This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Effects of non-Markovian squeezed bath on the dynamics of open systems

Arapat Ablimit1, Feng-Hua Ren2, Run-Hong He1, Yang-Yang Xie1, Zhao-Ming Wang1111[email protected] 1 College of Physics and Optoelectronic Engineering, Ocean University of China, Qingdao 266100, China
2 School of Information and Control Engineering, Qingdao University of Technology, Qingdao 266520, China
Abstract

Control of the dynamics of an open quantum system is crucial in quantum information processing. Basically there are two ways: one is the control on the system and the other is tuning the bath parameters. In this paper, we use the latter to analyze the non-Markovian dynamics of the open system. The model is that the system is immersed in non-Markovian squeezed baths. For the dynamics, a non-Markovian master eqation is obtained using the quantum state diffusion (QSD) equation technique for the weak system-bath couplings. We use the adiabatic evolution or quantum state transmission as examples to analyze the effects of the bath parameters: non-Markovianity γ\gamma, the squeezed direction θ\theta and squeezed strength rr. For the adiabatic or state transmission fidelity, the calculation results show that they both can be enhanced by a smaller γ\gamma or bigger pp-quadrature. Interestingly, when 0<θ<π/20<\theta<\pi/2, the squeezed quadrature is determined by the combination of rr and θ\theta, and by numerical simulation we find that the fidelity peak occurs at r=12θ/πr=1-2\theta/\pi. The fidelities increase with increasing rr when r(0,12θ/π]r\in(0,1-2\theta/\pi]. When θπ/2\theta\geq\pi/2, lower fidelities are obtained due to the squeezed bath. Our results show that the dynamics of the open systems can be effectively controlled by reservoir enginerring.

I Introduction.

Open quantum system consists of system and environment, its dynamics is a basic research topic in the field of quantum information and quantum computing Ralph ; Reichental ; Wisniacki ; Eleuch ; Venuti . Normally dissipation or decoherence of the system will occur due to the system-bath coupling, which is one of the main problems to be solved in the manipulation of quantum devices. Based on the memory effects of the environment, the dynamics of an open quantum system is defined as Markovian or non-Markovian Vega . For the memoryless Markovian process, the dynamical is usually described by the Lindblad master equation with semigroup property. In the non-Markovian processes where the memory effects can not be neglected, the information backflow from the environment to the system leads to the deviation of the system dynamics from that of a dynamical semigroup, and in this case Lindblad master equation fails. A lot of methods have been developed to tackle the non-Markovian dynamics, such as non-Markovian quantum jump Piilo , Feynman-Vernon influence functional path-integral Hu1992 ; zhang , the time-evolving matrix product operator Strathearn and QSD equation approach Diosi97 .

For a non-Markovian environment, normally the environment is assumed to be a bosonic or fermionic coherent state zhang ; Luoma ; Liu . It is the smallest uncertain state in the orthogonal component, and the quantum fluctuations of the coherent state in the phase space are equal in the direction of the orthogonal components xx and pp, i.e., Δx2=Δp2=/2\Delta x^{2}=\Delta p^{2}=\hbar/2. With the development of the reservoir engineering technology Diehl ; Li ; Cavaliere , the issue of protecting quantum information through environmental actions has attracted lots of attention. Theoretical studies have shown that a bath consisting of a squeezed vacuum can partially suppress the two level atom phase decay Gardiner . Experimentally people have used resonant fluorescence on superconducting circuits to characterize the squeezing phenomenon in a cryogenic environment Toyli . The squeezed bosonic bath can be generated by pumping a lumped-element Josephson parametric amplifier in superconducting circuit Murch . For a quantum squeezed state, the quantum fluctuations of an orthogonal component can be reduced below the symmetry limit /2\hbar/2 and the quantum fluctuations of its conjugate variables rise to satisfy the Heisenberg uncertainty principle Δx2Δp2/4\Delta x^{2}\Delta p^{2}\geq\hbar/4. This provides us more adjustable parameters in controlling the system by the reservoir. Link et al. demonstrated that the system-bath coupling strength can be controlled by the squeezed direction, the model is the two level atom in a non-Markovian bath Link .

The QSD equation approach proposed by Diósi et al. Diosi97 ; Diosi98 has shown its unique computational characteristics in the study of non-Markovian dynamics of open quantum systems Ren20 ; wang2020 ; wangenergy ; Flannigan ; Arapat ; Chen ; MChen . In this paper, by using this approach we derive a group of closed equations for solving the dynamics of the system in non-Markovian squeezed baths. The baths are assumed to be bosonic with weak system-bath couplings. We use the bath correlation function to describe the effects of bath squeezing on quantum fluctuations, and give the containing historical memory effect OO operators. Finally, as an demonstration, we analyze two examples: the adiabatic evolution and quantum state transmission. The effects of the non-Markovianity γ\gamma, the squeezing direction θ\theta and squeezing strength rr are analyzed in these two models, respectively.

This paper is organized as follows. In Sec. II, we brief introduce the two mode squeezed bath and derive the non-Markovian master equation using the QSD approach. In Sec. III, we numerically calculate the adiabatic evolution of a three level atom, and the state transmission in the Heisenberg spin chain. Finally, conclusion is presented in Sec. IV.

II Non-Markovian MASTER EQUATION

In the open quantum system model, the total Hamiltonian can be written as

Htot=Hs+Hb+Hint,H_{tot}=H_{s}+H_{b}+H_{int}, (1)

where HsH_{s} and HbH_{b} are the system and bath Hamiltonian, respectively. Suppose in multi-qubit system each qubit is coupled to its own environment. For the bosonic squeezed bath Hb=j=1NHbjH_{b}=\sum_{j=1}^{N}H_{b}^{j}, Hbj=kωkjbkjbkjH_{b}^{j}=\sum_{k}\omega_{k}^{j}b_{k}^{j\dagger}b_{k}^{j} (setting =1\hbar=1). bkjb_{k}^{j\dagger}, bkjb_{k}^{j} are the kkth mode bosonic creation and annihilation operators of the jjth bath with frequency ωkj\omega_{k}^{j}. The system-bath interaction HintH_{int} in the rotation wave approximation can be written as

Hint=j,k(fkjLjbkj+fkjLjbkj),H_{int}=\underset{j,k}{\sum}\left(f_{k}^{j\ast}L_{j}^{\dagger}b_{k}^{j}+f_{k}^{j}L_{j}b_{k}^{j\dagger}\right), (2)

where LjL_{j} is the Lindblad operator characterizing the mutual couplings between the system and the jjth reservoir. fkjf_{k}^{j} stands for the coupling strength between the system and the kkth mode of the jjth bath. In the interaction picture with respect to the bath HbH_{b}, the total Hamiltonian becomes

HtotI=Hs+Hb+k(fkjLjbkjeiωkjt+h.c.).H^{I}_{tot}=H_{s}+H_{b}+\sum_{k}\left(f_{k}^{j}L_{j}b_{k}^{j\dagger}e^{i\omega^{j}_{k}t}+\text{h.c.}\right). (3)

Now the state vector of the total system satisfies the Schro¨\ddot{o}dinger equation t|ψ(t)=iHtotI|ψ(t)\frac{\partial}{\partial t}\left|\psi(t)\right\rangle=-iH^{I}_{tot}\left|\psi(t)\right\rangle.

