This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Dynamical non-linear optical response in time-periodic quantum systems

S. Sajad Dabiri Department of Physics, Shahid Beheshti University, 1983969411 Tehran, Iran    Reza Asgari Department of Physics, Zhejiang Normal University, Jinhua 321004, China School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5531, Iran
Abstract

We present a comprehensive formalism for calculating the linear and nonlinear optical response of time-periodic (Floquet) quantum systems. Our approach, based on density matrix evolution in the Floquet basis, employs the length gauge and incorporates both intraband and interband contributions of the position operator. This formalism enables the interpretation of optical responses in terms of photon-assisted transitions and reveals a unique, divergent AC response to DC fields in Floquet systems, analogous to a Drude peak at finite frequency. Importantly, our method generalizes to optical tensor conductivity calculations at arbitrary perturbation orders, providing a powerful tool for analyzing driven quantum systems. Additionally, this approach captures various DC photocurrents, including shift current, injection current, gyration current, Berry dipole contributions, and intrinsic Fermi surface effects in certain limits.

Introduction— Recent research has significantly advanced our understanding of both linear and nonlinear responses in real systems Boyd (2020); Shen et al. (2018), particularly within the contexts of topological phases Weinberg et al. (2017); Harper et al. (2020); Lu et al. (2022); Kundu et al. (2016); Seshadri and Pereg-Barnea (2023); Kitagawa et al. (2010), twisted bilayer graphene Topp et al. (2019); Jiang et al. (2024), and open quantum systems Mori (2023). These findings have important implications for quantum engineering, the experimental identification of nonlinear dynamic systems, and the study of topological edge states Mochizuki et al. (2020) in periodically driven systems New (2011). Floquet systems present a rich framework for exploring new quantum phenomena Berdanier et al. (2018), offering non-thermal behavior Seetharam et al. (2018), supporting various topologically non-trivial phases Fulga and Maksymenko (2016), and even enabling the creation of Floquet time crystals Berdanier et al. (2018). Research in Floquet systems opens new opportunities for controlling and manipulating quantum systems, with significant implications for condensed matter physics, quantum optics, and photonics Park et al. (2022); Seetharam et al. (2019).

Although the Floquet theorem traditionally applies to linear response Rudner and Lindner (2020); Oka and Kitamura (2019a); Castro et al. (2022), researchers have extended its concepts to nonlinear formalism Morimoto and Nagaosa (2016); Aversa and Sipe (1995); Jotzu et al. (2014); McIver et al. (2020), especially in DC regimes. Nonlinear transport explores the phenomenon where applying a sufficiently intense external field causes the resulting current to deviate from the linear response. Understanding this is crucial for studying particle dynamics in crystals and has significant applications across physics. The nonlinear response in time-independent real materials Chu and Telnov (2004); Di Francescantonio et al. (2024) remains an active research area with important implications for controlling quantum dynamics. The interplay between periodic driving and nonlinearity can give rise to novel phenomena, such as stability transitions of topological edge states, with potential applications in ultrafast spintronics and strongly correlated electron systems Oka and Kitamura (2019b); Rudner and Lindner (2020).

There are two primary formulations in the literature for calculating nonlinear conductivity from the Hamiltonian of static systems: the velocity gauge and the length gauge, each with its own advantages and disadvantages Taghizadeh et al. (2017); Di Stefano et al. (2019). Recently, the velocity gauge approach has been successfully applied using Feynman diagrams Parker et al. (2019). However, this method often suffers from spurious divergences at low frequencies, which can be problematic in numerical calculations with a limited number of bands Taghizadeh et al. (2017). In contrast, the length gauge, which reveals intriguing effects such as gyration current and Fermi surface phenomena Watanabe and Yanase (2021), faces challenges due to the complexity of the matrix elements of the position operator.

The linear response of Floquet systems has been extensively studied in previous works Oka and Aoki (2009); Zhou and Wu (2011); Dehghani and Mitra (2015); Kumar et al. (2020). Notably, the time dependence of linear conductivity has been addressed within the velocity gauge formulation Zhou and Wu (2011); Kumar et al. (2020). Recent experimental observations have demonstrated coherent control and significant modulation of optical nonlinearity in van der Waals layered magnetic insulators Shan et al. (2021), alongside theoretical studies on spin dynamics Gao et al. (2023). There are several important questions unanswered: What is the dominant nonlinear response to time-dependent quantum systems? How is it influenced by the bands and different optical processes, and what information can it provide about interband processes? To address these questions, we utilize the density matrix evolution formalism to examine both linear and nonlinear responses of time-dependent quantum systems using the length gauge. The dynamical tensor conductivity depends on three different frequencies. This versatile approach can be extended to arbitrary orders of perturbation and reveals significant phenomena, such as divergent AC responses to DC electric fields. Intriguingly, our findings on tensor conductivity reduce to nonlinear optical responses in certain limits, aligning well with results from previous studies Kumar et al. (2020); Zhou and Wu (2011). Additionally, our approach captures various DC photocurrents Watanabe and Yanase (2021), including shift current, injection current, gyration current, Berry dipole contributions, and intrinsic Fermi surface effects in multiband systems.

Perturbation theory— We construct a perturbation theory to predict the density matrix after applying a potential λV(t)\lambda V(t) to the time-dependent system. The time evolution of the density matrix is derived from the von Neumann equation:

itρ(t)=[H(t)+λV(t),ρ(t)].\displaystyle i{{\partial}_{t}}\rho(t)=[H(t)+\lambda V(t),\rho(t)]. (1)

where symbol [A,B]=ABBA[A,B]=AB-BA is commutator. For time periodic Bloch Hamiltonian H(t+T)=H(t)H(t+T)=H(t) (where momentum index is suppressed) with time period T=2π/ΩT=2\pi/\Omega the Floquet theorem suggests the form of Schrödinger equation eigenvectors as (assuming e==1e=\hbar=1 hereafter): Floquet (1883) it|ψα(t)=H(t)|ψα(t),i{{\partial}_{t}}|{{\psi}_{\alpha}}(t)\rangle=H(t)|{{\psi}_{\alpha}}(t)\rangle, where |ψα(t)=eiϵαt|ϕα(t)|{{\psi}_{\alpha}}(t)\rangle={{e}^{-i{{\epsilon}_{\alpha}}t}}|{{\phi}_{\alpha}}(t)\rangle and Greek letter α\alpha is the band index, |ϕα(t)=|ϕα(t+T)|{{\phi}_{\alpha}}(t)\rangle=|{{\phi}_{\alpha}}(t+T)\rangle are time periodic Floquet quasi modes and ϵα{{\epsilon}_{\alpha}} is quasienergy which is defined modulo Ω\Omega, i.e. ϵαϵα+Ω{{\epsilon}_{\alpha}}\cong{{\epsilon}_{\alpha}}+\Omega and the momentum dependence is implicit. We restrict ϵα{{\epsilon}_{\alpha}} to be in the first Floquet Brillouin zone i.e. Ω<ϵαΩ-\Omega<{{\epsilon}_{\alpha}}\leq\Omega. Assuming λ\lambda as a small constant, we make an expansion for ρ\rho in powers of λ\lambda as ρ=ρ[0]+λρ[1]+λ2ρ[2]+\rho={{\rho}^{[0]}}+\lambda{{\rho}^{[1]}}+{{\lambda}^{2}}{{\rho}^{[2]}}+.... Equating the terms with the same powers of λ\lambda leads to

itρ[n]=[H(t),ρ[n]]+[V(t),ρ[n1]],\displaystyle i{{\partial}_{t}}{{\rho}^{[n]}}=[H(t),{{\rho}^{[n]}}]+[V(t),{{\rho}^{[n-1]}}], (2)

where nn is a positive integer number with ρ[1]=0{\rho}^{[-1]}=0. We assume that the density matrix is diagonal in Floquet basis i.e. ρ[0]=ηfη|ϕη(t)ϕη(t)|{{\rho}^{[0]}}=\sum\limits_{\eta}{{{f}_{\eta}}|{{\phi}_{\eta}}(t)\rangle\langle{{\phi}_{\eta}}(t)|} with occupation of Floquet states fη{{f}_{\eta}} remaining constant in time. As shown in Not , by defining ραβϕα(t)|ρ|ϕβ(t)\rho_{\alpha\beta}\equiv\langle{{\phi}_{\alpha}}(t)|{{\rho}}|{{\phi}_{\beta}}(t)\rangle, and ϵαβ=ϵαϵβ\epsilon_{\alpha\beta}=\epsilon_{\alpha}-\epsilon_{\beta}, there is a recursion relation between density matrix elements of different orders as:

ραβ[n]=ieiϵαβtteiϵαβtϕα(t)|[V(t),ρ[n1]]|ϕβ(t)𝑑t\displaystyle\rho_{\alpha\beta}^{[n]}=-i{{e}^{-i{{\epsilon}_{\alpha\beta}}t}}\int_{-\infty}^{t}{{{e}^{i{{\epsilon}_{\alpha\beta}}t^{\prime}}}\langle{{\phi}_{\alpha}}({{t}^{\prime}})|[V({{t}^{\prime}}),{{\rho}^{[n-1]}}]|{{\phi}_{\beta}}({{t}^{\prime}})\rangle d{{t}^{\prime}}} (3)

In the following, we find the optical tensor conductivity in the length gauge i.e. V(t)=𝐫𝐄eiω1tV(t)=\mathbf{r}\cdot\mathbf{E}e^{-i\omega_{1}t} where 𝐫\mathbf{r} and 𝐄\mathbf{E} are the position operator and amplitude of the electric field. It is important to note that the matrix elements of [𝐫,ρ][{\bf r},\rho] when evaluated based on Bloch states, require careful consideration. The 𝐫{\bf r} can be divided into interband and intraband contributions 𝐫=𝐫i+𝐫e\mathbf{r}=\mathbf{r}^{i}+\mathbf{r}^{e} Aversa and Sipe (1995) and the matrix elements of the position operator between Bloch states generalized to Floquet system are:

