This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Effective field theory for deformed odd-mass nuclei

T. Papenbrock Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA    H. A. Weidenmüller Max-Planck-Institut für Kernphysik, D-69029 Heidelberg, Germany
Abstract

We develop an effective field theory (EFT) for deformed odd-mass nuclei. These are described as an axially symmetric core to which a nucleon is coupled. In the coordinate system fixed to the core the nucleon is subject to an axially symmetric potential. Power counting is based on the separation of scales between low-lying rotations and higher-lying states of the core. In leading order, core and nucleon are coupled by universal derivative terms. These comprise a covariant derivative and gauge potentials which account for Coriolis forces and relate to Berry-phase phenomena. At leading order, the EFT combines the particle-rotor and Nilsson models. We work out the EFT up to next-to-leading order and illustrate the results in 239Pu and 187Os. At leading order, odd-mass nuclei with rotational band heads that are close in energy and differ by one unit of angular momentum are triaxially deformed. For band heads that are well separated in energy, triaxiality becomes a subleading effect. The EFT developed in this paper presents a model-independent approach to the particle-rotor system that is capable of systematic improvement.

I Introduction

In the last two decades, ideas based on effective field theory (EFT) and on the renormalization group have exerted a strong influence on nuclear-structure theory Bedaque and van Kolck (2002); Bogner et al. (2003); Epelbaum et al. (2009); Bogner et al. (2010); Grießhammer et al. (2012); Hammer et al. (2017). These ideas have led to model-independent approaches to nuclear interactions, currents, and nuclear spectra, to a new understanding of resolution-scale and scheme dependences in theoretical calculations Bedaque et al. (1999); Furnstahl and Hammer (2002); Anderson et al. (2010), and to quantitative estimates of theoretical uncertainties Schindler and Phillips (2009); Furnstahl et al. (2015). EFT exploits a separation of scale between the low-energy phenomena of interest and the excluded high-energy aspects. Thus, EFT can also be used to describe low-lying collective nuclear excitations such as rotations Papenbrock (2011); Papenbrock and Weidenmüller (2014); Papenbrock and WeidenmÃŒller (2015); Papenbrock and Weidenmüller (2016); Chen et al. (2017, 2018, 2020) and vibrations Coello Pérez and Papenbrock (2015a, 2016). Venerable nuclear collective models Eisenberg and Greiner (1970a); Bohr and Mottelson (1975); Iachello and Arima (1987) have been identified as leading-order Hamiltonians in an EFT approach.

In this work, we develop an EFT for odd-mass deformed nuclei. These are viewed as a nucleon coupled to an axially symmetric core. Many even-even deformed nuclei exhibit some amount of triaxiality even in low-lying rotational bands. That, however, is often a small effect that can be treated as a higher-order correction to a first-order description that uses axial symmetry. Our approach differs from the general particle-rotor model and from a very recently developed EFT Chen et al. (2020), both of which couple the nucleon to a triaxially deformed nucleus. As we will see below, the coupling of a nucleon to an axially symmetric core can, however, yield a triaxially deformed nucleus.

The theoretical arguments that lead to the Hamiltonian of the particle-rotor model are deceptively simple Herzberg (1945); Bohr (1952); Bohr and Mottelson (1953); Nilsson (1955); Kerman (1956): In the body-fixed (i.e. co-rotating) coordinate system (indicated here and in what follows by primes), a particle with angular momentum 𝐊=(Kx,Ky,Kz)\mathbf{K}=(K_{x^{\prime}},K_{y^{\prime}},K_{z^{\prime}}) is coupled to a rotor with angular momentum 𝐑=(Rx,Ry,Rz)\mathbf{R}=(R_{x^{\prime}},R_{y^{\prime}},R_{z^{\prime}}), resulting in the total angular momentum 𝐈=𝐑+𝐊\mathbf{I}=\mathbf{R}+\mathbf{K}. The Hamiltonian of a rotor is given by

H\displaystyle H =\displaystyle= k=x,y,zRk22Ck.\displaystyle\sum_{k=x^{\prime},y^{\prime},z^{\prime}}{R_{k}^{2}\over 2C_{k}}\ . (1)

Here, CkC_{k} are the moments of inertia. Replacing the components of 𝐑\mathbf{R} by those of 𝐈𝐊\mathbf{I}-\mathbf{K} leads to the Hamiltonian

Hrot=k=x,y,z(IkKk)22Ck\displaystyle H_{\rm rot}=\sum_{k=x^{\prime},y^{\prime},z^{\prime}}{(I_{k}-K_{k})^{2}\over 2C_{k}} (2)

of the particle-rotor model. That model describes a wealth of data on odd-mass nuclei.

We are motivated to develop an EFT for the particle-rotor model because that approach is expected to yield a systematic classification of terms in the Hamiltonian according to their order of importance, with the Hamiltonian (2) expected to appear as the leading-order term. For that, the formulation of the particle-rotor model in terms of angular momenta is not a good starting point, however. In line with common usage, our EFT is based upon the Lagrangian or the Hamiltonian formalism. These, in turn, make use of velocities or canonical momenta, respectively. However, a Lagrangian approach to the particle-rotor system is not contained in the standard textbooks Rowe (2010); Eisenberg and Greiner (1970a); Bohr and Mottelson (1975); Ring and Schuck (1980); Iachello and Arima (1987); Rowe and Wood (2010).

In addition to providing a systematic procedure for generating Hamiltonian terms of given order, the EFT approach yields surprises and interesting results. For example, the coupling between the particle and the rotor can naturally be described in terms of Abelian and non-Abelian gauge potentials. Such potentials, and the Berry phases Simon (1983); Berry (1984) associated with them, enter in the description of diatomic molecules Wilczek and Zee (1984); Jackiw (1986); Bohm et al. (1992) and the quantum Hall effect Estienne et al. (2011). However, Berry phases have received less attention in low-energy nuclear physics Nikam and Ring (1987); Bulgac (1990); Klein and Walet (1993); Nazarewicz (1994); Hayashi (1997); Chandrasekharan et al. (2008).

This paper is organized as follows. We identify the relevant low-energy degrees of freedom in Sect. II. In Sect. III we systematically construct the EFT by presenting the power-counting procedure and introducing the relevant interactions at leading and at next-to-leading order. Hamiltonian and total angular momentum are introduced, the Hamiltonian is diagonalized and spetra in leading and subleading order are calculated in Section IV. We present applications of our results to 239Pu and the triaxially deformed 187Os in Sec. V, and summarize our results in Sect. VI. Numerous appendices give the technical details necessary for a self-contained description.

II Degrees of freedom and separation of scales

II.1 Even-even nucleus: rotating core

Many odd-mass deformed nuclei can be viewed as an even-even deformed nucleus to which the extra nucleon is coupled. We take 239Pu as an example. The corresponding even-even nucleus is 238Pu, and Fig. 1 shows all its levels below 800 keV. At sufficiently low energies the spectrum of 238Pu is essentially that of an axially symmetric rigid rotor: The excitation energies E(I)E(I) versus angular momentum II obey E(I)=AI(I+1)E(I)=AI(I+1). Here AA is a rotational constant of about 7 keV, and ξ40\xi\approx 40 keV (the energy of the I=2I=2 state) sets the low-energy scale. Only even spins enter because the ground state is invariant under rotations by π\pi around any axis that is perpendicular to the symmetry axis. This symmetry is usually denoted as RR symmetry Bohr and Mottelson (1975). At energy Λ600\Lambda\approx 600 keV a second rotational band with a Kπ=1K^{\pi}=1^{-} band head occurs, followed by more rotational bands at higher energies. In this work we will, however, consider only the lowest energies and restrict ourselves to the description of the ground-state rotational band. Then, the energy of the Kπ=1K^{\pi}=1^{-} band head sets the breakdown scale Λ\Lambda of our EFT, because a new degree of freedom enters at this energy. We have a separation of scale ξΛ\xi\ll\Lambda. The analysis of Ref. Coello Pérez and Papenbrock (2015b) shows that the ground-state band will exhibit noticeable deviations from the leading-order E(I)=AI(I+1)E(I)=AI(I+1) rule for spins IΩ/ξI\gtrsim\Omega/\xi. In the EFT this is due to subleading interactions that couple the ground-state band to other bands. While the interaction between the positive-parity ground-state band and the shown negative-parity band is suppressed, a positive-parity band enters at about 940 keV. These arguments suggest that the breakdown scale is properly chosen. An EFT for the lowest energies in deformed nuclei was presented in Refs. Papenbrock (2011); Coello Pérez and Papenbrock (2015b), and we briefly review its essential features.

Refer to caption
Figure 1: (Color online) The levels of 238Pu below 800 keV can be grouped in two rotational bands, with spin/parity and energy for each level as indicated. The low-energy scale ξ40\xi\approx 40 keV sets the scale for rotations. The breakdown scale Λ600\Lambda\approx 600 keV indicates a “vibrational” state, i.e. the breakdown of the axially-symmetric rigid-rotor picture for this nucleus.

II.1.1 The rotor in quantum mechanics

Nuclear deformation causes an emergent breaking Yannouleas and Landman (2007) of rotational symmetry from SO(3) to axial SO(2), described as a nonlinear realization of the symmetry Weinberg (1968); Coleman et al. (1969); Callan et al. (1969); Leutwyler (1994); Weinberg (1996a); Brauner (2010). The degrees of freedom corresponding to the remnants of Nambu-Goldstone bosons parametrize the coset SO(3)/SO(2), i.e. the two-sphere. We use the radial unit vector

𝐞r\displaystyle\mathbf{e}_{r} \displaystyle\equiv cosϕsinθ𝐞x+sinϕsinθ𝐞y+cosθ𝐞z\displaystyle\cos\phi\sin\theta\mathbf{e}_{x}+\sin\phi\sin\theta\mathbf{e}_{y}+\cos\theta\mathbf{e}_{z} (3)

for this purpose. Here, (𝐞x,𝐞y,𝐞z)(\mathbf{e}_{x},\mathbf{e}_{y},\mathbf{e}_{z}) are orthogonal unit vectors that span a right-handed coordinate system (the “space-fixed system”), and θ\theta and ϕ\phi are the polar and azimuthal angle, respectively. The vector 𝐞r\mathbf{e}_{r} in Eq. (3) points in the direction of the symmetry axis of the deformed nucleus. It is supplemented by the unit vectors

𝐞θ\displaystyle\mathbf{e}_{\theta} \displaystyle\equiv cosϕcosθ𝐞x+sinϕcosθ𝐞ysinθ𝐞z,\displaystyle\cos\phi\cos\theta\mathbf{e}_{x}+\sin\phi\cos\theta\mathbf{e}_{y}-\sin\theta\mathbf{e}_{z}\ ,
𝐞ϕ\displaystyle\mathbf{e}_{\phi} \displaystyle\equiv sinϕ𝐞x+cosϕ𝐞y.\displaystyle-\sin\phi\mathbf{e}_{x}+\cos\phi\mathbf{e}_{y}\ . (4)

The vectors (𝐞θ,𝐞ϕ,𝐞r)(\mathbf{e}_{\theta},\mathbf{e}_{\phi},\mathbf{e}_{r}) span the (right-handed) “body-fixed” coordinate system of the rotor. They result from rotating the axes 𝐞x\mathbf{e}_{x}, 𝐞y\mathbf{e}_{y}, and 𝐞z\mathbf{e}_{z} of the space-fixed system by the operator (ϕ,θ,0){\cal R}(\phi,\theta,0). Here {\cal R} stands for the general rotation

(α,β,γ)eiαJzeiβJyeiγJz,{\cal R}(\alpha,\beta,\gamma)\equiv e^{-i\alpha J_{z}}e^{-i\beta J_{y}}e^{-i\gamma J_{z}}\ , (5)

parametrized in terms of the Euler angles (α,β,γ)(\alpha,\beta,\gamma). The operators JkJ_{k} with k=x,y,zk=x,y,z generate rotations around the axes 𝐞k\mathbf{e}_{k} and fulfill the usual commutation relations

[Jx,Jy]=iJz(cyclic).[J_{x},J_{y}]=iJ_{z}\ {\rm(cyclic)}\ . (6)

We also use the notation

𝐞x\displaystyle\mathbf{e}^{\prime}_{x} =\displaystyle= 𝐞θ,\displaystyle\mathbf{e}_{\theta}\ ,
𝐞y\displaystyle\mathbf{e}^{\prime}_{y} =\displaystyle= 𝐞ϕ,\displaystyle\mathbf{e}_{\phi}\ ,
𝐞z\displaystyle\mathbf{e}^{\prime}_{z} =\displaystyle= 𝐞r\displaystyle\mathbf{e}_{r} (7)

for the basis vectors of the body-fixed coordinate system.

In addition to the generators (Jx,Jy,Jz)(J_{x},J_{y},J_{z}) of rotations in the space-fixed system we also use their analogues (Jx,Jy,Jz)(J_{x^{\prime}},J_{y^{\prime}},J_{z^{\prime}}) in the body-fixed system. These also obey the commutation relations (6). If space-fixed and body-fixed system originally coincide, the rotation (5) and the rotation

(α,β,γ)eiγJzeiβJyeiαJz{\cal R}^{\prime}(\alpha,\beta,\gamma)\equiv e^{-i\gamma J_{z^{\prime}}}e^{-i\beta J_{y^{\prime}}}e^{-i\alpha J_{z^{\prime}}} (8)

are identical Varshalovich et al. (1988). For α=ϕ\alpha=\phi, β=θ\beta=\theta the last two factors in expression (8) rotate the space-fixed zz-axis into the direction of 𝐞z{\bf e}^{\prime}_{z}. The remaining factor eiγJze^{-i\gamma J_{z^{\prime}}} rotates the resulting system about the body-fixed 𝐞z{\bf e}^{\prime}_{z}-axis. Hence, an operator defined in the body-fixed system that is invariant under SO(2) rotations, is automatically invariant under general SO(3) rotations in the space-fixed system. We use that insight to construct invariant terms in the Lagrangian.

Our definition (II.1.1) of the body-fixed coordinate system, resulting from the application of the rotation (ϕ,θ,0){\cal R}(\phi,\theta,0) to the space-fixed system, represents but one possibility. Any rotation (ϕ,θ,γ){\cal R}(\phi,\theta,\gamma) with γ=γ(θ,ϕ)\gamma=\gamma(\theta,\phi) of the space-fixed system would be equally acceptable (albeit γ=0\gamma=0 seems particularly simple). As we will see below, this arbitrary convention leads to a gauge freedom Littlejohn and Reinsch (1997).

The time-dependent angles (θ,ϕ)(\theta,\phi) describe the motion of the deformed nucleus. The angular velocity is

𝐯\displaystyle\mathbf{v} \displaystyle\equiv ddt𝐞r\displaystyle\frac{d}{dt}\mathbf{e}_{r} (9)
=\displaystyle= vθ𝐞θ+vϕ𝐞ϕ,\displaystyle v_{\theta}\mathbf{e}_{\theta}+v_{\phi}\mathbf{e}_{\phi}\ ,

with

vθ\displaystyle v_{\theta} \displaystyle\equiv θ˙,\displaystyle\dot{\theta}\ ,
vϕ\displaystyle v_{\phi} \displaystyle\equiv ϕ˙sinθ.\displaystyle\dot{\phi}\sin\theta\ . (10)

The dot denotes the time derivative. We see that the rotor’s degrees of freedom transform non-linearly [i.e. they depend in a nonlinear way on (ϕ,θ)(\phi,\theta)] under the rotation. The expression 𝐯2\mathbf{v}^{2} with 𝐯\mathbf{v} defined in Eq. (9) is obviously invariant and so is, therefore, the Lagrangian

Lrot\displaystyle L_{\rm rot} =\displaystyle= C02𝐯2=C02(θ˙2+ϕ˙2sin2θ).\displaystyle{C_{0}\over 2}\mathbf{v}^{2}={C_{0}\over 2}\left(\dot{\theta}^{2}+\dot{\phi}^{2}\sin^{2}\theta\right)\ . (11)

This is, of course, the Lagrangian of an axially symmetric rotor (or, equivalently, that of a particle on the unit sphere). Here C0C_{0} is a low-energy constant and corresponds to the moment of inertia.

We introduce the canonical momenta pθ=Lrot/θ˙p_{\theta}={\partial L_{\rm rot}/\partial\dot{\theta}} and pϕ=Lrot/ϕ˙p_{\phi}={\partial L_{\rm rot}/\partial\dot{\phi}} and perform a Legendre transform of the Lagrangian (11). This yields the Hamiltonian

Hrot\displaystyle H_{\rm rot} =\displaystyle= 12C0(pθ2+pϕ2sin2θ)=𝐩22C0.\displaystyle{1\over 2C_{0}}\left(p_{\theta}^{2}+{p_{\phi}^{2}\over\sin^{2}\theta}\right)={\mathbf{p}^{2}\over 2C_{0}}\ . (12)

Here, we combined the canonical momenta into

𝐩pθ𝐞θ+pϕsinθ𝐞ϕ.\mathbf{p}\equiv p_{\theta}\mathbf{e}_{\theta}+{p_{\phi}\over\sin\theta}\mathbf{e}_{\phi}\ . (13)

We quantize the momentum 𝐩\mathbf{p} as usual,

𝐩=iΩ,\displaystyle\mathbf{p}=-i\nabla_{\Omega}\ , (14)

with

Ω𝐞θθ+𝐞ϕsinθϕ.\nabla_{\Omega}\equiv\mathbf{e}_{\theta}\partial_{\theta}+{\mathbf{e}_{\phi}\over\sin\theta}\partial_{\phi}\ . (15)

The spectrum is

E(I)=I(I+1)2C0,E(I)={I(I+1)\over 2C_{0}}\ , (16)

with angular momenta II, corresponding to a rotational band.

An alternative derivation of the rotor spectrum uses the angular momentum

𝐈=𝐞r×𝐩,\mathbf{I}=\mathbf{e}_{r}\times\mathbf{p}\ , (17)

rewrites, 𝐩=𝐞r×𝐈\mathbf{p}=-\mathbf{e}_{r}\times\mathbf{I} (which implies 𝐩2=𝐈2\mathbf{p}^{2}=\mathbf{I}^{2}), and thereby obtains the Hamilitonian 𝐈2/(2C0)\mathbf{I}^{2}/(2C_{0}). We will use such an approach below.

II.1.2 Connection to effective field theory

The arguments in Section II.A.1 may seem purely phenomenological. We now establish the connection to EFT. For nonrelativistic quantum systems, that approach is summarized in Ref. Brauner (2010), see also Ref. Leutwyler (1994). A paradigmatic application is that to the infinitely extended ferromagnet (FM) (Refs. Román and Soto (1999); Hofmann (1999); Bär et al. (2004); Kämpfer et al. (2005)). The breaking of a symmetry of the Hamiltonian in the ground state of the system (in the FM: the common direction of all spins violates rotational invariance) causes the existence of Nambu-Goldstone modes (in the FM: spin waves). These make up for the fact that the FM cannot rotate. They determine the low-lying part of the spectrum of the FM, are determined entirely by the broken symmetry, and depend upon a small number of parameters that must be fitted to the data. In atomic nuclei, that EFT scheme must be generalized as we deal with “emergent symmetry breaking”, see Refs. Yannouleas and Landman (2007); Papenbrock and Weidenmüller (2014); Papenbrock and WeidenmÃŒller (2015). In the limit of infinte mass, nuclei cannot rotate either. The Nambu-Goldstone modes are surface vibrations. Finite nuclei are able to undergo rotations, however. The associated degrees of freedom are the purely time-dependent angles θ(t)\theta(t) and ϕ(t)\phi(t) introduced in Section II.A.1. These degrees of freedom are not Nambu-Goldstone modes as they cease to carry physical significance in the infinite-mass limit. Rather they represent the onset of symmetry breaking in the finite system (hence “emergent symmetry breaking”). That approach is expected to work for systems close to full symmetry breaking. Then the relevant energy scales are (in increasing order) the rotational energy (via the degrees of freedom θ\theta and ϕ\phi), the surface vibrations (described in terms of Nambu-Goldstone modes), and genuine intrinsic excitations of the system (not accessible in terms of Nambu-Goldstone modes). In Refs. Papenbrock and Weidenmüller (2014); Papenbrock and WeidenmÃŒller (2015) that approach has been worked out in detail for even-mass nuclei. In the present paper we confine ourselves in the description of the core to the very lowest part of the excitation spectrum, i.e., to rotations.

Needless to say we may re-formulate the quantum mechanics of the axially symmetric rotor as a quantum field theory. Based on the familiar rotor Hamiltonian (12) we introduce the quantum field operator Φ^(θ,ϕ)\hat{\Phi}(\theta,\phi) that fulfills the canonical commutation relations for bosons

[Φ^(θ,ϕ),Φ^(θ,ϕ)]=δ(ϕϕ)δ(cosθcosθ).\left[\hat{\Phi}(\theta,\phi),\hat{\Phi}^{\dagger}(\theta^{\prime},\phi^{\prime})\right]=\delta(\phi-\phi^{\prime})\delta(\cos\theta-\cos\theta^{\prime})\ . (18)

Here, Φ^(θ,ϕ)\hat{\Phi}^{\dagger}(\theta,\phi) creates an axially symmetric rotor whose symmetry axis points into the direction of 𝐞r\mathbf{e}_{r}.

