This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\Volume

3 \Firstpage1 \ReceivedRevisedMay 17, 2022 \Firstpage1

Dynamical Systems and λ\lambda-Aluthge transforms

Linh Tran *
Department of Mathematics
Chungnam National University
Daejon 305-764, Republic of Korea
[email protected]
Abstract.

In this note, we verify that the bounded shadowing property and quasi-hyperbolicity of bounded linear operators on Hilbert spaces are preserved under Aluthge transforms.

keywords:
Aluthge transform, quasi-hyperbolic, λ\lambda-Aluthge transform, bounded shadowing property
1991 Mathematics Subject Classification:
Primary: 47A15; Secondary: 47B49, 47B37, 37C20

1. Introduction

Let (H,.)\left(\mathbb{H},\left<.\right>\right) be a Hilbert space and B(H)B\left(\mathbb{H}\right) be the algebra of bounded linear operators on H\mathbb{H}. For each TB(H)T\in B\left(\mathbb{H}\right), the polar decomposition of TT is uniquely defined by

T=U|T|\displaystyle T=U\left|T\right|

in which |T|=(TT)12\left|T\right|=\left(T^{*}T\right)^{\frac{1}{2}} and ker(U)=ker(|T|)=ker(T)\ker\left(U\right)=\ker\left(\left|T\right|\right)=\ker\left(T\right). Without further mention, the spectrum of TT is

σ(T)={λC(TλI)1B(H)}.\displaystyle\sigma\left(T\right)=\left\{\lambda\in\mathbb{C}\mid\nexists\left(T-\lambda I\right)^{-1}\in B\left(\mathbb{H}\right)\right\}.

During the last 30 years, Operator Theorists have paid their attention to Aluthge transforms because they convert the initial operators into one which are closer to normal operators. I. B. Jung [11, Theorem 2.1] showed that

σ(T)=σ(Δ(T))\displaystyle\sigma\left(T\right)=\sigma\left(\Delta\left(T\right)\right)

where σ(.)\sigma\left(.\right) are the corresponding spectra. Moreover, Jung-Ko-Pearcy [10, Corollary 1.16] proved that TT has nontrivial invariant subspaces if and only if so does Δ(T)\Delta\left(T\right).
On the other sides, another reason relates with the Aluthge iterates defined by

{Δ(0)(T)=TΔ(n)(T)=Δ(Δ(n1)(T)),n1,nZ+.\displaystyle\begin{cases}\Delta^{(0)}\left(T\right)=T\\ \Delta^{(n)}\left(T\right)=\Delta\left(\Delta^{(n-1)}\left(T\right)\right),\quad\quad\forall n\geq 1,n\in\mathbb{Z}^{+}.\end{cases}

The Aluthge iterates of bounded linear operators are convergent to normal operators for dim(H)<\dim\left(\mathbb{H}\right)<\infty that has been verified in [1, Theorem 4.2] but not in general as shown in [11, Corollary 3.2].
We have the following remark.

Remark 1.1.

Let T=U|T|B(H)T=U\left|T\right|\in B\left(\mathbb{H}\right) be the polar decomposition of TT.

  1. (i)

    For every αC\alpha\in\mathbb{C}, Δ(αT)=|α|Δ(T)\Delta\left(\alpha T\right)=\left|\alpha\right|\Delta\left(T\right);

  2. (ii)

    [10] TT is quasinormal if and only if U|T|=|T|UU\left|T\right|=\left|T\right|U.
    Hence, Δ(T)=T\Delta\left(T\right)=T;

  3. (iii)

    [15] limnΔ(n)(T)=r(T)\lim_{n\rightarrow\infty}\left\|\Delta^{\left(n\right)}\left(T\right)\right\|=r\left(T\right).

Regarding to the spectral properties, we have the following remark.

Remark 1.2.

[10, Theorem 1.3] Let TB(H)T\in B\left(\mathbb{H}\right) be a bounded linear operator with the polar decomposition T=U|T|T=U\left|T\right| and Δ(T)=|T|12U|T|12\Delta\left(T\right)=\left|T\right|^{\frac{1}{2}}U\left|T\right|^{\frac{1}{2}} be the Aluthge transform of TT. Then the following properties hold.

  1. (i)

    σ(T)=σ(Δ(T))\sigma\left(T\right)=\sigma\left(\Delta\left(T\right)\right);

  2. (ii)

    σap(T)=σap(Δ(T))\sigma_{ap}\left(T\right)=\sigma_{ap}\left(\Delta\left(T\right)\right);

  3. (iii)

    σp(T)=σp(Δ(T))\sigma_{p}\left(T\right)=\sigma_{p}\left(\Delta\left(T\right)\right).

where σap(.)\sigma_{ap}\left(.\right) (resp. σp(.)\sigma_{p}\left(.\right)) are the corresponding approximate point (resp. point) spectra.