ϕα(𝐤,t)|𝐫i|ϕβ(𝐤,t)=δαβ[δ(𝐤𝐤)ξαα+i𝐤δ(𝐤𝐤)]\displaystyle\langle{{\phi}_{\alpha}}(\mathbf{k},t)|{{\mathbf{r}}^{i}}|{{\phi}_{\beta}}({{\mathbf{k}}^{\prime}},t)\rangle={{\delta}_{\alpha\beta}}[\delta(\mathbf{k}-{{\mathbf{k}}^{\prime}}){{\xi}_{\alpha\alpha}}+i{{\partial}_{\mathbf{k}}}\delta(\mathbf{k}-{{\mathbf{k}}^{\prime}})] (4)
ϕα(𝐤,t)|𝐫e|ϕβ(𝐤,t)=(1δαβ)δ(𝐤𝐤)ξαβ,\displaystyle\langle{{\phi}_{\alpha}}(\mathbf{k},t)|{{\mathbf{r}}^{e}}|{{\phi}_{\beta}}({{\mathbf{k}}^{\prime}},t)\rangle=(1-{{\delta}_{\alpha\beta}})\delta(\mathbf{k}-{{\mathbf{k}}^{\prime}}){{\xi}_{\alpha\beta}},

where we have revived the momentum index 𝐤\mathbf{k} and ξαβ=ϕα(𝐤,t)|i𝐤|ϕβ(𝐤,t){{\xi}_{\alpha\beta}}=\langle{{\phi}_{\alpha}}(\mathbf{k},t)|i{{\partial}_{\mathbf{k}}}|{{\phi}_{\beta}}(\mathbf{k},t)\rangle is the generalized Berry connection. It is obvious from Eq. (4) that the intraband components are not well-behaved and demonstrate singularities. To address the singularity issue Aversa and Sipe (1995), we decompose the matrix elements of the position operator’s commutator into intraband and interband components. We extend this method to Floquet systems as follows:

ϕα(t)|[𝐫,ρ]|ϕβ(t)=[𝐫i,ρ]αβ+[𝐫e,ρ]αβ,\displaystyle\langle{{\phi}_{\alpha}}(t)|[\mathbf{r},\rho]|{{\phi}_{\beta}}(t)\rangle={{[{{\mathbf{r}}^{i}},\rho]}_{\alpha\beta}}+{{[{{\mathbf{r}}^{e}},\rho]}_{\alpha\beta}}, (5)
[𝐫e,ρ]αβ=γ𝐫αγeργβραγ𝐫γβe,\displaystyle{{[{{\mathbf{r}}^{e}},\rho]}_{\alpha\beta}}=\sum\nolimits_{\gamma}{\mathbf{r}_{\alpha\gamma}^{e}{{\rho}_{\gamma\beta}}-{{\rho}_{\alpha\gamma}}\mathbf{r}_{\gamma\beta}^{e}},
[𝐫i,ρ]αβ=i(ραβ);𝐤=i𝐤ραβ+ραβ(ξααξββ).\displaystyle{{[{{\mathbf{r}}^{i}},\rho]}_{\alpha\beta}}=i{{\left({{\rho}_{\alpha\beta}}\right)}_{;\mathbf{k}}}=i{{\partial}_{\mathbf{k}}}{{\rho}_{\alpha\beta}}+{{\rho}_{\alpha\beta}}({{\xi}_{\alpha\alpha}}-{{\xi}_{\beta\beta}}).

Notably, ξαα{\xi}_{\alpha\alpha} is not uniquely defined, but the covariant derivative (ραα);𝐤{{\left({{\rho}_{\alpha\alpha}}\right)}_{;\mathbf{k}}} is.

Refer to caption
Figure 1: Quasienergy band structure (a1), quench occupation of Floquet bands (a2), linear optical conductivity (b,c1) and nonlinear optical conductivity (c2,d,e,f) of the driven one-dimensional model defined in Eq. (12). The color scale in (a1) shows the physical weights WαnW^{n}_{\alpha} and jj-photon-assisted optical transitions are marked with arrows. The parameters used are ω1=ω2=ω\omega_{1}=\omega_{2}=\omega and A=0.3A=0.3. The linear (nonlinear) conductivities are expressed in units of e2/(e3/)e^{2}/\hbar(e^{3}/\hbar) and ω\omega is in units of Ω\Omega. The σ[2](0)\sigma^{[2](0)} in panels (d-f) are scaled which are shown on the plots.

First order conductivity— Now, we develop the first-order perturbation theory by deriving the first-order density matrix. We define the perturbation as: V(t)=Ezeiω1tV(t)=Ez{{e}^{-i{{\omega}_{1}}t}} where z=𝐫𝐄/E=ze+ziz=\mathbf{r}\cdot\mathbf{E}/E=z^{e}+z^{i} in Eq. (3). The 𝐫e{\mathbf{r}}^{e} and 𝐫i{\mathbf{r}}^{i} lead to ρ[1]e\rho^{[1]e} and ρ[1]i\rho^{[1]i}, which can be evaluated using Eqs. (3) and (5)

ραβ[1]e=Ejei(ω1+jΩ)tϵαβ+jΩω1fβαzαβe(j)ραβ[1]i=Eeiω1tiω1δαβkzfα\displaystyle\begin{aligned} &\rho_{\alpha\beta}^{[1]e}=-E\sum\limits_{j}{\frac{{{e}^{i(-{{\omega}_{1}}+j\Omega)t}}}{{{\epsilon}_{\alpha\beta}}+j\Omega-{{\omega}_{1}}}{{f}_{\beta\alpha}}{z}_{\alpha\beta}^{e(-j)}}\\ &\rho_{\alpha\beta}^{[1]i}=\frac{E{{e}^{-i{{\omega}_{1}}t}}}{-i{{\omega}_{1}}}{{\delta}_{\alpha\beta}}{{\partial}_{{{k}_{z}}}}{{f}_{\alpha}}\end{aligned} (6)

where zαβe(j)=1/T0TeijΩtϕα(t)|ze|ϕβ(t)𝑑tz_{\alpha\beta}^{e(-j)}={1}/{T}\int_{0}^{T}{{{e}^{-ij\Omega t}}}\langle{{\phi}_{\alpha}}(t)|z^{e}|{{\phi}_{\beta}}(t)\rangle dt and fβα=fβfαf_{\beta\alpha}=f_{\beta}-f_{\alpha}. We find the expectation value of current 𝐉=𝒩𝐯\langle\mathbf{J}\rangle=-\mathcal{N}\langle{{\mathbf{v}}}\rangle (we set the number of charges in the volume 𝒩=1\mathcal{N}=1 hereafter and vx{{v}^{x}} stands for velocity operator along the probe) and assume an expansion 𝐉=𝐉[0]+λ𝐉[1]+λ2𝐉[2]+\mathbf{J}={{\mathbf{J}}^{[0]}}+\lambda{{\mathbf{J}}^{[1]}}+{{\lambda}^{2}}{{\mathbf{J}}^{[2]}}+... where 𝐉[1]=σ[1]Eeiω1t\langle{{\mathbf{J}}^{[1]}}\rangle={{\sigma}^{[1]}}E{{e}^{-i{{\omega}_{1}}t}}, so σ[1]=Tr(vxρ[1])/(Eeiω1t){{\sigma}^{[1]}}=-\text{Tr}({{v}^{x}}{{\rho}^{[1]}})/({Ee^{-i\omega_{1}t}}). The calculation shows that at the first order of perturbation when a probe electric field with a frequency of ω1{{\omega}_{1}} is applied to the system, the response would be at a frequency of ω1+nΩ,n{{\omega}_{1}}+n\Omega,\,\,n\in\mathbb{Z} so σ[1]=neinΩtσ[1](n){{\sigma}^{[1]}}={{\sum\limits_{n}{e}}^{-in\Omega t}}{{\sigma}^{[1](n)}}. As shown in Not we find

σxz[1]e(n)(ω1)\displaystyle\sigma_{xz}^{[1]e(n)}(\omega_{1}) =jαβ𝐤fβαvβαx(j+n)zαβe(j)ϵαβ+jΩω1\displaystyle=\sum\limits_{j\alpha\beta\mathbf{k}}{{{f}_{\beta\alpha}}\frac{v_{\beta\alpha}^{x(j+n)}z_{\alpha\beta}^{e(-j)}}{{{\epsilon}_{\alpha\beta}}+j\Omega-{{\omega}_{1}}}} (7)
σxz[1]i(n)(ω1)\displaystyle{{\sigma}^{[1]i(n)}_{xz}}(\omega_{1}) =α𝐤vααx(n)1iω1kzfα,\displaystyle=\sum\limits_{\alpha\mathbf{k}}{v_{\alpha\alpha}^{x(n)}\frac{1}{i{{\omega}_{1}}}{{\partial}_{{{k}_{z}}}}{{f}_{\alpha}}}, (8)

where the sum over momentum 𝐤\mathbf{k} indicates the integral over Brillouin zone 𝐤=dn𝐤/(2π)n\sum_{\mathbf{k}}=\int d^{n}\mathbf{k}/(2\pi)^{n}. It is beneficial to express the matrix elements of the position operator in terms of the matrix elements of the velocity operator Not as:

𝐫αβe(j)=iϵαβ+jΩ𝐯αβ(j).\displaystyle\mathbf{r}_{\alpha\neq\beta}^{e(-j)}=\frac{-i}{{{\epsilon}_{\alpha\beta}}+j\Omega}\mathbf{v}_{\alpha\beta}^{(-j)}. (9)

This is advantageous for numerical calculations as it eliminates the need to compute the derivative of Floquet quasi-modes, which would otherwise require defining a smooth gauge over the Brillouin zone.

Eq. (7) can be written in terms of only velocity matrix elements using Eq. (9) and is consistent with the results obtained previously in Kumar et al. (2020); Dehghani and Mitra (2015); Dabiri et al. (2022). Eq. (7) for n=0n=0 is very similar to the result of static systems with only a difference in a substitution ϵαβϵαβ+jΩ{{\epsilon}_{\alpha\beta}}\to{{\epsilon}_{\alpha\beta}}+j\Omega and 𝐯βα𝐯βα(j){\mathbf{v}_{\beta\alpha}}\to\mathbf{v}_{\beta\alpha}^{(j)} and its interpretation is quite simple in terms of optical transitions. Fig. 1(a1) illustrates the different quasienergy bands defined in extended space. The undriven Hamiltonian has two bands, denoted by α=1,2\alpha=1,2. We define the optical transition associated with jj in Eq. (7) as a ”j-photon assisted” optical transition. In Fig. 1(a1), we represent the optical transitions for different values of jj (0, 1, and 2) between the α=1\alpha=1 and α=2\alpha=2 bands. The total linear response is obtained by summing over all jj values and different initial sidebands.

Based on the interpretation outlined above, Eq. (7) reveals that σxz[1]e(0)\sigma_{x\neq z}^{[1]e(0)} represents the sum of Hall conductivities for occupied bands across all sidebands. For ideal occupation, this sum is quantized according to the TKNN formula Dehghani and Mitra (2015); Kumar et al. (2020); Dabiri et al. (2022). It is proportional to the Chern number of occupied bands, 𝒞occ\mathcal{C}_{occ}, as: σxz[1]e(0)=12π𝒞occ\sigma_{x\neq z}^{[1]e(0)}=\frac{1}{2\pi}\sum\mathcal{C}_{occ}.