The Lagrangian of the free rotor is then

L=02πdϕ11dcosθΦ^(θ,ϕ)(it+Ω22C0)Φ^(θ,ϕ).\displaystyle L=\int\limits_{0}^{2\pi}{\rm d}\phi\int\limits_{-1}^{1}{\rm d}\cos\theta\,\,\hat{\Phi}^{\dagger}(\theta,\phi)\left(i\partial_{t}+{\nabla_{\Omega}^{2}\over 2C_{0}}\right)\hat{\Phi}(\theta,\phi)\ . (19)

Introducing the momentum operator

Π^Φ(θ,ϕ)δLδtΦ^(θ,ϕ)=iΦ^(θ,ϕ)\hat{\Pi}_{\Phi}(\theta,\phi)\equiv{\delta L\over\delta\partial_{t}\hat{\Phi}(\theta,\phi)}=i\hat{\Phi}^{\dagger}(\theta,\phi) (20)

and performing the usual Legendre transformation then yields the Hamiltonian

H=12C002πdϕ11dcosθΦ^(θ,ϕ)Ω2Φ^(θ,ϕ).\displaystyle H=-{1\over 2C_{0}}\int\limits_{0}^{2\pi}{\rm d}\phi\int\limits_{-1}^{1}{\rm d}\cos\theta\,\,\hat{\Phi}^{\dagger}(\theta,\phi)\nabla_{\Omega}^{2}\hat{\Phi}(\theta,\phi)\ . (21)

This clearly is the second-quantized version of the Hamiltonian (12).

Although we are dealing with the rotor in quantum mechanics and not in quantum field theory we continue to use the terminology of EFT. This is in keeping with many works in low-energy nuclear physics where the ideas of EFTs Lepage (1997) are used to construct and solve Hamiltonians in quantum mechanics, see, e.g., Refs. Scaldeferri et al. (1997); Beane et al. (1998); Kirscher et al. (2010); Lensky et al. (2016); Capel et al. (2018).

II.2 Nucleon

To gain insight into how to construct the EFT, we consider the odd-mass nucleus 239Pu. Figure 2 shows all levels below 800 keV that can be grouped into rotational bands (omitting the few exceptions). The ground-state rotational band is built on a Kπ=12+K^{\pi}={1\over 2}^{+} state, i.e., a Kπ=12+K^{\pi}={1\over 2}^{+} neutron coupled to the 238Pu ground state. Rotations of this nucleon-nucleus state then produce the rotational band on top of the 1/2+1/2^{+} ground state. The first excited neutron state yields the Kπ=52+K^{\pi}={5\over 2}^{+} state at Ω300\Omega\approx 300 keV, and its rotations produce the corresponding rotational bands. Thus, the fermion single-particle excitation energy is about half the breakdown scale in this nucleus, and the condition ΩΛ\Omega\ll\Lambda is fulfilled only marginally. The Kπ=12K^{\pi}={1\over 2}^{-} band head at about 470 keV could be due either to a single-neutron excitation or to the coupling of the Kπ=12+K^{\pi}={1\over 2}^{+} neutron with the excited 11^{-} state (at the breakdown energy Λ\Lambda) in 238Pu. Therefore, that rotational band is beyond the breakdown scale of the EFT we present in this paper.

Refer to caption
Figure 2: (Color online) Levels of 239Pu below 800 keV that can be grouped into rotational bands, with spins, parities, and energies as indicated. The energy Ω300\Omega\approx 300 keV sets the scale for single-particle excitations.

The rotational bands depicted in Fig. 2 all follow the pattern

E(I,K)=E0+A[I(I+1)+aδK,1/2(1)I+12(I+12)].E(I,K)=E_{0}+A\left[I(I+1)+a\delta_{K,1/2}(-1)^{I+{1\over 2}}\left(I+{1\over 2}\right)\right]\ . (22)

Here, E0E_{0} is an energy offset, AA the rotational constant, and aa the decoupling parameter (that occurs only for K=12K={1\over 2} bands). These constants depend on the band under consideration. Typically, we have E0ΩE_{0}\sim\Omega, Aξ/6A\sim\xi/6, and a𝒪(1)a\sim{\cal O}(1). Equation (22) is well known from a variety of models Rowe (2010); Eisenberg and Greiner (1970b); Bohr and Mottelson (1975); Iachello and Arima (1987); Rowe and Wood (2010). As shown below, it is also the leading-order result of the EFT we develop in this paper.

We use the insight gained in the previous Subsection and request that the Lagrangian of the nucleon be invariant under SO(2) rotations in the body-fixed system. That guarantees invariance under SO(3) rotations in the space-fixed system.

The field operator ψ^s(𝐱)\hat{\psi}_{s}(\mathbf{x}^{\prime}) creates a fermion at position 𝐱\mathbf{x}^{\prime} with spin projection s=±12s=\pm{1\over 2} onto the zz^{\prime}-axis in the body-fixed frame. Denoting the vacuum as |0|0\rangle we thus have

ψ^s(𝐱)|0=χ12s|𝐱.\hat{\psi}_{s}^{\dagger}(\mathbf{x}^{\prime})|0\rangle=\chi_{{1\over 2}s}|\mathbf{x}^{\prime}\rangle\ . (23)

Here χ12s\chi_{{1\over 2}s} denotes a spin state of spin-12{1\over 2} fermion with zz^{\prime} projection ss Varshalovich et al. (1988), and |𝐱|\mathbf{x}^{\prime}\rangle is an eigenstate of the position operator. The corresponding annihilation operator is ψ^s(𝐱)\hat{\psi}_{s}(\mathbf{x}^{\prime}) and we have the usual anti-commutation relation for fermions

{ψ^s(𝐱),ψ^σ(𝐲)}=δσsδ(𝐱𝐲),\displaystyle\left\{\hat{\psi}_{s}(\mathbf{x}^{\prime}),\hat{\psi}^{\dagger}_{\sigma}(\mathbf{y}^{\prime})\right\}=\delta_{\sigma}^{s}\delta(\mathbf{x}^{\prime}-\mathbf{y}^{\prime})\ , (24)

and all other anti commutators vanish. It will be useful to combine the two spin components of the field operator into the spinor

Ψ^(𝐱)(ψ^+12(𝐱)ψ^12(𝐱)).\displaystyle\hat{\Psi}(\mathbf{x}^{\prime})\equiv\left(\begin{array}[]{c}\hat{\psi}_{+{1\over 2}}(\mathbf{x}^{\prime})\\ \hat{\psi}_{-{1\over 2}}(\mathbf{x}^{\prime})\end{array}\right)\ . (27)

The nucleon Lagrangian is

LΨ=d3𝐱Ψ^(𝐱)(it+2Δ2mV)Ψ^(𝐱).\displaystyle L_{\Psi}=\int{\rm d}^{3}\mathbf{x}^{\prime}\hat{\Psi}^{\dagger}(\mathbf{x}^{\prime})\left(i\partial_{t}+{\hbar^{2}\Delta^{\prime}\over 2m}-V\right)\hat{\Psi}(\mathbf{x}^{\prime})\ . (28)

Here, VV is an axially symmetric potential which may also depend on spin, i.e., be a 2×22\times 2 matrix. The potential of the Nilsson model Nilsson (1955) is an example. The Lagrangian (28) exhibits axial symmetry. The construction (28) is not only mandated by the nonlinear realization of rotational symmetry Papenbrock (2011). It is also consistent with an adiabatic approach where the light nucleon is much faster than the heavy and slowly rotating core and able to follow the core’s motion quasi instantaneously. The canonical momentum is

Π^(𝐱)=δLδtΨ^(𝐱)=iΨ^(𝐱).\hat{\Pi}(\mathbf{x}^{\prime})=\frac{\delta L}{\delta\partial_{t}\hat{\Psi}(\mathbf{x}^{\prime})}=i\hat{\Psi}^{\dagger}(\mathbf{x}^{\prime})\ . (29)

The Legendre transform of the Lagrangian (28) yields the Hamiltonian

HΨ\displaystyle H_{\Psi} =\displaystyle= d3𝐱Ψ^(𝐱)(2Δ2m+V)Ψ^(𝐱).\displaystyle\int{\rm d}^{3}\mathbf{x}^{\prime}\hat{\Psi}^{\dagger}(\mathbf{x}^{\prime})\left(-{\hbar^{2}\Delta^{\prime}\over 2m}+V\right)\hat{\Psi}(\mathbf{x}^{\prime})\ . (30)

Here, we introduced the Laplacian Δ=\Delta^{\prime}=\nabla^{\prime}\cdot\nabla^{\prime}. The total angular momentum of the fermion,

𝐊=d3𝐱Ψ^(𝐱)(i𝐱×+𝐒^)Ψ^(𝐱),\mathbf{K}=\int{\rm d}^{3}\mathbf{x}^{\prime}\hat{\Psi}^{\dagger}(\mathbf{x}^{\prime})\left(-i\mathbf{x}^{\prime}\times\mathbf{\nabla}^{\prime}+\hat{\mathbf{S}}\right)\hat{\Psi}(\mathbf{x}^{\prime})\ , (31)

is the sum of orbital angular momentum and spin

𝐒^=12(σxσyσz).\displaystyle\hat{\mathbf{S}}={1\over 2}\left(\begin{array}[]{c}\sigma_{x^{\prime}}\\ \sigma_{y^{\prime}}\\ \sigma_{z^{\prime}}\end{array}\right)\ . (35)

Here, σx,y,z\sigma_{x^{\prime},y^{\prime},z^{\prime}} denote the usual Pauli matrices. These act with respect to the axes of the body-fixed system. The action of the general operators (JxJ_{x^{\prime}}, JyJ_{y^{\prime}}, Jz)J_{z^{\prime}}) on the space- and spin-degrees of freedom of the nucleon coincides with that of the corresponding angular momentum plus spin operators in Eq. (31). Thus, for k=x,y,zk^{\prime}=x^{\prime},y^{\prime},z^{\prime},

Kk𝐞k𝐊=d3𝐱Ψ^(𝐱)JkΨ^(𝐱)\displaystyle K_{k^{\prime}}\equiv\mathbf{e}^{\prime}_{k}\cdot\mathbf{K}=\int{\rm d}^{3}\mathbf{x}^{\prime}\hat{\Psi}^{\dagger}(\mathbf{x}^{\prime})J_{k^{\prime}}\hat{\Psi}(\mathbf{x}^{\prime}) (36)

are the projections of the fermion’s angular momentum onto the body-fixed axes.

Fermion states of axially-symmetric Hamiltonians HΨH_{\Psi} are written as |K,α|K,\alpha\rangle. Here KK denotes the projection of the angular momentum onto the nuclear symmetry axis, while α\alpha comprises the remaining quantum numbers energy, parity, and third component of isospin. Kramers’ degeneracy (i.e., time-reversal invariance) implies that the single-Fermion states come in degenerate pairs |±K,α|{\pm K},\alpha\rangle, carrying identical quantum numbers α\alpha and, in particular, sharing the same energy E|K|,αE_{|K|,\alpha}. Thus, we have

HΨ|K,α\displaystyle H_{\Psi}|K,\alpha\rangle =E|K|,α|K,α,\displaystyle=E_{|K|,\alpha}|K,\alpha\rangle\ ,
K^z|K,α\displaystyle\hat{K}_{z^{\prime}}|K,\alpha\rangle =K|K,α.\displaystyle=K|K,\alpha\rangle\ . (37)

We understand the band heads in Fig. 2 simply as energy eigenvalues of the fermion Hamiltonian HΨH_{\Psi} with a suitably chosen potential VV. The RR symmetry of the nuclear ground state ensures that only a suitable linear combination of the states |±K,α|{\pm K},\alpha\rangle enters. The energies E|K|,αE_{|K|,\alpha} of the band heads are of the scale Ω\Omega. Thus, if we had spontaneous rather than emergent symmetry breaking, ξ0\xi\to 0 would hold, and the rotational bands on top of each band head would collapse.

The degrees of freedom of the rotor do not appear explicitly in Eq. (30). Conversely, the potential VV has no impact on the degrees of freedom of the rotor. The potential VV constitutes an implicit interaction between the rotor and the particle which is solely based on the fact that the potential is axially symmetric and defined in the body-fixed frame. That is consistent with emergent symmetry breaking which allows only a coupling to derivatives of Nambu-Goldstone bosons, in our case: the angular velocity. Such interactions – not yet contained in the Hamiltonian (30) – will appear as gauge couplings of the nucleon to the rotor. These are partly constrained by the nonlinear realization of rotational symmetry. They appear in universal form as a covariant derivative or as Coriolis terms. They can also be understood within an adiabatic approach that involves Berry phases.

III Building an effective field theory

Having identified in Section II the relevant degrees of freedom due to a separation of scales, we now construct our effective field theory for odd-mass deformed nuclei using the following steps. (i) In the present Section we define the power-counting procedure and (ii) write down the interaction terms between the nucleon and the rotor in leading and some also in subleading order. In step (ii) all possible interaction terms are admitted that are allowed by the symmetries (in our case invariance under rotations, parity, and time reversal), see, e.g., Ref. Brauner (2010). (iii) The resulting Lagrangian and Hamiltonian, further subleading terms, and the solution of the equations of motion are addressed in Section IV.

III.1 Power counting

The power-counting procedure for the rotor was worked out in Refs. Papenbrock (2011); Papenbrock and Weidenmüller (2014). We briefly present the arguments. We associate the low-energy scale ξ\xi with the rotor. Thus, the angular velocity scales as ξ\xi,

|𝐯|\displaystyle|\mathbf{v}| \displaystyle\sim ξ,\displaystyle\xi\ ,
θ˙\displaystyle\dot{\theta} \displaystyle\sim ξ,\displaystyle\xi\ ,
ϕ˙\displaystyle\dot{\phi} \displaystyle\sim ξ,\displaystyle\xi\ , (38)

and so does the Lagrangian (11) of the free rotor. That implies that its low-energy constant scales as

C0ξ1.C_{0}\sim\xi^{-1}. (39)

The spectrum of the free axially symmetric rotor forms a rotational band, see Eq. (16), and C0C_{0} is the moment of inertia. Let us give examples. C011C_{0}^{-1}\approx 1 MeV for a light rotor such as 8Be, 0.5 MeV in 24Mg, 0.2 MeV in the neutron-rich nucleus 34Mg, 30 keV for a rare earth nucleus, and only 15 keV for actinides. These are the smallest energy scales in the nuclei we consider. The breakdown energy Λ\Lambda for the rotor is set by excitations that are not part of its ground-state rotational band. This energy is about 17 MeV in 8Be, 4 MeV in 24Mg, 1 MeV in rare earth nuclei, and about 0.5 MeV in actinides. Thus, Λξ\Lambda\gg\xi in all cases.

The subleading correction to the rotor Lagrangian (11) is

C2(𝐯2)2.C_{2}(\mathbf{v}^{2})^{2}\ . (40)

At the breakdown scale, i.e., when |𝐯|Λ|\mathbf{v}|\sim\Lambda, the term (40) is by definition equal in importance to the leading-order Lagrangian (11). That yields

C2ξ1Λ2.C_{2}\sim\xi^{-1}\Lambda^{-2}\ . (41)

At low energy where |𝐯|ξ|\mathbf{v}|\sim\xi, the term (40) yields a contribution ξ3/Ω2\sim\xi^{3}/\Omega^{2} to the total Lagrangian, and this is suppressed by ξ2/Ω21\xi^{2}/\Omega^{2}\ll 1 compared to the leading term (11). That argument establishes the power-counting procedure for the rotor: the energy scale ξ\xi is associated with rotational bands. Corrections to the leading-order term come in powers of ξ/Λ\xi/\Lambda.

We turn to the energy scales of the Hamiltonian (30) of the nucleon. The energy scale Ω\Omega is set by the mean level spacing of the single-nucleon states, i.e., by the spacing of band-head energies E|K|αE_{|K|\alpha} in odd-mass nuclei, see Eq. (II.2). That scale is about 1.7 MeV in 9Be, (given by the energy difference of the 3/23/2^{-} ground state and the excited 1/2+1/2^{+} band head), 0.6 MeV in 25Mg, (given by the energy difference between the 5/2+5/2^{+} ground state and the excited 1/2+1/2^{+} band head), and amounts to some hundreds of keV in rare earth nuclei, and to tens to hundreds of keV for actinides. In most odd-mass deformed nuclei we have Ωξ\Omega\gtrsim\xi, and in many cases one even finds Ωξ\Omega\gg\xi, see 239Pu in Fig. 2 as an example. In such cases Ω\Omega is only about a factor two or three away from the breakdown scale Λ\Lambda, and the separation between Ω\Omega and Λ\Lambda is marginal so that ΩΛ\Omega\lesssim\Lambda but not ΩΛ\Omega\ll\Lambda. In such cases, the power counting uses both small expansion parameters ξ/Λ\xi/\Lambda and ξ/Ω\xi/\Omega, and it is difficult to decide which is the more important one. If we had the ambition to construct an EFT for the nucleon potential in the Hamiltonian (30) we would have to deal, in addition, with an expansion in powers of Ω/Λ\Omega/\Lambda, but we do not pursue this task in the present paper. In some nuclei such as 187Os discussed below, we have Ωξ\Omega\sim\xi so that ξ,ΩΛ\xi,\Omega\ll\Lambda. Then, the power counting is in ξ/Λ\xi/\Lambda. [We avoid the equivalent parameter Ω/Λ\Omega/\Lambda as that might incorrectly suggest a systematic expansion of the nucleon potential in the Hamiltonian (30).]

In any case, the separation of scales allows us to construct an EFT that systematicaly improves the energies and states in rotational bands. We note that there are many states in odd-mass nuclei that do not result from coupling a nucleon to the ground-state band of the even-even nucleus (but rather from coupling to excited band heads of the even-even nucleus). Such states fall outside the purview of the EFT we aim to construct. Including such effects would require us to introduce fields that describe the non-rotational excitations of the rotor.

It would be desirable to construct the potential VV in the fermion Hamiltonian (30) in a similarly systematic fashion. We briefly illuminate the difficulties in doing so for halo rotors, i.e., odd-mass nuclei where the nucleon is weakly bound to the even-even core. Examples are 9Be (with a neutron separation energy of about 1.7 MeV) and neutron-rich magnesium isotopes with separation energies below 1 MeV. In these cases, the fermion’s de-Broglie wave length exceeds the rotor’s size, and a derivative expansion of the potential seems appropriate. The potential VV must be axially symmetric. Total spin 𝐒^2=3/4\hat{\mathbf{S}}^{2}=3/4 and its projection S^z2=1/4\hat{S}_{z^{\prime}}^{2}=1/4 are trivial constants, while K^z\hat{K}_{z^{\prime}} is the nontrivial conserved quantity and can be used to classify the fermion’s wave functions. Thus, we can parameterize the potential as

V\displaystyle V =\displaystyle= v01δ(𝐫)\displaystyle v_{01}\delta(\mathbf{r}^{\prime}) (42)
+\displaystyle+ v11δ(𝐫)+v12zδ(𝐫)z\displaystyle v_{11}\nabla_{\perp}\delta(\mathbf{r}^{\prime})\cdot\nabla_{\perp}+v_{12}\partial_{z^{\prime}}\delta(\mathbf{r}^{\prime})\partial_{z^{\prime}}
+\displaystyle+ v13[2δ(𝐫)+δ(𝐫)2]\displaystyle v_{13}\left[\nabla^{2}_{\perp}\delta(\mathbf{r}^{\prime})+\delta(\mathbf{r}^{\prime})\nabla^{2}_{\perp}\right]
+\displaystyle+ v14[z2δ(𝐫)+δ(𝐫)z2]\displaystyle v_{14}\left[\partial_{z^{\prime}}^{2}\delta(\mathbf{r}^{\prime})+\delta(\mathbf{r}^{\prime})\partial_{z^{\prime}}^{2}\right]
+\displaystyle+ v15(σ^xx+σ^yy)δ(𝐫)(σ^xx+σ^yy)\displaystyle v_{15}\left(\hat{\sigma}_{x^{\prime}}\partial_{x^{\prime}}+\hat{\sigma}_{y^{\prime}}\partial_{y^{\prime}}\right)\delta(\mathbf{r}^{\prime})\left(\hat{\sigma}_{x^{\prime}}\partial_{x^{\prime}}+\hat{\sigma}_{y^{\prime}}\partial_{y^{\prime}}\right)
+\displaystyle+ v16[(σ^xx+σ^yy)σ^zzδ(𝐫)\displaystyle v_{16}\big{[}\left(\hat{\sigma}_{x^{\prime}}\partial_{x^{\prime}}+\hat{\sigma}_{y^{\prime}}\partial_{y^{\prime}}\right)\hat{\sigma}_{z^{\prime}}\partial_{z^{\prime}}\delta(\mathbf{r}^{\prime})
+δ(𝐫)σ^zz(σ^xx+σ^yy)]\displaystyle\,\,\,+\,\,\,\,\delta(\mathbf{r}^{\prime})\hat{\sigma}_{z^{\prime}}\partial_{z^{\prime}}\left(\hat{\sigma}_{x^{\prime}}\partial_{x^{\prime}}+\hat{\sigma}_{y^{\prime}}\partial_{y^{\prime}}\right)\big{]}
+\displaystyle+ .\displaystyle\cdots\ .