In this paper, we only consider the symmetric two mode squeezed state bath as in Ref. Link . In this case we take Lj=LjL_{j}=L_{j}^{\dagger}, and use the squeezed vacuum state |ϕ=S(ξ)|0\left|\phi\right\rangle=S(\xi)\left|0\right\rangle to describe the initial state of the environment. Here S(ξ)S(\xi) is the unitary two mode squeezing operator, for the kkth mode of the jjth bath it can be written as

Skj(ξj)=erj(ξjbk0+kjbk0kjξjbk0+kjbk0kj),S^{j}_{k}(\xi_{j})=e^{r_{j}(\xi_{j}^{\ast}b_{k_{0}+k}^{j}b_{k_{0}-k}^{j}-\xi_{j}b_{k_{0}+k}^{j\dagger}b_{k_{0}-k}^{j\dagger})}, (4)

where rj[0,1]r_{j}\in[0,1] is the squeezing strength. When rj=0r_{j}=0 the jjth bath corresponds to the non-squeezed vacuum state |0\left|0\right\rangle. ξj=eiθj\xi_{j}=e^{i\theta_{j}}, and θj\theta_{j} denotes the squeezing direction. When θj=0,(π)\theta_{j}=0,(\pi) the jjth bath squeezes the p,(x)p,(x)-quadrature. k0j=ω0j/ck_{0}^{j}=\omega_{0}^{j}/c, and ω0\omega_{0} is the squeezed center frequency. bkjb_{k}^{j\dagger}, bkjb_{k}^{j} and Skj(ξj)S^{j}_{k}(\xi_{j}) satisfy

Skk0j(ξj)bkjSkk0j(ξj)=ujbkjvjb2k0kj,S^{j\dagger}_{k-k_{0}}(\xi_{j})b^{j}_{k}S^{j}_{k-k_{0}}(\xi_{j})=u_{j}b^{j}_{k}-v_{j}b_{2k_{0}-k}^{j\dagger}, (5)
Skk0j(ξj)bkjSkk0j(ξj)=ujbkjvjb2k0kj.S^{j\dagger}_{k-k_{0}}(\xi_{j})b^{j\dagger}_{k}S^{j}_{k-k_{0}}(\xi_{j})=u_{j}b^{j\dagger}_{k}-v_{j}^{*}b^{j}_{2k_{0}-k}. (6)

where uj=cosh(rj)u_{j}=cosh(r_{j}), vj=wjξjv_{j}=w_{j}\xi_{j}, wj=sinh(rj)w_{j}=sinh(r_{j}) and uj2|vj|2=1u_{j}^{2}-\left|v_{j}\right|^{2}=1.

For the non-Markovian bosonic baths, the time-local QSD equation can be written as Diosi97 ; Diosi98 ; wang2018

t|ψ(t,zt)\displaystyle\frac{\partial}{\partial t}\left|\psi(t,z^{\ast}_{t})\right\rangle =\displaystyle= [iHs+𝑗(Ljztj\displaystyle[-iH_{s}+\underset{j}{\sum}(L_{j}z^{j\ast}_{t} (7)
LjO¯j(t,ztj))]|ψ(t,zt),\displaystyle-L_{j}\overline{O}^{j}(t,z^{j\ast}_{t}))]\left|\psi(t,z^{\ast}_{t})\right\rangle,

where ztjz^{j\ast}_{t} is the stochastic environmental noise, and O¯j(t,ztj)=0t𝑑sαj(t,s)Oj(t,s,ztj)\overline{O}^{j}(t,z^{j\ast}_{t})=\intop_{0}^{t}ds\alpha^{j}(t,s)O^{j}(t,s,z^{j\ast}_{t}). The Oj(t,s,ztj)O^{j}(t,s,z^{j\ast}_{t}) operator is defined as Oj(t,s,ztj)|ψ(t,ztj)=δ|ψ(t,ztj)/δzsjO^{j}(t,s,z^{j\ast}_{t})\left|\psi(t,z^{j\ast}_{t})\right\rangle=\delta\left|\psi(t,z^{j\ast}_{t})\right\rangle/\delta z^{j*}_{s}.

In the Markovian limit, the OO operator is the Lindblad operator LL. Then the initial condition of the OO operator is Oj(t,t,ztj)=LjO^{j}(t,t,z^{j\ast}_{t})=L_{j}. αj(t,s)\alpha^{j}(t,s) is the bath correlation function. For the two mode symmetric squeezed bath it can be determined by

