This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

thanks: Correspondence addressed to: [email protected]

Dynamically characterizing topological phases by high-order topological charges

Wei Jia International Center for Quantum Materials and School of Physics, Peking University, Beijing 100871, China Collaborative Innovation Center of Quantum Matter, Beijing 100871, China    Lin Zhang International Center for Quantum Materials and School of Physics, Peking University, Beijing 100871, China Collaborative Innovation Center of Quantum Matter, Beijing 100871, China    Long Zhang International Center for Quantum Materials and School of Physics, Peking University, Beijing 100871, China Collaborative Innovation Center of Quantum Matter, Beijing 100871, China    Xiong-Jun Liu International Center for Quantum Materials and School of Physics, Peking University, Beijing 100871, China Collaborative Innovation Center of Quantum Matter, Beijing 100871, China CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
Abstract

We propose a new theory to characterize equilibrium topological phase with non-equilibrium quantum dynamics by introducing the concept of high-order topological charges, with novel phenomena being predicted. Through a dimension reduction approach, we can characterize a dd-dimensional (ddD) integer-invariant topological phase with lower-dimensional topological number quantified by high-order topological charges, of which the ssth-order topological charges denote the monopoles confined on the (s1)(s-1)th-order band inversion surfaces (BISs) that are (ds+1)(d-s+1)D momentum subspaces. The bulk topology is determined by the ssth order topological charges enclosed by the ssth-order BISs. By quenching the system from trivial phase to topological regime, we show that the bulk topology of post-quench Hamiltonian can be detected through a high-order dynamical bulk-surface correspondence, in which both the high-order topological charges and high-order BISs are identified from quench dynamics. This characterization theory has essential advantages in two aspects. First, the highest (ddth) order topological charges are characterized by only discrete signs of spin-polarization in zero dimension (i.e. the 0th Chern numbers), whose measurement is much easier than the 11st-order topological charges that are characterized by the continuous charge-related spin texture in higher dimensional space. Secondly, a more striking result is that a first-order high integer-valued topological charge always reduces to multiple highest-order topological charges with unit charge value, and the latter can be readily detected in experiment. The two fundamental features greatly simplify the characterization and detection of the topological charges and also topological phases, which shall advance the experimental studies in the near future.

I Introduction

Topological quantum phases have become a mainstream of research in various areas, including condensed matter physics Klitzing et al. (1980); Tsui et al. (1982); Hasan and Kane (2010); Qi and Zhang (2011); Elliott and Franz (2015); Wen (2017); Kosterlitz (2017), ultracold atoms Greiner et al. (2002); Bloch et al. (2008); Miyake et al. (2013); Atala et al. (2013); Aidelsburger et al. (2013); Liu et al. (2014); Jotzu et al. (2014); Aidelsburger et al. (2015); Wu et al. (2016); Goldman et al. (2016); Lohse et al. (2018); Song et al. (2018), and photonic systems Verbin et al. (2013); Lu et al. (2016); Mittal et al. (2019). In equilibrium theory a topological phase is characterized by the bulk topological invariant defined in the ground state of the system and host protected boundary modes through the bulk-boundary correspondence. Based upon the equilibrium characterization the topological phases can be detected in experiment from the bulk-boundary correspondence, e.g. by resolving the boundary modes with angle-resolved photoelectron spectroscopy (ARPES) or transport measurements, which identify the equilibrium topological features König et al. (2007); Hsieh et al. (2008); Xia et al. (2009). The great success has been achieved in discovering the topological matter, such as topological insulators Fu et al. (2007); Fu and Kane (2007); Fu (2011); Chang et al. (2013), topological semimetals Burkov and Balents (2011); Young et al. (2012); Xu et al. (2015); Lv et al. (2015), and topological superconductors Qi et al. (2009); Bernevig and Hughes (2013); Ando and Fu (2015); Sato and Ando (2017); Zhang et al. (2018a).

Recently, as a momentum-space counterpart of the bulk-boundary correspondence, a dynamical bulk-surface correspondence was proposed for generic dd-dimensional (ddD) topological phases with integer invariants, and connects the bulk topology of such equilibrium topological phase and nontrivial dynamical pattern of quench-induced quantum dynamics emerging on the so-called band inversion surfaces (BISs) Zhang et al. (2018b, 2019a). The BISs are (d1)(d-1)D interfaces in Brillouin zone (BZ) where the band inversion occurs, and are characterized by that the coupling between momentum and one (pseudo)spin component in the Hamiltonian vanishes Zhang et al. (2018b). By suddenly tuning the system from initially trivial phase to topological regime, the induced quench dynamics exhibit novel dynamical topological pattern on the (d1)(d-1)D BISs, which is uniquely related to the bulk topology of the ddD equilibrium phase of the post-quench Hamiltonian. The dynamical bulk-surface correspondence establishes a universal correspondence between the equilibrium topological phases and far-from-equilibrium quantum dynamics. It provides conceptually new schemes to characterize and detect with high precision the equilibrium topological phases via non-equilibrium quench dynamics, which have been widely studied in the recent experiments with ultracold atoms Sun et al. (2018a, b); Yi et al. (2019); Song et al. (2019); Wang et al. , solid state spin systems Wang et al. (2019a); Ji et al. (2020); Xin et al. (2020), and superconducting circuits Niu et al. . Many novel issues have been further investigated in theory, such as the dynamical characterization of both symmetry-breaking order and topological phases in correlated systems Zhang et al. , the topological phases in non-Hermitian systems Zhou and Gong (2018); Qiu et al. (2019); Wang et al. (2019b); Zhu et al. (2020) and Floquet bands Zhang et al. (2020); Hu et al. (2020), generalization to generic quenches from a trivial or nontrivial phase via loop unitary construction Hu and Zhao (2020), and to the regime with slow nonadiabatic quantum quenches Ye and Li (2020). These studies also benefit from the high controllability of the synthetic quantum systems, which facilitates the exploration of non-equilibrium quantum dynamics Caio et al. (2015); Hu et al. (2016); Wang et al. (2017); Fläschner et al. (2018); Qiu et al. (2018); McGinley and Cooper (2019); Yang and Chen (2019); Tian et al. (2019); Xiong et al. (2020); Chen et al. (2020); Lu et al. (2020); Su et al. (2020).

The topology emerging on BISs can also be characterized by the topological charges enclosed in the BISs Zhang et al. (2019b), as an analogy to the Gaussian theorem, and such topological charges are dual to BISs and denote the monopole charges located at the nodes of the (pseudo)spin-orbit (SO) couplings Wang et al. (2019a); Ji et al. (2020); Yi et al. (2019). In this picture the topological invariant is viewed as the quantized flux of the monopoles through the BISs, which provides an intuitive perspective for the nontrivial bulk topology. More recently, the high-order BISs are proposed based on a dimension reduction approach Yu et al. , and the ssth-order BIS correspond to (ds)(d-s)D momentum subspace which is reduced from (s1)(s-1)-order BIS by further taking the coupling between momentum and the ssth (pseudo)spin component to be zero. In the quench dynamics the equilibrium topological phase can be characterized by the dynamical topology emerging on arbitrary high-order BISs. Since the higher-order BISs can be determined with less information, the dynamical theory based on high-order BISs can simplify the characterization of topological phases Yu et al. . The concept of high-order BIS is novelly extended by Li etal Li et al. to characterize the high-order topological phases Benalcazar et al. (2017a, b); Schindler et al. (2018). An interesting consideration is to extend the topological charges to the high-order regime based on the dimension reduction approach, which are dual to the high-order BISs and may have exceptional features and advantages in the dynamical characterization of topological phases, but have yet to be studied.

In this article, we introduce the concept of high-order topological charges, with which we propose a new dynamical characterization theory of topological phases. The equilibrium bulk topology is generically determined by the total ssth-order topological charges confined on the (s1)(s-1)th-order BISs and enclosed in the ssth-order BISs. By quenching the system from trivial phase to topological regime, we further show that the topological phase of post-quench Hamiltonian can be detected through a high-order dynamical bulk-surface correspondence, in which both the high-order topological charges and high-order BISs are identified from quench dynamics. The proposed new characterization theory has two essential advantages: (i) Unlike the 11st-order topological charge whose characterization necessitates to measure the continuous charge-related (pseudo)spin texture in ddD space, which could be tedious, the highest (ddth) order topological charges are characterized by only discrete signs of spin-polarization in the zero dimension. (ii) A high integer-valued topological charge of the first order always reduces to multiple highest-order topological charges with unit charge value. Then the high integer-valued topological invariant can be read by the summation of the highest-order topological charges enclosed by the highest-order BISs. The two fundamental features greatly simplify the characterization and detection the equilibrium topological phases. Finally, these advantages of the dynamical characterization are illustrated with concrete examples.

The remaining part of this paper is organized as follows. In Sec. II, we introduce the generic theory of the new dynamical characterization. In Sec. III, our dynamical scheme is applied to two realistic models. In Sec. IV, we show the decomposition of high integer-valued topological charges. Finally, we summarize the main results and provide the brief discussion in Sec. V.

II Generic Theory

II.1 Model Hamiltonian and dimension reduction

We start with the basic Hamiltonian describing a dd-dimensional (ddD) gapped topological phase with integer invariant, which can be written in the elementary representation matrices of Clifford algebra Morimoto and Furusaki (2013); Chiu et al. (2016) as

(𝐤)=𝐡(𝐤)𝜸=i=0dhi(𝐤)γi,\mathcal{H}(\mathbf{k})=\mathbf{h}(\mathbf{k})\cdot\boldsymbol{\gamma}=\sum^{d}_{i=0}h_{i}(\mathbf{k})\gamma_{i}, (1)

where the vector field 𝐡(𝐤)\mathbf{h}(\mathbf{k}) describes a (d+1)(d+1)D Zeeman field depending on the Bloch momentum 𝐤\mathbf{k} in BZ. The 𝜸\boldsymbol{\gamma} matrices obey anti-commutation relations {γi,γj}=2δi,j𝟏\{\gamma_{i},\gamma_{j}\}=2\delta_{i,j}\mathbf{1} for i,j=0,1,,di,j=0,1,\cdots,d, and their dimensionality is 2(d+1)/22^{(d+1)/2} (or 2d/22^{d/2}) if dd is odd (or even), which is the minimal requirement to open a topological gap for the ddD topological phase. For 1D/2D case Su et al. (1980); Haldane (1988); Chiu et al. (2013), the 𝜸\boldsymbol{\gamma} matrices simply reduce to the Pauli matrices. For 3D/4D system Zhang and Hu (2001); Schnyder et al. (2008), the 𝜸\boldsymbol{\gamma} matrices are constructed as the tensor product of the Pauli matrices. The topology of this basic Hamiltonian is characterized by the ddD (or d/2d/2-th) winding number (or Chern number) if dd is odd (or even), which counts the coverage times of the mapping 𝐡^(𝐤)=𝐡(𝐤)/|𝐡(𝐤)|\hat{\mathbf{h}}(\mathbf{k})=\mathbf{h}(\mathbf{k})/|\mathbf{h}(\mathbf{k})| from the BZ torus TdT^{d} to the ddD spherical surface SdS^{d} Fruchart and Carpentier (2013).