Here, r1Ω\nabla_{\perp}\equiv r^{-1}\nabla_{\Omega}. In Eq. (42) we did not present all second-order derivatives, and higher-order derivatives are missing as well. If the fermion has quantum numbers Jπ=12+J^{\pi}={1\over 2}^{+}, the leading-order contribution consists solely of the v01v_{01} contact coupling. For Jπ=32J^{\pi}={3\over 2}^{-} or 12{1\over 2}^{-} states (e.g. for the ground state and excited band head at about 2.8 MeV, respectively, in 9Be), second-order derivatives in the potential VV must enter. In the latter case, one also needs to employ a potential that breaks spherical symmetry down to axial symmetry, thus lifting the four-fold degeneracy of a p3/2p_{3/2} orbital in the body-fixed frame. The considerable number of low-energy coefficients then requires that a significant amount of data is available. In practice, one would like to adjust to scattering data (and make predictions for spectra and transitions), but those are rare. Odd-mass neutron-rich isotopes of magnesium, for instance, are expected to have 52+{5\over 2}^{+} ground states. This would require us to carry the expansion (42) to even higher order, and the scarcity of data in rare isotopes would prohibit us to follow such an EFT approach. It is, therefore, more practical to assume that the Hamiltonian (30) is already in diagonal form, with low-energy eigenstates as given in Eq. (II.2) fitted to the data. In other words, we take the single-particle energies of the fermion from data. This is somewhat similar in spirit to halo EFT Hammer et al. (2017) where each state of the core is represented as a separate field and simply adjusted to data.

The resulting EFT involves – in leading order – terms of order ξ\xi and Ω\Omega. Subleading corrections are suppressed by factors of ξ/Λ\xi/\Lambda (or ξ/Ω\xi/\Omega provided that ξΩ\xi\ll\Omega holds). This EFT does not provide us with an expansion in powers of Ω/Λ\Omega/\Lambda, because we do not construct such an expansion of the potential VV.

III.2 Nucleon-rotor interactions

We deal with emergent symmetry breaking. Thus, the nucleon can couple to the rotor only derivatively, i.e., via the angular velocity 𝐯\mathbf{v}. All terms allowed by the symmetries must be considered. At face value, the resulting velocity-dependent couplings are well known. They involve – in the body-fixed frame – Coriolis forces. However, the essential physical argument for the couplings is more subtle and profound. The coupling terms are gauge couplings that involve Berry phases (or geometrical phases). Such phases occur in many quantum systems Simon (1983); Berry (1984). While originally conceived for systems that undergo a time-dependent adiabatic motion, they may also occur where “fast” degrees of freedom have been removed or integrated out, and where one is only interested in the remaining “slow” degrees of freedom Kuratsuji and Iida (1985). A well-known example from molecular physics is the Born-Oppenheimer approximation. Here, Berry phases and the corresponding gauge potentials enter the dynamics of the nuclei of the molecule once the electronic degrees of freedom have been removed. That leads to the molecular Aharonov-Bohm effect Mead and Truhlar (1979); Wilczek and Zee (1984). For the diatomic molecule, some details are presented in Refs. Jackiw (1986); Bohm et al. (1992); Rho (1994). In the present case, the fact that the nucleon is much faster than the slowly rotating core shows that gauge potentials play a role. Likewise, gauge potentials are a general feature of systems where a separation between rotational and intrinsic degrees of freedom is being made, and different conventions for this separation differ by gauge transformations Littlejohn and Reinsch (1997).

The non-linear realization of rotational invariance requires that, in the body-fixed system, we have to replace the time derivative iti\partial_{t} in the Lagrangian (28) by the covariant derivative Papenbrock (2011) (see Appendices C and D)

iDt\displaystyle iD_{t} \displaystyle\equiv it+ϕ˙cosθ[Jz,].\displaystyle i\partial_{t}+\dot{\phi}\cos\theta\left[J_{z^{\prime}},\cdot\right]\ . (43)

Here, the commutator’s second argument is left open. The last term of the covariant derivative accounts for Coriolis effects in the body-fixed system. It is present even if the Lagrangian in the body-fixed system does not depend on time explicitly, i.e., even if the partial time derivative vanishes. In the Lagrangian (28) that yields

d3𝐱Ψ^(𝐱)iDtΨ^(𝐱)\displaystyle\int{\rm d}^{3}\mathbf{x}^{\prime}\hat{\Psi}^{\dagger}(\mathbf{x}^{\prime})iD_{t}\hat{\Psi}(\mathbf{x}^{\prime})
=d3𝐱Ψ^(𝐱)itΨ^(𝐱)+𝐯(𝐞ϕcotθK^z).\displaystyle=\int{\rm d}^{3}\mathbf{x}^{\prime}\hat{\Psi}^{\dagger}(\mathbf{x}^{\prime})i\partial_{t}\hat{\Psi}(\mathbf{x}^{\prime})+\mathbf{v}\cdot\left(\mathbf{e}_{\phi}\cot\theta\hat{K}_{z^{\prime}}\right)\ . (44)

We have factored out the angular velocity 𝐯\mathbf{v}, see Eq. (9), and we have used Eq. (36). This naturally introduces the gauge potential

𝐀a(θ,ϕ)𝐞ϕcotθK^z\displaystyle\mathbf{A}_{\rm a}(\theta,\phi)\equiv\mathbf{e}_{\phi}\cot\theta\hat{K}_{z^{\prime}} (45)

which couples the rotor to the nucleon via 𝐯𝐀a\mathbf{v}\cdot\mathbf{A}_{\rm a}. Here we borrow the expression gauge potential from electrodynamics. In the parlance of differential geometry, the field 𝐀a\mathbf{A}_{\rm a} is a connection. The term 𝐯𝐀a\mathbf{v}\cdot\mathbf{A}_{\rm a} scales as ξ\xi, i.e. the gauge potential is dimensionless and of order one. Thus, the gauge term is as important as the Lagrangian (11) of the free rotor and enters in leading order.

The gauge potential (45) is singular at the north and south poles of the unit sphere. Single-valuedness of the wave function for the rotor requires that the eigenvalues KK of K^z\hat{K}_{z^{\prime}} be integer or half integer. That is obviously guaranteed for the fermion for which K=±12K=\pm{1\over 2}, ±32\pm{3\over 2}, \cdots. We compute the corresponding magnetic field (or the Berry curvature in differential geometry) and find

𝐁a(θ,ϕ)\displaystyle\mathbf{B}_{\rm a}(\theta,\phi) \displaystyle\equiv Ω×𝐀a=𝐞rK^z.\displaystyle\nabla_{\Omega}\times\mathbf{A_{\rm a}}=-\mathbf{e}_{r}\hat{K}_{z^{\prime}}\ . (46)

This is the field of a Dirac monopole on the unit sphere and clearly exhibits spherical symmetry Fierz (1944); Wu and Yang (1976), in contrast to the gauge potential (45) whose rotational invariance is not obvious. As shown in App. E.2, the effect of a rotation on the gauge potential (45) can be reversed by a gauge transformation.

To see that the field (46) is indeed a monopole field we take a detour and consider a sphere of radius RR of the size of the nucleus, with angular and radial coordinates (θ,ϕ)(\theta,\phi) and ρ\rho, respectively. We neglect excitations of the sphere in the radial direction as these relate to vibration with energies at the breakdown scale and put ρ=R\rho=R. Then angular velocities and the vector potential (45) are multiplied with RR and R1R^{-1}, respectively. The usual differential operator 𝐞rR+R1Ω\mathbf{e}_{r}\partial_{R}+R^{-1}\nabla_{\Omega} then shows that we deal indeed with a monopole field.

The gauge potential (45) is intimately linked to the geometry of the sphere, i.e. the coset space SO(3)/SO(2). To see this, we consider a sequence of three rotations (around space-fixed axes) that take the rotor from a point AA on the unit sphere to a point BB, then from BB to a point CC, and finally from point CC back to the point AA. We assume that the three rotations are around three distinct axes. This ensures that the triangle ABCABC on the sphere has a finite solid angle (or area). It is clear that at least two of the three rotations will also induce rotations of the fermion field around the body-fixed zz^{\prime}-axis. While the rotor has returned to its original configuration after the sequence of the three rotations, the fermion’s configuration has been changed by a finite rotation around the body-fixed zz^{\prime}-axis. Inspection shows that the rotation angle, i.e. the phase acquired by the fermion with spin projection KK, is equal to the solid angle of the enclosed loop times the spin projection KK. Dynamically this phase is acquired because of the monopole magnetic field.

Another gauge coupling, permitted in the framework of our EFT, is

g𝐯(𝐞r×𝐊).\displaystyle g\mathbf{v}\cdot\left(\mathbf{e}_{r}\times\mathbf{K}\right)\ . (47)

Here, gg is a dimensionless coupling constant. Its natural size is of order unity, and the contribution (47) scales as ξ\xi and enters at leading order. The corresponding gauge potential is

𝐀n(θ,ϕ)=g𝐞r×𝐊=g(𝐞ϕK^x𝐞θK^y).\displaystyle\mathbf{A}_{\rm n}(\theta,\phi)=g\mathbf{e}_{r}\times\mathbf{K}=g\left(\mathbf{e}_{\phi}\hat{K}_{x^{\prime}}-\mathbf{e}_{\theta}\hat{K}_{y^{\prime}}\right)\ . (48)

This vector potential contains non-commuting operators and, therefore, constitutes a non-Abelian gauge potential. The corresponding magnetic field is

𝐁n(θ,ϕ)\displaystyle\mathbf{B}_{\rm n}(\theta,\phi) \displaystyle\equiv Ω×𝐀ni𝐀n×𝐀n\displaystyle\nabla_{\Omega}\times\mathbf{A}_{\rm n}-i\mathbf{A}_{\rm n}\times\mathbf{A}_{\rm n} (49)
=\displaystyle= g𝐞rcotθK^x+g2𝐞rK^z.\displaystyle g\mathbf{e}_{r}\cot\theta\hat{K}_{x^{\prime}}+g^{2}\mathbf{e}_{r}\hat{K}_{z^{\prime}}\ .

Taken by itself, this magnetic field is not invariant under rotations. However, the total gauge potential is

𝐀tot=𝐀a+𝐀n,\mathbf{A}_{\rm tot}=\mathbf{A}_{\rm a}+\mathbf{A}_{\rm n}\ , (50)

and the corresponding magnetic field

𝐁tot\displaystyle\mathbf{B}_{\rm tot} \displaystyle\equiv Ω×𝐀toti𝐀tot×𝐀tot\displaystyle\nabla_{\Omega}\times\mathbf{A}_{\rm tot}-i\mathbf{A}_{\rm tot}\times\mathbf{A}_{\rm tot} (51)
=\displaystyle= (g21)𝐞rK^z\displaystyle(g^{2}-1)\mathbf{e}_{r}\hat{K}_{z^{\prime}}

is spherically symmetric. Again, we deal with a magnetic monopole. However, in contrast to the field (46) its overall strength is not quantized because the non-Abelian vector potential (48) exhibits no singularities on the unit sphere and the coupling gg can therefore assume any real value.

To show how this gauge term relates to the Berry phase we observe that the states |±K,α|{\pm K},\alpha\rangle have the same energy, see Eq. (II.2). When the rotor moves along a closed loop on the unit sphere, a general interaction would mix the two degenerate states while transversing the loop. Thus, the initial and final fermion states could differ by a unitary transformation. The non-Abelian gauge potential (48) generates such a mixing for non-zero values of the coupling gg.

The choice of the gauge potentials is not unique. At any orientation (θ,ϕ)(\theta,\phi) of the rotor’s symmetry axis, the body-fixed coordinate system is defined up to an arbitrary rotation around the zz^{\prime} axis. Thus, the intrinsic degrees of freedom (of the fermion in our case) depend on a convention which is arbitrary. Different choices of the body-fixed system lead to different expressions for the covariant derivative and to different gauge potentials Littlejohn and Reinsch (1997). These are related to each other by gauge transformations. Details are given in Appendix E.

IV Lagrangian and Hamiltonian

IV.1 Leading- order terms

Collecting the leading-order results from the previous Sections, we find that the Lagrangian is given by

L\displaystyle L =\displaystyle= C02𝐯2+𝐯(𝐀a+𝐀n)+LΨ\displaystyle{C_{0}\over 2}\mathbf{v}^{2}+\mathbf{v}\cdot\left(\mathbf{A}_{\rm a}+\mathbf{A}_{\rm n}\right)+L_{\Psi} (52)
=\displaystyle= C02(θ˙2+ϕ˙2sin2θ)+g(ϕ˙sinθK^xθ˙K^y)\displaystyle{C_{0}\over 2}\left(\dot{\theta}^{2}+\dot{\phi}^{2}\sin^{2}\theta\right)+g\left(\dot{\phi}\sin\theta\hat{K}_{x^{\prime}}-\dot{\theta}\hat{K}_{y^{\prime}}\right)
+ϕ˙cosθK^z+LΨ.\displaystyle+\dot{\phi}\cos\theta\hat{K}_{z^{\prime}}+L_{\Psi}\ .

Here, LΨL_{\Psi} is defined in Eq. (28). The Legendre transform of the Lagrangian (52) yields the Hamiltonian. For LψL_{\psi} that was done in Section II.2. For the remaining variables the transformation is less tedious than might appear at first sight. The Lagrangian (52) is a quadratic form in the velocities (θ˙,ϕ˙)(\dot{\theta},\dot{\phi}) and can be written as

L=12𝐪˙TM^𝐪˙+𝐀𝐪˙,L={1\over 2}\dot{\mathbf{q}}^{T}\hat{M}\dot{\mathbf{q}}+\mathbf{A}\cdot\dot{\mathbf{q}}\ , (53)

where T denotes the transpose. That Lagrangian has the Legendre transform

H=12(𝐪𝐀)TM^1(𝐪𝐀).H={1\over 2}\left(\mathbf{q}-\mathbf{A}\right)^{T}\hat{M}^{-1}\left(\mathbf{q}-\mathbf{A}\right)\ . (54)

Here, M^\hat{M} is a “mass” matrix and M^1\hat{M}^{-1} denotes its inverse. In the present case the canonical momenta are

pϕ\displaystyle p_{\phi} \displaystyle\equiv Lϕ˙=C0vϕsinθ+cosθK^z+gsinθK^x,\displaystyle{\partial L\over\partial\dot{\phi}}=C_{0}v_{\phi}\sin\theta+\cos\theta\hat{K}_{z^{\prime}}+g\sin\theta\hat{K}_{x^{\prime}}\ ,
pθ\displaystyle p_{\theta} \displaystyle\equiv Lθ˙=C0vθgK^y.\displaystyle{\partial L\over\partial\dot{\theta}}=C_{0}v_{\theta}-g\hat{K}_{y^{\prime}}\ . (55)

Here, we employed Eq. (II.1.1). The Hamiltonian becomes

H\displaystyle H =\displaystyle= Hψ+12C0(pθ+gK^y)2\displaystyle H_{\psi}+\frac{1}{2C_{0}}\left(p_{\theta}+g\hat{K}_{y^{\prime}}\right)^{2} (56)
+12C0(pϕsinθcotθK^zgK^x)2.\displaystyle+\frac{1}{2C_{0}}\left({p_{\phi}\over\sin\theta}-\cot\theta\hat{K}_{z^{\prime}}-g\hat{K}_{x^{\prime}}\right)^{2}\ .

Here, the fermion Hamiltonian HψH_{\psi} is given in Eq. (30). The momentum pϕp_{\phi} is conserved because ϕ\phi does not appear in the Hamiltonian (56). Combining two of the canonical momenta (IV.1) into

𝐩=pθ𝐞θ+pϕsinθ𝐞ϕ,\mathbf{p}=p_{\theta}\mathbf{e}_{\theta}+{p_{\phi}\over\sin\theta}\mathbf{e}_{\phi}\ , (57)

we find

𝐩=C0𝐯+𝐀a+𝐀n.\mathbf{p}=C_{0}\mathbf{v}+\mathbf{A}_{\rm a}+\mathbf{A}_{\rm n}\ . (58)

Using that, we write the Hamiltonian (56) in compact form as

H=Hψ+12C0(𝐩𝐀a𝐀n)2=Hψ+12C0𝐯2.\displaystyle H=H_{\psi}+{1\over 2C_{0}}\left(\mathbf{p}-\mathbf{A}_{\rm a}-\mathbf{A}_{\rm n}\right)^{2}=H_{\psi}+\frac{1}{2}C_{0}\mathbf{v}^{2}\ .

IV.2 Angular momentum

Replacing the canonical momenta by the total angular momentum simplifies the Hamiltonian and establishes the connection to Eq. (2). In the present Subsection we introduce the total angular momentum on an intuitive basis. A derivation based on Noether’s theorem is given in App. B.3.

The total angular momentum

𝐈=𝐈+𝐈z\mathbf{I}=\mathbf{I}_{\perp}+\mathbf{I}_{z^{\prime}} (60)

is the sum of the angular momentum of the fermion,

𝐈z=𝐞zK^z,\displaystyle\mathbf{I}_{z^{\prime}}=\mathbf{e}^{\prime}_{z}\hat{K}_{z^{\prime}}\ , (61)

which points in the direction of the symmetry axis, and that of the rotor,

𝐈\displaystyle\mathbf{I}_{\perp} =\displaystyle= Ix𝐞x+Iy𝐞y\displaystyle I_{x^{\prime}}\mathbf{e}^{\prime}_{x}+I_{y^{\prime}}\mathbf{e}^{\prime}_{y} (62)
=\displaystyle= pθ𝐞y(pϕsinθcotθK^z)𝐞x\displaystyle p_{\theta}\mathbf{e}^{\prime}_{y}-\left({p_{\phi}\over\sin\theta}-\cot\theta\hat{K}_{z^{\prime}}\right)\mathbf{e}^{\prime}_{x}
=\displaystyle= 𝐫×(𝐩𝐀a).\displaystyle\mathbf{r}\times\left(\mathbf{p}-\mathbf{A}_{\rm a}\right)\ .

which is perpendicular to it. In the last line of Eq. (62) we have used Eq. (58), see also Refs. Fierz (1944); Wu and Yang (1976). The term 𝐫×𝐩\mathbf{r}\times\mathbf{p} is the angular momentum C0𝐫×𝐯C_{0}\mathbf{r}\times\mathbf{v} of the rotor. The gauge potential 𝐀a\mathbf{A}_{a} is not manifestly invariant under rotations but can be made so via a gauge transformation Fierz (1944). That causes the correction (61) in the direction of 𝐞z\mathbf{e}^{\prime}_{z}. The equality

Iz𝐞z𝐈=pϕ.I_{z}\equiv\mathbf{e}_{z}\cdot\mathbf{I}=p_{\phi}\ . (63)

shows that the conserved momentum pϕp_{\phi} is the usual angular momentum with respect to the space-fixed zz axis. We use Eqs. (62) and (60) to express the angular velocity in terms of the angular momentum. That yields

𝐯=1C0(𝐞z×𝐈+𝐀n).\displaystyle\mathbf{v}=-{1\over C_{0}}\left(\mathbf{e}^{\prime}_{z}\times\mathbf{I}+\mathbf{A}_{\rm n}\right)\ . (64)

Using that in the rotational energy (C0/2)𝐯2(C_{0}/2)\mathbf{v}^{2}, we arrive at the Hamiltonian

H\displaystyle H =\displaystyle= HΨ+g22C0(K^x2+K^y2)\displaystyle H_{\Psi}+{g^{2}\over 2C_{0}}\left(\hat{K}_{x^{\prime}}^{2}+\hat{K}_{y^{\prime}}^{2}\right) (65)
+𝐈2K^z22C0+gC0(IxK^x+IyK^y).\displaystyle+\frac{\mathbf{I}^{2}-\hat{K}_{z^{\prime}}^{2}}{2C_{0}}+{g\over C_{0}}\left(I_{x^{\prime}}\hat{K}_{x^{\prime}}+I_{y^{\prime}}\hat{K}_{y^{\prime}}\right)\ .

The term proportional to g2g^{2} in Eq. (65) might be absorbed into HΨH_{\Psi} (and then be dropped). The rotational part displayed in the second line of Eq. (65) corresponds to the rotor model (2) for the special case of axial symmetry, i.e. for Cx=CyC_{x^{\prime}}=C_{y^{\prime}}.

The square of the total angular momentum is given by

𝐈2\displaystyle\mathbf{I}^{2} =\displaystyle= pθ2+1sin2θ(pϕcosθK^z)2+K^z2\displaystyle p_{\theta}^{2}+{1\over\sin^{2}\theta}\left(p_{\phi}-\cos\theta\hat{K}_{z^{\prime}}\right)^{2}+\hat{K}_{z^{\prime}}^{2} (66)
=\displaystyle= pθ2+1sin2θ(pϕ22pϕcosθK^z+K^z2).\displaystyle p_{\theta}^{2}+{1\over\sin^{2}\theta}\left(p_{\phi}^{2}-2p_{\phi}\cos\theta\hat{K}_{z^{\prime}}+\hat{K}_{z^{\prime}}^{2}\right)\ .

Upon quantization this operator, its projection Iz=K^zI_{z^{\prime}}=\hat{K}_{z^{\prime}} onto the zz^{\prime}-axis [see Eq. (61)], and its projection Iz=pϕI_{z}=p_{\phi} onto the zz-axis [see Eq. (63)] form a commuting set of operators. Details are presented in Appendix B.3.