αj(t,s)\displaystyle\alpha^{j}(t,s) =\displaystyle= ϕ|[Bj(t)+Bj(t)][Bj(s)+Bj(s)]|ϕ\displaystyle\left\langle\phi\left|\left[B_{j}(t)+B_{j}^{\dagger}(t)\right]\left[B_{j}(s)+B_{j}^{\dagger}(s)\right]\right|\phi\right\rangle (8)
=\displaystyle\;= k,kfkjeiωkjtfkjeiωkjsϕ|bkjbkj|ϕ\displaystyle\sum_{k,k^{{}^{\prime}}}f^{j}_{k}e^{-i\omega^{j}_{k}t}f_{k^{{}^{\prime}}}^{j*}e^{i\omega^{j}_{k^{{}^{\prime}}}s}\left\langle\phi\left|b^{j}_{k}b_{k^{{}^{\prime}}}^{j\dagger}\right|\phi\right\rangle
+k,kfkjeiωkjtfkjeiωkjsϕ|bkjbkj|ϕ\displaystyle+\sum_{k,k^{{}^{\prime}}}f^{j}_{k}e^{i\omega^{j}_{k}t}f_{k^{{}^{\prime}}}^{j*}e^{i\omega^{j}_{k^{{}^{\prime}}}s}\left\langle\phi\left|b_{k}^{j\dagger}b^{j}_{k^{{}^{\prime}}}\right|\phi\right\rangle
+k,kfkjeiωkjtfkjeiωkjsϕ|bkjbkj|ϕ\displaystyle+\sum_{k,k^{{}^{\prime}}}f^{j}_{k}e^{-i\omega^{j}_{k}t}f_{k^{{}^{\prime}}}^{j*}e^{i\omega^{j}_{k^{{}^{\prime}}}s}\left\langle\phi\left|b^{j}_{k}b^{j}_{k^{{}^{\prime}}}\right|\phi\right\rangle
+k,kfkjeiωkjtfkjeiωkjsϕ|bkjbkj|ϕ,\displaystyle+\sum_{k,k^{{}^{\prime}}}f^{j}_{k}e^{-i\omega^{j}_{k}t}f_{k^{{}^{\prime}}}^{j*}e^{-i\omega^{j}_{k^{{}^{\prime}}}s}\left\langle\phi\left|b_{k}^{j\dagger}b_{k^{{}^{\prime}}}^{j\dagger}\right|\phi\right\rangle,

where Bj(t)=kfkjbkjeiwkjtB_{j}(t)=\sum_{k}f^{j}_{k}b^{j}_{k}e^{-iw^{j}_{k}t}. Assume the bath spectral density has the Lorentzian form Jj(ωj)=Γj2γj2γj2+(ω0jωj)2J_{j}(\omega_{j})=\frac{\Gamma_{j}}{2}\frac{\gamma_{j}^{2}}{\gamma_{j}^{2}+\left(\omega^{j}_{0}-\omega^{j}\right)^{2}} when rj=0r_{j}=0, which corresponds to the Ornstein-Uhlenbeck type bath correlation function α0j(t,s)=Γjγj2eiω0j(ts)γj|ts|\alpha^{j}_{0}(t,s)=\frac{\Gamma_{j}\gamma_{j}}{2}e^{-i\omega^{j}_{0}(t-s)-\gamma_{j}|t-s|}. Γj\Gamma_{j} and γj\gamma_{j} denote the system-bath coupling strength and bandwidth of the environmental spectral density, respectively. The bandwidth γj\gamma_{j} determines the magnitude of the environmental backaction. γj\gamma_{j}\rightarrow\infty (γj 0\gamma_{j}\rightarrow\ 0) corresponds to a white (colored) noise situation, and the environment reaches the Markovian (non-Markovian) limit. As in Ref. Link , Eq. (8) can be decomposed as αj(t,s)=α1j(t,s)+α2j(t,s)\alpha^{j}(t,s)=\alpha^{j}_{1}(t,s)+\alpha^{j}_{2}(t,s), its specific form is

α1j(t,s)=γjΓj2(uj2vjuje2iw0js)eiw0j(ts)γj|ts|,\alpha^{j}_{1}(t,s)=\frac{\gamma_{j}\Gamma_{j}}{2}\left(u_{j}^{2}-v_{j}u_{j}e^{-2iw^{j}_{0}s}\right)e^{-iw^{j}_{0}\left(t-s\right)-\gamma_{j}\left|t-s\right|}, (9)
α2j(t,s)=γjΓj2(|vj|2vjuje2iw0jt)eiw0j(ts)γj|ts|.\alpha^{j}_{2}(t,s)=\frac{\gamma_{j}\Gamma_{j}}{2}\left(\left|v_{j}\right|^{2}-v_{j}^{*}u_{j}e^{2iw^{j}_{0}t}\right)e^{iw^{j}_{0}\left(t-s\right)-\gamma_{j}\left|t-s\right|}. (10)

We can see that these correlation functions are not only functions of tst-s, but also functions of tt and ss, indicating that the bath is initially non-stationary. Since the two-mode squeezed state is an entangled state, the bath correlation functions α1j(t,s)\alpha^{j}_{1}(t,s) and α2j(t,s)\alpha^{j}_{2}(t,s) contain both the effects of each mode on the system. Now the non-Markovian QSD equation (Eq. (7)) can be written as

t|ψ(t,zt)\displaystyle\frac{\partial}{\partial t}\left|\psi(t,z^{\ast}_{t})\right\rangle =\displaystyle= [iHs+𝑗(LjztjLjO¯1j(t,ztj)\displaystyle[-iH_{s}+\underset{j}{\sum}(L_{j}z^{j\ast}_{t}-L_{j}\overline{O}_{1}^{j}(t,z^{j\ast}_{t}) (11)
LjO¯2j(t,ztj))]|ψ(t,zt).\displaystyle-L_{j}\overline{O}_{2}^{j}(t,z^{j\ast}_{t}))]\left|\psi(t,z^{\ast}_{t})\right\rangle.

In the non-Markovian QSD method finite , the density operator of the system is obtained by taking the statistical average of all possible random realizations of the environmental noise ztjz^{j\ast}_{t}, i.e., ρs=[Pt]\rho_{s}=\mathcal{M}\left[P_{t}\right]. Pt=|ψ(t,ztj)ψ(t,ztj)|P_{t}=\left|\psi(t,z^{j\ast}_{t})\right\rangle\left\langle\psi(t,z^{j\ast}_{t})\right|, []=eztjztj[]d2ztj\mathcal{M}\left[...\right]=\int e^{-z^{j*}_{t}z^{j}_{t}}\left[...\right]d^{2}z^{j}_{t}. This process encodes large environmental effects with a huge dimensional Hilbert space as random variables. Actually, taking statistical averages of random variables is equivalent to taking trajectories in a huge Hilbert space. Therefore the time-local QSD equation has its physical meaning of statistical average. The non-Markovian master equation of the system can be written as

tρs\displaystyle\frac{\partial}{\partial t}\rho_{s} =\displaystyle= i[Hs,ρs]+𝑗([Lj,[PtO¯1j(t,ztj)]]\displaystyle-i\left[H_{s},\rho_{s}\right]+\underset{j}{\sum}([L_{j},\mathcal{M}[P_{t}\overline{O}_{1}^{j\dagger}(t,z^{j\ast}_{t})]] (12)
[Lj,[O¯1j(t,ztj)Pt]]+[Lj,[PtO¯2j(t,ztj)]]\displaystyle-[L_{j},\mathcal{M}[\overline{O}^{j}_{1}(t,z^{j\ast}_{t})P_{t}]]+[L_{j},\mathcal{M}[P_{t}\overline{O}_{2}^{j\dagger}(t,z^{j\ast}_{t})]]
[Lj,[O¯2j(t,ztj)Pt]]).\displaystyle-[L_{j},\mathcal{M}[\overline{O}^{j}_{2}(t,z^{j\ast}_{t})P_{t}]]).