Second order conductivity— We calculate the second-order conductivity by obtaining the second-order density matrix. We assume V(t)=E2yeiω2tV(t)=E_{2}y{{e}^{-i{{\omega}_{2}}t}} and since yy and ρ(1)\rho^{(1)} encompass the interband and intraband components as y=yi+yey=y^{i}+y^{e} and ρ[1]=ρ[1]i+ρ[1]e\rho^{[1]}=\rho^{[1]i}+\rho^{[1]e}, subsequently, there will be four terms corresponding to ye,ρ[1]ey^{e},\rho^{[1]e} (interband-interband), ye,ρ[1]iy^{e},\rho^{[1]i} (interband-intraband), yi,ρ[1]ey^{i},\rho^{[1]e} (intraband-interband) and yi,ρ[1]iy^{i},\rho^{[1]i} (intraband-intraband) terms. Each term can be calculated separately using Eqs. (3), (5) and (S11) to find the ρ[2]\rho^{[2]} as shown in Not .

When two probe electric fields with frequencies of ω1,ω2{{\omega}_{1}},{{\omega}_{2}} are applied to the system, the second order response would be at a frequency of ω1+ω2+nΩ,n{{\omega}_{1}}+{{\omega}_{2}}+n\Omega,\,\,n\in\mathbb{Z}, therefore, σ[2]=neinΩtσ[2](n){{\sigma}^{[2]}}={{\sum\limits_{n}{e}}^{-in\Omega t}}{{\sigma}^{[2](n)}}. Defining 𝐉[2]=σ[2]EE2ei(ω1+ω2)t\langle{{\mathbf{J}}^{[2]}}\rangle={{\sigma}^{[2]}}EE_{2}{{e}^{-i({{\omega}_{1}}+\omega_{2})t}}, we will find an expression for second-order conductivity as: Not

σxyz[2]ee(n)=12αβγj1j2𝐤vβαx(j1+j2+n)ϵαβω2ω1+(j1+j2)Ω×{fβγyαγe(j2)zγβe(j1)ϵγβω1+j1Ωfγαyγβe(j1)zαγe(j2)ϵαγω1+j2Ω}+((ω1,y)(ω2,z))σxyz[2]ei(n)=i2αβj𝐤vβαx(j+n)yαβe(j)kzfβαω1(ϵαβ+jΩω1ω2)+((ω1,y)(ω2,z))σxyz[2]ie(n)=αβj𝐤ivβαx(j+n)/2ϵαβω1ω2+jΩky(fβαzαβe(j)ϵαβ+jΩω1)12αβjj2𝐤vβαx(j+j2+n)fβαzαβe(j)ϵαβω1ω2+(j+j2)Ω(ξααy(j2)ξββy(j2))ϵαβ+jΩω1+((ω1,z)(ω2,y))σxyz[2]ii(n)=12α𝐤vααx(n)kzkyfαω1(ω1+ω2)+ω1ω2\displaystyle\begin{aligned} &\sigma_{xyz}^{[2]ee(n)}=-\frac{1}{2}\sum\limits_{\alpha\beta\gamma{{j}_{1}}{{j}_{2}}\mathbf{k}}{\frac{v_{\beta\alpha}^{x({{j}_{1}}+{{j}_{2}}+n)}}{{{\epsilon}_{\alpha\beta}}-{{\omega}_{2}}-{{\omega}_{1}}+({{j}_{1}}+{{j}_{2}})\Omega}}\\ &~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}\times\{\frac{{{f}_{\beta\gamma}}y_{\alpha\gamma}^{e(-{{j}_{2}})}z_{\gamma\beta}^{e(-{{j}_{1}})}}{{{\epsilon}_{\gamma\beta}}-{{\omega}_{1}}+{{j}_{1}}\Omega}-\frac{{{f}_{\gamma\alpha}}y_{\gamma\beta}^{e(-{{j}_{1}})}z_{\alpha\gamma}^{e(-{{j}_{2}})}}{{{\epsilon}_{\alpha\gamma}}-{{\omega}_{1}}+{{j}_{2}}\Omega}\}\\ &~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}+\left(({{\omega}_{1}},y)\leftrightarrow({{\omega}_{2}},z)\right)\\ &\sigma_{xyz}^{[2]ei(n)}=\frac{i}{2}\sum\limits_{\alpha\beta j\mathbf{k}}{\frac{v_{\beta\alpha}^{x(j+n)}y_{\alpha\beta}^{e(-j)}{{\partial}_{{{k}_{z}}}}{{f}_{\beta\alpha}}}{{{\omega}_{1}}({{\epsilon}_{\alpha\beta}}+j\Omega-{{\omega}_{1}}-{{\omega}_{2}})}}\\ &~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}+\left(({{\omega}_{1}},y)\leftrightarrow({{\omega}_{2}},z)\right)\\ &{{\sigma}_{xyz}^{[2]ie(n)}}=\sum\limits_{\alpha\beta j\mathbf{k}}{\frac{-iv_{\beta\alpha}^{x(j+n)}/2}{{{\epsilon}_{\alpha\beta}}-{{\omega}_{1}}-{{\omega}_{2}}+j\Omega}{{\partial}_{{{k}_{y}}}}\left(\frac{{{f}_{\beta\alpha}}z_{\alpha\beta}^{e(-j)}}{{{\epsilon}_{\alpha\beta}}+j\Omega-{{\omega}_{1}}}\right)}\\ &-\frac{1}{2}\sum\limits_{\alpha\beta j{{j}_{2}}\mathbf{k}}{\frac{v_{\beta\alpha}^{x(j+{{j}_{2}}+n)}{{f}_{\beta\alpha}}z_{\alpha\beta}^{e(-j)}}{{{\epsilon}_{\alpha\beta}}-{{\omega}_{1}}-{{\omega}_{2}}+(j+{{j}_{2}})\Omega}\frac{(\xi_{\alpha\alpha}^{y(-{{j}_{2}})}-\xi_{\beta\beta}^{y(-{{j}_{2}})})}{{{\epsilon}_{\alpha\beta}}+j\Omega-{{\omega}_{1}}}}\\ &~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}+(({{\omega}_{1}},z)\leftrightarrow({{\omega}_{2}},y))\\ &\sigma_{xyz}^{[2]ii(n)}=\frac{1}{2}\sum\limits_{\alpha\mathbf{k}}{\frac{v_{\alpha\alpha}^{x(n)}{{\partial}_{{{k}_{z}}}}{{\partial}_{{{k}_{y}}}}{{f}_{\alpha}}}{{{\omega}_{1}}({{\omega}_{1}}+{{\omega}_{2}})}}+{{\omega}_{1}}\leftrightarrow{{\omega}_{2}}\end{aligned} (10)

The second-order response of Floquet systems at a frequency of ω1+ω2\omega_{1}+\omega_{2} resembles that of static systems, with one key difference: the optical transitions are replaced by j1j_{1}- and j2j_{2}-photon-assisted transitions. Eq. (10) is recast to the formulas for the nonlinear response of static systems Watanabe and Yanase (2021) in the limit of time-independent Hamiltonian. Notice that these frequency-dependent features of the linear and nonlinear optical conductivity in Floquet systems are intricately linked to the driving frequency, influencing band structure, topological properties, and the balance between different optical processes.

Special limits— We will consider various scenarios. i) AC response to a DC electric field: Assume that ω1=ω2=0\omega_{1}=\omega_{2}=0, hence the full-intraband linear and second-order conductivities diverge based on Eqs. (8) and (10). This is a real divergence (not spurious one usually arising in velocity gauge Taghizadeh et al. (2017)) and we call it Drude peak at finite frequency, since the responses in Eqs. (8) and (10) are at frequencies nΩ,nn\Omega,\,\,n\in\mathbb{Z}. This process, which is essentially the reverse of rectification, is experimentally intriguing and could have significant implications for the field of optoelectronics.

ii) Zero response of Floquet topological insulators (FTIs): We refer to FTIs as the Floquet systems having finite gaps at quasienergies nΩnn\Omega~{}n\in\mathbb{Z}. Then at frequencies ω1=nΩ\omega_{1}=n\Omega, there are no resonant optical transitions as shown in Fig. 1(a1). Let us consider for instance the first order conductivity σxx[1]e\sigma^{[1]e}_{xx} in Eq. (7). Using Eq. (9) and adding an infinitesimal constant η\eta to frequency ω1\omega_{1} to account for the relaxation, it can be written as

Reσxx[1]e(0)=jαβπfβα|vβαx(j)|2δ(ϵαβ+jΩω1)(ϵαβ+jΩ),\displaystyle\operatorname{Re}\sigma_{xx}^{[1]e(0)}=\sum\limits_{j\alpha\beta}{\pi\frac{{{f}_{\beta\alpha}}|v_{\beta\alpha}^{x(j)}{{|}^{2}}\delta({{\epsilon}_{\alpha\beta}}+j\Omega-{{\omega}_{1}})}{({{\epsilon}_{\alpha\beta}}+j\Omega)}}, (11)

where we have used the approximation 1xiηxx2+η2+iπδ(x)\frac{1}{x-i\eta}\approx\frac{x}{x^{2}+\eta^{2}}+i\pi\delta(x) with δ(x)\delta(x) the Dirac delta function. Since for FTIs and ω1=nΩ\omega_{1}=n\Omega the delta function in Eq. (11) is always zero, then Reσxx[1]e(0)\operatorname{Re}\sigma_{xx}^{[1]e(0)} would be zero as well. This is in agreement with previous results Kumar et al. (2020); Zhou and Wu (2011), albeit this effect may be suppressed when gaps are small and the broadening factor η\eta is large.

iii) DC photocurrent: The DC response to an AC electric field is usually called photocurrent. It is obvious from Eqs. (7) and (8) that when an electric field at frequency of mΩ,mm\Omega,~{}m\in\mathbb{Z} is applied to the system, then σ[1]e(m)\sigma^{[1]e(-m)} and σ[1]i(m)\sigma^{[1]i(-m)} give DC photocurrents. This is in contrast to static systems where there is no photocurrent at the first order of perturbation theory.

At the second order of perturbation, when ω1+ω2=0\omega_{1}+\omega_{2}=0, there are DC photocurrents and all previous formulas of photocurrents Watanabe and Yanase (2021) including shift current, injection current, gyration current, Berry dipole contribution, and intrinsic Fermi surface effect are generalized Not to Floquet systems σ[2]σ[2](0)\sigma^{[2]}\rightarrow\sigma^{[2](0)} which is similar to formulas for multiband static systems.

When ω1+ω2=mΩ,m\omega_{1}+\omega_{2}=m\Omega,~{}m\in\mathbb{Z}, there are also DC photocurrents which are obtained by σ[2](m)\sigma^{[2](-m)} in Eq. (10). This means that the probe electric field can make resonance with the Floquet system giving rise to DC photocurrent. It should be noted that the higher orders of nonlinear response can be derived straightforwardly using Eqs. (3) and (5).