IV.3 Spectrum

Simplifying the notation used in Eq. (II.2) we denote the ground state of the fermionic part of the Hamiltonian (65) as |K|K\rangle. We calculate the eigenfunctions of the rotor part of the Hamiltionian (65) by determining the eigenfunctions of 𝐈2\mathbf{I}^{2}, IzI_{z}, and IzI_{z^{\prime}}. For states |±K|{\pm K}\rangle we have

Iz|±K=K^z|±K=±K|±K.\displaystyle I_{z^{\prime}}|{\pm K}\rangle=\hat{K}_{z^{\prime}}|{\pm K}\rangle={\pm K}|{\pm K}\rangle\ . (67)

The quantization proceeds as in Section II. The eigenfunctions of Iz=pϕ=iϕI_{z}=p_{\phi}=-i\partial_{\phi} are

IzeiMϕ=MeiMϕ.\displaystyle I_{z}e^{-iM\phi}=-Me^{-iM\phi}\ . (68)

The negative eigenvalue is chosen here to be consistent with chapter 4.2 of Ref. Varshalovich et al. (1988). The eigenfunctions of the square of the total angular momentum operator can be written either in terms of Wigner dd functions or in terms of Wigner DD functions (see chapter 4 of Ref. Varshalovich et al. (1988)). These are related by

DM,MI(ϕ,θ,0)=eiMϕdM,MI(θ).D_{M,{M^{\prime}}}^{I}(\phi,\theta,0)=e^{-iM\phi}d^{I}_{M,M^{\prime}}(\theta)\ . (69)

For I|M|,|K|I\geq|M|,|K| we have

𝐈2DM,KI(ϕ,θ,0)|±K\displaystyle\mathbf{I}^{2}D_{M,{\mp K}}^{I}(\phi,\theta,0)|{\pm K}\rangle (70)
=I(I+1)DM,KI(ϕ,θ,0)|±K.\displaystyle=I(I+1)D_{M,{\mp K}}^{I}(\phi,\theta,0)|{\pm K}\rangle\ . (71)

For the Hamiltonian (65) that implies

𝐈2K^z22C0DM,KI(ϕ,θ,0)|±K\displaystyle\frac{\mathbf{I}^{2}-\hat{K}_{z^{\prime}}^{2}}{2C_{0}}D_{M,{\mp K}}^{I}(\phi,\theta,0)|{\pm K}\rangle
=I(I+1)K22C0DM,KI(ϕ,θ,0)|±K.\displaystyle=\frac{I(I+1)-K^{2}}{2C_{0}}D_{M,{\mp K}}^{I}(\phi,\theta,0)|{\pm K}\rangle\ . (72)

Discrete symmetries of the rotor-plus-fermion system may select a definite linear combination of the states |±K|{\pm K}\rangle. These share the absolute value |K||K| and have the same energy E|K|E_{|K|} [see Eq. (II.2)]. Combining E|K|E_{|K|} with Eq. (IV.3) yields

E(I)=E|K|+I(I+1)K22C0.E(I)=E_{|K|}+\frac{I(I+1)-K^{2}}{2C_{0}}\ . (73)

The term linear in gg of the Hamiltonian (65) couples states DM,KI|KD^{I}_{M,{-K}}|K\rangle and DM,K1I|K±1D^{I}_{M,{-K\mp 1}}|K\pm 1\rangle. For most heavy nuclei where ξΩ\xi\ll\Omega, the coupling of states with different values of |K||K| is of subleading order and can be computed perturbatively. For K=±1/2K=\pm 1/2, however, the interaction couples the degenerate states DM,12I|±12D^{I}_{M,{\mp{1\over 2}}}|{\pm{1\over 2}}\rangle and is, thus, of leading order ξ\xi. For this case, eigenfunctions and eigenvalues are worked out in Appendix F. The result for the eigenvalues,

E(I,K)\displaystyle E(I,K) =\displaystyle= E|K|+I(I+1)K22C0\displaystyle E_{|K|}+\frac{I(I+1)-K^{2}}{2C_{0}} (74)
\displaystyle- gC0δ|K|,12(1)I+12(I+12),\displaystyle{g\over C_{0}}\delta_{|K|,{1\over 2}}(-1)^{I+{1\over 2}}\left(I+{1\over 2}\right)\ ,

agrees with Eq. (22) when we express the constants E|K|E_{|K|}, C0C_{0}, and gg in terms of E0E_{0}, AA, and aa. The last term in Eq. (74) is known as the signature splitting. Equation (74) shows that for g0g\neq 0 the spectrum changes by about gξg\xi. For |g|1|g|\gg 1, the spectrum would resemble a rotational band only for I|g|I\gtrsim|g|. This confirms that the natural size of gg is of order unity.

States that differ by one unit in KK can also be coupled strongly by the term linear in gg in the Hamiltonian (65) provided Ωξ\Omega\approx\xi. In that case, the spectrum can be calculated analytically using as a basis the eigenstates obtained for g=0g=0 and taking account only of the two bandheads. The diagonalization of the 4×44\times 4 matrix spanned by the states |±K|{\pm K}\rangle and |±(K+1)|{\pm(K+1)}\rangle yields the eigenvalues Kerman (1956)

E(I,K,K+1)\displaystyle E(I,K,K+1) =\displaystyle= 12[E(I,K)+E(I,K+1)]\displaystyle{1\over 2}\left[E(I,K)+E(I,K+1)\right]
±\displaystyle\pm 12{[E(I,K)E(I,K+1)]2\displaystyle{1\over 2}\bigg{\{}\left[E(I,K)-E(I,K+1)\right]^{2}
+4g~2C02[I(I+1)K(K+1)]}12.\displaystyle+4{\tilde{g}^{2}\over C_{0}^{2}}\left[I(I+1)-K(K+1)\right]\bigg{\}}^{1\over 2}\ .

The energies E(I,K)E(I,K) are given by Eq. (74), and g~gK|K^1|K+1\tilde{g}\equiv g\langle K|\hat{K}_{-1}|K{+1}\rangle is a low-energy constant. The sign on the right-hand side of Eq. (IV.3) has to be chosen such that the energies E(I,K)E(I,K) and E(I,K+1)E(I,K+1) for the bands with quantum numbers KK and K+1K+1, respectively, are obtained as g0g\to 0. In nuclei such as 105,107Mo, groups of more than two band heads are closely spaced and strongly coupled. In such cases, a Hamiltonian matrix of larger dimension needs to be diagonalized.

We discuss our results. For g=0g=0, the total angular momentum 𝐈2\mathbf{I}^{2} and its projections IzI_{z} and IzI_{z^{\prime}} onto the space- and body-fixed zz-axes, respectively, commute with each other and with the Hamiltonian. The spectrum is given by Eq. (73). The nucleus is axially symmetric because IzI_{z^{\prime}} is conserved. For finite gg, the projection of the angular momentum onto the rotor’s symmetry axis is not conserved because the Abelian and non-Abelian gauge potentials do not commute. According to the rules for power counting, the term linear in gg (the “Coriolis term”) is of leading order. Nevertheless, the impact of the Coriolis term on the spectrum depends very much on the nucleus under consideration. In a band with band-head spin KK this term contributes of the order ξ(ξ/Ω)K1/2\xi(\xi/\Omega)^{K-1/2}. Thus, it is only of leading order for a rotational band with K=1/2K=1/2. However, the Coriolis term also couples bands that differ in |K||K| by one unit. Equation (IV.3) shows that the Coriolis term is of leading order only if g~gK|K^1|K+1\tilde{g}\equiv g\langle K|\hat{K}_{-1}|K{+1}\rangle is sufficiently large, i.e. of order unity. In practice, this is mostly expected if two band heads that differ in spin by one unit are closely spaced in energy. Here “close” means that the spacing is not of the typical fermion scale Ω\Omega but rather of the rotational scale  ξ\xi. In the presence of the Coriolis term, IzI_{z^{\prime}} is not a conserved quantity anymore, and the odd-mass nucleus exhibits triaxial deformation. We illustrate this behavior below for 187Os. From the point of view of our EFT, triaxiality in odd-mass nuclei thus depends on the spins of band heads and on their separation in energy.

IV.4 Next-to-leading order corrections

The leading-order Hamiltonian (65) contains contributions that scale as ξ\xi and/or Ω\Omega. Out of the many terms quadratic in both 𝐯\mathbf{v} and 𝐊\mathbf{K} that one can write down using 𝐯\mathbf{v}, 𝐊\mathbf{K}, and 𝐞z\mathbf{e}^{\prime}_{z}, the following combinations are linearly independent and compatible with the symmetries:

L1a\displaystyle L_{\rm 1a} =\displaystyle= ga2𝐯2(Kx2+Ky2),\displaystyle{g_{a}\over 2}\mathbf{v}^{2}\left(K_{x^{\prime}}^{2}+K_{y^{\prime}}^{2}\right)\ ,
L1b\displaystyle L_{\rm 1b} =\displaystyle= gb2𝐯2Kz2,\displaystyle{g_{b}\over 2}\mathbf{v}^{2}K_{z^{\prime}}^{2}\ ,
L1c\displaystyle L_{\rm 1c} =\displaystyle= gc2(𝐯𝐊)2.\displaystyle{g_{c}\over 2}\left(\mathbf{v}\cdot\mathbf{K}\right)^{2}\ . (76)

The natural assumption is that ga,b,cΛ1g_{a,b,c}\sim\Lambda^{-1}. Then, the contributions of L1a,b,cL_{\rm 1a,b,c} scale as ξ2/Λ\xi^{2}/\Lambda, which is a factor ξ/Λ\xi/\Lambda smaller than the leading-order Lagrangian (52). The next-to-leading order terms (IV.4) are still quadratic in the velocities. After adding these terms to the Lagrangian (52) we can, therefore, perform the Legendre transform as outlined in Subsection IV.1, but invert the mass matrix perturbatively. The calculation is done in Appendix F. The resulting Hamiltonian is

H=HLO+HNLO,H=H_{\rm LO}+H_{\rm NLO}\ , (77)

with the leading-order Hamiltonian HLOH_{\rm LO} as in Eq. (65) and with

HNLO\displaystyle H_{\rm NLO} =\displaystyle= 12C0(𝐍TC^𝐍+𝐍TG^𝐍).\displaystyle{1\over 2C_{0}}\left(\mathbf{N}^{T}\hat{C}\mathbf{N}+\mathbf{N}^{T}\hat{G}\mathbf{N}\right)\ . (78)

The dimensionless operators C^\hat{C} and G^\hat{G} are all of order ξ/Λ\xi/\Lambda and depend on bilinear combinations of the fermion operators K^x\hat{K}_{x^{\prime}}, K^y\hat{K}_{y^{\prime}}, and K^z\hat{K}_{z^{\prime}}. In Eq. (78) we also used

𝐍\displaystyle\mathbf{N} \displaystyle\equiv (IyIx)+g(K^yK^x).\displaystyle\left(\begin{array}[]{c}I_{y^{\prime}}\\ I_{x^{\prime}}\end{array}\right)+g\left(\begin{array}[]{c}\hat{K}_{y^{\prime}}\\ \hat{K}_{x^{\prime}}\end{array}\right)\ . (83)

The matrix C^\hat{C}, due to L1a,bL_{\rm 1a,b}, is diagonal in the eigenstates of the leading-order Hamiltonian (65). Thus, the first term on the right-hand side of Eq. (78) adds a fermion-state dependent correction of order ξ2/Λ\xi^{2}/\Lambda to the moment of inertia. It causes the moments of inertia of rotational bands in odd mass nuclei to deviate somewhat from the moment of inertia for the ground-state band of the even-even rotor. The correction can be compared to the smaller variations of order (ξ3/Λ2)(\xi^{3}/\Lambda^{2}) that occur in even-even nuclei Zhang and Papenbrock (2013). The matrix G^\hat{G} (due to L1cL_{\rm 1c}) in the second term is traceless and mixes fermion states that differ in quantum numbers KzK_{z^{\prime}} by two units. In particular, this term modifies the rotational spectra of |Kz|=3/2|K_{z^{\prime}}|=3/2 band heads.

How does our approach compare with a treatment that would use full-fledged quantum field theory? While in the derivation of the EFT we employed velocities and canonical momenta, the solution of the Hamiltonian became simple because we introduced angular momenta. In the gauge we used the eigenfunctions are the Wigner DD functions (69). These can be written as infinite sums of spherical harmonics, i.e. of the “free” solutions of the even-even rotor. We are convinced that using ΩΩi𝐀tot\nabla_{\Omega}\to\nabla_{\Omega}-i\mathbf{A}_{\rm tot}, gauging the quantum-field theory Lagrangian (19 with the gauge potential (50), and using field-theoretical tools such as Feynman diagrams, would yield the same result. Then, the “free” rotor would scatter via infinite loops with the fermion, with vertices due to the gauge coupling.

V Applications

In the previous Section we have shown that in leading order, the EFT for odd-mass deformed nuclei recovers the results of the (axially symmetric) particle-rotor model. While that model is well known, with numerous applications to be found in textbooks Rowe (2010); Eisenberg and Greiner (1970b); Bohr and Mottelson (1975); Iachello and Arima (1987); Rowe and Wood (2010) and in the literature, the EFT provides us, in addition, with a systematic approach to subleading corrections and to estimates of the uncertainty of EFT predictions Furnstahl et al. (2015). We illustrate that point, following arguments made previously for even-even deformed nuclei with axial symmetry Coello Pérez and Papenbrock (2015b) and for vibrational exitations in heavy nuclei Coello Pérez and Papenbrock (2015a, 2016).

V.1 239Pu

Within the EFT the nucleus 239Pu is described as a neutron attached to 238Pu. Inspection of the low-lying states of 238Pu in Fig. 1 shows that the low-energy scale is ξ44\xi\approx 44 keV and the breakdown scale is Λ600\Lambda\approx 600 keV. This is probably too conservative an estimate for the breakdown scale of the ground-state band in 238Pu, because the lowest band head with positive parity occurs at 941 keV. Thus, for a description of the ground-state band, ξ/Λ1/21\xi/\Lambda\approx 1/21 is probably a more accurate estimate for the the expansion parameter. Adjusting the low-energy constant C0C_{0} to the energy of the 2+2^{+} state yields 1/(2C0)=7.351/(2C_{0})=7.35 keV. The leading-order EFT predictions Papenbrock (2011); Coello Pérez and Papenbrock (2015b) for the ground-state rotational band are levels at energies

ELO(I)=I(I+1)2C0[1+𝒪(ξ2Λ2)I(I+1)].E_{\rm LO}(I)=\frac{I(I+1)}{2C_{0}}\left[1+{\cal O}\left({\xi^{2}\over\Lambda^{2}}\right)I(I+1)\right]\ . (84)

Here, we included the EFT uncertainty estimate Papenbrock (2011); Coello Pérez and Papenbrock (2015b). Figure 3 compares the EFT results to data. For the uncertainty estimate we used 𝒪(ξ2Λ2)=0.25(ξ/Λ)2{\cal O}\left({\xi^{2}\over\Lambda^{2}}\right)=0.25(\xi/\Lambda)^{2}, where the factor 0.25 is determined empirically.

Refer to caption
Figure 3: (Color online) Levels of the ground-state rotational band in 238Pu, with spin/parity and energy as indicated, from data (left, black) are compared to EFT predictions (red, right) at leading order [𝒪(ξ){\cal O}(\xi)] with uncertainty estimates (shaded red areas).

In leading order, the rotational constant of the nucleus 239Pu is the same as for 238Pu. We only have to adjust the constant gg in Eq. (74) to describe the ground-state band. A fit to the first excited state in this nucleus yields g=0.642g=-0.642. The resulting ground-state band is shown in the left part of Fig. 4 and compared to data in the center. At leading order, the rotational constant has a relative uncertainty of 𝒪(ξ/Λ){\cal O}(\xi/\Lambda), as reflected by the blue shaded areas. For the displayed uncertainties, we used the conservative estimate ξ/Λ=1/14\xi/\Lambda=1/14 and 𝒪(ξ/Λ)=2ξ/Λ{\cal O}(\xi/\Lambda)=2\xi/\Lambda, with the factor of 2 determined empirically.

A next-to-leading order fit to the energies E(I,1/2)E(I,1/2) of Eq. (74) is shown in the right part of Fig. 4. Here, we adjusted both C0C_{0} and gg in Eq. (74), finding 1/(2C0)=6.2571/(2C_{0})=6.257 keV and g=0.579g=-0.579. We note that the change of C0C_{0} by about a factor of 2ξ/Λ2\xi/\Lambda is consistent with EFT expectations. At next-to-leading order, relative energy uncertainties are estimated as 2C0E(I,1/2)𝒪(ξ2/Λ2)2C_{0}E(I,1/2){\cal O}(\xi^{2}/\Lambda^{2}) with 𝒪(ξ2/Λ2)=(0.25ξ/Λ)2{\cal O}(\xi^{2}/\Lambda^{2})=(0.25\xi/\Lambda)^{2}. As before, the factor 0.25 is determined empirically.

Refer to caption
Figure 4: (Color online) Levels of the ground-state rotational band in 239Pu, with spin/parity and energy as indicated, from data (center, black) are compared to EFT predictions at leading order (red, left) and at next-to-leading order (blue, right) with uncertainty estimates (shaded areas).

We see that the EFT yields an accurate (it agrees with the data within the uncertainties) and increasingly precise (as more orders are included) description of the ground-state rotational band of 239Pu. Furthermore, the low-energy constants are not merely fit parameters, but the size of subleading corrections can be estimated from the empirical values of the low-energy scale ξ\xi and the breakdown scale Λ\Lambda. Similar results can also be obtained for the other rotational bands displayed in Fig. 2.

V.2 187Os

Refer to caption
Figure 5: (Color online) Levels of the two lowest-lying rotational bands in 187Os, with spin/parity and energy as indicated. Center (black): Data. Left (blue): Results obtained by fitting energies of both bands but neglecting the Coriolis coupling. Right (red): EFT fits with predictions at leading plus next-to-leading order. The relative EFT uncertainties (not shown) are about 2ξ2/Λ272\xi^{2}/\Lambda^{2}\approx 7%.

In most odd-mass nuclei, the Coriolis term [last term in Eq. (65)] that couples different rotational bands enters only perturbatively, because band heads that differ in KK by one unit are usually an energy Ωξ\Omega\gg\xi apart. However, in nuclei with closely spaced band heads, the Coriolis term is of leading order. Among these are the light nucleus 9Be, the nuclei 49Cr and 49Mn, 105,107Mo, 187Ir, and 187Os. We illustrate our results for the well-studied nucleus 187Os Malmskog et al. (1971); Morgen et al. (1973); Sodan et al. (1975). The Kπ=1/2K^{\pi}=1/2^{-} ground state exhibits a rotational band with a low-energy constant C0147C_{0}^{-1}\approx 47 keV. The first excited Kπ=3/2K^{\pi}=3/2^{-} band head is only separated by Ω10\Omega\approx 10 keV. Thus, we have ξΩ\xi\sim\Omega, the two bands in question are coupled by the Coriolis term, and Eqs. (IV.3) must be employed.

The relevant scales are as follows. The even-even nucleus 186Os exhibits a ground-state rotational band with a 2+2^{+} state at 137 keV; the excited 2+2^{+} band head at 770 keV sets the breakdown scale Λ\Lambda of this rotor. The ratio of the energies of the two lowest 2+2^{+} states is ξ/Λ1/6\xi/\Lambda\approx 1/6. In a first step we neglect the coupling between the Kπ=1/2K^{\pi}=1/2^{-} and Kπ=3/2K^{\pi}=3/2^{-} bands in 187Os. Adjusting a total of five parameters [C0C_{0}, E1/2E_{1/2}, and gg in Eq. (74)] to the lowest three states for Kπ=1/2K^{\pi}=1/2^{-} and fitting separately C0C_{0} and E3/2E_{3/2} to the two states of the Kπ=3/2K^{\pi}=3/2^{-} band yields the two rotational bands shown in left part of Fig. 5. Here, the highest two (three) states of the Kπ=1/2K^{\pi}=1/2^{-} (Kπ=3/2K^{\pi}=3/2^{-}) band, respectively, are predictions. The results are to be compared to the data shown in the center. Also shown in the right part are the EFT predictions obtained by adjusting the five parameters C0C_{0}, E1/2E_{1/2}, E3/2E_{3/2} gg, and g~\tilde{g} in Eq. (IV.3) simultaneously to the lowest three states of both bands. Given the same number (five) of low-energy constants, the improved accuracy obtained in the second fit shows the need to include the Coriolis coupling. Comparing the results to the data we infer that relative EFT uncertainties are about 2ξ2/Λ272\xi^{2}/\Lambda^{2}\approx 7%. Figure 6 shows the energy differences beween theory and data for both bands using EFT (blue) and neglecting the coupling between the bands (black). We see that approach that neglects the coupling between the bands loses accuracy as soon as one considers states that were not fitted.

Refer to caption
Figure 6: (Color online) Energy differences between theory and data for the two lowest-lying rotational bands in 187Os as a function of spin/parity. Results obtained by fitting energies of both bands but neglecting the Coriolis coupling are shown in black, and EFT results in blue. Circles and squares mark the rotational states on top of the Iπ=1/2I^{\pi}=1/2^{-} and 3/23/2^{-} band heads, respectively.

VI Summary

We have developed an effective field theory for deformed odd-mass nuclei. In this approach, the odd nucleon experiences an axially-symmetric potential in the body-fixed frame of the even-even deformed nucleus (a rotor). The power counting is based on the separation of scales between low-lying rotational degrees of freedom on the one hand and both, higher-lying nucleonic excitations and intrinsic excitations of the even-even nucleus, on the other. In leading order, the nucleon is coupled to the rotor via gauge potentials. Actually, the non-Abelian gauge potential is a truly first-order term only for K=1/2K=1/2 band heads or when band heads with KK quantum numbers that differ by one unit of angular momentum, are close in energy. In the latter case, the gauge potential induces triaxiality. That was shown by applying the EFT to 187Os. We have shown how subleading contributions can be constructed systematically, and how these may be used to improve the spectrum and/or to estimate theoretical uncertainties. The EFT developed in this paper presents a model-independent approach to the particle-rotor system that is capable of systematic improvement.