Now we perform dimension reduction for the above Hamiltonian, and bulk topology will be reduced into the lower-dimensional subsystem. One can choose an arbitrary hh-component, say h0(𝐤)h_{0}(\mathbf{k}), to characterize the dispersion of the decoupled bands of γ0\gamma_{0}. Accordingly, the remaining hh-components are denoted as the SO vector field 𝐡so(𝐤)(h1(𝐤),h2(𝐤),,hd(𝐤))\mathbf{h}_{\rm so}(\mathbf{k})\equiv(h_{1}(\mathbf{k}),h_{2}(\mathbf{k}),\dots,h_{d}(\mathbf{k})). The SO vector field opens a topological gap at the band-crossing with h0(𝐤)=0h_{0}(\mathbf{k})=0, which is defined as the (first-order) BISs, namely 1{𝐤BZ|h0(𝐤)=0}\mathcal{B}_{1}\equiv\{\mathbf{k}\in\mathrm{BZ}|h_{0}(\mathbf{k})=0\}. The bulk-surface duality has manifested that the bulk topology can be reduced to the winding of the ddD SO vector field on the (d1)(d-1)D first-order BISs Zhang et al. (2018b). This lower-dimensional topology can be treated in an effective (d1)(d-1)D gapped Hamiltonian on the first-order BISs,

eff(1)(𝐤~)=𝐡so(𝐤~)𝜸~=i=1dhi(𝐤~)γ~i,𝐤~1,\mathcal{H}^{(1)}_{\rm eff}(\tilde{\mathbf{k}})=\mathbf{h}_{\rm so}(\tilde{\mathbf{k}})\cdot\tilde{\boldsymbol{\gamma}}=\sum_{i=1}^{d}h_{i}(\tilde{\mathbf{k}})\tilde{\gamma}_{i},\qquad\tilde{\mathbf{k}}\in\mathcal{B}_{1}, (2)

where 𝜸~\tilde{\boldsymbol{\gamma}} are the corresponding gamma matrices on the (d1)(d-1)D subspace. The topological number of Hamiltonian (2) is given by the coverage times of the mapping 𝐡^so(𝐤~)=𝐡so(𝐤~)/|𝐡so(𝐤~)|\hat{\mathbf{h}}_{\rm so}(\tilde{\mathbf{k}})=\mathbf{h}_{\rm so}(\tilde{\mathbf{k}})/|\mathbf{h}_{\rm so}(\tilde{\mathbf{k}})| from 1\mathcal{B}_{1} to S(d1)S^{(d-1)}. Now we can also define BISs for eff(1)\mathcal{H}^{(1)}_{\rm eff}, which is called the second-order BISs Yu et al. . Without loss of generality, the component h1(𝐤~)h_{1}(\tilde{\mathbf{k}}) is used to define the (d2)(d-2)D second-order BISs as 2{𝐤~1|h1(𝐤~)=0}={𝐤BZ|h0(𝐤)=h1(𝐤)=0}\mathcal{B}_{2}\equiv\{\tilde{\mathbf{k}}\in\mathcal{B}_{1}|h_{1}(\tilde{\mathbf{k}})=0\}=\{\mathbf{k}\in\mathrm{BZ}|h_{0}(\mathbf{k})=h_{1}(\mathbf{k})=0\}. Then the bulk topology is reduced to the winding of the (d1)(d-1)D effective SO vector field 𝐡so(1)(𝐤~)(h2(𝐤~),,hd(𝐤~))\mathbf{h}^{(1)}_{\rm so}(\tilde{\mathbf{k}})\equiv(h_{2}(\tilde{\mathbf{k}}),\dots,h_{d}(\tilde{\mathbf{k}})) on the second-order BISs.

By repeating the above dimension reduction procedure, the ddD bulk topology can be reduced to the integer invariant of (ds+1)(d-s+1)D effective Hamiltonian on the (s1)(s-1)th-order BISs s1={𝐤BZ|h0(𝐤)==hs2(𝐤)=0}\mathcal{B}_{s-1}=\{\mathbf{k}\in{\rm BZ}|h_{0}(\mathbf{k})=\cdots=h_{s-2}(\mathbf{k})=0\},

eff(s1)(𝐤~)=hs1(𝐤~)γ~s1+i=sdhi(𝐤~)γ~i,𝐤~s1,\mathcal{H}^{(s-1)}_{\rm eff}(\tilde{\mathbf{k}})=h_{s-1}(\tilde{\mathbf{k}})\tilde{\gamma}_{s-1}+\sum_{i=s}^{d}h_{i}(\tilde{\mathbf{k}})\tilde{\gamma}_{i},\quad\tilde{\mathbf{k}}\in\mathcal{B}_{s-1}, (3)

where 𝜸~\tilde{\boldsymbol{\gamma}} are the corresponding Gamma matrices on the (ds+1)(d-s+1)D subspace. Thus hs1(𝐤~)h_{s-1}(\tilde{\mathbf{k}}) component further defines the (ds)(d-s)D ssth-order BISs as

s{𝐤~s1|hs1(𝐤~)=0}={𝐤BZ|h0(𝐤)==hs1(𝐤)=0}\begin{split}\mathcal{B}_{s}&\equiv\{\tilde{\mathbf{k}}\in\mathcal{B}_{s-1}|h_{s-1}(\tilde{\mathbf{k}})=0\}\\ &=\{\mathbf{k}\in{\rm BZ}|h_{0}(\mathbf{k})=\cdots=h_{s-1}(\mathbf{k})=0\}\end{split} (4)

for eff(s1)\mathcal{H}^{(s-1)}_{\rm eff} [see Fig. 1(a)], and the remaining components represent the corresponding (ds+1)(d-s+1)D effective SO vector field 𝐡so(s1)(𝐤~)(hs(𝐤~),,hd(𝐤~))\mathbf{h}^{(s-1)}_{\rm so}(\tilde{\mathbf{k}})\equiv(h_{s}(\tilde{\mathbf{k}}),\dots,h_{d}(\tilde{\mathbf{k}})). The topological number is given by the winding of the (ds+1)(d-s+1)D SO vector field on the ssth-order BISs [see Fig. 1(b)].

II.2 High-order topological charges

As an analogy to the Gaussian theorem, the bulk topology can also be characterized by the topological charges enclosed in the BISs, and such topological charges are dual to BISs and denote the monopole charges located at the nodes of the SO couplings Zhang et al. (2018b, 2019a, 2019b); Wang et al. (2019a); Ji et al. (2020); Yi et al. (2019). In this picture the topological invariant of eff(s1)\mathcal{H}^{(s-1)}_{\rm eff} is simply viewed as the quantized flux of the monopoles through the ssth-order BISs.

Refer to caption
Figure 1: (a) A ssth-order BIS (red curve) produced by hs1=0h_{s-1}=0 and two ssth-order topological charges (red points) determined by hs=hs+1==hd=0h_{s}=h_{s+1}=\cdots=h_{d}=0 are both confined on the (s1)(s-1)th-order BIS (hemisphere surface), while the (s1)(s-1)th-order topological charge (gray-green point) determined by hs1=hs=hs+1==hd=0h_{s-1}=h_{s}=h_{s+1}=\cdots=h_{d}=0 is enclosed by the (s1)(s-1)th-order BIS. (b) The (ds+1)(d-s+1)D topology described by the winding on (s1)(s-1)th-order BIS (gray-green arrows) is reduced on the (ds)(d-s)D ssth-order BIS (red arrows). (c) The properties of a high-order topological charge are characterized by constructing the coordinates γ~s-γ~s+1--γ~d\tilde{\gamma}_{s}\text{-}\tilde{\gamma}_{s+1}\text{-}\cdots\text{-}\tilde{\gamma}_{d} in (pseudo)spin subspace.

We introduce the ssth-order topological charges

𝒞n(s)=Γ[(ds+1)/2]2π(ds+1)/2𝒮n[1|𝐡so(s1)|ds+1j=sd(1)j1hj]dhsdhd,\begin{split}\mathcal{C}^{(s)}_{n}=&\frac{\Gamma[(d-s+1)/2]}{2\pi^{(d-s+1)/2}}\int_{\mathcal{S}_{n}}\bigg{[}\frac{1}{|\mathbf{h}^{(s-1)}_{\rm so}|^{d-s+1}}\\ &\sum^{d}_{j=s}(-1)^{j-1}h_{j}\bigg{]}\text{d}h_{s}\wedge\cdots\wedge\text{d}h_{d},\\ \end{split} (5)

which are located at the nodes 𝐤~=𝔤n\tilde{\mathbf{k}}=\mathfrak{g}_{n} of the (ds+1)(d-s+1)D effective SO vector field with 𝐡so(s1)(𝔤n)=0\mathbf{h}^{(s-1)}_{\text{so}}(\mathfrak{g}_{n})=0 and characterize the corresponding monopoles. Here 𝒮n\mathcal{S}_{n} denotes a (ds+2)(d-s+2)D interface on (s1)(s-1)th-order BISs, enclosing the nnth monopole 𝔤n\mathfrak{g}_{n}. In the typical case where 𝐡so(s1)\mathbf{h}^{(s-1)}_{\rm so} is linear near the monopole, the ssth-order topological charges can be simplified as 𝒞n(s)=sgn[J𝐡so(s1)(𝔤n)]\mathcal{C}^{(s)}_{n}=\text{sgn}[J_{\mathbf{h}^{(s-1)}_{\text{so}}}(\mathfrak{g}_{n})], where J𝐡so(s1)(𝐤~)det[(hso,j(s1)/k~i)]J_{\mathbf{h}^{(s-1)}_{\text{so}}}(\tilde{\mathbf{k}})\equiv\text{det}[(\partial h^{(s-1)}_{\text{so},j}/\partial\tilde{k}_{i})] is Jacobian determinant with j=s,s+1,,dj=s,s+1,\cdots,d. However, when a monopole does not have the linear dispersion, the Jacobian is zero and the charge value |𝒞n(s)||\mathcal{C}^{(s)}_{n}| is in fact larger than one.

We emphasize that the ssth-order topological charges are confined on the (s1)(s-1)th-order BISs s1\mathcal{B}_{s-1} [see Fig. 1(a)] and are characterized by the all components of (ds+1)(d-s+1)D effective SO vector field 𝐡so(s1)(𝐤~)\mathbf{h}^{(s-1)}_{\rm so}(\tilde{\mathbf{k}}). Thus the properties (charge value and chirality) of ssth-order topological charges can be read out by measuring the (pseudo)spin structure of 𝐡so(s1)(𝐤~)\mathbf{h}^{(s-1)}_{\rm so}(\tilde{\mathbf{k}}) at 𝐤~𝔤n\tilde{\mathbf{k}}\to\mathfrak{g}_{n} in the (pseudo)spin subspace of γ~s-γ~s+1--γ~d\tilde{\gamma}_{s}\text{-}\tilde{\gamma}_{s+1}\text{-}\cdots\text{-}\tilde{\gamma}_{d} coordinate system [see Fig. 1(c)]. In particular, one can find that the highest (ddth) order topological charges are only characterized by the discrete signs of hd(𝐤~)h_{d}(\tilde{\mathbf{k}}) at 𝐤~𝔤n\tilde{\mathbf{k}}\to\mathfrak{g}_{n}, i.e. the 0th Chern numbers Yu et al. . This intrinsic property determines that whose charge value is only |𝒞n(d)|=1|\mathcal{C}^{(d)}_{n}|=1. Moreover, a high integer-valued topological charge can always reduce to multiple highest-order topological charges with unit charge value by the dimension reduction procedure. This two fundamental features of highest-order topological charges can greatly simplify the characterization and detection the equilibrium topological phases, which avoids the redundant measurements of the continuous charge-related (pseudo)spin texture in high dimensional space and provides the easy measurements in experiments (See sections III and IV for details). This is one of the key ideas of this paper.

Besides, three points are worthwhile to mention: (i) The order of topological charge is actually the number of dimension reduction for bulk Hamiltonian. (ii) The real dimensionality for the arbitrary high-order topological charge is zero, because the topological charges are the nodes of effective SO vector field in momentum subspace. (iii) The configurations of high-order BISs are sharply different for choosing different hh-components of the Hamiltonian, thus the location of the corresponding high-order topological charges should be different. Nevertheless, this does not affect the results of topological characterization (see Appendix C).

II.3 High-order dynamical bulk-surface correspondence

We further propose to use quench dynamics to detect the high-order topological charges and the corresponding high-order BISs, which establishes the high-order dynamical bulk-surface correspondence to characterize the equilibrium topological phases. We consider a series of deep quench process (see Appendix A) along all axes γi\gamma_{i} with i=0,1,,di=0,1,\dots,d while only measure a single (pseudo)spin component γ0\gamma_{0}, which is well measurable in cold atom experiments Sun et al. (2018a, b); Zhang et al. (2019a). Then the time-averaged (pseudo)spin polarization (TASP) is given by

γ0(𝐤)¯i=h0(𝐤)hi(𝐤)/E2(𝐤),\displaystyle\overline{\langle\gamma_{0}(\mathbf{k})\rangle}_{i}=-h_{0}(\mathbf{k})h_{i}(\mathbf{k})/E^{2}(\mathbf{k}), (6)

where E(𝐤)=i=0dhi2E(\mathbf{k})=\sqrt{\sum^{d}_{i=0}h^{2}_{i}} is the energy of the post-quenched Hamiltonian. Note that the TASP vanishes both on the momentum space with h0(𝐤)=0h_{0}(\mathbf{k})=0 and hi(𝐤)=0h_{i}(\mathbf{k})=0.