One-dimensional example— Here we apply our finding results for a driven one-dimensional two-band system. We take as a prototype of the Su-Schrieffer-Heeger model proposed for electronic states in polyacetylene Su et al. (1979) subjected to an oscillating field. The Hamiltonian in 𝐤\mathbf{k} space reads as:

H(k,t)=σx(2+cosk)+σysink+σz(1+Acos(Ωt)),\displaystyle H(k,t)={{\sigma}_{x}}\left(2+\cos k\right)+{{\sigma}_{y}}\sin k+{{\sigma}_{z}}\left(1+A\cos(\Omega t)\right), (12)

where σi,ix,y,z\sigma_{i},~{}~{}i\in{x,y,z} are Pauli matrices. The quasienergy bands are shown for A=0.3A=0.3 in Fig. 1(a1) where the color scale indicates the physical weights of subbands defined as Wαn=ϕα(n)|ϕα(n)1W^{n}_{\alpha}=\langle\phi_{\alpha}^{(n)}|\phi_{\alpha}^{(n)}\rangle\leq 1. For Floquet systems the occupation of Floquet states is generally not easily described by Fermi-Dirac distribution and we assume a quench occupation Zhou and Wu (2011); Kumar et al. (2020); Dabiri et al. (2022, 2024) of states which is obtained by projecting the non-driven ground states |g0|g_{0}\rangle on the Floquet states fα=n|g0|ϕα(n)|2{{f}_{\alpha}}=\sum\nolimits_{n}{|\langle{{g}_{0}}|\phi_{\alpha}^{(n)}\rangle{{|}^{2}}} and describes the situation where the drive is suddenly turned on. The occupations are shown in Fig. 1(a2) where there are band inversions at two resonances in the Brillouin zone.

Figures 1(b1) and (b2) depict the real and imaginary parts of linear interband conductivities according to Eq. (7). The peaks of conductivities in Fig. 1(b1) are associated with the optical transition between bands with higher physical weights and density of states which are marked by arrows emphasizing jj-photon-assisted transition origin.

The interesting response which was not appreciated enough in previous works is the divergent full intraband responses shown in Figs. 1(c1) and (c2) as a function of time which have DC and AC components and are in the same phase.

Figures 1(d1) and (d2) show the σ[2]ei\sigma^{[2]ei} which shares some similarities to linear interband response. According to Eq. (10) it contains the derivative of distribution and shows a divergent behavior at zero frequency. In Fig. 1(d2) we mark different peaks with arrows showing the relevant jj-photon assisted transitions which can be traced back to Fig. 1(a1). They show a sharp peak at zero frequency and a long tail at higher frequencies for coherent Drude carriers. We also observe another peak near the Ω/2\Omega/2, since the derivative of occupations has finite value only near the resonances (see Fig. 1(a2)).

The full interband conductivity is shown in Figs. 1(e1),(e2). The peaks are attributed to van Hove singularities in the density of states, and also the group velocity, which makes a shift in the frequencies of the peaks. Seemingly, in the middle frequency, the interband and intraband contributions to nonlinear optical conductivity have opposite effects as the frequency increases.

To calculate σ[2]ie\sigma^{[2]ie} we should find a smooth gauge for Floquet quasi modes because otherwise the derivatives in the third equation of Eq. (10) will not be well-defined. The result is depicted in Figs. 1(f1) and (f2) showing more peaks and dips with respect to σ[2]ee,σ[2]ei\sigma^{[2]ee},\sigma^{[2]ei} because the 2ω2\omega resonances are enabled. High heterodyne σ(±1)\sigma^{(\pm 1)} responses to homodyne response σ(0)\sigma^{(0)} at low frequencies is notable in Figs. 1(d-f) which originates from the transitions near the dynamical gap at quasienergy ϵ=±Ω/2\epsilon=\pm\Omega/2.

Although we assume quench occupation of Floquet states in Fig. 1, other occupations are possible like ideal occupation Dehghani and Mitra (2015); Kumar et al. (2020); Dabiri et al. (2022) of states where the lower (upper) Floquet band is full (empty) and for which the derivative of occupation is zero so σ[1]i,σ[2]ei,σ[2]ii\sigma^{[1]i},\sigma^{[2]ei},\sigma^{[2]ii} are zero. This case is also studied and results are presented in Not . On the other hand for mean-energy occupation Zhou and Wu (2011); Dabiri et al. (2022) fα=θ(ϵ¯α)f_{\alpha}=\theta(-\bar{\epsilon}_{\alpha}) where ϵ¯α=ϵα+nnΩWαn\bar{\epsilon}_{\alpha}=\epsilon_{\alpha}+\sum_{n}n\Omega W^{n}_{\alpha}, the derivative of occupation to momentum is singular at resonances. The real occupation of states in experimental setups depends on the switch-on protocol and also dissipation mechanisms. There are also proposals for on-demand control of occupation of Floquet states using multifrequency drives and engineered switch-on protocol Castro et al. (2023) or coupling to Fermi and Bose baths Seetharam et al. (2015).

Conclusion— We have developed a theoretical framework for calculating the nonlinear response of Floquet systems to perturbations of any order within the length gauge. This theory yields a complex and non-trivial response when applied to time-dependent quantum systems. We have identified a strong interband-interband current in response to external light, which is intimately tied to topological properties through the Berry connection and band topology. Given recent experimental advances in ultrashort laser pulses, high-speed pump-probe experiments, and cold atoms in shaken optical lattices, our method is now poised for practical validation.

Acknowledgments— R. A. received partial funding from the Iran National Science Foundation (INSF) under project No. 4026871. S. S. D. thanks the late Seyed Mahdi Dabiri for his valuable help and support.

References

Supplementary materials
”Dynamical non-linear optical response of time-periodic quantum systems”

(Dated: )

This supplementary material provides detailed calculations referenced in the main text. We present the conductivities in the two-band model limit, along with the conductivities expressed in terms of velocity matrix elements. Additionally, we include a discussion of the covariant derivative and derive the DC photo-conductivities, incorporating the Berry curvature dipole term, injection current, and shift current for Floquet systems. Finally, we present the results of the optical conductivities for a one-dimensional driven model with the ideal occupation of Floquet states.

S1 Details of derivations

Floquet theorem is an essential theorem in describing the time-periodic systems. The Schrödinger equation is recast for Floquet quasi modes as:

(H(t)it)|ϕα(t)=ϵα|ϕα(t).\displaystyle(H(t)-i{{\partial}_{t}})|{{\phi}_{\alpha}}(t)\rangle={{\epsilon}_{\alpha}}|{{\phi}_{\alpha}}(t)\rangle. (S1)

Since the Hamiltonian and also quasi modes are time-periodic, we can Fourier expand them as H(t)=einΩtH(n){{H}}(t)={{e}^{-in\Omega t}}{{H}^{(n)}} and |ϕα(t)=eimΩt|ϕα(m)|{\phi}_{\alpha}(t)\rangle={{e}^{-im\Omega t}}|{\phi}_{\alpha}^{(m)}\rangle. By inserting the Fourier series in (S1) we find

nH(mn)|ϕα(n)mΩ|ϕα(m)=ϵα|ϕα(m).\displaystyle{{\sum}_{n}}{{H}^{(m-n)}}|\phi_{\alpha}^{(n)}\rangle-m\Omega|\phi_{\alpha}^{(m)}\rangle={{\epsilon}_{\alpha}}|\phi_{\alpha}^{(m)}\rangle. (S2)

We can write Schrödinger equation i.e. Eq. (S2) in a matrix form as φα=εαφα\mathcal{H}{{\varphi}_{\alpha}}={{\varepsilon}_{\alpha}}{{\varphi}_{\alpha}} where

=(H(0)+ΩH(1)H(2)H(1)H(0)H(1)H(2)H(1)H(0)Ω),φα=(ϕα(1)ϕα(0)ϕα(1)).\displaystyle\mathcal{H}=\left(\begin{matrix}\ddots&{}&{}&{}&{}\\ {}&{{H}^{(0)}}+\Omega&{{H}^{(-1)}}&{{H}^{(-2)}}&{}\\ {}&{{H}^{(1)}}&{{H}^{(0)}}&{{H}^{(-1)}}&{}\\ {}&{{H}^{(2)}}&{{H}^{(1)}}&{{H}^{(0)}}-\Omega&{}\\ {}&{}&{}&{}&\ddots\\ \end{matrix}\right),{{\varphi}_{\alpha}}=\left(\begin{matrix}\vdots\\ \phi_{\alpha}^{(-1)}\\ \phi_{\alpha}^{(0)}\\ \phi_{\alpha}^{(1)}\\ \vdots\\ \end{matrix}\right). (S3)

On this basis, we effectively have a simple Schrödinger equation with a time-independent Hamiltonian, φα=εαφα\mathcal{H}\varphi_{\alpha}=\varepsilon_{\alpha}\varphi_{\alpha}, in an extended space labeled by α=1,2,,Nb\alpha=1,2,\dots,N_{b} and n=Ns,,1,0,1,,Nsn=-N_{s},\dots,-1,0,1,\dots,N_{s}. Thus, \mathcal{H} encompasses a total of 2Nb(Ns+1)2N_{b}(N_{s}+1) bands. We refer to bands distinguished by different nn indices as different sidebands. It can be shown that in the large matrix limit [8], if (,ϕα(1),ϕα(0),ϕα(1),)T(...,\phi_{\alpha}^{(-1)},\phi_{\alpha}^{(0)},\phi_{\alpha}^{(1)},\dots)^{T} is an eigenfunction of \mathcal{H}, then the shifted wave vector (,ϕα(2),ϕα(1),ϕα(0),)T(...,\phi_{\alpha}^{(-2)},\phi_{\alpha}^{(-1)},\phi_{\alpha}^{(0)},\dots)^{T} is also an eigenfunction of \mathcal{H}. Since \mathcal{H} is Hermitian, its wavefunctions can be taken to be orthonormal. Therefore, we can assume mϕα(m)|ϕβ(mj)=δαβδj0\sum\nolimits_{m}{\langle\phi_{\alpha}^{(m)}|\phi_{\beta}^{(m-j)}\rangle}={{\delta}_{\alpha\beta}}{{\delta}_{j0}} where δ\delta is the Kronecker delta. This condition can be written as:

ϕα(t)|ϕβ(t)=δαβ.\displaystyle\langle{{\phi}_{\alpha}}(t)|{{\phi}_{\beta}}(t)\rangle={{\delta}_{\alpha\beta}}. (S4)

Eq. (S4) is the orthonormality condition that we assume hereafter.