In Eq. (12), the first term is the unitary part of the reduced dynamics, it is independent of noise variable ztjz^{j\ast}_{t} and only ruled by the system Hamiltonian HsH_{s}. The Lindblad operator and its associated operators O¯1j(t,ztj)\overline{O}^{j}_{1}(t,z^{j\ast}_{t}), O¯2j(t,ztj)\overline{O}^{j}_{2}(t,z^{j\ast}_{t}) containing the memory kernel describe relaxation and decoherence in open systems with different decay modes. This equation of motion for the density matrix ρs\rho_{s} contains all the dynamics of the system HsH_{s} in snon-Markovian baths. However, it is a hard task to determine the OO operator with the noise term ztjz^{j\ast}_{t}, so we invoke a perturbation technique to obtain the approximate OO operators Yu99 ,

Oj(t,s,zt)\displaystyle O^{j}(t,s,z^{\ast}_{t}) =\displaystyle= O0j(t,s)+0tO1j(t,s,s1)zs1j𝑑s1\displaystyle O^{j}_{0}(t,s)+\int_{0}^{t}O^{j}_{1}(t,s,s_{1})z_{s_{1}}^{j*}ds_{1} (13)
+0t0tO2j(t,s,s1,s2)zs1jzs2j𝑑s1𝑑s2+\displaystyle+\int_{0}^{t}\int_{0}^{t}O^{j}_{2}\left(t,s,s_{1},s_{2}\right)z_{s_{1}}^{j*}z_{s_{2}}^{j*}ds_{1}ds_{2}+\cdots
+0t0tOnj(t,s,s1,,sn)\displaystyle+\int_{0}^{t}\cdots\int_{0}^{t}O^{j}_{n}\left(t,s,s_{1},\ldots,s_{n}\right)
×zs1jzsnjds1dsn+.\displaystyle\times z_{s_{1}}^{j*}\cdots z_{s_{n}}^{j*}ds_{1}\cdots ds_{n}+\cdots.

When the system is weakly coupled to the bath, we can take an approximation Oj(t,s,ztj)O^{j}(t,s,z^{j\ast}_{t})=Oj(t,s)O^{j}(t,s) shiwf ; zhao2 , i.e., [PtO¯ηj(t,ztj)]=ρsO¯ηj(t)\mathcal{M}[P_{t}\overline{O}_{\eta}^{j\dagger}(t,z^{j\ast}_{t})]=\rho_{s}\overline{O}_{\eta}^{j\dagger}(t)(η=1,2\eta=1,2). The non-Markovian master equation in Eq. (12) takes a simple form nie ; luo ; finite

tρs\displaystyle\frac{\partial}{\partial t}\rho_{s} =\displaystyle= i[Hs,ρs]+𝑗([Lj,ρsO¯1j(t)]\displaystyle-i\left[H_{s},\rho_{s}\right]+\underset{j}{\sum}([L_{j},\rho_{s}\overline{O}_{1}^{j\dagger}(t)] (14)
[Lj,O¯1j(t)ρs]+[Lj,ρsO¯2j(t)]\displaystyle-[L_{j},\overline{O}^{j}_{1}(t)\rho_{s}]+[L_{j},\rho_{s}\overline{O}_{2}^{j\dagger}(t)]
[Lj,O¯2j(t)ρs]).\displaystyle-[L_{j},\overline{O}^{j}_{2}(t)\rho_{s}]).

The time dependent operators O¯1j(t)\overline{O}^{j}_{1}(t), O¯2j(t)\overline{O}^{j}_{2}(t) can be numerically calculated by the following closed equations

tO¯1j(t)\displaystyle\frac{\partial}{\partial t}\overline{O}^{j}_{1}(t) =\displaystyle= α1j(0,0)Lj(iw0+γj)O¯1j(t)\displaystyle\alpha^{j}_{1}(0,0)L_{j}-(iw_{0}+\gamma_{j})\overline{O}^{j}_{1}(t) (15)
+𝑗([iHsLjO¯1j(t),O¯1j(t)]\displaystyle+\underset{j}{\sum}([-iH_{s}-L_{j}\overline{O}^{j}_{1}(t),\overline{O}^{j}_{1}(t)]
[LjO¯2(t),O¯1j(t)]).\displaystyle-[L_{j}\overline{O}_{2}(t),\overline{O}^{j}_{1}(t)]).
tO¯2j(t)\displaystyle\frac{\partial}{\partial t}\overline{O}^{j}_{2}(t) =\displaystyle= α2j(0,0)Lj(iw0+γj)O¯2j(t)\displaystyle\alpha^{j}_{2}(0,0)L_{j}-(-iw_{0}+\gamma_{j})\overline{O}^{j}_{2}(t) (16)
+𝑗([iHsLjO¯1j(t),O¯2j(t)]\displaystyle+\underset{j}{\sum}([-iH_{s}-L_{j}\overline{O}^{j}_{1}(t),\overline{O}^{j}_{2}(t)]
[LjO¯2(t),O¯2j(t)]).\displaystyle-[L_{j}\overline{O}_{2}(t),\overline{O}^{j}_{2}(t)]).