Refer to caption
Figure 2: Dynamical characterization of 2D QAH model. (a)-(c) The TASP σz(𝐤)¯z,y,x\overline{\langle\sigma_{z}(\mathbf{k})\rangle}_{z,y,x} via quenching m0,1,2m_{0,1,2} along all axes, where the vanishing polarization are marked as black, red, and green dashed lines that represent the interfaces with h0,1,2(𝐤)=0h_{0,1,2}(\mathbf{k})=0 respectively. The first-order BIS 1\mathcal{B}_{1} (black dashed line) is given by h0(𝐤)=0h_{0}(\mathbf{k})=0 in (a). The second-order BISs 2\mathcal{B}_{2} (green points) at 𝐤=(±π/2,0)\mathbf{k}=(\pm\pi/2,0) are given by h1(𝐤)=0h_{1}(\mathbf{k})=0 on first-order BIS 1\mathcal{B}_{1} in (b), and h1(𝐤)=h2(𝐤)=0h_{1}(\mathbf{k})=h_{2}(\mathbf{k})=0 gives the first-order topological charges 𝒞n=1,2,3,4(1)\mathcal{C}_{n=1,2,3,4}^{(1)} (light-pink and light-blue points) at (0,π)(0,-\pi), (0,0)(0,0), (π,0)(-\pi,0), and (π,π)(-\pi,-\pi). The second-order topological charges 𝒞1(2)=1\mathcal{C}_{1}^{(2)}=-1 (blue point) at 𝐤=(0,π/2)\mathbf{k}=(0,-\pi/2) and 𝒞2(2)=1\mathcal{C}_{2}^{(2)}=1 (red point) at 𝐤=(0,π/2)\mathbf{k}=(0,\pi/2) are given by h2(𝐤)=0h_{2}(\mathbf{k})=0 on first-order BIS 1\mathcal{B}_{1} in (c). (d) The normalized dynamic field in spin space of σyσx\sigma_{y}-\sigma_{x} characterizes the properties of first-order topological charges, where 𝒞2(1)\mathcal{C}_{2}^{(1)} in the region h0(𝐤)<0h_{0}(\mathbf{k})<0 (light-red surface) gives the 1st Chern number Ch1=𝒞2(1)=1\text{Ch}_{1}=\mathcal{C}_{2}^{(1)}=-1. (e) The normalized dynamic field in spin subspace of σ~x\tilde{\sigma}_{x} characterizes the properties of second-order topological charges, where 𝒞1(2)=1\mathcal{C}_{1}^{(2)}=-1 in the region h1(𝐤~)<0h_{1}(\tilde{\mathbf{k}})<0 (light-red solid curves) gives the 1st Chern number Ch1=𝒞1(2)=1\text{Ch}_{1}=\mathcal{C}_{1}^{(2)}=-1. Here the other parameter is tso=t0t_{\text{so}}=t_{0}.

Now the high-order topological charges and high-order BISs can be identified by measuring TASP. We define a set 𝒮(i){𝐤BZ|γ0(𝐤)¯i=0,γ0(𝐤)¯00}\mathcal{S}^{(i)}\equiv\{\mathbf{k}\in\mathrm{BZ}|\overline{\langle\gamma_{0}(\mathbf{k})\rangle}_{i}=0,\overline{\langle\gamma_{0}(\mathbf{k})\rangle}_{0}\neq 0\} for i>0i>0, which includes the momenta with hi=0h_{i}=0 but h00h_{0}\neq 0. Then the closure 𝒮¯(i)\bar{\mathcal{S}}^{(i)} also contains the momenta with hi=h0=0h_{i}=h_{0}=0. After setting 𝒮(0)={𝐤BZ|γ0(𝐤)¯0=0}\mathcal{S}^{(0)}=\{\mathbf{k}\in\mathrm{BZ}|\overline{\langle\gamma_{0}(\mathbf{k})\rangle}_{0}=0\}, the vanishing TASP gives the ssth-order BISs when quenching the axes γ0,γ1,,γs1\gamma_{0},\gamma_{1},\cdots,\gamma_{s-1}, i.e.

s=𝒮(0)𝒮¯(1)𝒮¯(s1).\mathcal{B}_{s}=\mathcal{S}^{(0)}\cap\bar{\mathcal{S}}^{(1)}\cap\cdots\cap\bar{\mathcal{S}}^{(s-1)}. (7)

Correspondingly, the location of the ssth-order topological charges can be determined by the momenta {𝔤n}=s1𝒮¯(s)𝒮¯(s+1)𝒮¯(d)\{\mathfrak{g}_{n}\}=\mathcal{B}_{s-1}\cap\bar{\mathcal{S}}^{(s)}\cap\bar{\mathcal{S}}^{(s+1)}\cap\cdots\cap\bar{\mathcal{S}}^{(d)}. We further define the dynamical field

Θj(𝐤~)lim𝐤𝐤~sgn[hs1(𝐤)]𝒩𝐤γ0(𝐤)¯jγ0(𝐤)¯s1γ0(𝐤)¯0\Theta_{j}(\tilde{\mathbf{k}})\equiv-\lim_{\mathbf{k}\to\tilde{{\mathbf{k}}}}\frac{\text{sgn}[h_{s-1}({\mathbf{k}})]}{\mathcal{N}_{{\mathbf{k}}}}\frac{\overline{\langle\gamma_{0}({\mathbf{k}})\rangle}_{j}\overline{\langle\gamma_{0}({\mathbf{k}})\rangle}_{s-1}}{\overline{\langle\gamma_{0}({\mathbf{k}})\rangle}_{0}} (8)

in (pseudo)spin subspace of γ~s-γ~s+1--γ~d\tilde{\gamma}_{s}\text{-}\tilde{\gamma}_{s+1}\text{-}\cdots\text{-}\tilde{\gamma}_{d} coordinate system, where 𝒩𝐤~\mathcal{N}_{\tilde{\mathbf{k}}} is a normalization factor and j=s,s+1,,dj=s,s+1,\cdots,d. Near the monopole charges, the dynamic field satisfies

Θj(𝐤~)|𝐤~𝔤n=hso,j(s1)(𝐤~),\Theta_{j}(\tilde{\mathbf{k}})|_{\tilde{\mathbf{k}}\rightarrow\mathfrak{g}_{n}}=h^{(s-1)}_{\text{so},j}(\tilde{\mathbf{k}}), (9)

whose (pseudo)spin structures intuitively give the properties of the ssth-order topological charges.

Finally, the bulk topology can be read out by the total ssth-order topological charges in the regions with s,{𝐤~s1|hs1(𝐤~)<0}\mathcal{B}_{s,-}\equiv\{\tilde{\mathbf{k}}\in\mathcal{B}_{s-1}|h_{s-1}(\tilde{\mathbf{k}})<0\} enclosed by the ssth-order BISs, namely

𝒲=ns,𝒞n(s).\mathcal{W}=\sum_{n\in\mathcal{B}_{s,-}}\mathcal{C}^{(s)}_{n}. (10)

The results of Eqs. (7)-(10) manifest a high-order dynamical bulk-surface correspondence, and provide the direct measurements of bulk topology via the well-resolved TASP in experiments. In addition, it is worth mentioning that we also provide another dynamical characterization scheme by quenching all (pseudo)spin axes and measuring multiple (pseudo)spin axis in Appendix C. Although the measurements of multiple (pseudo)spin components are challenging in recent experiments, this scheme is easier to determine high-order BISs and high-order topological charges, and then the equilibrium topological phase, which may has broader applications in the future.

Refer to caption
Figure 3: Dynamical characterization of 3D chiral topological insulator. (a)  The vanished TASP of γ0(𝐤)¯0,1,2,3\overline{\langle\gamma_{0}(\mathbf{k})\rangle}_{0,1,2,3}, where γ0(𝐤)¯0=0\overline{\langle\gamma_{0}(\mathbf{k})\rangle}_{0}=0 presents a spherical-like surface (orange surface) and gives the first-order BIS 1\mathcal{B}_{1} with h0(𝐤)=0h_{0}(\mathbf{k})=0. (b) The second-order topological charges are determined by h2(𝐤~)=h3(𝐤~)=0h_{2}(\tilde{\mathbf{k}})=h_{3}(\tilde{\mathbf{k}})=0 on 1\mathcal{B}_{1} and are characterized by the normalized dynamic field in pseudospin subspace γ~2γ~3\tilde{\gamma}_{2}-\tilde{\gamma}_{3}, with 𝒞1(2)=1\mathcal{C}_{1}^{(2)}=1 (red point) at 𝐤=(2π/3,0,0)\mathbf{k}=(-2\pi/3,0,0) and 𝒞2(2)=1\mathcal{C}_{2}^{(2)}=-1 (blue point) at 𝐤=(2π/3,0,0)\mathbf{k}=(2\pi/3,0,0). The second-order BIS 2\mathcal{B}_{2} (black curve) divides 1\mathcal{B}_{1} into two regions, where 𝒞1(2)=1\mathcal{C}_{1}^{(2)}=1 in left hemisphere surface with h1(𝐤~)<0h_{1}(\tilde{\mathbf{k}})<0 gives the winding number ν3=𝒞1(2)=1\nu_{3}=\mathcal{C}_{1}^{(2)}=1. (c) The third-order topological charges are determined by h3(𝐤~)=0h_{3}(\tilde{\mathbf{k}})=0 on 2\mathcal{B}_{2} and are characterized by the normalized dynamic field in pseudospin subspace γ~3\tilde{\gamma}_{3}, with 𝒞1(3)=1\mathcal{C}_{1}^{(3)}=1 (red point) at 𝐤=(0,2π/3,0)\mathbf{k}=(0,-2\pi/3,0) and 𝒞2(3)=1\mathcal{C}_{2}^{(3)}=-1 (blue point) at 𝐤=(0,2π/3,0)\mathbf{k}=(0,2\pi/3,0). The third-order BISs 3\mathcal{B}_{3} (green points) divides 2\mathcal{B}_{2} into two regions, where 𝒞1(3)=1\mathcal{C}_{1}^{(3)}=1 in the front of ring with h2(𝐤~)<0h_{2}(\tilde{\mathbf{k}})<0 gives the winding number ν3=𝒞1(3)=1\nu_{3}=\mathcal{C}_{1}^{(3)}=1. (d) Minimal measurement by detecting the TASP on the 2D plane of kx=0k_{x}=0, where the vanishing polarization marked as the black, red, and green dashed lines presents the interfaces with h0(1),2,3(𝐤)=0h_{0(1),2,3}(\mathbf{k})=0, respectively. The 1\mathcal{B}_{1} and 2\mathcal{B}_{2} are coincident in (d1). h2(𝐤)=0h_{2}(\mathbf{k})=0 on 2\mathcal{B}_{2} gives the third-order BISs 3\mathcal{B}_{3} (green points) in (d2), and h3(𝐤)=0h_{3}(\mathbf{k})=0 gives two third-order topological charges 𝒞1(3)=1\mathcal{C}_{1}^{(3)}=1 (red point) and 𝒞2(3)=1\mathcal{C}_{2}^{(3)}=-1 (blue point) in (d3). The normalized dynamic field characterizes the properties of the third-order topological charges in (d4), where the leftward 𝒞1(3)=1\mathcal{C}_{1}^{(3)}=1 in the region h2(𝐤~)<0h_{2}(\tilde{\mathbf{k}})<0 (light-red curves) gives the winding number ν3=𝒞1(3)=1\nu_{3}=\mathcal{C}_{1}^{(3)}=1. Here the other parameter is tso=t0t_{\text{so}}=t_{0}.

III Application to the realistic models

We consider a simple ddD model with

h0=m0t0i=1dcoskri,hi=mi+tsoi=1dsinkri,h_{0}=m_{0}-t_{0}\sum^{d}_{i=1}\cos k_{r_{i}},~{}h_{i}=m_{i}+t_{\text{so}}\sum^{d}_{i=1}\sin k_{r_{i}}, (11)

which can be realized with recent advances. Here 𝐤=(kr1,kr2,,krd)\mathbf{k}=(k_{r_{1}},k_{r_{2}},...,k_{r_{d}}) is the ddD momentum, m0m_{0} and mim_{i} are the effective Zeeman coupling, and t0t_{0}, tsot_{\text{so}} are the nearest-neighbor spin-conserved and spin-flipped hopping coefficients, respectively.

