\} denote the standard Sobolev space with the associated norm vWsk(Ω)=(|α|kDαvLs(Ω)s)1/s\|v\|_{W_{s}^{k}(\Omega)}=(\sum_{|\alpha|\leq k}\|D^{\alpha}v\|^{s}_{L^{s}(\Omega)})^{1/s}. In particular, define Hm(Ω):=W2m(Ω)H^{m}(\Omega):=W_{2}^{m}(\Omega) as the special Sobolev space with p=2p=2 and define H0m(Ω)={vH1(Ω):v|Ω=0}H_{0}^{m}(\Omega)=\{v\in H^{1}(\Omega):v|_{\partial\Omega}=0\}. For a Banach space XX, we give Ls(J;X)={v:(JvXs)1s<}L^{s}(J;X)=\{v:(\int_{J}\|v\|_{X}^{s})^{\frac{1}{s}}<\infty\}. For vLs(J;X)v\in L^{s}(J;X), define the associated norm vLs(J;X)=(JvXs)1s\|v\|_{L^{s}(J;X)}=(\int_{J}\|v\|_{X}^{s})^{\frac{1}{s}}. For vL2(J,L2(Ω))v\in L^{2}(J,L^{2}(\Omega)), it is a function in space L2(Ω)L^{2}(\Omega) square-integrable in time. Moreover, we define the space L(J;L2(Ω))={v(t):ess suptJv(t)L2(Ω)<}L^{\infty}(J;L^{2}(\Omega))=\{v(t):\text{ess sup}_{t\in J}\|v(t)\|_{L^{2}(\Omega)}<\infty\}. We also use 𝒗t\bm{v}_{t} and vtv_{t} to denote the partial derivative of the function 𝒗\bm{v} in [H1(Ω)]d[H^{1}(\Omega)]^{d} and 𝒗\bm{v} in H1(Ω)H^{1}(\Omega) with respect to tt, respectively.

2.1 A linear thermo-poroelasticity model

We consider the following linear thermo-poroelasticity problem [7], where the goal is to determine the displacement 𝒖\bm{u}, fluid pressure pp, and temperature TT. The governing equations are:

(2μ𝜺(𝒖)+λ𝒖𝑰)+αp+βT\displaystyle-\nabla\cdot(2\mu\bm{\varepsilon}(\bm{u})+\lambda\nabla\cdot\bm{u}\bm{I})+\alpha\nabla p+\beta\nabla T =𝒇,in Ω×J,\displaystyle=\bm{f},\quad\text{in }\Omega\times J, (2.1)
t(c0pb0T+α𝒖)(𝑲p)\displaystyle\frac{\partial}{\partial t}(c_{0}p-b_{0}T+\alpha\nabla\cdot\bm{u})-\nabla\cdot(\bm{K}\nabla p) =g,in Ω×J,\displaystyle=g,\quad\text{in }\Omega\times J,
t(a0Tb0p+β𝒖)(𝚯T)\displaystyle\frac{\partial}{\partial t}(a_{0}T-b_{0}p+\beta\nabla\cdot\bm{u})-\nabla\cdot(\bm{\Theta}\nabla T) =Hs,in Ω×J,\displaystyle=H_{s},\quad\text{in }\Omega\times J,

subject to the initial conditions:

𝒖(,0)=𝒖0,p(,0)=p0,T(,0)=T0,\bm{u}(\cdot,0)=\bm{u}^{0},\quad p(\cdot,0)=p^{0},\quad T(\cdot,0)=T^{0}, (2.2)

and the homogeneous Dirichlet boundary conditions:

𝒖=0,p=0,T=0,on Ω×J.\bm{u}=0,\quad p=0,\quad T=0,\quad\text{on }\partial\Omega\times J. (2.3)

The operator 𝜺\bm{\varepsilon} is defined as 𝜺(𝒖)=12(𝒖+𝒖T)\bm{\varepsilon}(\bm{u})=\frac{1}{2}(\nabla\bm{u}+\nabla\bm{u}^{T}) and the matrix 𝑰\bm{I} is the identity tensor. The right-hand side functions 𝒇,g\bm{f},g, and HsH_{s} denote the body force, the mass source, and the heat source respectively. α\alpha is the Biot-Willis constant and β\beta is the thermal stress coefficient. a0,b0a_{0},b_{0}, and c0c_{0} represent the effective thermal capacity, the thermal dilation coefficient, and the specific storage coefficient, respectively. The matrix parameter 𝑲=(Kij)ij=1d\bm{K}=(K_{ij})^{d}_{ij=1} denotes the permeability divided by fluid viscosity and matrix parameter 𝚯=(Θij)ij=1d\bm{\Theta}=(\Theta_{ij})^{d}_{ij=1} denotes the effective thermal conductivity. μ\mu and λ\lambda represent the Lamé parameters, which can be formulated in terms of Young’s modulus EE and Poisson’s ratio ν\nu:

λ=Eν(1+ν)(12ν),μ=E2(1+ν).\lambda=\frac{E\nu}{(1+\nu)(1-2\nu)},\qquad\mu=\frac{E}{2(1+\nu)}.

Note that in this paper considered coefficients and variables in the model are without units which is also known as dimensionless form.

We now introduce the four-field formulation for the above model (2.1). More clearly, following the methodology for handling Biot’s problem in [19, 20], we define an intermediate auxiliary variable to represent the volumetric contribution to the total stress:

ξ=λ𝒖+αp+βT,\xi=-\lambda\nabla\cdot\bm{u}+\alpha p+\beta T,

which is commonly referred to as the pseudo-total pressure [1]. Substituting this variable into equation (2.1) and using parameter transformations above, the four-field thermo-poroelasticity problem can be expressed as:

2μ𝜺(𝒖)+ξ\displaystyle-2\mu\nabla\cdot\bm{\varepsilon}(\bm{u})+\nabla\xi =𝒇,\displaystyle=\bm{f}, (2.4)
λ𝒖ξ+αp+βT\displaystyle-\lambda\nabla\cdot\bm{u}-\xi+\alpha p+\beta T =0,\displaystyle=0,
αλtξ+(c0+α2λ)tp(𝑲p)+(αβλb0)tT\displaystyle-\frac{\alpha}{\lambda}\frac{\partial}{\partial t}\xi+(c_{0}+\frac{\alpha^{2}}{\lambda})\frac{\partial}{\partial t}p-\nabla\cdot(\bm{K}\nabla p)+(\frac{\alpha\beta}{\lambda}-b_{0})\frac{\partial}{\partial t}T =g,\displaystyle=g,
βλtξ+(αβλb0)tp+(a0+β2λ)tT(𝚯T)\displaystyle-\frac{\beta}{\lambda}\frac{\partial}{\partial t}\xi+(\frac{\alpha\beta}{\lambda}-b_{0})\frac{\partial}{\partial t}p+(a_{0}+\frac{\beta^{2}}{\lambda})\frac{\partial}{\partial t}T-\nabla\cdot(\bm{\Theta}\nabla T) =Hs.\displaystyle=H_{s}.

We still use the initial condition (2.2) and the Dirichlet boundary conditions (2.3) for (2.4). In practical situations, nonhomogeneous Dirichlet and Neumann boundary conditions are commonly encountered. The analysis performed for homogeneous boundary conditions can be straightforwardly extended to accommodate these cases.

As outlined in [8], we make the following Assumptions for the model parameters throughout this paper (similar assumptions are also discussed in [10, 27]):

(A1) 𝑲\bm{K} and 𝚯\bm{\Theta} are constant in time, symmetric, definite, and positive. There exist km>0k_{m}>0 and kM>0k_{M}>0 such that

km|𝒗|2𝒗T𝑲(x)𝒗,|𝑲(x)𝒗|kM|𝒗|,𝒗d\{𝟎},k_{m}|\bm{v}|^{2}\leq\bm{v}^{T}\bm{K}(x)\bm{v},\quad|\bm{K}(x)\bm{v}|\leq k_{M}|\bm{v}|,\quad\forall\bm{v}\in\mathbb{R}^{d}\backslash\{\bm{0}\},

where |||\cdot| denotes the l2l^{2}-norm of a vector in d\mathbb{R}^{d}. There exist θm>0\theta_{m}>0 and θM>0\theta_{M}>0 such that

θm|𝒗|2𝒗T𝚯(x)𝒗,|𝚯(x)𝒗|θM|𝒗|,𝒗d\{𝟎}.\theta_{m}|\bm{v}|^{2}\leq\bm{v}^{T}\bm{\Theta}(x)\bm{v},\quad|\bm{\Theta}(x)\bm{v}|\leq\theta_{M}|\bm{v}|,\quad\forall\bm{v}\in\mathbb{R}^{d}\backslash\{\bm{0}\}.

(A2) The constants λ\lambda, μ\mu, α\alpha and β\beta are strictly positive constants.

(A3) The constants a0,b0a_{0},b_{0} and c0c_{0} are such that a0,c0b00a_{0},~{}c_{0}\geq b_{0}\geq 0 .

In addition to Assumptions (A1)-(A3), the following Assumptions will also be maintained throughout the remainder of this paper.

We assume the initial conditions satisfy 𝒖0[H1(Ω)]d\bm{u}^{0}\in[H^{1}(\Omega)]^{d} and p0,T0L2(Ω)p^{0},T^{0}\in L^{2}(\Omega), while the source terms satisfy 𝒇[L2(Ω)]d\bm{f}\in[L^{2}(\Omega)]^{d}, gL2(Ω)g\in L^{2}(\Omega), and HsL2(Ω)H_{s}\in L^{2}(\Omega). For simplicity, we further assume that 𝒇\bm{f}, gg, and HsH_{s} are time-independent.

Define the following spaces

𝑽=𝑯01(Ω),Q=L2(Ω),W=H01(Ω).\bm{V}=\bm{H}^{1}_{0}(\Omega),~{}Q=L^{2}(\Omega),~{}W=H_{0}^{1}(\Omega).

and their dual spaces are denoted as 𝑽\bm{V}^{\prime}QQ^{\prime} and WW^{\prime}. Given τ>0\tau>0, a 4-tuple (𝒖,ξ,p,T)(\bm{u},\xi,p,T) with

𝒖L(J;𝑽),ξL(J;Q),p,TL(J;W),\bm{u}\in L^{\infty}(J;\bm{V}),~{}\xi\in L^{\infty}(J;Q),~{}p,~{}T\in L^{\infty}(J;W),
ut,ξt,pt,TtL2(J;W).\nabla u_{t},~{}\xi_{t},~{}p_{t},~{}T_{t}\in L^{2}(J;W^{\prime}).

is called a weak solution of problem (2.4) if for almost every t(0,τ]t\in(0,\tau] there holds,

2μ(𝜺(𝒖),𝜺(𝒗))(𝒗,ξ)\displaystyle 2\mu(\bm{\varepsilon}(\bm{u}),\bm{\varepsilon}(\bm{v}))-(\nabla\cdot\bm{v},\xi) =(𝒇,𝒗),𝒗𝑽,\displaystyle=(\bm{f},\bm{v}),~{}\forall\bm{v}\in\bm{V}, (2.5)
(𝒖,ϕ)1λ(ξ,ϕ)+αλ(p,ϕ)+βλ(T,ϕ)\displaystyle-(\nabla\cdot\bm{u},\phi)-\frac{1}{\lambda}(\xi,\phi)+\frac{\alpha}{\lambda}(p,\phi)+\frac{\beta}{\lambda}(T,\phi) =0,ϕQ,\displaystyle=0,~{}\forall\phi\in Q,
αλ(ξt,q)+(c0+α2λ)(pt,q)+(𝑲p,q)+(αβλb0)(Tt,q)\displaystyle-\frac{\alpha}{\lambda}(\xi_{t},q)+(c_{0}+\frac{\alpha^{2}}{\lambda})(p_{t},q)+\bm{(}\bm{K}\nabla p,\nabla q)+(\frac{\alpha\beta}{\lambda}-b_{0})(T_{t},q) =(g,q),qW,\displaystyle=(g,q),~{}\forall q\in W,
βλ(ξt,S)+(αβλb0)(pt,S)+(a0+β2λ)(Tt,S)+(𝚯T,S)\displaystyle-\frac{\beta}{\lambda}(\xi_{t},S)+(\frac{\alpha\beta}{\lambda}-b_{0})(p_{t},S)+(a_{0}+\frac{\beta^{2}}{\lambda})(T_{t},S)+(\bm{\Theta}\nabla T,\nabla S) =(Hs,S),SW.\displaystyle=(H_{s},S),~{}\forall S\in W.

2.2 A priori estimates of the weak solution

In this subsection, we provide an energy estimate and a priori estimates. Using these estimates, we establish the existence and uniqueness theorem in Theorem 2.2. Firstly, we present Korn’s inequality([6]), which elucidates the relationship between 𝒖H1(Ω)\|\bm{u}\|_{H^{1}(\Omega)} and 𝜺(𝒖)L2(Ω)\|\bm{\varepsilon}(\bm{u})\|_{L^{2}(\Omega)}.

Lemma 2.1.

There exists a constant CC such that the Korn’s inequality

C𝒖H1(Ω)2𝜺(𝒖)L2(Ω)2,𝒖[H01(Ω)]d,d=2,3C\|\bm{u}\|_{H^{1}(\Omega)}^{2}\leq\|\bm{\varepsilon}(\bm{u})\|_{L^{2}(\Omega)}^{2},\quad\forall\bm{u}\in[H^{1}_{0}(\Omega)]^{d},~{}d=2,3

holds true.

Then, we give an energy estimate.

Lemma 2.2.

Assume that the Assumptions of (A1)-(A3) hold. Every weak solution (𝐮,ξ,p,T)(\bm{u},\xi,p,T) of problem (2.5) satisfies the following energy law:

E(t)+0t𝑲(p,p)𝑑s+0t𝚯(T,T)𝑑s0t(g,p)𝑑s0t(Hs,T)𝑑s=E(0),\displaystyle E(t)+\int_{0}^{t}\bm{K}(\nabla p,\nabla p)ds+\int_{0}^{t}\bm{\Theta}(\nabla T,\nabla T)ds-\int_{0}^{t}(g,p)ds-\int_{0}^{t}(H_{s},T)ds=E(0), (2.6)

for all tJt\in J, where

E(t):=\displaystyle E(t):= μ𝜺(𝒖)L2(Ω)2+12λαp+βTξL2(Ω)2+c0b02pL2(Ω)2\displaystyle\mu\|\bm{\varepsilon}(\bm{u})\|_{L^{2}(\Omega)}^{2}+\frac{1}{2\lambda}\|\alpha p+\beta T-\xi\|_{L^{2}(\Omega)}^{2}+\frac{c_{0}-b_{0}}{2}\|p\|_{L^{2}(\Omega)}^{2} (2.7)
+a0b02TL2(Ω)2+b02pTL2(Ω)2(𝒇,𝒖).\displaystyle+\frac{a_{0}-b_{0}}{2}\|T\|_{L^{2}(\Omega)}^{2}+\frac{b_{0}}{2}\|p-T\|_{L^{2}(\Omega)}^{2}-(\bm{f},\bm{u}).

Furthermore,

ξ(t)L2(Ω)C(2μ𝜺(u)L2(Ω)+𝒇L2(Ω)),\displaystyle\|\xi(t)\|_{L^{2}(\Omega)}\leq C\big{(}2\mu\|\bm{\varepsilon}(u)\|_{L^{2}(\Omega)}+\|\bm{f}\|_{L^{2}(\Omega)}\big{)}, (2.8)

where CC is a constant depending only on Ω\Omega.

Proof.

Differentiating the second equation of system (2.5) with respect to tt, taking 𝒗=𝒖t,ϕ=ξ,q=p\bm{v}=\bm{u}_{t},\phi=-\xi,q=p and S=TS=T in (2.5), we have

2μ(𝜺(𝒖),𝜺(𝒖t))(𝒖t,ξ)\displaystyle 2\mu(\bm{\varepsilon}(\bm{u}),\bm{\varepsilon}(\bm{u}_{t}))-(\nabla\cdot\bm{u}_{t},\xi) =(𝒇,𝒖t),\displaystyle=(\bm{f},\bm{u}_{t}), (2.9)
(𝒖t,ξ)+1λ(ξt,ξ)αλ(pt,ξ)βλ(Tt,ξ)\displaystyle(\nabla\cdot\bm{u}_{t},\xi)+\frac{1}{\lambda}(\xi_{t},\xi)-\frac{\alpha}{\lambda}(p_{t},\xi)-\frac{\beta}{\lambda}(T_{t},\xi) =0,\displaystyle=0,
αλ(ξt,p)+(c0+α2λ)(pt,p)+(𝑲p,p)+(αβλb0)(Tt,p)\displaystyle-\frac{\alpha}{\lambda}(\xi_{t},p)+(c_{0}+\frac{\alpha^{2}}{\lambda})(p_{t},p)+(\bm{K}\nabla p,\nabla p)+(\frac{\alpha\beta}{\lambda}-b_{0})(T_{t},p) =(g,p),\displaystyle=(g,p),
βλ(ξt,T)+(αβλb0)(pt,T)+(a0+β2λ)(Tt,T)+(𝚯T,T)\displaystyle-\frac{\beta}{\lambda}(\xi_{t},T)+(\frac{\alpha\beta}{\lambda}-b_{0})(p_{t},T)+(a_{0}+\frac{\beta^{2}}{\lambda})(T_{t},T)+(\bm{\Theta}\nabla T,\nabla T) =(Hs,T).\displaystyle=(H_{s},T).

Adding the above four equations together, we have

2μ(𝜺(𝒖),𝜺(𝒖t))+1λ(ξt,ξ)αλ(pt,ξ)βλ(Tt,ξ)\displaystyle 2\mu(\bm{\varepsilon}(\bm{u}),\bm{\varepsilon}(\bm{u}_{t}))+\frac{1}{\lambda}(\xi_{t},\xi)-\frac{\alpha}{\lambda}(p_{t},\xi)-\frac{\beta}{\lambda}(T_{t},\xi) (2.10)
αλ(ξt,p)+(c0+α2λ)(pt,p)+(𝑲p,p)+(αβλb0)(Tt,p)\displaystyle-\frac{\alpha}{\lambda}(\xi_{t},p)+(c_{0}+\frac{\alpha^{2}}{\lambda})(p_{t},p)+(\bm{K}\nabla p,\nabla p)+(\frac{\alpha\beta}{\lambda}-b_{0})(T_{t},p)
βλ(ξt,T)+(αβλb0)(pt,T)+(a0+β2λ)(Tt,T)+(𝚯T,T)\displaystyle-\frac{\beta}{\lambda}(\xi_{t},T)+(\frac{\alpha\beta}{\lambda}-b_{0})(p_{t},T)+(a_{0}+\frac{\beta^{2}}{\lambda})(T_{t},T)+(\bm{\Theta}\nabla T,\nabla T)
(𝒇,𝒖t)(g,p)(Hs,T)=0,\displaystyle-(\bm{f},\bm{u}_{t})-(g,p)-(H_{s},T)=0,

From the expression of (2.7), we note that

ddt(12λαp+βTξL2(Ω)2+c0b02pL2(Ω)2+a0b02TL2(Ω)2+b02pTL2(Ω)2)\displaystyle\frac{d}{dt}\Big{(}\frac{1}{2\lambda}\|\alpha p+\beta T-\xi\|_{L^{2}(\Omega)}^{2}+\frac{c_{0}-b_{0}}{2}\|p\|_{L^{2}(\Omega)}^{2}+\frac{a_{0}-b_{0}}{2}\|T\|_{L^{2}(\Omega)}^{2}+\frac{b_{0}}{2}\|p-T\|_{L^{2}(\Omega)}^{2}\Big{)} (2.11)
=\displaystyle= 1λ(αp+βTξ,αpt+βTtξt)+(c0b0)(p,pt)+(a0b0)(T,Tt)\displaystyle\frac{1}{\lambda}(\alpha p+\beta T-\xi,\alpha p_{t}+\beta T_{t}-\xi_{t})+(c_{0}-b_{0})(p,p_{t})+(a_{0}-b_{0})(T,T_{t})
+b0(pT,ptTt)\displaystyle+b_{0}(p-T,p_{t}-T_{t})
=\displaystyle= 1λ(ξt,ξ)αλ(pt,ξ)βλ(Tt,ξ)αλ(ξt,p)+(c0+α2λ)(pt,p)\displaystyle\frac{1}{\lambda}(\xi_{t},\xi)-\frac{\alpha}{\lambda}(p_{t},\xi)-\frac{\beta}{\lambda}(T_{t},\xi)-\frac{\alpha}{\lambda}(\xi_{t},p)+(c_{0}+\frac{\alpha^{2}}{\lambda})(p_{t},p)
+(αβλb0)(Tt,p)βλ(ξt,T)+(αβλb0)(pt,T)\displaystyle+(\frac{\alpha\beta}{\lambda}-b_{0})(T_{t},p)-\frac{\beta}{\lambda}(\xi_{t},T)+(\frac{\alpha\beta}{\lambda}-b_{0})(p_{t},T)
+(a0+β2λ)(Tt,T).\displaystyle+(a_{0}+\frac{\beta^{2}}{\lambda})(T_{t},T).

Integrating (2.10) from 0 to tt and using (2.11), we derive (2.6). The bound for ξ\xi follows from the inf-sup condition between 𝑽\bm{V} and QQ and the Korn’s inequality. We have the following inequality holds

ζ0ξL2(Ω)=\displaystyle\zeta_{0}\|\xi\|_{L^{2}(\Omega)}= sup𝒗𝑽|(div 𝒗,ξ)|𝒗H1(Ω)\displaystyle\sup_{\bm{v}\in\bm{V}}\frac{|(\text{div }\bm{v},\xi)|}{\|\bm{v}\|_{H^{1}(\Omega)}} (2.12)
\displaystyle\leq sup𝒗𝑽|2μ(ε(𝒖),ε(𝒗))+(𝒇,𝒗)|𝒗H1(Ω)\displaystyle\sup_{\bm{v}\in\bm{V}}\frac{|2\mu(\varepsilon(\bm{u}),\varepsilon(\bm{v}))+(\bm{f},\bm{v})|}{\|\bm{v}\|_{H^{1}(\Omega)}}
\displaystyle\leq CK(2μ𝜺(u)L2(Ω)+𝒇L2(Ω)),\displaystyle C_{K}\big{(}2\mu\|\bm{\varepsilon}(u)\|_{L^{2}(\Omega)}+\|\bm{f}\|_{L^{2}(\Omega)}\big{)},

where constant ζ0\zeta_{0} is from the inf-sup condition and CkC_{k} is from the Korn’s inequality. This deduces (2.8). ∎

Then, the energy law 2.2 implies the following priori estimates.