Now by using Eqs. (15) and (16), the non-Markovian master equation in Eq. (14) can be numerically solved. In the Markovian limit, O¯1j(t)=12(uj2vjuj)Lj\overline{O}^{j}_{1}(t)=\frac{1}{2}(u_{j}^{2}-v_{j}u_{j})L_{j}, O¯2j(t)=12(|vj|2vjuj)Lj\overline{O}^{j}_{2}(t)=\frac{1}{2}(\left|v_{j}\right|^{2}-v_{j}^{*}u_{j})L_{j}. The Eq. (14) reduces to the Lindblad form,

tρs\displaystyle\frac{\partial}{\partial t}\rho_{s} =\displaystyle= i[Hs,ρs]𝑗((uj2vjuj)(12{LjLj,ρs}\displaystyle-i\left[H_{s},\rho_{s}\right]-\underset{j}{\sum}((u_{j}^{2}-v_{j}u_{j})(\frac{1}{2}\left\{L_{j}^{\dagger}L_{j},\rho_{s}\right\} (17)
LjρsLj))𝑗((|vj|2vjuj)(12{LjLj,ρs}\displaystyle-L_{j}\rho_{s}L_{j}^{\dagger}))-\underset{j}{\sum}((\left|v_{j}\right|^{2}-v_{j}^{*}u_{j})(\frac{1}{2}\left\{L_{j}^{\dagger}L_{j},\rho_{s}\right\}
LjρsLj)).\displaystyle-L_{j}\rho_{s}L_{j}^{\dagger})).

III Examples

III.1 Adiabatic evolution

Adiabatic quantum computation requires that the system must be kept in its instantaneous ground state during the time evolution Farhi ; Gosset ; wang97 ; he . When the system is immersed in bosonic baths, the adiabatic fidelity which measures the adiabaticity has been proven to decrease with increasing system-bath interaction strength and bandwidth of the bath, i.e., a strong bath will destroy the adiabaticity wang heat . However, by tuning the environmental parameters, it shows that strong non-Markovinity and weak-system bath strength will be helpful to maintain the adiabaticity wang heat . In this part, we will see that the adiabatic fidelity can be further boosted by reservoir enginerring. As an example, we consider a three level system immersed in a bosonic squeezed bath. Then the numbers of the baths j=1j=1 in Eqs. (14)-(17). The time-dependent Hamiltonian of the system reads wujing

Hs=(1tT)Jz+tTJx,H_{s}=\left(1-\frac{t}{T}\right)J_{z}+\frac{t}{T}J_{x}, (18)

where Jz=|22||00|J_{z}=\left|2\right\rangle\left\langle 2\right|-\left|0\right\rangle\left\langle 0\right|, Jx=(|21|+|12|+|10|+|01|)/2J_{x}=\left(\left|2\right\rangle\left\langle 1\right|+\left|1\right\rangle\left\langle 2\right|+\left|1\right\rangle\left\langle 0\right|+\left|0\right\rangle\left\langle 1\right|\right)/\sqrt{2}. TT denotes the total evolution time. From time t=0t=0 to t=Tt=T, the system Hamiltonian HsH_{s} changes from JzJ_{z} to JxJ_{x}. Assume the system is initially prepared at the ground state |0\left|0\right\rangle. According to the adiabatic theorem when the total evolution time TT is long enough and the system is not affected by the environment, the final state will be |ψ(T)=(|02|1+|2)/2\left|\psi(T)\right\rangle=\left(\left|0\right\rangle-\sqrt{2}\left|1\right\rangle+\left|2\right\rangle\right)/2 wujing . Now we study the dynamics when this system is immersed in non-Markovian squeezed bath as in Eq. (3). In this model, the weak system-environment coupling (Γ1\Gamma\ll 1) is also assumed. We also use the adiabatic fidelity F(t)=ψ(T)|ρs(t)|ψ(T)F(t)=\sqrt{\left\langle\psi(T)\right|\rho_{s}(t)\left|\psi(T)\right\rangle} to measure the adiabaticity, where ρs(t)\rho_{s}(t) is the reduced density matrix of the system in Eq. (14) .

In Fig. 1 we plot the adiabatic fidelity FF versus time tt for different environmental memory time γ1\gamma^{-1} (Fig. 1(a)) and squeezing parameters θ\theta (Fig. 1(b)). The environmental parameters are taken as noise strength Γ=0.3\Gamma=0.3, system-bath interaction operator L=JxL=J_{x} and squeezed strength r=0.5r=0.5. From Fig. 1(a) when there is no bath and we take the total evolution time T=10T=10, F(T)1F(T)\approx 1 which indicates that the system enters into an adiabatic regime. Clearly, the introduction of the squeezed bath will always destroy the adiabaticity. But the longer memory time (more non-Markovian) will be helpful to maintain the fidelity and this is consistent with the coherent state bath case nie . Fig. 1(b) shows that the fidelity depends on the parameter θ\theta. θ=0\theta=0 corresponds to the maximum fidelity. As θ\theta increases, i.e., the squeezed direction changes from the pp-quadrature to the xx-quadrature, FF decreases rapidly. The above results can be explained by the variances of pp and xx

V(p)=14[u2+w22uwcos(θ)],V(p)=\frac{1}{4}\left[u^{2}+w^{2}-2uwcos(\theta)\right], (19)
V(x)=14[u2+w2+2uwcos(θ)].V(x)=\frac{1}{4}\left[u^{2}+w^{2}+2uwcos(\theta)\right]. (20)

From Eqs. (19) and  (20), when θ=0\theta=0, V(p)=e2r/4V(p)=e^{-2r}/4, V(x)=e2r/4V(x)=e^{2r}/4. In this case, the quantum fluctuations of pp-quadrature are lower than coherent states (V(p)<1/4V(p)<1/4), while the xx-quadrature fluctuations are higher than coherent states (V(x)>1/4V(x)>1/4). The result is reversed when θ=π\theta=\pi, which indicates that the bath squeezing on the pp-quadrature contributes to the adiabaticity of the system. This is due to the fact that the squeezing on the pp-quadrature weakens the system-bath coupling. As a result, the effects of the enviromental noise on the system are attenuated Link .

(a)

Refer to caption

(b)

Refer to caption

Figure 1: (Color on line) The dynamics of the adiabatic fidelity with different environmental parameters: (a) γ1\gamma^{-1}, θ=π/4\theta=\pi/4; (b) θ\theta, γ1=0.2\gamma^{-1}=0.2. Other parameters are r=0.5r=0.5, Γ=0.3\Gamma=0.3, L=JxL=J_{x} and T=10T=10.

Refer to caption

Figure 2: (Color on line) The dynamics of the adiabatic fidelity with different squeezed rr and θ\theta. Other parameters are γ1=0.2\gamma^{-1}=0.2, Γ=0.3\Gamma=0.3, L=JxL=J_{x} and t=1.5t=1.5.