The 2D quantum anomalous Hall (QAH) model with (r1,r2)=(y,x)(r_{1},r_{2})=(y,x) is considered first, which has been realized in cold atoms experiments Liu et al. (2014); Wu et al. (2016); Wang et al. (2018) and widely studied Zhang and Yi (2013); Pan et al. (2016); Liu et al. (2016); Poon and Liu (2018); Jia et al. (2019). The 𝜸\boldsymbol{\gamma} matrices are Pauli matrices γ0,1,2=σz,y,x\gamma_{0,1,2}=\sigma_{z,y,x}. For m1=m2=0m_{1}=m_{2}=0, the bulk topology is characterized by the 1st Chern number (Ch1\text{Ch}_{1}), where the topological phase corresponds to 0<|m0|<2t00<|m_{0}|<2t_{0} with Ch1=sgn(m0)\text{Ch}_{1}=-\text{sgn}(m_{0}), but the trivial phases are for |m0|2t0|m_{0}|\geqslant 2t_{0} with Ch1=0\text{Ch}_{1}=0. We perform the quench by suddenly varying (m0,m1,m2)(m_{0},m_{1},m_{2}) from (30t0,0,0)(30t_{0},0,0) to (t0,0,0)(t_{0},0,0) for h0h_{0}, from (0,30t0,0)(0,30t_{0},0) to (t0,0,0)(t_{0},0,0) for h1h_{1}, and from (0,0,30t0)(0,0,30t_{0}) to (t0,0,0)(t_{0},0,0) for h2h_{2}. The time evolution of spin polarization for σz\sigma_{z}-component only needs to be measured, which can present the second-order BISs and second-order topological charges and then gives the information of bulk topology.

A ring structure characterizes the first-order BIS 1\mathcal{B}_{1} with h0=0h_{0}=0 is observed from the vanishing TASP σz(𝐤)¯z=0\overline{\langle\sigma_{z}(\mathbf{k})\rangle}_{z}=0 in Fig. 2(a). The vanishing polarization σz(𝐤)¯y=0\overline{\langle\sigma_{z}(\mathbf{k})\rangle}_{y}=0 in Fig. 2(b) shows the surfaces of h0(𝐤)=0h_{0}(\mathbf{k})=0 and h1(𝐤)=0h_{1}(\mathbf{k})=0, where the second-order BISs 2\mathcal{B}_{2} are given by h1(𝐤)=0h_{1}(\mathbf{k})=0 on the first-order BIS 1\mathcal{B}_{1} and present two points when taking 𝐡eff-so(1)(𝐤~)=h2\mathbf{h}^{(1)}_{\text{eff-so}}(\tilde{\mathbf{k}})=h_{2}. Moreover, the second-order topological charges determined by h2(𝐤~)=0h_{2}(\tilde{\mathbf{k}})=0 sit on the first-order BIS 1\mathcal{B}_{1} and are obtained by the vanishing polarization σz(𝐤)¯x=0\overline{\langle\sigma_{z}(\mathbf{k})\rangle}_{x}=0, as shown in Fig. 2(c). Because the effective BZ is reduced as {𝐤~|h0(𝐤)=0}\{\tilde{\mathbf{k}}|h_{0}(\mathbf{k})=0\} (or say 𝐤~1\tilde{\mathbf{k}}\in\mathcal{B}_{1}) and the bottom half-ring of first-order BIS holds h1(𝐤~)<0h_{1}(\tilde{\mathbf{k}})<0, the second-order topological charge 𝒞1(2)=1\mathcal{C}_{1}^{(2)}=1 is enclosed into by the second-order BISs, which gives the 1st Chern number Ch1=𝒞1(2)=1\text{Ch}_{1}=\mathcal{C}_{1}^{(2)}=-1 and is shown in Fig. 2(e). Compared with the dynamical characterization by using the first-order topological charges in Fig. 2(d), the spin textures around second-order topological charges are determined by the sign of h2(𝐤~)h_{2}(\tilde{\mathbf{k}}) at two sides of monopoles, which is more convenient for the experimental measurement.

Refer to caption
Figure 4: Numerical results in the extended 2D QAH model with charge value |𝒞n(1)|=2|\mathcal{C}^{(1)}_{n}|=2. (a)-(c) The TASP σz(𝐤)¯z,y,x\overline{\langle\sigma_{z}(\mathbf{k})\rangle}_{z,y,x}, where the vanishing polarization presents the first-order BIS 1\mathcal{B}_{1} with h0(𝐤)=0h_{0}(\mathbf{k})=0 (black dashed curve) in (a). The vanishing polarization on 1\mathcal{B}_{1} gives the second-order BISs 2\mathcal{B}_{2} (green points) in (b), and the vanishing polarization on 1\mathcal{B}_{1} gives the second-order topological charges 𝒞n=1,2,3,4(2)\mathcal{C}^{(2)}_{n=1,2,3,4} (blue and red points) in (c). (d) The normalized dynamic field characterizes the properties of four first-order topological charges 𝒞n=1,2,3,4(1)\mathcal{C}^{(1)}_{n=1,2,3,4}, where the first-order topological charge in the region h0(𝐤)<0h_{0}(\mathbf{k})<0 (light-red region) gives the 1st Chern number Ch1=𝒞2(1)=2\text{Ch}_{1}=\mathcal{C}^{(1)}_{2}=-2. (e) The normalized dynamic field characterizes the properties of four second-order topological charges 𝒞n=1,2,3,4(2)\mathcal{C}^{(2)}_{n=1,2,3,4}, where the summation of second-order topological charges in the region h1(𝐤~)<0h_{1}(\tilde{\mathbf{k}})<0 (light-red region) gives the 1st Chern number Ch1=𝒞1(2)+𝒞3(2)=2\text{Ch}_{1}=\mathcal{C}^{(2)}_{1}+\mathcal{C}^{(2)}_{3}=-2. (f) The first-order topological charge 𝒞2(1)=2\mathcal{C}^{(1)}_{2}=-2 enclosed by 1\mathcal{B}_{1} is equivalent to the sum of two second-order topological charges 𝒞n=1,3(2)=1\mathcal{C}^{(2)}_{n=1,3}=-1 enclosed by 2\mathcal{B}_{2}. The sum of remaining first-order topological charges 𝒞n=1,3,4(1)\mathcal{C}^{(1)}_{n=1,3,4} is equivalent to the sum of two second-order topological charges 𝒞n=2,4(2)=1\mathcal{C}^{(2)}_{n=2,4}=1. Here the other parameter is tso=t0t_{\text{so}}=t_{0}.

We further consider the application to a 3D chiral topological insulator with (r1,r2,r3)=(x,y,z)(r_{1},r_{2},r_{3})=(x,y,z), which has been simulated by using nitrogen-vacancy center Ji et al. (2020). The 𝜸\boldsymbol{\gamma} matrices are taken as γ0=σzτx\gamma_{0}=\sigma_{z}\otimes\tau_{x}, γ1=σx𝟙\gamma_{1}=\sigma_{x}\otimes\mathbbm{1}, γ2=σy𝟙\gamma_{2}=\sigma_{y}\otimes\mathbbm{1}, and γ3=σzτz\gamma_{3}=\sigma_{z}\otimes\tau_{z}, where σx,y,z\sigma_{x,y,z} and τx,y,z\tau_{x,y,z} are both Pauli matrices. For m1=m2=m3=0m_{1}=m_{2}=m_{3}=0, the topological phases are classified by the 3D winding number and are distinguished as: (i) t0<m0<3t0t_{0}<m_{0}<3t_{0} with winding number ν3=1\nu_{3}=1; (ii) t0<m0<t0-t_{0}<m_{0}<t_{0} with ν3=2\nu_{3}=-2; and (iii) 3t0<m0<t0-3t_{0}<m_{0}<-t_{0} with ν3=1\nu_{3}=1. Beyond these regions the phase is trivial. We perform the quench by suddenly varying (m0,m1,m2,m3)(m_{0},m_{1},m_{2},m_{3}) from (30t0,0,0,0)(30t_{0},0,0,0) to (1.5t0,0,0,0)(1.5t_{0},0,0,0) for h0h_{0}, from mi=30t0m_{i}=30t_{0} to 0 for hih_{i} (tuning m0m_{0} to 1.5t01.5t_{0} and keeping mji=0m_{j\neq i}=0), then the bulk topology in region (i) can be read out by measuring the time evolution of pseudospin polarization of the γ0\gamma_{0}-component.

The vanishing γ0(𝐤)¯0,1,2,3\overline{\langle\gamma_{0}(\mathbf{k})\rangle}_{0,1,2,3} in six 2D planes of BZ implies h1,2,3(𝐤)=0h_{1,2,3}(\mathbf{k})=0, but the spherical-like surface is for h0(𝐤)=0h_{0}(\mathbf{k})=0, which identifies the first-order BIS 1\mathcal{B}_{1} [see Fig. 3(a)]. When taking the effective SO vector field as 𝐡eff-so(1)(𝐤~)=(h2,h3)\mathbf{h}^{(1)}_{\text{eff-so}}(\tilde{\mathbf{k}})=(h_{2},h_{3}), the second-order BIS 2\mathcal{B}_{2} presents the ring-shape structure produced by h0=h1=0h_{0}=h_{1}=0 in vanishing polarization of γ0(𝐤)¯1\overline{\langle\gamma_{0}(\mathbf{k})\rangle}_{1}, which are confined on the first-order BIS 1\mathcal{B}_{1} [see Fig. 3(b)]. The corresponding second-order topological charges 𝒞n=1,2(2)\mathcal{C}^{(2)}_{n=1,2} with h2=h3=0h_{2}=h_{3}=0 are determined by the vanishing polarization of γ0(𝐤)¯2,3\overline{\langle\gamma_{0}(\mathbf{k})\rangle}_{2,3} on the first-order BIS 1\mathcal{B}_{1}. The second-order topological charge 𝒞12=1\mathcal{C}_{1}^{2}=1 is enclosed by the second-order BIS 2\mathcal{B}_{2}, giving the 3D winding number ν3=𝒞1(2)=1\nu_{3}=\mathcal{C}_{1}^{(2)}=1. Moreover, when the effective SO vector field 𝐡eff-so(3)(𝐤~)=h3\mathbf{h}^{(3)}_{\text{eff-so}}(\tilde{\mathbf{k}})=h_{3} is taken, the third-order BISs 3\mathcal{B}_{3} are produced by h0=h1=h2=0h_{0}=h_{1}=h_{2}=0 in vanishing polarization of γ0(𝐤)¯0,1,2\overline{\langle\gamma_{0}(\mathbf{k})\rangle}_{0,1,2}, which are confined on the second-order BIS 2\mathcal{B}_{2} and present two points [see Fig. 3(c)]. The effective BZ is reduced as {𝐤~|h0(𝐤)=h1(𝐤)=0}\{\tilde{\mathbf{k}}|h_{0}(\mathbf{k})=h_{1}(\mathbf{k})=0\} (or say 𝐤~2\tilde{\mathbf{k}}\in\mathcal{B}_{2}) and the front half-ring structure of the second-order BIS 2\mathcal{B}_{2} holds h2(𝐤~)<0h_{2}(\tilde{\mathbf{k}})<0. Therefore, the 3D winding number is given by ν3=𝒞1(3)=1\nu_{3}=\mathcal{C}_{1}^{(3)}=1. Similarly, the observation of third-order topological charges are simpler to determine the bulk topology.

Particularly, here we can also identify the third-order topological charges by a minimum measurement scheme (see Appendix B) with advantage in future experiments. By measuring the TASP on some 2D planes of BZ, γ0(𝐤)¯1=0\overline{\langle\gamma_{0}(\mathbf{k})\rangle}_{1}=0 is for all momentum 𝐤\mathbf{k} on the 2D plane of kx=0k_{x}=0 (The 2D plane of kx=πk_{x}=-\pi is failed to identify the third-order BISs 3\mathcal{B}_{3}). Thus γ0(𝐤)¯0,2\overline{\langle\gamma_{0}(\mathbf{k})\rangle}_{0,2} on this plane reflects the locations of the second-order BISs 2\mathcal{B}_{2} and third-order BISs 3\mathcal{B}_{3} [see Figs. 3(d1) and 3(d2)]. Therefore, the TASP γ0(𝐤)¯3\overline{\langle\gamma_{0}(\mathbf{k})\rangle}_{3} and the normalized dynamic field Θ(𝐤)\Theta(\mathbf{k}) on 2D plane of kx=0k_{x}=0 give the properties of the third-order topological charges and the topological number of the system [see Figs. 3(d3) and 3(d4)].