Theorem 2.1.

Assume that the Assumptions of (A1)-(A3) hold. There exists a positive constant C=C(𝛆(𝐮0)L2(Ω)C=C(\|\bm{\varepsilon}(\bm{u}^{0})\|_{L^{2}(\Omega)}, ξ0L2(Ω)\|\xi^{0}\|_{L^{2}(\Omega)}, p0L2(Ω)\|p^{0}\|_{L^{2}(\Omega)}, T0L2(Ω)\|T^{0}\|_{L^{2}(\Omega)}, 𝐟L2(Ω)\|\bm{f}\|_{L^{2}(\Omega)}, gL2(Ω)\|g\|_{L^{2}(\Omega)}, HsL2(Ω))\|H_{s}\|_{L^{2}(\Omega)}) such that

2μ𝜺(𝒖)L(J;L2(Ω))+1λαp+βTξL(J;L2(Ω))+c0b0pL(J;L2(Ω))\displaystyle\sqrt{2\mu}\|\bm{\varepsilon}(\bm{u})\|_{L^{\infty}(J;L^{2}(\Omega))}+\sqrt{\frac{1}{\lambda}}\|\alpha p+\beta T-\xi\|_{L^{\infty}(J;L^{2}(\Omega))}+\sqrt{c_{0}-b_{0}}\|p\|_{L^{\infty}(J;L^{2}(\Omega))} (2.13)
+a0b0TL(J;L2(Ω))+b0pTL(J;L2(Ω))+kmpL2(J;L2(Ω))\displaystyle+\sqrt{a_{0}-b_{0}}\|T\|_{L^{\infty}(J;L^{2}(\Omega))}+\sqrt{b_{0}}\|p-T\|_{L^{\infty}(J;L^{2}(\Omega))}+\sqrt{k_{m}}\|\nabla p\|_{L^{2}(J;L^{2}(\Omega))}
+θmTL2(J;L2(Ω))C.\displaystyle+\sqrt{\theta_{m}}\|\nabla T\|_{L^{2}(J;L^{2}(\Omega))}\leq C.
Proof.

From (2.10), by using the Assumption (A1), the Cauchy-Schwarz inequality, and Young’s inequality, we have

μddt𝜺(𝒖)L2(Ω)2+12λddtαp+βTξL2(Ω)2+c0b02ddtpL2(Ω)2+a0b02ddtTL2(Ω)2\displaystyle\mu\frac{d}{dt}\|\bm{\varepsilon}(\bm{u})\|_{L^{2}(\Omega)}^{2}+\frac{1}{2\lambda}\frac{d}{dt}\|\alpha p+\beta T-\xi\|_{L^{2}(\Omega)}^{2}+\frac{c_{0}-b_{0}}{2}\frac{d}{dt}\|p\|_{L^{2}(\Omega)}^{2}+\frac{a_{0}-b_{0}}{2}\frac{d}{dt}\|T\|_{L^{2}(\Omega)}^{2} (2.14)
+b02ddtpTL2(Ω)2+kmpL2(Ω)2+θmTL2(Ω)2\displaystyle+\frac{b_{0}}{2}\frac{d}{dt}\|p-T\|_{L^{2}(\Omega)}^{2}+k_{m}\|\nabla p\|_{L^{2}(\Omega)}^{2}+\theta_{m}\|\nabla T\|_{L^{2}(\Omega)}^{2}
(𝒇,𝒖t)+(g,p)+(Hs,T).\displaystyle\leq(\bm{f},\bm{u}_{t})+(g,p)+(H_{s},T).

Integrating (2.14) from 0 to tt, applying the Cauchy-Schwarz inequality, Young’s inequality, we can find a constant μ\mu^{*} such that

μ𝜺(𝒖)L2(Ω)2+12λαp+βTξL2(Ω)2+c0b02pL2(Ω)2+a0b02TL2(Ω)2\displaystyle\mu\|\bm{\varepsilon}(\bm{u})\|_{L^{2}(\Omega)}^{2}+\frac{1}{2\lambda}\|\alpha p+\beta T-\xi\|_{L^{2}(\Omega)}^{2}+\frac{c_{0}-b_{0}}{2}\|p\|_{L^{2}(\Omega)}^{2}+\frac{a_{0}-b_{0}}{2}\|T\|_{L^{2}(\Omega)}^{2} (2.15)
+b02pTL2(Ω)2+0tkmpL2(Ω)2𝑑s+0tθmTL2(Ω)2𝑑s\displaystyle+\frac{b_{0}}{2}\|p-T\|_{L^{2}(\Omega)}^{2}+\int_{0}^{t}k_{m}\|\nabla p\|_{L^{2}(\Omega)}^{2}ds+\int_{0}^{t}\theta_{m}\|\nabla T\|_{L^{2}(\Omega)}^{2}ds
μ𝜺(𝒖0)L2(Ω)2+12λαp0+βT0ξ0L2(Ω)2+c0b02p0L2(Ω)2+a0b02T0L2(Ω)2\displaystyle\leq\mu\|\bm{\varepsilon}(\bm{u}^{0})\|_{L^{2}(\Omega)}^{2}+\frac{1}{2\lambda}\|\alpha p^{0}+\beta T^{0}-\xi^{0}\|_{L^{2}(\Omega)}^{2}+\frac{c_{0}-b_{0}}{2}\|p^{0}\|_{L^{2}(\Omega)}^{2}+\frac{a_{0}-b_{0}}{2}\|T^{0}\|_{L^{2}(\Omega)}^{2}
+b02p0T0L2(Ω)2+2μ𝒇L2(Ω)2+14μ𝒖L2(Ω)2+14μ𝒖0L2(Ω)2\displaystyle+\frac{b_{0}}{2}\|p^{0}-T^{0}\|_{L^{2}(\Omega)}^{2}+2\mu^{*}\|\bm{f}\|_{L^{2}(\Omega)}^{2}+\frac{1}{4\mu^{*}}\|\bm{u}\|_{L^{2}(\Omega)}^{2}+\frac{1}{4\mu^{*}}\|\bm{u}^{0}\|_{L^{2}(\Omega)}^{2}
+120t(gL2(Ω)2+HsL2(Ω)2+pL2(Ω)2+TL2(Ω)2).\displaystyle+\frac{1}{2}\int_{0}^{t}(\|g\|_{L^{2}(\Omega)}^{2}+\|H_{s}\|_{L^{2}(\Omega)}^{2}+\|p\|_{L^{2}(\Omega)}^{2}+\|T\|_{L^{2}(\Omega)}^{2}).

Then, by the Poincaré inequality, Gronwall’s inequality, and Korn’s inequality, choosing μ=12μCK\mu^{*}=\frac{1}{2\mu C_{K}}, we get

μ𝜺(𝒖)L2(Ω)2+12λαp+βTξL2(Ω)2+c0b02pL2(Ω)2+a0b02TL2(Ω)2\displaystyle\mu\|\bm{\varepsilon}(\bm{u})\|_{L^{2}(\Omega)}^{2}+\frac{1}{2\lambda}\|\alpha p+\beta T-\xi\|_{L^{2}(\Omega)}^{2}+\frac{c_{0}-b_{0}}{2}\|p\|_{L^{2}(\Omega)}^{2}+\frac{a_{0}-b_{0}}{2}\|T\|_{L^{2}(\Omega)}^{2} (2.16)
+b02pTL2(Ω)2+0tkmpL2(Ω)2𝑑s+0tθmTL2(Ω)2𝑑s\displaystyle+\frac{b_{0}}{2}\|p-T\|_{L^{2}(\Omega)}^{2}+\int_{0}^{t}k_{m}\|\nabla p\|_{L^{2}(\Omega)}^{2}ds+\int_{0}^{t}\theta_{m}\|\nabla T\|_{L^{2}(\Omega)}^{2}ds
3μ2μ𝜺(𝒖0)L2(Ω)2+12λαp0+βT0ξ0L2(Ω)2+c0b02p0L2(Ω)2+a0b02T0L2(Ω)2\displaystyle\lesssim\frac{3\mu}{2}\mu\|\bm{\varepsilon}(\bm{u}^{0})\|_{L^{2}(\Omega)}^{2}+\frac{1}{2\lambda}\|\alpha p^{0}+\beta T^{0}-\xi^{0}\|_{L^{2}(\Omega)}^{2}+\frac{c_{0}-b_{0}}{2}\|p^{0}\|_{L^{2}(\Omega)}^{2}+\frac{a_{0}-b_{0}}{2}\|T^{0}\|_{L^{2}(\Omega)}^{2}
+b02p0T0L2(Ω)2+1μ𝒇L2(Ω)2+μ2𝜺(𝒖)L2(Ω)2+120t(gL2(Ω)2+HsL2(Ω)2),\displaystyle+\frac{b_{0}}{2}\|p^{0}-T^{0}\|_{L^{2}(\Omega)}^{2}+\frac{1}{\mu}\|\bm{f}\|_{L^{2}(\Omega)}^{2}+\frac{\mu}{2}\|\bm{\varepsilon}(\bm{u})\|_{L^{2}(\Omega)}^{2}+\frac{1}{2}\int_{0}^{t}(\|g\|_{L^{2}(\Omega)}^{2}+\|H_{s}\|_{L^{2}(\Omega)}^{2}),

which implies that (2.13) holds. ∎

Lemma 2.3.

Assume that the Assumptions of (A1)-(A3) hold. Then, there exist positive constants C1=C1(𝛆(𝐮0)L2(Ω),ξ0L2(Ω),p0L2(Ω),T0L2(Ω)C_{1}=C_{1}(\|\bm{\varepsilon}(\bm{u}^{0})\|_{L^{2}(\Omega)},~{}\|\xi^{0}\|_{L^{2}(\Omega)},~{}\|p^{0}\|_{L^{2}(\Omega)},~{}\|T^{0}\|_{L^{2}(\Omega)}, 𝐟L2(Ω)\|\bm{f}\|_{L^{2}(\Omega)}, gL2(Ω),HsL2(Ω)\|g\|_{L^{2}(\Omega)},\|H_{s}\|_{L^{2}(\Omega)}, p(0)L2(Ω)\|\nabla p(0)\|_{L^{2}(\Omega)}, T(0)L2(Ω))\|\nabla T(0)\|_{L^{2}(\Omega)}) and C2=C2(C1,𝐮0H2(Ω),p0H2(Ω),T0H2(Ω))C_{2}=C_{2}(C_{1},\|\bm{u}^{0}\|_{H^{2}(\Omega)},~{}\|p^{0}\|_{H^{2}(\Omega)},~{}\|T^{0}\|_{H^{2}(\Omega)}) such that

2μ𝜺(𝒖t)L2(J;L2(Ω))+1λαpt+βTtξtL2(J;L2(Ω))+c0b0ptL2(J;L2(Ω))\displaystyle\sqrt{2\mu}\|\bm{\varepsilon}(\bm{u}_{t})\|_{L^{2}(J;L^{2}(\Omega))}+\sqrt{\frac{1}{\lambda}}\|\alpha p_{t}+\beta T_{t}-\xi_{t}\|_{L^{2}(J;L^{2}(\Omega))}+\sqrt{c_{0}-b_{0}}\|p_{t}\|_{L^{2}(J;L^{2}(\Omega))} (2.17)
+a0b0TtL2(J;L2(Ω))+b0ptTtL2(J;L2(Ω))+kmptL(J;L2(Ω))\displaystyle+\sqrt{a_{0}-b_{0}}\|T_{t}\|_{L^{2}(J;L^{2}(\Omega))}+\sqrt{b_{0}}\|p_{t}-T_{t}\|_{L^{2}(J;L^{2}(\Omega))}+\sqrt{k_{m}}\|\nabla p_{t}\|_{L^{\infty}(J;L^{2}(\Omega))}
θmTtL(J;L2(Ω))C1,\displaystyle\sqrt{\theta_{m}}\|\nabla T_{t}\|_{L^{\infty}(J;L^{2}(\Omega))}\leq C_{1},

and

2μ𝜺(𝒖t)L(J;L2(Ω))+1λαpt+βTtξtL(J;L2(Ω))+c0b0ptL(J;L2(Ω))\displaystyle\sqrt{2\mu}\|\bm{\varepsilon}(\bm{u}_{t})\|_{L^{\infty}(J;L^{2}(\Omega))}+\sqrt{\frac{1}{\lambda}}\|\alpha p_{t}+\beta T_{t}-\xi_{t}\|_{L^{\infty}(J;L^{2}(\Omega))}+\sqrt{c_{0}-b_{0}}\|p_{t}\|_{L^{\infty}(J;L^{2}(\Omega))} (2.18)
+a0b0TtL(J;L2(Ω))+b0ptTtL(J;L2(Ω))+2kmptL2(J;L2(Ω))\displaystyle+\sqrt{a_{0}-b_{0}}\|T_{t}\|_{L^{\infty}(J;L^{2}(\Omega))}+\sqrt{b_{0}}\|p_{t}-T_{t}\|_{L^{\infty}(J;L^{2}(\Omega))}+\sqrt{2k_{m}}\|\nabla p_{t}\|_{L^{2}(J;L^{2}(\Omega))}
2θmTtL2(J;L2(Ω))C2.\displaystyle\sqrt{2\theta_{m}}\|\nabla T_{t}\|_{L^{2}(J;L^{2}(\Omega))}\leq C_{2}.
Proof.

Differentiating the first and the second equation of system (2.5) with respect to tt, taking 𝒗=𝒖t,ϕ=ξt,q=pt\bm{v}=\bm{u}_{t},~{}\phi=-\xi_{t},~{}q=p_{t} , and S=TtS=T_{t} respectively, and adding the resulting equations together we have

2μ(𝜺(𝒖t),𝜺(𝒖t))+1λ(ξt,ξt)αλ(pt,ξt)βλ(Tt,ξt)\displaystyle 2\mu(\bm{\varepsilon}(\bm{u}_{t}),\bm{\varepsilon}(\bm{u}_{t}))+\frac{1}{\lambda}(\xi_{t},\xi_{t})-\frac{\alpha}{\lambda}(p_{t},\xi_{t})-\frac{\beta}{\lambda}(T_{t},\xi_{t}) (2.19)
αλ(ξt,pt)+(c0+α2λ)(pt,pt)+(𝑲p,pt)+(αβλb0)(Tt,pt)\displaystyle-\frac{\alpha}{\lambda}(\xi_{t},p_{t})+(c_{0}+\frac{\alpha^{2}}{\lambda})(p_{t},p_{t})+(\bm{K}\nabla p,\nabla p_{t})+(\frac{\alpha\beta}{\lambda}-b_{0})(T_{t},p_{t})
βλ(ξt,Tt)+(αβλb0)(pt,Tt)+(a0+β2λ)(Tt,Tt)+(𝚯T,Tt)\displaystyle-\frac{\beta}{\lambda}(\xi_{t},T_{t})+(\frac{\alpha\beta}{\lambda}-b_{0})(p_{t},T_{t})+(a_{0}+\frac{\beta^{2}}{\lambda})(T_{t},T_{t})+(\bm{\Theta}\nabla T,\nabla T_{t})
=(g,pt)+(Hs,Tt).\displaystyle=(g,p_{t})+(H_{s},T_{t}).

Based on some algebraic operations, we have

2μ𝜺(𝒖t)L2(Ω)2+1λαpt+βTtξtL2(Ω)2+(c0b0)ptL2(Ω)2+(a0b0)TtL2(Ω)2\displaystyle 2\mu\|\bm{\varepsilon}(\bm{u}_{t})\|_{L^{2}(\Omega)}^{2}+\frac{1}{\lambda}\|\alpha p_{t}+\beta T_{t}-\xi_{t}\|_{L^{2}(\Omega)}^{2}+(c_{0}-b_{0})\|p_{t}\|_{L^{2}(\Omega)}^{2}+(a_{0}-b_{0})\|T_{t}\|_{L^{2}(\Omega)}^{2} (2.20)
+b0ptTtL2(Ω)2+(𝑲p,pt)+(𝚯T,Tt)\displaystyle+b_{0}\|p_{t}-T_{t}\|_{L^{2}(\Omega)}^{2}+(\bm{K}\nabla p,\nabla p_{t})+(\bm{\Theta}\nabla T,\nabla T_{t})
=(g,pt)+(Hs,Tt).\displaystyle=(g,p_{t})+(H_{s},T_{t}).

Integrating equation (2.20) from 0 to tt, by Assumption (A1) we have

0t(2μ𝜺(𝒖t)L2(Ω)2+1λαpt+βTtξtL2(Ω)2+(c0b0)ptL2(Ω)2+(a0b0)TtL2(Ω)2\displaystyle\int_{0}^{t}\Big{(}2\mu\|\bm{\varepsilon}(\bm{u}_{t})\|_{L^{2}(\Omega)}^{2}+\frac{1}{\lambda}\|\alpha p_{t}+\beta T_{t}-\xi_{t}\|_{L^{2}(\Omega)}^{2}+(c_{0}-b_{0})\|p_{t}\|_{L^{2}(\Omega)}^{2}+(a_{0}-b_{0})\|T_{t}\|_{L^{2}(\Omega)}^{2} (2.21)
+b0ptTtL2(Ω)2)ds+kmpL2(Ω)2+θmTL2(Ω)2\displaystyle+b_{0}\|p_{t}-T_{t}\|_{L^{2}(\Omega)}^{2}\Big{)}ds+k_{m}\|\nabla p\|_{L^{2}(\Omega)}^{2}+\theta_{m}\|\nabla T\|_{L^{2}(\Omega)}^{2}
(g,p(t)p(0))+(Hs,T(t)T(0))+kMp(0)L2(Ω)2+θMT(0)L2(Ω)2,\displaystyle\leq(g,p(t)-p(0))+(H_{s},T(t)-T(0))+k_{M}\|\nabla p(0)\|_{L^{2}(\Omega)}^{2}+\theta_{M}\|\nabla T(0)\|_{L^{2}(\Omega)}^{2},

which, when combined with equation (2.13) in lemma 2.2 and Gronwall’s inequality, implies that (2.17) holds.

Differentiating the first, the third, and the fourth equations of (2.5) with respect to tt, taking 𝒗=𝒖tt,ϕ=ξt,q=pt\bm{v}=\bm{u}_{tt},\phi=-\xi_{t},q=p_{t} , and S=TtS=T_{t} respectively, and adding the resulting equations we have

2μ(𝜺(𝒖tt),𝜺(𝒖t))+1λ(ξtt,ϕt)αλ(ptt,ϕt)βλ(Ttt,ϕt)\displaystyle 2\mu(\bm{\varepsilon}(\bm{u}_{tt}),\bm{\varepsilon}(\bm{u}_{t}))+\frac{1}{\lambda}(\xi_{tt},\phi_{t})-\frac{\alpha}{\lambda}(p_{tt},\phi_{t})-\frac{\beta}{\lambda}(T_{tt},\phi_{t}) (2.22)
αλ(ξtt,pt)+(c0+α2λ)(ptt,pt)+(𝑲pt,pt)+(αβλb0)(Ttt,pt)\displaystyle-\frac{\alpha}{\lambda}(\xi_{tt},p_{t})+(c_{0}+\frac{\alpha^{2}}{\lambda})(p_{tt},p_{t})+(\bm{K}\nabla p_{t},\nabla p_{t})+(\frac{\alpha\beta}{\lambda}-b_{0})(T_{tt},p_{t})
βλ(ξtt,Tt)+(αβλb0)(ptt,Tt)+(a0+β2λ)(Ttt,Tt)+(𝚯Tt,Tt)\displaystyle-\frac{\beta}{\lambda}(\xi_{tt},T_{t})+(\frac{\alpha\beta}{\lambda}-b_{0})(p_{tt},T_{t})+(a_{0}+\frac{\beta^{2}}{\lambda})(T_{tt},T_{t})+(\bm{\Theta}\nabla T_{t},\nabla T_{t})
=0.\displaystyle=0.

By the Assumption (A1), the Cauchy-Schwarz inequality and Young’s inequality, we have

μddt𝜺(𝒖t)L2(Ω)2+12λddtαpt+βTtξtL2(Ω)2+c0b02ddtptL2(Ω)2\displaystyle\mu\frac{d}{dt}\|\bm{\varepsilon}(\bm{u}_{t})\|_{L^{2}(\Omega)}^{2}+\frac{1}{2\lambda}\frac{d}{dt}\|\alpha p_{t}+\beta T_{t}-\xi_{t}\|_{L^{2}(\Omega)}^{2}+\frac{c_{0}-b_{0}}{2}\frac{d}{dt}\|p_{t}\|_{L^{2}(\Omega)}^{2} (2.23)
+a0b02ddtTtL2(Ω)2+b02ddtptTtL2(Ω)2+kmptL2(Ω)2\displaystyle+\frac{a_{0}-b_{0}}{2}\frac{d}{dt}\|T_{t}\|_{L^{2}(\Omega)}^{2}+\frac{b_{0}}{2}\frac{d}{dt}\|p_{t}-T_{t}\|_{L^{2}(\Omega)}^{2}+k_{m}\|\nabla p_{t}\|_{L^{2}(\Omega)}^{2}
+θmTtL2(Ω)20.\displaystyle+\theta_{m}\|\nabla T_{t}\|_{L^{2}(\Omega)}^{2}\leq 0.