Next we discuss the effects of squeezed strength rr on the adiabatic fidelity for different squeezed direction θ\theta. Here as an example, we only consider the fidelity at certain time. Fig. 2 plots the fidelity versus θ\theta and rr at time t=1.5t=1.5. We can see that, when the non-Markovian bath is squeezed entirely in the pp-quadrature (θ=0\theta=0, V(p)=e2r/4V(p)=e^{-2r}/4, V(x)=e2r/4V(x)=e^{2r}/4), rr is helpful to improve the adiabaticity, while it is squeezed in the xx-quadrature (θ=π\theta=\pi, V(p)=e2r/4V(p)=e^{2r}/4, V(x)=e2r/4V(x)=e^{-2r}/4) the opposite results are obtained.

Interestingly, when 0<θ<π/20<\theta<\pi/2, FF first increases then decreases with increasing rr. Our numerical simulation shows that it exists a peak for certain rr. However, when θ>π/2\theta>\pi/2, the peak disappears and FF always decreases with increasing rr, which is the same as θ=π\theta=\pi case. In order to understand this phenomenon, we calculate Eqs. (19) and  (20), and perform a Taylor expansion (due to r[0,1]r\in[0,1], we only take the first three terms of the Taylor expansion), Eqs. (19) and (20) can be written as

V(p)=18[24rcos(θ)+4r2],V(p)=\frac{1}{8}\left[2-4rcos(\theta)+4r^{2}\right], (21)
V(x)=18[2+4rcos(θ)+4r2].V(x)=\frac{1}{8}\left[2+4rcos(\theta)+4r^{2}\right]. (22)

From Eqs. (21)-(22), when squeezing on both xx and pp quadrature and the squeezing on pp quadrature dominates (0<θ<π/20<\theta<\pi/2), the variance V(p)V(p) keeps decreasing as the squeezing strength rr increases. According to the results in Fig. 1(b), the decrease of V(p)V(p) weakens the system bath coupling strength, then the fidelity is enhanced.

III.2 Quantum state transmission

Quantum state transmission through spin chains has been extensively studied for short-distance communication wang2013 ; Osborne ; Jayashankar . When the communication channel is immersed in a non-squeezed environment, the transmission fidelity is found to be boosted for more non-Markovian baths and weaker system-bath interactions jpawang . In this section, we consider the case that the baths are squeezed. As in Ref. jpawang , the Hamiltonian is a one dimensional NN site open ended XYXY spin chain,

Hs=i=1N1[Ji,i+1xσixσi+1x+Ji,i+1yσiyσi+1y],H_{s}=\sum_{i=1}^{N-1}\left[J_{i,i+1}^{x}\sigma_{i}^{x}\sigma_{i+1}^{x}+J_{i,i+1}^{y}\sigma_{i}^{y}\sigma_{i+1}^{y}\right], (23)

where σiα(α=x,y,z)\sigma_{i}^{\alpha}(\alpha=x,y,z) represents the α\alpha component of the Pauli matrix for spins at site ii and Ji,i+1J_{i,i+1} is the exchange coupling strength between the neighbour sites. We take J=Ji,i+1x=Ji,i+1y=1J=J_{i,i+1}^{x}=J_{i,i+1}^{y}=-1 which corresponds to a ferromagnetic spin chain. Assume the system is initially prepared at the |ψ(0)=|1000\left|\psi(0)\right\rangle=\left|100\cdots\cdots 0\right\rangle state. The target is to transfer the state |1\left|1\right\rangle at one end of the chain the other end. We still use F(t)=ψ(T)|ρs(t)|ψ(T)F(t)=\sqrt{\left\langle\psi(T)\right|\rho_{s}(t)\left|\psi(T)\right\rangle} to measure the transmission fidelity, where the target state is |ψ(T)=|0001\left|\psi(T)\right\rangle=\left|000\cdots\cdots 1\right\rangle.

(a)

Refer to caption

(b)

Refer to caption

(c)

Refer to caption

Figure 3: (Color on line) The dynamics of the quantum state transmission fidelity with different squeezed parameters: (a) rr, θ=3π/10\theta=3\pi/10, L=σxL=\sigma^{x}; (b) rr, θ=3π/10\theta=3\pi/10, L=σzL=\sigma^{z}; (c) r=0.5r=0.5. Other parameters are N=4N=4, Γ=0.3\Gamma=0.3, γ1=0.1\gamma^{-1}=0.1 and T=5T=5.

In Fig. 3, we plot the state transmission fidelity dynamics for different squeezed parameters. We consider the invidual bath model, where each spin encounters its own bath. For simplicity, assume that the neighbor spins share the same environmental parameters Γ=Γj\Gamma=\Gamma_{j}, γ=γj\gamma=\gamma_{j}, r=rjr=r_{j}, θ=θj\theta=\theta_{j}, L=LjL=L_{j} for all these jjth baths. Note that we also take the weak couplings approximations Γ|J|\Gamma\ll\left|J\right|. We compare different Lindblad operators L=σxL=\sigma^{x}, L=σzL=\sigma^{z}, and both of the two cases in Fig. 3(a), (b) and (c), respectively. The parameters are taken to be N=4N=4, Γ=0.3\Gamma=0.3, and γ1=0.1\gamma^{-1}=0.1. In Fig. 3(a), we take θ=3π/10\theta=3\pi/10 as an example, the critical value of rr is 0.40.4 according to the results obtained in the adiabatic model. It can be clearly seen that when r(0,0.4]r\in(0,0.4], FF increases with increasing rr. And after rr exceeds 0.40.4, the opposite results are obtained. It is same to the results we obtained in the adiabatic model. Furthermore, the change in rr affects the non-Markovian oscillations of the system dynamics. This may be because the squeezing of the bath affects the spectrum bandwidth, and thus changes the environmental non-Markovianity Agarwal . Fig. 3 (b) takes the same parameters as Fig. 3 (a) except for the dephasing. The effects of rr are the same as spin- boson model. Finally, a comparison between the spin boson model and the dephasing model is given in Fig. 3 (c). The results show that the model performs better for the dephasing. From Fig. 3, the strong non-Markovian oscillations in the system dynamics occur, which is consistent with the effects of environmental non-Markovianity on quantum entanglement Zhao2011 .

Refer to caption

Figure 4: (Color on line) The maximum fidelity FmaxF_{max} versus length of the chain NN for different rr. Other parameters are θ=3π/10\theta=3\pi/10, Γ=0.3\Gamma=0.3, γ1=0.1\gamma^{-1}=0.1, L=σzL=\sigma^{z}. Clearly, the peak fidelity corresponds to r=12θ/π=0.4r=1-2\theta/\pi=0.4.