Refer to caption
Figure 5: Numerical results of the extended 3D chiral topological insulator model with charge value |𝒞n(1)|=3|\mathcal{C}^{(1)}_{n}|=3. (a) The TASP γ0(𝐤)0\langle\gamma_{0}(\mathbf{k})\rangle_{0}, where the spherical-like surface (orange surface) is identified as the first-order BIS 1\mathcal{B}_{1} and eight first-order topological charges 𝒞n=1,2,,8(1)\mathcal{C}^{(1)}_{n=1,2,\cdots,8} determined by h1(𝐤)=h2(𝐤)=h3(𝐤)=0h_{1}(\mathbf{k})=h_{2}(\mathbf{k})=h_{3}(\mathbf{k})=0 are marked as light-pink and light-blue points. (b) On 2D plane of kz=0k_{z}=0, the first-order topological charge 𝒞1(1)\mathcal{C}^{(1)}_{1} in the region h0(𝐤)<0h_{0}(\mathbf{k})<0 (light-red region) gives the 3D winding number ν3=𝒞1(1)=3\nu_{3}=\mathcal{C}^{(1)}_{1}=3, where the pseudospin textures in the normalized dynamic field present that the charge value of each first-order topological charge are |𝒞n=1,2,,8(1)|=3|\mathcal{C}^{(1)}_{n=1,2,\cdots,8}|=3. (c) The second-order BISs 2\mathcal{B}_{2} present ring-shape curves (gray curves) on first-order BISs 1\mathcal{B}_{1} and the third-order BISs 3\mathcal{B}_{3} present two points (green points) on the second-order BISs 2\mathcal{B}_{2}, which are identified by the vanishing polarization γ0(𝐤)1,2=0\langle\gamma_{0}(\mathbf{k})\rangle_{1,2}=0. Six third-order topological charges (red and blue points) with |𝒞n=1,2,,6(3)|=1|\mathcal{C}^{(3)}_{n=1,2,\cdots,6}|=1 are determined by h3(𝐤~)=0h_{3}(\tilde{\mathbf{k}})=0 (green curve). (d) On 2D plane of kz=0k_{z}=0, the summation of third-order topological charges in the region h2(𝐤~)<0h_{2}(\tilde{\mathbf{k}})<0 (light-red region) gives the 3D winding number ν3=𝒞1(3)+𝒞3(3)+𝒞5(3)=3\nu_{3}=\mathcal{C}^{(3)}_{1}+\mathcal{C}^{(3)}_{3}+\mathcal{C}^{(3)}_{5}=3. (e) The first-order topological charge 𝒞1(1)=3\mathcal{C}^{(1)}_{1}=3 enclosed by 1\mathcal{B}_{1} is equivalent to the sum of three third-order topological charges 𝒞n=1,3,5(3)=1\mathcal{C}^{(3)}_{n=1,3,5}=1 enclosed by 2\mathcal{B}_{2}. The sum of remaining first-order topological charges 𝒞n=2,,8(1)\mathcal{C}^{(1)}_{n=2,\cdots,8} is equivalent to the sum of three third-order topological charges 𝒞n=2,4,6(3)=1\mathcal{C}^{(3)}_{n=2,4,6}=-1. Here the other parameter is tso=t0t_{\text{so}}=t_{0}.

IV Decomposition of high integer-valued topological charges

For a monopole charge without linear dispersion, the charge value is larger than one and the system has a high-valued winding or Chern number. If detecting the topological charges with high charge value to identify the topological phases, it is cumbersome for the measurements of the continuous charge-related (pseudo)spin texture. Nevertheless, we can avoid these redundant measurements by reducing the high integer-valued topological charges to multiple highest-order topological charges with unit charge value. This essential advantage of the highest-order topological charge greatly simplifies topological characterization, especially for high-dimensional systems. Next we use two extended models to illustrate this point.

We first extend the 2D QAH model as follows:

2D(𝐤)=h0σz+h1σy+h2σx,h0=m0t0(coskx+cosky),h1=m1+tso[(sinkx+𝕚sinky)p],h2=m2+tso[(sinkx+𝕚sinky)p],\begin{split}&\mathcal{H}_{\text{2D}}(\mathbf{k})=h_{0}\sigma_{z}+h_{1}\sigma_{y}+h_{2}\sigma_{x},\\ &h_{0}=m_{0}-t_{0}(\cos k_{x}+\cos k_{y}),\\ &h_{1}=m_{1}+t_{\text{so}}\Im[(\sin k_{x}+\mathbbm{i}\sin k_{y})^{p}],\\ &h_{2}=m_{2}+t_{\text{so}}\Re[(\sin k_{x}+\mathbbm{i}\sin k_{y})^{p}],\\ \end{split} (12)

with positive integer pp. For m1=m2=0m_{1}=m_{2}=0, the topological phase corresponds to 0<|m0|<2t00<|m_{0}|<2t_{0} with Ch1=p×sgn(m0)\text{Ch}_{1}=-p\times\text{sgn}(m_{0}), but the trivial phase is still for |m0|2t0|m_{0}|\geqslant 2t_{0}. By quenching the system with p=2p=2 in the same parameters as 2D QAH model, a ring-shape structure is identified as the first-order BIS 1\mathcal{B}_{1} from the vanishing polarization σz(𝐤)¯z=0\overline{\langle\sigma_{z}(\mathbf{k})\rangle}_{z}=0 [see Fig. 4(a)]. Further, four first-order topological charges 𝒞n=1,2,3,4(1)\mathcal{C}^{(1)}_{n=1,2,3,4} with high charge value |𝒞n(1)|=2|\mathcal{C}^{(1)}_{n}|=2 are given by σz(𝐤)¯y=σz(𝐤)¯x=0\overline{\langle\sigma_{z}(\mathbf{k})\rangle}_{y}=\overline{\langle\sigma_{z}(\mathbf{k})\rangle}_{x}=0 [see Fig. 4(b)]. Thus the bulk topology is determined by the summation of the first-order topological charges enclosed by the first-order BIS 1\mathcal{B}_{1}, i.e. Ch1=𝒞2(1)=2\text{Ch}_{1}=\mathcal{C}^{(1)}_{2}=-2 [see Fig. 4(d)].

After taking 𝐡so(1)(𝐤~)=h2\mathbf{h}^{(1)}_{\text{so}}(\tilde{\mathbf{k}})=h_{2} for the dimension reduction, we observe the second-order BISs 2\mathcal{B}_{2} from the vanishing polarization σz(𝐤)¯y=0\overline{\langle\sigma_{z}(\mathbf{k})\rangle}_{y}=0, which is confined on the first-order BIS 1\mathcal{B}_{1} [see Fig. 4(b)]. Correspondingly, four second-order topological charges 𝒞n=1,2,3,4(2)\mathcal{C}^{(2)}_{n=1,2,3,4} are obtained by the vanishing polarization σz(𝐤)¯x=0\overline{\langle\sigma_{z}(\mathbf{k})\rangle}_{x}=0 [see Fig. 4(c)]. We emphasize that now each second-order topological charge has unit charge value |𝒞n(2)|=1|\mathcal{C}^{(2)}_{n}|=1, and then the bulk topology is calculated by the summation of second-order topological charges enclosed by the second-order BISs 2\mathcal{B}_{2}, i.e. Ch1=𝒞1(2)+𝒞3(2)=11=2\text{Ch}_{1}=\mathcal{C}^{(2)}_{1}+\mathcal{C}^{(2)}_{3}=-1-1=-2 [see Fig. 4(e)]. One can find that a first-order topological charge 𝒞2(1)\mathcal{C}^{(1)}_{2} is separated into two second-order topological charges 𝒞n=1,3(2)\mathcal{C}^{(2)}_{n=1,3} with unit negative charge by dimension reduction, and the total contribution of the remaining first-order topological charges 𝒞n=1,3,4(1)\mathcal{C}^{(1)}_{n=1,3,4} is equivalent to two second-order topological charges 𝒞n=2,4(2)\mathcal{C}^{(2)}_{n=2,4} with unit positive charge [see Fig. 4(f)]. The 2D topology with high integer-valued Ch1=2\text{Ch}_{1}=2 is transformed to 0D topology given by the summation of two 0th Chern numbers with Ch0=1\text{Ch}_{0}=1, i.e. Ch12Ch0\text{Ch}_{1}\rightarrowtail 2\text{Ch}_{0}.

Similarly, we extend the 3D chiral topological insulator model as the following case,

3D(𝐤)\displaystyle\mathcal{H}_{\text{3D}}(\mathbf{k}) =h0σzτx+h1σx𝟙+h2σy𝟙+h3σzτz,\displaystyle=h_{0}\sigma_{z}\otimes\tau_{x}+h_{1}\sigma_{x}\otimes\mathbbm{1}+h_{2}\sigma_{y}\otimes\mathbbm{1}+h_{3}\sigma_{z}\otimes\tau_{z},
h0=m0t0(coskx+cosky+coskz),\displaystyle h_{0}=m_{0}-t_{0}(\cos k_{x}+\cos k_{y}+\cos k_{z}),
h1=m1+tso(sin3kx3sinkxsin2ky),\displaystyle h_{1}=m_{1}+t_{\text{so}}(\sin^{3}k_{x}-3\sin k_{x}\sin^{2}k_{y}),
h2=m2+tso(3sinkysin2kxsin3ky),\displaystyle h_{2}=m_{2}+t_{\text{so}}(3\sin k_{y}\sin^{2}k_{x}-\sin^{3}k_{y}),
h3=m3+tsosin3kz.\displaystyle h_{3}=m_{3}+t_{\text{so}}\sin^{3}k_{z}. (13)

For m1=m2=m3=0m_{1}=m_{2}=m_{3}=0, the topological phases are classified by: (i) t0<m0<3t0t_{0}<m_{0}<3t_{0} with ν3=3\nu_{3}=3; (ii) t0<m0<t0-t_{0}<m_{0}<t_{0} with ν3=6\nu_{3}=-6; and (iii) 3t0<m0<t0-3t_{0}<m_{0}<-t_{0} with ν3=3\nu_{3}=3. By taking the quenched parameters as the same as 3D chiral topological insulator model, eight first-order topological charges with high charge value |𝒞n=1,2,,8(1)|=3|\mathcal{C}^{(1)}_{n=1,2,\cdots,8}|=3 and a spherical-like first-order BIS 1\mathcal{B}_{1} [see Figs. 5(a) and 5(b)] can be observed by vanishing polarization of γ0(𝐤)0,1,2,3\langle\gamma_{0}(\mathbf{k})\rangle_{0,1,2,3} when taking 𝐡so(0)(𝐤)=(h1,h2,h3)\mathbf{h}^{(0)}_{\text{so}}(\mathbf{k})=(h_{1},h_{2},h_{3}). Thus the bulk topology is determined by the summation of first-order topological charges enclosed by the first-order BISs 1\mathcal{B}_{1}, i.e. ν3=𝒞1(1)=3\nu_{3}=\mathcal{C}^{(1)}_{1}=3.

After taking 𝐡so(2)(𝐤~)=h3\mathbf{h}^{(2)}_{\text{so}}(\tilde{\mathbf{k}})=h_{3} for the dimension reduction, six third-order topological charges 𝒞n=1,2,,6(3)\mathcal{C}^{(3)}_{n=1,2,\cdots,6} sit on the second-order BISs 2\mathcal{B}_{2} [see Fig. 5(c)]. Each third-order topological charge has unit charge value |𝒞n=1,2,,6(3)|=1|\mathcal{C}^{(3)}_{n=1,2,\cdots,6}|=1, and then the bulk topology is given by the summation of third-order topological charges enclosed by the third-order BISs 3\mathcal{B}_{3}, i.e. ν3=𝒞1(3)+𝒞3(3)+𝒞5(3)=3\nu_{3}=\mathcal{C}^{(3)}_{1}+\mathcal{C}^{(3)}_{3}+\mathcal{C}^{(3)}_{5}=3 [see Fig. 5(d)]. Similarly, a first-order topological charge 𝒞1(1)\mathcal{C}^{(1)}_{1} is separated into three third-order topological charges 𝒞n=1,3,5(3)\mathcal{C}^{(3)}_{n=1,3,5} with unit positive charge, and the total contribution of the remaining first-order topological charges 𝒞n=2,,8(1)\mathcal{C}^{(1)}_{n=2,\cdots,8} is equivalent to the summation of three third-order topological charges 𝒞n=2,4,6(3)\mathcal{C}^{(3)}_{n=2,4,6} with unit negative charge [see Fig. 5(e)]. Thus a high integer-valued 33D winding number with ν3=3\nu_{3}=3 is transformed to the sum of three 0th Chern numbers, i.e. ν33Ch0\nu_{3}\rightarrowtail 3\text{Ch}_{0}.