Integrating equation (2.23) from 0 to tt, we have

μ𝜺(𝒖t)L2(Ω)2+12λαpt+βTtξtL2(Ω)2+(c0b0)2ptL2(Ω)2+(a0b0)2TtL2(Ω)2\displaystyle\mu\|\bm{\varepsilon}(\bm{u}_{t})\|_{L^{2}(\Omega)}^{2}+\frac{1}{2\lambda}\|\alpha p_{t}+\beta T_{t}-\xi_{t}\|_{L^{2}(\Omega)}^{2}+\frac{(c_{0}-b_{0})}{2}\|p_{t}\|_{L^{2}(\Omega)}^{2}+\frac{(a_{0}-b_{0})}{2}\|T_{t}\|_{L^{2}(\Omega)}^{2} (2.24)
+b02ptTtL2(Ω)2+0tkmptL2(Ω)2+0tθmTtL2(Ω)2\displaystyle+\frac{b_{0}}{2}\|p_{t}-T_{t}\|_{L^{2}(\Omega)}^{2}+\int_{0}^{t}k_{m}\|\nabla p_{t}\|_{L^{2}(\Omega)}^{2}+\int_{0}^{t}\theta_{m}\|\nabla T_{t}\|_{L^{2}(\Omega)}^{2}
μ𝜺(𝒖t(0))L2(Ω)2+12λαpt(0)+βTt(0)ξt(0)L2(Ω)2+c0b02pt(0)L2(Ω)2\displaystyle\leq\mu\|\bm{\varepsilon}(\bm{u}_{t}(0))\|_{L^{2}(\Omega)}^{2}+\frac{1}{2\lambda}\|\alpha p_{t}(0)+\beta T_{t}(0)-\xi_{t}(0)\|_{L^{2}(\Omega)}^{2}+\frac{c_{0}-b_{0}}{2}\|p_{t}(0)\|_{L^{2}(\Omega)}^{2}
+a0b02Tt(0)L2(Ω)2+b02pt(0)Tt(0)L2(Ω)2,\displaystyle+\frac{a_{0}-b_{0}}{2}\|T_{t}(0)\|_{L^{2}(\Omega)}^{2}+\frac{b_{0}}{2}\|p_{t}(0)-T_{t}(0)\|_{L^{2}(\Omega)}^{2},

which implies that (2.18) holds. ∎

With the assistance of Theorem 2.1, Lemma 2.2, and Lemma 2.3, we can establish the existence and uniqueness of the weak solution to the problem (2.4). Since the system is linear, the proof can be easily obtained by employing the Galerkin method and the compactness argument, along with the insights presented in [9].

Theorem 2.2.

Assume that the Assumptions of (A1)-(A3) hold. Let 𝐮0H1(Ω)\bm{u}^{0}\in H^{1}(\Omega), p0L2(Ω)p^{0}\in L^{2}(\Omega), T0L2(Ω)T^{0}\in L^{2}(\Omega), 𝐟L2(Ω)\bm{f}\in L^{2}(\Omega), gL2(Ω)g\in L^{2}(\Omega), and HsL2(Ω)H_{s}\in L^{2}(\Omega). Then a unique weak solution exists to the problem (2.4). Furthermore, if 𝐮0H2(Ω)\bm{u}^{0}\in H^{2}(\Omega), p0H2(Ω)p^{0}\in H^{2}(\Omega), T0H2(Ω)T^{0}\in H^{2}(\Omega), 𝐟L2(Ω)\bm{f}\in L^{2}(\Omega), gL2(Ω)g\in L^{2}(\Omega), and HsL2(Ω)H_{s}\in L^{2}(\Omega), then the energy estimations (2.17) and (2.18) for the solution hold true.

3 Numerical algorithms

This section introduces numerical algorithms derived from the four-field formulation previously discussed. Let hh denote the maximum diameter of all elements in the mesh, and for h>0h>0, let 𝒯h\mathcal{T}_{h} represent a family of triangulations of the domain Ω\Omega composed of triangular elements. The triangulations are assumed to be shape-regular and quasi-uniform. The discrete spaces for 𝒖\bm{u} and ξ\xi are denoted by 𝑽h×Qh\bm{V}_{h}\times Q_{h}, which are required to satisfy the following fundamental stability condition.

infξQhsup𝒗𝑽h(𝒗,ξ)𝒗H1(Ω)ξL2(Ω)γ>0,\displaystyle\inf_{\xi\in Q_{h}}\sup_{\bm{v}\in\bm{V}_{h}}\frac{(\nabla\cdot\bm{v},\xi)}{\|\bm{v}\|_{H^{1}(\Omega)}\|\xi\|_{L^{2}(\Omega)}}\geq\gamma>0, (3.1)

where γ\gamma is independent of hh, which means Vh×QhV_{h}\times Q_{h} is a stable Stokes pair. As an example, we utilize the Taylor-Hood elements for the pair (𝒖,ξ)(\bm{u},\xi), specifically (𝑷2,P1)(\bm{P}_{2},P_{1}) Lagrange finite elements, and P1P_{1} Lagrange finite elements for both the fluid pressure pp and temperature TT. The finite element spaces defined on 𝒯h\mathcal{T}_{h} are as follows:

𝑽h={𝒗h[H01(Ω)]2𝑪0(Ω¯):𝒗h|K2(K),K𝒯h},\displaystyle\bm{V}_{h}=\left\{\bm{v}_{h}\in[H_{0}^{1}(\Omega)]^{2}\cap\bm{C}^{0}(\bar{\Omega}):\bm{v}_{h}|_{K}\in\mathbb{P}_{2}(K),\,\forall K\in\mathcal{T}_{h}\right\},
Qh={ϕhL2(Ω)C0(Ω¯):ϕh|K1(K),K𝒯h},\displaystyle Q_{h}=\left\{\phi_{h}\in L^{2}(\Omega)\cap C^{0}(\bar{\Omega}):\phi_{h}|_{K}\in\mathbb{P}_{1}(K),\,\forall K\in\mathcal{T}_{h}\right\},
Wh={qhH01(Ω)C0(Ω¯):qh|K1(K),K𝒯h}.\displaystyle W_{h}=\left\{q_{h}\in H_{0}^{1}(\Omega)\cap C^{0}(\bar{\Omega}):q_{h}|_{K}\in\mathbb{P}_{1}(K),\,\forall K\in\mathcal{T}_{h}\right\}.

It is worth noting that other stable Stokes element pairs, such as the MINI element, could also be used.

For time discretization, we consider an equidistant partition consisting of a series of points from 0 to TT with a constant step size of Δt\Delta t. Specifically, we define 𝒖n\bm{u}^{n} as 𝒖(tn)\bm{u}(t_{n}), where tnt_{n} represents the nn-th point in the partition. Similarly, we define ξn=ξ(tn)\xi^{n}=\xi(t_{n}) , pn=p(tn)p^{n}=p(t_{n}) and Tn=T(tn)T^{n}=T(t_{n}).

3.1 A coupled algorithm

Suppose that an initial value (𝒖h0,ξh0,ph0,Th0)𝑽h×Qh×Wh×Wh(\bm{u}_{h}^{0},~{}\xi_{h}^{0},~{}p_{h}^{0},~{}T_{h}^{0})\in\bm{V}_{h}\times Q_{h}\times W_{h}\times W_{h} is provided. Using the back Euler method to (2.5), for the given finite element spaces 𝑽h𝑽\bm{V}_{h}\subset\bm{V}, QhQQ_{h}\subset Q, WhWW_{h}\subset W, the coupled algorithm (Alg. 1) reads as, find (𝒖hn,ξhn,phn,Thn)𝑽h×Qh×Wh×Wh(\bm{u}_{h}^{n},~{}\xi_{h}^{n},~{}p_{h}^{n},~{}T_{h}^{n})\in\bm{V}_{h}\times Q_{h}\times W_{h}\times W_{h} such that for all (𝒗h,ϕh,qh,Sh)𝑽h×Qh×Wh×Wh(\bm{v}_{h},~{}\phi_{h},~{}q_{h},~{}S_{h})\in\bm{V}_{h}\times Q_{h}\times W_{h}\times W_{h},

2μ(𝜺(𝒖hn),𝜺(𝒗h))(𝒗h,ξhn)\displaystyle 2\mu(\bm{\varepsilon}(\bm{u}^{n}_{h}),\bm{\varepsilon}(\bm{v}_{h}))-(\nabla\cdot\bm{v}_{h},\xi^{n}_{h}) =(𝒇,𝒗h)\displaystyle=(\bm{f},\bm{v}_{h}) (3.2a)
(𝒖hn,ϕh)1λ(ξhn,ϕh)+αλ(phn,ϕh)+βλ(Thn,ϕh)\displaystyle-(\nabla\cdot\bm{u}^{n}_{h},\phi_{h})-\frac{1}{\lambda}(\xi^{n}_{h},\phi_{h})+\frac{\alpha}{\lambda}(p^{n}_{h},\phi_{h})+\frac{\beta}{\lambda}(T^{n}_{h},\phi_{h}) =0,\displaystyle=0, (3.2b)
αλ(ξhn,qh)+(c0+α2λ)(phn,qh)+(αβλb0)(Thn,qh)+Δt(𝑲phn,qh)\displaystyle-\frac{\alpha}{\lambda}(\xi_{h}^{n},q_{h})+(c_{0}+\frac{\alpha^{2}}{\lambda})(p_{h}^{n},~{}q_{h})+(\frac{\alpha\beta}{\lambda}-b_{0})(T_{h}^{n},~{}q_{h})+\Delta t(\bm{K}\nabla p^{n}_{h},~{}\nabla q_{h}) =\displaystyle= (3.2c)
(c0+α2λ)(phn1,qh)+(αβλb0)(Thn1,qh)αλ(ξhn1,qh)\displaystyle(c_{0}+\frac{\alpha^{2}}{\lambda})(p_{h}^{n-1},~{}q_{h})+(\frac{\alpha\beta}{\lambda}-b_{0})(T_{h}^{n-1},~{}q_{h})-\frac{\alpha}{\lambda}(\xi_{h}^{n-1},~{}q_{h}) +Δt(g,qh),\displaystyle+\Delta t(g,~{}q_{h}),
βλ(ξhn,Sh)+(a0+β2λ)(Thn,Sh)+(αβλb0)(phn,Sh)+Δt(𝚯Thn,Sh)\displaystyle-\frac{\beta}{\lambda}(\xi_{h}^{n},S_{h})+(a_{0}+\frac{\beta^{2}}{\lambda})(T_{h}^{n},S_{h})+(\frac{\alpha\beta}{\lambda}-b_{0})(p_{h}^{n},~{}S_{h})+\Delta t(\bm{\Theta}\nabla T^{n}_{h},~{}\nabla S_{h}) =\displaystyle= (3.2d)
(a0+β2λ)(Thn1,Sh)+(αβλb0)(phn1,Sh)βλ(ξhn1,Sh)\displaystyle(a_{0}+\frac{\beta^{2}}{\lambda})(T_{h}^{n-1},~{}S_{h})+(\frac{\alpha\beta}{\lambda}-b_{0})(p_{h}^{n-1},~{}S_{h})-\frac{\beta}{\lambda}(\xi_{h}^{n-1},~{}S_{h}) +Δt(Hs,Sh).\displaystyle+\Delta t(H_{s},~{}S_{h}).

To avoid solving the above problem in a fully coupled manner, the system (3.2a)-(3.2d) can be reformulated into two decoupled subproblems. If the term αλ(phn,ϕh)+βλ(Thn,ϕh)\frac{\alpha}{\lambda}(p^{n}_{h},\phi_{h})+\frac{\beta}{\lambda}(T^{n}_{h},\phi_{h}) in (3.2b) were moved to the right-hand side, equations (3.2a) and (3.2b) become equivalent to the variational form of the generalized Stokes problem for the variables 𝒖hn\bm{u}_{h}^{n} and ξhn\xi_{h}^{n}. Similarly, moving the terms αλ(ξhn,qh)\frac{\alpha}{\lambda}(\xi_{h}^{n},q_{h}) in (3.2c) and βλ(ξhn,Sh)\frac{\beta}{\lambda}(\xi_{h}^{n},S_{h}) in (3.2d) to the right-hand sides yields variational forms corresponding to reaction-diffusion equations for phnp_{h}^{n} and ThnT_{h}^{n} respectively. These observations facilitate the design of two time-extrapolation-based decoupled algorithms: The first algorithm solves for (𝒖hn,ξhn)(\bm{u}_{h}^{n},\xi_{h}^{n}) first, followed by solving the reaction-diffusion equations for (phn,Thn)(p_{h}^{n},T_{h}^{n}). Conversely, the second algorithm begins with (phn,Thn)(p_{h}^{n},T_{h}^{n}) and subsequently computes (𝒖hn,ξhn)(\bm{u}_{h}^{n},\xi_{h}^{n}).

Based on prior experience with Biot’s model [12, 16], these decoupling strategies typically impose stability constraints that necessitate small time step sizes. Specifically, the time step Δt\Delta t must generally be of order O(h2)O(h^{2}). Consequently, time-extrapolation-based decoupled algorithms may fail to ensure stability or accuracy if the time step size is too large.

3.2 An iteratively decoupled algorithm

To overcome the stability constraints, we propose an iterative decoupling algorithm for solving (𝒖hn,ξhn,phn,Thn)(\bm{u}_{h}^{n},\xi_{h}^{n},p_{h}^{n},T_{h}^{n}). We have the following Iteratively Decoupled Algorithm (Algorithm 2):

For each time step tnt_{n} (n1n\geq 1), let the previous step states (phn,i1,Thn,i1,ξhn,i1)(p_{h}^{n,i-1},T_{h}^{n,i-1},\xi_{h}^{n,i-1}) be given, with the initial values set as phn,0=phn1p_{h}^{n,0}=p_{h}^{n-1}, Thn,0=Thn1T_{h}^{n,0}=T_{h}^{n-1}, and ξhn,0=ξhn1\xi_{h}^{n,0}=\xi_{h}^{n-1}. Let ii be the iteration index. For a given nn, the ii-th iteration is formulated as:

step 1: Given ξhn,i1\xi_{h}^{n,i-1}, find (phn,i,Thn,i)(p_{h}^{n,i},T_{h}^{n,i}) such that

(c0+α2λ)(phn,i,qh)\displaystyle(c_{0}+\frac{\alpha^{2}}{\lambda})(p_{h}^{n,i},q_{h}) +(αβλb0)(Thn,i,qh)+Δt(𝑲phn,i,qh)\displaystyle+(\frac{\alpha\beta}{\lambda}-b_{0})(T_{h}^{n,i},q_{h})+\Delta t(\bm{K}\nabla p^{n,i}_{h},\nabla q_{h}) (3.3)
=\displaystyle= Δt(g,qh)+(c0+α2λ)(phn1,qh)+(αβλb0)(Thn1,qh)\displaystyle\Delta t(g,q_{h})+(c_{0}+\frac{\alpha^{2}}{\lambda})(p_{h}^{n-1},q_{h})+(\frac{\alpha\beta}{\lambda}-b_{0})(T_{h}^{n-1},q_{h})
+αλ(ξhn,i1,qh)αλ(ξhn1,qh),\displaystyle+\frac{\alpha}{\lambda}(\xi_{h}^{n,i-1},q_{h})-\frac{\alpha}{\lambda}(\xi_{h}^{n-1},q_{h}),
(a0+β2λ)(Thn,i,Sh)\displaystyle(a_{0}+\frac{\beta^{2}}{\lambda})(T_{h}^{n,i},S_{h}) +(αβλb0)(phn,i,Sh)+Δt(𝚯Thn,i,Sh)\displaystyle+(\frac{\alpha\beta}{\lambda}-b_{0})(p_{h}^{n,i},S_{h})+\Delta t(\bm{\Theta}\nabla T^{n,i}_{h},\nabla S_{h})
=\displaystyle= Δt(Hs,Sh)+(a0+β2λ)(Thn1,Sh)+(αβλb0)(phn1,Sh)\displaystyle\Delta t(H_{s},S_{h})+(a_{0}+\frac{\beta^{2}}{\lambda})(T_{h}^{n-1},S_{h})+(\frac{\alpha\beta}{\lambda}-b_{0})(p_{h}^{n-1},S_{h})
+βλ(ξhn,i1,Sh)βλ(ξhn1,Sh),\displaystyle+\frac{\beta}{\lambda}(\xi_{h}^{n,i-1},S_{h})-\frac{\beta}{\lambda}(\xi_{h}^{n-1},S_{h}),

step 2: Given phn,i,Thn,ip_{h}^{n,i},T_{h}^{n,i},find (𝒖hn,i,ξhn,i)(\bm{u}_{h}^{n,i},\xi_{h}^{n,i}) such that

2μ(𝜺(𝒖hn,i),𝜺(𝒗h))(𝒗h,ξhn,i)\displaystyle 2\mu(\bm{\varepsilon}(\bm{u}^{n,i}_{h}),\bm{\varepsilon}(\bm{v}_{h}))-(\nabla\cdot\bm{v}_{h},\xi^{n,i}_{h}) =(𝒇,𝒗h),\displaystyle=(\bm{f},\bm{v}_{h}), (3.4)
(𝒖hn,i,ϕh)+1λ(ξhn,i,ϕh)\displaystyle(\nabla\cdot\bm{u}^{n,i}_{h},\phi_{h})+\frac{1}{\lambda}(\xi^{n,i}_{h},\phi_{h}) =αλ(phn,i,ϕh)+βλ(Thn,i,ϕh).\displaystyle=\frac{\alpha}{\lambda}(p^{n,i}_{h},\phi_{h})+\frac{\beta}{\lambda}(T^{n,i}_{h},\phi_{h}).

The algorithm proceeds as follows: 1. Compute iteration Step 1 and Step 2 in succession. 2. Repeat the iteration process until the sequence (𝒖hn,i,ξhn,i,phn,i,Thn,i)(\bm{u}_{h}^{n,i},\xi_{h}^{n,i},p_{h}^{n,i},T_{h}^{n,i}) converges to within a prescribed tolerance.

For simplicity, the backward Euler scheme has been employed for time discretization in both Alg. 1 and Alg. 2. However, it is important to note that alternative higher-order time-stepping methods could also be applied effectively in this context.

4 Convergence analysis

This section establishes the convergence of Alg. 2, demonstrating that the iterative sequences (𝒖hn,i,ξhn,i,phn,i,Thn,i)(\bm{u}_{h}^{n,i},\xi_{h}^{n,i},p_{h}^{n,i},T_{h}^{n,i}) converge to the solution (𝒖hn,ξhn,phn,Thn)(\bm{u}_{h}^{n},\xi_{h}^{n},p_{h}^{n},T_{h}^{n}) of the coupled algorithm Alg. 1 as ii\to\infty. Additionally, we present the error analysis for Alg. 1, confirming its unconditional stability and convergence. Assuming the discrete spaces 𝑽h\bm{V}_{h}, QhQ_{h}, and WhW_{h}, we establish that the time discretization error is of order O(Δt)O(\Delta t), while the energy-norm errors for 𝒖\bm{u} and ξ\xi are of order O(h2)O(h^{2}). To begin, we review an essential lemma that aids us in proving the theorem.

Lemma 4.1.

There exists a constant Cinv>0C_{inv}>0 such that the following inverse inequality is satisfied:

𝒗H1(Ω)Cinvh1𝒗L2(Ω),𝒗𝑽h,\|\bm{v}\|_{H^{1}(\Omega)}\leq C_{inv}h^{-1}\|\bm{v}\|_{L^{2}(\Omega)},\quad\forall\bm{v}\in\bm{V}_{h},

where h=maxK𝒯hhKh=\max_{K\in\mathcal{T}_{h}}h_{K}, as established in [11].

To proceed the analysis, in the remaining part of the article, we let e𝒖i,eξi,epi,eTie_{\bm{u}}^{i},e_{\xi}^{i},e_{p}^{i},e_{T}^{i} be differences between the solutions at the iteration ii of problem (3.3)-(3.4) and the solutions to problem (3.2a)-(3.2d), i.e.

(e𝒖i,eξi,epi,eTi):=(𝒖hn,ξhn,phn,Thn)(𝒖hn,i,ξhn,i,phn,i,Thn,i).\displaystyle(e_{\bm{u}}^{i},e_{\xi}^{i},e_{p}^{i},e_{T}^{i}):=(\bm{u}_{h}^{n},\xi_{h}^{n},p_{h}^{n},T_{h}^{n})-(\bm{u}_{h}^{n,i},\xi_{h}^{n,i},p_{h}^{n,i},T_{h}^{n,i}). (4.1)

Now, we present the following key result, establishing the convergence of Alg.2.

Theorem 4.1.

Let (𝐮hn,ξhn,phn,Thn)(\bm{u}_{h}^{n},\xi_{h}^{n},p_{h}^{n},T_{h}^{n}) be the solution of the coupled problem (3.2a)-(3.2d). Let (𝐮hn,i,ξhn,i,phn,i,Thn,i)(\bm{u}_{h}^{n,i},\xi_{h}^{n,i},p_{h}^{n,i},T_{h}^{n,i}) be the solution of the iteratively decoupled problem (3.3)-(3.4). Assuming the Assumptions (A1)-(A3) hold, then, the solution sequence {(𝐮hn,i,ξhn,i,phn,i,Thn,i)}i=1\{(\bm{u}_{h}^{n,i},\xi_{h}^{n,i},p_{h}^{n,i},T_{h}^{n,i})\}_{i=1}^{\infty} generated by the iteratively decoupled algorithm converges to the solution (𝐮hn,ξhn,phn,Thn)(\bm{u}_{h}^{n},\xi_{h}^{n},p_{h}^{n},T_{h}^{n}) of the coupled problem.

Proof.