Acknowledgements.
This work has been supported by the U.S. Department of Energy under grant No. DE-FG02-96ER40963 and under contract DE-AC05-00OR22725 with UT-Battelle, LLC (Oak Ridge National Laboratory).

Appendix A Overview

Appendix B presents details regarding transformation properties under rotations. In App. C we derive the expression for the covariant derivative. Appendix D presents a more formal derivation of these properties based on the coset approach. In App. E we discuss gauge potentials and gauge transformations. App. F presents details regarding the derivation of the spectrum and subleading corrections.

Appendix B Transformation properties under rotations

In this Appendix we use infinitesimal rotations and apply Noether’s theorem to derive the expressions in Section IV for the total angular momentum, both in the space-fixed and in the body-fixed system.

An infinitesimal rotation changes the angles (θ,ϕ)(\theta,\phi) to (θ+δθ,ϕ+δϕ)(\theta+\delta\theta,\phi+\delta\phi). That moves the symmetry axis of the rotor into a new direction, and it induces a rotation of the axes 𝐞x\mathbf{e}^{\prime}_{x} and 𝐞y\mathbf{e}^{\prime}_{y} around the rotors new symmetry axis by an angle δω\delta\omega. In the following two subsections, we relate the infinitesimal angles (δθ,δϕ,δω)(\delta\theta,\delta\phi,\delta\omega) to the parameters of a general infinitesimal rotation. We do so for rotations around the axes of the space-fixed system and for rotations around the body-fixed axes. We use that at the point (θ+δθ,ϕ+δϕ)(\theta+\delta\theta,\phi+\delta\phi), the body-fixed basis vectors are

𝐞x(ϕ+δϕ,θ+δθ)\displaystyle\mathbf{e}^{\prime}_{x}(\phi+\delta\phi,\theta+\delta\theta) =\displaystyle= 𝐞x(ϕ,θ)δθ𝐞z(ϕ,θ)\displaystyle\mathbf{e}^{\prime}_{x}(\phi,\theta)-\delta\theta\mathbf{e}^{\prime}_{z}(\phi,\theta)
+δϕcosθ𝐞y(ϕ,θ),\displaystyle+\delta\phi\cos\theta\mathbf{e}^{\prime}_{y}(\phi,\theta)\ ,
𝐞y(ϕ+δϕ,θ+δθ)\displaystyle\mathbf{e}^{\prime}_{y}(\phi+\delta\phi,\theta+\delta\theta) =\displaystyle= 𝐞y(ϕ,θ)δϕsinθ𝐞z(ϕ,θ)\displaystyle\mathbf{e}^{\prime}_{y}(\phi,\theta)-\delta\phi\sin\theta\mathbf{e}^{\prime}_{z}(\phi,\theta)
δϕcosθ𝐞x(ϕ,θ),\displaystyle-\delta\phi\cos\theta\mathbf{e}^{\prime}_{x}(\phi,\theta)\ ,
𝐞z(ϕ+δϕ,θ+δθ)\displaystyle\mathbf{e}^{\prime}_{z}(\phi+\delta\phi,\theta+\delta\theta) =\displaystyle= 𝐞z(ϕ,θ)+δθ𝐞x(ϕ,θ)\displaystyle\mathbf{e}^{\prime}_{z}(\phi,\theta)+\delta\theta\mathbf{e}^{\prime}_{x}(\phi,\theta) (85)
+δϕsinθ𝐞y(ϕ,θ).\displaystyle+\delta\phi\sin\theta\mathbf{e}^{\prime}_{y}(\phi,\theta)\ .

B.1 Rotations around the space-fixed axes

A rotation by the vector δ𝜶=δαx𝐞x+δαy𝐞y+δαz𝐞z\delta\boldsymbol{\alpha}=\delta\alpha_{x}\mathbf{e}_{x}+\delta\alpha_{y}\mathbf{e}_{y}+\delta\alpha_{z}\mathbf{e}_{z} about infinitesimal angles δαk\delta\alpha_{k}, k=x,y,zk=x,y,z around the space-fixed axes changes the body-fixed basis vectors 𝐞k\mathbf{e}^{\prime}_{k}, k=x,y,zk=x,y,z by

δ𝜶×𝐞x\displaystyle\delta\boldsymbol{\alpha}\times\mathbf{e}^{\prime}_{x} =\displaystyle= (δ𝜶𝐞z)𝐞y(δ𝜶𝐞y)𝐞z,\displaystyle\left(\delta\boldsymbol{\alpha}\cdot\mathbf{e}^{\prime}_{z}\right)\mathbf{e}^{\prime}_{y}-\left(\delta\boldsymbol{\alpha}\cdot\mathbf{e}^{\prime}_{y}\right)\mathbf{e}^{\prime}_{z}\ ,
δ𝜶×𝐞y\displaystyle\delta\boldsymbol{\alpha}\times\mathbf{e}^{\prime}_{y} =\displaystyle= (δ𝜶𝐞x)𝐞z(δ𝜶𝐞z)𝐞x,\displaystyle\left(\delta\boldsymbol{\alpha}\cdot\mathbf{e}^{\prime}_{x}\right)\mathbf{e}^{\prime}_{z}-\left(\delta\boldsymbol{\alpha}\cdot\mathbf{e}^{\prime}_{z}\right)\mathbf{e}^{\prime}_{x}\ , (86)
δ𝜶×𝐞z\displaystyle\delta\boldsymbol{\alpha}\times\mathbf{e}^{\prime}_{z} =\displaystyle= (δ𝜶𝐞y)𝐞x(δ𝜶𝐞x)𝐞y.\displaystyle\left(\delta\boldsymbol{\alpha}\cdot\mathbf{e}^{\prime}_{y}\right)\mathbf{e}^{\prime}_{x}-\left(\delta\boldsymbol{\alpha}\cdot\mathbf{e}^{\prime}_{x}\right)\mathbf{e}^{\prime}_{y}\ .

We equate the incremental changes of 𝐞z(ϕ+δϕ,θ+δθ)\mathbf{e}^{\prime}_{z}(\phi+\delta\phi,\theta+\delta\theta) on the right-hand side of the last of Eqs. (B) with the last line of Eq. (B.1). That yields

(δθδϕ)=[sinϕcosϕ0cosϕcotθsinϕcotθ1](δαxδαyδαz).\displaystyle\left(\begin{array}[]{c}\delta\theta\\ \delta\phi\end{array}\right)=\left[\begin{array}[]{ccc}-\sin\phi&\cos\phi&0\\ -\cos\phi\cot\theta&-\sin\phi\cot\theta&1\end{array}\right]\left(\begin{array}[]{c}\delta\alpha_{x}\\ \delta\alpha_{y}\\ \delta\alpha_{z}\end{array}\right). (94)

The rotor’s degrees of freedom clearly transform non-linearly, i.e., under the rotation by δ𝜶\delta\boldsymbol{\alpha} they depend in a nonlinear way on (ϕ,θ)(\phi,\theta). The rotated basis vector 𝐞x+δ𝜶×𝐞x\mathbf{e}^{\prime}_{x}+\delta\boldsymbol{\alpha}\times\mathbf{e}^{\prime}_{x} differs from the basis vector 𝐞x(ϕ+δϕ,θ+δθ)\mathbf{e}^{\prime}_{x}(\phi+\delta\phi,\theta+\delta\theta) by a small rotation with the angle δω\delta\omega around the rotor’s symmetry axis 𝐞z(ϕ+δϕ,θ+δθ)\mathbf{e}^{\prime}_{z}(\phi+\delta\phi,\theta+\delta\theta). To determine δω\delta\omega we compute the scalar product

δω\displaystyle\delta\omega =[𝐞x(ϕ,θ)+δ𝜶×𝐞x(ϕ,θ)]𝐞y(ϕ+δϕ,θ+δθ)\displaystyle=\left[\mathbf{e}^{\prime}_{x}(\phi,\theta)+\delta\boldsymbol{\alpha}\times\mathbf{e}^{\prime}_{x}(\phi,\theta)\right]\cdot\mathbf{e}^{\prime}_{y}(\phi+\delta\phi,\theta+\delta\theta)
=cosϕsinθδαx+sinϕsinθδαy.\displaystyle={\cos\phi\over\sin\theta}\delta\alpha_{x}+{\sin\phi\over\sin\theta}\delta\alpha_{y}\ . (96)

The rotation by the infinitesimal angle δω\delta\omega around the body-fixed zz^{\prime}-axis is induced by the operator eiδωJze^{-i\delta\omega J_{z^{\prime}}}. Under that transformation the spinor function Ψ^(𝐱)\hat{\Psi}(\mathbf{x}^{\prime}), defined in Eq. (27) in the body-fixed system, transforms as

Ψ^(𝐱)Ψ^(𝐱)+δΨ^(𝐱)\hat{\Psi}(\mathbf{x}^{\prime})\to\hat{\Psi}(\mathbf{x}^{\prime})+\delta\hat{\Psi}(\mathbf{x}^{\prime}) (97)

where

δΨ^(𝐱)\displaystyle\delta\hat{\Psi}(\mathbf{x}^{\prime}) =\displaystyle= iδω[Jz,Ψ^(𝐱)].\displaystyle-i\delta\omega\left[J_{z^{\prime}},\hat{\Psi}(\mathbf{x}^{\prime})\right]\ . (98)

Collecting results from Eqs. (94), (B.1), and (98) we find

(δθδϕδΨ^^(𝐱))=T^S(δαxδαyδαz),\displaystyle\left(\begin{array}[]{c}\delta\theta\\ \delta\phi\\ \delta\hat{\hat{\Psi}}(\mathbf{x}^{\prime})\end{array}\right)=\hat{T}_{\rm S}\left(\begin{array}[]{c}\delta\alpha_{x}\\ \delta\alpha_{y}\\ \delta\alpha_{z}\end{array}\right)\ , (105)

where

T^S[sinϕcosϕ0cosϕcotθsinϕcotθ1icosϕsinθ[Jz,Ψ^(𝐱)]isinϕsinθ[Jz,Ψ^(𝐱)]0].\displaystyle\hat{T}_{\rm S}\equiv\left[\begin{array}[]{ccc}-\sin\phi&\cos\phi&0\\ -\cos\phi\cot\theta&-\sin\phi\cot\theta&1\\ -i{\cos\phi\over\sin\theta}\left[J_{z^{\prime}},\hat{\Psi}(\mathbf{x}^{\prime})\right]&-i{\sin\phi\over\sin\theta}\left[J_{z^{\prime}},\hat{\Psi}(\mathbf{x}^{\prime})\right]&0\end{array}\right]\ . (109)

B.2 Rotation around the body-fixed axes

A rotation by the vector δ𝜶=δαx𝐞x+δαy𝐞y+δαz𝐞z\delta\boldsymbol{\alpha}^{\prime}=\delta\alpha_{x^{\prime}}\mathbf{e}^{\prime}_{x}+\delta\alpha_{y^{\prime}}\mathbf{e}^{\prime}_{y}+\delta\alpha_{z^{\prime}}\mathbf{e}^{\prime}_{z} about infinitesimal angles δαk\delta\alpha_{k^{\prime}}, k=x,y,zk^{\prime}=x^{\prime},y^{\prime},z^{\prime} around the body-fixed axes changes the body-fixed basis vectors 𝐞k\mathbf{e}^{\prime}_{k^{\prime}} by

δ𝜶×𝐞x\displaystyle\delta\boldsymbol{\alpha}^{\prime}\times\mathbf{e}^{\prime}_{x} =\displaystyle= δαz𝐞yδαy𝐞z,\displaystyle\delta\alpha_{z^{\prime}}\mathbf{e}^{\prime}_{y}-\delta\alpha_{y^{\prime}}\mathbf{e}^{\prime}_{z},
δ𝜶×𝐞y\displaystyle\delta\boldsymbol{\alpha}^{\prime}\times\mathbf{e}^{\prime}_{y} =\displaystyle= δαx𝐞zδαz𝐞x,\displaystyle\delta\alpha_{x^{\prime}}\mathbf{e}^{\prime}_{z}-\delta\alpha_{z^{\prime}}\mathbf{e}^{\prime}_{x}, (111)
δ𝜶×𝐞z\displaystyle\delta\boldsymbol{\alpha}^{\prime}\times\mathbf{e}^{\prime}_{z} =\displaystyle= δαy𝐞xδαx𝐞y.\displaystyle\delta\alpha_{y^{\prime}}\mathbf{e}^{\prime}_{x}-\delta\alpha_{x^{\prime}}\mathbf{e}^{\prime}_{y}.

Equating the incremental change of 𝐞z(ϕ+δϕ,θ+δθ)\mathbf{e}^{\prime}_{z}(\phi+\delta\phi,\theta+\delta\theta) on the right-hand side of the last of Eqs. (B) with the last line of Eq. (B.2) gives

(δθδϕ)=[0101sinθ00](δαxδαyδαz).\displaystyle\left(\begin{array}[]{c}\delta\theta\\ \delta\phi\end{array}\right)=\left[\begin{array}[]{ccc}0&1&0\\ -{1\over\sin\theta}&0&0\end{array}\right]\left(\begin{array}[]{c}\delta\alpha_{x^{\prime}}\\ \delta\alpha_{y^{\prime}}\\ \delta\alpha_{z^{\prime}}\end{array}\right)\ . (119)

The incremental rotation angle δω\delta\omega^{\prime} is given by the scalar product of the rotated basis vector 𝐞x+δ𝜶×𝐞x\mathbf{e}^{\prime}_{x}+\delta\boldsymbol{\alpha}^{\prime}\times\mathbf{e}^{\prime}_{x} and the basis vector 𝐞y(θ+δθ,ϕ+δϕ)\mathbf{e}^{\prime}_{y}(\theta+\delta\theta,\phi+\delta\phi),

δω\displaystyle\delta\omega^{\prime} =[𝐞x(θ,ϕ)+δ𝜶×𝐞x(θ,ϕ)]𝐞y(θ+δθ,ϕ+δϕ)\displaystyle=\left[\mathbf{e}^{\prime}_{x}(\theta,\phi)+\delta\boldsymbol{\alpha}^{\prime}\times\mathbf{e}^{\prime}_{x}(\theta,\phi)\right]\cdot\mathbf{e}^{\prime}_{y}(\theta+\delta\theta,\phi+\delta\phi)
=δαxcotθ+δαz.\displaystyle=\delta\alpha_{x^{\prime}}\cot\theta+\delta\alpha_{z^{\prime}}\ . (120)

That shows that a rotation by δ𝜶\delta\boldsymbol{\alpha}^{\prime} points the body-fixed system into the new direction (θ+δθ,ϕ+δϕ)(\theta+\delta\theta,\phi+\delta\phi) and rotates the body fixed system around its new axis 𝐞z(θ+δθ,ϕ+δϕ)\mathbf{e}^{\prime}_{z}(\theta+\delta\theta,\phi+\delta\phi) by the angle δω\delta\omega^{\prime}. The fermion wave function transforms as in Eqs. (97, 98) but with δω\delta\omega replaced by δω\delta\omega^{\prime}. Thus,

(δθδϕδΨ^(𝐱))=T^B(δαxδαyδαz),\displaystyle\left(\begin{array}[]{c}\delta\theta\\ \delta\phi\\ \delta\hat{\Psi}(\mathbf{x}^{\prime})\end{array}\right)=\hat{T}_{\rm B}\left(\begin{array}[]{c}\delta\alpha_{x^{\prime}}\\ \delta\alpha_{y^{\prime}}\\ \delta\alpha_{z^{\prime}}\end{array}\right)\ , (127)

with

T^B[0101sinθ00icotθ[Jz,Ψ^(𝐱)]0i[Jz,Ψ^(𝐱)]].\displaystyle\hat{T}_{\rm B}\equiv\left[\begin{array}[]{ccc}0&1&0\\ -{1\over\sin\theta}&0&0\\ -i\cot\theta\left[J_{z^{\prime}},\hat{\Psi}(\mathbf{x}^{\prime})\right]&0&-i\left[J_{z^{\prime}},\hat{\Psi}(\mathbf{x}^{\prime})\right]\end{array}\right]\ . (131)

B.3 Noether’s theorem and angular momentum

We use Noether’s theorem Noether (1918) and the results of Subsections B.1 and B.2 to obtain expressions for the conserved quantities, i.e., the components of total angular momentum in the space-fixed and in the body-fixed system, respectively. These are used in Section IV of the main text.

The theorem expresses invariants of the system in terms of partial derivatives of the Lagrangian with respect to the velocities q˙ν\dot{q}_{\nu} of the system. The Lagrangian is given by the second of Eqs. (52), with LΨL_{\Psi} defined in Eq. (28). The velocities are θ˙q˙1\dot{\theta}\equiv\dot{q}_{1}, ϕ˙q˙2\dot{\phi}\equiv\dot{q}_{2}, and the time derivative tΨ^(𝐱)q˙(𝐱)\partial_{t}\hat{\Psi}(\mathbf{x}^{\prime})\equiv\dot{q}(\mathbf{x}^{\prime}) of the fermion wave function. The conserved quantities are the components of angular momentum, expressed in terms of the transformation matrices of Eqs. (109) and (131) and given by

Ik=νLq˙ν[T^S]νkI_{k}=\sum_{\nu}\frac{\partial L}{\partial\dot{q}_{\nu}}\left[\hat{T}_{\rm S}\right]_{\nu k} (133)

for rotations around the space-fixed axes and

Ik=νLq˙ν[T^B]νkI_{k^{\prime}}=\sum_{\nu}\frac{\partial L}{\partial\dot{q}_{\nu}}\left[\hat{T}_{\rm B}\right]_{\nu k^{\prime}} (134)

for rotations around the body-fixed axes. In the case of the velocity q˙(𝐱)\dot{q}(\mathbf{x}^{\prime}), the summations on the right-hand sides of Eqs. (133) and (134) actually involve an integration over 𝐱\mathbf{x}^{\prime}. We use Eq. (IV.1), perform the space integration over the matrix elements of T^S,B\hat{T}_{\rm S,B}, and use Eq. (36). In the space-fixed system we find

Ix\displaystyle I_{x} =\displaystyle= sinϕpθcosϕcotθpϕ+K^zcosϕsinθ,\displaystyle-\sin\phi p_{\theta}-\cos\phi\cot\theta p_{\phi}+\hat{K}_{z^{\prime}}\frac{\cos\phi}{\sin\theta}\ ,
Iy\displaystyle I_{y} =\displaystyle= cosϕpθsinϕcotθpϕ+K^zsinϕsinθ,\displaystyle\cos\phi p_{\theta}-\sin\phi\cot\theta p_{\phi}+\hat{K}_{z^{\prime}}\frac{\sin\phi}{\sin\theta}\ ,
Iz\displaystyle I_{z} =\displaystyle= pϕ.\displaystyle p_{\phi}\ . (135)

In the body-fixed system we have

Ix\displaystyle I_{x^{\prime}} =\displaystyle= pϕK^zcosθsinθ,\displaystyle-\frac{p_{\phi}-\hat{K}_{z^{\prime}}\cos\theta}{\sin\theta}\ ,
Iy\displaystyle I_{y^{\prime}} =\displaystyle= pθ,\displaystyle p_{\theta}\ ,
Iz\displaystyle I_{z^{\prime}} =\displaystyle= K^z.\displaystyle\hat{K}_{z^{\prime}}\ . (136)

The square of the total angular momentum, defined by the sum of the squares of its components and calculated either in the space-fixed or in the body-fixed system, in both cases is given by Eq. (66). Upon quantization, the components (B.3) do not fulfill the canonical commutation relations as they are not generators of rotations. For a discussion of unusual commutation relations we refer the reader to Ref. Nauts and Gatti (2010).

Appendix C Covariant derivative

For the time derivative of a vector 𝐚=ax𝐞x+ay𝐞y\mathbf{a}=a_{x^{\prime}}\mathbf{e}^{\prime}_{x}+a_{y^{\prime}}\mathbf{e}^{\prime}_{y} in the tangential plane of the two-sphere at 𝐞z\mathbf{e}^{\prime}_{z}, we use

𝐞˙x\displaystyle\dot{\mathbf{e}}_{x^{\prime}} =\displaystyle= θ˙𝐞z+ϕ˙cosθ𝐞y,\displaystyle-\dot{\theta}\mathbf{e}^{\prime}_{z}+\dot{\phi}\cos\theta\mathbf{e}^{\prime}_{y}\ ,
𝐞˙y\displaystyle\dot{\mathbf{e}}_{y^{\prime}} =\displaystyle= ϕ˙sinθ𝐞zϕ˙cosθ𝐞x,\displaystyle-\dot{\phi}\sin\theta\mathbf{e}^{\prime}_{z}-\dot{\phi}\cos\theta\mathbf{e}^{\prime}_{x}\ , (137)

and have

𝐚˙\displaystyle\dot{\mathbf{a}} =\displaystyle= (a˙xayϕ˙cosθ)𝐞x+(a˙y+axϕ˙cosθ)𝐞y\displaystyle\left(\dot{a}_{x^{\prime}}-a_{y^{\prime}}\dot{\phi}\cos\theta\right)\mathbf{e}^{\prime}_{x}+\left(\dot{a}_{y^{\prime}}+a_{x^{\prime}}\dot{\phi}\cos\theta\right)\mathbf{e}^{\prime}_{y} (138)
(axθ˙+ayϕ˙sinθ)𝐞z.\displaystyle-\left(a_{x^{\prime}}\dot{\theta}+a_{y^{\prime}}\dot{\phi}\sin\theta\right)\mathbf{e}^{\prime}_{z}\ .