Aluthge transforms and Aluthge iterates of bounded linear operators TT on Hilbert space H\mathbb{H} were generalized to λ\lambda-Aluthge transforms and λ\lambda-Aluthge iterates.

Definition 1.3.

Let T=U|T|B(H)T=U\left|T\right|\in B\left(\mathbb{H}\right) be the polar decomposition of TT. For every λ(0,1)\lambda\in\left(0,1\right), the λ\lambda-Aluthge transform of TT is defined by

Δλ(T)=|T|λU|T|1λ.\displaystyle\Delta_{\lambda}\left(T\right)=\left|T\right|^{\lambda}U\left|T\right|^{1-\lambda}.

For each λ(0,1)\lambda\in\left(0,1\right), the λ\lambda-Aluthge iterates of TT is determined by

{Δλ(0)(T)=TΔλ(n)(T)=Δλ(Δλ(n1)(T)),n1,nZ+.\displaystyle\begin{cases}\Delta_{\lambda}^{(0)}\left(T\right)=T\\ \Delta_{\lambda}^{(n)}\left(T\right)=\Delta_{\lambda}\left(\Delta_{\lambda}^{(n-1)}\left(T\right)\right),\quad\quad\forall n\geq 1,n\in\mathbb{Z}^{+}.\end{cases}

On the other hand, dynamicists recently published various results related to the behaviors of Dynamical Systems under Aluthge transforms such as in [4, 5, 6]. In fact, I. B. Jung et al. verified that TT and its Aluthge transform Δ(T)\Delta\left(T\right) are similar if TT is invertible in [10, Lemma 1.1]. Therefore, they share shadowing property, topological transitivity and chaotic behaviors. In addition, K. Lee and C. A. Morales introduced bounded shadowing property in [13].

Definition 1.4.

A homeomorphism g:YYg:Y\longrightarrow Y has the bounded shadowing property if for every ϵ>0\epsilon>0, there is δ>0\delta>0 such that every bounded δ\delta-pseudo orbit can be ϵ\epsilon-shadowed.

Actually, every shadowing operators has bounded shadowing property but the converse does not held. In the light of these results, our first result verifies that bounded shadowing property is preserved under λ\lambda-Aluthge transform in Theorem 2.2.
In addition, using the spectral properties of λ\lambda-Aluthge transform (for every λ(0,1)\lambda\in\left(0,1\right)), we show that quasi-hyperbolicity is invariant under the action of λ\lambda-Aluthge transforms in Proposition 2.5.

2. Main results

Let us begin this section by recalling that on metric spaces (X,d1)\left(X,d_{1}\right) and (Y,d2)\left(Y,d_{2}\right), a homeomorphism L:(X,d1)(Y,d2)L:\left(X,d_{1}\right)\longrightarrow\left(Y,d_{2}\right) is called Lipeomorphism if LL satisfies Lipschitz condition, i.e for every x,yXx,y\in X, there are constants A,B>0A,B>0 such that

Ad1(x,y)d2(L(x),L(y))Bd1(x,y).\displaystyle Ad_{1}\left(x,y\right)\leq d_{2}\left(L\left(x\right),L\left(y\right)\right)\leq Bd_{1}\left(x,y\right).

More precisely, LL is Lipeomorphism if and and only there is a constant L>0L>0 so that

d2(L(x),L(y))Ld1(x,y).\displaystyle d_{2}\left(L\left(x\right),L\left(y\right)\right)\leq Ld_{1}\left(x,y\right).

Lipeomorphisms draw the attention of mathematicians because they preserve boundedness and completeness of the domain. Furthermore, Lee-Morales verify that bounded shadowing property is invariant under certain topological conjugacies as shown in the following lemma.

Lemma 2.1.

[13, Lemma 6] Let YY, ZZ be metric spaces and H:ZYH:Z\longrightarrow Y be a Lipeomorphism (i.e Lipschitz homeomorphism with Lipschitz inverse). If P:ZZP:Z\longrightarrow Z is a homeomorphism with the bounded shadowing property, then so does HPH1:YYH\circ P\circ H^{-1}:Y\longrightarrow Y.

As a consequence, we have our first result.

Theorem 2.2.

