This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Efficacy of the symmetry-adapted basis for ab initio nucleon-nucleus interactions
for light- and intermediate-mass nuclei

A. Mercenne Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA Center for Theoretical Physics, Sloane Physics Laboratory, Yale University, New Haven, Connecticut 06520, USA    K. D. Launey Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA    T. Dytrych Nuclear Physics Institute, Academy of Sciences of the Czech Republic, 25068 Řež, Czech Republic    J. E. Escher Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA    S. Quaglioni Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA    G. H. Sargsyan Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA    J. P. Draayer Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA
Abstract

We study the efficacy of a new ab initio framework that combines the symmetry-adapted (SA) no-core shell-model approach with the resonating group method (RGM) for unified descriptions of nuclear structure and reactions. We obtain ab initio neutron-nucleus interactions for 4He, 16O, and 20Ne targets, starting with realistic nucleon-nucleon potentials. We discuss the effect of increasing model space sizes and symmetry-based selections on the SA-RGM norm and direct potential kernels, as well as on phase shifts, which are the input to calculations of cross sections. We demonstrate the efficacy of the SA basis and its scalability with particle numbers and model space dimensions, with a view toward ab initio descriptions of nucleon scattering and capture reactions up through the medium-mass region.

pacs:
Valid PACS appear here
preprint: APS/123-QED

I Introduction

Ab initio descriptions of spherical and deformed nuclei up through the calcium region are now possible within a no-core shell-model framework, by utilizing emerging symplectic symmetry in nuclei. In particular, the symmetry-adapted no-core shell-model (SA-NCSM) Launey et al. (2016); Dytrych et al. (2020) uses a physically relevant symmetry-adapted (SA) basis that can achieve significantly reduced model spaces compared to the corresponding complete ultra-large model spaces, without compromising the accuracy of results for various observables Dytrych et al. (2015); Launey et al. (2016); Baker et al. (2020a). This enables the SA-NCSM to accommodate contributions from more shells and to describe heavier nuclei, such as 20Ne Dytrych et al. (2020), 21Mg Ruotsalainen et al. (2019), 22Mg Henderson et al. (2018), 28Mg Williams et al. (2019), as well as 32Ne and 48Ti Launey et al. (2018, 2021). The access to higher-lying shells makes the SA basis suitable for describing nuclear reactions Launey et al. (2021), the processes that are typically studied in experiments and govern stellar evolution. Remarkable progress has been made in first-principle descriptions to scattering and nuclear reactions for light nuclei (for an overview, see Johnson et al. (2020); Quaglioni and Navrátil (2020)), including studies of elastic scattering Nollett et al. (2007); Hagen et al. (2007); Quaglioni and Navrátil (2008a); Elhatisari et al. (2015); Zhang et al. (2020); Mercenne et al. (2019); Burrows et al. (2020), photoabsorption Bacca et al. (2014), transfer Navrátil and Quaglioni (2012) and capture reactions Girlanda et al. (2010), α\alpha widths Kravvaris and Volya (2017); Dreyfuss et al. (2020) and resonant states Lazauskas et al. (2019), as well as thermonuclear fusion Hupin et al. (2019). In this paper, we show that expanding the reach of ab initio reactions to deformed and heavier targets is now feasible with the SA basis.

Microscopic approaches to nuclear reactions take into account nucleon degrees of freedom along with their correlations within and among the reaction fragments. Coupled with realistic inter-nucleon interactions, such as the ones derived in the framework of chiral effective field theory Bedaque and van Kolck (2002); Epelbaum et al. (2002); Entem and Machleidt (2003); Epelbaum (2006), these approaches provide ab initio calculations of reaction observables. One of the earliest and very successful microscopic approaches to nuclear reactions is the resonating-group method (RGM) Wildermuth and Tang (1977); Tang et al. (1978). In the RGM, nucleons are organized within different groups, or clusters, “resonating” through the inter-cluster exchange of nucleons. Most importantly, the cluster system is translationally invariant, and the Pauli exclusion principle is enforced by the antisymmetrization between the different clusters. All of these features make this method particularly suitable for unified descriptions of nuclear structure and reaction observables. Following the success of the Elliott model Elliott (1958a, b), showing that a leading (most deformed) SU(3)\mathrm{SU}(3) shell-model configuration describes reasonably well the ground-state rotational band in intermediate-mass nuclei, the RGM has been extensively used with an SU(3)\mathrm{SU}(3) basis and its no-core shell-model extension, the symplectic Sp(3,)\mathrm{Sp}(3,\mathbb{R}) basis Hecht (1977); Hecht and Zahn (1978); Hecht and Suzuki (1982). Applications of the model with Gaussian interactions have successfully calculated α\alpha and 8Be cluster amplitudes, spectroscopic amplitudes for heavy-fragment clusters, and sub-Coulomb 12C+12C resonances Hecht et al. (1981); Hecht and Braunschweig (1978); Suzuki and Hecht (1982). The formalism has been extended by utilizing a mixed no-core shell-model Sp(3,)\mathrm{Sp}(3,\mathbb{R}) plus RGM cluster basis Suzuki (1986); Suzuki and Hecht (1986, 1987), and applied to studies of the monopole and quadrupole strengths in light nuclei Suzuki (1987); Suzuki and Hara (1989), as well as the α\alpha+12C cluster system Suzuki (1976a, b); Suzuki et al. (2003).

More recently, a successful first-principle description of scattering and reactions has been realized by implementing the RGM using ab initio NCSM Navrátil et al. (2009); Barrett et al. (2013) wave functions for the clusters in a formalism known as NCSM/RGM Quaglioni and Navrátil (2008b, 2009); Hupin et al. (2013) and, later, by fully combining the two approaches into the generalized ab initio cluster expansion of the no-core shell model with continuum (NCSMC) Baroni et al. (2013a, b). These methods, which have enabled predictions of nucleon Hupin et al. (2014); Calci et al. (2016), deuteron Hupin et al. (2015) and alpha Kravvaris et al. (2020) scattering off light targets, as well as polarized deuterium-tritium fusion Hupin et al. (2019) from chiral nucleon-nucleon (NN) and three—nucleon (3N) forces, are reviewed in Refs. Navrátil et al. (2016); Quaglioni and Navrátil (2020).

In addition, the Gamow shell model coupled-channel approach combines the RGM with a continuum core-valence shell approach and allows for descriptions of nuclear reactions of heavier systems Jaganathen et al. (2014); Fossez et al. (2015); Mercenne et al. (2019).

The goal of this paper is to show the efficacy of a new approach that can extend the study of ab initio reactions to medium mass nuclei by using the SA-NCSM approach Launey et al. (2016); Dytrych et al. (2020). The SA framework takes advantage of symmetries inherent to nuclei and of group theoretical algorithms, and reorganizes the model space into a physically relevant basis. This allows us to account for the relevant correlations within only a few dominant components and, hence, achieve manageable Hamiltonian matrix sizes. In this paper, we present a new formalism of the RGM, one that admits the use of the SA basis, and we demonstrate the capability and potential of the approach for light and intermediate-mass nuclei. The formalism of the SA-RGM framework is presented in Sec. II, where we discuss RGM kernels computed using the SA basis. The sensitivity of the kernels on different selected model spaces and model space sizes is discussed in Sec. III.1 for a 4He target and in Sec. III.2 for intermediate-mass 16O and 20Ne targets. Section III.3 presents an analysis of the basis dimension and its scaling with model space sizes and particle numbers. Finally, Sec. IV outlines the conclusions.