S1.1 perturbation theory

We derive Eq. (3) of the main text. According to Eq. (2) of the main text and using Eq. (S1) one can write

ϕα(t)|[H(t),ρ[n]]|ϕβ(t)=ϵαβϕα(t)|ρ[n]|ϕβ(t)itϕα(t)|ρ[n]|ϕβ(t)iϕα(t)|ρ[n]|tϕβ(t).\displaystyle\langle{{\phi}_{\alpha}}(t)|[H(t),{{\rho}^{[n]}}]|{{\phi}_{\beta}}(t)\rangle={{\epsilon}_{\alpha\beta}}\langle{{\phi}_{\alpha}}(t)|{{\rho}^{[n]}}|{{\phi}_{\beta}}(t)\rangle-i\langle{{\partial}_{t}}{{\phi}_{\alpha}}(t)|{{\rho}^{[n]}}|{{\phi}_{\beta}}(t)\rangle-i\langle{{\phi}_{\alpha}}(t)|{{\rho}^{[n]}}|{{\partial}_{t}}{{\phi}_{\beta}}(t)\rangle. (S5)

Inserting Eq. (S5) in Eq. (2) leads to

itραβ[n]=ϵαβραβ[n]+ϕα(t)|[V(t),ρ[n1]]|ϕβ(t)\displaystyle i{{\partial}_{t}}\rho_{\alpha\beta}^{[n]}={{\epsilon}_{\alpha\beta}}\rho_{\alpha\beta}^{[n]}+\langle{{\phi}_{\alpha}}(t)|[V(t),{{\rho}^{[n-1]}}]|{{\phi}_{\beta}}(t)\rangle (S6)

We can change the variable as ραβ[n]=S(t)eiϵαβt\rho_{\alpha\beta}^{[n]}=S(t){{e}^{-i{{\epsilon}_{\alpha\beta}}t}}. So itραβ[n]=itS(t)eiϵαβt+ϵαβS(t)eiϵαβti{{\partial}_{t}}\rho_{\alpha\beta}^{[n]}=i{{\partial}_{t}{S}}(t){{e}^{-i{{\epsilon}_{\alpha\beta}}t}}+{{\epsilon}_{\alpha\beta}}S(t){{e}^{-i{{\epsilon}_{\alpha\beta}}t}}. Then the equation for S(t)S(t) in (S6) can be integrated easily to yield Eq. (3).

S1.2 First order conductivity

By defining V(t)=Ezeiω1tV(t)=Ez{{e}^{-i{{\omega}_{1}}t}} (where z=𝐫𝐄/Ez=\mathbf{r}\cdot\mathbf{E}/E is the position operator along the electric field) and using Eqs. (3) and (5)) the interband density matrix can be written as:

ραβ[1]e\displaystyle\rho_{\alpha\beta}^{[1]e} =iEeiϵαβtteiϵαβtϕα(t)|[zeeiω1t,ρ[0]]|ϕβ(t)𝑑t\displaystyle=-iE{{e}^{-i{{\epsilon}_{\alpha\beta}}t}}\int_{-\infty}^{t}{{{e}^{i{{\epsilon}_{\alpha\beta}}t^{\prime}}}\langle{{\phi}_{\alpha}}({{t}^{\prime}})|[z^{e}e^{-i\omega_{1}t^{\prime}},{{\rho}^{[0]}}]|{{\phi}_{\beta}}({{t}^{\prime}})\rangle d{{t}^{\prime}}} (S7)
=ieiϵαβtEγtei(ϵαβω1)t(zαγeργβ[0]ραγ[0]zγβe)𝑑t\displaystyle=-i{{e}^{-i{{\epsilon}_{\alpha\beta}}t}}E\sum\limits_{\gamma}{\int_{-\infty}^{t}{{{e}^{i({{\epsilon}_{\alpha\beta}}-{{\omega}_{1}})t^{\prime}}}}}\left({{z}^{e}_{\alpha\gamma}}{{\rho}^{[0]}_{\gamma\beta}}-{{\rho}^{[0]}_{\alpha\gamma}}{{z}^{e}_{\gamma\beta}}\right)d{{t}^{\prime}}
=ieiϵαβtEtei(ϵαβω1)t(fβfα)zαβe𝑑t\displaystyle=-i{{e}^{-i{{\epsilon}_{\alpha\beta}}t}}E\int_{-\infty}^{t}{{{e}^{i({{\epsilon}_{\alpha\beta}}-{{\omega}_{1}})t^{\prime}}}({{f}_{\beta}}-{{f}_{\alpha}}){{z}^{e}_{\alpha\beta}}d{{t}^{\prime}}}
=Emnei(ω1+(mn)Ω)tϵαβω1+(mn)Ω(fβfα)ϕα(m)|ze|ϕβ(n)\displaystyle=-E\sum\limits_{mn}{\frac{{{e}^{i(-{{\omega}_{1}}+(m-n)\Omega)t}}}{{{\epsilon}_{\alpha\beta}}-{{\omega}_{1}}+(m-n)\Omega}({{f}_{\beta}}-{{f}_{\alpha}})\langle\phi_{\alpha}^{(m)}|z^{e}|\phi_{\beta}^{(n)}\rangle}
=Ejei(ω1+jΩ)tϵαβ+jΩω1fβαzαβe(j)\displaystyle=-E\sum\limits_{j}{\frac{{{e}^{i(-{{\omega}_{1}}+j\Omega)t}}}{{{\epsilon}_{\alpha\beta}}+j\Omega-{{\omega}_{1}}}{{f}_{\beta\alpha}}{z}_{\alpha\beta}^{e(-j)}}

where

zαβe(j)=mϕα(m)|ze|ϕβ(mj)=1/T0TeijΩtϕα(t)|ze|ϕβ(t)𝑑t.\displaystyle z_{\alpha\beta}^{e(-j)}=\sum\nolimits_{m}{\langle\phi_{\alpha}^{(m)}|{{z}^{e}}|\phi_{\beta}^{(m-j)}\rangle}=1/T\int_{0}^{T}{{e}^{-ij\Omega t}}\langle{{\phi}_{\alpha}}(t)|{{z}^{e}}|{{\phi}_{\beta}}(t)\rangle dt. (S8)

Then we can find the first-order interband conductivity by evaluating the expectation value of the velocity operator as

σ[1]e=1𝐄Tr(vxρ[1]e)=1𝐄αβ𝐤vβαxραβ[1]e=npsjαβ𝐤ϕβ(n)|vx{s}|ϕα(p)ei(j+nps)Ωtϵαβ+jΩω1fβαzαβ(j)\displaystyle{{\sigma}^{[1]e}}=-\frac{1}{\mathbf{E}}\text{Tr}({{v}^{x}}{{\rho}^{[1]e}})=-\frac{1}{\mathbf{E}}\sum\limits_{\alpha\beta\mathbf{k}}{v_{\beta\alpha}^{x}\rho_{\alpha\beta}^{[1]e}}=\sum\limits_{npsj\alpha\beta\mathbf{k}}{\langle\phi_{\beta}^{(n)}|{{v}^{x\{s\}}}|\phi_{\alpha}^{(p)}\rangle\frac{{{e}^{i(j+n-p-s)\Omega t}}}{{{\epsilon}_{\alpha\beta}}+j\Omega-{{\omega}_{1}}}{{f}_{\beta\alpha}}z_{\alpha\beta}^{(-j)}} (S9)
σxz[1]e(n)=jαβ𝐤fβαvβαx(j+n)zαβe(j)ϵαβ+jΩω1\displaystyle\sigma_{xz}^{[1]e(n)}=\sum\limits_{j\alpha\beta\mathbf{k}}{{{f}_{\beta\alpha}}\frac{v_{\beta\alpha}^{x(j+n)}z_{\alpha\beta}^{e(-j)}}{{{\epsilon}_{\alpha\beta}}+j\Omega-{{\omega}_{1}}}}

where

vβαx(j)=msϕβ(m)|vx{s}|ϕα(m+j)=1/T0TeijΩtϕβ(t)|v{x}|ϕα(t)𝑑t\displaystyle v_{\beta\alpha}^{x(j)}=\sum\nolimits_{ms}{\langle\phi_{\beta}^{(m)}|{{v}^{x\{s\}}}|\phi_{\alpha}^{(m+j)}\rangle}=1/T\int_{0}^{T}{{e}^{ij\Omega t}}\langle{{\phi}_{\beta}}(t)|{{v}^{\{x\}}}|{{\phi}_{\alpha}}(t)\rangle dt (S10)

and since the velocity operator vx=kxH(t){v}^{x}=\partial_{k_{x}}H(t) may be time-periodic with period TT we Fourier expand it as vx=seisΩtvx{s}{v}^{x}=\sum_{s}{{e}^{-is\Omega t}}v^{x\{s\}}. Also for the intraband density matrix one can write

ραβ[1]i=iEteiω1tϕα(t)|[zi,ρ[0]]|ϕβ(t)𝑑t\displaystyle\rho_{\alpha\beta}^{[1]i}=-iE\int_{-\infty}^{t}{{{e}^{-i{{\omega}_{1}}t^{\prime}}}\langle{{\phi}_{\alpha}}({{t}^{\prime}})|[{{z}^{i}},{{\rho}^{[0]}}]|{{\phi}_{\beta}}({{t}^{\prime}})\rangle d{{t}^{\prime}}} (S11)
=iEδαβteiω1tikzραα[0]=Eδαβteiω1tkzfα=Eeiω1tiω1δαβkzfα\displaystyle=-iE{{\delta}_{\alpha\beta}}\int_{-\infty}^{t}{{{e}^{-i{{\omega}_{1}}t^{\prime}}}i{{\partial}_{{{k}_{z}}}}\rho_{\alpha\alpha}^{[0]}}=E{{\delta}_{\alpha\beta}}\int_{-\infty}^{t}{{{e}^{-i{{\omega}_{1}}t^{\prime}}}{{\partial}_{{{k}_{z}}}}{{f}_{\alpha}}}=\frac{E{{e}^{-i{{\omega}_{1}}t}}}{-i{{\omega}_{1}}}{{\delta}_{\alpha\beta}}{{\partial}_{{{k}_{z}}}}{{f}_{\alpha}}

So

σxz[1]i=1𝐄Tr(vxρ[1]i)=1𝐄αvααxραα[1]i=αvααx1iω1kzfα\displaystyle{{\sigma}_{xz}^{[1]i}}=-\frac{1}{\mathbf{E}}\text{Tr}({{v}^{x}}{{\rho}^{[1]i}})=-\frac{1}{\mathbf{E}}\sum\limits_{\alpha}{v_{\alpha\alpha}^{x}\rho_{\alpha\alpha}^{[1]i}}=\sum\limits_{\alpha}{v_{\alpha\alpha}^{x}\frac{1}{i{{\omega}_{1}}}{{\partial}_{{{k}_{z}}}}{{f}_{\alpha}}} (S12)

S1.3 Second order conductivity

According to Eq. (3)