To check if the peak fidelity observed in the adiabatic evlution is still effective in the state transmission cases for different length NN, in Fig. 4 we plot the maximum fidelity FmaxF_{max} that can be achieved as a function of chain length NN. L=σzL=\sigma^{z}. We also take θ=3π/10\theta=3\pi/10, then r=0.4r=0.4 should correspond to the peak. It is once again verified for different NN. The peak occurs at r=0.4r=0.4, although it decreases as NN increases. We conjecture that the threshold of r=12θ/πr=1-2\theta/\pi is a universal result for different system.

For the XYXY model in the second example, the dimensionless parameters used in this paper can be converted into a dimensional form for a comparison with a recent experiment using optical lattice Jepsen . At first, we take the couplings J=1,=1J=-1,\hbar=1 which correspond to a dimensional time variable (/J)t(-\hbar/J)t. In the experiment, using a system of two-component bosons in an optical lattice (Bose-Hubbard model), an array of one-dimensional chains is implemented. The two states |\left|\uparrow\right\rangle, |\left|\downarrow\right\rangle, form a spin 1/21/2 system. The effective Hamiltonian is given by a spin-1/2 Heisenberg XXZ model in the Mott insulating regime at unity filling Kuklov ,

H=Jxyi=1N1(σixσi+1x+σiyσi+1y)+Jzσizσi+1z.\displaystyle H=J_{xy}\sum_{i=1}^{N-1}(\sigma_{i}^{x}\sigma_{i+1}^{x}+\sigma_{i}^{y}\sigma_{i+1}^{y})+J_{z}\sigma_{i}^{z}\sigma_{i+1}^{z}. (24)

The nearest-neighbour couplings in x,yx,y are mediated by superexchange. To leading order, Jxy=4t~2/UJ_{xy}=-4\tilde{t}^{2}/U_{\uparrow\downarrow}, Jz=4t~2/U(t~2/U+t~2/U)J_{z}=4\tilde{t}^{2}/U_{\uparrow\downarrow}-(\tilde{t}^{2}/U_{\uparrow\uparrow}+\tilde{t}^{2}/U_{\downarrow\downarrow}), where t~\tilde{t} is the tunnelling matrix element between neighbouring sites, and t~2/U,t~2/U,t~2/U\tilde{t}^{2}/U_{\uparrow\downarrow},\tilde{t}^{2}/U_{\uparrow\uparrow},\tilde{t}^{2}/U_{\downarrow\uparrow} are on-site interaction energies. The couplings Jx,yJ_{x,y} and JzJ_{z} can be tuned via an applied magnetic field Jepsen . For the anisotropy Δ=Jz/Jx,y\Delta=J_{z}/J_{x,y}, it can be tuned from [2,2][-2,2]. For our calculation, we take Jz=0J_{z}=0, the evolution tt of up to t=5t=5 (t=5/Jx,yt=5\hbar/J_{x,y}), which is far below the heating life time of the Mott insulator (approximately 1 ss) Jepsen . Also, it is in a typical time scale for nuclear magnetic resonance experiment Khurana . In addition, the parameters of the non-Markovian heat baths can be adjusted by reservoir engineering or simulating the influence of structured environments where the corresponding parameters can be tuned, e.g., the parameter γ\gamma for controlled Markovian to non-Markovian transition Liu2011 , and the parameter Γ\Gamma for the detection of a weak to strong non-Markovian transition Bernardes . The squeezed strength rr and direction θ\theta of the reservoir can be experimentally controlled using the Josephson parametric amplifier pump power and phase Toyli ; Murch ; Flurin .

IV conclusions

In this paper, by using the QSD approach under weak coupling approximation, we obtain a non-Markovian master equation of the system in squeezed baths. Then for two examples: adiabatic evolution in a three-level system and quantum state transmission in a spin chain, we calculate the dynamics of the system. The effects of the non-Markovianity, squeezing direction and squeezing strength on the adiabatic and state transmission fidelity are analyzed, respectively. Our results show that, the two fidelities always decrease due to the presence of the environment, but they both can be enhanced for more non-Markovian baths or bigger pp-quadrature squeezing. The xx-quadrature squeezing leads to the enhancement of the system-bath coupling, thus decreasing the two fidelities. In addition, we find that at 0<θ<π/20<\theta<\pi/2, the fidelity peak appears when the squeezed strength rr reach a critical value r=12θ/πr=1-2\theta/\pi, and its effects reverse after exceeding this critical value. We conjecture that this critical value is universal for different system models, but the only drawback is that it is obtained by numerical simulation and needs to be theoretically clarified in the following research. By using reservoir engineering, these results can be potentially used to combat the environment noises in performing quantum information processing tasks.

Acknowledgements.
We would like to thank Prof. Ahmad Abliz for the helpful discussions. This paper is supported by the Natural Science Foundation of Shandong Province (Grants No. ZR2021LLZ004).