Subtracting equation (3.3)-(3.4) from equation (3.2a)-(3.2d) respectively, we obtain

(c0+α2λ)(epi,qh)+(αβλb0)(eTi,qh)\displaystyle(c_{0}+\frac{\alpha^{2}}{\lambda})(e_{p}^{i},q_{h})+(\frac{\alpha\beta}{\lambda}-b_{0})(e_{T}^{i},q_{h}) +Δt(𝑲epi,qh)=αλ(eξi1,qh),\displaystyle+\Delta t(\bm{K}\nabla e_{p}^{i},\nabla q_{h})=\frac{\alpha}{\lambda}(e_{\xi}^{i-1},q_{h}), (4.2a)
(a0+β2λ)(eTi,Sh)+(αβλb0)(epi,Sh)+Δt(𝚯eTi,Sh)=\displaystyle(a_{0}+\frac{\beta^{2}}{\lambda})(e_{T}^{i},S_{h})+(\frac{\alpha\beta}{\lambda}-b_{0})(e_{p}^{i},S_{h})+\Delta t(\bm{\Theta}\nabla e_{T}^{i},\nabla S_{h})= βλ(eξi1,Sh),\displaystyle\frac{\beta}{\lambda}(e_{\xi}^{i-1},S_{h}), (4.2b)
2μ(𝜺(e𝒖i),𝜺(𝒗h))(𝒗h,eξi)=\displaystyle 2\mu(\bm{\varepsilon}(e_{\bm{u}}^{i}),\bm{\varepsilon}(\bm{v}_{h}))-(\nabla\cdot\bm{v}_{h},e_{\xi}^{i})= 0,\displaystyle 0, (4.2c)
(e𝒖i,ϕh)+1λ(eξi,ϕh)=\displaystyle(\nabla\cdot e_{\bm{u}}^{i},\phi_{h})+\frac{1}{\lambda}(e_{\xi}^{i},\phi_{h})= αλ(epi,ϕh)+βλ(eTi,ϕh).\displaystyle\frac{\alpha}{\lambda}(e_{p}^{i},\phi_{h})+\frac{\beta}{\lambda}(e_{T}^{i},\phi_{h}). (4.2d)

Taking qh=epiq_{h}=e_{p}^{i}, Sh=eTiS_{h}=e_{T}^{i}, 𝒗h=e𝒖i\bm{v}_{h}=e_{\bm{u}}^{i} and ϕh=eξi\phi_{h}=e_{\xi}^{i} in equation (4.2a), (4.2b), (4.2c) and (4.2d), we have

(c0+α2λ)epiL2(Ω)2+(αβλb0)(eTi,epi)\displaystyle(c_{0}+\frac{\alpha^{2}}{\lambda})\|e_{p}^{i}\|_{L^{2}(\Omega)}^{2}+(\frac{\alpha\beta}{\lambda}-b_{0})(e_{T}^{i},e_{p}^{i}) +Δt(𝑲epi,epi)=αλ(eξi1,epi),\displaystyle+\Delta t(\bm{K}\nabla e_{p}^{i},\nabla e_{p}^{i})=\frac{\alpha}{\lambda}(e_{\xi}^{i-1},e_{p}^{i}), (4.3)
(a0+β2λ)eTiL2(Ω)2+(αβλb0)(eTi,epi)+Δt(𝚯eTi,eTi)=\displaystyle(a_{0}+\frac{\beta^{2}}{\lambda})\|e_{T}^{i}\|_{L^{2}(\Omega)}^{2}+(\frac{\alpha\beta}{\lambda}-b_{0})(e_{T}^{i},e_{p}^{i})+\Delta t(\bm{\Theta}\nabla e_{T}^{i},\nabla e_{T}^{i})= βλ(eξi1,eTi).\displaystyle\frac{\beta}{\lambda}(e_{\xi}^{i-1},e_{T}^{i}). (4.4)
2μ(𝜺(e𝒖i),𝜺(e𝒖i))(e𝒖i,eξi)=\displaystyle 2\mu(\bm{\varepsilon}(e_{\bm{u}}^{i}),\bm{\varepsilon}(e_{\bm{u}}^{i}))-(\nabla\cdot e_{\bm{u}}^{i},e_{\xi}^{i})= 0.\displaystyle 0. (4.5)
(e𝒖i,eξi)+1λ(eξi,eξi)=\displaystyle(\nabla\cdot e_{\bm{u}}^{i},e_{\xi}^{i})+\frac{1}{\lambda}(e_{\xi}^{i},e_{\xi}^{i})= αλ(epi,eξi)+βλ(eTi,eξi).\displaystyle\frac{\alpha}{\lambda}(e_{p}^{i},e_{\xi}^{i})+\frac{\beta}{\lambda}(e_{T}^{i},e_{\xi}^{i}). (4.6)

Summing up equation (4.3) and equation (4.4), we have

(c0+α2λ)epiL2(Ω)2+(a0+β2λ)eTiL2(Ω)2+2(αβλb0)(epi,eTi)\displaystyle(c_{0}+\frac{\alpha^{2}}{\lambda})\|e_{p}^{i}\|_{L^{2}(\Omega)}^{2}+(a_{0}+\frac{\beta^{2}}{\lambda})\|e_{T}^{i}\|_{L^{2}(\Omega)}^{2}+2(\frac{\alpha\beta}{\lambda}-b_{0})(e_{p}^{i},e_{T}^{i}) (4.7)
+Δt(𝑲epi,epi)+Δt(𝚯eTi,eTi)\displaystyle+\Delta t(\bm{K}\nabla e_{p}^{i},\nabla e_{p}^{i})+\Delta t(\bm{\Theta}\nabla e_{T}^{i},\nabla e_{T}^{i})
=\displaystyle= αλ(epi,eξi1)+βλ(eTi,eξi1)=(αλepi+βλeTi,eξi1).\displaystyle\frac{\alpha}{\lambda}(e_{p}^{i},e_{\xi}^{i-1})+\frac{\beta}{\lambda}(e_{T}^{i},e_{\xi}^{i-1})=(\frac{\alpha}{\lambda}e_{p}^{i}+\frac{\beta}{\lambda}e_{T}^{i},e_{\xi}^{i-1}).

By the Cauchy-Schwarz inequality and (4.7), we have

(c0b0)epiL2(Ω)2+(a0b0)eTiL2(Ω)2+λαλepi+βλeTiL2(Ω)2\displaystyle(c_{0}-b_{0})\|e_{p}^{i}\|_{L^{2}(\Omega)}^{2}+(a_{0}-b_{0})\|e_{T}^{i}\|_{L^{2}(\Omega)}^{2}+\lambda\|\frac{\alpha}{\lambda}e_{p}^{i}+\frac{\beta}{\lambda}e_{T}^{i}\|_{L^{2}(\Omega)}^{2} (4.8)
\displaystyle\leq c0epiL2(Ω)22b0(epi,eTi)+a0eTiL2(Ω)2+α2λepiL2(Ω)2+2αβλ(epi,eTi)+β2λeTiL2(Ω)2\displaystyle c_{0}\|e_{p}^{i}\|_{L^{2}(\Omega)}^{2}-2b_{0}(e_{p}^{i},e_{T}^{i})+a_{0}\|e_{T}^{i}\|_{L^{2}(\Omega)}^{2}+\frac{\alpha^{2}}{\lambda}\|e_{p}^{i}\|_{L^{2}(\Omega)}^{2}+2\frac{\alpha\beta}{\lambda}(e_{p}^{i},e_{T}^{i})+\frac{\beta^{2}}{\lambda}\|e_{T}^{i}\|_{L^{2}(\Omega)}^{2}
\displaystyle\leq (c0+α2λ)epiL2(Ω)2+(a0+β2λ)eTiL2(Ω)2+2(αβλb0)(epi,eTi)\displaystyle(c_{0}+\frac{\alpha^{2}}{\lambda})\|e_{p}^{i}\|_{L^{2}(\Omega)}^{2}+(a_{0}+\frac{\beta^{2}}{\lambda})\|e_{T}^{i}\|_{L^{2}(\Omega)}^{2}+2(\frac{\alpha\beta}{\lambda}-b_{0})(e_{p}^{i},e_{T}^{i})
+Δt(𝑲epi,epi)+Δt(𝚯eTi,eTi)\displaystyle+\Delta t(\bm{K}\nabla e_{p}^{i},\nabla e_{p}^{i})+\Delta t(\bm{\Theta}\nabla e_{T}^{i},\nabla e_{T}^{i})
=\displaystyle= (αλepi+βλeTi,eξi1)\displaystyle(\frac{\alpha}{\lambda}e_{p}^{i}+\frac{\beta}{\lambda}e_{T}^{i},e_{\xi}^{i-1})
\displaystyle\leq αλepi+βλeTiL2(Ω)eξi1L2(Ω).\displaystyle\|\frac{\alpha}{\lambda}e_{p}^{i}+\frac{\beta}{\lambda}e_{T}^{i}\|_{L^{2}(\Omega)}\|e_{\xi}^{i-1}\|_{L^{2}(\Omega)}.

By simultaneously dividing both sides of the equation (4.8) by αλepi+βλeTiL2(Ω)\|\frac{\alpha}{\lambda}e_{p}^{i}+\frac{\beta}{\lambda}e_{T}^{i}\|_{L^{2}(\Omega)} which is positive, otherwise we yields epiL2(Ω)=eTiL2(Ω)\|e_{p}^{i}\|_{L^{2}(\Omega)}=\|e_{T}^{i}\|_{L^{2}(\Omega)}, we obtain

(c0b0)epiL2(Ω)2+(a0b0)eTiL2(Ω)2αλepi+βλeTiL2(Ω)2αλepi+βλeTiL2(Ω)+λαλepi+βλeTiL2(Ω)\displaystyle\frac{(c_{0}-b_{0})\|e_{p}^{i}\|_{L^{2}(\Omega)}^{2}+(a_{0}-b_{0})\|e_{T}^{i}\|_{L^{2}(\Omega)}^{2}}{\|\frac{\alpha}{\lambda}e_{p}^{i}+\frac{\beta}{\lambda}e_{T}^{i}\|_{L^{2}(\Omega)}^{2}}\|\frac{\alpha}{\lambda}e_{p}^{i}+\frac{\beta}{\lambda}e_{T}^{i}\|_{L^{2}(\Omega)}+\lambda\|\frac{\alpha}{\lambda}e_{p}^{i}+\frac{\beta}{\lambda}e_{T}^{i}\|_{L^{2}(\Omega)} eξi1L2(Ω).\displaystyle\leq\|e_{\xi}^{i-1}\|_{L^{2}(\Omega)}.

Let

𝔻:=1λ2(c0b0)epiL2(Ω)2+(a0b0)eTiL2(Ω)2αλepi+βλeTiL2(Ω)2=(c0b0)epiL2(Ω)2+(a0b0)eTiL2(Ω)2αepi+βeTiL2(Ω)2,\mathbb{D}:=\frac{1}{\lambda^{2}}\frac{(c_{0}-b_{0})\|e_{p}^{i}\|_{L^{2}(\Omega)}^{2}+(a_{0}-b_{0})\|e_{T}^{i}\|_{L^{2}(\Omega)}^{2}}{\|\frac{\alpha}{\lambda}e_{p}^{i}+\frac{\beta}{\lambda}e_{T}^{i}\|_{L^{2}(\Omega)}^{2}}=\frac{(c_{0}-b_{0})\|e_{p}^{i}\|_{L^{2}(\Omega)}^{2}+(a_{0}-b_{0})\|e_{T}^{i}\|_{L^{2}(\Omega)}^{2}}{\|\alpha e_{p}^{i}+\beta e_{T}^{i}\|_{L^{2}(\Omega)}^{2}},

which is positive and independent of λ\lambda, we can next derive

λ2𝔻αλepi+βλeTiL2(Ω)+λαλepi+βλeTiL2(Ω)\displaystyle\lambda^{2}\mathbb{D}\|\frac{\alpha}{\lambda}e_{p}^{i}+\frac{\beta}{\lambda}e_{T}^{i}\|_{L^{2}(\Omega)}+\lambda\|\frac{\alpha}{\lambda}e_{p}^{i}+\frac{\beta}{\lambda}e_{T}^{i}\|_{L^{2}(\Omega)} eξi1L2(Ω)\displaystyle\leq\|e_{\xi}^{i-1}\|_{L^{2}(\Omega)} (4.9)
αλepi+βλeTiL2(Ω)\displaystyle\|\frac{\alpha}{\lambda}e_{p}^{i}+\frac{\beta}{\lambda}e_{T}^{i}\|_{L^{2}(\Omega)} 1λ2𝔻+λeξi1L2(Ω).\displaystyle\leq\frac{1}{\lambda^{2}\mathbb{D}+\lambda}\|e_{\xi}^{i-1}\|_{L^{2}(\Omega)}.

Summing up equation (4.5) and equation (4.6), we obtain

2μ(𝜺(e𝒖i),𝜺(e𝒖i))+1λeξiL2(Ω)2=\displaystyle 2\mu(\bm{\varepsilon}(e_{\bm{u}}^{i}),\bm{\varepsilon}(e_{\bm{u}}^{i}))+\frac{1}{\lambda}\|e_{\xi}^{i}\|_{L^{2}(\Omega)}^{2}= (αλepi+βλeTi,eξi).\displaystyle(\frac{\alpha}{\lambda}e_{p}^{i}+\frac{\beta}{\lambda}e_{T}^{i},e_{\xi}^{i}). (4.10)

Dropping the first positive term, and using the conclusion of (4.9), we have

eξiL2(Ω)2\displaystyle\|e_{\xi}^{i}\|_{L^{2}(\Omega)}^{2}\leq λ(αλepi+βλeTi,eξi)λαλepi+βλeTiL2(Ω)eξiL2(Ω),\displaystyle\lambda(\frac{\alpha}{\lambda}e_{p}^{i}+\frac{\beta}{\lambda}e_{T}^{i},e_{\xi}^{i})\leq\lambda\|\frac{\alpha}{\lambda}e_{p}^{i}+\frac{\beta}{\lambda}e_{T}^{i}\|_{L^{2}(\Omega)}\|e_{\xi}^{i}\|_{L^{2}(\Omega)}, (4.11)

and then

eξiL2(Ω)\displaystyle\|e_{\xi}^{i}\|_{L^{2}(\Omega)}\leq λαλepi+βλeTiL2(Ω)λλ2𝔻+λeξi1L2(Ω).\displaystyle\lambda\|\frac{\alpha}{\lambda}e_{p}^{i}+\frac{\beta}{\lambda}e_{T}^{i}\|_{L^{2}(\Omega)}\leq\frac{\lambda}{\lambda^{2}\mathbb{D}+\lambda}\|e_{\xi}^{i-1}\|_{L^{2}(\Omega)}. (4.12)

Therefore, the convergence of ξhn,i\xi_{h}^{n,i} is proved. Applying Lemma 2.1 to equation (4.5), we see that

2μ𝜺(e𝒖i)L2(Ω)2\displaystyle 2\mu\|\bm{\varepsilon}(e_{\bm{u}}^{i})\|_{L^{2}(\Omega)}^{2} =2μ(𝜺(e𝒖i),𝜺(e𝒖i))=(e𝒖i,eξi)\displaystyle=2\mu(\bm{\varepsilon}(e_{\bm{u}}^{i}),\bm{\varepsilon}(e_{\bm{u}}^{i}))=(\nabla\cdot e_{\bm{u}}^{i},e_{\xi}^{i}) (4.13)
e𝒖iL2(Ω)eξiL2(Ω)CK𝜺(e𝒖i)L2(Ω)eξiL2(Ω),\displaystyle\leq\|\nabla\cdot e_{\bm{u}}^{i}\|_{L^{2}(\Omega)}\|e_{\xi}^{i}\|_{L^{2}(\Omega)}\leq C_{K}\|\bm{\varepsilon}(e_{\bm{u}}^{i})\|_{L^{2}(\Omega)}\|e_{\xi}^{i}\|_{L^{2}(\Omega)},

which yields the convergence of 𝒖hn,i\bm{u}_{h}^{n,i}. By neglecting the third term on the left-hand side of (4.8) and utilizing the result of (4.9) on the right-hand side of (4.8), we obtain

(c0b0)epiL2(Ω)2+(a0b0)eTiL2(Ω)2\displaystyle(c_{0}-b_{0})\|e_{p}^{i}\|_{L^{2}(\Omega)}^{2}+(a_{0}-b_{0})\|e_{T}^{i}\|_{L^{2}(\Omega)}^{2} αλepi+βλeTiL2(Ω)eξi1L2(Ω)\displaystyle\leq\|\frac{\alpha}{\lambda}e_{p}^{i}+\frac{\beta}{\lambda}e_{T}^{i}\|_{L^{2}(\Omega)}\|e_{\xi}^{i-1}\|_{L^{2}(\Omega)} (4.14)
1λ2𝔻+λeξi1L2(Ω)2,\displaystyle\leq\frac{1}{\lambda^{2}\mathbb{D}+\lambda}\|e_{\xi}^{i-1}\|_{L^{2}(\Omega)}^{2},

which implies the convergence of phn,ip_{h}^{n,i} and Thn,iT_{h}^{n,i}. ∎

Remark 1.

The theorem remains valid in the special cases where either c0b0=0c_{0}-b_{0}=0 or a0b0=0a_{0}-b_{0}=0, provided the other term is nonzero, as the proof remains unaffected under these conditions.

If both c0b0=0c_{0}-b_{0}=0 and a0b0=0a_{0}-b_{0}=0, we can still demonstrate the convergence of the iterative decoupling algorithm. Assuming c0b0=a0b0=0c_{0}-b_{0}=a_{0}-b_{0}=0, it follows that 𝔻=0\mathbb{D}=0. From inequality (4.12), it is evident that eξiL2(Ω)\|e_{\xi}^{i}\|_{L^{2}(\Omega)} forms a monotonically non-increasing sequence bounded below by zero, ensuring its convergence. Let

limieξiL2(Ω)=ρ>0.\lim_{i\to\infty}\|e_{\xi}^{i}\|_{L^{2}(\Omega)}=\rho>0.

From (4.10) and (4.12), we derive:

2μ(𝜺(e𝒖i),𝜺(e𝒖i))+1λeξiL2(Ω)2eξiL2(Ω)eξi1L2(Ω).2\mu(\bm{\varepsilon}(e_{\bm{u}}^{i}),\bm{\varepsilon}(e_{\bm{u}}^{i}))+\frac{1}{\lambda}\|e_{\xi}^{i}\|_{L^{2}(\Omega)}^{2}\leq\|e_{\xi}^{i}\|_{L^{2}(\Omega)}\|e_{\xi}^{i-1}\|_{L^{2}(\Omega)}.

Given ρ>0\rho>0, this implies limi𝛆(e𝐮i)L2(Ω)=0\lim_{i\to\infty}\|\bm{\varepsilon}(e_{\bm{u}}^{i})\|_{L^{2}(\Omega)}=0 as ii\to\infty. Utilizing the discrete inf-sup condition and referencing (4.2c), we obtain:

γeξiL2(Ω)sup𝒗h𝑽h|(𝒗h,eξi)|𝒗hH1(Ω)=|2μ(𝜺(𝒗h),𝜺(e𝒖i))|𝒗hH1(Ω)𝜺(e𝒖i)L2(Ω).\gamma\|e_{\xi}^{i}\|_{L^{2}(\Omega)}\leq\sup_{\bm{v}_{h}\in\bm{V}_{h}}\frac{|(\nabla\cdot\bm{v}_{h},e_{\xi}^{i})|}{\|\bm{v}_{h}\|_{H^{1}(\Omega)}}=\frac{|2\mu(\bm{\varepsilon}(\bm{v}_{h}),\bm{\varepsilon}(e_{\bm{u}}^{i}))|}{\|\bm{v}_{h}\|_{H^{1}(\Omega)}}\lesssim\|\bm{\varepsilon}(e_{\bm{u}}^{i})\|_{L^{2}(\Omega)}.

This leads to ρ=0\rho=0, which contradicts the assumption ρ>0\rho>0. Thus, eξiL2(Ω)0\|e_{\xi}^{i}\|_{L^{2}(\Omega)}\to 0 as ii\to\infty. Consequently, it follows that e𝐮iL2(Ω)0\|e_{\bm{u}}^{i}\|_{L^{2}(\Omega)}\to 0, epiL2(Ω)0\|e_{p}^{i}\|_{L^{2}(\Omega)}\to 0, and eTiL2(Ω)0\|e_{T}^{i}\|_{L^{2}(\Omega)}\to 0 as ii\to\infty.

Here, we denote dtηn:=(ηnηn1)/Δtd_{t}\eta_{n}:=(\eta^{n}-\eta^{n-1})/\Delta t, where η\eta can be a vector or a scalar.

Lemma 4.2.

Let {(𝐮hn,ξhn,phn,Thn)}\{(\bm{u}_{h}^{n},\xi_{h}^{n},p_{h}^{n},T_{h}^{n})\} be solution of the coupled algorithm, then the following identity holds:

Jhl+Shl=Jh0, for l1,\displaystyle J_{h}^{l}+S_{h}^{l}=J_{h}^{0},\text{ for }l\geq 1, (4.15)

where for l0l\geq 0,

Jhl:=\displaystyle J_{h}^{l}:= μ𝜺(𝒖hl)L2(Ω)2+12λαphl+βThlξhlL2(Ω)2+c0b02phlL2(Ω)2+a0b02ThlL2(Ω)2\displaystyle\mu\|\bm{\varepsilon}(\bm{u}_{h}^{l})\|_{L^{2}(\Omega)}^{2}+\frac{1}{2\lambda}\|\alpha p_{h}^{l}+\beta T_{h}^{l}-\xi_{h}^{l}\|_{L^{2}(\Omega)}^{2}+\frac{c_{0}-b_{0}}{2}\|p_{h}^{l}\|_{L^{2}(\Omega)}^{2}+\frac{a_{0}-b_{0}}{2}\|T_{h}^{l}\|_{L^{2}(\Omega)}^{2} (4.16)
+b02phlThlL2(Ω)2(𝒇,𝒖hl),\displaystyle+\frac{b_{0}}{2}\|p_{h}^{l}-T_{h}^{l}\|_{L^{2}(\Omega)}^{2}-(\bm{f},\bm{u}_{h}^{l}),

and

Shl:=\displaystyle S_{h}^{l}:= Δtn=1l[Δt(μ𝜺(dt𝒖hl)L2(Ω)2+12λdt(αphl+βThlξhl)L2(Ω)2+c0b02dtphlL2(Ω)2\displaystyle\Delta t\sum_{n=1}^{l}\Big{[}\Delta t\Big{(}\mu\|\bm{\varepsilon}(d_{t}\bm{u}_{h}^{l})\|_{L^{2}(\Omega)}^{2}+\frac{1}{2\lambda}\|d_{t}(\alpha p_{h}^{l}+\beta T_{h}^{l}-\xi_{h}^{l})\|_{L^{2}(\Omega)}^{2}+\frac{c_{0}-b_{0}}{2}\|d_{t}p_{h}^{l}\|_{L^{2}(\Omega)}^{2} (4.17)
+a0b02dtThlL2(Ω)2+b02phlThlL2(Ω)2)\displaystyle+\frac{a_{0}-b_{0}}{2}\|d_{t}T_{h}^{l}\|_{L^{2}(\Omega)}^{2}+\frac{b_{0}}{2}\|p_{h}^{l}-T_{h}^{l}\|_{L^{2}(\Omega)}^{2}\Big{)}
+𝑲(phn,phn)+𝚯(Thn,Thn)(g,phn)(Hs,Thn)].\displaystyle+\bm{K}(\nabla p_{h}^{n},\nabla p_{h}^{n})+\bm{\Theta}(\nabla T_{h}^{n},\nabla T_{h}^{n})-(g,\nabla p_{h}^{n})-(H_{s},\nabla T_{h}^{n})\Big{]}.
Proof.