The projection of 𝐚˙\dot{\mathbf{a}} onto the tangential plane defines the covariant derivative

Dt𝐚\displaystyle D_{t}{\mathbf{a}} \displaystyle\equiv (a˙xayϕ˙cosθ)𝐞x+(a˙y+axϕ˙cosθ)𝐞y\displaystyle\left(\dot{a}_{x^{\prime}}-a_{y^{\prime}}\dot{\phi}\cos\theta\right)\mathbf{e}^{\prime}_{x}+\left(\dot{a}_{y^{\prime}}+a_{x^{\prime}}\dot{\phi}\cos\theta\right)\mathbf{e}^{\prime}_{y} (139)
=\displaystyle= t𝐚iϕ˙cosθJz𝐚.\displaystyle\partial_{t}\mathbf{a}-i\dot{\phi}\cos\theta J_{z^{\prime}}\mathbf{a}\ .

The covariant derivative consists of the usual time derivative and a rotation in the tangential plane, i.e., a rotation by ϕ˙cosθ\dot{\phi}\cos\theta around the 𝐞z\mathbf{e}^{\prime}_{z} axis.

It is straightforward to generalize this argument to spin functions. Let χSm\chi_{Sm} with spin SS and projection mm be the spin function in the space-fixed system. A rotation to the body-fixed system yields the helicity spin states

χSλ(θ,ϕ)=mDmλS(ϕ,θ,0)χSmß.\chi_{S\lambda}(\theta,\phi)=\sum_{m}D^{S}_{m\lambda}(\phi,\theta,0)\chi_{Sm}ß. (140)

These are quantized with respect to the body-fixed zz^{\prime} axis, see chapter 6.1.3 of Ref. Varshalovich et al. (1988). The time derivative is

χ˙Sλ(θ,ϕ)\displaystyle\dot{\chi}_{S\lambda}(\theta,\phi) =\displaystyle= θ˙2S(S+1)λ(λ1)χSλ1(θ,ϕ)\displaystyle{\dot{\theta}\over 2}\sqrt{S(S+1)-\lambda(\lambda-1)}\chi_{S\lambda-1}(\theta,\phi) (141)
\displaystyle- θ˙2S(S+1)λ(λ+1)χSλ+1(θ,ϕ)\displaystyle{\dot{\theta}\over 2}\sqrt{S(S+1)-\lambda(\lambda+1)}\chi_{S\lambda+1}(\theta,\phi)
\displaystyle- iϕ˙mmDmλS(ϕ,θ,0)χSm.\displaystyle i\dot{\phi}\sum_{m}mD^{S}_{m\lambda}(\phi,\theta,0)\chi_{Sm}\ .

Here we used formulas from chapter 4.9 of Ref. Varshalovich et al. (1988). We also find

mDmλS(ϕ,θ,0)=λcosθDmλS(ϕ,θ,0)\displaystyle mD_{m\lambda}^{S}(\phi,\theta,0)=\lambda\cos\theta D_{m\lambda}^{S}(\phi,\theta,0)
sinθ2S(S+1)λ(λ1)Dmλ1S(ϕ,θ,0)\displaystyle-{\sin\theta\over 2}\sqrt{S(S+1)-\lambda(\lambda-1)}D_{m\lambda-1}^{S}(\phi,\theta,0)
sinθ2S(S+1)λ(λ+1)Dmλ+1S(ϕ,θ,0).\displaystyle-{\sin\theta\over 2}\sqrt{S(S+1)-\lambda(\lambda+1)}D_{m\lambda+1}^{S}(\phi,\theta,0)\ .

This allows us to perform the sum, and we arrive at

χ˙Sλ(θ,ϕ)=iϕ˙cosθ[Jz,χSλ(θ,ϕ)]\displaystyle\dot{\chi}_{S\lambda}(\theta,\phi)=-i\dot{\phi}\cos\theta\left[J_{z^{\prime}},{\chi}_{S\lambda}(\theta,\phi)\right]
+\displaystyle+ 12(vθ+ivϕ)S(S+1)λ(λ1)χSλ1(θ,ϕ)\displaystyle{1\over 2}(v_{\theta}+iv_{\phi})\sqrt{S(S+1)-\lambda(\lambda-1)}{\chi}_{S\lambda-1}(\theta,\phi)
\displaystyle- 12(vθivϕ)S(S+1)λ(λ+1)χSλ+1(θ,ϕ).\displaystyle{1\over 2}(v_{\theta}-iv_{\phi})\sqrt{S(S+1)-\lambda(\lambda+1)}{\chi}_{S\lambda+1}(\theta,\phi)\ .
(143)

Here, we used [Jz,χSλ(θ,ϕ)]=λχSλ(θ,ϕ)\left[J_{z^{\prime}},{\chi}_{S\lambda}(\theta,\phi)\right]=\lambda{\chi}_{S\lambda}(\theta,\phi). To obtain the part relevant for the covariant derivative we project the right-hand side of Eq. (143) back onto χSλ(θ,ϕ){\chi}_{S\lambda}(\theta,\phi). For a general spin function η(t)=ληλ(t)χSλ(θ,ϕ)\eta(t)=\sum_{\lambda}\eta^{\lambda}(t){\chi}_{S\lambda}(\theta,\phi) in the body-fixed system we thus have

Dtη=tηiϕ˙cosθ[Jz,η].D_{t}\eta=\partial_{t}\eta-i\dot{\phi}\cos\theta\left[J_{z^{\prime}},{\eta}\right]\ . (144)

Had we written the vector 𝐚\mathbf{a} considered above in terms of its spherical components we would have obtained the same result. Applying the result (144) to the spinor functions Ψ^(𝐱)\hat{\Psi}(\mathbf{x}^{\prime}) yields Eq. (43).

Appendix D Coset space

We exploit the nonlinear realization of rotational invariance more formally than done in the calculations of Apps. B and C. Thereby we connect to previous EFTs on axially deformed nuclei Papenbrock (2011); Papenbrock and Weidenmüller (2014); Coello Pérez and Papenbrock (2015b), nuclei with tri-axial deformation Chen et al. (2017, 2018, 2020), and magnets Román and Soto (1999); Hofmann (1999); Bär et al. (2004); Kämpfer et al. (2005). We follow closely the original papers Weinberg (1968); Coleman et al. (1969); Callan et al. (1969). For reviews of this approach, and an exhibition for non-relativistic systems, we refer the readers to Refs. Leutwyler (1994, 1997); Brauner (2010) and the textbook Weinberg (1996b). In finite systems, one speaks of emergent symmetry breaking Yannouleas and Landman (2007) but the tools from field theory can also be extended to this case Gasser and Leutwyler (1988); Papenbrock (2011); Papenbrock and Weidenmüller (2014). Not surprisingly, the calculations in the present Section have much in common with those in Appendices B.1 and B.2.

Three mutually orthogonal unit vectors (|𝐞x,|𝐞y,|𝐞z)(|\mathbf{e}^{\prime}_{x}\rangle,|\mathbf{e}^{\prime}_{y}\rangle,|\mathbf{e}^{\prime}_{z}\rangle) (the “body-fixed system”) are linked to another three mutually orthogonal unit vectors (|𝐞x(|{\bf e}_{x}\rangle, |𝐞y|{\bf e}_{y}\rangle, |𝐞z)|{\bf e}_{z}\rangle) (the “space-fixed system”) by a rotation gg so that for k=x,y,zk=x,y,z we have |𝐞k=g|𝐞k|\mathbf{e}^{\prime}_{k}\rangle=g|{\bf e}_{k}\rangle. That can be written as |𝐞k=j|𝐞j𝐞j|g|𝐞k|\mathbf{e}^{\prime}_{k}\rangle=\sum_{j}|{\bf e}_{j}\rangle\langle{\bf e}_{j}|g|{\bf e}_{k}\rangle =j|𝐞jgjk=\sum_{j}|{\bf e}_{j}\rangle g_{jk} where gjk=𝐞j|g|𝐞kg_{jk}=\langle{\bf e}_{j}|g|{\bf e}_{k}\rangle is the matrix representation of gg. The matrix gjkg_{jk} is real orthogonal, gjk=(g1)kjg_{jk}=(g^{-1})_{kj}, hence |𝐞j=kgjk|𝐞k|{\bf e}_{j}\rangle=\sum_{k}g_{jk}|\mathbf{e}^{\prime}_{k}\rangle. Altogether,

|𝐞j=kgjk|𝐞k,|𝐞k=j(g1)kj|𝐞j.\displaystyle|{\bf e}_{j}\rangle=\sum_{k}g_{jk}|\mathbf{e}^{\prime}_{k}\rangle\ ,\ |\mathbf{e}^{\prime}_{k}\rangle=\sum_{j}(g^{-1})_{kj}|{\bf e}_{j}\rangle\ . (145)

For vectors we use small (capital) letters when they are written in the space-fixed (the body-fixed) system, respectively. For a vector 𝐚=jaj|𝐞j{\bf a}=\sum_{j}a_{j}|{\bf e}_{j}\rangle we have 𝐀=jAj|𝐞j{\bf A}=\sum_{j}A_{j}|\mathbf{e}^{\prime}_{j}\rangle where

Aj=k(g1)jkak.\displaystyle A_{j}=\sum_{k}(g^{-1})_{jk}a_{k}\ . (146)

The transformation gg is defined as

g(θ,ϕ)=exp{iϕJz}exp{iθJy}.\displaystyle g(\theta,\phi)=\exp\{-i\phi J_{z}\}\exp\{-i\theta J_{y}\}\ . (147)

It coincides with the transformation (ϕ,θ,0){\cal R}(\phi,\theta,0) in Section II.1. The three generators JkJ_{k} of infinitesimal rotations about the kk-axes obey

[Jx,Jy]=iJz(cyclic).\displaystyle[J_{x},J_{y}]=iJ_{z}\ {\rm(cyclic)}\ . (148)

The matrix representation of the operators Jx,Jy,JzJ_{x},J_{y},J_{z} is

iJx\displaystyle-iJ_{x} \displaystyle\to (000001010),\displaystyle\left(\begin{matrix}0&0&0\cr 0&0&-1\cr 0&1&0\cr\end{matrix}\right)\ ,
iJy\displaystyle-iJ_{y} \displaystyle\to (001000100),\displaystyle\left(\begin{matrix}0&0&1\cr 0&0&0\cr-1&0&0\cr\end{matrix}\right)\ ,
iJz\displaystyle-iJ_{z} \displaystyle\to (010100000).\displaystyle\left(\begin{matrix}0&-1&0\cr 1&0&0\cr 0&0&0\cr\end{matrix}\right)\ . (149)

The commutation relations (148) for the matrix representation are verified using standard matrix algebra. The relations (149) imply

exp{iϕJz}\displaystyle\exp\{-i\phi J_{z}\} \displaystyle\to (cosϕsinϕ0sinϕcosϕ0001),\displaystyle\left(\begin{matrix}\cos\phi&-\sin\phi&0\cr\sin\phi&\cos\phi&0\cr 0&0&1\cr\end{matrix}\right)\ ,
exp{iθJy}\displaystyle\exp\{-i\theta J_{y}\} \displaystyle\to (cosθ0sinθ010sinθ0cosθ),\displaystyle\left(\begin{matrix}\cos\theta&0&\sin\theta\cr 0&1&0\cr-\sin\theta&0&\cos\theta\cr\end{matrix}\right)\ , (150)

and, thus,

g\displaystyle g \displaystyle\to (cosϕcosθsinϕcosϕsinθsinϕcosθcosϕsinϕsinθsinθ0cosθ).\displaystyle\left(\begin{matrix}\cos\phi\cos\theta&-\sin\phi&\cos\phi\sin\theta\cr\sin\phi\cos\theta&\cos\phi&\sin\phi\sin\theta\cr-\sin\theta&0&\cos\theta\cr\end{matrix}\right)\ . (151)

In the body-fixed system, we define a set of three operators J~k\tilde{J}_{k}, k=x,y,zk=x,y,z. These have the same commutation relations (148) as the operators JkJ_{k}. Moreover, these operators have, by definition, the same matrix representation (149) in the basis |𝐞k|\mathbf{e}^{\prime}_{k}\rangle as do the operators JkJ_{k} in the basis |𝐞k|{\bf e}_{k}\rangle. Hence, with

g=μ|𝐞μ𝐞μ|,g1=μ|𝐞μ𝐞μ|\displaystyle g=\sum_{\mu}|\mathbf{e}^{\prime}_{\mu}\rangle\langle\mathbf{e}_{\mu}|\ ,\ g^{-1}=\sum_{\mu}|\mathbf{e}_{\mu}\rangle\langle\mathbf{e}^{\prime}_{\mu}| (152)

we have for k=x,y,zk=x,y,z

J~k=gJkg1,Jk=g1J~kg.\displaystyle\tilde{J}_{k}=gJ_{k}g^{-1}\ ,\ J_{k}=g^{-1}\tilde{J}_{k}g\ . (153)

The commutation relations for the operators J~k\tilde{J}_{k} differ in sign from the anomalous commutators commonly used in the body-fixed system. The reason is that the definition (153) employs the matrix representation of JkJ_{k} on its right-hand side. Conventionally, when using differential operators for JkJ_{k}, these act also on the angles in gg and one obtains additional transformation terms leading to anomalous commutation relations. The operators JkJ_{k} and J~k\tilde{J}_{k} differ. That is seen by comparing the matrix representations in the basis |𝐞l|{\bf e}_{l}\rangle,

𝐞l|J~k|𝐞m=nrgln𝐞n|Jk|𝐞rgmr.\displaystyle\langle{\bf e}_{l}|\tilde{J}_{k}|{\bf e}_{m}\rangle=\sum_{nr}g_{ln}\langle{\bf e}_{n}|J_{k}|{\bf e}_{r}\rangle g_{mr}\ . (154)

In analogy to Eq. (147) we define the operator

g~(θ,ϕ)=exp{iϕJ~z}exp{iθJ~y}.\displaystyle\tilde{g}(\theta,\phi)=\exp\{-i\phi\tilde{J}_{z}\}\exp\{-i\theta\tilde{J}_{y}\}\ . (155)

In the body-fixed system, the matrix elements of g~\tilde{g} are given by

g~μν=𝐞μ|g~|𝐞ν.\displaystyle\tilde{g}_{\mu\nu}=\langle\mathbf{e}^{\prime}_{\mu}|\tilde{g}|\mathbf{e}^{\prime}_{\nu}\rangle\ . (156)

Eq. (153) implies that the matrix elements gμνg_{\mu\nu} of gg in the space-fixed system and g~μν\tilde{g}_{\mu\nu} of g~\tilde{g} in the body-fixed system are equal,

gμν=g~μν.\displaystyle g_{\mu\nu}=\tilde{g}_{\mu\nu}\ . (157)

The equality of these two matrices implies that we may use either form. If the matrix gg operates in the space-fixed system we use the form gμνg_{\mu\nu}, if it acts in the body-fixed system, we use the form g~μν\tilde{g}_{\mu\nu}. If we employ an operator representation we proceed likewise and use gg as defined in Eq. (148) in the space-fixed system and g~\tilde{g} as defined in Eq. (155) in the body-fixed system.

Let the angles θ,ϕ\theta,\phi and, with these, the transformation gg be dependent upon time. Let 𝐀=Ax|𝐞x+Ay|𝐞y{\bf A}=A_{x}|\mathbf{e}^{\prime}_{x}\rangle+A_{y}|\mathbf{e}^{\prime}_{y}\rangle be a vector in the tangential plane (i.e., perpendicular to |𝐞z|\mathbf{e}^{\prime}_{z}\rangle) with time-dependent components Ax(t),Ay(t)A_{x}(t),A_{y}(t). The time derivative of 𝐀{\bf A}, indicated by a dot, is

𝐀˙=A˙x|𝐞x+A˙y|𝐞y+Ax|𝐞˙x+Ay|𝐞˙y.\displaystyle\dot{\bf A}=\dot{A}_{x}|\mathbf{e}^{\prime}_{x}\rangle+\dot{A}_{y}|\mathbf{e}^{\prime}_{y}\rangle+A_{x}|\dot{\mathbf{e}}^{\prime}_{x}\rangle+A_{y}|\dot{\mathbf{e}}^{\prime}_{y}\rangle\ . (158)

We use |𝐞˙k=j|𝐞jg˙jk=jlgjlg˙jk|𝐞l|\dot{\mathbf{e}}^{\prime}_{k}\rangle=\sum_{j}|{\bf e}_{j}\rangle\dot{g}_{jk}=\sum_{jl}g_{jl}\dot{g}_{jk}|\mathbf{e}^{\prime}_{l}\rangle and gjl=glj1g_{jl}=g^{-1}_{lj}. Moreover, from (d/dt)(g1g)=0({\rm d}/{\rm d}t)(g^{-1}g)=0 it follows that the matrix (g1g˙)kl(g^{-1}\dot{g})_{kl} is antisymmetric. Thus,

|𝐞˙k=l(g1g˙)lk|𝐞l=l(g1g˙)kl|𝐞l.\displaystyle|\dot{\mathbf{e}}^{\prime}_{k}\rangle=\sum_{l}(g^{-1}\dot{g})_{lk}|\mathbf{e}^{\prime}_{l}\rangle=-\sum_{l}(g^{-1}\dot{g})_{kl}|\mathbf{e}^{\prime}_{l}\rangle\ . (159)

Explicit calculation shows that

g1g˙(0ϕ˙cosθθ˙ϕ˙cosθ0ϕ˙sinθθ˙ϕ˙sinθ0).\displaystyle g^{-1}\dot{g}\to\left(\begin{matrix}0&-\dot{\phi}\cos\theta&\dot{\theta}\cr\dot{\phi}\cos\theta&0&\dot{\phi}\sin\theta\cr-\dot{\theta}&-\dot{\phi}\sin\theta&0\cr\end{matrix}\right)\ . (160)

Combining Eqs. (153) to (155) we obtain

𝐀˙\displaystyle\dot{\bf A} =\displaystyle= A˙x|𝐞x+A˙y|𝐞y+Axϕ˙cosθ|𝐞yAxθ˙|𝐞z\displaystyle\dot{A}_{x}|\mathbf{e}^{\prime}_{x}\rangle+\dot{A}_{y}|\mathbf{e}^{\prime}_{y}\rangle+A_{x}\dot{\phi}\cos\theta|\mathbf{e}^{\prime}_{y}\rangle-A_{x}\dot{\theta}|\mathbf{e}^{\prime}_{z}\rangle (161)
Ayϕ˙cosθ|𝐞xAyϕ˙sinθ|𝐞z.\displaystyle\qquad-A_{y}\dot{\phi}\cos\theta|\mathbf{e}^{\prime}_{x}\rangle-A_{y}\dot{\phi}\sin\theta|\mathbf{e}^{\prime}_{z}\rangle\ .

This is Eq. (138). The covariant derivative of 𝐀{\bf A} is defined as the projection of 𝐀˙\dot{\bf A} onto the tangential plane,

Dt𝐀=(A˙xAyϕ˙cosθ)|𝐞x+(A˙y+Axϕ˙cosθ)|𝐞y.\displaystyle D_{t}{\bf A}=({\dot{A}}_{x}-A_{y}\dot{\phi}\cos\theta)|\mathbf{e}^{\prime}_{x}\rangle+({\dot{A}}_{y}+A_{x}\dot{\phi}\cos\theta)|\mathbf{e}^{\prime}_{y}\rangle\ .
(162)

Using the fact that in the basis |𝐞k|\mathbf{e}^{\prime}_{k}\rangle the operators J~k\tilde{J}_{k} have the matrix representation (149), we write Eq. (162) in the form

iDt𝐀=(it+ϕ˙cosθJ~z)𝐀.\displaystyle iD_{t}{\bf A}=(i\partial_{t}+\dot{\phi}\cos\theta\tilde{J}_{z}){\bf A}\ . (163)

That agrees with Eq. (43). The partial derivative acts only on the components (Ax,Ay)(A_{x},A_{y}) of 𝐀{\bf A}. The additional term accounts for a rotation around the zz^{\prime}-axis by the angle ϕ˙cosθ\dot{\phi}\cos\theta. That is the hallmark of a covariant derivative.