References

  • (1) G. Ralph and C. Roberto, Phys. Rev. Lett. 93, 160404 (2004).
  • (2) I. Reichental, A. Klempner, Y. Kafri and D. Podolsky, Phys. Rev. B. 97, 134301 (2018).
  • (3) D. Wisniacki and G. G. Carlo, Phys. Rev. E. 77, 045201 (2008).
  • (4) H. Eleuch and I. Rotter, Phys. Rev. A. 95, 022117 (2017).
  • (5) L. C. Venuti, T. Albash, D. A. Lidar and P. Zanardi, Phys. Rev. A. 93, 032118 (2016).
  • (6) I. D. Vega and D.Alonso, Rev. Mod. Phys.89, 015001 (2017).
  • (7) J. Piilo, S. Maniscalco, K. Härkönen and K.A. Suominen, Phys. Rev. Lett. 100, 180402 (2008).
  • (8) B. L. Hu, J. P. Paz, and Y. Zhang, Phys. Rev. D. 45, 2843 (1992).
  • (9) M. W. Y. Tu and W. M. Zhang, Phys. Rev. B. , 235311 (2008).
  • (10) A. Strathearn, P. Kirton, D. Kilda, J. Keeling and B.W. Lovett, Nat Commun. 9, 3322 (2018).
  • (11) L. Diósi and W.T. Strunz, Phys. Lett. A. 235, 569-573 (1997).
  • (12) K. Luoma, W. T. Strunz and J. Piilo, Phys. Rev. Lett. 125, 150403 (2020).
  • (13) B, Liu, H. Y. Dai, X. Chen, and M. Zhang, Eur. Phys. J. D. 69, 104 (2015).
  • (14) S. Diehl, A. Micheli, A. Kantian, B. Kraus, H. P. Büchleret and P. Zoller, Nature Phys. 4, 878 (2008).
  • (15) C. F. Li, G. C. Guo and J. Piilo, Eur. Phys. Lett. 128, 30001 (2019).
  • (16) F. Cavaliere, M. Carrega, G. D. Filippis, V. Cataudella, G. Benenti and M. Sassetti, Phys. Rev. R. 4, 033233 (2022).
  • (17) C. W. Gardiner, Phys. Rev. Lett. 56, 1917–1920 (1986).
  • (18) D. M. Toyli, A. W. Eddins, S. Boutin, S. Puri, D. Hover, V. Bolkhovsky, W. D. Oliver, A.Blais and I. Siddiqi, Phys. Rev. X. 6, 031004 (2016).
  • (19) K. W. Murch, S. J. Weber, K. M. Beck, E. Ginossar and I. Siddiqi, Nature. 499, 62–65 (2013).
  • (20) V. Link, W. T. Strunz and K. Luoma, Entropy. 24, 352 (2022).
  • (21) L. Diósi, N. Gisin and W.T. Strunz, Chem. Phys. 58, 1699-1712 (1998).
  • (22) J. Jing and T. Yu, Phys. Rev. Lett. 105, 240403 (2010).
  • (23) F. H. Ren, Z. M. Wang, and L. A. Wu, Phys. Rev. A. 102, 062603 (2020).
  • (24) J. Jing, T. Yu, C. H. Lam, J. Q. You, and L. A. Wu, Phys. Rev. A. 97, 012104 (2018).
  • (25) Z. M. Wang, F. H. Ren, D. W. Luo, Z. Y. Yan and L. A. Wu, Phys. Rev. A. 102, 042406 (2020).
  • (26) Z. M. Wang, D. W. Luo, B. W. Li, and L. A. Wu, Phys. Rev. A. 101, 042130 (2020).
  • (27) S. Flannigan, F. Damanet and A. J. Daley, Phys. Rev. Lett. 128, 063601 (2022).
  • (28) A. Ablimit, D. Hitjan and A. Abliz, J. Low. Temp. Phys. 205, 126–134 (2021).
  • (29) Y. Chen, J. Q. You and T. Yu, Phys. Rev. A. 90, 052104 (2014).
  • (30) M. Chen and J.Q. You, Phys. Rev. A. 87, 052108 (2013).
  • (31) Z. M. Wang, D. W. Luo, M. S. Byrd, L. A. Wu, T. Yu, and B. Shao, Phys. Rev. A. 98, 062118 (2018).
  • (32) T. Yu, L. Diósi, N. Gisin and W. T. Strunz, Phys. Rev. A. 60, 91 (1999).
  • (33) W. F. Shi, X. Y. Zhao and T. Yu, Phys. Rev. A. 87, 052127 (2013).
  • (34) X. Y. Zhao, J. Jing, B. Corn and T. Yu, Phys. Rev. A. 84, 032101 (2011).
  • (35) S. S. Nie, F. H. Ren, R. H. He, J. Wu and Z. M. Wang, Phys. Rev. A. 104 052424 (2021).
  • (36) D. W. Luo, C. H. Lam, L. A. Wu, T. Yu, H. Q. Lin and J. Q. You, Phys. Rev. A. 92, 022119 (2015).
  • (37) Z. M. Wang, F. H. Ren, D. W. Luo, Z. Y. Yan and L. A. Wu, J. Phys. A: Math. Theor. 54 155303 (2021).
  • (38) E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren and D Preda, Science. 292, 472 (2001).
  • (39) D. Gosset, B. M. Terhal and A. Vershynina, Phys. Rev. Lett. 114, 140501 (2015).
  • (40) Z. M. Wang, M. S. Byrd, J. Jing and L. A. Wu, Phys. Rev. A. 97, 062312 (2018).
  • (41) R. H. He, R. Wang, F. H. Ren, L. C. Zhang and Z. M. Wang,Phys. Rev. A. 103, 052606 (2021).
  • (42) Z. M. Wang, F. H. Ren, M. S. Sarandy, M. S. Byrd, Phys. A. 603, 127861 (2022).
  • (43) J. Wu, F. H. Ren, R. H. He, S. S. Nie and Z. M. Wang, Eur. Phys. Lett. 139, 48001 (2022).
  • (44) M. Christand, N. Datta, A. Ekert and A. J. Landahl, Phys. Rev. Lett. 92, 187902 (2004).
  • (45) Z. M. Wang, L. A. Wu, M. Modugno, W. Yao and B.Shao, Sci. Rep. 3, 3128 (2013).
  • (46) T. J. Osborne and N. Linden, Phys. Rev. A. 69, 052315 (2004).
  • (47) A. Jayashankar and P. Mandayam, Phys.Rev. A. 98, 052309 (2018).
  • (48) Z. M. Wang, F. H. Ren, D. W. Luo, Z. Y. Yan and L. A. Wu, J. Phys. A: Math. Theor. 54 155303 (2021).
  • (49) G. S. Agarwal, Phys.Rev. A. 40, 7 (1989).
  • (50) X. Y. Zhao, J. Jing, B. Corn, and T. Yu, Phys.Rev. A. 84, 032101(2011).
  • (51) P. N. Jepsen, J. Amato-Grill, I. Dimitrova, W. W. Ho, E. Demler and W. Ketterle, Nature 588, 403, (2020).
  • (52) A. B. Kuklov, and B. V. Svistunov, Phys. Rev. Lett. 90, 100401 (2003).
  • (53) D. Khurana, B. K. Agarwalla and T. S. Mahesh, Phys. Rev. A 99 022107 (2019).
  • (54) B.H. Liu, L. Li, Y.F. Huang, C.F. Li, G.C. Guo, E.M. Laine, H.P. Breuer, and J. Piilo, Nat. Phys. 7, 931 (2011).
  • (55) N. K. Bernardes, A. Cuevas, A. Orieux, C. K. Monken, P. Mataloni, F. sciarrino and M. F. Santos, Sci. Rep. 5 17520 (2015).
  • (56) E. Flurin, N. Roch, F. Mallet, M. H. Devoret,and B. Huard, Phys. Rev. Lett 109 183901 (2012).