Using operator dtd_{t} for the equation (3.2b), taking 𝒗h=dt𝒖hn,ϕh=ξhn,qh=phn\bm{v}_{h}=d_{t}\bm{u}_{h}^{n},\phi_{h}=-\xi_{h}^{n},q_{h}=p_{h}^{n} and Sh=ThnS_{h}=T_{h}^{n}, we have

2μ(𝜺(𝒖hn),𝜺(dt𝒖hn))(dt𝒖hn,ξhn)\displaystyle 2\mu(\bm{\varepsilon}(\bm{u}^{n}_{h}),\bm{\varepsilon}(d_{t}\bm{u}_{h}^{n}))-(\nabla\cdot d_{t}\bm{u}_{h}^{n},\xi^{n}_{h}) =(𝒇,dt𝒖hn),\displaystyle=(\bm{f},d_{t}\bm{u}_{h}^{n}), (4.18)
(dt𝒖hn,ξhn)+1λ(dtξhn,ξhn)αλ(dtphn,ξhn)βλ(dtThn,ξhn)\displaystyle(\nabla\cdot d_{t}\bm{u}^{n}_{h},\xi_{h}^{n})+\frac{1}{\lambda}(d_{t}\xi^{n}_{h},\xi_{h}^{n})-\frac{\alpha}{\lambda}(d_{t}p^{n}_{h},\xi_{h}^{n})-\frac{\beta}{\lambda}(d_{t}T^{n}_{h},\xi_{h}^{n}) =0,\displaystyle=0,
αλ(ξhn,phn)+(c0+α2λ)(phn,phn)+(αβλb0)(Thn,phn)+Δt(𝑲phn,phn)\displaystyle-\frac{\alpha}{\lambda}(\xi_{h}^{n},p_{h}^{n})+(c_{0}+\frac{\alpha^{2}}{\lambda})(p_{h}^{n},p_{h}^{n})+(\frac{\alpha\beta}{\lambda}-b_{0})(T_{h}^{n},p_{h}^{n})+\Delta t(\bm{K}\nabla p^{n}_{h},\nabla p_{h}^{n}) =\displaystyle=
(c0+α2λ)(phn1,phn)+(αβλb0)(Thn1,phn)αλ(ξhn1,phn)\displaystyle(c_{0}+\frac{\alpha^{2}}{\lambda})(p_{h}^{n-1},p_{h}^{n})+(\frac{\alpha\beta}{\lambda}-b_{0})(T_{h}^{n-1},p_{h}^{n})-\frac{\alpha}{\lambda}(\xi_{h}^{n-1},p_{h}^{n}) +Δt(g,phn),\displaystyle+\Delta t(g,p_{h}^{n}),
βλ(ξhn,Thn)+(a0+β2λ)(Thn,Thn)+(αβλb0)(phn,Thn)+Δt(𝚯Thn,Thn)\displaystyle-\frac{\beta}{\lambda}(\xi_{h}^{n},T_{h}^{n})+(a_{0}+\frac{\beta^{2}}{\lambda})(T_{h}^{n},T_{h}^{n})+(\frac{\alpha\beta}{\lambda}-b_{0})(p_{h}^{n},T_{h}^{n})+\Delta t(\bm{\Theta}\nabla T^{n}_{h},\nabla T_{h}^{n}) =\displaystyle=
(a0+β2λ)(Thn1,Thn)+(αβλb0)(phn1,Thn)βλ(ξhn1,Thn)\displaystyle(a_{0}+\frac{\beta^{2}}{\lambda})(T_{h}^{n-1},T_{h}^{n})+(\frac{\alpha\beta}{\lambda}-b_{0})(p_{h}^{n-1},T_{h}^{n})-\frac{\beta}{\lambda}(\xi_{h}^{n-1},T_{h}^{n}) +Δt(Hs,Thn).\displaystyle+\Delta t(H_{s},T_{h}^{n}).

Summing up the four equations of system (4.18) and by the definition of dtd_{t}, we have

2μ(𝜺(𝒖hn),𝜺(dt𝒖hn))+1λ(dtξhn,ξhn)αλ(dtphn,ξhn)βλ(dtThn,ξhn)\displaystyle 2\mu(\bm{\varepsilon}(\bm{u}_{h}^{n}),\bm{\varepsilon}(d_{t}\bm{u}_{h}^{n}))+\frac{1}{\lambda}(d_{t}\xi_{h}^{n},\xi_{h}^{n})-\frac{\alpha}{\lambda}(d_{t}p_{h}^{n},\xi_{h}^{n})-\frac{\beta}{\lambda}(d_{t}T_{h}^{n},\xi_{h}^{n}) (4.19)
αλ(dtξhn,phn)+(c0+α2λ)(dtphn,phn)+(αβλb0)(dtThn,phn)+(𝑲phn,phn)\displaystyle-\frac{\alpha}{\lambda}(d_{t}\xi_{h}^{n},p_{h}^{n})+(c_{0}+\frac{\alpha^{2}}{\lambda})(d_{t}p_{h}^{n},p_{h}^{n})+(\frac{\alpha\beta}{\lambda}-b_{0})(d_{t}T_{h}^{n},p_{h}^{n})+(\bm{K}\nabla p_{h}^{n},\nabla p_{h}^{n})
βλ(dtξhn,Thn)+(a0+β2λ)(dtThn,Thn)+(αβλb0)(dtphn,Thn)+(𝚯Thn,Thn)\displaystyle-\frac{\beta}{\lambda}(d_{t}\xi_{h}^{n},T_{h}^{n})+(a_{0}+\frac{\beta^{2}}{\lambda})(d_{t}T_{h}^{n},T_{h}^{n})+(\frac{\alpha\beta}{\lambda}-b_{0})(d_{t}p_{h}^{n},T_{h}^{n})+(\bm{\Theta}\nabla T_{h}^{n},\nabla T_{h}^{n})
=(𝒇,dt𝒖hn)+(g,phn)+(Hs,Thn).\displaystyle=(\bm{f},d_{t}\bm{u}_{h}^{n})+(g,p_{h}^{n})+(H_{s},T_{h}^{n}).

Then, using the identity

2(ηn,dtηn)=dtηnL2(Ω)2+ΔtdtηnL2(Ω)2,2(\eta^{n},d_{t}\eta^{n})=d_{t}\|\eta^{n}\|_{L^{2}(\Omega)}^{2}+\Delta t\|d_{t}\eta^{n}\|_{L^{2}(\Omega)}^{2}, (4.20)

we have

μdt𝜺(𝒖hn)L2(Ω)2+12λdtαphn+βThnξhnL2(Ω)2+c0b02dtphnL2(Ω)2+a0b02dtThnL2(Ω)2\displaystyle\mu d_{t}\|\bm{\varepsilon}(\bm{u}_{h}^{n})\|_{L^{2}(\Omega)}^{2}+\frac{1}{2\lambda}d_{t}\|\alpha p_{h}^{n}+\beta T_{h}^{n}-\xi_{h}^{n}\|_{L^{2}(\Omega)}^{2}+\frac{c_{0}-b_{0}}{2}d_{t}\|p_{h}^{n}\|_{L^{2}(\Omega)}^{2}+\frac{a_{0}-b_{0}}{2}d_{t}\|T_{h}^{n}\|_{L^{2}(\Omega)}^{2} (4.21)
+b02dtphnThnL2(Ω)2+Δt(μdt𝜺(𝒖hn)L2(Ω)2+12λdt(αphn+βThnξhn)L2(Ω)2\displaystyle+\frac{b_{0}}{2}d_{t}\|p_{h}^{n}-T_{h}^{n}\|_{L^{2}(\Omega)}^{2}+\Delta t\Big{(}\mu\|d_{t}\bm{\varepsilon}(\bm{u}_{h}^{n})\|_{L^{2}(\Omega)}^{2}+\frac{1}{2\lambda}\|d_{t}(\alpha p_{h}^{n}+\beta T_{h}^{n}-\xi_{h}^{n})\|_{L^{2}(\Omega)}^{2}
+c0b02dtphnL2(Ω)2+a0b02dtThnL2(Ω)2+b02dt(phnThn)L2(Ω)2)+(𝑲phn,phn)\displaystyle+\frac{c_{0}-b_{0}}{2}\|d_{t}p_{h}^{n}\|_{L^{2}(\Omega)}^{2}+\frac{a_{0}-b_{0}}{2}\|d_{t}T_{h}^{n}\|_{L^{2}(\Omega)}^{2}+\frac{b_{0}}{2}\|d_{t}(p_{h}^{n}-T_{h}^{n})\|_{L^{2}(\Omega)}^{2}\Big{)}+(\bm{K}\nabla p_{h}^{n},\nabla p_{h}^{n})
+(𝚯Thn,Thn)=(𝒇,dt𝒖hn)+(g,phn)+(Hs,Thn).\displaystyle+(\bm{\Theta}\nabla T_{h}^{n},\nabla T_{h}^{n})=(\bm{f},d_{t}\bm{u}_{h}^{n})+(g,p_{h}^{n})+(H_{s},T_{h}^{n}).

Applying the summation operator Δtn=1l\Delta t\sum_{n=1}^{l} to both sides of the above equation, we obtain (4.15). ∎

For the discrete finite element spaces 𝑽h\bm{V}_{h}, QhQ_{h}, and WhW_{h} defined in Section 3.1, we introduce the projection operators Π𝑽h:𝑽𝑽h\Pi^{\bm{V}_{h}}:\bm{V}\to\bm{V}_{h}, ΠQh:QQh\Pi^{Q_{h}}:Q\to Q_{h}, ΠWp,h:WWh\Pi^{W_{p,h}}:W\to W_{h}, and ΠWT,h:WWh\Pi^{W_{T,h}}:W\to W_{h}, which satisfy the following equations: for all (𝒗h,ϕh,ph,Th)𝑽h×Qh×Wh×Wh(\bm{v}_{h},\phi_{h},p_{h},T_{h})\in\bm{V}_{h}\times Q_{h}\times W_{h}\times W_{h},

2μ(𝜺(Π𝑽h𝒖),𝜺(𝒗h))(𝒗h,ΠQhξ)=2μ(𝜺(𝒖),𝜺(𝒗h))(𝒗h,ξ),2\mu(\bm{\varepsilon}(\Pi^{\bm{V}_{h}}\bm{u}),\bm{\varepsilon}(\bm{v}_{h}))-(\nabla\cdot\bm{v}_{h},\Pi^{Q_{h}}\xi)=2\mu(\bm{\varepsilon}(\bm{u}),\bm{\varepsilon}(\bm{v}_{h}))-(\nabla\cdot\bm{v}_{h},\xi), (4.22)
(Π𝑽h𝒖,ϕh)+1λ(ΠQhξ,ϕh)=(𝒖,ϕh)+1λ(ξ,ϕh)(\nabla\cdot\Pi^{\bm{V}_{h}}\bm{u},\phi_{h})+\frac{1}{\lambda}(\Pi^{Q_{h}}\xi,\phi_{h})=(\nabla\cdot\bm{u},\phi_{h})+\frac{1}{\lambda}(\xi,\phi_{h}) (4.23)
𝑲(ΠWp,h,p,qh)=𝑲(p,qh),\bm{K}(\nabla\Pi^{W_{p,h,}}p,\nabla q_{h})=\bm{K}(\nabla p,\nabla q_{h}), (4.24)
𝚯(ΠWT,hT,Sh)=𝚯(T,Sh).\bm{\Theta}(\nabla\Pi^{W_{T,h}}T,\nabla S_{h})=\bm{\Theta}(\nabla T,\nabla S_{h}). (4.25)

Furthermore, for the operators Π𝑽h\Pi^{\bm{V}_{h}}ΠQh\Pi^{Q_{h}}ΠWp,h,\Pi^{W_{p,h,}} and ΠWT,h\Pi^{W_{T,h}} we have following properties.

(Π𝑽h𝒖𝒖)L2(Ω)+ΠQhξξL2(Ω)h2𝒖H3(Ω)+h2ξH2(Ω),\|\nabla(\Pi^{\bm{V}_{h}}\bm{u}-\bm{u})\|_{L^{2}(\Omega)}+\|\Pi^{Q_{h}}\xi-\xi\|_{L^{2}(\Omega)}\lesssim h^{2}\|\bm{u}\|_{H^{3}(\Omega)}+h^{2}\|\xi\|_{H^{2}(\Omega)}, (4.26)
ΠWp,h,ppL2(Ω)+h(ΠWp,h,pp)L2(Ω)h2pH2(Ω),\|\Pi^{W_{p,h,}}p-p\|_{L^{2}(\Omega)}+h\|\nabla(\Pi^{W_{p,h,}}p-p)\|_{L^{2}(\Omega)}\lesssim h^{2}\|p\|_{H^{2}(\Omega)}, (4.27)

and

ΠWT,hTTL2(Ω)+h(ΠWT,hTT)L2(Ω)h2TH2(Ω).\|\Pi^{W_{T,h}}T-T\|_{L^{2}(\Omega)}+h\|\nabla(\Pi^{W_{T,h}}T-T)\|_{L^{2}(\Omega)}\lesssim h^{2}\|T\|_{H^{2}(\Omega)}. (4.28)

For convenience, we introduce the following notations:

e𝒖n=𝒖n𝒖hn=(𝒖nΠ𝑽h𝒖n)+(Π𝑽h𝒖n𝒖hn):=e𝒖I,n+e𝒖h,n,\displaystyle e_{\bm{u}}^{n}=\bm{u}^{n}-\bm{u}_{h}^{n}=(\bm{u}^{n}-\Pi^{\bm{V}_{h}}\bm{u}^{n})+(\Pi^{\bm{V}_{h}}\bm{u}^{n}-\bm{u}_{h}^{n}):=e_{\bm{u}}^{I,n}+e_{\bm{u}}^{h,n}, (4.29)
eξn=ξnξhn=(ξnΠQhξn)+(ΠQhξnξhn):=eξI,n+eξh,n,\displaystyle e_{\xi}^{n}=\xi^{n}-\xi_{h}^{n}=(\xi^{n}-\Pi^{Q_{h}}\xi^{n})+(\Pi^{Q_{h}}\xi^{n}-\xi_{h}^{n}):=e_{\xi}^{I,n}+e_{\xi}^{h,n},
epn=pnphn=(pnΠWp,hpn)+(ΠWp,hpnphn):=epI,n+eph,n,\displaystyle e_{p}^{n}=p^{n}-p_{h}^{n}=(p^{n}-\Pi^{W_{p,h}}p^{n})+(\Pi^{W_{p,h}}p^{n}-p_{h}^{n}):=e_{p}^{I,n}+e_{p}^{h,n},
eTn=TnThn=(TnΠWp,hTn)+(ΠWp,hTnThn):=eTI,n+eTh,n.\displaystyle e_{T}^{n}=T^{n}-T_{h}^{n}=(T^{n}-\Pi^{W_{p,h}}T^{n})+(\Pi^{W_{p,h}}T^{n}-T_{h}^{n}):=e_{T}^{I,n}+e_{T}^{h,n}.

Next, we formulate a discrete energy law, which serves as a discretized counterpart to the continuous statement presented in Lemma 2.2.

Lemma 4.3.

Let {(𝐮hn,ξhn,phn,Thn)}\{(\bm{u}_{h}^{n},\xi_{h}^{n},p_{h}^{n},T_{h}^{n})\} be defined by the coupled algorithm, then the following identity holds:

Ehl+Δtn=1l((𝑲eph,n,eph,n)+(𝚯eTh,n,eTh,n))\displaystyle E_{h}^{l}+\Delta t\sum_{n=1}^{l}\big{(}(\bm{K}\nabla e_{p}^{h,n},\nabla e_{p}^{h,n})+(\bm{\Theta}\nabla e_{T}^{h,n},\nabla e_{T}^{h,n})\big{)} (4.30)
+Δt2n=1l(μdt𝜺(e𝒖h,n)L2(Ω)2+12λdt(αeph,n+βeTh,neξh,n)L2(Ω)2+c0b02dteph,nL2(Ω)2\displaystyle+\Delta t^{2}\sum_{n=1}^{l}\Big{(}\mu\|d_{t}\bm{\varepsilon}(e_{\bm{u}}^{h,n})\|_{L^{2}(\Omega)}^{2}+\frac{1}{2\lambda}\|d_{t}(\alpha e_{p}^{h,n}+\beta e_{T}^{h,n}-e_{\xi}^{h,n})\|_{L^{2}(\Omega)}^{2}+\frac{c_{0}-b_{0}}{2}\|d_{t}e_{p}^{h,n}\|_{L^{2}(\Omega)}^{2}
+a0b02dteTh,nL2(Ω)2+b02eph,neTh,nL2(Ω)2)\displaystyle+\frac{a_{0}-b_{0}}{2}\|d_{t}e_{T}^{h,n}\|_{L^{2}(\Omega)}^{2}+\frac{b_{0}}{2}\|e_{p}^{h,n}-e_{T}^{h,n}\|_{L^{2}(\Omega)}^{2}\Big{)}
=\displaystyle= Eh0+Δtn=1l(((dt𝒖n𝒖tn),eξh,n)+1λ(dtξnξtn,eξh,n)αλ(dtpnptn,eξh,n)\displaystyle E_{h}^{0}+\Delta t\sum_{n=1}^{l}\Big{(}(\nabla\cdot(d_{t}\bm{u}^{n}-\bm{u}_{t}^{n}),e_{\xi}^{h,n})+\frac{1}{\lambda}(d_{t}\xi^{n}-\xi_{t}^{n},e_{\xi}^{h,n})-\frac{\alpha}{\lambda}(d_{t}p^{n}-p_{t}^{n},e_{\xi}^{h,n})
βλ(dtTnTtn,eξh,n)\displaystyle-\frac{\beta}{\lambda}(d_{t}T^{n}-T_{t}^{n},e_{\xi}^{h,n})
αλ(dtΠQhξnξtn,eph,n)+(c0+α2λ)(dtΠWp,h,pnptn,eph,n)\displaystyle-\frac{\alpha}{\lambda}(d_{t}\Pi^{Q_{h}}\xi^{n}-\xi_{t}^{n},e_{p}^{h,n})+(c_{0}+\frac{\alpha^{2}}{\lambda})(d_{t}\Pi^{W_{p,h,}}p^{n}-p_{t}^{n},e_{p}^{h,n})
+(αβλb0)(dtΠWT,hTnTtn,eph,n),\displaystyle+(\frac{\alpha\beta}{\lambda}-b_{0})(d_{t}\Pi^{W_{T,h}}T^{n}-T_{t}^{n},e_{p}^{h,n}),
βλ(dtΠQhξnξtn,eTh,n)+(αβλb0)(dtΠWp,h,pnptn,eTh,n)\displaystyle-\frac{\beta}{\lambda}(d_{t}\Pi^{Q_{h}}\xi^{n}-\xi_{t}^{n},e_{T}^{h,n})+(\frac{\alpha\beta}{\lambda}-b_{0})(d_{t}\Pi^{W_{p,h,}}p^{n}-p_{t}^{n},e_{T}^{h,n})
+(a0+β2λ)(dtΠWT,hTnTtn,eTh,n)),\displaystyle+(a_{0}+\frac{\beta^{2}}{\lambda})(d_{t}\Pi^{W_{T,h}}T^{n}-T_{t}^{n},e_{T}^{h,n})\Big{)},

where

Ehn\displaystyle E_{h}^{n} =μ𝜺(e𝒖h,n)L2(Ω)2+12λαeph,n+βeTh,neξh,nL2(Ω)2+c0b02eph,nL2(Ω)2+a0b02eTh,nL2(Ω)2\displaystyle=\mu\|\bm{\varepsilon}(e_{\bm{u}}^{h,n})\|_{L^{2}(\Omega)}^{2}+\frac{1}{2\lambda}\|\alpha e_{p}^{h,n}+\beta e_{T}^{h,n}-e_{\xi}^{h,n}\|_{L^{2}(\Omega)}^{2}+\frac{c_{0}-b_{0}}{2}\|e_{p}^{h,n}\|_{L^{2}(\Omega)}^{2}+\frac{a_{0}-b_{0}}{2}\|e_{T}^{h,n}\|_{L^{2}(\Omega)}^{2} (4.31)
+b02eph,neTh,nL2(Ω)2.\displaystyle+\frac{b_{0}}{2}\|e_{p}^{h,n}-e_{T}^{h,n}\|_{L^{2}(\Omega)}^{2}.
Proof.