Given two vectors 𝐚=jaj(t){\bf a}=\sum_{j}a_{j}(t) |𝐞j|{\bf e}_{j}\rangle and 𝐛=jbj(t)|𝐞j{\bf b}=\sum_{j}b_{j}(t)|{\bf e}_{j}\rangle in the space-fixed system with time-dependent coefficients aj(t),bj(t)a_{j}(t),b_{j}(t), we transcribe the inner product of 𝐛{\bf b} and of the time derivative 𝐚˙\dot{\bf a} of 𝐚{\bf a}, i.e., the expression jbja˙j\sum_{j}b_{j}\dot{a}_{j}, into the body-fixed system. As mentioned earlier we distinguish the system-dependent representations of the two vectors by writing 𝐚𝐀=jAj|𝐞j{\bf a}\to{\bf A}=\sum_{j}A_{j}|\mathbf{e}^{\prime}_{j}\rangle and 𝐛𝐁=jBj|𝐞j{\bf b}\to{\bf B}=\sum_{j}B_{j}|\mathbf{e}^{\prime}_{j}\rangle. To focus attention on the covariant derivative we put Az=0=BzA_{z}=0=B_{z}. Then both 𝐀=Ax|𝐞x+Ay|𝐞y{\bf A}=A_{x}|\mathbf{e}^{\prime}_{x}\rangle+A_{y}|\mathbf{e}^{\prime}_{y}\rangle and 𝐁=Bx|𝐞x+By|𝐞y{\bf B}=B_{x}|\mathbf{e}^{\prime}_{x}\rangle+B_{y}|\mathbf{e}^{\prime}_{y}\rangle are tangential vectors in the body-fixed system. From Eq. (146) we have aj=kgjkAka_{j}=\sum_{k}g_{jk}A_{k}, bj=kgjkBkb_{j}=\sum_{k}g_{jk}B_{k} and, thus,

𝐛𝐚˙\displaystyle{\bf b}\dot{\bf a} =\displaystyle= jbja˙j\displaystyle\sum_{j}b_{j}\dot{a}_{j}
=\displaystyle= jklBkgjkddt(gjlAl)\displaystyle\sum_{jkl}B_{k}g_{jk}\frac{\rm d}{{\rm d}t}(g_{jl}A_{l})
=\displaystyle= kBkA˙k+klBkAl(g1g˙)kl\displaystyle\sum_{k}B_{k}\dot{A}_{k}+\sum_{kl}B_{k}A_{l}(g^{-1}\dot{g})_{kl}
=\displaystyle= Bx(A˙xϕ˙cosθAy)+By(Ay˙+ϕ˙cosθAx),\displaystyle B_{x}(\dot{A}_{x}-\dot{\phi}\cos\theta A_{y})+B_{y}(\dot{A_{y}}+\dot{\phi}\cos\theta A_{x})\ ,

or, using the definition (163),

𝐛𝐚˙=𝐁Dt𝐀.\displaystyle{\bf b}\dot{\bf a}={\bf B}D_{t}{\bf A}\ . (165)

Eq. (165) gives the rule for transcribing time derivatives of vectors into the body-fixed system. It applies provided in the body-fixed system, the vectors are tangential.

We define an infinitesimal transformation rr in the space-fixed system and another infinitesimal transformation r~\tilde{r} in the body-fixed system. Both are defined in terms of the augmented rotation g(θ+δθ,ϕ+δϕ)exp{iJzγ}g(\theta+\delta\theta,\phi+\delta\phi)\exp\{-iJ_{z}\gamma\}. Here δθ,δϕ,γ\delta\theta,\delta\phi,\gamma are infinitesimal. That changes gg+δgg\to g+\delta g. In the space-fixed system we consider the infinitesimal transformation δg\delta g acting on the vectors |𝐞j|{\bf e}_{j}\rangle, keeping the vectors |𝐞k|\mathbf{e}^{\prime}_{k}\rangle fixed. Eqs. (145) give

|δ𝐞j\displaystyle|\delta{\bf e}_{j}\rangle =\displaystyle= k(δg)jk|𝐞k\displaystyle\sum_{k}(\delta g)_{jk}|\mathbf{e}^{\prime}_{k}\rangle (166)
=\displaystyle= kl(δg)jkglk|𝐞l\displaystyle\sum_{kl}(\delta g)_{jk}g_{lk}|{\bf e}_{l}\rangle
=\displaystyle= l(δgg1)jl|𝐞l\displaystyle\sum_{l}(\delta gg^{-1})_{jl}|{\bf e}_{l}\rangle
=\displaystyle= lrjl|𝐞l.\displaystyle\sum_{l}r_{jl}|{\bf e}_{l}\rangle\ .

The last relation defines rr. Explicit calculation shows that

r\displaystyle r =\displaystyle= δgg1\displaystyle\delta gg^{-1} (167)
=\displaystyle= δϕ(iJz)+δθcosϕ(iJy)\displaystyle\delta\phi(-iJ_{z})+\delta\theta\cos\phi(-iJ_{y})
δθsinϕ(iJx)+γcosθ(iJz)\displaystyle-\delta\theta\sin\phi(-iJ_{x})+\gamma\cos\theta(-iJ_{z})
+γsinθcosϕ(iJx)+γsinθsinϕ(iJy).\displaystyle+\gamma\sin\theta\cos\phi(-iJ_{x})+\gamma\sin\theta\sin\phi(-iJ_{y})\ .

A general infinitesimal transformation in the space-fixed system can be written in terms of infinitesimal angles δαk\delta\alpha_{k} as

r=kδαk(iJk).\displaystyle r=\sum_{k}\delta\alpha_{k}(-iJ_{k})\ . (168)

Equating that with rr as given in Eq. (167) we obtain a linear relation between the infinitesimal angles δθ\delta\theta, δϕ\delta\phi, γ\gamma and the angles δαk\delta\alpha_{k}. It reads

(δαxδαyδαz)=(sinϕ0sinθcosϕcosϕ0sinθsinϕ01cosθ)(δθδϕγ).\displaystyle\left(\begin{array}[]{c}\delta\alpha_{x}\\ \delta\alpha_{y}\\ \delta\alpha_{z}\end{array}\right)=\left(\begin{array}[]{ccc}-\sin\phi&0&\sin\theta\cos\phi\\ \cos\phi&0&\sin\theta\sin\phi\\ 0&1&\cos\theta\end{array}\right)\left(\begin{array}[]{c}\delta\theta\\ \delta\phi\\ \gamma\end{array}\right)\ . (178)
(179)

The inverse relation is

(δθδϕγ)=(sinϕcosϕ0cosϕcotθsinϕcotθ1cosϕsinθsinϕsinθ0)(δαxδαyδαz).\displaystyle\left(\begin{array}[]{c}\delta\theta\\ \delta\phi\\ \gamma\end{array}\right)=\left(\begin{array}[]{ccc}-\sin\phi&\cos\phi&0\\ -\cos\phi\cot\theta&-\sin\phi\cot\theta&1\\ {\cos\phi\over\sin\theta}&{\sin\phi\over\sin\theta}&0\end{array}\right)\left(\begin{array}[]{c}\delta\alpha_{x}\\ \delta\alpha_{y}\\ \delta\alpha_{z}\end{array}\right)\ . (189)
(190)

Identifying γ\gamma with δω\delta\omega, we see that this agrees with Eqs. (94) and (B.1). In the body-fixed system we consider the infinitesimal transformation (δg)1(\delta g)^{-1} acting on the vectors |𝐞k|\mathbf{e}^{\prime}_{k}\rangle, keeping the vectors |𝐞j|{\bf e}_{j}\rangle fixed. Equations (145) give

|δ𝐞k\displaystyle|\delta\mathbf{e}^{\prime}_{k}\rangle =\displaystyle= j(δg1)kj|𝐞j\displaystyle\sum_{j}(\delta{g}^{-1})_{kj}|{\bf e}_{j}\rangle (191)
=\displaystyle= jl(δg1)kjgjl|𝐞l\displaystyle\sum_{jl}(\delta{g}^{-1})_{kj}g_{jl}|\mathbf{e}^{\prime}_{l}\rangle
=\displaystyle= l[(δg)1g]kl|𝐞l\displaystyle\sum_{l}[(\delta{g})^{-1}g]_{kl}|\mathbf{e}^{\prime}_{l}\rangle
=\displaystyle= lr~kl|𝐞l.\displaystyle\sum_{l}\tilde{r}_{kl}|\mathbf{e}^{\prime}_{l}\rangle\ .

The last relation defines r~\tilde{r}. Eqs. (191) show that r~\tilde{r} acts in the body-fixed system. We use the arguments below Eq. (157) to express r~\tilde{r} in terms of the operator g~\tilde{g} defined in Eq. (155). Explicit calculation shows that

r~\displaystyle\tilde{r} =\displaystyle= (δg~)1g~\displaystyle(\delta\tilde{g})^{-1}\tilde{g} (192)
=\displaystyle= δϕcosθ(iJ~z)δθ(iJ~y)\displaystyle-\delta\phi\cos\theta(-i\tilde{J}_{z})-\delta\theta(-i\tilde{J}_{y})
+δϕsinθ(iJ~x)γ(iJ~z).\displaystyle+\delta\phi\sin\theta(-i\tilde{J}_{x})-\gamma(-i\tilde{J}_{z})\ .

Since δ(g~1g~)=0\delta(\tilde{g}^{-1}\tilde{g})=0 we have (δg~1)g~=g~1δg~(\delta\tilde{g}^{-1})\tilde{g}=-\tilde{g}^{-1}\delta\tilde{g}. The last relation shows that the three infinitesimal angles δθ\delta\theta, δϕ\delta\phi, γ\gamma all carry negative signs. That is because the infinitesimal transformation δg~1\delta\tilde{g}^{-1} acts conversely to the infinitesimal transformation δg\delta g. A general infinitesimal transformation in the body-fixed system can be written in terms of infinitesimal angles δα~k\delta\tilde{\alpha}_{k} as

r~=kδα~k(iJ~k).\displaystyle\tilde{r}=\sum_{k}\delta\tilde{\alpha}_{k}(-i\tilde{J}_{k})\ . (193)

Since in Eq. (192) r~\tilde{r} acts conversely to rr we equate expression (192) not with expression (193) but with the converse of expression (193), obtained by the replacements δα~kδα~k\delta\tilde{\alpha}_{k}\to-\delta\tilde{\alpha}_{k} for all kk. That gives

(δα~xδα~yδα~z)=(0sinθ01000cosθ1)(δθδϕγ).\displaystyle\left(\begin{array}[]{c}\delta\tilde{\alpha}_{x}\\ \delta\tilde{\alpha}_{y}\\ \delta\tilde{\alpha}_{z}\end{array}\right)=\left(\begin{array}[]{ccc}0&-\sin\theta&0\\ 1&0&0\\ 0&\cos\theta&1\end{array}\right)\left(\begin{array}[]{c}\delta\theta\\ \delta\phi\\ \gamma\end{array}\right)\ . (203)

The inverse relation is

(δθδϕγ)=(0101sinθ00cotθ01)(δα~xδα~yδα~z).\displaystyle\left(\begin{array}[]{c}\delta\theta\\ \delta\phi\\ \gamma\end{array}\right)=\left(\begin{array}[]{ccc}0&1&0\\ -{1\over\sin\theta}&0&0\\ \cot\theta&0&1\end{array}\right)\left(\begin{array}[]{c}\delta\tilde{\alpha}_{x}\\ \delta\tilde{\alpha}_{y}\\ \delta\tilde{\alpha}_{z}\end{array}\right)\ . (213)

Identifying γ\gamma with δω\delta\omega, we see that this agrees with Eqs. (119) and (B.2).

The commutation relations (148) imply that under the infinitesimal rotation 1+δαz(iJz)1+\delta\alpha_{z}(-iJ_{z}), the operator (iJx)(-iJ_{x}) is mapped onto [1+δαz(iJz)](iJx)[1δαz(iJz)]=(iJx)+δαz(iJy)[1+\delta\alpha_{z}(-iJ_{z})](-iJ_{x})[1-\delta\alpha_{z}(-iJ_{z})]=(-iJ_{x})+\delta\alpha_{z}(-iJ_{y}), and correspondingly for the other components. That shows that under a rotation, the three operators (iJx,iJy,iJz)(-iJ_{x},-iJ_{y},-iJ_{z}) transform like the three unit vectors (𝐞x,𝐞y,𝐞z)({\bf e}_{x},{\bf e}_{y},{\bf e}_{z}) of a three-dimensional linear space. That suggests that rr in Eq. (168) and r~\tilde{r} in Eq. (193) represent the same vector written, respectively, in the space-fixed and in the body-fixed coordinate system. For that to be true the three infinitesimal angles (δαx,δαy,δαz)(\delta\alpha_{x},\delta\alpha_{y},\delta\alpha_{z}) of rr and (δαx,δαy,δαz)(\delta\alpha_{x},\delta\alpha_{y},\delta\alpha_{z}) of r~\tilde{r} must be connected as in Eq. (146),

δαk=lgklδα~l.\displaystyle\delta\alpha_{k}=\sum_{l}g_{kl}\delta\tilde{\alpha}_{l}\ . (214)

Combining Eqs. (179) and (213) yields

(δαxδαyδαz)\displaystyle\left(\begin{array}[]{c}\delta\alpha_{x}\\ \delta\alpha_{y}\\ \delta\alpha_{z}\end{array}\right) (218)
=(cosθcosϕsinϕsinθcosϕcosθsinϕcosϕsinθsinϕsinθ0cosθ)(δα~xδα~yδα~z).\displaystyle=\left(\begin{array}[]{ccc}\cos\theta\cos\phi&-\sin\phi&\sin\theta\cos\phi\\ \cos\theta\sin\phi&\cos\phi&\sin\theta\sin\phi\\ -\sin\theta&0&\cos\theta\end{array}\right)\left(\begin{array}[]{c}\delta\tilde{\alpha}_{x}\\ \delta\tilde{\alpha}_{y}\\ \delta\tilde{\alpha}_{z}\end{array}\right)\ . (225)
(226)

Equation (151) shows that Eq. (226) indeed equals Eq. (214), confirming the vector character of rr. Applying that to Noether’s theorem in App. B.3 we see that IkI_{k} and IkI_{k^{\prime}} are indeed the components of the same vector written respectively, in the space-fixed and in the body-fixed coordinate system.

It is straightforward to extend these arguments from vectors, i.e. spherical tensors of rank three, to spherical tensors of arbitrary rank. Then, the concrete representations of the rotation matrices gg and g~\tilde{g} are given by Wigner DD matrices, while all algebraic relationships derived above remain unchanged.

Appendix E Gauge potentials

We demonstrate how gauge potentials arise in an adiabatic approach and we discuss gauge transformations and their relation to rotations.

E.1 Gauge potentials from an adiabatic approach

The appearance of the non-Abelian gauge potential (45) can be understood also in an adiabatic approach Kuratsuji and Iida (1985); Wilczek and Shapere (1989). If the nucleon’s degrees of freedom are much faster than those of the rotor, the eigenstates of the fermion Hamiltonian HΨH_{\Psi} follow the rotor’s axial symmetry instantaneously, independently of any details of the fermion-rotor interaction. For simplicity we consider only the fermion spin function χSm\chi_{Sm} with half-integer spin SS and projection mm onto the space-fixed zz axis. As the fermion is fast, it’s spin is in an eigenstate with respect to projection onto the rotor’s symmetry axis, i.e. the helicity spin states χSλ(θ,ϕ)\chi_{S\lambda}(\theta,\phi) from Eq. (140) span, for fixed projection λ\lambda, a basis of the instantaneous fermion eigenstates. They fulfill

(𝐞r𝐒)χSλ(θ,ϕ)=λχSλ(θ,ϕ).(\mathbf{e}_{r}\cdot\mathbf{S})\,\chi_{S\lambda}(\theta,\phi)=\lambda\chi_{S\lambda}(\theta,\phi)\ . (227)

Due to Kramers’ degeneracy, the spin states χS±λ(θ,ϕ)\chi_{S{\pm\lambda}}(\theta,\phi) are degenerate. In the adiabatic approximation, one evaluates the Hamiltonian of the fermion-plus-rotor system

H=HΨ12C0Ω2,H=H_{\Psi}-{1\over 2C_{0}}\nabla_{\Omega}^{2}\ , (228)

in these eigenstates to get the effective Hamiltonian matrix (see, e.g., Berry’s overview in Ref. Wilczek and Shapere (1989))

HSS\displaystyle H_{S^{\prime}S} \displaystyle\equiv χSλ(θ,ϕ)HχSλ(θ,ϕ)\displaystyle\chi^{\dagger}_{S^{\prime}\lambda}(\theta,\phi)H\chi_{S\lambda}(\theta,\phi) (229)
=\displaystyle= 12C0(iδSSΩ𝐀SS)2\displaystyle{1\over 2C_{0}}\left(-i\delta_{S^{\prime}S^{\prime}}\nabla_{\Omega}-\mathbf{A}_{S^{\prime}S}\right)^{2}
+χSλ(θ,ϕ)HΨχSλ(θ,ϕ).\displaystyle+\chi^{\dagger}_{S\lambda}(\theta,\phi)H_{\Psi}\chi_{S\lambda}(\theta,\phi)\ .

Here the vector gauge potential is the matrix

𝐀SS\displaystyle\mathbf{A}_{S^{\prime}S} \displaystyle\equiv iχSλ(θ,ϕ)ΩχS,λ(θ,ϕ).\displaystyle i\chi^{\dagger}_{S^{\prime}\lambda}(\theta,\phi)\nabla_{\Omega}\chi_{S,\lambda}(\theta,\phi)\ . (230)

Using properties of Wigner DD functions Varshalovich et al. (1988) and a summation formula from Ref. Lai et al. (1998), one finds

𝐀SS\displaystyle\mathbf{A}_{S^{\prime}S} =\displaystyle= δSSλcotθ𝐞ϕ.\displaystyle\delta_{S^{\prime}S}\lambda\cot\theta\mathbf{e}_{\phi}\ . (231)

In our case, the projection λ\lambda is obtained by application of the operator K^z\hat{K}_{z^{\prime}}, and we thus find that the gauge potential 𝐀=𝐞ϕcotθK^z\mathbf{A}=\mathbf{e}_{\phi}\cot\theta\hat{K}_{z^{\prime}} enters. This is Eq. (45).

E.2 Gauge transformations

Let us also explore gauge transformations. Our definition of the body-fixed coordinate system (II.1.1) is convenient [because the basis vectors 𝐞θ\mathbf{e}_{\theta} and 𝐞ϕ\mathbf{e}_{\phi} are tangent vectors of the lines parameterized by the spherical coordinates (θ,ϕ)(\theta,\phi)] but otherwise arbitrary. Any rotation of these basis vectors around the 𝐞r\mathbf{e}_{r} axis would have been equally valid, i.e. the vectors

𝐞1\displaystyle\mathbf{e}^{\prime}_{1} \displaystyle\equiv cosγ(θ,ϕ)𝐞θ+sinγ(θ,ϕ)𝐞ϕ,\displaystyle\cos\gamma(\theta,\phi)\mathbf{e}_{\theta}+\sin\gamma(\theta,\phi)\mathbf{e}_{\phi}\ ,
𝐞2\displaystyle\mathbf{e}^{\prime}_{2} \displaystyle\equiv sinγ(θ,ϕ)𝐞θ+cosγ(θ,ϕ)𝐞ϕ,\displaystyle-\sin\gamma(\theta,\phi)\mathbf{e}_{\theta}+\cos\gamma(\theta,\phi)\mathbf{e}_{\phi}\ , (232)

and 𝐞r\mathbf{e}_{r} span a right-handed body-fixed coordinate system. Here, γ(θ,ϕ)\gamma(\theta,\phi) is a smooth function over the sphere. Let us repeat the computations made in the previous Subsection for this body-fixed system. The helicity basis functions for the fermion become

χ~Sλ(θ,ϕ)=mDmλS(ϕ,θ,γ)χSm.\tilde{\chi}_{S\lambda}(\theta,\phi)=\sum_{m}D^{S}_{m\lambda}(\phi,\theta,\gamma)\chi_{Sm}\ . (233)

Here, and in what follows we suppress the dependence of γ\gamma on the angles (θ,ϕ)(\theta,\phi). The gauge potential is

𝐀~SS\displaystyle\tilde{\mathbf{A}}_{S^{\prime}S} \displaystyle\equiv iχ~Sλ(θ,ϕ)Ωχ~S,λ(θ,ϕ)\displaystyle i\tilde{\chi}^{\dagger}_{S^{\prime}\lambda}(\theta,\phi)\nabla_{\Omega}\tilde{\chi}_{S,\lambda}(\theta,\phi) (234)
=\displaystyle= iδSSm[DmλS(ϕ,θ,γ)]ΩDmλS(ϕ,θ,γ)\displaystyle i\delta_{S^{\prime}S}\sum_{m}\left[D^{S}_{m\lambda}(\phi,\theta,\gamma)\right]^{*}\nabla_{\Omega}D^{S}_{m\lambda}(\phi,\theta,\gamma)
=\displaystyle= iδSSmdmλS(θ)[(imsinθ𝐞ϕiλΩγ)dmλS(θ)\displaystyle i\delta_{S^{\prime}S}\sum_{m}d^{S}_{m\lambda}(\theta)\bigg{[}\left({-im\over\sin\theta}\mathbf{e}_{\phi}-i\lambda\nabla_{\Omega}\gamma\right)d_{m\lambda}^{S}(\theta)
12S(S+1)m(m1)dm1λS(θ)𝐞θ\displaystyle-{1\over 2}\sqrt{S(S+1)-m(m-1)}d_{m-1\lambda}^{S}(\theta)\mathbf{e}_{\theta}
+12S(S+1)m(m+1)dm+1λS(θ)𝐞θ]\displaystyle+{1\over 2}\sqrt{S(S+1)-m(m+1)}d_{m+1\lambda}^{S}(\theta)\mathbf{e}_{\theta}\bigg{]}
=\displaystyle= δSSλ[cotθ𝐞ϕ+Ωγ(θ,ϕ)].\displaystyle\delta_{S^{\prime}S}\lambda\left[\cot\theta\mathbf{e}_{\phi}+\nabla_{\Omega}\gamma(\theta,\phi)\right]\ .

We have used results from chapter 4.9 of Ref. Varshalovich et al. (1988). The sums over the last two terms cancel each other, and we used mm[dmλ(θ)]2=λcosθ\sum_{m}m[d_{m\lambda}(\theta)]^{2}=\lambda\cos\theta and m[dmλ(θ)]2=1\sum_{m}[d_{m\lambda}(\theta)]^{2}=1 from Ref. Lai et al. (1998).