The above results strongly demonstrate the advantages of the highest-order topological charge in characterization of topological phases. Although the definition of topological charge depends on the selection of the hh-components, choosing a different hh-component to define the highest-order topological charge will not change the essence of its unit charge value, which is different from the first-order topological charge. Therefore, for a more general system, we only need to measure the properties of the highest-order topological charge to determine the bulk topology.

V Conclusion and discussion

In conclusion, we have proposed a new dynamical scheme to characterize the equilibrium topological phases based on the high-order topological charges, which correspond to monopoles confined in low dimensional subspaces. Through a dimensional reduction approach for a ddD bulk Hamiltonian, the topology of the ddD system can be determined by the arbitrary ssth order topological charges enclosed by the ssth-order BISs. In quenching the system from a trivial phase to a topologically nontrivial regime, both the high-order BISs and the high-order topological charges are directly observed by the quench induced (pseudo)spin dynamics, for which the topological phases of post-quench Hamiltonian can be detected dynamically.

The high-order topological charges have essential advantages in characterizing topological phases due to their intrinsic features. We compare the first-order and highest-order topological charges. For the first-order topological charge with unit or high charge value, as defined in ddD momentum space, its characterization generically necessitates to measure the continuous charge-related (pseudo)spin texture in ddD space. In comparison, the highest-order topological charges are defined in the zero dimension, and are characterized by the discrete signs of spin-polarization in zero dimension. This intrinsic feature determines that the charge value of a highest-order topological charge only takes 𝒞(d)=±1\mathcal{C}^{(d)}=\pm 1. Accordingly, a high integer-valued lower-order topological charge can always reduce to multiple highest-order topological charges with unit charge value, which can be easily measured in experiment, hence simplifying the characterization and detection of topological phases.

ACKNOWLEDGEMENT

This work was supported by National Natural Science Foundation of China (Grants No. 11761161003, No. 11825401, and No. 11921005), the National Key R& D Program of China (Project No. 2016YFA0301604), Strategic Priority Research Program of the Chinese Academy of Science (Grant No. XDB28000000), and by the Open Project of Shenzhen Institute of Quantum Science and Engineering (Grant No.SIQSE202003).

Appendix A Deep quench process

In quenching the axis γi\gamma_{i}, we initialize a fully polarized state ρi(0)\rho_{i}(0) along the opposite γi\gamma_{i} axis by introducing a very large constant magnetization mim_{i} such that hi(𝐤)mi0h_{i}(\mathbf{k})\approx m_{i}\gg 0 for t<0t<0. After t=0t=0, the magnetization mim_{i} is suddenly tuned to the topological regime, and the momentum-linked (pseudo)spin expectation 𝜸(𝐤,t)\langle\boldsymbol{\gamma}(\mathbf{k},t)\rangle will process around 𝐡(𝐤)\mathbf{h}(\mathbf{k}). The quantum dynamics is governed by the unitary evolution operator 𝒰(t)=exp(𝕚t)\mathcal{U}(t)=\text{exp}(-\mathbbm{i}\mathcal{H}t) with the post-quenched Hamiltonian (𝐤)\mathcal{H}(\mathbf{k}). We can measure the time-averaged (pseudo)spin polarization (TASP) of the component γ0\gamma_{0},

γ0(𝐤)¯i\displaystyle\overline{\langle\gamma_{0}(\mathbf{k})\rangle}_{i} limT1T0TdtTr[ρi(0)ei(𝐤)tγ0ei(𝐤)t]\displaystyle\equiv\lim_{T\to\infty}\frac{1}{T}\int_{0}^{T}\mathrm{d}t\,\mathrm{Tr}[\rho_{i}(0)e^{\mathrm{i}\mathcal{H}(\mathbf{k})t}\gamma_{0}e^{-\mathrm{i}\mathcal{H}(\mathbf{k})t}]
=h0(𝐤)hi(𝐤)/E2(𝐤),\displaystyle=-h_{0}(\mathbf{k})h_{i}(\mathbf{k})/E^{2}(\mathbf{k}), (14)

where E(𝐤)=i=0dhi2E(\mathbf{k})=\sqrt{\sum^{d}_{i=0}h^{2}_{i}} is the energy of the post-quenched Hamiltonian.

Appendix B Minimal measurement scheme

We provide a minimal dynamical scheme for the topological systems, in which the bulk topology is determined by the ddth-order topological charges 𝒞n(d)\mathcal{C}_{n}^{(d)} enclosed by the 0D ddth-order BISs d\mathcal{B}_{d}. This scheme greatly simplifies the characterization of bulk topological phases, especially for d3d\geqslant 3. We consider the topological systems with at least one plane-type component, say hd2h_{d-2}, which means that the momenta satisfying hd2(𝐤)=0h_{d-2}(\mathbf{k})=0 form planes. Note that both the ddth-order topological charges and the ddth-order BISs sit on the 11D (d1)(d-1)th-order BISs d1\mathcal{B}_{d-1} consisting of momenta with h0=h1==hd2=0h_{0}=h_{1}=\cdots=h_{d-2}=0. Since hd2h_{d-2} is plane-type, the (d1)(d-1)th-order BISs d1\mathcal{B}_{d-1} also belong to the plane determined by hd2=0h_{d-2}=0. With these observations, to identify the ddth-order topological charges and the corresponding BISs, we can first extract the planes specified by hd2h_{d-2} from the TASP γ0(𝐤)¯d2\overline{\langle\gamma_{0}(\mathbf{k})\rangle}_{d-2} with vanishing values. On these planes, γ0(𝐤)¯0=γ0(𝐤)¯1==γ0(𝐤)¯d3=0\overline{\langle\gamma_{0}(\mathbf{k})\rangle}_{0}=\overline{\langle\gamma_{0}(\mathbf{k})\rangle}_{1}=\cdots=\overline{\langle\gamma_{0}(\mathbf{k})\rangle}_{d-3}=0 further determine the (d1)(d-1)th order BISs d1\mathcal{B}_{d-1}. Finally, the ddth-order BISs d\mathcal{B}_{d} and the ddth-order topological charges shall be found by observing γ0(𝐤)¯d1=0\overline{\langle\gamma_{0}(\mathbf{k})\rangle}_{d-1}=0 and γ0(𝐤)¯d=0\overline{\langle\gamma_{0}(\mathbf{k})\rangle}_{d}=0 in the (d1)(d-1)th BISs.

Refer to caption
Figure 6: Dynamical characterization of 2D QAH model. (a)-(c) The TASP σy(𝐤)¯y\overline{\langle\sigma_{y}(\mathbf{k})\rangle}_{y} and σx(𝐤)¯x,z\overline{\langle\sigma_{x}(\mathbf{k})\rangle}_{x,z}, where the vanishing polarization marked as the black, red, and blue dashed line presents the interface with h0,1,2(𝐤)=0h_{0,1,2}(\mathbf{k})=0, respectively. The first-order BISs 1\mathcal{B}_{1} (two black dashed line) are identified by σy(𝐤)¯y=0\overline{\langle\sigma_{y}(\mathbf{k})\rangle}_{y}=0 in (a). The second-order BISs 2\mathcal{B}_{2} are four points (green) at (π,π)(-\pi,-\pi), (π,0)(-\pi,0), (0,π)(0,-\pi), and (0,0)(0,0), which are given by σx(𝐤)¯x=0\overline{\langle\sigma_{x}(\mathbf{k})\rangle}_{x}=0 on the first-order BISs 1\mathcal{B}_{1} in (b). The second-order topological charges 𝒞1(2)\mathcal{C}_{1}^{(2)} and 𝒞2(2)\mathcal{C}_{2}^{(2)} at (π/2,π)(-\pi/2,-\pi) and (π/2,π)(\pi/2,-\pi) are determined by h2(𝐤~)=0h_{2}(\tilde{\mathbf{k}})=0 of σx(𝐤)¯z\overline{\langle\sigma_{x}(\mathbf{k})\rangle}_{z} on the first-order BISs 1\mathcal{B}_{1} in (c). (d) The normalized dynamic field in σ~z\tilde{\sigma}_{z} spin subspace characterize the properties of the topological charges, where 𝒞1(2)=1\mathcal{C}_{1}^{(2)}=1 in the region h1(𝐤~)<0h_{1}(\tilde{\mathbf{k}})<0 (light-red thick-solid curves) is enclosed by the second-order BISs 2\mathcal{B}_{2} and gives the Chern number Ch1=𝒞1(2)=1\text{Ch}_{1}=\mathcal{C}_{1}^{(2)}=1. Here the other parameter is tso=t0t_{\text{so}}=t_{0}.
Refer to caption
Figure 7: Dynamical characterization of 3D chiral topological insulator. (a-d) TASP via quenching (m0,m1,m2,m3)(m_{0},m_{1},m_{2},m_{3}), where two planes (orange surface) of ky=0k_{y}=0 and ky=πk_{y}=-\pi present γ0(𝐤)¯0=0\overline{\langle\gamma_{0}(\mathbf{k})\rangle}_{0}=0 which are identified the first-order BISs 1\mathcal{B}_{1} with h0(𝐤)=0h_{0}(\mathbf{k})=0 in (a). Four lines of γ1(𝐤)¯1=0\overline{\langle\gamma_{1}(\mathbf{k})\rangle}_{1}=0 on the first-order BISs 1\mathcal{B}_{1} at kx=0k_{x}=0 and kx=πk_{x}=-\pi are the second-order BISs 2\mathcal{B}_{2} (orange lines) in (b). The third-order BISs 3\mathcal{B}_{3} present eight points given by γ2(𝐤)¯2=0\overline{\langle\gamma_{2}(\mathbf{k})\rangle}_{2}=0 on the second-order BISs 2\mathcal{B}_{2} (orange points) in (c). Two third-order topological charges 𝒞1(3)\mathcal{C}_{1}^{(3)} (red point) and 𝒞2(3)\mathcal{C}_{2}^{(3)} (blue point) at (kx,ky,kz)=(0,0,2π/3)(k_{x},k_{y},k_{z})=(0,0,-2\pi/3) and (0,0,2π/3)(0,0,2\pi/3) are determined by h3(𝐤~)=0h_{3}(\tilde{\mathbf{k}})=0 of γ2(𝐤)¯3\overline{\langle\gamma_{2}(\mathbf{k})\rangle}_{3} on the second-order BISs 2\mathcal{B}_{2} in(d), which gives ν3=𝒞1(3)=1\nu_{3}=\mathcal{C}_{1}^{(3)}=1. (e-h) Minimal measurement for the TASP in kx=0k_{x}=0, where γ0(𝐤)¯0\overline{\langle\gamma_{0}(\mathbf{k})\rangle}_{0}, γ2(𝐤)¯2\overline{\langle\gamma_{2}(\mathbf{k})\rangle}_{2}, and γ2(𝐤)¯3\overline{\langle\gamma_{2}(\mathbf{k})\rangle}_{3} in (e), (f), and (g). The vanishing polarization marked as the black, blue and green dashed line presents the interface with h0(1),2,3(𝐤)=0h_{0(1),2,3}(\mathbf{k})=0, respectively. The normalized dynamic field characterizes the properties of the third-order topological charges in (h), where 𝒞1(3)=1\mathcal{C}_{1}^{(3)}=1 in the region h2(𝐤~)<0h_{2}(\tilde{\mathbf{k}})<0 (light-red thick-solid curves) is enclosed by 3\mathcal{B}_{3} and gives the winding number ν3=1\nu_{3}=1. Here the other parameter is tso=t0t_{\text{so}}=t_{0}.

Appendix C Another dynamical characterization scheme

We provide another dynamical characterization scheme by quenching all (pseudo)spin axes and measuring multiple (pseudo)spin axis. On the other hand, we notice that the configurations of the high-order BISs and high-order topological charges are sharply different if choosing different components (hih_{i}) of the Hamiltonian for definition. Here we take the different hh-components to define the high-order topological charges compared with the previous results.