Utilizing the first equation of the continuous weak formulation (2.5), the finite element formulations (3.2a) and (4.22), along with the definitions of e𝒖h,ne_{\bm{u}}^{h,n} and eξh,ne_{\xi}^{h,n} as given in equation (4.29), we derive the following relation:

2μ(𝜺(e𝒖h,n),𝜺(𝒗h))(𝒗h,eξh,n)=0.2\mu(\bm{\varepsilon}(e_{\bm{u}}^{h,n}),\bm{\varepsilon}(\bm{v}_{h}))-(\nabla\cdot\bm{v}_{h},e_{\xi}^{h,n})=0. (4.32)

Furthermore, by combining the second equation of (2.5), the finite element formulation (3.2b), and the projection property (4.23), we obtain

(dte𝒖h,n,ϕh)+1λ(dteξh,n,ϕh)αλ(dteph,n,ϕh)βλ(dteTh,n,ϕh)\displaystyle(\nabla\cdot d_{t}e_{\bm{u}}^{h,n},\phi_{h})+\frac{1}{\lambda}(d_{t}e_{\xi}^{h,n},\phi_{h})-\frac{\alpha}{\lambda}(d_{t}e_{p}^{h,n},\phi_{h})-\frac{\beta}{\lambda}(d_{t}e_{T}^{h,n},\phi_{h}) (4.33)
=\displaystyle= ((dt𝒖n𝒖tn),ϕh)+1λ(dtξnξtn,ϕh)αλ(dtΠWp,hpnptn,ϕh)\displaystyle(\nabla\cdot(d_{t}\bm{u}^{n}-\bm{u}_{t}^{n}),\phi_{h})+\frac{1}{\lambda}(d_{t}\xi^{n}-\xi_{t}^{n},\phi_{h})-\frac{\alpha}{\lambda}(d_{t}\Pi^{W_{p,h}}p^{n}-p_{t}^{n},\phi_{h})
βλ(dtΠWT,hTnTtn,ϕh).\displaystyle-\frac{\beta}{\lambda}(d_{t}\Pi^{W_{T,h}}T^{n}-T_{t}^{n},\phi_{h}).

Using the last two equations of system (2.5) and of system (3.2a)-(3.2d), equation (4.24) and (4.25), we have

αλ(dteξh,n,qh)+(c0+α2λ)(dteph,n,qh)+(𝑲eph,n,qh)+(αβλb0)(dteTh,n,qh)\displaystyle-\frac{\alpha}{\lambda}(d_{t}e_{\xi}^{h,n},q_{h})+(c_{0}+\frac{\alpha^{2}}{\lambda})(d_{t}e_{p}^{h,n},q_{h})+\bm{(}\bm{K}\nabla e_{p}^{h,n},\nabla q_{h})+(\frac{\alpha\beta}{\lambda}-b_{0})(d_{t}e_{T}^{h,n},q_{h}) (4.34)
=\displaystyle= αλ(dtΠQhξnξtn,qh)+(c0+α2λ)(dtΠWp,h,pnptn,qh)\displaystyle-\frac{\alpha}{\lambda}(d_{t}\Pi^{Q_{h}}\xi^{n}-\xi_{t}^{n},q_{h})+(c_{0}+\frac{\alpha^{2}}{\lambda})(d_{t}\Pi^{W_{p,h,}}p^{n}-p_{t}^{n},q_{h})
+(αβλb0)(dtΠWT,hTnTtn,qh),\displaystyle+(\frac{\alpha\beta}{\lambda}-b_{0})(d_{t}\Pi^{W_{T,h}}T^{n}-T_{t}^{n},q_{h}),

and

βλ(dteξh,n,Sh)+(αβλb0)(dteph,n,Sh)+(a0+β2λ)(dteTh,n,Sh)+(𝚯eTh,n,Sh)\displaystyle-\frac{\beta}{\lambda}(d_{t}e_{\xi}^{h,n},S_{h})+(\frac{\alpha\beta}{\lambda}-b_{0})(d_{t}e_{p}^{h,n},S_{h})+(a_{0}+\frac{\beta^{2}}{\lambda})(d_{t}e_{T}^{h,n},S_{h})+(\bm{\Theta}\nabla e_{T}^{h,n},\nabla S_{h}) (4.35)
=\displaystyle= βλ(dtΠQhξnξtn,Sh)+(αβλb0)(dtΠWp,h,pnptn,Sh)\displaystyle-\frac{\beta}{\lambda}(d_{t}\Pi^{Q_{h}}\xi^{n}-\xi_{t}^{n},S_{h})+(\frac{\alpha\beta}{\lambda}-b_{0})(d_{t}\Pi^{W_{p,h,}}p^{n}-p_{t}^{n},S_{h})
+(a0+β2λ)(dtΠWT,hTnTtn,Sh).\displaystyle+(a_{0}+\frac{\beta^{2}}{\lambda})(d_{t}\Pi^{W_{T,h}}T^{n}-T_{t}^{n},S_{h}).

Setting 𝒗h=dte𝒖h,n\bm{v}_{h}=d_{t}e_{\bm{u}}^{h,n} in (4.32), ϕh=eξh,n\phi_{h}=e_{\xi}^{h,n} in (4.33) and qh=eph,nq_{h}=e_{p}^{h,n}, Sh=eTh,nS_{h}=e_{T}^{h,n} in (4.34)-(4.35) and adding the resulting equations together, we derive

2μ(𝜺(e𝒖h,n),𝜺(dte𝒖h,n))(dte𝒖h,n,eξh,n)\displaystyle 2\mu(\bm{\varepsilon}(e_{\bm{u}}^{h,n}),\bm{\varepsilon}(d_{t}e_{\bm{u}}^{h,n}))-(\nabla\cdot d_{t}e_{\bm{u}}^{h,n},e_{\xi}^{h,n}) (4.36)
+(dte𝒖h,n,eξh,n)+1λ(dteξh,n,eξh,n)αλ(dteph,n,eξh,n)βλ(dteTh,n,eξh,n)\displaystyle+(\nabla\cdot d_{t}e_{\bm{u}}^{h,n},e_{\xi}^{h,n})+\frac{1}{\lambda}(d_{t}e_{\xi}^{h,n},e_{\xi}^{h,n})-\frac{\alpha}{\lambda}(d_{t}e_{p}^{h,n},e_{\xi}^{h,n})-\frac{\beta}{\lambda}(d_{t}e_{T}^{h,n},e_{\xi}^{h,n})
αλ(dteξh,n,eph,n)+(c0+α2λ)(dteph,n,eph,n)+(𝑲eph,n,eph,n)+(αβλb0)(dteTh,n,eph,n)\displaystyle-\frac{\alpha}{\lambda}(d_{t}e_{\xi}^{h,n},e_{p}^{h,n})+(c_{0}+\frac{\alpha^{2}}{\lambda})(d_{t}e_{p}^{h,n},e_{p}^{h,n})+(\bm{K}\nabla e_{p}^{h,n},\nabla e_{p}^{h,n})+(\frac{\alpha\beta}{\lambda}-b_{0})(d_{t}e_{T}^{h,n},e_{p}^{h,n})
βλ(dteξh,n,eTh,n)+(αβλb0)(dteph,n,eTh,n)+(a0+β2λ)(dteTh,n,eTh,n)+(𝚯eTh,n,eTh,n)\displaystyle-\frac{\beta}{\lambda}(d_{t}e_{\xi}^{h,n},e_{T}^{h,n})+(\frac{\alpha\beta}{\lambda}-b_{0})(d_{t}e_{p}^{h,n},e_{T}^{h,n})+(a_{0}+\frac{\beta^{2}}{\lambda})(d_{t}e_{T}^{h,n},e_{T}^{h,n})+(\bm{\Theta}\nabla e_{T}^{h,n},\nabla e_{T}^{h,n})
=\displaystyle= ((dt𝒖n𝒖tn),eξh,n)+1λ(dtξnξtn,eξh,n)αλ(dtΠWp,hpnptn,eξh,n)\displaystyle(\nabla\cdot(d_{t}\bm{u}^{n}-\bm{u}_{t}^{n}),e_{\xi}^{h,n})+\frac{1}{\lambda}(d_{t}\xi^{n}-\xi_{t}^{n},e_{\xi}^{h,n})-\frac{\alpha}{\lambda}(d_{t}\Pi^{W_{p,h}}p^{n}-p_{t}^{n},e_{\xi}^{h,n})
βλ(dtΠWT,hTnTtn,eξh,n)\displaystyle-\frac{\beta}{\lambda}(d_{t}\Pi^{W_{T,h}}T^{n}-T_{t}^{n},e_{\xi}^{h,n})
αλ(dtΠQhξnξtn,eph,n)+(c0+α2λ)(dtΠWp,h,pnptn,eph,n)\displaystyle-\frac{\alpha}{\lambda}(d_{t}\Pi^{Q_{h}}\xi^{n}-\xi_{t}^{n},e_{p}^{h,n})+(c_{0}+\frac{\alpha^{2}}{\lambda})(d_{t}\Pi^{W_{p,h,}}p^{n}-p_{t}^{n},e_{p}^{h,n})
+(αβλb0)(dtΠWT,hTnTtn,eph,n)\displaystyle+(\frac{\alpha\beta}{\lambda}-b_{0})(d_{t}\Pi^{W_{T,h}}T^{n}-T_{t}^{n},e_{p}^{h,n})
βλ(dtΠQhξnξtn,eTh,n)+(αβλb0)(dtΠWp,h,pnptn,eTh,n)\displaystyle-\frac{\beta}{\lambda}(d_{t}\Pi^{Q_{h}}\xi^{n}-\xi_{t}^{n},e_{T}^{h,n})+(\frac{\alpha\beta}{\lambda}-b_{0})(d_{t}\Pi^{W_{p,h,}}p^{n}-p_{t}^{n},e_{T}^{h,n})
+(a0+β2λ)(dtΠWT,hTnTtn,eTh,n).\displaystyle+(a_{0}+\frac{\beta^{2}}{\lambda})(d_{t}\Pi^{W_{T,h}}T^{n}-T_{t}^{n},e_{T}^{h,n}).

By the identity (4.20), we have

dt(μ𝜺(e𝒖h,n)L2(Ω)2+12λαeph,n+βeTh,neξh,nL2(Ω)2+c0b02eph,nL2(Ω)2+a0b02eTh,nL2(Ω)2\displaystyle d_{t}\Big{(}\mu\|\bm{\varepsilon}(e_{\bm{u}}^{h,n})\|_{L^{2}(\Omega)}^{2}+\frac{1}{2\lambda}\|\alpha e_{p}^{h,n}+\beta e_{T}^{h,n}-e_{\xi}^{h,n}\|_{L^{2}(\Omega)}^{2}+\frac{c_{0}-b_{0}}{2}\|e_{p}^{h,n}\|_{L^{2}(\Omega)}^{2}+\frac{a_{0}-b_{0}}{2}\|e_{T}^{h,n}\|_{L^{2}(\Omega)}^{2} (4.37)
+b02eph,neTh,nL2(Ω)2)+(𝑲eph,n,eph,n)+(𝚯eTh,n,eTh,n)\displaystyle+\frac{b_{0}}{2}\|e_{p}^{h,n}-e_{T}^{h,n}\|_{L^{2}(\Omega)}^{2}\Big{)}+(\bm{K}\nabla e_{p}^{h,n},\nabla e_{p}^{h,n})+(\bm{\Theta}\nabla e_{T}^{h,n},\nabla e_{T}^{h,n})
+Δt(μdt𝜺(e𝒖h,n)L2(Ω)2+12λdt(αeph,n+βeTh,neξh,n)L2(Ω)2+c0b02dteph,nL2(Ω)2\displaystyle+\Delta t\Big{(}\mu\|d_{t}\bm{\varepsilon}(e_{\bm{u}}^{h,n})\|_{L^{2}(\Omega)}^{2}+\frac{1}{2\lambda}\|d_{t}(\alpha e_{p}^{h,n}+\beta e_{T}^{h,n}-e_{\xi}^{h,n})\|_{L^{2}(\Omega)}^{2}+\frac{c_{0}-b_{0}}{2}\|d_{t}e_{p}^{h,n}\|_{L^{2}(\Omega)}^{2}
+a0b02dteTh,nL2(Ω)2+b02eph,neTh,nL2(Ω)2)\displaystyle+\frac{a_{0}-b_{0}}{2}\|d_{t}e_{T}^{h,n}\|_{L^{2}(\Omega)}^{2}+\frac{b_{0}}{2}\|e_{p}^{h,n}-e_{T}^{h,n}\|_{L^{2}(\Omega)}^{2}\Big{)}
=\displaystyle= ((dt𝒖n𝒖tn),eξh,n)+1λ(dtξnξtn,eξh,n)αλ(dtΠWp,hpnptn,eξh,n)\displaystyle(\nabla\cdot(d_{t}\bm{u}^{n}-\bm{u}_{t}^{n}),e_{\xi}^{h,n})+\frac{1}{\lambda}(d_{t}\xi^{n}-\xi_{t}^{n},e_{\xi}^{h,n})-\frac{\alpha}{\lambda}(d_{t}\Pi^{W_{p,h}}p^{n}-p_{t}^{n},e_{\xi}^{h,n})
βλ(dtΠWT,hTnTtn,eξh,n)\displaystyle-\frac{\beta}{\lambda}(d_{t}\Pi^{W_{T,h}}T^{n}-T_{t}^{n},e_{\xi}^{h,n})
αλ(dtΠQhξnξtn,eph,n)+(c0+α2λ)(dtΠWp,h,pnptn,eph,n)\displaystyle-\frac{\alpha}{\lambda}(d_{t}\Pi^{Q_{h}}\xi^{n}-\xi_{t}^{n},e_{p}^{h,n})+(c_{0}+\frac{\alpha^{2}}{\lambda})(d_{t}\Pi^{W_{p,h,}}p^{n}-p_{t}^{n},e_{p}^{h,n})
+(αβλb0)(dtΠWT,hTnTtn,eph,n)\displaystyle+(\frac{\alpha\beta}{\lambda}-b_{0})(d_{t}\Pi^{W_{T,h}}T^{n}-T_{t}^{n},e_{p}^{h,n})
βλ(dtΠQhξnξtn,eTh,n)+(αβλb0)(dtΠWp,h,pnptn,eTh,n)\displaystyle-\frac{\beta}{\lambda}(d_{t}\Pi^{Q_{h}}\xi^{n}-\xi_{t}^{n},e_{T}^{h,n})+(\frac{\alpha\beta}{\lambda}-b_{0})(d_{t}\Pi^{W_{p,h,}}p^{n}-p_{t}^{n},e_{T}^{h,n})
+(a0+β2λ)(dtΠWT,hTnTtn,eTh,n).\displaystyle+(a_{0}+\frac{\beta^{2}}{\lambda})(d_{t}\Pi^{W_{T,h}}T^{n}-T_{t}^{n},e_{T}^{h,n}).

Then, applying the summation operator Δtn=1l\Delta t\sum_{n=1}^{l} to both sides of the above equation, we get (4.30). ∎

Divide the interval [0,τ][0,\tau] into ll equal parts and let tnt_{n} represent the time value at the n-th time step, t0=0t_{0}=0 and tl=τt_{l}=\tau. For simplicity, XYX\lesssim Y is used to denote an inequality XCYX\leq CY , where CC is a positive constant independent of mesh sizes hh.

Theorem 4.2.

Let {(𝐮hn,ξhn,phn,Thn)}\{(\bm{u}_{h}^{n},\xi_{h}^{n},p_{h}^{n},T_{h}^{n})\} be the solution of the coupled algorithm, then the following estimates hold:

max0nl[μ𝜺(e𝒖h,n)L2(Ω)2+12λαeph,n+βeTh,neξh,nL2(Ω)2+c0b02eph,nL2(Ω)2\displaystyle\max_{0\leq n\leq l}\Big{[}\mu\|\bm{\varepsilon}(e_{\bm{u}}^{h,n})\|_{L^{2}(\Omega)}^{2}+\frac{1}{2\lambda}\|\alpha e_{p}^{h,n}+\beta e_{T}^{h,n}-e_{\xi}^{h,n}\|_{L^{2}(\Omega)}^{2}+\frac{c_{0}-b_{0}}{2}\|e_{p}^{h,n}\|_{L^{2}(\Omega)}^{2} (4.38)
+a0b02eTh,nL2(Ω)2+b02eph,neTh,nL2(Ω)2]\displaystyle+\frac{a_{0}-b_{0}}{2}\|e_{T}^{h,n}\|_{L^{2}(\Omega)}^{2}+\frac{b_{0}}{2}\|e_{p}^{h,n}-e_{T}^{h,n}\|_{L^{2}(\Omega)}^{2}\Big{]}
+Δtn=1l((𝑲eph,n,eph,n)+(𝚯eTh,n,eTh,n))\displaystyle+\Delta t\sum_{n=1}^{l}\big{(}(\bm{K}\nabla e_{p}^{h,n},\nabla e_{p}^{h,n})+(\bm{\Theta}\nabla e_{T}^{h,n},\nabla e_{T}^{h,n})\big{)}
\displaystyle\leq C~1Δt2+C~2h4,\displaystyle\tilde{C}_{1}\Delta t^{2}+\tilde{C}_{2}h^{4},

where

C~1=C~1(t0τ𝒖ttH1(Ω)2,t0τξttL2(Ω)2,t0τpttL2(Ω)2,t0τTttL2(Ω)2)\displaystyle\tilde{C}_{1}=\tilde{C}_{1}(\int_{t_{0}}^{\tau}\|\bm{u}_{tt}\|_{H^{1}(\Omega)}^{2},\int_{t_{0}}^{\tau}\|\xi_{tt}\|_{L^{2}(\Omega)}^{2},\int_{t_{0}}^{\tau}\|p_{tt}\|_{L^{2}(\Omega)}^{2},\int_{t_{0}}^{\tau}\|T_{tt}\|_{L^{2}(\Omega)}^{2}) (4.39)
C~2=C~2(t0τξtH2(Ω)2,t0τptH2(Ω)2,t0τTtH2(Ω)2),\displaystyle\tilde{C}_{2}=\tilde{C}_{2}(\int_{t_{0}}^{\tau}\|\xi_{t}\|_{H^{2}(\Omega)}^{2},\int_{t_{0}}^{\tau}\|p_{t}\|_{H^{2}(\Omega)}^{2},\int_{t_{0}}^{\tau}\|T_{t}\|_{H^{2}(\Omega)}^{2}),
Proof.

For the initial conditions, we set 𝒖h0=Π𝑽h𝒖0\bm{u}_{h}^{0}=\Pi^{\bm{V}_{h}}\bm{u}^{0}, ξh0=ΠQhξ0\xi_{h}^{0}=\Pi^{Q_{h}}\xi^{0}, ph0=ΠWp,hp0p_{h}^{0}=\Pi^{W_{p,h}}p^{0}, and Th0=ΠWT,hT0T_{h}^{0}=\Pi^{W_{T,h}}T^{0}. Using these definitions, the following inequality is obtained from (4.30).

Ehl+Δtn=1l((𝑲eph,n,eph,n)+(𝚯eTh,n,eTh,n))\displaystyle E_{h}^{l}+\Delta t\sum_{n=1}^{l}\big{(}(\bm{K}\nabla e_{p}^{h,n},\nabla e_{p}^{h,n})+(\bm{\Theta}\nabla e_{T}^{h,n},\nabla e_{T}^{h,n})\big{)} (4.40)
\displaystyle\leq Δtn=1l(((dt𝒖n𝒖tn),eξh,n)+1λ(dtξnξtn,eξh,n)αλ(dtpnptn,eξh,n)\displaystyle\Delta t\sum_{n=1}^{l}\Big{(}(\nabla\cdot(d_{t}\bm{u}^{n}-\bm{u}_{t}^{n}),e_{\xi}^{h,n})+\frac{1}{\lambda}(d_{t}\xi^{n}-\xi_{t}^{n},e_{\xi}^{h,n})-\frac{\alpha}{\lambda}(d_{t}p^{n}-p_{t}^{n},e_{\xi}^{h,n})
βλ(dtTnTtn,eξh,n)\displaystyle-\frac{\beta}{\lambda}(d_{t}T^{n}-T_{t}^{n},e_{\xi}^{h,n})
αλ(dtΠQhξnξtn,eph,n)+(c0+α2λ)(dtΠWp,h,pnptn,eph,n)\displaystyle-\frac{\alpha}{\lambda}(d_{t}\Pi^{Q_{h}}\xi^{n}-\xi_{t}^{n},e_{p}^{h,n})+(c_{0}+\frac{\alpha^{2}}{\lambda})(d_{t}\Pi^{W_{p,h,}}p^{n}-p_{t}^{n},e_{p}^{h,n})
+(αβλb0)(dtΠWT,hTnTtn,eph,n),\displaystyle+(\frac{\alpha\beta}{\lambda}-b_{0})(d_{t}\Pi^{W_{T,h}}T^{n}-T_{t}^{n},e_{p}^{h,n}),
βλ(dtΠQhξnξtn,eTh,n)+(αβλb0)(dtΠWp,h,pnptn,eTh,n)\displaystyle-\frac{\beta}{\lambda}(d_{t}\Pi^{Q_{h}}\xi^{n}-\xi_{t}^{n},e_{T}^{h,n})+(\frac{\alpha\beta}{\lambda}-b_{0})(d_{t}\Pi^{W_{p,h,}}p^{n}-p_{t}^{n},e_{T}^{h,n})
+(a0+β2λ)(dtΠWT,hTnTtn,eTh,n))\displaystyle+(a_{0}+\frac{\beta^{2}}{\lambda})(d_{t}\Pi^{W_{T,h}}T^{n}-T_{t}^{n},e_{T}^{h,n})\Big{)}
:=\displaystyle:= D1+D2+D3+D4+D5+D6+D7+D8+D9+D10.\displaystyle D_{1}+D_{2}+D_{3}+D_{4}+D_{5}+D_{6}+D_{7}+D_{8}+D_{9}+D_{10}.