ραβ[2]=ieiϵαβtteiϵαβtϕα(t)|[V(t),ρ[1]]|ϕβ(t)𝑑t.\displaystyle{\rho}^{[2]}_{\alpha\beta}=-i{{e}^{-i{{\epsilon}_{\alpha\beta}}t}}\int_{-\infty}^{t}{{{e}^{i{{\epsilon}_{\alpha\beta}}t^{\prime}}}\langle{{\phi}_{\alpha}}({{t}^{\prime}})|[V({{t}^{\prime}}),{{\rho}^{[1]}}]|{{\phi}_{\beta}}({{t}^{\prime}})\rangle d{{t}^{\prime}}}. (S13)

We should find the matrix elements in the above equation as:

ϕα(t)|[V(t),ρ[1]]|ϕβ(t)=E2eiω2tϕα(t)|[y,ρ[1]]|ϕβ(t)\displaystyle\langle{{\phi}_{\alpha}}({{t}^{\prime}})|[V(t^{\prime}),{{\rho}^{[1]}}]|{{\phi}_{\beta}}({{t}^{\prime}})\rangle={{E}_{2}}{{e}^{-i{{\omega}_{2}}t^{\prime}}}\langle{{\phi}_{\alpha}}({{t}^{\prime}})|[y,{{\rho}^{[1]}}]|{{\phi}_{\beta}}({{t}^{\prime}})\rangle (S14)

Since yy and ρ[1]\rho^{[1]} include the interband and intraband components as y=yi+yey=y^{i}+y^{e} and ρ[1]=ρ[1]i+ρ[1]e\rho^{[1]}=\rho^{[1]i}+\rho^{[1]e}, in above equation there are four terms corresponding to ye,ρ[1]ey^{e},\rho^{[1]e} (interband-interband), ye,ρ[1]iy^{e},\rho^{[1]i} (interband-intraband), yi,ρ[1]ey^{i},\rho^{[1]e} (intraband-interband) and yi,ρ[1]iy^{i},\rho^{[1]i} (intraband-intraband) terms. We calculate each term separately in the following subsections.

S1.3.1 Interband-interband conductivity

Using Eq. (5) we can write

ϕα(t)|[ye,ρ[1]e]|ϕβ(t)=γ{yαγeργβ[1]eραγ[1]eyγβe}\displaystyle\langle{{\phi}_{\alpha}}({{t}^{\prime}})|[{{y}^{e}},{{\rho}^{[1]e}}]|{{\phi}_{\beta}}({{t}^{\prime}})\rangle=\sum\limits_{\gamma}{\{y_{\alpha\gamma}^{e}\rho_{\gamma\beta}^{[1]e}-\rho_{\alpha\gamma}^{[1]e}y_{\gamma\beta}^{e}\}} (S15)

Substituting (S7) in above equation gives

E2eiω2tϕα(t)|[ye,ρ[1]e]|ϕβ(t)\displaystyle{{E}_{2}}{{e}^{-i{{\omega}_{2}}t^{\prime}}}\langle{{\phi}_{\alpha}}({{t}^{\prime}})|[{{y}^{e}},{{\rho}^{[1]e}}]|{{\phi}_{\beta}}({{t}^{\prime}})\rangle (S16)
=EE2j1γei(ω1ω2+j1Ω)t[fβγyαγezγβe(j1)ϵγβ+j1Ωω1fγαzαγe(j1)yγβeϵαγ+j1Ωω1]\displaystyle=-E{{E}_{2}}\sum\limits_{{{j}_{1}\gamma}}{{{e}^{i(-{{\omega}_{1}}-{{\omega}_{2}}+{{j}_{1}}\Omega)t^{\prime}}}}\left[\frac{{{f}_{\beta\gamma}}{{y}^{e}_{\alpha\gamma}}z_{\gamma\beta}^{e(-{{j}_{1}})}}{{{\epsilon}_{\gamma\beta}}+{{j}_{1}}\Omega-{{\omega}_{1}}}-\frac{{{f}_{\gamma\alpha}}z_{\alpha\gamma}^{e(-{{j}_{1}})}{{y}^{e}_{\gamma\beta}}}{{{\epsilon}_{\alpha\gamma}}+{{j}_{1}}\Omega-{{\omega}_{1}}}\right]

Next we try to find ραβ[2]ee\rho_{\alpha\beta}^{[2]ee} using (S16) and (S13) and defining ϕα(m)|ye|ϕβ(n)=yαm;βne\langle\phi_{\alpha}^{(m)}|y^{e}|\phi_{\beta}^{(n)}\rangle={{y}^{e}_{\alpha m;\beta n}}

ραβ[2]ee=E2Emnj1γei(ω2ω1+(mn+j1)Ω)tϵαβω2ω1+(mn+j1)Ω{fβγyαm;γnezγβe(j1)ϵγβω1+j1Ωfγαzαγe(j1)yγm;βneϵαγω1+j1Ω}\displaystyle\rho_{\alpha\beta}^{[2]ee}={{E}_{2}}E\sum\limits_{mn{{j}_{1}}\gamma}{\frac{{{e}^{i(-{{\omega}_{2}}-{{\omega}_{1}}+(m-n+{{j}_{1}})\Omega)t}}}{{{\epsilon}_{\alpha\beta}}-{{\omega}_{2}}-{{\omega}_{1}}+(m-n+{{j}_{1}})\Omega}}\{\frac{{{f}_{\beta\gamma}}{{y}^{e}_{\alpha m;\gamma n}}z_{\gamma\beta}^{e(-{{j}_{1}})}}{{{\epsilon}_{\gamma\beta}}-{{\omega}_{1}}+{{j}_{1}}\Omega}-\frac{{{f}_{\gamma\alpha}}z_{\alpha\gamma}^{e(-{{j}_{1}})}{{y}^{e}_{\gamma m;\beta n}}}{{{\epsilon}_{\alpha\gamma}}-{{\omega}_{1}}+{{j}_{1}}\Omega}\} (S17)

After changing the variables as mn=j2m-n={{j}_{2}} and interchanging dummy variables j1j2j_{1}\leftrightarrow j_{2} in the second term, we have

ραβ[2]ee=E2Ej1j2γei(ω2ω1+(j1+j2)Ω)tϵαβω2ω1+(j1+j2)Ω×{fβγyαγe(j2)zγβe(j1)ϵγβω1+j1Ωfγαyγβe(j1)zαγe(j2)ϵαγω1+j2Ω}\displaystyle\rho_{\alpha\beta}^{[2]ee}={{E}_{2}}E\sum\limits_{{{j}_{1}}{{j}_{2}}\gamma}{\frac{{{e}^{i(-{{\omega}_{2}}-{{\omega}_{1}}+({{j}_{1}}+{{j}_{2}})\Omega)t}}}{{{\epsilon}_{\alpha\beta}}-{{\omega}_{2}}-{{\omega}_{1}}+({{j}_{1}}+{{j}_{2}})\Omega}}\times\{\frac{{{f}_{\beta\gamma}}y_{\alpha\gamma}^{e(-{{j}_{2}})}z_{\gamma\beta}^{e(-{{j}_{1}})}}{{{\epsilon}_{\gamma\beta}}-{{\omega}_{1}}+{{j}_{1}}\Omega}-\frac{{{f}_{\gamma\alpha}}y_{\gamma\beta}^{e(-{{j}_{1}})}z_{\alpha\gamma}^{e(-{{j}_{2}})}}{{{\epsilon}_{\alpha\gamma}}-{{\omega}_{1}}+{{j}_{2}}\Omega}\} (S18)

Next we find σ[2]ee{{\sigma}^{[2]ee}} by evaluating the expectation value of velocity operator using Eq. (S18)

σ[2]ee=Tr(vxρ[2]ee)=αβvβαxραβ[2]ee\displaystyle{{\sigma}^{[2]ee}}=-\text{Tr}({{v}^{x}}{{\rho}^{[2]ee}})=-\sum\limits_{\alpha\beta}{v_{\beta\alpha}^{x}\rho_{\alpha\beta}^{[2]ee}} (S19)
=αβγnpj1j2svβn;αpx{s}ei(j1+j2+nps)Ωtϵαβω2ω1+(j1+j2)Ω{fβγyαγe(j2)zγβe(j1)ϵγβω1+j1Ωfγαyγβe(j1)zαγe(j2)ϵαγω1+j2Ω}\displaystyle=-\sum\limits_{\alpha\beta\gamma np{{j}_{1}}{{j}_{2}}s}{\frac{v_{\beta n;\alpha p}^{x\{s\}}{{e}^{i({{j}_{1}}+{{j}_{2}}+n-p-s)\Omega t}}}{{{\epsilon}_{\alpha\beta}}-{{\omega}_{2}}-{{\omega}_{1}}+({{j}_{1}}+{{j}_{2}})\Omega}}\{\frac{{{f}_{\beta\gamma}}y_{\alpha\gamma}^{e(-{{j}_{2}})}z_{\gamma\beta}^{e(-{{j}_{1}})}}{{{\epsilon}_{\gamma\beta}}-{{\omega}_{1}}+{{j}_{1}}\Omega}-\frac{{{f}_{\gamma\alpha}}y_{\gamma\beta}^{e(-{{j}_{1}})}z_{\alpha\gamma}^{e(-{{j}_{2}})}}{{{\epsilon}_{\alpha\gamma}}-{{\omega}_{1}}+{{j}_{2}}\Omega}\}

Using Eq. (S10), we can write the above equation in a compact form. Moreover, this equation is not symmetrized with respect to ((ω1,y)(ω2,z))\left(({{\omega}_{1}},y)\leftrightarrow({{\omega}_{2}},z)\right). So, we should take out 1/21/2 of the above equation and its interchanged version to obtain the final result

σxyz[2]ee(n)=12αβγj1j2vβαx(j1+j2+n)ϵαβω2ω1+(j1+j2)Ω{fβγyαγe(j2)zγβe(j1)ϵγβω1+j1Ωfγαyγβe(j1)zαγe(j2)ϵαγω1+j2Ω}+((ω1,y)(ω2,z))\displaystyle\sigma_{xyz}^{[2]ee(n)}=-\frac{1}{2}\sum\limits_{\alpha\beta\gamma{{j}_{1}}{{j}_{2}}}{\frac{v_{\beta\alpha}^{x({{j}_{1}}+{{j}_{2}}+n)}}{{{\epsilon}_{\alpha\beta}}-{{\omega}_{2}}-{{\omega}_{1}}+({{j}_{1}}+{{j}_{2}})\Omega}}\{\frac{{{f}_{\beta\gamma}}y_{\alpha\gamma}^{e(-{{j}_{2}})}z_{\gamma\beta}^{e(-{{j}_{1}})}}{{{\epsilon}_{\gamma\beta}}-{{\omega}_{1}}+{{j}_{1}}\Omega}-\frac{{{f}_{\gamma\alpha}}y_{\gamma\beta}^{e(-{{j}_{1}})}z_{\alpha\gamma}^{e(-{{j}_{2}})}}{{{\epsilon}_{\alpha\gamma}}-{{\omega}_{1}}+{{j}_{2}}\Omega}\}+\left(({{\omega}_{1}},y)\leftrightarrow({{\omega}_{2}},z)\right) (S20)

Note that for α=γ\alpha=\gamma or γ=β\gamma=\beta, the above equation gives a vanishing result.