Let T=U|T|B(H)T=U\left|T\right|\in B\left(\mathbb{H}\right) be the polar decomposition of invertible bounded linear operator TT. Then TT has bounded shadowing property if and only if Δ(T)\Delta\left(T\right) does.

Proof.

Let us assume that T=U|T|B(H)T=U\left|T\right|\in B\left(\mathbb{H}\right) be the polar decomposition of invertible bounded linear operator TT. Then |T|=(TT)12\left|T\right|=\left(T^{*}T\right)^{\frac{1}{2}} and |T|12\left|T\right|^{\frac{1}{2}} are invertible bounded linear operators either. Moreover, since TT is bounded, we have

T(x)T(y)=T(xy)Txy,x,yH.\displaystyle\left\|T\left(x\right)-T\left(y\right)\right\|=\left\|T\left(x-y\right)\right\|\leq\left\|T\right\|\left\|x-y\right\|,\quad\forall x,y\in\mathbb{H}.

Similarly,

|T|12(x)|T|12(y)=|T|12(xy)|T|12xy,x,yB(H).\displaystyle\left\|\left|T\right|^{\frac{1}{2}}\left(x\right)-\left|T\right|^{\frac{1}{2}}\left(y\right)\right\|=\left\|\left|T\right|^{\frac{1}{2}}\left(x-y\right)\right\|\leq\left\|\left|T\right|^{\frac{1}{2}}\right\|\left\|x-y\right\|,\quad\forall x,y\in B\left(\mathbb{H}\right).

So, both TT and |T|12\left|T\right|^{\frac{1}{2}} satisfy Lipschitz condition and turn out to be Lipeomorphism. Additionally,

Δ(T)=|T|12U|T|12=|T|12(U|T|)|T|12;\displaystyle\Delta\left(T\right)=\left|T\right|^{\frac{1}{2}}U\left|T\right|^{\frac{1}{2}}=\left|T\right|^{\frac{1}{2}}\left(U\left|T\right|\right)\left|T\right|^{-\frac{1}{2}};
T=U|T|=|T|12(|T|12U|T|12)|T|12.\displaystyle T=U\left|T\right|=\left|T\right|^{-\frac{1}{2}}\left(\left|T\right|^{\frac{1}{2}}U\left|T\right|^{\frac{1}{2}}\right)\left|T\right|^{\frac{1}{2}}.

Now, let us suppose that TT has bounded shadowing property. Using Lemma 2.1, we completed the proof and got the first result.

In fact, the spectral picture of bounded linear operator TB(H)T\in B\left(\mathbb{H}\right) under Aluthge transformation has been described in [11]. It can be observed that not only the spectrum σ(T)\sigma\left(T\right) but also its components σp(T)\sigma_{p}\left(T\right) (point spectrum of TT) and σap(T)\sigma_{ap}\left(T\right) (appropriate spectrum of TT) are preserved. We now show that the spectral properties of TT are preserved under λ\lambda-Aluthge transforms for all λ(0,1)\lambda\in\left(0,1\right).

Theorem 2.3.

Let T=U|T|B(H)T=U\left|T\right|\in B\left(\mathbb{H}\right) be the polar decomposition of TT. For every λ(0,1)\lambda\in\left(0,1\right), we suppose that the λ\lambda-Aluthge transform of TT is Δλ(T)=|T|λU|T|1λ\Delta_{\lambda}\left(T\right)=\left|T\right|^{\lambda}U\left|T\right|^{1-\lambda}. Then the following properties held.

  1. (i)

    σ(T)=σ(Δλ(T))\sigma\left(T\right)=\sigma\left(\Delta_{\lambda}\left(T\right)\right);

  2. (ii)

    σap(T)=σap(Δλ(T))\sigma_{ap}\left(T\right)=\sigma_{ap}\left(\Delta_{\lambda}\left(T\right)\right).

Proof.

The equality σ(T)=σ(Δλ(T))\sigma\left(T\right)=\sigma\left(\Delta_{\lambda}\left(T\right)\right) was proved before in [8, Lemma 5].
Let us assume that T=U|T|B(H)T=U\left|T\right|\in B\left(\mathbb{H}\right) is a bounded linear operator on Hilbert space H\mathbb{H}. For arbitrary λC\lambda\in\mathbb{C}, the λ\lambda-Aluthge transform of TT is determinded by

Δλ(T)=|T|λU|T|1λ.\displaystyle\Delta_{\lambda}\left(T\right)=\left|T\right|^{\lambda}U\left|T\right|^{1-\lambda}.