We now estimate each term on the right-hand side of (4.40). Using the Cauchy-Schwarz inequality, Taylor series expansion, and Proposition 3.1. in [14], we can bound D1D_{1} by

D1=\displaystyle D_{1}= Δtn=1l((dt𝒖n𝒖tn),eξh,n)\displaystyle\Delta t\sum_{n=1}^{l}(\nabla\cdot(d_{t}\bm{u}^{n}-\bm{u}_{t}^{n}),e_{\xi}^{h,n})
=\displaystyle= n=1l((𝒖n𝒖n1Δt𝒖tn),eξh,n)\displaystyle\sum_{n=1}^{l}(\nabla\cdot(\bm{u}^{n}-\bm{u}^{n-1}-\Delta t\bm{u}_{t}^{n}),e_{\xi}^{h,n})
\displaystyle\lesssim 1Δtn=1l𝒖n𝒖n1Δt𝒖tnH1(Ω)2+Δtn=1leξh,nL2(Ω)2\displaystyle\frac{1}{\Delta t}\sum_{n=1}^{l}\|\bm{u}^{n}-\bm{u}^{n-1}-\Delta t\bm{u}_{t}^{n}\|_{H^{1}(\Omega)}^{2}+\Delta t\sum_{n=1}^{l}\|e_{\xi}^{h,n}\|_{L^{2}(\Omega)}^{2}
=\displaystyle= 1Δtn=1ltn1tn𝒖tt(s)(tn1s)𝑑sH1(Ω)2+Δtn=1leξh,nL2(Ω)2\displaystyle\frac{1}{\Delta t}\sum_{n=1}^{l}\|\int_{t_{n-1}}^{t_{n}}\bm{u}_{tt}(s)(t_{n-1}-s)ds\|_{H^{1}(\Omega)}^{2}+\Delta t\sum_{n=1}^{l}\|e_{\xi}^{h,n}\|_{L^{2}(\Omega)}^{2}
\displaystyle\lesssim Δt2t0τ𝒖ttH1(Ω)2+Δtn=1leξh,nL2(Ω)2\displaystyle\Delta t^{2}\int_{t_{0}}^{\tau}\|\bm{u}_{tt}\|_{H^{1}(\Omega)}^{2}+\Delta t\sum_{n=1}^{l}\|e_{\xi}^{h,n}\|_{L^{2}(\Omega)}^{2}

Similarly, D2D_{2} ,D3D_{3} and D4D_{4} can be bounded as follows:

D2=Δtn=1l1λ(dtξnξtn,eξh,n)1λ(Δt2t0τξttL2(Ω)2+Δtn=1leξh,nL2(Ω)2),D_{2}=\Delta t\sum_{n=1}^{l}\frac{1}{\lambda}(d_{t}\xi^{n}-\xi_{t}^{n},e_{\xi}^{h,n})\lesssim\frac{1}{\lambda}(\Delta t^{2}\int_{t_{0}}^{\tau}\|\xi_{tt}\|_{L^{2}(\Omega)}^{2}+\Delta t\sum_{n=1}^{l}\|e_{\xi}^{h,n}\|_{L^{2}(\Omega)}^{2}),\\
D3=Δtn=1lαλ(dtpnptn,eξh,n)αλ(Δt2t0τpttL2(Ω)2+Δtn=1leξh,nL2(Ω)2),D_{3}=\Delta t\sum_{n=1}^{l}\frac{\alpha}{\lambda}(d_{t}p^{n}-p_{t}^{n},e_{\xi}^{h,n})\lesssim\frac{\alpha}{\lambda}(\Delta t^{2}\int_{t_{0}}^{\tau}\|p_{tt}\|_{L^{2}(\Omega)}^{2}+\Delta t\sum_{n=1}^{l}\|e_{\xi}^{h,n}\|_{L^{2}(\Omega)}^{2}),\\

and

D4=Δtn=1lβλ(dtTnTtn,eξh,n)βλ(Δt2t0τTttL2(Ω)2+Δtn=1leξh,nL2(Ω)2).D_{4}=\Delta t\sum_{n=1}^{l}\frac{\beta}{\lambda}(d_{t}T^{n}-T_{t}^{n},e_{\xi}^{h,n})\lesssim\frac{\beta}{\lambda}(\Delta t^{2}\int_{t_{0}}^{\tau}\|T_{tt}\|_{L^{2}(\Omega)}^{2}+\Delta t\sum_{n=1}^{l}\|e_{\xi}^{h,n}\|_{L^{2}(\Omega)}^{2}).\\

By use of estimate (4.26), the Cauchy-Schwarz inequality, Taylor series expansion, and Proposition 3.1. in [14], we see that D5D_{5} satisfies

D5=\displaystyle D_{5}= Δtn=1lαλ(dtΠQhξnξtn,eph,n)\displaystyle-\Delta t\sum_{n=1}^{l}\frac{\alpha}{\lambda}(d_{t}\Pi^{Q_{h}}\xi^{n}-\xi_{t}^{n},e_{p}^{h,n})
=\displaystyle= n=1lαλ(ΠQhξnΠQhξn1Δtξtn,eph,n)\displaystyle-\sum_{n=1}^{l}\frac{\alpha}{\lambda}(\Pi^{Q_{h}}\xi^{n}-\Pi^{Q_{h}}\xi^{n-1}-\Delta t\xi_{t}^{n},e_{p}^{h,n})
=\displaystyle= n=1lαλ(ΠQhξnΠQhξn1(ξnξn1)+(ξnξn1)Δtξtn,eph,n)\displaystyle-\sum_{n=1}^{l}\frac{\alpha}{\lambda}(\Pi^{Q_{h}}\xi^{n}-\Pi^{Q_{h}}\xi^{n-1}-(\xi^{n}-\xi^{n-1})+(\xi^{n}-\xi^{n-1})-\Delta t\xi_{t}^{n},e_{p}^{h,n})
\displaystyle\lesssim αλ(h41Δtn=1lξnξn1H2(Ω)2+Δt2t0τξttL2(Ω)2+Δtn=1leph,nL2(Ω)2)\displaystyle\frac{\alpha}{\lambda}(h^{4}\frac{1}{\Delta t}\sum_{n=1}^{l}\|\xi^{n}-\xi^{n-1}\|_{H^{2}(\Omega)}^{2}+\Delta t^{2}\int_{t_{0}}^{\tau}\|\xi_{tt}\|_{L^{2}(\Omega)}^{2}+\Delta t\sum_{n=1}^{l}\|e_{p}^{h,n}\|_{L^{2}(\Omega)}^{2})
\displaystyle\lesssim αλ(h4t0τξtH2(Ω)2+Δt2t0τξttL2(Ω)2+Δtn=1leph,nL2(Ω)2),\displaystyle\frac{\alpha}{\lambda}(h^{4}\int_{t_{0}}^{\tau}\|\xi_{t}\|_{H^{2}(\Omega)}^{2}+\Delta t^{2}\int_{t_{0}}^{\tau}\|\xi_{tt}\|_{L^{2}(\Omega)}^{2}+\Delta t\sum_{n=1}^{l}\|e_{p}^{h,n}\|_{L^{2}(\Omega)}^{2}),

and similarly,

D6=\displaystyle D_{6}= (c0+α2λ)(dtΠWp,h,pnptn,eph,n)\displaystyle(c_{0}+\frac{\alpha^{2}}{\lambda})(d_{t}\Pi^{W_{p,h,}}p^{n}-p_{t}^{n},e_{p}^{h,n})
\displaystyle\lesssim (c0+α2λ)(h4t0τptH2(Ω)2+Δt2t0τpttL2(Ω)2+Δtn=1leph,nL2(Ω)2),\displaystyle(c_{0}+\frac{\alpha^{2}}{\lambda})(h^{4}\int_{t_{0}}^{\tau}\|p_{t}\|_{H^{2}(\Omega)}^{2}+\Delta t^{2}\int_{t_{0}}^{\tau}\|p_{tt}\|_{L^{2}(\Omega)}^{2}+\Delta t\sum_{n=1}^{l}\|e_{p}^{h,n}\|_{L^{2}(\Omega)}^{2}),
D7=\displaystyle D_{7}= (αβλb0)(dtΠWT,hTnTtn,eph,n)\displaystyle(\frac{\alpha\beta}{\lambda}-b_{0})(d_{t}\Pi^{W_{T,h}}T^{n}-T_{t}^{n},e_{p}^{h,n})
\displaystyle\lesssim (αβλb0)(h4t0τTtH2(Ω)2+Δt2t0τTttL2(Ω)2+Δtn=1leph,nL2(Ω)2),\displaystyle(\frac{\alpha\beta}{\lambda}-b_{0})(h^{4}\int_{t_{0}}^{\tau}\|T_{t}\|_{H^{2}(\Omega)}^{2}+\Delta t^{2}\int_{t_{0}}^{\tau}\|T_{tt}\|_{L^{2}(\Omega)}^{2}+\Delta t\sum_{n=1}^{l}\|e_{p}^{h,n}\|_{L^{2}(\Omega)}^{2}),
D8=\displaystyle D_{8}= βλ(dtΠQhξnξtn,eTh,n)\displaystyle-\frac{\beta}{\lambda}(d_{t}\Pi^{Q_{h}}\xi^{n}-\xi_{t}^{n},e_{T}^{h,n})
\displaystyle\lesssim βλ(h4t0τξtH2(Ω)2+Δt2t0τξttL2(Ω)2+Δtn=1leTh,nL2(Ω)2),\displaystyle\frac{\beta}{\lambda}(h^{4}\int_{t_{0}}^{\tau}\|\xi_{t}\|_{H^{2}(\Omega)}^{2}+\Delta t^{2}\int_{t_{0}}^{\tau}\|\xi_{tt}\|_{L^{2}(\Omega)}^{2}+\Delta t\sum_{n=1}^{l}\|e_{T}^{h,n}\|_{L^{2}(\Omega)}^{2}),
D9=\displaystyle D_{9}= (αβλb0)(dtΠWp,h,pnptn,eTh,n)\displaystyle(\frac{\alpha\beta}{\lambda}-b_{0})(d_{t}\Pi^{W_{p,h,}}p^{n}-p_{t}^{n},e_{T}^{h,n})
\displaystyle\lesssim |αβλb0|(h4t0τptH2(Ω)2+Δt2t0τpttL2(Ω)2+Δtn=1leTh,nL2(Ω)2)\displaystyle|\frac{\alpha\beta}{\lambda}-b_{0}|(h^{4}\int_{t_{0}}^{\tau}\|p_{t}\|_{H^{2}(\Omega)}^{2}+\Delta t^{2}\int_{t_{0}}^{\tau}\|p_{tt}\|_{L^{2}(\Omega)}^{2}+\Delta t\sum_{n=1}^{l}\|e_{T}^{h,n}\|_{L^{2}(\Omega)}^{2})
D10=\displaystyle D_{10}= (a0+β2λ)(dtΠWT,hTnTtn,eTh,n)\displaystyle(a_{0}+\frac{\beta^{2}}{\lambda})(d_{t}\Pi^{W_{T,h}}T^{n}-T_{t}^{n},e_{T}^{h,n})
\displaystyle\lesssim (a0+β2λ)(h4t0τTtH2(Ω)2+Δt2t0τTttL2(Ω)2+Δtn=1leTh,nL2(Ω)2).\displaystyle(a_{0}+\frac{\beta^{2}}{\lambda})(h^{4}\int_{t_{0}}^{\tau}\|T_{t}\|_{H^{2}(\Omega)}^{2}+\Delta t^{2}\int_{t_{0}}^{\tau}\|T_{tt}\|_{L^{2}(\Omega)}^{2}+\Delta t\sum_{n=1}^{l}\|e_{T}^{h,n}\|_{L^{2}(\Omega)}^{2}).

The above bounds lead to

Ehl+Δtn=1l((𝑲eph,n,eph,n)+(𝚯eTh,n,eTh,n))\displaystyle E_{h}^{l}+\Delta t\sum_{n=1}^{l}\big{(}(\bm{K}\nabla e_{p}^{h,n},\nabla e_{p}^{h,n})+(\bm{\Theta}\nabla e_{T}^{h,n},\nabla e_{T}^{h,n})\big{)} (4.41)
\displaystyle\lesssim Δt2t0τ𝒖ttH1(Ω)2+Δt2t0τξttL2(Ω)2+Δt2t0τpttL2(Ω)2+Δt2t0τTttL2(Ω)2\displaystyle\Delta t^{2}\int_{t_{0}}^{\tau}\|\bm{u}_{tt}\|_{H^{1}(\Omega)}^{2}+\Delta t^{2}\int_{t_{0}}^{\tau}\|\xi_{tt}\|_{L^{2}(\Omega)}^{2}+\Delta t^{2}\int_{t_{0}}^{\tau}\|p_{tt}\|_{L^{2}(\Omega)}^{2}+\Delta t^{2}\int_{t_{0}}^{\tau}\|T_{tt}\|_{L^{2}(\Omega)}^{2}
+h4t0τξtH2(Ω)2+h4t0τptH2(Ω)2+h4t0τTtH2(Ω)2,\displaystyle+h^{4}\int_{t_{0}}^{\tau}\|\xi_{t}\|_{H^{2}(\Omega)}^{2}+h^{4}\int_{t_{0}}^{\tau}\|p_{t}\|_{H^{2}(\Omega)}^{2}+h^{4}\int_{t_{0}}^{\tau}\|T_{t}\|_{H^{2}(\Omega)}^{2},

which by the discrete Gronwall’s inequality implies that (4.38) holds. ∎

Theorem 4.3.

Let {(𝐮hn,ξhn,phn,Thn)}\{(\bm{u}_{h}^{n},\xi_{h}^{n},p_{h}^{n},T_{h}^{n})\} be defined by the coupled algorithm,then the following estimates hold:

max0nl[μ𝜺(e𝒖n)L2(Ω)2+12λeξnL2(Ω)2+c0b02epnL2(Ω)2+a0b02eTnL2(Ω)2]\displaystyle\max_{0\leq n\leq l}\Big{[}\mu\|\bm{\varepsilon}(e_{\bm{u}}^{n})\|_{L^{2}(\Omega)}^{2}+\frac{1}{2\lambda}\|e_{\xi}^{n}\|_{L^{2}(\Omega)}^{2}+\frac{c_{0}-b_{0}}{2}\|e_{p}^{n}\|_{L^{2}(\Omega)}^{2}+\frac{a_{0}-b_{0}}{2}\|e_{T}^{n}\|_{L^{2}(\Omega)}^{2}\Big{]} (4.42)
\displaystyle\leq C~1Δt2+C~2h4,\displaystyle\tilde{C}_{1}\Delta t^{2}+\tilde{C}_{2}h^{4},

where C~1\tilde{C}_{1} and C~2\tilde{C}_{2} are defined the same as in Theorem 4.2.

Proof.

By use of the (4.29) and Theorem 4.2, we obtain the estimate (4.42).

5 Numerical experiments

This section presents numerical experiments to assess the computational accuracy and efficiency of the proposed algorithms in Section 3. The objective is to evaluate the performance of the two algorithms under different physical parameter settings. A uniform triangular partition, 𝒯h\mathcal{T}_{h}, is employed to generate the finite element mesh over the domain Ω=[0,1]×[0,1]\Omega=[0,1]\times[0,1], with the terminal time set to τ=0.01\tau=0.01. The time interval is defined as J=[0,τ]J=[0,\tau]. The experiments are conducted using the following benchmark problem. All computations are carried out using the FreeFEM++ software [15].

Example 1: We appropriately select the body force 𝒇\bm{f}, mass source gg, and heat source hh to ensure that the exact solution is

𝒖(x,y,t)=et(sin(2πy)(cos(2πx)1)+1μ+λsin(πx)sin(πy)sin(2πx)(1cos(2πy))+1μ+λsin(πx)sin(πy)),\displaystyle\bm{u}(x,y,t)=e^{-t}\left(\begin{array}[]{c}\sin(2\pi y)(\cos(2\pi x)-1)+\frac{1}{\mu+\lambda}\sin(\pi x)\sin(\pi y)\\ \sin(2\pi x)(1-\cos(2\pi y))+\frac{1}{\mu+\lambda}\sin(\pi x)\sin(\pi y)\\ \end{array}\right),
p(x,y,t)=etsin(πx)sin(πy),\displaystyle p(x,y,t)=e^{-t}\sin(\pi x)\sin(\pi y),
T(x,y,t)=etsin(πx)sin(πy).\displaystyle T(x,y,t)=e^{-t}\sin(\pi x)\sin(\pi y).

The corresponding boundary conditions and initial conditions are given as:

𝒖(x,y,t)=𝟎,p(x,y,t)=0,T(x,y,t)=0,onΩ,\bm{u}(x,y,t)=\bm{0},~{}p(x,y,t)=0,~{}T(x,y,t)=0,\quad\mbox{on}~{}\partial\Omega,

and

𝒖(x,y,0)=(sin(2πy)(cos(2πx)1)+1μ+λsin(πx)sin(πy)sin(2πx)(1cos(2πy))+1μ+λsin(πx)sin(πy)),\displaystyle\bm{u}(x,y,0)=\left(\begin{array}[]{c}\sin(2\pi y)(\cos(2\pi x)-1)+\frac{1}{\mu+\lambda}\sin(\pi x)\sin(\pi y)\\ \sin(2\pi x)(1-\cos(2\pi y))+\frac{1}{\mu+\lambda}\sin(\pi x)\sin(\pi y)\\ \end{array}\right),
p(x,y,0)=sin(πx)sin(πy),\displaystyle p(x,y,0)=\sin(\pi x)\sin(\pi y),
T(x,y,0)=sin(πx)sin(πy).\displaystyle T(x,y,0)=\sin(\pi x)\sin(\pi y).

In the experiments, we use uniform triangular meshes with sizes h=1/16h=1/16, h=1/32h=1/32, h=1/64h=1/64, and h=1/128h=1/128. These meshes are refined by bisecting each triangle through its midpoints. At the terminal time τ\tau, we report the computed L2L^{2}-norm errors for ξ\xi and H1H^{1}-norm errors for 𝒖\bm{u}, pp, and TT, along with their corresponding convergence rates. The term ”iters” denotes the number of iterations used in the iterative decoupling algorithm. Larger time step sizes are intentionally selected in the tests to emphasize the decoupled algorithm’s efficiency and robustness while demonstrating its stability in the absence of restrictive constraints.

For the coupled algorithm (Alg. 1), the time step size is set to Δt=103\Delta t=10^{-3}, requiring 10 steps to reach the terminal time τ\tau. This means that the coupled system (3.2a)–(3.2d) is solved 10 times. For the decoupled algorithm (Alg. 2), two scenarios are considered: Δt=5×103\Delta t=5\times 10^{-3} and Δt=102\Delta t=10^{-2}, corresponding to 2 and 1 time steps, respectively, to reach τ\tau. In these cases, the number of iterations is set to 5 and 10, respectively. Notably, the total number of system solves for (3.3)–(3.4) matches that of Alg. 1, ensuring an equivalent computational cost. This balance is achieved by appropriately selecting Δt\Delta t values and iteration counts. Despite this equivalence in system solves, the computational time for the decoupled algorithm is significantly reduced because solving smaller, independent subproblems is more efficient than solving the coupled system.

Three key observations emerge from the results: 1. Both the coupled and decoupled algorithms achieve optimal convergence rates in energy norm errors, as shown in Tables LABEL:tab:K_Theta_0.1_nu_0.3 through LABEL:tab:a0=b0=c0=0. The decoupled algorithm matches the accuracy of the coupled algorithm while requiring less computational time. 2. The last entries in Tables LABEL:tab:K_Theta_0.1_nu_0.3 through LABEL:tab:a0=b0=c0=0 reveal that increasing the number of iterations from 5 to 10 in the decoupled algorithm leads to slightly lower errors and higher convergence rates. This demonstrates that the algorithm’s accuracy improves with additional iterations. 3. Both algorithms maintain their effectiveness under extreme parameter values, as demonstrated in the subsequent subsections.

These results validate the computational efficiency and stability of the proposed algorithms across varying scenarios.

5.1 Tests for the parameter ν\nu

Table 1: Example 1: The errors and convergence orders with decreasing mesh sizes of coupled and iterative decoupling algorithms. ν=0.3\nu=0.3
hh 𝒖H1\|\bm{u}\|_{H^{1}} rate ξL2\|\xi\|_{L^{2}} rate pH1\|p\|_{H^{1}} rate TH1\|T\|_{H^{1}} rate
Alg.1, Δt=103\Delta t=10^{-3}
1/161/16 1.01028e-01 0.00 5.96583e-03 0.00 2.29827e-01 0.00 2.29827e-01 0.00
1/321/32 2.54166e-02 1.99 1.47953e-03 2.01 1.09760e-01 1.07 1.09760e-01 1.07
1/641/64 6.36417e-03 2.00 3.69057e-04 2.00 5.42034e-02 1.02 5.42034e-02 1.02
1/1281/128 1.59166e-03 2.00 9.20381e-05 2.00 2.70161e-02 1.00 2.70161e-02 1.00
Alg.2,Δt=5×103\Delta t=5\times 10^{-3},iters=5
1/161/16 1.01030e-01 0.00 5.98023e-03 0.00 2.31732e-01 0.00 2.31732e-01 0.00
1/321/32 2.54169e-02 1.99 1.48305e-03 2.01 1.10015e-01 1.07 1.10015e-01 1.07
1/641/64 6.36426e-03 2.00 3.69788e-04 2.00 5.42370e-02 1.02 5.42370e-02 1.02
1/1281/128 1.59168e-03 2.00 9.21223e-05 2.01 2.70211e-02 1.01 2.70211e-02 1.01
Alg.2,Δt=102\Delta t=10^{-2},iters=10
1/161/16 1.01031e-01 0.00 5.99684e-03 0.00 2.34369e-01 0.00 2.34369e-01 0.00
1/321/32 2.54172e-02 1.99 1.48591e-03 2.01 1.10312e-01 1.09 1.10312e-01 1.09
1/641/64 6.36419e-03 2.00 3.69110e-04 2.01 5.42412e-02 1.02 5.42412e-02 1.02
1/1281/128 1.59156e-03 2.00 9.07679e-05 2.02 2.70075e-02 1.01 2.70075e-02 1.01
Table 2: Example 1: The errors and convergence orders with decreasing mesh sizes of coupled and iterative decoupling algorithms. ν=0.49999\nu=0.49999
hh 𝒖H1\|\bm{u}\|_{H^{1}} rate ξL2\|\xi\|_{L^{2}} rate pH1\|p\|_{H^{1}} rate TH1\|T\|_{H^{1}} rate
Alg.1, Δt=103\Delta t=10^{-3}
1/161/16 1.00295e-01 0.00 9.63830e-03 0.00 2.15490e-01 0.00 2.15490e-01 0.00
1/321/32 2.52279e-02 1.99 2.38247e-03 2.02 1.07906e-01 1.00 1.07906e-01 1.00
1/641/64 6.31671e-03 2.00 5.94250e-04 2.00 5.39732e-02 1.00 5.39732e-02 1.00
1/1281/128 1.57979e-03 2.00 1.48471e-04 2.00 2.69891e-02 1.00 2.69891e-02 1.00
Alg.2, Δt=5×103\Delta t=5\times 10^{-3}, iters=5
1/161/16 1.00295e-01 0.00 9.63812e-03 0.00 2.15492e-01 0.00 2.15492e-01 0.00
1/321/32 2.52279e-02 1.99 2.38236e-03 2.02 1.07907e-01 1.00 1.07907e-01 1.00
1/641/64 6.31671e-03 2.00 5.94164e-04 2.00 5.39735e-02 1.00 5.39735e-02 1.00
1/1281/128 1.57979e-03 2.00 1.48397e-04 2.00 2.69893e-02 1.00 2.69893e-02 1.00
Alg.2, Δt=102\Delta t=10^{-2}, iters=10
1/161/16 1.00295e-01 0.00 9.63791e-03 0.00 2.15495e-01 0.00 2.15495e-01 0.00
1/321/32 2.52279e-02 1.99 2.38224e-03 2.02 1.07907e-01 1.00 1.07907e-01 1.00
1/641/64 6.31671e-03 2.00 5.94068e-04 2.00 5.39738e-02 1.00 5.39738e-02 1.00
1/1281/128 1.57979e-03 2.00 1.48328e-04 2.00 2.69895e-02 1.00 2.69895e-02 1.00

In this subsection, we evaluate the performance of the algorithms under various settings of the Poisson ratio ν\nu. For the other parameters, we fix E=1E=1, c0=a0=0.2c_{0}=a_{0}=0.2, b0=0.1b_{0}=0.1, α=β=0.1\alpha=\beta=0.1, and 𝑲=𝚯=0.1𝑰\bm{K}=\bm{\Theta}=0.1\bm{I}, where 𝑰\bm{I} denotes the 2×22\times 2 identity matrix. The data shown in Table LABEL:tab:K_Theta_0.1_nu_0.3, along with the subsequent tables LABEL:tab:_K_1e-6-LABEL:tab:a0=b0=c0=0, are based on a setting where ν=0.3\nu=0.3. These tables represent the situation where the thermo-poroelastic material is compressible.