We quench ss axes and measure the same axes for determination of ssth-order high-order BISs through TASP,

s={𝐤BZ|γ0¯0==γs1¯s1=0},\mathcal{B}_{s}={\{\mathbf{k}\in\mathrm{BZ}|\overline{\langle\gamma_{0}\rangle}_{0}=\cdots=\overline{\langle\gamma_{s-1}\rangle}_{s-1}=0\}}, (15)

and then the ssth-order topological charges are identified by quenching the remaining axes and only measuring the γs1\gamma_{s-1} component, i.e. γs1(𝐤)¯j\overline{\langle\gamma_{s-1}(\mathbf{k})\rangle}_{j} with j=s,s+1,,dj=s,s+1,\cdots,d. We further define

Θj(𝐤~)lim𝐤𝐤~sgn[hs1(𝐤)]𝒩𝐤γs1(𝐤)¯j\Theta_{j}(\tilde{\mathbf{k}})\equiv-\lim_{\mathbf{k}\to\tilde{{\mathbf{k}}}}\frac{\text{sgn}[h_{s-1}({\mathbf{k}})]}{\mathcal{N}_{{\mathbf{k}}}}\overline{\langle\gamma_{s-1}(\mathbf{k})\rangle}_{j} (16)

in (pseudo)spin subspace with the coordinate system γ~s-γ~s+1--γ~d\tilde{\gamma}_{s}\text{-}\tilde{\gamma}_{s+1}\text{-}\cdots\text{-}\tilde{\gamma}_{d}, where 𝒩𝐤~\mathcal{N}_{\tilde{\mathbf{k}}} is a normalization factor. Near the monopole charge, the dynamic field satisfies Θj(𝐤~)|𝐤~𝔤n=hso,j(s1)(𝐤~)\Theta_{j}(\tilde{\mathbf{k}})|_{\tilde{\mathbf{k}}\rightarrow\mathfrak{g}_{n}}=h^{(s-1)}_{\text{so},j}(\tilde{\mathbf{k}}), thus the high-order topological charge is determined directly by 𝒞n(s)=sgn[J𝚯(𝔤n)]\mathcal{C}^{(s)}_{n}=\text{sgn}[J_{\boldsymbol{\Theta}}(\mathfrak{g}_{n})] in the linear case. Note that the above dynamical characterization scheme is same with that in previous results for the determination of first-order topological charges. We next numerically examine the 2D QAH model and 3D chiral topological insulator model, and only consider the highest-order cases.

For 2D QAH model 2D(𝐤)=hx(𝐤)σx+hy(𝐤)σy+hz(𝐤)σz\mathcal{H}_{\text{2D}}(\mathbf{k})=h_{x}(\mathbf{k})\sigma_{x}+h_{y}(\mathbf{k})\sigma_{y}+h_{z}(\mathbf{k})\sigma_{z}, we reselect

h0=hy=my+tsosinky,h1=hx=mx+tsosinkx,h2=hz=mzt0coskxt0cosky.\begin{split}&h_{0}=h_{y}=m_{y}+t_{\text{so}}\sin k_{y},\\ &h_{1}=h_{x}=m_{x}+t_{\text{so}}\sin k_{x},\\ h_{2}=&h_{z}=m_{z}-t_{0}\cos k_{x}-t_{0}\cos k_{y}.\\ \end{split} (17)

By quenching (my,mx,mz)(m_{y},m_{x},m_{z}) from (30t0,0,0)(30t_{0},0,0) to (0,0,t0)(0,0,-t_{0}) for hyh_{y} and measuring the spin polarization of γy\gamma_{y}-component, the TASP σy(𝐤)¯y\overline{\langle\sigma_{y}(\mathbf{k})\rangle}_{y} is obtained. We observe that the first-order BISs 1\mathcal{B}_{1} are identified by σy(𝐤)¯y=0\overline{\langle\sigma_{y}(\mathbf{k})\rangle}_{y}=0, which are two lines in Fig. 6(a). Further, we quench the (my,mx,mz)(m_{y},m_{x},m_{z}) of system from (0,30t0,0)(0,30t_{0},0) to (0,0,t0)(0,0,-t_{0}) for hxh_{x} and from (0,0,30t0)(0,0,30t_{0}) to (0,0,t0)(0,0,-t_{0}) for hzh_{z}. After only measuring the spin polarization of γx\gamma_{x}-component, the TASP σx(𝐤)¯x,z\overline{\langle\sigma_{x}(\mathbf{k})\rangle}_{x,z} are obtained. We observe that the second-order BISs 2\mathcal{B}_{2} present four points at (π,π)(-\pi,-\pi), (π,0)(-\pi,0), (0,π)(0,-\pi), and (0,0)(0,0), which are given by σx(𝐤)¯x=0\overline{\langle\sigma_{x}(\mathbf{k})\rangle}_{x}=0 on the first-order BISs 1\mathcal{B}_{1} in Fig. 6(b). Finally, two second-order topological charges 𝒞1(2)\mathcal{C}_{1}^{(2)} and 𝒞2(2)\mathcal{C}_{2}^{(2)} at (π/2,π)(-\pi/2,-\pi) and (π/2,π)(\pi/2,-\pi) are determined by h2(𝐤~)=0h_{2}(\tilde{\mathbf{k}})=0 of σx(𝐤)¯z\overline{\langle\sigma_{x}(\mathbf{k})\rangle}_{z} on the first-order BISs 1\mathcal{B}_{1}, as shown in Fig. 6(c). The bulk topology is determined by 𝒞1(2)=1\mathcal{C}_{1}^{(2)}=1 enclosed by the second-order BISs 2\mathcal{B}_{2}, i.e. Ch1=𝒞1(2)=1\text{Ch}_{1}=\mathcal{C}_{1}^{(2)}=1.

We further consider the 3D chiral topological insulator model 3D(𝐤)=i=03hi(𝐤)γi\mathcal{H}_{\text{3D}}(\mathbf{k})=\sum^{3}_{i=0}h_{i}(\mathbf{k})\gamma_{i} and reselect the component hih_{i} as follows:

h0=m2+tsosinky,h1=m1+tsosinkx,h2=m3+tsosinkz,h3=m0t0(coskx+cosky+coskz),\begin{split}&h_{0}=m_{2}+t_{\text{so}}\sin k_{y},\\ &h_{1}=m_{1}+t_{\text{so}}\sin k_{x},\\ &h_{2}=m_{3}+t_{\text{so}}\sin k_{z},\\ h_{3}=&m_{0}-t_{0}(\cos k_{x}+\cos k_{y}+\cos k_{z}),\\ \end{split} (18)

where the 𝜸\boldsymbol{\gamma} matrices are taken as γ0=σy𝟙\gamma_{0}=\sigma_{y}\otimes\mathbbm{1}, γ1=σx𝟙\gamma_{1}=\sigma_{x}\otimes\mathbbm{1}, γ2=σzτz\gamma_{2}=\sigma_{z}\otimes\tau_{z}, and γ3=σzτx\gamma_{3}=\sigma_{z}\otimes\tau_{x}. When the quench is firstly performed by suddenly varying (m0,m1,m2,m3)(m_{0},m_{1},m_{2},m_{3}) from (0,0,30t0,0)(0,0,30t_{0},0) to (1.5t0,0,0,0)(1.5t_{0},0,0,0) for h0h_{0} and then the pseudospin polarization of γ0\gamma_{0}-component is measured, we observe that the first-order BISs 1\mathcal{B}_{1} are identified by γ0(𝐤)¯0=0\overline{\langle\gamma_{0}(\mathbf{k})\rangle}_{0}=0, which are two planes of ky=0k_{y}=0 and ky=πk_{y}=-\pi, as shown in Fig. 7(a). Secondly, we quench (m0,m1,m2,m3)(m_{0},m_{1},m_{2},m_{3}) from (0,30t0,0,0)(0,30t_{0},0,0) to (1.5t0,0,0,0)(1.5t_{0},0,0,0) for h1h_{1} and measure the pseudospin polarization of γ1\gamma_{1}-component, the second-order BISs 2\mathcal{B}_{2} are identified by γ1(𝐤)¯1=0\overline{\langle\gamma_{1}(\mathbf{k})\rangle}_{1}=0, which are four lines on the first-order BISs 1\mathcal{B}_{1} at kx=0k_{x}=0 and kx=πk_{x}=-\pi, as shown in Fig. 7(b). Thirdly, we quench (m0,m1,m2,m3)(m_{0},m_{1},m_{2},m_{3}) from (0,0,0,30t0)(0,0,0,30t_{0}) to (1.5t0,0,0,0)(1.5t_{0},0,0,0) for h2h_{2} and from (0,0,0,0)(0,0,0,0) to (1.5t0,0,0,0)(1.5t_{0},0,0,0) for h3h_{3}. By only measuring the pseudospin polarization of γ2\gamma_{2}-component, the TASP γ2(𝐤)¯2,3\overline{\langle\gamma_{2}(\mathbf{k})\rangle}_{2,3} are obtained. We observe that the third-order BISs 3\mathcal{B}_{3} present eight points given by γ2(𝐤)¯2=0\overline{\langle\gamma_{2}(\mathbf{k})\rangle}_{2}=0 on the second-order BISs 2\mathcal{B}_{2}, as shown in Fig. 7(c). Finally, two third-order topological charges 𝒞1(3)\mathcal{C}_{1}^{(3)} and 𝒞2(3)\mathcal{C}_{2}^{(3)} at (kx,ky,kz)=(0,0,2π/3)(k_{x},k_{y},k_{z})=(0,0,-2\pi/3) and (0,0,2π/3)(0,0,2\pi/3) are determined by h3(𝐤~)=0h_{3}(\tilde{\mathbf{k}})=0 of γ2(𝐤)¯3\overline{\langle\gamma_{2}(\mathbf{k})\rangle}_{3} on the second-order BISs 2\mathcal{B}_{2}, as shown in Fig. 7(d). Thus the bulk topology is determined by 𝒞1(3)=1\mathcal{C}_{1}^{(3)}=1 enclosed by the third-order BISs 3\mathcal{B}_{3}, i.e. ν3=𝒞1(3)=1\nu_{3}=\mathcal{C}_{1}^{(3)}=1.

Besides, we also give the 2D measurement to determine the bulk topology based on the minimal scheme of Appendix B. For this 3D model, the second-order BISs 2\mathcal{B}_{2} must be on 2D planes. One can measure the TASP γ1(𝐤)¯1\overline{\langle\gamma_{1}(\mathbf{k})\rangle}_{1} on 2D planes after quench, then γ1(𝐤)¯1=0\overline{\langle\gamma_{1}(\mathbf{k})\rangle}_{1}=0 is for all 𝐤\mathbf{k} on 2D planes of kx=0k_{x}=0 and kx=πk_{x}=-\pi. Therefore, the third-order BISs 3\mathcal{B}_{3} and the corresponding third-order topological charges are obtained by the TASP γ0(𝐤)¯0\overline{\langle\gamma_{0}(\mathbf{k})\rangle}_{0} and γ2(𝐤)¯2,3\overline{\langle\gamma_{2}(\mathbf{k})\rangle}_{2,3}, as shown in Figs. 7(e-g). The bulk topology is characterized by 𝒞1(3)=1\mathcal{C}_{1}^{(3)}=1, as shown in Fig. 7(h).