Firstly, σap(T){0}=σap(Δλ(T)){0}\sigma_{ap}\left(T\right)\setminus\left\{0\right\}=\sigma_{ap}\left(\Delta_{\lambda}\left(T\right)\right)\setminus\left\{0\right\} as a result of Theorem 1 in [9].
We now suppose that 0σap(T)0\in\sigma_{ap}\left(T\right). By definition, there exists a sequence of unit vectors {xn}n\left\{x_{n}\right\}_{n\rightarrow\infty} with xn=1\left\|x_{n}\right\|=1 (for every nNn\in\mathbb{N}) satisfying

limnU|T|xn=0.\lim_{n\rightarrow\infty}\left\|U\left|T\right|x_{n}\right\|=0.

Consequently, |T|1λxn0\left\|\left|T\right|^{1-\lambda}x_{n}\right\|\rightarrow 0 as nn\rightarrow\infty for every λ(0,1)\lambda\in\left(0,1\right). It follows that

Δλ(T)=|T|λU|T|1λxn0as n.\displaystyle\Delta_{\lambda}\left(T\right)=\left\|\left|T\right|^{\lambda}U\left|T\right|^{1-\lambda}x_{n}\right\|\rightarrow 0\quad\text{as }n\rightarrow\infty.

That means 0σap(Δλ(T))0\in\sigma_{ap}\left(\Delta_{\lambda}\left(T\right)\right) for every λ(0,1)\lambda\in\left(0,1\right).
Therefore, σap(T)σap(Δλ(T))\sigma_{ap}\left(T\right)\subseteq\sigma_{ap}\left(\Delta_{\lambda}\left(T\right)\right) for all λ(0,1)\lambda\in\left(0,1\right).
On the other sides, we suppose that 0σap(Δλ(T))0\in\sigma_{ap}\left(\Delta_{\lambda}\left(T\right)\right) for every λ(0,1)\lambda\in\left(0,1\right). By hypothesis, there is a sequence {xn}nZ\left\{x_{n}\right\}_{n\in\mathbb{Z}} of unit vectors in H\mathbb{H} so that

limn|T|λU|T|1λxn=0.\displaystyle\lim_{n\rightarrow\infty}\left\|\left|T\right|^{\lambda}U\left|T\right|^{1-\lambda}x_{n}\right\|=0.

There are two subcases.
Firstly, for an arbitrary λ(0,1)\lambda\in\left(0,1\right), if |T|1λxn0\left\|\left|T\right|^{1-\lambda}x_{n}\right\|\rightarrow 0 then obviously Txn=U|T|λ|T|1λxn0\left\|Tx_{n}\right\|=\left\|U\left|T\right|^{\lambda}\left|T\right|^{1-\lambda}x_{n}\right\|\rightarrow 0 as nn\rightarrow\infty. Secondy, for every λ(0,1)\lambda\in\left(0,1\right), if |T|1λxn\left\|\left|T\right|^{1-\lambda}x_{n}\right\| does not converge to 0 then U|T|1λ\left\|U\left|T\right|^{1-\lambda}\right\| does not converge to 0 as nn\rightarrow\infty. However, |T|1λ\left|T\right|^{1-\lambda} maps {U|T|1λxn}\left\{U\left|T\right|^{1-\lambda}x_{n}\right\} to a null sequence in norm so T(U|T|1λxn)0\left\|T\left(U\left|T\right|^{1-\lambda}x_{n}\right)\right\|\longrightarrow 0 when nn\longrightarrow\infty as a consequence. Since UU is an isometry, we get U|T|1λxn=1\left\|U\left|T\right|^{1-\lambda}x_{n}\right\|=1. Hence, 0σap(T)0\in\sigma_{ap}\left(T\right) and σap(Δλ(T))σap(T)\sigma_{ap}\left(\Delta_{\lambda}\left(T\right)\right)\subseteq\sigma_{ap}\left(T\right).
Totally, the proof has been completed. ∎

As a consequence, the invariance of quasi-hyperbolicity of TT under the action of λ\lambda-Aluthge transforms for all λ(0,1)\lambda\in\left(0,1\right) is excuted.

Definition 2.4.

Let TB(X)T\in B\left(X\right) be an invertible operator on a Banach space XX. TT is said to be a hyperbolic operator if σ(T)T=\sigma\left(T\right)\cap\mathbb{T}=\varnothing in which T\mathbb{T} is the unit circle of complex plane C\mathbb{C}.
We shall say that TB(H)T\in B\left(\mathbb{H}\right) is quasi-hyperbolic if there exists nNn\in\mathbb{N} (independent of xx) such that

max(T2nx,x)2Tnx,for all xH.\displaystyle\max\left(\left\|T^{2n}x\right\|,\left\|x\right\|\right)\geq 2\left\|T^{n}x\right\|,\quad\text{for all }x\in\mathbb{H}.
Proposition 2.5.