S1.3.2 Interband-intraband conductivity

We consider ye,ρ[1]iy^{e},\rho^{[1]i} components in Eqs. (S14) and (S13). Using Eq. (5) one can write

ϕα(t)|[ye,ρ[1]i]|ϕβ(t)=γ{yαγeργβ[1]iραγ[1]iyγβe}=yαβe{ρββ[1]iραα[1]i}\displaystyle\langle{{\phi}_{\alpha}}({{t}^{\prime}})|[{{y}^{e}},{{\rho}^{[1]i}}]|{{\phi}_{\beta}}({{t}^{\prime}})\rangle=\sum\limits_{\gamma}{\{{y^{e}_{\alpha\gamma}}\rho_{\gamma\beta}^{[1]i}-\rho_{\alpha\gamma}^{[1]i}{y^{e}_{\gamma\beta}}\}}={y^{e}_{\alpha\beta}}\{\rho_{\beta\beta}^{[1]i}-\rho_{\alpha\alpha}^{[1]i}\} (S21)

Then ραβ[2]ei\rho_{\alpha\beta}^{[2]ei} can be calculated from Eqs. (S11) and (S13)

ραβ[2]ei=EE2eiϵαβttei(ϵαβω1ω2)tω1yαβekzfβαdt\displaystyle\rho_{\alpha\beta}^{[2]ei}=E{{E}_{2}}{{e}^{-i{{\epsilon}_{\alpha\beta}}t}}\int_{-\infty}^{t}{\frac{{{e}^{i({\epsilon}_{\alpha\beta}-{{\omega}_{1}}-{{\omega}_{2}})t^{\prime}}}}{{{\omega}_{1}}}y_{\alpha\beta}^{e}{{\partial}_{{{k}_{z}}}}{{f}_{\beta\alpha}}d{{t}^{\prime}}} (S22)
=iEE2mnei(ω1ω2+(mn)Ω)tyαm;βnekzfβαω1(ϵαβ+(mn)Ωω1ω2)\displaystyle=-iE{{E}_{2}}\sum\limits_{mn}{\frac{{{e}^{i(-{{\omega}_{1}}-{{\omega}_{2}}+(m-n)\Omega)t}}y_{\alpha m;\beta n}^{e}{{\partial}_{{{k}_{z}}}}{{f}_{\beta\alpha}}}{{{\omega}_{1}}({{\epsilon}_{\alpha\beta}}+(m-n)\Omega-{{\omega}_{1}}-{{\omega}_{2}})}}
=iEE2jei(ω1ω2+jΩ)tyαβe(j)kzfβαω1(ϵαβ+jΩω1ω2)\displaystyle=-iE{{E}_{2}}\sum\limits_{j}{\frac{{{e}^{i(-{{\omega}_{1}}-{{\omega}_{2}}+j\Omega)t}}y_{\alpha\beta}^{e(-j)}{{\partial}_{{{k}_{z}}}}{{f}_{\beta\alpha}}}{{{\omega}_{1}}({{\epsilon}_{\alpha\beta}}+j\Omega-{{\omega}_{1}}-{{\omega}_{2}})}}

Therefore, we have

σ[2]ei=Tr(vxρ[2]ei)=αβvβαxραβ[2]ei=inpjαβsvβn;αpx{s}ei(j+nps)Ωtyαβe(j)kzfβαω1(ϵαβ+jΩω1ω2)\displaystyle{{\sigma}^{[2]ei}}=-\text{Tr}({{v}^{x}}{{\rho}^{[2]ei}})=-\sum\limits_{\alpha\beta}{v_{\beta\alpha}^{x}\rho_{\alpha\beta}^{[2]ei}}=i\sum\limits_{npj\alpha\beta s}{\frac{v_{\beta n;\alpha p}^{x\{s\}}{{e}^{i(j+n-p-s)\Omega t^{\prime}}}y_{\alpha\beta}^{e(-j)}{{\partial}_{{{k}_{z}}}}{{f}_{\beta\alpha}}}{{{\omega}_{1}}({{\epsilon}_{\alpha\beta}}+j\Omega-{{\omega}_{1}}-{{\omega}_{2}})}} (S23)

It is straightforward to find σxyz[2]ei(n)\sigma_{xyz}^{[2]ei(n)} i.e. the response of the system at frequency of ω1+ω2+nΩ\omega_{1}+\omega_{2}+n\Omega from Eq. (S23). Using Eq. (S10) and after symmetrizing the indices

σxyz[2]ei(n)=i2jαβvβαx(j+n)yαβe(j)kzfβαω1(ϵαβ+jΩω1ω2)+((ω1,y)(ω2,z))\displaystyle\sigma_{xyz}^{[2]ei(n)}=\frac{i}{2}\sum\limits_{j\alpha\beta}{\frac{v_{\beta\alpha}^{x(j+n)}y_{\alpha\beta}^{e(-j)}{{\partial}_{{{k}_{z}}}}{{f}_{\beta\alpha}}}{{{\omega}_{1}}({{\epsilon}_{\alpha\beta}}+j\Omega-{{\omega}_{1}}-{{\omega}_{2}})}}+\left(({{\omega}_{1}},y)\leftrightarrow({{\omega}_{2}},z)\right) (S24)

S1.3.3 Intraband-interband conductivity

We consider yi,ρ[1]ey^{i},\rho^{[1]e} components in Eqs. (S14) and (S13). According to Eq. (5)

ϕα(t)|[yi,ρ[1]e]|ϕβ(t)=i(ραβ[1]e);ky=ikyραβ[1]e+ραβ[1]e(ξααξββ)\displaystyle\langle{{\phi}_{\alpha}}({{t}^{\prime}})|[{{y}^{i}},{{\rho}^{[1]e}}]|{{\phi}_{\beta}}({{t}^{\prime}})\rangle=i{{\left(\rho_{\alpha\beta}^{[1]e}\right)}_{;{{k}_{y}}}}=i{{\partial}_{{{k}_{y}}}}\rho_{\alpha\beta}^{[1]e}+\rho_{\alpha\beta}^{[1]e}({{\xi}_{\alpha\alpha}}-{{\xi}_{\beta\beta}}) (S25)

Using Eq. (S7) we can write

E2eiω2tϕα(t)|[yi,ρ[1]e]|ϕβ(t)\displaystyle{{E}_{2}}{{e}^{-i{{\omega}_{2}}t^{\prime}}}\langle{{\phi}_{\alpha}}({{t}^{\prime}})|[{{y}^{i}},{{\rho}^{[1]e}}]|{{\phi}_{\beta}}({{t}^{\prime}})\rangle (S26)
=iEE2jei(ω1ω2+jΩ)tky(fβαzαβe(j)ϵαβ+jΩω1)EE2jei(ω1ω2+jΩ)tϵαβ+jΩω1fβαzαβe(j)(ξααyξββy)\displaystyle=-iE{{E}_{2}}\sum\limits_{j}{{{e}^{i(-{{\omega}_{1}}-{{\omega}_{2}}+j\Omega)t^{\prime}}}{{\partial}_{{{k}_{y}}}}\left(\frac{{{f}_{\beta\alpha}}z_{\alpha\beta}^{e(-j)}}{{{\epsilon}_{\alpha\beta}}+j\Omega-{{\omega}_{1}}}\right)}-E{{E}_{2}}\sum\limits_{j}{\frac{{{e}^{i(-{{\omega}_{1}}-{{\omega}_{2}}+j\Omega)t^{\prime}}}}{{{\epsilon}_{\alpha\beta}}+j\Omega-{{\omega}_{1}}}{{f}_{\beta\alpha}}z_{\alpha\beta}^{e(-j)}}(\xi_{\alpha\alpha}^{y}-\xi_{\beta\beta}^{y})

Now, using Eq. (S13) we can calculate ραβ[2]ie\rho_{\alpha\beta}^{[2]ie}

ραβ[2]ie=iei(ω1ω2+jΩ)tϵαβω1ω2+jΩky(fβαzαβe(j)ϵαβ+jΩω1)+jj2ei(ω1ω2+(j+j2)Ω)tfβαzαβe(j)ϵαβω1ω2+(j+j2)Ω(ξααy(j2)ξββy(j2))ϵαβ+jΩω1\displaystyle\rho_{\alpha\beta}^{[2]ie}=\frac{i{{e}^{i(-{{\omega}_{1}}-{{\omega}_{2}}+j\Omega)t}}}{{{\epsilon}_{\alpha\beta}}-{{\omega}_{1}}-{{\omega}_{2}}+j\Omega}{{\partial}_{{{k}_{y}}}}\left(\frac{{{f}_{\beta\alpha}}z_{\alpha\beta}^{e(-j)}}{{{\epsilon}_{\alpha\beta}}+j\Omega-{{\omega}_{1}}}\right)+\sum\limits_{j{{j}_{2}}}{\frac{{{e}^{i(-{{\omega}_{1}}-\omega_{2}+(j+{{j}_{2}})\Omega)t}}{{f}_{\beta\alpha}}z_{\alpha\beta}^{e(-j)}}{{{\epsilon}_{\alpha\beta}}-{{\omega}_{1}}-{{\omega}_{2}}+(j+{{j}_{2}})\Omega}\frac{(\xi_{\alpha\alpha}^{y(-{{j}_{2}})}-\xi_{\beta\beta}^{y(-{{j}_{2}})})}{{{\epsilon}_{\alpha\beta}}+j\Omega-{{\omega}_{1}}}} (S27)

So, one can write

σ[2]ie=Tr(vxρ[2]ie)=αβvβαxραβ[2]ie\displaystyle{{\sigma}^{[2]ie}}=-\text{Tr}({{v}^{x}}{{\rho}^{[2]ie}})=-\sum\limits_{\alpha\beta}{v_{\beta\alpha}^{x}\rho_{\alpha\beta}^{[2]ie}} (S28)
=αβnpjsivβn;αpx{s}ei(np+js)Ωtϵαβω1ω2+jΩky(fβαzαβe(j)ϵαβ+jΩω1)\displaystyle=\sum\limits_{\alpha\beta npjs}{\frac{-iv_{\beta n;\alpha p}^{x\{s\}}{{e}^{i(n-p+j-s)\Omega t}}}{{{\epsilon}_{\alpha\beta}}-{{\omega}_{1}}-{{\omega}_{2}}+j\Omega}{{\partial}_{{{k}_{y}}}}\left(\frac{{{f}_{\beta\alpha}}z_{\alpha\beta}^{e(-j)}}{{{\epsilon}_{\alpha\beta}}+j\Omega-{{\omega}_{1}}}\right)}
αβnpjj2svβn;αpx{s}ei(nps+j+j2)Ωtfβαzαβe(j)ϵαβω1ω2+(j+j2)Ω{(ξααy(j2)ξββy(j2))ϵαβ+jΩω1}\displaystyle~{}~{}~{}~{}-\sum\limits_{\alpha\beta npj{{j}_{2}}s}{\frac{v_{\beta n;\alpha p}^{x\{s\}}{{e}^{i(n-p-s+j+{{j}_{2}})\Omega t}}{{f}_{\beta\alpha}}z_{\alpha\beta}^{e(-j)}}{{{\epsilon}_{\alpha\beta}}-{{\omega}_{1}}-{{\omega}_{2}}+(j+{{j}_{2}})\Omega}\{}\frac{(\xi_{\alpha\alpha}^{y(-{{j}_{2}})}-\xi_{\beta\beta}^{y(-{{j}_{2}})})}{{{\epsilon}_{\alpha\beta}}+j\Omega-{{\omega}_{1}}}\}