References

  • Klitzing et al. (1980) K. v. Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45, 494 (1980).
  • Tsui et al. (1982) D. C. Tsui, H. L. Stormer, and A. C. Gossard, Phys. Rev. Lett. 48, 1559 (1982).
  • Hasan and Kane (2010) M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
  • Qi and Zhang (2011) X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
  • Elliott and Franz (2015) S. R. Elliott and M. Franz, Rev. Mod. Phys. 87, 137 (2015).
  • Wen (2017) X.-G. Wen, Rev. Mod. Phys. 89, 041004 (2017).
  • Kosterlitz (2017) J. M. Kosterlitz, Rev. Mod. Phys. 89, 040501 (2017).
  • Greiner et al. (2002) M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002).
  • Bloch et al. (2008) I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885 (2008).
  • Miyake et al. (2013) H. Miyake, G. A. Siviloglou, C. J. Kennedy, W. C. Burton, and W. Ketterle, Phys. Rev. Lett. 111, 185302 (2013).
  • Atala et al. (2013) M. Atala, M. Aidelsburger, J. T. Barreiro, D. Abanin, T. Kitagawa, E. Demler, and I. Bloch, Nat. Phys. 9, 795 (2013).
  • Aidelsburger et al. (2013) M. Aidelsburger, M. Atala, M. Lohse, J. T. Barreiro, B. Paredes, and I. Bloch, Phys. Rev. Lett. 111, 185301 (2013).
  • Liu et al. (2014) X.-J. Liu, K. Law, and T. Ng, Phys. Rev. Lett. 112, 086401 (2014).
  • Jotzu et al. (2014) G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger, D. Greif, and T. Esslinger, Nature 515, 237 (2014).
  • Aidelsburger et al. (2015) M. Aidelsburger, M. Lohse, C. Schweizer, M. Atala, J. T. Barreiro, S. Nascimbène, N. Cooper, I. Bloch, and N. Goldman, Nat. Phys. 11, 162 (2015).
  • Wu et al. (2016) Z. Wu, L. Zhang, W. Sun, X.-T. Xu, B.-Z. Wang, S.-C. Ji, Y. Deng, S. Chen, X.-J. Liu, and J.-W. Pan, Science 354, 83 (2016).
  • Goldman et al. (2016) N. Goldman, J. C. Budich, and P. Zoller, Nat. Phys. 12, 639 (2016).
  • Lohse et al. (2018) M. Lohse, C. Schweizer, H. M. Price, O. Zilberberg, and I. Bloch, Nature 553, 55 (2018).
  • Song et al. (2018) B. Song, L. Zhang, C. He, T. F. J. Poon, E. Hajiyev, S. Zhang, X.-J. Liu, and G.-B. Jo, Sci. Adv. 4, eaao4748 (2018).
  • Verbin et al. (2013) M. Verbin, O. Zilberberg, Y. E. Kraus, Y. Lahini, and Y. Silberberg, Phys. Rev. Lett. 110, 076403 (2013).
  • Lu et al. (2016) L. Lu, J. D. Joannopoulos, and M. Soljačić, Nat. Phys. 12, 626 (2016).
  • Mittal et al. (2019) S. Mittal, V. V. Orre, G. Zhu, M. A. Gorlach, A. Poddubny, and M. Hafezi, Nat. Photonics 13, 692 (2019).
  • König et al. (2007) M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W. Molenkamp, X.-L. Qi, and S.-C. Zhang, Science 318, 766 (2007).
  • Hsieh et al. (2008) D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nature 452, 970 (2008).
  • Xia et al. (2009) Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, et al., Nat. Phys. 5, 398 (2009).
  • Fu et al. (2007) L. Fu, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 98, 106803 (2007).
  • Fu and Kane (2007) L. Fu and C. L. Kane, Phys. Rev. B 76, 045302 (2007).
  • Fu (2011) L. Fu, Phys. Rev. Lett. 106, 106802 (2011).
  • Chang et al. (2013) C.-Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, K. Li, Y. Ou, P. Wei, L.-L. Wang, et al., Science 340, 167 (2013).
  • Burkov and Balents (2011) A. Burkov and L. Balents, Phys. Rev. Lett. 107, 127205 (2011).
  • Young et al. (2012) S. M. Young, S. Zaheer, J. C. Teo, C. L. Kane, E. J. Mele, and A. M. Rappe, Phys. Rev. Lett. 108, 140405 (2012).
  • Xu et al. (2015) S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C.-C. Lee, et al., Science 349, 613 (2015).
  • Lv et al. (2015) B. Lv, H. Weng, B. Fu, X. Wang, H. Miao, J. Ma, P. Richard, X. Huang, L. Zhao, G. Chen, et al., Phys. Rev. X 5, 031013 (2015).
  • Qi et al. (2009) X.-L. Qi, T. L. Hughes, S. Raghu, and S.-C. Zhang, Phys. Rev. Lett. 102, 187001 (2009).
  • Bernevig and Hughes (2013) B. A. Bernevig and T. L. Hughes, Topological insulators and topological superconductors (Princeton university press, 2013).
  • Ando and Fu (2015) Y. Ando and L. Fu, Annu. Rev. Condens. Matter Phys. 6, 361 (2015).
  • Sato and Ando (2017) M. Sato and Y. Ando, Rep. Prog. Phys. 80, 076501 (2017).
  • Zhang et al. (2018a) P. Zhang, K. Yaji, T. Hashimoto, Y. Ota, T. Kondo, K. Okazaki, Z. Wang, J. Wen, G. Gu, H. Ding, et al., Science 360, 182 (2018a).
  • Zhang et al. (2018b) L. Zhang, L. Zhang, S. Niu, and X.-J. Liu, Sci. Bull. 63, 1385 (2018b).
  • Zhang et al. (2019a) L. Zhang, L. Zhang, and X.-J. Liu, Phys. Rev. A 100, 063624 (2019a).
  • Sun et al. (2018a) W. Sun, B.-Z. Wang, X.-T. Xu, C.-R. Yi, L. Zhang, Z. Wu, Y. Deng, X.-J. Liu, S. Chen, and J.-W. Pan, Phys. Rev. Lett. 121, 150401 (2018a).
  • Sun et al. (2018b) W. Sun, C.-R. Yi, B.-Z. Wang, W.-W. Zhang, B. C. Sanders, X.-T. Xu, Z.-Y. Wang, J. Schmiedmayer, Y. Deng, X.-J. Liu, et al., Phys. Rev. Lett. 121, 250403 (2018b).
  • Yi et al. (2019) C.-R. Yi, L. Zhang, L. Zhang, R.-H. Jiao, X.-C. Cheng, Z.-Y. Wang, X.-T. Xu, W. Sun, X.-J. Liu, S. Chen, et al., Phys. Rev. Lett. 123, 190603 (2019).
  • Song et al. (2019) B. Song, C. He, S. Niu, L. Zhang, Z. Ren, X.-J. Liu, and G.-B. Jo, Nat. Phys. 15, 911 (2019).
  • (45) Z.-Y. Wang, X.-C. Cheng, B.-Z. Wang, J.-Y. Zhang, Y.-H. Lu, C.-R. Yi, S. Niu, Y. Deng, X.-J. Liu, S. Chen, et al., arXiv:2004.02413.
  • Wang et al. (2019a) Y. Wang, W. Ji, Z. Chai, Y. Guo, M. Wang, X. Ye, P. Yu, L. Zhang, X. Qin, P. Wang, et al., Phys. Rev. A 100, 052328 (2019a).
  • Ji et al. (2020) W. Ji, L. Zhang, M. Wang, L. Zhang, Y. Guo, Z. Chai, X. Rong, F. Shi, X.-J. Liu, Y. Wang, et al., Phys. Rev. Lett. 125, 020504 (2020).
  • Xin et al. (2020) T. Xin, Y. Li, Y.-a. Fan, X. Zhu, Y. Zhang, X. Nie, J. Li, Q. Liu, and D. Lu, Phys. Rev. Lett. 125, 090502 (2020).
  • (49) J. Niu, T. Yan, Y. Zhou, Z. Tao, X. Li, W. Liu, L. Zhang, S. Liu, Z. Yan, Y. Chen, et al., arXiv:2001.03933.
  • (50) L. Zhang, L. Zhang, Y. Hu, S. Niu, and X.-J. Liu, arXiv:1903.09144.
  • Zhou and Gong (2018) L. Zhou and J. Gong, Phys. Rev. B 98, 205417 (2018).
  • Qiu et al. (2019) X. Qiu, T.-S. Deng, Y. Hu, P. Xue, and W. Yi, iScience 20, 392 (2019).
  • Wang et al. (2019b) K. Wang, X. Qiu, L. Xiao, X. Zhan, Z. Bian, W. Yi, and P. Xue, Phys. Rev. Lett. 122, 020501 (2019b).
  • Zhu et al. (2020) B. Zhu, Y. Ke, H. Zhong, and C. Lee, Phys. Rev. Research 2, 023043 (2020).
  • Zhang et al. (2020) L. Zhang, L. Zhang, and X.-J. Liu, Phys. Rev. Lett. 125, 183001 (2020).
  • Hu et al. (2020) H. Hu, B. Huang, E. Zhao, and W. V. Liu, Phys. Rev. Lett. 124, 057001 (2020).
  • Hu and Zhao (2020) H. Hu and E. Zhao, Phys. Rev. Lett. 124, 160402 (2020).
  • Ye and Li (2020) J. Ye and F. Li, Phys. Rev. A 102, 042209 (2020).
  • Caio et al. (2015) M. Caio, N. R. Cooper, and M. Bhaseen, Phys. Rev. Lett. 115, 236403 (2015).
  • Hu et al. (2016) Y. Hu, P. Zoller, and J. C. Budich, Phys. Rev. Lett. 117, 126803 (2016).
  • Wang et al. (2017) C. Wang, P. Zhang, X. Chen, J. Yu, and H. Zhai, Phys. Rev. Lett. 118, 185701 (2017).
  • Fläschner et al. (2018) N. Fläschner, D. Vogel, M. Tarnowski, B. Rem, D.-S. Lühmann, M. Heyl, J. Budich, L. Mathey, K. Sengstock, and C. Weitenberg, Nat. Phys. 14, 265 (2018).
  • Qiu et al. (2018) X. Qiu, T.-S. Deng, G.-C. Guo, and W. Yi, Phys. Rev. A 98, 021601 (2018).
  • McGinley and Cooper (2019) M. McGinley and N. R. Cooper, Phys. Rev. B 99, 075148 (2019).
  • Yang and Chen (2019) C. Yang and S. Chen, Acta Phys. Sin. 68, 220304 (2019).
  • Tian et al. (2019) T. Tian, Y. Ke, L. Zhang, S. Lin, Z. Shi, P. Huang, C. Lee, and J. Du, Phys. Rev. B 100, 024310 (2019).
  • Xiong et al. (2020) Z. Xiong, D.-X. Yao, and Z. Yan, Phys. Rev. B 101, 174305 (2020).
  • Chen et al. (2020) X. Chen, C. Wang, and J. Yu, Phys. Rev. A 101, 032104 (2020).
  • Lu et al. (2020) Y.-H. Lu, B.-Z. Wang, and X.-J. Liu, Sci. Bull. 65, 2080 (2020).
  • Su et al. (2020) K. Su, Z.-H. Sun, and H. Fan, Phys. Rev. A 101, 063613 (2020).
  • Zhang et al. (2019b) L. Zhang, L. Zhang, and X.-J. Liu, Phys. Rev. A 99, 053606 (2019b).
  • (72) X.-L. Yu, L. Zhang, J. Wu, and X.-J. Liu, arXiv:2004.14930.
  • (73) L. Li, W. Zhu, and J. Gong, arXiv:2007.05759.
  • Benalcazar et al. (2017a) W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, Science 357, 61 (2017a).
  • Benalcazar et al. (2017b) W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, Phys. Rev. B 96, 245115 (2017b).
  • Schindler et al. (2018) F. Schindler, A. M. Cook, M. G. Vergniory, Z. Wang, S. S. Parkin, B. A. Bernevig, and T. Neupert, Sci. Adv. 4, 0346 (2018).
  • Morimoto and Furusaki (2013) T. Morimoto and A. Furusaki, Phys. Rev. B 88, 125129 (2013).
  • Chiu et al. (2016) C.-K. Chiu, J. C. Teo, A. P. Schnyder, and S. Ryu, Rev. Mod. Phys. 88, 035005 (2016).
  • Su et al. (1980) W.-P. Su, J. Schrieffer, and A. Heeger, Phys. Rev. B 22, 2099 (1980).
  • Haldane (1988) F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988).
  • Chiu et al. (2013) C.-K. Chiu, H. Yao, and S. Ryu, Phys. Rev. B 88, 075142 (2013).
  • Zhang and Hu (2001) S.-C. Zhang and J. Hu, Science 294, 823 (2001).
  • Schnyder et al. (2008) A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. Ludwig, Phys. Rev. B 78, 195125 (2008).
  • Fruchart and Carpentier (2013) M. Fruchart and D. Carpentier, C. R. Phys. 14, 779 (2013).
  • Wang et al. (2018) B.-Z. Wang, Y.-H. Lu, W. Sun, S. Chen, Y. Deng, and X.-J. Liu, Phys. Rev. A 97, 011605 (2018).
  • Zhang and Yi (2013) W. Zhang and W. Yi, Nat. Commun. 4, 2711 (2013).
  • Pan et al. (2016) J.-S. Pan, W. Zhang, W. Yi, and G.-C. Guo, Phys. Rev. A 94, 043619 (2016).
  • Liu et al. (2016) X.-J. Liu, Z.-X. Liu, K. T. Law, W. V. Liu, and T. K. Ng, New J. Phys. 18, 035004 (2016).
  • Poon and Liu (2018) T. F. J. Poon and X.-J. Liu, Phys. Rev. B 97, 020501 (2018).
  • Jia et al. (2019) W. Jia, Z.-H. Huang, X. Wei, Q. Zhao, and X.-J. Liu, Phys. Rev. B 99, 094520 (2019).