II Theoretical framework

Traditionally, the RGM adopts microscopic cluster wave functions as basis functions to describe the motion of a system of two or more clusters (see, e.g., Refs. Quaglioni and Navrátil (2009); Quaglioni et al. (2013)). We consider two nuclear fragments, or binary-cluster nuclear reactions. For two clusters AA and aa, the cluster states for a channel cc are defined as:

|ΦcrJπM=\displaystyle\ket{{\Phi}_{cr}^{J^{\pi}M}}= {{|(A)𝔞1I1π1×|(a)𝔞2I2π2}I×Y(r^A,a)}JπM\displaystyle{\{\{{\ket{(A)\mathfrak{a}_{1}I_{1}^{\pi_{1}}}\times\ket{(a)\mathfrak{a}_{2}I_{2}^{\pi_{2}}}}\}^{I}\times Y_{\ell}({\hat{r}}_{A,a})\}^{J^{\pi}M}} (1)
×δ(rrA,a)rrA,a,\displaystyle\times\frac{\delta(r-{r}_{A,a})}{r{r}_{A,a}},

where the cluster system is defined for a channel c={𝔞1,I1π1,𝔞2,I2π2,I,}c=\{\mathfrak{a}_{1},I_{1}^{\pi_{1}},\mathfrak{a}_{2},I_{2}^{\pi_{2}},I,\ell\}, which is labeled by the angular momentum (spin) and parity of each of the clusters and the total spin of the clusters II (the labels 𝔞1\mathfrak{a}_{1} and 𝔞2\mathfrak{a}_{2} denote all other quantum numbers needed to fully characterize their respective states), and the orbital momentum ll. For particle laboratory coordinates ri\vec{r}_{i} (used in this study), the separation distance between the center-of-mass of the two clusters is determined from rA,a=1Ai=1Ari1ai=A+1A+ari{\vec{r}}_{A,a}={1\over A}\sum_{i=1}^{A}\vec{r}_{i}-{1\over a}\sum_{i=A+1}^{A+a}\vec{r}_{i}. The distance rr between the clusters defines the cluster states and the RGM kernels, as shown below, and as an integration variable facilitates the treatment of the inter-cluster antisymmetrization. Namely, the A+aA+a nuclear wave function is expressed in terms of the cluster states as

|ΨJπ=cr𝑑rr2gcJπ(r)r𝒜c|ΦcrJπ,\ket{{\Psi}^{J^{\pi}}}=\sum_{c}\int_{r}dr{r}^{2}\frac{g^{J^{\pi}}_{c}(r)}{r}{\mathcal{A}_{c}}\ket{{\Phi}_{cr}^{J^{\pi}}}\;, (2)

with unknown amplitudes gcJπ(r){{g}_{c}^{J^{\pi}}(r)} that are determined by solving the integral Hill-Wheeler equations for a given total energy EE in the A+aA+a center-of-mass frame:

c𝑑rr2[Hcc(r,r)ENcc(r,r)]gcJπ(r)r=0.\sum_{c}\int dr{r}^{2}\left[{H}_{c^{\prime}c}(r^{\prime},r)-E{N}_{c^{\prime}c}(r^{\prime},r)\right]\frac{{g}_{c}^{J^{\pi}}(r)}{r}=0. (3)

Here, Hcc(r,r)=ΦcrJπ|𝒜cH^𝒜c|ΦcrJπH_{c^{\prime}c}(r^{\prime},r)={\bra{{\Phi}_{c^{\prime}r^{\prime}}^{J^{\pi}}}{\mathcal{A}}_{c^{\prime}}\hat{H}{\mathcal{A}}_{c}\ket{{\Phi}_{cr}^{J^{\pi}}}} is the Hamiltonian kernel and Ncc(r,r)=ΦcrJπ|𝒜c𝒜c|ΦcrJπN_{c^{\prime}c}(r^{\prime},r)={\bra{{\Phi}_{c^{\prime}r^{\prime}}^{J^{\pi}}}{\mathcal{A}}_{c^{\prime}}{\mathcal{A}}_{c}\ket{{\Phi}_{cr}^{J^{\pi}}}} is the norm kernel, where 𝒜{{\mathcal{A}}} is the inter-cluster antisymmetrizer. The kernels are computed by using the microscopic wave functions of the clusters that can be obtained in the ab initio NCSM and SA-NCSM. Once the kernels are computed, Eq. (3) can then be solved using the microscopic R{R}-matrix approach Descouvemont and Baye (2010); Descouvemont (2016).

In the SA-RGM, the target nucleus of AA particles is described by SA-NCSM many-body wave functions. In the SA-NCSM, the many-body basis is labeled by irreducible representations (irreps) according to the group chain Elliott (1958a, b):

[SU(3)(λμ)𝜅SO(3)LSO(2)ML][SU(2)SSU(1)MS].\left[{\text{SU}(3)}_{(\lambda\,\mu)}\underset{\kappa}{\supset}{\text{SO}(3)}_{L}\supset{\text{SO}(2)}_{{M}_{L}}\right]\otimes\left[\mathrm{SU}(2)_{S}\supset\mathrm{SU}(1)_{M_{S}}\right]. (4)

The (λμ){(\lambda\,\mu)} quantum numbers label an SU(3)\mathrm{SU}(3) irrep and can be related to the average deformation through the established link with the well-known parameters, deformation β{\beta} and triaxiality γ{\gamma} Castaños et al. (1988); Mustonen et al. (2018). The label κ{\kappa} distinguishes multiple occurrences of the same orbital momentum L{L} in the parent irrep (λμ){(\lambda\,\mu)}, and ML{M}_{L} is the projection. These quantum numbers define the spatial degrees of freedom, which can then be coupled to the intrinsic spin (SS) to yield a good total angular momentum.

Specifically, a target state with total angular momentum and parity I1π1{I_{1}}^{\pi_{1}} (and projection M1{M_{1}}) is constructed in terms of the SA basis:

|(A)𝔞1I1π1M1=𝔟1ω1κ1L1S1C𝔟1ω1κ1L1S1I1|𝔟1ω1κ1(L1S1)I1π1M1,\ket{(A)\mathfrak{a}_{1}I_{1}^{\pi_{1}}M_{1}}=\!\!\!\sum_{\begin{subarray}{c}{\mathfrak{b}}_{1}\omega_{1}\\ \kappa_{1}L_{1}S_{1}\end{subarray}}{C}_{{\mathfrak{b}}_{1}}^{{\omega}_{1}{\kappa}_{1}L_{1}{S}_{1}I_{1}}\ket{{\mathfrak{b}}_{1}\omega_{1}\kappa_{1}(L_{1}S_{1})I_{1}^{\pi_{1}}M_{1}}, (5)

where the labels are defined as 𝔟{ωpωnρN;SpSn}\mathfrak{b}\equiv\left\{\dots\omega_{\rm p}{\omega}_{\rm n}\rho N;{S}_{\rm p}{S}_{\rm n}\right\} and deformation ω(λμ)\omega\equiv(\lambda\,\mu) (it is understood that the coefficients CC are for given π1{\pi_{1}}, which is omitted from labeling). Protons and neutrons are labeled by p and n, respectively, and SS labels the intrinsic spin (“\dots” denotes all additional quantum numbers including 𝔞1\mathfrak{a}_{1}). The SU(3)\mathrm{SU}(3) outer multiplicity ρ{\rho} Draayer et al. (1989) results from the coupling of the proton deformation with that of neutrons to total deformation ω1\omega_{1}. N{N} labels the total HO excitations above the valence-shell configuration and is truncated at a maximum value (NNmaxN\leq N_{\rm max}), which determines the model space size.

For a single-particle projectile, the SA-RGM channel basis states can thus be defined for a channel {ν1;ν}={ω1κ1(L1S1);ωκ(LS)}\{{\nu_{1};\nu}\}=\{{\omega}_{1}{\kappa}_{1}(L_{1}{S}_{1});\omega\kappa(LS)\} [related to channel cc in Eq. (19)] as:

|Φν1I1;ηνJπM=𝔟1C𝔟1ν1I1{|𝔟1ω1S1×|(η 0)12}νJM,\ket{{\Phi}_{\nu_{1}I_{1};\eta}^{\nu J^{\pi}M}}=\sum_{{\mathfrak{b}}_{1}}{C}_{{\mathfrak{b}}_{1}}^{\nu_{1}I_{1}}{\left\{\ket{{\mathfrak{b}}_{1}{\omega}_{1}{S}_{1}}\times\ket{(\eta\,0){1\over 2}}\right\}}^{\nu JM}, (6)

where the SU(3)\mathrm{SU}(3) basis states for the target are coupled to the HO single-particle states of the projectile with (η 0)(\eta\,0) SU(3) quantum numbers and spin 12{1\over 2} (we will omit the parity π\pi from the notation throughout the paper for simplicity). We note that the SU(3) outer multiplicity associated with the coupling of ω1\omega_{1} and (η 0)(\eta\,0) is 1, and hence, omitted from the notations. Remarkably, there is no dependence on the orbital momentum of the projectile, only on the shell number it occupies, η\eta. Furthermore, the summation over 𝔟1{{\mathfrak{b}}_{1}} implies that the SA-RGM basis requires only a part of the information present in the SA basis.