In Table LABEL:tab:_nu_0.49999, we set a constant Poisson ratio of ν=0.49999\nu=0.49999, while keeping all other physical parameters fixed. Since the Poisson ratio ν\nu is close to 0.50.5 which in other words means λ\lambda\to\infty, the thermo-poroelastic material behaves nearly incompressibly, leading the mixed linear elasticity model to approach the incompressible Stokes model. The results presented in Table LABEL:tab:_nu_0.49999 demonstrate that the energy-norm errors for all algorithms exhibit optimal orders as the material approaches incompressibility, thereby emphasizing the robustness of these algorithms with respect to the parameter ν\nu.

5.2 Tests for the parameters KK and Θ\Theta

Table 3: Example 1: The errors and convergence orders with decreasing mesh sizes of coupled and iterative decoupling algorithms. 𝑲=106𝑰\bm{K}=10^{-6}\bm{I}
hh 𝒖H1\|\bm{u}\|_{H^{1}} rate ξL2\|\xi\|_{L^{2}} rate pH1\|p\|_{H^{1}} rate TH1\|T\|_{H^{1}} rate
Alg.1, Δt=103\Delta t=10^{-3}
1/161/16 1.01039e-01 0.00 6.07933e-03 0.00 2.66261e-01 0.00 2.35294e-01 0.00
1/321/32 2.54193e-02 1.99 1.50919e-03 2.01 1.18339e-01 1.17 1.10485e-01 1.09
1/641/64 6.36485e-03 2.00 3.76523e-04 2.00 5.62194e-02 1.07 5.42944e-02 1.02
1/1281/128 1.59182e-03 2.00 9.38336e-05 2.00 2.74790e-02 1.03 2.70270e-02 1.01
Alg.2, Δt=5×103\Delta t=5\times 10^{-3}, iters=5
1/161/16 1.01040e-01 0.00 6.08908e-03 0.00 2.68502e-01 0.00 2.37202e-01 0.00
1/321/32 2.54196e-02 1.99 1.51189e-03 2.01 1.18668e-01 1.18 1.10762e-01 1.10
1/641/64 6.36496e-03 2.00 3.77393e-04 2.00 5.62122e-02 1.08 5.43382e-02 1.03
1/1281/128 1.59189e-03 2.00 9.43212e-05 2.00 2.74213e-02 1.04 2.70369e-02 1.01
Alg.2, Δt=102\Delta t=10^{-2}, iters=10
1/161/16 1.01041e-01 0.00 6.10036e-03 0.00 2.71376e-01 0.00 2.39870e-01 0.00
1/321/32 2.54196e-02 1.99 1.51238e-03 2.01 1.18975e-01 1.19 1.11050e-01 1.11
1/641/64 6.36474e-03 2.00 3.75044e-04 2.01 5.60370e-02 1.09 5.43245e-02 1.03
1/1281/128 1.59163e-03 2.00 9.15599e-05 2.03 2.72366e-02 1.04 2.70131e-02 1.01
Table 4: Example 1: The errors and convergence orders with decreasing mesh sizes of coupled and iterative decoupling algorithms. 𝚯=106𝑰\bm{\Theta}=10^{-6}\bm{I}
hh 𝒖H1\|\bm{u}\|_{H^{1}} rate ξL2\|\xi\|_{L^{2}} rate pH1\|p\|_{H^{1}} rate TH1\|T\|_{H^{1}} rate
Alg.1, Δt=103\Delta t=10^{-3}
1/161/16 1.01039e-01 0.00 6.07933e-03 0.00 2.35294e-01 0.00 2.66261e-01 0.00
1/321/32 2.54193e-02 1.99 1.50919e-03 2.01 1.10485e-01 1.09 1.18339e-01 1.17
1/641/64 6.36485e-03 2.00 3.76523e-04 2.00 5.42944e-02 1.02 5.62194e-02 1.07
1/1281/128 1.59182e-03 2.00 9.38336e-05 2.00 2.70270e-02 1.01 2.74790e-02 1.03
Alg.2, Δt=5×103\Delta t=5\times 10^{-3}, iters=5
1/161/16 1.01040e-01 0.00 6.08908e-03 0.00 2.37202e-01 0.00 2.68502e-01 0.00
1/321/32 2.54196e-02 1.99 1.51189e-03 2.01 1.10762e-01 1.10 1.18668e-01 1.18
1/641/64 6.36496e-03 2.00 3.77393e-04 2.00 5.43382e-02 1.03 5.62122e-02 1.08
1/1281/128 1.59189e-03 2.00 9.43212e-05 2.00 2.70369e-02 1.01 2.74213e-02 1.04
Alg.2, Δt=102\Delta t=10^{-2}, iters=10
1/161/16 1.01041e-01 0.00 6.10036e-03 0.00 2.39870e-01 0.00 2.71376e-01 0.00
1/321/32 2.54196e-02 1.99 1.51238e-03 2.01 1.11050e-01 1.11 1.18975e-01 1.19
1/641/64 6.36474e-03 2.00 3.75044e-04 2.01 5.43245e-02 1.03 5.60370e-02 1.09
1/1281/128 1.59163e-03 2.00 9.15599e-05 2.03 2.70131e-02 1.01 2.72366e-02 1.04
Table 5: Example 1: The errors and convergence orders with decreasing mesh sizes of coupled and iterative decoupling algorithms. 𝑲=106𝑰,𝚯=106𝑰\bm{K}=10^{-6}\bm{I},\bm{\Theta}=10^{-6}\bm{I}
hh 𝒖H1\|\bm{u}\|_{H^{1}} rate ξL2\|\xi\|_{L^{2}} rate pH1\|p\|_{H^{1}} rate TH1\|T\|_{H^{1}} rate
Alg.1, Δt=103\Delta t=10^{-3}
1/161/16 1.01060e-01 0.00 6.30251e-03 0.00 3.13011e-01 0.00 3.13011e-01 0.00
1/321/32 2.54251e-02 1.99 1.57062e-03 2.00 1.32705e-01 1.24 1.32705e-01 1.24
1/641/64 6.36635e-03 2.00 3.92445e-04 2.00 6.01621e-02 1.14 6.01621e-02 1.14
1/1281/128 1.59219e-03 2.00 9.77413e-05 2.01 2.84617e-02 1.08 2.84617e-02 1.08
Alg.2, Δt=5×103\Delta t=5\times 10^{-3}, iters=5
1/161/16 1.01060e-01 0.00 6.29942e-03 0.00 3.12563e-01 0.00 3.12563e-01 0.00
1/321/32 2.54252e-02 1.99 1.57117e-03 2.00 1.32870e-01 1.23 1.32870e-01 1.23
1/641/64 6.36653e-03 2.00 3.94108e-04 2.00 6.05260e-02 1.13 6.05260e-02 1.13
1/1281/128 1.59241e-03 2.00 9.99148e-05 1.98 2.89124e-02 1.07 2.89124e-02 1.07
Alg.2, Δt=102\Delta t=10^{-2}, iters=10
1/161/16 1.01060e-01 0.00 6.29765e-03 0.00 3.12246e-01 0.00 3.12246e-01 0.00
1/321/32 2.54246e-02 1.99 1.56551e-03 2.01 1.31875e-01 1.24 1.31875e-01 1.24
1/641/64 6.36589e-03 2.00 3.87375e-04 2.01 5.93113e-02 1.15 5.93113e-02 1.15
1/1281/128 1.59179e-03 2.00 9.32757e-05 2.05 2.77070e-02 1.10 2.77070e-02 1.10

In this subsection, we investigate the accuracy of the algorithms under varying settings of hydraulic conductivity 𝑲\bm{K} and effective thermal conductivity 𝚯\bm{\Theta}. For reference, we have already tested the case 𝑲=𝚯=0.1𝑰\bm{K}=\bm{\Theta}=0.1\bm{I} in Table LABEL:tab:K_Theta_0.1_nu_0.3 in previous experiments. In the current tests (Table LABEL:tab:_K_1e-6-Table LABEL:tab:K_Theta_1e-6), we set (𝑲,𝚯)=(106𝑰,0.1𝑰)(\bm{K},\bm{\Theta})=(10^{-6}\bm{I},0.1\bm{I}), (𝑲,𝚯)=(0.1𝑰,106𝑰)(\bm{K},\bm{\Theta})=(0.1\bm{I},10^{-6}\bm{I}), and (𝑲,𝚯)=(106𝑰,106𝑰)(\bm{K},\bm{\Theta})=(10^{-6}\bm{I},10^{-6}\bm{I}), respectively, to observe the impact of significantly smaller conductivity values on the solution accuracy. The remaining key parameters are fixed as E=1E=1, c0=a0=0.2c_{0}=a_{0}=0.2, b0=0.1b_{0}=0.1, α=β=0.1\alpha=\beta=0.1, and ν=0.3\nu=0.3. We present the numerical results obtained using Alg. 1 (the coupled algorithm) and Alg. 2 (the iterative decoupling algorithm), with varying numbers of iterations, in Tables LABEL:tab:_K_1e-6 through LABEL:tab:K_Theta_1e-6.

By comparing the results from Tables LABEL:tab:_K_1e-6 and LABEL:tab:K_Theta_1e-6 with those in Table LABEL:tab:K_Theta_0.1_nu_0.3, we observe that all algorithms continue to produce solutions with optimal convergence rates. This indicates that the algorithms remain effective and robust, even when hydraulic and thermal conductivities are significantly reduced, further validating their performance under a wide range of physical conditions.

5.3 Tests for the parameter a0,b0,c0a_{0},b_{0},c_{0}

In this subsection, we investigate the influence of the effective thermal parameter a0a_{0}, the thermal dilation coefficient b0b_{0}, and the specific storage coefficient c0c_{0} on the accuracy of the algorithms. As discussed in Remark 1, the case c0b0=a0b0=0c_{0}-b_{0}=a_{0}-b_{0}=0 may affect the convergence rate of the iterative decoupling algorithms. To evaluate this, Table LABEL:tab:a0=b0=c0=0 presents the limiting scenario where the coefficients a0a_{0}, b0b_{0}, and c0c_{0} are all set to zero. For the remaining parameters, we fix E=1E=1, α=β=0.1\alpha=\beta=0.1, and 𝑲=𝚯=0.1𝑰\bm{K}=\bm{\Theta}=0.1\bm{I}.

Table 6: Example 1: The errors and convergence orders with decreasing mesh sizes of coupled and iterative decoupling algorithms. a0=b0=c0=0a_{0}=b_{0}=c_{0}=0
hh 𝒖H1\|\bm{u}\|_{H^{1}} rate ξL2\|\xi\|_{L^{2}} rate pH1\|p\|_{H^{1}} rate TH1\|T\|_{H^{1}} rate
Alg.1, Δt=103\Delta t=10^{-3}
1/161/16 1.01017e-01 0.00 5.86499e-03 0.00 2.18610e-01 0.00 2.18610e-01 0.00
1/321/32 2.54138e-02 1.99 1.45400e-03 2.01 1.08332e-01 1.01 1.08332e-01 1.01
1/641/64 6.36347e-03 2.00 3.62641e-04 2.00 5.40235e-02 1.00 5.40235e-02 1.00
1/1281/128 1.59148e-03 2.00 9.04325e-05 2.00 2.69935e-02 1.00 2.69935e-02 1.00
Alg.2, Δt=5×103\Delta t=5\times 10^{-3}, iters=5
1/161/16 1.01050e-01 0.00 6.19651e-03 0.00 2.48520e-01 0.00 2.48520e-01 0.00
1/321/32 2.54262e-02 1.99 1.57535e-03 1.98 1.14200e-01 1.12 1.14200e-01 1.12
1/641/64 6.37219e-03 2.00 4.59498e-04 1.78 5.61495e-02 1.02 5.61495e-02 1.02
1/1281/128 1.60655e-03 1.99 2.39721e-04 0.94 2.88472e-02 0.96 2.88472e-02 0.96
Alg.2, Δt=102\Delta t=10^{-2}, iters=10
1/161/16 1.01126e-01 0.00 6.95719e-03 0.00 3.08253e-01 0.00 3.08253e-01 0.00
1/321/32 2.54412e-02 1.99 1.73121e-03 2.01 1.21121e-01 1.35 1.21121e-01 1.35
1/641/64 6.36954e-03 2.00 4.24246e-04 2.03 5.55013e-02 1.13 5.55013e-02 1.13
1/1281/128 1.59228e-03 2.00 9.84554e-05 2.11 2.70932e-02 1.03 2.70932e-02 1.03

A comparison of the second entry in Table LABEL:tab:a0=b0=c0=0 with the corresponding entry in Table LABEL:tab:K_Theta_0.1_nu_0.3 reveals that setting a0=b0=c0=0a_{0}=b_{0}=c_{0}=0 leads to a slight degradation in the errors and convergence rates for the iterative decoupling algorithm (Alg. 2). However, when the number of iterations increases to 1010, errors and rates reach optimal levels, as shown in the third entry of Table LABEL:tab:a0=b0=c0=0. These results confirm that the energy norm errors for all algorithms maintain optimal convergence orders, underscoring their robustness with respect to the parameters a0a_{0}, b0b_{0}, and c0c_{0}.

6 Conclusions

In this paper, we propose a novel algorithm designed to decouple the computations of the linear thermo-poroelastic model, based on a newly developed four-field formulation. The algorithm effectively separates the numerical computations into two sub-models, streamlining the overall computational process. We perform a comprehensive error analysis to establish the algorithm’s unconditional stability and optimal convergence. Furthermore, numerical experiments are performed to validate the theoretical error estimates. The results demonstrate that the proposed algorithm is unconditionally stable, computationally efficient, and achieves optimal convergence rates even under widely varying parameter settings or in the limiting cases of parameters, highlighting its robustness and reliability for addressing thermo-poroelastic problems.

Acknowledgments

The work of M. Cai is partially supported by the NIH-RCMI award (Grant No. 347U54MD013376) and the affiliated project award from the Center for Equitable Artificial Intelligence and Machine Learning Systems (CEAMLS) at Morgan State University (project ID 02232301). The work of J. Li and Z. Li are partially supported by the Shenzhen Sci-Tech Fund No. RCJC20200714114556020, Guangdong Basic and Applied Research Fund No. 2023B1515250005. The work of Q. Liu is partially supported by the NSFC (12271186, 12271178), the Guangdong Basic and Applied Basic Research Foundation (2022B1515120009), and the Science and Technology Program of Shenzhen, China(20231121110406001).

References

  • [1] Paola F Antonietti, Stefano Bonetti, and Michele Botti. Discontinuous Galerkin approximation of the fully coupled thermo-poroelastic problem. SIAM Journal on Scientific Computing, 45(2):A621–A645, 2023.
  • [2] Francesco Ballarin, Sanghyun Lee, and Son-Young Yi. Projection-based reduced order modeling of an iterative scheme for linear thermo-poroelasticity. Results in Applied Mathematics, 21:100430, 2024.
  • [3] Maurice A Biot. General theory of three-dimensional consolidation. Journal of applied physics, 12(2):155–164, 1941.
  • [4] Maurice A Biot. Theory of elasticity and consolidation for a porous anisotropic solid. Journal of applied physics, 26(2):182–185, 1955.
  • [5] Stefano Bonetti, Michele Botti, and Paola F Antonietti. Robust discontinuous Galerkin-based scheme for the fully-coupled nonlinear thermo-hydro-mechanical problem. IMA Journal of Numerical Analysis, page drae045, 2024.
  • [6] Susanne C Brenner. Korn’s inequalities for piecewise H1H^{1} vector fields. Mathematics of Computation, pages 1067–1087, 2004.
  • [7] Mats K Brun, Inga Berre, Jan M Nordbotten, and Florin A Radu. Upscaling of the coupling of hydromechanical and thermal processes in a quasi-static poroelastic medium. Transport in Porous Media, 124:137–158, 2018.
  • [8] Mats Kirkesæther Brun, Elyes Ahmed, Inga Berre, Jan Martin Nordbotten, and Florin Adrian Radu. Monolithic and splitting solution schemes for fully coupled quasi-static thermo-poroelasticity with nonlinear convective transport. Computers & Mathematics with Applications, 80(8):1964–1984, 2020.
  • [9] Mats Kirkesæther Brun, Elyes Ahmed, Jan Martin Nordbotten, and Florin Adrian Radu. Well-posedness of the fully coupled quasi-static thermo-poroelastic equations with nonlinear convective transport. Journal of Mathematical Analysis and Applications, 471(1-2):239–266, 2019.
  • [10] Yuxiang Chen and Zhihao Ge. Multiphysics finite element method for quasi-static thermo-poroelasticity. Journal of Scientific Computing, 92(2):43, 2022.
  • [11] Philippe G Ciarlet. The finite element method for elliptic problems. SIAM, 2002.
  • [12] Xiaobing Feng, Zhihao Ge, and Yukun Li. Analysis of a multiphysics finite element method for a poroelasticity model. IMA Journal of Numerical Analysis, 38(1):330–359, 03 2017.
  • [13] Zhihao Ge and Dandan Xu. Analysis of multiphysics finite element method for quasi-static thermo-poroelasticity with a nonlinear convective transport term. arXiv preprint arXiv:2310.05084, 2023.
  • [14] H. Gu, M. Cai, Jingzhi Li, and Guoliang Ju. A priori error estimates of two monolithic schemes for biot’s consolidation model. Numerical Methods for Partial Differential Equations, 2023.
  • [15] Frédéric Hecht. New development in freefem++. In J. Num. Math., 2012.
  • [16] Guoliang Ju, Mingchao Cai, Jingzhi Li, and Jing Tian. Parameter-robust multiphysics algorithms for biot model with application in brain edema simulation. Mathematics and Computers in Simulation (MATCOM), 177, 2020.
  • [17] Jihoon Kim. Unconditionally stable sequential schemes for all-way coupled thermoporomechanics: Undrained-adiabatic and extended fixed-stress splits. Computer Methods in Applied Mechanics and Engineering, 341:93–112, 2018.
  • [18] Alexandr E Kolesov, Petr N Vabishchevich, and Maria V Vasilyeva. Splitting schemes for poroelasticity and thermoelasticity problems. Computers & Mathematics with Applications, 67(12):2185–2198, 2014.
  • [19] Jeonghun J Lee, Kent-Andre Mardal, and Ragnar Winther. Parameter-robust discretization and preconditioning of Biot’s consolidation model. SIAM Journal on Scientific Computing, 39(1):A1–A24, 2017.
  • [20] Ricardo Oyarzúa and Ricardo Ruiz-Baier. Locking-free finite element methods for poroelasticity. SIAM Journal on Numerical Analysis, 54(5):2951–2973, 2016.
  • [21] J. Rutqvist, Y. S. Wu, C. F. Tsang, and G. Bodvarsson. A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock. International Journal of Rock Mechanics and Mining Sciences, 39(4):429–442, 2002.
  • [22] Karl Terzaghi. Theoretical soil mechanics. 1943.
  • [23] N. Watanabe, B. Zehner, W. Wang, C. I. Mcdermott, and O. Kolditz. Numerical analysis and visualization of uncertainty effects in thermo-hydro-mechanical coupled processes in a hot-dry-rock geothermal reservoir. IAHS-AISH publication, pages 57–62, 2011.
  • [24] J. L Yow and J. R Hunt. Coupled processes in rock mass performance with emphasis on nuclear waste isolation. International Journal of Rock Mechanics and Mining Sciences, 39(2):143–150, 2002.
  • [25] Jing Zhang and Hongxing Rui. Galerkin method for the fully coupled quasi-static thermo-poroelastic problem. Computers & Mathematics with Applications, 118:95–109, 2022.
  • [26] Jing Zhang and Hongxing Rui. The mfe-cfe-gfe method for the fully coupled quasi-static thermo-poroelastic problem. Numer. Math. Theor. Meth. Appl., 16:792–819, 2023.
  • [27] Jing Zhang and Hongxing Rui. A coupling of Galerkin and mixed finite element methods for the quasi-static thermo-poroelasticity with nonlinear convective transport. Journal of Computational and Applied Mathematics, 441:115672, 2024.