For a bounded linear operator TB(H)T\in B\left(\mathbb{H}\right), TT is quasi-hyperbolic if and only if its λ\lambda-Aluthge transform is for every λ(0,1)\lambda\in\left(0,1\right).

Proof.

C. J. K. Batty and Y. Tomilov showed in [3] that TT is quasi-hyperbolic if and only if σap(T)\sigma_{ap}\left(T\right) does not intersect with the unit circle T\mathbb{T} on complex plane C\mathbb{C}. In other words,

σap(T)T=.\displaystyle\sigma_{ap}\left(T\right)\cap\mathbb{T}=\varnothing.

For every λ(0,1)\lambda\in\left(0,1\right), the equality σap(T)=σap(Δλ(T))\sigma_{ap}\left(T\right)=\sigma_{ap}\left(\Delta_{\lambda}\left(T\right)\right) in 1.2 provides σap(Δλ(T))T=\sigma_{ap}\left(\Delta_{\lambda}\left(T\right)\right)\cap\mathbb{T}=\varnothing. Thus Δλ(T)\Delta_{\lambda}\left(T\right) is quasi-hyperbolic for every λ(0,1)\lambda\in\left(0,1\right). ∎

References

  • [1] J. Antezana, E. R. Pujals and D. Stojanoff, The iterated Aluthge transforms of matrix converge, Adv Math (N Y), 226 (2011), 1591–1620.
  • [2] A. Aluthge, On pp-hyponormal operators for 0<p<10<{p}<1, Integral Equ. Oper. Theory 13 (1990), 307–315.
  • [3] C. K. K. Batty and Y. Tomilov, Quasi-hyperbolic semigroups, J. Funct. Anal, 258 (2010), 3855–3878.
  • [4] N. C. Bernades Jr, P. R. Cirilo, U. B. Darji, A. Messaoudi and E. R. Pujals, Expansivity and shadowing in linear dynamics, J. Math. Anal. Appl., 461 (2018), 796–816.
  • [5] N. C. Bernades Jr and A. Messaoudi, Shadowing and Structral Stability in Linear Dynamical Systems, Ergod. Theory Dyn. Syst. 41 (2021), No. 4, 961–980.
  • [6] P. Cirilo, B. Gollobit and E. Pujals, Dynamics of generalized hyperbolic operators, Adv Math (N Y), 387 (2021), 107830.
  • [7] E. D’Aniello, U.B. Darji, M. Maiuriello, Generalized Hyperbolicity and Shadowing in LpL^{p} spaces, J. Differ. Equ., 298 (2021), 68–94.
  • [8] T. Huruya, A note on p-hyponormal operators, Proc. Am. Math. Soc. 125 (1997), 3617-3624.
  • [9] R. Harte, Y. O. Kim and W. Y. Lee, Spectral pictures of ABAB and BABA, Proc. Am. Math. Soc. 134 (2005), No. 1 ,105–110.
  • [10] I.B. Jung, E. Ko and C. Pearcy, Aluthge tranforms of operators, Integral Equ. Oper. Theory, 37 (2000), 437–448.
  • [11] by same author,Aluthge transforms of operators, Trends Math., Information Center for Mathematical Sciences, 6 (2003) No. 2, 59–68.
  • [12] S. H . Lee, W. Y. Lee and J. Yoon, The mean transform of bounded linear operators, J. Math. Anal. Appl., 410 (2014), 70–81.
  • [13] K. Lee, C. A. Morales, Hyperbolicity, shadowing, and bounded orbits, Qual. Theory Dyn. Syst., 21 (2022), No. 61, DOI: https://doi.org/10.1007/s12346-022-00588-9.
  • [14] P. Y. Wu, Numerical range of Aluthge transform of operator, Linear Algebra Appl, 357 (2002), 295–298.
  • [15] T. Yamazaki, An expression of spectral radius via Aluthge transformation, Proc Am Math Soc ., 130 (2002), 1131–1137.
  • [16] T. Yamazaki, On numerical range of the Aluthge transformation , Linear Algebra Appl., 341 (2002), 111–117.
  • [17] T. Yamazaki, On upper and lower bounds of the numerical radius and an equality condition, Stud. Math., 178 (2007), 83–89.