The SA-RGM basis is used to calculate the RGM kernels, which is the main computational task in RGM Quaglioni and Navrátil (2009). These include the norm kernel, which is the overlap between antisymmetrized non-orthogonal RGM basis states. It consists of a direct part (a Dirac delta function), which dominates at large relative distances, and an exchange part that takes into account the Pauli principle at short distances. The exchange norm kernel is related to the permutation operator PA,A+1{{{P}}_{A,A+1}} that exchanges the nucleon projectile with another nucleon within the target, thereby ensuring antisymmetrization (cf. Quaglioni and Navrátil (2009)):

Nccex(r,r)\displaystyle{N}_{c^{\prime}c}^{\text{ex}}(r^{\prime},r) =ΦcrJM|i=1AP^i,A+1|ΦcrJM\displaystyle=-\bra{{\Phi}_{c^{\prime}r^{\prime}}^{JM}}\sum_{i=1}^{A}{\hat{P}}_{i,A+1}\ket{{\Phi}_{cr}^{JM}}
=AΦcrJM|P^A,A+1|ΦcrJM\displaystyle=-A\bra{{\Phi}_{c^{\prime}r^{\prime}}^{JM}}{\hat{P}}_{A,A+1}\ket{{\Phi}_{cr}^{JM}} (7)

The exchange norm kernel in the SA-RGM basis is thus reduced to evaluating the following (similarly, for the Hamiltonian kernels):

Φν1I1;ηνJM|PA,A+1|Φν1I1;ηνJM\displaystyle\bra{{\Phi}_{\nu_{1}^{\prime}I_{1}^{\prime};\eta^{\prime}}^{\nu^{\prime}JM}}{{P}}_{A,A+1}\ket{{\Phi}_{\nu_{1}I_{1};\eta}^{\nu JM}} =\displaystyle= δννω0S0ρ0ΠS0S1(1)η+ηω0(1)S1+12+S{S1S0S112S12}\displaystyle{\delta}_{\nu^{\prime}\nu}\sum_{{\omega}_{0}{S}_{0}{\rho}_{0}}{\Pi}_{{S}_{0}{S}_{1}^{\prime}}{(-1)}^{\eta+\eta^{\prime}-{\omega}_{0}}{(-1)}^{{S}_{1}+\frac{1}{2}+S^{\prime}}\left\{\begin{array}[]{ccc}{S}_{1}&{S}_{0}&{S}_{1}^{\prime}\\ \frac{1}{2}&S&\frac{1}{2}\end{array}\right\} (10)
×\displaystyle\times dimω0dim(η 0)U[ω1ω0ω(η0);ω1ρ01(η 0)11]ρηηρ0ω0S0(ν1I1;ν1I1),\displaystyle\sqrt{\frac{{\rm dim}{\,\omega}_{0}}{{\rm dim}\,(\eta\,0)}}U\left[{\omega}_{1}{\omega}_{0}\omega(\eta\,^{\prime}0);{\omega}_{1}^{\prime}{\rho}_{0}1(\eta\,0)11\right]{{\rho}}_{\eta\eta^{\prime}}^{{\rho}_{0}{\omega}_{0}{S}_{0}}\left(\nu_{1}^{\prime}I_{1}^{\prime};\nu_{1}I_{1}\right), (11)

where U[]{U\left[\dots\right]} is the SU(3)\mathrm{SU}(3) 6-(λμ)(\lambda\,\mu) recoupling coefficient Draayer and Akiyama (1973), analogous to the SU(2) 6-jj symbol, dim(λμ)=12(λ+1)(μ+1)(λ+μ+2)\dim\,(\lambda\,\mu)={1\over 2}(\lambda+1)(\mu+1)(\lambda+\mu+2), and the SU(3)\mathrm{SU}(3) one-body density matrix elements are defined as:

ρηηρ0ω0S0(ν1I1;ν1I1)=𝔟1𝔟1C𝔟1ν1I1C𝔟1ν1I1𝔟1ω1S1|{a(η 0)12×a~(0η)12}ω0S0|𝔟1ω1S1ρ0,{{\rho}}_{\eta\eta^{\prime}}^{{\rho}_{0}{\omega}_{0}{S}_{0}}\left(\nu_{1}^{\prime}I_{1}^{\prime};\nu_{1}I_{1}\right)=\sum_{{\mathfrak{b}}_{1}{\mathfrak{b}}_{1}^{\prime}}{C}_{{\mathfrak{b}}_{1}^{\prime}}^{\nu_{1}^{\prime}I_{1}^{\prime}}{C}_{{\mathfrak{b}}_{1}}^{\nu_{1}I_{1}}\langle{{\mathfrak{b}}_{1}^{\prime}{\omega}_{1}^{\prime}{S}_{1}^{\prime}}|||{\{{a}_{(\eta\,0)\frac{1}{2}}^{\dagger}\times{\tilde{a}}_{{(0\,\eta^{\prime})}\frac{1}{2}}\}}^{{\omega}_{0}{S}_{0}}|||{{{\mathfrak{b}}_{1}{\omega}_{1}{S}_{1}}}\rangle_{{\rho}_{0}}, (12)

where a(η 0)lml12msaηlml12msa^{\dagger}_{(\eta\,0)lm_{l}\frac{1}{2}m_{s}}\equiv a^{\dagger}_{\eta lm_{l}\frac{1}{2}m_{s}} and aηlml12msa_{\eta lm_{l}\frac{1}{2}m_{s}} creates and annihilates, respectively, a particle of spin 1/2 in the η\eta-th HO shell, and a~(0η)lml12ms(1)η+lml+smsaηlml12ms\tilde{a}_{(0\,\eta)l-m_{l}\frac{1}{2}-m_{s}}\equiv(-1)^{\eta+l-m_{l}+s-m_{s}}a_{\eta lm_{l}\frac{1}{2}m_{s}} is the annihilation SU(3) tensor operator. The matrix elements of the ρ\rho density can be quickly computed on the fly in the SA basis. Their computation can utilize an efficacious algorithm that exploits organization of SA basis states in terms of subspaces of SU(3) irreps and the factorization of spatial SU(3) and SU(2) spin degrees of freedom Dytrych et al. (2007); Launey et al. (2016), and this can be done prior to the computation of the kernels. It is notable that, as a result of the Kronecker delta function δνν\delta_{\nu\nu^{\prime}} in Eq. (11), the exchange part of the norm kernel turns out to be block-diagonal in the SA-RGM basis. The reason is that the operator P{{{P}}} is an SU(3) scalar and spin scalar, and therefore preserves deformation and spin of the composite A+1A+1 system (note that it may change the ω1\omega_{1} deformation of the target itself).

Eq. (11) allows the kernels to be calculated, for each JπM{J^{\pi}M}, through the SA-RGM channel basis of Eq. (6) that only depends on the deformation, rotation, and spin of the target ν1\nu_{1} (that is, ω1κ1L1S1{\omega}_{1}{\kappa}_{1}L_{1}{S}_{1}), and the deformation, rotation, and spin of the target-projectile system ν\nu (that is, ωκLS\omega\kappa LS). From this, it is clear that the SA offers two main advantages: first, calculations utilize group-theoretical algorithms that use a reduced subset of quantum numbers ν\nu and ν1\nu_{1}, and second, the number of SU(3)\mathrm{SU}(3) configurations in the target wave function, we find, is a manageable number when compared to the complete model-space size. This results in a manageable number of configurations for the target-projectile system based on SU(3)\mathrm{SU}(3) and SU(2) selection rules, namely, ω=ω1×(η 0)\omega=\omega_{1}\times(\eta\,0) and S=S1×12S=S_{1}\times{1\over 2} (for further details on scalability, see Sec. III.3).