The vector potentials 𝐀~SS\tilde{\mathbf{A}}_{S^{\prime}S} and 𝐀SS\mathbf{A}_{S^{\prime}S} differ by a gauge transformation, which is generated by the arbitrary angle γ(θ,ϕ)\gamma(\theta,\phi). For γ(θ,ϕ)=±ϕ\gamma(\theta,\phi)=\pm\phi, for instance, one obtains the gauge potentials 𝐀~=λcosθ±1sinθ𝐞ϕ\tilde{\mathbf{A}}=\lambda{\cos\theta\pm 1\over\sin\theta}\mathbf{e}_{\phi} by Wu and Yang (1976). Another interesting choice is γ(θ,ϕ)=ϕcosθ\gamma(\theta,\phi)=-\phi\cos\theta, because it generates the non-singular gauge potential 𝐀~=λϕsinθ𝐞θ\tilde{\mathbf{A}}=\lambda\phi\sin\theta\mathbf{e}_{\theta}. Our gauge potential (45) is singular at both poles, and the rotor eigenfunctions are Wigner DD functions. As pointed out in Ref. Dray (1986), the different gauge potentials correspond to different conventions regarding the third argument of the Wigner DD function, i.e. to different conventions regarding rotations of the body-fixed coordinate system around its zz^{\prime} axis. In other words, the wave function DMKI(ϕ,θ,0)D_{MK}^{I}(\phi,\theta,0) we used in the main text is replaced by DMKI[ϕ,θ,γ(θ,ϕ)]D_{MK}^{I}[\phi,\theta,\gamma(\theta,\phi)] when a gauge transformation is made.

The arguments of this Subsection show that the freedom of choice of the intrinsic coordinate system introduces a gauge freedom in the dynamics of the collective rotational degrees of freedom Littlejohn and Reinsch (1997). The general Abelian gauge potential is

𝐀~a(θ,ϕ)=K^z[𝐞ϕcotθ+Ωγ(θ,ϕ)].\tilde{\mathbf{A}}_{\rm a}(\theta,\phi)=\hat{K}_{z^{\prime}}\left[\mathbf{e}_{\phi}\cot\theta+\nabla_{\Omega}\gamma(\theta,\phi)\right]\ . (235)

We extend the discussion to the non-Abelian gauge field. In its manifestly gauge-invariant form it reads

𝐀~n(θ,ϕ)\displaystyle\tilde{\mathbf{A}}_{\rm n}(\theta,\phi) =\displaystyle= g𝐞r×𝐊^\displaystyle g\mathbf{e}_{r}\times\hat{\mathbf{K}}
=\displaystyle= g(K^1𝐞2K^2𝐞1)\displaystyle g\left(\hat{K}_{1}\mathbf{e}^{\prime}_{2}-\hat{K}_{2}\mathbf{e}^{\prime}_{1}\right)
=\displaystyle= g[(K^1cosγ(θ,ϕ)K^2sinγ(θ,ϕ))𝐞ϕ\displaystyle g\Big{[}\left(\hat{K}_{1}\cos\gamma(\theta,\phi)-\hat{K}_{2}\sin\gamma(\theta,\phi)\right)\mathbf{e}_{\phi}
(K^1sinγ(θ,ϕ)+K^2cosγ(θ,ϕ))𝐞θ].\displaystyle-\left(\hat{K}_{1}\sin\gamma(\theta,\phi)+\hat{K}_{2}\cos\gamma(\theta,\phi)\right)\mathbf{e}_{\theta}\Big{]}\ .

We have employed the operators K^i𝐞i𝐊^\hat{K}_{i}\equiv\mathbf{e}^{\prime}_{i}\cdot\hat{\mathbf{K}} for i=1,2i=1,2 in the body-fixed frame. In the last line we have expressed the result in the coordinate system of the rotor’s angular velocity. We have used that the spin operators K^1\hat{K}_{1}, K^2\hat{K}_{2}, and K^z\hat{K}_{z^{\prime}} fulfill the canonical commutation relations. Comparison with Eq. (48) meets our expectations, because the spin operators are simply rotated by γ\gamma around the body-fixed zz^{\prime} axis.

The magnetic field of the total gauge potential 𝐀~tot=𝐀~a+𝐀~n\tilde{\mathbf{A}}_{\rm tot}=\tilde{\mathbf{A}}_{\rm a}+\tilde{\mathbf{A}}_{\rm n} is

𝐁~tot\displaystyle\tilde{\mathbf{B}}_{\rm tot} =\displaystyle= Ω×𝐀~toti𝐀~tot×𝐀~tot\displaystyle\nabla_{\Omega}\times\tilde{\mathbf{A}}_{\rm tot}-i\tilde{\mathbf{A}}_{\rm tot}\times\tilde{\mathbf{A}}_{\rm tot} (237)
=\displaystyle= (g21)K^z𝐞r,\displaystyle(g^{2}-1)\hat{K}_{z^{\prime}}\mathbf{e}_{r}\ ,

in agreement with Eq. (51). It does not depend on γ(θ,ϕ)\gamma(\theta,\phi) and is, thus, gauge invariant.

We turn this argument around and study the effect of rotations on the gauge potential. While the non-Abelian part (E.2) of the gauge potential is manifestly invariant under rotations, this is not so for the Abelian part (45). Under a rotation we have

𝐀a(θ,ϕ)=\displaystyle{\cal R}\mathbf{A}_{\rm a}(\theta,\phi)=
K^zcotθ[𝐞ϕ(ϕ+δϕ,θ+δθ)δω𝐞θ(ϕ+δϕ,θ+δθ)].\displaystyle\hat{K}_{z^{\prime}}\cot\theta\left[\mathbf{e}_{\phi}(\phi+\delta\phi,\theta+\delta\theta)-\delta\omega\mathbf{e}_{\theta}(\phi+\delta\phi,\theta+\delta\theta)\right]\ .

Here, the differential δω\delta\omega is given in Eq. (B.1) for rotations around the space-fixed axes. This rotated gauge potential has to be compared with the gauge potential

𝐀a(θ+δθ,ϕ+δϕ)=\displaystyle\mathbf{A}_{\rm a}(\theta+\delta\theta,\phi+\delta\phi)= (239)
K^zcot(θ+δθ)𝐞ϕ(ϕ+δϕ,θ+δθ)\displaystyle\hat{K}_{z^{\prime}}\cot(\theta+\delta\theta)\mathbf{e}_{\phi}(\phi+\delta\phi,\theta+\delta\theta)

at the point (ϕ+δϕ,θ+δθ)(\phi+\delta\phi,\theta+\delta\theta). Here, the differential δθ\delta\theta is taken from Eq. (94). The difference

δ𝐀\displaystyle\delta\mathbf{A} =\displaystyle= 𝐀a(θ)𝐀a(θ+δθ)\displaystyle{\cal R}\mathbf{A}_{\rm a}(\theta)-\mathbf{A}_{\rm a}(\theta+\delta\theta) (240)
=\displaystyle= δωcotθK^z𝐞θ(ϕ+δϕ,θ+δθ)\displaystyle-\delta\omega\cot\theta\hat{K}_{z^{\prime}}\mathbf{e}_{\theta}(\phi+\delta\phi,\theta+\delta\theta)
+δθK^zsin2θ𝐞ϕ(ϕ+δϕ,θ+δθ)\displaystyle+\delta\theta{\hat{K}_{z^{\prime}}\over\sin^{2}\theta}\mathbf{e}_{\phi}(\phi+\delta\phi,\theta+\delta\theta)

can be written as δ𝐀=ΩK^zδω\delta\mathbf{A}=\nabla_{\Omega}\hat{K}_{z^{\prime}}\delta\omega when employing the expressions  (94) and (B.1). Thus, after a rotation the gauge potential can be brought back into its original form (50) by performing a gauge transformation Fierz (1944).

Appendix F Supplements to Section (IV)

To compute the contribution of the term linear in gg of the Hamiltonian (65) for K=1/2K=1/2 states we introduce spherical components

I±1\displaystyle I_{\pm 1} \displaystyle\equiv 12(Ix±iIy)\displaystyle\mp{1\over\sqrt{2}}\left(I_{x^{\prime}}\pm iI_{y^{\prime}}\right) (241)
=\displaystyle= i2(iθ1sinθϕ±iK^zcotθ)\displaystyle{i\over\sqrt{2}}\left(i\partial_{\theta}\mp{1\over\sin\theta}\partial_{\phi}\pm i\hat{K}_{z^{\prime}}\cot\theta\right)

and

K^±1\displaystyle\hat{K}_{\pm 1} \displaystyle\equiv 12(K^x±iK^y).\displaystyle\mp{1\over\sqrt{2}}\left(\hat{K}_{x^{\prime}}\pm i\hat{K}_{y^{\prime}}\right)\ . (242)

We write the term as

gC0(IxK^x+IyK^y)=gC0(I1K^+1+I+1K^1).{g\over C_{0}}\left(I_{x^{\prime}}\hat{K}_{x^{\prime}}+I_{y^{\prime}}\hat{K}_{y^{\prime}}\right)=-{g\over C_{0}}\left(I_{-1}\hat{K}_{+1}+I_{+1}\hat{K}_{-1}\right)\ . (243)

Using the properties of the raising and lowering operators (see chapters 3.1 and 4.2 in Ref. Varshalovich et al. (1988)) we find

K^±1|12=12|±12,\hat{K}_{\pm 1}\left|{\mp{1\over 2}}\right\rangle=\mp{1\over\sqrt{2}}\left|{\pm{1\over 2}}\right\rangle\ , (244)

and

I±1DM,MI(ϕ,θ,0)=\displaystyle I_{\pm 1}D_{M,M^{\prime}}^{I}(\phi,\theta,0)=
±I(I+1)M(M±1)2DM,M±1I(ϕ,θ,0).\displaystyle\pm\sqrt{I(I+1)-M^{\prime}(M^{\prime}\pm 1)\over 2}D_{M,M^{\prime}\pm 1}^{I}(\phi,\theta,0)\ .

Thus,

(I1K^+1+I+1K^1)DM,±12I(ϕ,θ,0)|12=\displaystyle\left(I_{-1}\hat{K}_{+1}+I_{+1}\hat{K}_{-1}\right)D^{I}_{M,{\pm{1\over 2}}}(\phi,\theta,0)\left|{\mp{1\over 2}}\right\rangle=
(I+12)DM,12I(ϕ,θ,0)|±12.\displaystyle\left(I+{1\over 2}\right)D^{I}_{M,{\mp{1\over 2}}}(\phi,\theta,0)\left|{\pm{1\over 2}}\right\rangle\ . (246)

Inspection shows that that the linear combinations

DM,12I(ϕ,θ,0)|12+(1)I+12DM,12I(ϕ,θ,0)|12D^{I}_{M,{-{1\over 2}}}(\phi,\theta,0)\left|{{1\over 2}}\right\rangle+(-1)^{I+{1\over 2}}D^{I}_{M,{1\over 2}}(\phi,\theta,0)\left|{-{1\over 2}}\right\rangle (247)

are solutions of the Hamiltonian (65) for K=1/2K=1/2. The phase (1)I+12(-1)^{I+{1\over 2}} results from the requirement that the odd-mass nucleus is invariant under rotations by π\pi around any axis perpendicular to the symmetry axis. Hence, the contribution from the term proportional to gg in the Hamiltonian (65) becomes

ΔE(g)=gC0δ|K|12(1)I+12(I+12).\Delta E(g)=-{g\over C_{0}}\delta_{|K|}^{1\over 2}(-1)^{I+{1\over 2}}\left(I+{1\over 2}\right)\ . (248)

That yields Eq. (74).

We next compute the matrix elements of the gg-dependent terms of the Hamiltonian (65) for two close-lying band heads. Using the normalization to 4π/(2I+1)4\pi/(2I+1) of the squared Wigner function, see Chapter 4.11 of Ref. Varshalovich et al. (1988), we find

02πdϕ\displaystyle\int\limits_{0}^{2\pi}{\rm d}\phi 11dcosθK|[DM,KI(ϕ,θ,0)]I+1K^1\displaystyle\int\limits_{-1}^{1}{\rm d}\cos\theta\langle K|\left[D^{I}_{M,-K}(\phi,\theta,0)\right]^{*}I_{+1}\hat{K}_{-1}
DM,K1I(ϕ,θ,0)|K+1\displaystyle D^{I}_{M,-K-1}(\phi,\theta,0)|K{+1}\rangle
=\displaystyle= K|K^1|K+1\displaystyle\langle K|\hat{K}_{-1}|K{+1}\rangle
×\displaystyle\times 02πdϕ11dcosθDM,KI(ϕ,θ,0)I+1DM,K1I(ϕ,θ,0)\displaystyle\int\limits_{0}^{2\pi}{\rm d}\phi\int\limits_{-1}^{1}{\rm d}\cos\theta D^{I*}_{M,-K}(\phi,\theta,0)I_{+1}D^{I}_{M,-K-1}(\phi,\theta,0)
=\displaystyle= 4π2I+1I(I+1)K(K+1)2K|K^1|K+1.\displaystyle\frac{4\pi}{2I+1}\sqrt{I(I+1)-K(K+1)\over 2}\langle K|\hat{K}_{-1}|K{+1}\rangle\ . (249)

We have used Eq. (F). The other relevant matrix element is

02πdϕ\displaystyle\int\limits_{0}^{2\pi}{\rm d}\phi 11dcosθK|[DM,KI(ϕ,θ,0)]I1K^+1\displaystyle\int\limits_{-1}^{1}{\rm d}\cos\theta\langle{-K}|\left[D^{I}_{M,K}(\phi,\theta,0)\right]^{*}I_{-1}\hat{K}_{+1}
DM,K+1I(ϕ,θ,0)|K1\displaystyle D^{I}_{M,K+1}(\phi,\theta,0)|{-K}{-1}\rangle
=\displaystyle= K|K^+1|K1\displaystyle\langle{-K}|\hat{K}_{+1}|{-K}{-1}\rangle
×\displaystyle\times 02πdϕ11dcosθDM,KI(ϕ,θ,0)I1DM,K+1I(ϕ,θ,0)\displaystyle\int\limits_{0}^{2\pi}{\rm d}\phi\int\limits_{-1}^{1}{\rm d}\cos\theta D^{I*}_{M,K}(\phi,\theta,0)I_{-1}D^{I}_{M,K+1}(\phi,\theta,0)
=\displaystyle= 4π2I+1I(I+1)K(K+1)2K|K^+1|K1.\displaystyle\frac{-4\pi}{2I+1}\sqrt{I(I+1)-K(K+1)\over 2}\langle{-K}|\hat{K}_{+1}|{-K}{-1}\rangle\ . (250)

Time-reversal invariance relates both matrix elements. Denoting the time-reversal operator by 𝒯{\cal T} we have

K|K^+1|K1\displaystyle\langle-K|\hat{K}_{+1}|{-K}{-1}\rangle =\displaystyle= K|𝒯K^+1𝒯|K+1\displaystyle\langle K|{\cal T}^{\dagger}\hat{K}_{+1}{\cal T}|K{+1}\rangle (251)
=\displaystyle= K|K^1|K+1.\displaystyle-\langle K|\hat{K}_{-1}|K{+1}\rangle\ .

The interaction is characterized by a single parameter. For a given potential VV, the relevant matrix element can be calculated by expanding the axially symmetric eigenstates in terms of spherical basis functions. In our approach, K|K^1|K+1\langle K|\hat{K}_{-1}|K{+1}\rangle is a low-energy constant and needs to be adjusted to data.

The next-to-leading-order correction of the Hamiltonian is

HNLO=12(pθ+gK^y,pϕcosθK^zgsinθK^x)\displaystyle H_{\rm NLO}=-{1\over 2}\left(p_{\theta}+g\hat{K}_{y^{\prime}},p_{\phi}-\cos\theta\hat{K}_{z^{\prime}}-g\sin\theta\hat{K}_{x^{\prime}}\right)
×M^LO1M^NLOM^LO1(pθ+gK^ypϕcosθK^zgsinθK^x).\displaystyle\qquad\times\hat{M}_{\rm LO}^{-1}\hat{M}_{\rm NLO}\hat{M}_{\rm LO}^{-1}\left(\begin{array}[]{c}p_{\theta}+g\hat{K}_{y^{\prime}}\\ p_{\phi}-\cos\theta\hat{K}_{z^{\prime}}-g\sin\theta\hat{K}_{x^{\prime}}\end{array}\right)\ . (254)

Here, the “mass” matrices

M^LO\displaystyle\hat{M}_{\rm LO} =\displaystyle= 1C0[100sin2θ]\displaystyle{1\over C_{0}}\left[\begin{array}[]{cc}1&0\\ 0&\sin^{2}\theta\end{array}\right] (258)

and

M^NLO\displaystyle\hat{M}_{\rm NLO} =\displaystyle= (ga(K^x2+K^y2)+gbK^z2)[100sin2θ]\displaystyle\left(g_{a}\left(\hat{K}_{x^{\prime}}^{2}+\hat{K}_{y^{\prime}}^{2}\right)+g_{b}\hat{K}_{z^{\prime}}^{2}\right)\left[\begin{array}[]{cc}1&0\\ 0&\sin^{2}\theta\end{array}\right] (261)
+\displaystyle+ gc[K^x2K^xK^ysinθK^yK^xsinθK^y2sin2θ]\displaystyle g_{c}\left[\begin{array}[]{cc}\hat{K}_{x^{\prime}}^{2}&\hat{K}_{x^{\prime}}\hat{K}_{y^{\prime}}\sin\theta\\ \hat{K}_{y^{\prime}}\hat{K}_{x^{\prime}}\sin\theta&\hat{K}_{y^{\prime}}^{2}\sin^{2}\theta\end{array}\right] (264)

enter the perturbative inversion of the mass matrix

M^=M^LO+M^NLO\displaystyle\hat{M}=\hat{M}_{\rm LO}+\hat{M}_{\rm NLO} (265)

via

M^1M^LO1M^LO1M^NLOM^LO1.\hat{M}^{-1}\approx\hat{M}_{\rm LO}^{-1}-\hat{M}_{\rm LO}^{-1}\hat{M}_{\rm NLO}\hat{M}_{\rm LO}^{-1}\ . (266)

The resulting Hamiltonian is written as in Eq. (78). Using Eq. (62) we replace the canonical momenta by angular momentum components,

pθ\displaystyle p_{\theta} =\displaystyle= Iy,\displaystyle I_{y^{\prime}}\ ,
pϕsinθ\displaystyle{p_{\phi}\over\sin\theta} =\displaystyle= K^zcotθIx,\displaystyle\hat{K}_{z^{\prime}}\cot\theta-I_{x^{\prime}}\ , (267)

and find

C^\displaystyle\hat{C} \displaystyle\equiv (ga+gc2)(K^x2+K^y2)+gbK^z2C0[1001],\displaystyle-{\left(g_{a}+{g_{c}\over 2}\right)\left(\hat{K}_{x^{\prime}}^{2}+\hat{K}_{y^{\prime}}^{2}\right)+g_{b}\hat{K}_{z^{\prime}}^{2}\over C_{0}}\left[\begin{array}[]{cc}1&0\\ 0&1\end{array}\right]\ , (270)
G^\displaystyle\hat{G} \displaystyle\equiv gcC0[12(K^x2K^y2)K^xK^yK^yK^x12(K^y2K^x2)],\displaystyle-{g_{c}\over C_{0}}\left[\begin{array}[]{cc}{1\over 2}\left(\hat{K}_{x^{\prime}}^{2}-\hat{K}_{y^{\prime}}^{2}\right)&\hat{K}_{x^{\prime}}\hat{K}_{y^{\prime}}\\ \hat{K}_{y^{\prime}}\hat{K}_{x^{\prime}}&{1\over 2}\left(\hat{K}_{y^{\prime}}^{2}-\hat{K}_{x^{\prime}}^{2}\right)\end{array}\right]\ , (273)

and

𝐍\displaystyle\mathbf{N} \displaystyle\equiv (IyIx)+g(K^yK^x).\displaystyle\left(\begin{array}[]{c}I_{y^{\prime}}\\ I_{x^{\prime}}\end{array}\right)+g\left(\begin{array}[]{c}\hat{K}_{y^{\prime}}\\ \hat{K}_{x^{\prime}}\end{array}\right)\ . (279)

With a view on Eq. (78) we note that

𝐍T𝐍\displaystyle\mathbf{N}^{T}\mathbf{N} =(Ix+gK^x)2+(Iy+gK^y)2\displaystyle=\left(I_{x^{\prime}}+g\hat{K}_{x^{\prime}}\right)^{2}+\left(I_{y^{\prime}}+g\hat{K}_{y^{\prime}}\right)^{2}
=𝐈2K^z2+g2(K^x2+K^y2)\displaystyle=\mathbf{I}^{2}-\hat{K}_{z^{\prime}}^{2}+g^{2}\left(\hat{K}_{x^{\prime}}^{2}+\hat{K}_{y^{\prime}}^{2}\right)
+2g(IxK^x+IyK^y),\displaystyle+2g\left(I_{x^{\prime}}\hat{K}_{x^{\prime}}+I_{y^{\prime}}\hat{K}_{y^{\prime}}\right)\ , (280)

and this expression is familiar to us from the leading-order Hamiltonian (65). This makes it straight forward to evaluate the next-to-leading-order corrections.

References