Another advantage of the SA scheme is that the dependence on the orbital momentum \ell is recovered in the very last step:

|ΦcrJM=ηRη(r)jΠsj(1)I1+J+j\displaystyle\ket{{\Phi}_{cr}^{JM}}=\sum_{\eta}{R}_{\eta\ell}(r)\sum_{j}{\Pi}_{sj}{(-1)}^{{I}_{1}+J+j}
×{I112sJj}νν1ΠLSI1jω1κ1L1;(η 0)ωκL\displaystyle\times\left\{\begin{array}[]{ccc}{I}_{1}&\frac{1}{2}&s\\ \ell&J&j\end{array}\right\}\sum_{\begin{subarray}{c}\nu\\ \nu_{1}\end{subarray}}{\Pi}_{LS{I}_{1}j}{\braket{{\omega}_{1}{\kappa}_{1}{L}_{1};(\eta\,0)\ell}{\omega\kappa L}} (15)
×{L1S1I112jLSJ}|Φν1I1;ηνJM.\displaystyle\times\left\{\begin{array}[]{ccc}{L}_{1}&{S}_{1}&{I}_{1}\\ \ell&\frac{1}{2}&j\\ L&S&J\end{array}\right\}\ket{{\Phi}_{\nu_{1}I_{1};\eta}^{\nu JM}}. (19)

This wave function is then used in a microscopic R{R}-matrix approach Descouvemont and Baye (2010) to calculate phase shifts and cross sections.

To study the efficacy of the SA scheme, we focus on the norm and potential kernels. For the potential kernel, we consider only the part that involves the projectile and a single nucleon in the target (similarly to Ref. Burrows et al. (2020)), that is, the potential kernel of particle-rank one, denoted here as Vcc(1)(r,r){V}_{c^{\prime}c}^{(1)}(r^{\prime},r) (cf. Quaglioni and Navrátil (2009)):

Vcc(1)(r,r)\displaystyle{V}_{c^{\prime}c}^{(1)}(r^{\prime},r) AΦcrJM|V^A,A+1(1P^A,A+1)|ΦcrJM.\displaystyle\equiv A\bra{{\Phi}_{c^{\prime}r^{\prime}}^{JM}}{\hat{V}}_{A,A+1}(1-{\hat{P}}_{A,A+1})\ket{{\Phi}_{cr}^{JM}}. (20)

Note that the exchange of two nucleons that interact with each other is part of this kernel. We do not consider the particle-rank two potential kernel that accounts for the projectile exchanging with one nucleon in the target and interacting with another nucleon (called exchange potential kernel in Quaglioni and Navrátil (2009)). Since the goal of this study is to validate the use of the SA scheme against the use of complete model spaces, we expect that the particle-rank two potential kernel will benefit from advantages similar to those shown in the next section. The reason is that the main advantage stems from the reductions of the number of basis states needed to describe the target wavefunctions. Such a reduction ensures that one-body densities, along with the two-body densities that will be needed for the particle-rank two potential kernels, are computed for wavefunctions that span only a fraction of the complete model space (as discussed in Sec. III.3).

The derivation of the potential kernel in the SA-RGM basis follows a procedure similar to that for the norm kernel:

Φν1I1;ηνJM|(V^A,A+1(1P^A,A+1))|Φν1I1;ηνJM\displaystyle\bra{{\Phi}_{{\nu}_{1}^{\prime}{I}_{1}^{\prime};\eta^{\prime}}^{\nu^{\prime}JM}}({\hat{V}}_{A,A+1}(1-{\hat{P}}_{A,A+1}))\ket{{\Phi}_{\nu_{1}{I}_{1};\eta}^{\nu JM}}
=SbSaS0Sp(ΠSpSaΠS012)2ΠS0Π121ΠS1Sa U[12S01212Sp12SbS0Sa] U[S1S0S112Sp12SS0S]\displaystyle=\sum_{\begin{subarray}{c}{S}_{b}{S}_{a}\\ {S}_{0}{S}_{\rm p}\end{subarray}}{\left(\frac{{\Pi}_{{S}_{\rm p}{S}_{a}}}{{\Pi}_{{S}_{0}^{\prime}\frac{1}{2}}}\right)}^{2}\frac{{\Pi}_{{S}_{0}}}{{\Pi}_{\frac{1}{2}}}\frac{1}{{\Pi}_{{S}_{1}^{\prime}{S}_{a}}}\text{ U}\!\left[\begin{array}[]{ccc}\frac{1}{2}&{S}_{0}&\frac{1}{2}\\ \frac{1}{2}&{S}_{\rm p}&\frac{1}{2}\\ {S}_{b}&S_{0}^{\prime}&{S}_{a}\end{array}\right]\text{ U}\!\left[\begin{array}[]{ccc}{S}_{1}&{S}_{0}&{S}_{1}^{\prime}\\ \frac{1}{2}&{S}_{\rm p}&\frac{1}{2}\\ S&S_{0}^{\prime}&S^{\prime}\end{array}\right] (27)
×ηbηaωbωaω0ωpρ0ρ0ρρbdimω0dim(ηb 0)dimωpdimωadimω0dim(η 0) U[(ηb 0)ω0(ηa 0)1(η 0)ωp(η 0)1ωbω0ωaρa1ρ01] U[ω1ω0ω1ρ0(η 0)ωp(η 0)1ωω0ωρ1ρ01]\displaystyle\times\sum_{{\eta}_{b}{\eta}_{a}}\sum_{\begin{subarray}{c}{{\omega}}_{b}{{\omega}}_{a}\\ {\omega}_{0}{\omega}_{\rm p}\end{subarray}}\sum_{\begin{subarray}{c}\rho_{0}^{\prime}{\rho}_{0}\\ \rho^{\prime}{\rho}_{b}\end{subarray}}\sqrt{\frac{\text{dim}\,{\omega}_{0}}{\text{dim}\,({\eta}_{b}\,0)}}\frac{\text{dim}\,{\omega}_{\rm p}\,\text{dim}\,{{\omega}}_{a}}{\text{dim}\,{\omega}_{0}^{\prime}\,\text{dim}\,(\eta^{\prime}\,0)}\text{ U}\!\left[\begin{array}[]{cccc}({\eta}_{b}\,0)&{\omega}_{0}&({\eta}_{a}\,0)&1\\ (\eta\,0)&{\omega}_{\rm p}&(\eta^{\prime}\,0)&1\\ {{\omega}}_{b}&{\omega}_{0}^{\prime}&{{\omega}}_{a}&\rho_{a}\\ 1&{\rho}_{0}^{\prime}&1&-\end{array}\right]\text{ U}\!\left[\begin{array}[]{cccc}{\omega}_{1}&{\omega}_{0}&{\omega}_{1}^{\prime}&{\rho}_{0}\\ (\eta\,0)&{\omega}_{\rm p}&(\eta^{\prime}\,0)&1\\ \omega&{\omega}_{0}^{\prime}&\omega^{\prime}&\rho^{\prime}\\ 1&{\rho}_{0}^{\prime}&1&-\end{array}\right] (36)
×1+δηaη1+δηaηκ0S0ωκL;ω0κ0S0ωκLρΠLSΠS0(1)L+S0+S+J{LS0LSJS}\displaystyle\times\sqrt{1+{\delta}_{{\eta}_{a}\eta^{\prime}}}\sqrt{1+{\delta}_{{\eta}_{a}\eta}}\sum_{{\kappa}_{0}^{\prime}S_{0}^{\prime}}{\braket{\omega\kappa L;{\omega}_{0}^{\prime}{\kappa}_{0}^{\prime}S_{0}^{\prime}}{\omega^{\prime}\kappa^{\prime}L^{\prime}}}_{\rho^{\prime}}\frac{{\Pi}_{L^{\prime}S^{\prime}}}{{\Pi}_{S_{0}^{\prime}}}{(-1)}^{L+S_{0}^{\prime}+S^{\prime}+J}\left\{\begin{array}[]{ccc}L&S_{0}^{\prime}&L^{\prime}\\ S^{\prime}&J&S\end{array}\right\} (39)
×(ηa0)(η0);ωaSa||V^ω0S0||(ηb0)(η0);ωbSbρ0ρηaηbρ0ω0S0(ν1I1;ν1I1),\displaystyle\times\bra{({\eta}_{a}0)(\eta^{\prime}0);{{\omega}}_{a}{S}_{a}}|{\hat{V}}^{{\omega}_{0}^{\prime}S_{0}^{\prime}}|{\ket{({\eta}_{b}0)(\eta 0);{{\omega}}_{b}{S}_{b}}}_{\rho_{0}^{\prime}}{\rho}_{{\eta}_{a}{\eta}_{b}}^{{\rho}_{0}{\omega}_{0}{S}_{0}}\left({\nu}_{1}^{\prime}{I}_{1}^{\prime};\nu_{1}{I}_{1}\right), (40)

where ωp\omega_{\rm p}, ω0\omega_{0}, and ω0\omega_{0}^{\prime} denote the SU(3) rank of the operator that transforms the initial state to the final state of the projectile, target, and the A+1A+1 system, respectively.

Refer to caption
Figure 1: Translationally invariant potential kernel of Eq. (40) for 4He(0g.s.+{0}^{+}_{\rm g.s.}) + n calculated with the JISP16 NN interaction, for Ω=25{\hbar\Omega=25} MeV and ηmax=10\eta_{\max}=10, and using SA-NCSM 4He wave functions in selected (Nmax=614N_{\rm max}=\langle 6\rangle 14) and complete (Nmax=14N_{\rm max}=14) model spaces. The selected space (dashed red) yields results that are indistinguishable from those in the complete space (solid blue).

III Results and discussions

It is important to validate the use of the SA basis in the SA-RGM, by comparing selected model spaces with the corresponding complete NmaxN_{\rm max}, to ensure that the selection does not remove configurations relevant for the reaction processes under consideration. For this, we study single-projectile scattering off the spherical 4He and 16O nuclei, as well as for the deformed 20Ne nucleus. We present kernels that use target ground state (g.s.) wavefunctions computed with the SA basis in a complete NmaxN_{\rm max} model space (equivalent to NCSM/RGM calculations Quaglioni and Navrátil (2009)) and we compare these to the results that use wavefunctions calculated in a selected SA model space. In general, SA selections are denoted as NmaxCNmax\langle N_{\max}^{\rm C}\rangle N_{\max}. For example, the Nmax=614{{N}_{\text{max}}=\langle 6\rangle 14} model space includes the complete set of excitations up to 6Ω{6\hbar\Omega} and selected excitations in the 8Ω8\hbar\Omega - 14Ω14\hbar\Omega subspaces, following a prescription detailed in Ref. Launey et al. (2020). This allows the mixing of all possible shapes within the complete subspaces, whereas the higher selected subspaces accommodate spatially expanded collective modes Launey et al. (2021).

Refer to caption
Figure 2: Absolute value of the difference between the phase shifts (δ\delta) for the S1/22{}^{2}S_{1/2} neutron scattering off 4He vs. the center-of-mass projectile energy, obtained in Nmax=614{{N}_{\text{max}}=\langle 6\rangle 14} and Nmax=14{{N}_{\text{max}}=14} model spaces.
Refer to caption
Refer to caption
Figure 3: Translationally invariant (a & b) exchange norm kernel of Eq. (11) and (c & d) potential kernel [Eqs. (20) and (40)] for 20Ne(0g.s.+{0}^{+}_{\rm g.s.}) + n calculated with the NNLOopt NN interaction, for Ω=15{\hbar\Omega=15} MeV and ηmax=10\eta_{\max}=10, and using SA-NCSM 20Ne wave functions in selected Nmax=24N_{\rm max}=\langle 2\rangle 4, 26\langle 2\rangle 6, and 28\langle 2\rangle 8 model spaces, for (a & c) P3/22{{}^{2}{P}_{3/2}} and (b & d) S1/22{{}^{2}{S}_{1/2}} partial waves.
Refer to caption
Figure 4: Difference in phase shifts for the S1/22{}^{2}S_{1/2} neutron scattering off 20Ne from kernels calculated in Nmax=24{{N}_{\text{max}}=\langle 2\rangle 4} and Nmax=26{{N}_{\text{max}}=\langle 2\rangle 6} model spaces, relative to the phase shift from the largest model space Nmax=28{{N}_{\text{max}}=\langle 2\rangle 8}. Results are shown as a function of the center-of-mass projectile energy.

III.1 Validation of the SA scheme

We study the SA efficacy for the potential kernel of Eq. (20) for 4He(0g.s.+{{0}^{+}_{\rm g.s.}}) + n (Fig. 1), for which calculations in the complete space (no SA selection) are available up to Nmax=18/19N_{\rm max}=18/19 with other interactions (Nmax=18N_{\rm max}=18 denotes the model space for the target) Quaglioni and Navrátil (2009). For two NN interactions, Ref. Quaglioni and Navrátil (2009) has shown that the Nmax=14/15N_{\rm max}=14/15 results are sufficient to achieve converged phase shifts for the 4He(0g.s.+{{0}^{+}_{\rm g.s.}}) + n S1/22{}^{2}{{S}_{1/2}} and P3/22{}^{2}{{P}_{3/2}} channels. In the present study, we use the Nmax=14{{N}_{\text{max}}=14} complete model space for the target, and we compare to the Nmax=614{{N}_{\text{max}}=\langle 6\rangle 14} model space. The 4He wavefunctions in these model spaces, calculated with the JISP16 NN interactions Shirokov et al. (2007), have been shown to converge for the binding energy and the g.s. root-mean-square (rms) matter radius, as well as to yield various electromagnetic sum rules Baker et al. (2020b) that agree with those calculated in the hyperspherical harmonics approach Bacca et al. (2013).

We explore the potential kernel of Eq. (20) for P3/2{{P}_{3/2}} as a function of the distance between the clusters, which is used to describe the 32{{\frac{3}{2}}^{-}} resonant g.s. in 5He (Fig. 1a), as well as for S1/2{{S}_{1/2}} for a description of the 12+{{\frac{1}{2}}^{+}} scattering states of 5He (Fig. 1b). We find that the SA space yields results that are indistinguishable from those in the complete space. While Fig. 1 shows the comparison only for r=1r^{\prime}=1 fm, the results remain indistinguishable for any rr^{\prime}. In addition, the norm kernels exhibit the same behavior, namely, the outcomes for the SA and complete model spaces coincide. These results demonstrate that the SA wavefunctions account for the relevant correlations necessary to describe the norm and the direct component of the non-local potentials that govern the resonant ground state and low-energy scattering states in 5He. Because the kernels are used as the input for calculating phase shifts, the findings show that the SA model spaces are sufficient to reproduce the corresponding S1/2{{S}_{1/2}} and P3/2{{P}_{3/2}} phase shifts calculated in the NmaxN_{\rm max} complete model spaces (see Fig. 2 for the comparison between selected and complete model spaces for the SS wave). We emphasize that this comparison focuses on the effect of SA model spaces benchmarked against the corresponding complete model spaces, not on reproducing experimental phase shifts with all RGM kernels.

III.2 Application to intermediate-mass nuclei

To illustrate the capability of the SA-RGM, we present the first ab initio calculations of RGM norm and leading-order potential kernels in the intermediate mass region, namely, for neutron scattering off 20Ne(0g.s.+{0}^{+}_{\rm g.s.}). The SA 20Ne wave functions are calculated using the NNLOopt NN interaction Ekström et al. (2013) and have been shown to reproduce observables, such as excitation energies and B(E2) strengths Dytrych et al. (2020). The NNLOopt is used without 3N forces, which have been shown to contribute minimally to the 3- and 4-nucleon binding energies Ekström et al. (2013). Furthermore, the NNLOopt NN potential has been found to reproduce various observables, including the 4He electric dipole polarizability Baker et al. (2020a); the challenging analyzing power for elastic proton scattering on 4He, 12C, and 16O Burrows et al. (2019); along with B(E2) transition strengths for 21Mg and 21F Ruotsalainen et al. (2019).

As expected, the exchange norm kernel for 20Ne(0g.s.+)+n{0}^{+}_{\rm g.s.})+{\rm n} manifests itself at short distances and vanishes at long distances (see Fig. 3a & b, for the case of r=1r^{\prime}=1 fm). This reflects the short-range nature of the Pauli exclusion principle. We find that the change in the model space size from Nmax=6N_{\rm max}=6 to Nmax=8N_{\rm max}=8 has only a small effect on the exchange norm of the P3/2{{P}_{3/2}} partial wave (Fig. 3a) and S1/2{{S}_{1/2}} partial wave (Fig. 3b). The largest deviations are observed at short distances, where the kernels have the largest magnitude. As the model space increases, the kernels start to converge, and the exchange kernel maximum slightly increases in magnitude for S1/2{{S}_{1/2}}, whereas it slightly decreases for P3/2{{P}_{3/2}}. Note that even though the deviation seems larger for P3/2{{P}_{3/2}}, the magnitude of the P3/2{{P}_{3/2}} exchange kernel maximum is smaller by a factor of 3.5 than that of S1/2{{S}_{1/2}}. Hence, these outcome indicates that the selection of dominant SU(3) components at Nmax=8N_{\rm max}=8 (see also Fig. 3 in Ref. Dytrych et al. (2020)) is sufficient to incorporate the relevant correlations needed to describe the short-range Pauli effect.

The potential kernels of Eq. (20) for 20Ne(0g.s.+)+n{0}^{+}_{\rm g.s.})+{\rm n}, calculated with the NNLOopt NN, are also studied with increasing model space sizes (see Fig. 3c & d, for r=1r^{\prime}=1 fm). Similarly to the exchange norm kernel, the increase in the model space from Nmax=6N_{\rm max}=6 to Nmax=8N_{\rm max}=8 has a much smaller effect on this potential kernel when compared to the increase from Nmax=4N_{\rm max}=4 to Nmax=6N_{\rm max}=6, for both S1/2{{S}_{1/2}} and P1/2{{P}_{1/2}} partial waves, suggesting converging results. When compared to the potentials for 4He + n of Fig. 3, the 20Ne(0g.s.+)+n{0}^{+}_{\rm g.s.})+{\rm n} case shows a slightly larger deviation around the kernel maximum when varying the model space. This effect might be a result of the open-shell structure of the ground-state wave function of 20Ne compared to that of 4He. In addition, the small changes in these kernels result in only very little deviations in the S1/22{}^{2}S_{1/2} phase shifts for the low-energy neutron scattering off 20Ne(0g.s.+){0}^{+}_{\rm g.s.}), with a relative difference of the order of 11-2%2\% compared to the largest model space used (Fig. 4).

As another illustrative example, we present the potential kernel of Eq. (20) for 16O(0g.s.+)+n{0}^{+}_{\rm g.s.})+{\rm n} (Fig. 5), which is feasible for no-core shell-model calculations with the importance truncation using other interactions Navrátil et al. (2010). In our study, we use the NNLOsat Ekström et al. (2015), for which the three-nucleon (3N) forces are included in the SA-NCSM as averages Launey et al. (2021). Namely, in these calculations, the 3N forces are included as a mass-dependent monopole interaction Launey et al. (2012), which has an effect on binding energies. or the 16O ground-state energy, the 7-shell 3N contribution is 20.46 MeV, resulting in 127.97-127.97 MeV total energy for Nmax=8N_{\rm max}=8 and Ω\hbar\Omega=16 MeV, which agrees with the experimental value of 127.62-127.62 MeV. In this case, we compare calculations within a selected model space Nmax=08{{N}_{\text{max}}=\langle 0\rangle 8} to those in the complete Nmax=6{{N}_{\text{max}}=6} model space. The results of the two model spaces are practically indistinguishable, despite the largely reduced SA model space used here and the addition of SU(3) dominant configurations in the 8Ω\hbar\Omega subspace. For 16O, this outcome could be understood by the fact that 80\sim 80% of the ground state is composed of a spherical shape and low NmaxN_{\rm max} model spaces are able to account for its vibrations.

Refer to caption
Figure 5: Translationally invariant potential kernel [Eqs. (20] and (40)) for 16O + n calculated with the NNLOsat NN+3N interaction, for Ω=16{\hbar\Omega=16} MeV and ηmax=10\eta_{\max}=10, and using SA-NCSM 16O wave functions in selected (Nmax=08N_{\rm max}=\langle 0\rangle 8) and complete (Nmax=6N_{\rm max}=6) model spaces.

III.3 Efficacy and scalability of the SA scheme

In this section we explore the scalability of the SA-RGM calculations with increasing model space sizes and particle number. The SA-RGM channel basis (6) is used to compute the kernels of Eqs. (11) and (40). These channels are constructed from the unique {ν1}{\left\{\nu_{1}\right\}} quantum numbers of the target state, resulting in a manageable number of SA-RGM basis states that scale polynomially with NmaxN_{\rm max}, as shown in Fig. 6 for several nuclear systems.

For example, for proton- or neutron-nucleus interaction for N+20Ne (0g.s.+{0}^{+}_{\rm g.s.}), there are only about 10310^{3}-10410^{4} SA-RGM basis states for 7 to 13 shells, and only about 10510610^{5}-10^{6} for 23Mg when more target states are used (with channels for 3/2g.s.+,5/2+{3/2_{\rm g.s.}^{+}},{{5/2}^{+}}, 7/2+{{7/2}^{+}}), which is still manageable (Fig. 6). Interestingly, the number of unique deformed configurations for heavier targets, such as Ne and Mg, decrease in larger model spaces, as dominant shapes are allowed to develop, thereby reducing shape mixing. As a consequence, in such cases the SA-RGM basis can become smaller when increasing Nmax{{N}_{\text{max}}}.

Furthermore, there is a large reduction in the number of SU(3) basis states needed for the target wave functions, as one eliminates negligible contributions identified in the target eigenfunctions. Namely, for the illustrative example of the 23Mg target (Fig. 6), we show the number of the SA-RGM channels after retaining basis states that contribute with a probability amplitude (C𝔟1ω1κ1L1S1)2({C}_{{\mathfrak{b}}_{1}}^{{\omega}_{1}{\kappa}_{1}L_{1}{S}_{1}})^{2} [see Eq. (5)] greater than a certain value ε\varepsilon. We find that the number of the 23Mg+N SA-RGM states continues to scale polynomially with increasing Nmax{{N}_{\text{max}}} for each ε\varepsilon and largely decreases for higher ε\varepsilon reduction cutoffs. We note that the ε=106\varepsilon=10^{-6} cutoff uses the 23Mg basis states with a probability greater that 106{{10}^{-6}} and results in no reduction. In the SA-RGM calculations, the ε\varepsilon cutoff for the SA selection is decreased until convergence of results is achieved.

We note that an important step for computing the kernels from the many-body wavefunctions is the calculation of the ρηηρ0ω0S0{\rho}_{\eta\eta^{\prime}}^{{\rho}_{0}{\omega}_{0}{S}_{0}} operator of Eq. (12). Its calculation can be compared to the one-body density matrix elements, namely, they need to be calculated only once for a given set of target wavefunctions, and, as mentioned above, can utilize an efficient algorithm that exploits SU(3) SA subspaces and the factorization of spatial and spin degrees of freedom. As for the kernels, these calculations are also facilitated by the large reduction in the number of SU(3) basis states needed to describe the target wave functions, as compared to the complete NmaxN_{\rm max} model space. These same reductions are observed for two-body densities that will be needed for the particle-rank two potential kernels.

Refer to caption
Figure 6: Number of SA-RGM basis states as a function of the model space size NmaxCNmax{\langle N_{\rm max}^{\rm C}\rangle{N}_{\text{max}}} of the target. The target eigenfunctions are shown as complete (solid curves or ε=106\varepsilon=10^{-6}), or reduced to the SU(3) basis states with probability amplitudes greater than ε\varepsilon cutoff. We use NmaxC=6N_{\rm max}^{\rm C}=6 for 4He, and NmaxC=2N_{\rm max}^{\rm C}=2 for 20Ne and 23Mg, as well as ηmax=15\eta_{\rm max}=15. The SA-NCSM calculations for He4{{}^{4}\text{He}} (Ne20{{}^{20}\text{Ne}} and Mg23{{}^{23}\text{Mg}}) use the JISP16 (N2LOopt) NN interaction and Ω=25{\hbar\Omega=25} MeV (Ω=25{\hbar\Omega=25} and Ω=15{\hbar\Omega=15}, respectively).

IV Conclusions

In this paper, we have studied the efficacy of the new ab initio SA-RGM approach that combines the SA-NCSM and RGM frameworks. We have discussed nucleon-nucleus interactions and the use of the SA framework for 4He and 16O targets, as well as the intermediate-mass 20Ne and 23Mg targets feasible in the SA-NCSM. We have shown that the SU(3) selection of the model space has almost negligible effect on the SA-RGM norm and particle-rank one potential kernels that provide the input to calculations of phase shifts and cross sections. The results demonstrate that the nonnegligible components that are included in the calculations account for the correlations needed to describe the single nucleon scattering process in this mass region.

In addition, we have studied the scalability of the SA-RGM approach, showing its computational advantages that stem from the largely reduced number of SU(3) basis states needed to describe the target, as well as the manageable number of the SA-RGM basis states for the target+N system that scale polynomially with the increase in the model space size. The demonstrated efficacy of the SA basis and its scalability with particle numbers and model space dimensions opens the way to ab initio calculations up through the medium-mass region of nucleon-nucleus interactions that enter nucleon scattering and nucleon capture reactions.

Acknowledgements.
We acknowledge useful discussions with Petr Navratil, as well as Linda Hlophe for calculating the Nmax=4N_{\rm max}=4 NCSM/RGM kernel matrix elements for model benchmarks. This work was supported in part by the U.S. National Science Foundation (PHY-1913728), SURA, the Czech Science Foundation (16-16772S), and the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Work Proposals No. SCW0498 and No. SC0019521. A portion of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344 with support from LDRD Project No. 19-ERD-017. It benefited from high performance computational resources provided by LSU (www.hpc.lsu.edu), the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility operated under Contract No. DE-AC02-05CH11231, as well as the Frontera computing project at the Texas Advanced Computing Center, made possible by National Science Foundation award OAC-1818253.

References

  • Launey et al. (2016) K. D. Launey, T. Dytrych,  and J. P. Draayer, Prog. Part. Nucl. Phys. 89, 101 (review) (2016).
  • Dytrych et al. (2020) T. Dytrych, K. D. Launey, J. P. Draayer, D. J. Rowe, J. L. Wood, G. Rosensteel, C. Bahri, D. Langr,  and R. B. Baker, Phys. Rev. Lett. 124, 042501 (2020).
  • Dytrych et al. (2015) T. Dytrych, A. C. Hayes, K. D. Launey, J. P. Draayer, P. Maris, J. P. Vary, D. Langr,  and T. Oberhuber, Phys. Rev. C 91, 024326 (2015).
  • Baker et al. (2020a) R. B. Baker, K. D. Launey, S. Bacca, N. N. Dinur,  and T. Dytrych, Phys. Rev. C 102, 014320 (2020a).
  • Ruotsalainen et al. (2019) P. Ruotsalainen, J. Henderson, G. Hackman, G. H. Sargsyan, K. D. Launey, A. Saxena, P. C. Srivastava, S. R. Stroberg, T. Grahn, J. Pakarinen, G. C. Ball, R. Julin, P. T. Greenlees, J. Smallcombe, C. Andreoiu, N. Bernier, M. Bowry, M. Buckner, R. Caballero-Folch, A. Chester, S. Cruz, L. J. Evitts, R. Frederick, A. B. Garnsworthy, M. Holl, A. Kurkjian, D. Kisliuk, K. G. Leach, E. McGee, J. Measures, D. Mücher, J. Park, F. Sarazin, J. K. Smith, D. Southall, K. Starosta, C. E. Svensson, K. Whitmore, M. Williams,  and C. Y. Wu, Phys. Rev. C 99, 051301 (2019).
  • Henderson et al. (2018) J. Henderson et al.Phys. Lett. B782, 468 (2018)arXiv:1709.03948 [nucl-ex] .
  • Williams et al. (2019) J. Williams, G. C. Ball, A. Chester, T. Domingo, A. B. Garnsworthy, G. Hackman, J. Henderson, R. Henderson, R. Krücken, A. Kumar, K. D. Launey, J. Measures, O. Paetkau, J. Park, G. H. Sargsyan, J. Smallcombe, P. C. Srivastava, K. Starosta, C. E. Svensson, K. Whitmore,  and M. Williams, Phys. Rev. C 100, 014322 (2019).
  • Launey et al. (2018) K. D. Launey, A. Mercenne, G. H. Sargsyan, H. Shows, R. B. Baker, M. E. Miora, T. Dytrych,  and J. P. Draayer, in Proceedings of the 4th International Workshop on ’State of the Art in Nuclear Cluster Physics’ (SOTANCP4), May 2018, Galveston, Texas, Vol. 2038 (AIP Conference Proceedings, 2018).
  • Launey et al. (2021) K. D. Launey, A. Mercenne,  and T. Dytrych, Annu. Rev. Nucl. Part. Sci. 71, 253 (2021).
  • Johnson et al. (2020) C. W. Johnson, K. D. Launey, et al., J. Phys. G 47, 23001 (2020), arXiv:1912.00451.
  • Quaglioni and Navrátil (2020) S. Quaglioni and P. Navrátil, Nuclear Physics News 30, 12 (2020).
  • Nollett et al. (2007) K. Nollett, S. Pieper, R. Wiringa, J. Carlson,  and G. Hale, Phys. Rev. Lett. 99, 022502 (2007).
  • Hagen et al. (2007) G. Hagen, D. Dean, M. Hjorth-Jensen,  and T. Papenbrock, Phys. Lett. B 656, 169 (2007).
  • Quaglioni and Navrátil (2008a) S. Quaglioni and P. Navrátil, Phys. Rev. Lett. 101, 092501 (2008a).
  • Elhatisari et al. (2015) S. Elhatisari, D. Lee, G. Rupak, E. Epelbaum, et al., Nature 528, 111 (2015).
  • Zhang et al. (2020) X. Zhang, S. R. Stroberg, P. Navrátil, C. Gwak, J. A. Melendez, R. J. Furnstahl,  and J. D. Holt, Phys. Rev. Lett. 125, 112503 (2020).
  • Mercenne et al. (2019) A. Mercenne, N. Michel,  and M. Płoszajczak, Phys. Rev. C 99, 044606 (2019).
  • Burrows et al. (2020) M. Burrows, R. B. Baker, C. Elster, S. P. Weppner, K. D. Launey, P. Maris,  and G. Popa, Phys. Rev. C 102, 034606 (2020).
  • Bacca et al. (2014) S. Bacca, N. Barnea, G. Hagen, M. Miorelli, G. Orlandini,  and T. Papenbrock, Phys. Rev. C 90, 064619 (2014).
  • Navrátil and Quaglioni (2012) P. Navrátil and S. Quaglioni, Phys. Rev. Lett. 108, 042503 (2012).
  • Girlanda et al. (2010) L. Girlanda, A. Kievsky, L. E. Marcucci, S. Pastore, R. Schiavilla,  and M. Viviani, Phys. Rev. Lett. 105, 232502 (2010).
  • Kravvaris and Volya (2017) K. Kravvaris and A. Volya, Phys. Rev. Lett. 119, 062501 (2017).
  • Dreyfuss et al. (2020) A. C. Dreyfuss, K. D. Launey, J. E. Escher, G. H. Sargsyan, R. B. Baker, T. Dytrych,  and J. P. Draayer, Phys. Rev. C 102, 044608 (2020).
  • Lazauskas et al. (2019) R. Lazauskas, E. Hiyama,  and J. Carbonnell, Phys. Lett. B 791, 335 (2019).
  • Hupin et al. (2019) G. Hupin, S. Quaglioni,  and P. Navrátil, Nature Communications 10, 351 (2019).
  • Bedaque and van Kolck (2002) P. F. Bedaque and U. van Kolck, Annu. Rev. Nucl. Part. Sci. 52, 339 (2002).
  • Epelbaum et al. (2002) E. Epelbaum, A. Nogga, W. Glöckle, H. Kamada, U.-G. Meißner,  and H. Witala, Phys. Rev. C 66, 064001 (2002).
  • Entem and Machleidt (2003) D. R. Entem and R. Machleidt, Phys. Rev. C 68, 041001 (2003).
  • Epelbaum (2006) E. Epelbaum, Prog. Part. Nucl. Phys. 57, 654 (2006).
  • Wildermuth and Tang (1977) K. Wildermuth and Y. Tang, A Unified Theory of The Nucleus (Braunschweig, Vieweg, 1977).
  • Tang et al. (1978) Y. C. Tang, M. LeMere,  and D. R. Thompson, Phys. Rep. 47, 167 (1978).
  • Elliott (1958a) J. P. Elliott, Proc. Roy. Soc. A 245, 128 (1958a).
  • Elliott (1958b) J. P. Elliott, Proc. Roy. Soc. A 245, 562 (1958b).
  • Hecht (1977) K. T. Hecht, Nucl. Phys. A 283, 223 (1977).
  • Hecht and Zahn (1978) K. T. Hecht and W. Zahn, Nucl. Phys. A 318, 1 (1978).
  • Hecht and Suzuki (1982) K. T. Hecht and Y. Suzuki, J. Math. Phys. 24, 785 (1982).
  • Hecht et al. (1981) K. T. Hecht, E. J. Reske, T. H. Seligman,  and W. Zahn, Nucl. Phys. A 356, 146 (1981).
  • Hecht and Braunschweig (1978) K. T. Hecht and D. Braunschweig, Nucl. Phys. A 295, 34 (1978).
  • Suzuki and Hecht (1982) Y. Suzuki and K. T. Hecht, Nucl. Phys. A 388, 102 (1982).
  • Suzuki (1986) Y. Suzuki, Nucl. Phys. A 448, 395 (1986).
  • Suzuki and Hecht (1986) Y. Suzuki and K. T. Hecht, Nucl. Phys. A 455, 315 (1986).
  • Suzuki and Hecht (1987) Y. Suzuki and K. T. Hecht, Prog. Theor. Phys. 77, 190 (1987).
  • Suzuki (1987) Y. Suzuki, Nucl. Phys. A 470, 119 (1987).
  • Suzuki and Hara (1989) Y. Suzuki and S. Hara, Phys. Rev. C 39, 658 (1989).
  • Suzuki (1976a) Y. Suzuki, Prog. Theor. Phys. 55, 1751 (1976a).
  • Suzuki (1976b) Y. Suzuki, Prog. Theor. Phys. 56, 111 (1976b).
  • Suzuki et al. (2003) Y. Suzuki, R. G. Lovas, K. Yabana,  and K. Varga, Structure and reactions of exotic nuclei (Taylor & Francis, London and New York, 2003).
  • Navrátil et al. (2009) P. Navrátil, S. Quaglioni, I. Stetcu,  and B. R. Barrett, J. Phys. G: Nucl. Part. 36, 083101 (2009).
  • Barrett et al. (2013) B. Barrett, P. Navrátil,  and J. Vary, Prog. Part. Nucl. Phys. 69, 131 (2013).
  • Quaglioni and Navrátil (2008b) S. Quaglioni and P. Navrátil, Phys. Rev. Lett. 101, 092501 (2008b).
  • Quaglioni and Navrátil (2009) S. Quaglioni and P. Navrátil, Phys. Rev. C 79, 044606 (2009).
  • Hupin et al. (2013) G. Hupin, J. Langhammer, P. Navrátil, S. Quaglioni, A. Calci,  and R. Roth, Phys. Rev. C 88, 054622 (2013).
  • Baroni et al. (2013a) S. Baroni, P. Navrátil,  and S. Quaglioni, Phys. Rev. Lett. 110, 022505 (2013a).
  • Baroni et al. (2013b) S. Baroni, P. Navrátil,  and S. Quaglioni, Phys. Rev. C 87, 034326 (2013b).
  • Hupin et al. (2014) G. Hupin, S. Quaglioni,  and P. Navrátil, Phys. Rev. C 90, 061601 (2014).
  • Calci et al. (2016) A. Calci, P. Navrátil, R. Roth, J. Dohet-Eraly, S. Quaglioni,  and G. Hupin, Phys. Rev. Lett. 117, 242501 (2016).
  • Hupin et al. (2015) G. Hupin, S. Quaglioni,  and P. Navrátil, Phys. Rev. Lett. 114, 212502 (2015).
  • Kravvaris et al. (2020) K. Kravvaris, S. Quaglioni, G. Hupin,  and P. Navratil, arXiv preprint arXiv:2012.00228  (2020).
  • Navrátil et al. (2016) P. Navrátil, S. Quaglioni, G. Hupin, C. Romero-Redondo,  and A. Calci, Physica Scripta 91, 053002 (2016).
  • Jaganathen et al. (2014) Y. Jaganathen, N. Michel,  and M. Płoszajczak, Phys. Rev. C 89, 034624 (2014).
  • Fossez et al. (2015) K. Fossez, N. Michel, M. Płoszajczak, Y. Jaganathen,  and R. I. Betan, Phys. Rev. C 91, 034609 (2015).
  • Quaglioni et al. (2013) S. Quaglioni, C. Romero-Redondo,  and P. Navrátil, Phys. Rev. C 88, 034320 (2013), [Erratum: Phys. Rev. C 94, 019902 (2016)].
  • Descouvemont and Baye (2010) P. Descouvemont and D. Baye, Rep. Prog. Phys. 73, 3 (2010).
  • Descouvemont (2016) P. Descouvemont, Comput. Phys. Commun. 200, 199 (2016).
  • Castaños et al. (1988) O. Castaños, J. P. Draayer,  and Y. Leschber, Z. Phys. A 329, 33 (1988).
  • Mustonen et al. (2018) M. T. Mustonen, C. N. Gilbreth, Y. Alhassid,  and G. F. Bertsch, Phys. Rev. C 98, 034317 (2018).
  • Draayer et al. (1989) J. P. Draayer, Y. Leschber, S. C. Park,  and R. Lopez, Comput. Phys. Commun. 56, 279 (1989).
  • Draayer and Akiyama (1973) J. P. Draayer and Y. Akiyama, J. Math. Phys. 14, 1904 (1973).
  • Dytrych et al. (2007) T. Dytrych, K. D. Sviratcheva, C. Bahri, J. P. Draayer,  and J. P. Vary, Phys. Rev. Lett. 98, 162503 (2007).
  • Launey et al. (2020) K. D. Launey, T. Dytrych, G. H. Sargsyan, R. B. Baker,  and J. P. Draayer, Eur. Phys. J. Spec. Top. 229, 2429 (2020).
  • Shirokov et al. (2007) A. Shirokov, J. Vary, A. Mazur,  and T. Weber, Phys. Lett. B 644, 33 (2007).
  • Baker et al. (2020b) R. B. Baker, K. D. Launey, S. Bacca, N. N. Dinur,  and T. Dytrych, Phys. Rev. C 102, 014320 (2020b).
  • Bacca et al. (2013) S. Bacca, N. Barnea, G. Hagen, G. Orlandini,  and T. Papenbrock, Phys. Rev. Lett. 111, 122502 (2013).
  • Ekström et al. (2013) A. Ekström, G. Baardsen, C. Forssén, G. Hagen, M. Hjorth-Jensen, G. R. Jansen, R. Machleidt, W. Nazarewicz, et al., Phys. Rev. Lett. 110, 192502 (2013).
  • Burrows et al. (2019) M. Burrows, C. Elster, S. P. Weppner, K. D. Launey, P. Maris, A. Nogga,  and G. Popa, Phys. Rev. C 99, 044603 (2019).
  • Navrátil et al. (2010) P. Navrátil, R. Roth,  and S. Quaglioni, Phys. Rev. C 82, 034609 (2010).
  • Ekström et al. (2015) A. Ekström, G. R. Jansen, K. A. Wendt, G. Hagen, T. Papenbrock, B. D. Carlsson, C. Forssén, M. Hjorth-Jensen, P. Navrátil,  and W. Nazarewicz, Phys. Rev. C 91, 051301 (2015).
  • Launey et al. (2012) K. D. Launey, T. Dytrych,  and J. P. Draayer, Phys. Rev. C 84, 044003 (2012).