Thus

σxyz[2]ie(n)=αβjivβαx(j+n)/2ϵαβω1ω2+jΩky(fβαzαβe(j)ϵαβ+jΩω1)\displaystyle{{\sigma}_{xyz}^{[2]ie(n)}}=\sum\limits_{\alpha\beta j}{\frac{-iv_{\beta\alpha}^{x(j+n)}/2}{{{\epsilon}_{\alpha\beta}}-{{\omega}_{1}}-{{\omega}_{2}}+j\Omega}{{\partial}_{{{k}_{y}}}}\left(\frac{{{f}_{\beta\alpha}}z_{\alpha\beta}^{e(-j)}}{{{\epsilon}_{\alpha\beta}}+j\Omega-{{\omega}_{1}}}\right)} (S29)
12jj2αβvβαx(j+j2n)fβαzαβe(j)ϵαβω1ω2+(j+j2)Ω(ξααy(j2)ξββy(j2))ϵαβ+jΩω1+((ω1,z)(ω2,y))\displaystyle-\frac{1}{2}\sum\limits_{j{{j}_{2}}\alpha\beta}{\frac{v_{\beta\alpha}^{x(j+{{j}_{2}}-n)}{{f}_{\beta\alpha}}z_{\alpha\beta}^{e(-j)}}{{{\epsilon}_{\alpha\beta}}-{{\omega}_{1}}-{{\omega}_{2}}+(j+{{j}_{2}})\Omega}\frac{(\xi_{\alpha\alpha}^{y(-{{j}_{2}})}-\xi_{\beta\beta}^{y(-{{j}_{2}})})}{{{\epsilon}_{\alpha\beta}}+j\Omega-{{\omega}_{1}}}}+(({{\omega}_{1}},z)\leftrightarrow({{\omega}_{2}},y))

S1.3.4 Intraband-intraband conductivity

We consider yi,ρ[1]iy^{i},\rho^{[1]i} components in Eqs. (S14) and (S13). Using Eq. (S11) one can write

ϕα(t)|[yi,ρ[1]i]|ϕα(t)=ikzραα[1]i=Eeiω1tω1kykzfα\displaystyle\langle{{\phi}_{\alpha}}({{t}^{\prime}})|[{{y}^{i}},{{\rho}^{[1]i}}]|{{\phi}_{\alpha}}({{t}^{\prime}})\rangle=i{{\partial}_{{{k}_{z}}}}\rho_{\alpha\alpha}^{[1]i}=-E\frac{{{e}^{-i{{\omega}_{1}}t^{\prime}}}}{{{\omega}_{1}}}{{\partial}_{{{k}_{y}}}}{{\partial}_{{{k}_{z}}}}{{f}_{\alpha}} (S30)

Next we try to find ραα[2]ii\rho_{\alpha\alpha}^{[2]ii} using Eqs. (S13) and (S30)

ραα[2]ii=itEE2ei(ω1+ω2)tω1kykzfαdt=EE2ei(ω1+ω2)tω1(ω1+ω2)kzkyfα\displaystyle\rho_{\alpha\alpha}^{[2]ii}=i\int_{-\infty}^{t}{E{{E}_{2}}\frac{{{e}^{-i({{\omega}_{1}}+{{\omega}_{2}})t^{\prime}}}}{{{\omega}_{1}}}{{\partial}_{{{k}_{y}}}}{{\partial}_{{{k}_{z}}}}{{f}_{\alpha}}d{{t}^{\prime}}}=-E{{E}_{2}}\frac{{{e}^{-i({{\omega}_{1}}+{{\omega}_{2}})t}}}{{{\omega}_{1}}({{\omega}_{1}}+{{\omega}_{2}})}{{\partial}_{{{k}_{z}}}}{{\partial}_{{{k}_{y}}}}{{f}_{\alpha}} (S31)

So, the intraband intraband conductivity can be obtained as

σ[2]ii=Tr(vxρ[2]ii)=αvααxραα[2]ii=αvααxkzkyfαω1(ω1+ω2)\displaystyle{{\sigma}^{[2]ii}}=-\text{Tr}({{v}^{x}}{{\rho}^{[2]ii}})=-\sum\limits_{\alpha}{v_{\alpha\alpha}^{x}\rho_{\alpha\alpha}^{[2]ii}}=\sum\limits_{\alpha}{\frac{v_{\alpha\alpha}^{x}{{\partial}_{{{k}_{z}}}}{{\partial}_{{{k}_{y}}}}{{f}_{\alpha}}}{{{\omega}_{1}}({{\omega}_{1}}+{{\omega}_{2}})}} (S32)

By symmetrizing Eq. (S32), it gives the final result as:

σxyz[2]ii(n)=12αvααx(n)kzkyfαω1(ω1+ω2)+ω1ω2.\displaystyle\sigma_{xyz}^{[2]ii(n)}=\frac{1}{2}\sum\limits_{\alpha}{\frac{v_{\alpha\alpha}^{x(n)}{{\partial}_{{{k}_{z}}}}{{\partial}_{{{k}_{y}}}}{{f}_{\alpha}}}{{{\omega}_{1}}({{\omega}_{1}}+{{\omega}_{2}})}}+{{\omega}_{1}}\leftrightarrow{{\omega}_{2}}. (S33)

S1.4 Relation of position and velocity matrix elements

It is beneficial to obtain matrix elements of the position operator in terms of matrix elements of the velocity operator. First, note that

ϕα(t)|𝐤H|ϕβ(t)=ϕα(t)|(𝐤(H|ϕβ(t))H|𝐤ϕβ(t))\displaystyle\langle{{\phi}_{\alpha}}(t)|{{\partial}_{\mathbf{k}}}H|{{\phi}_{\beta}}(t)\rangle=\langle{{\phi}_{\alpha}}(t)|\left({{\partial}_{\mathbf{k}}}\left(H|{{\phi}_{\beta}}(t)\rangle\right)-H|{{\partial}_{\mathbf{k}}}{{\phi}_{\beta}}(t)\rangle\right) (S34)
=ϕα(t)|(𝐤(ϵβ|ϕβ(t)+i|t,𝐤ϕβ(t))H|𝐤ϕβ(t))\displaystyle=\langle{{\phi}_{\alpha}}(t)|\left({{\partial}_{\mathbf{k}}}\left({{\epsilon}_{\beta}}|{{\phi}_{\beta}}(t)\rangle+i|{{\partial}_{t,\mathbf{k}}}{{\phi}_{\beta}}(t)\rangle\right)-H|{{\partial}_{\mathbf{k}}}{{\phi}_{\beta}}(t)\rangle\right)
=𝐤ϵβδαβ+(ϵβϵα+it)ϕα(t)|𝐤ϕβ(t)\displaystyle={{\partial}_{\mathbf{k}}}{{\epsilon}_{\beta}}{{\delta}_{\alpha\beta}}+({{\epsilon}_{\beta}}-{{\epsilon}_{\alpha}}+i{{\partial}_{t}})\langle{{\phi}_{\alpha}}(t)|{{\partial}_{\mathbf{k}}}{{\phi}_{\beta}}(t)\rangle

where we have used Eq. (S1) to obtain third and fourth lines. Using the above result one can find for αβ\alpha\neq\beta

𝐯αβ(j)=1T0TeijΩtϕα(t)|𝐤H(t)|ϕβ(t)𝑑t=1T0TeijΩt(ϵβα+it)ϕα(t)|𝐤ϕβ(t)𝑑t\displaystyle\mathbf{v}_{\alpha\neq\beta}^{(-j)}=\frac{1}{T}\int\limits_{0}^{T}{{{e}^{-ij\Omega t}}}\langle{{\phi}_{\alpha}}(t)|{{\partial}_{\mathbf{k}}}H(t)|{{\phi}_{\beta}}(t)\rangle dt=\frac{1}{T}\int\limits_{0}^{T}{{{e}^{-ij\Omega t}}}({{\epsilon}_{\beta\alpha}}+i{{\partial}_{t}})\langle{{\phi}_{\alpha}}(t)|{{\partial}_{\mathbf{k}}}{{\phi}_{\beta}}(t)\rangle dt (S35)
=1Tmn0Tei(mnj)Ωt(ϵβα(mn)Ω)ϕα(m)|𝐤ϕβ(n)𝑑t=1Tm(ϵβαjΩ)ϕα(m)|𝐤ϕβ(mj)\displaystyle=\frac{1}{T}\sum\limits_{mn}{\int\limits_{0}^{T}{{{e}^{i(m-n-j)\Omega t}}}({{\epsilon}_{\beta\alpha}}-(m-n)\Omega)\langle\phi_{\alpha}^{(m)}|{{\partial}_{\mathbf{k}}}\phi_{\beta}^{(n)}\rangle dt}=\frac{1}{T}\sum\limits_{m}{({{\epsilon}_{\beta\alpha}}-j\Omega)\langle\phi_{\alpha}^{(m)}|{{\partial}_{\mathbf{k}}}\phi_{\beta}^{(m-j)}\rangle}
=(ϵβαjΩ)𝐫αβe(j)i=i(ϵαβ+jΩ)𝐫αβe(j)\displaystyle=\frac{({{\epsilon}_{\beta\alpha}}-j\Omega)\mathbf{r}_{\alpha\beta}^{e(-j)}}{i}=i({{\epsilon}_{\alpha\beta}}+j\Omega)\mathbf{r}_{\alpha\beta}^{e(-j)}

S2 Two-band limit

In this section, we derive the nonlinear conductivity for a special case of a two-band model. Only σ2ee\sigma^{2ee} contains three band contributions. Since 𝐫ααe=0\mathbf{r}^{e}_{\alpha\alpha}=0, according to Eq. (9) we have

σxyz[2]ee(n)(2band)=12αβj1j2𝐤vββx(j1+j2+n)ω2ω1+(j1+j2)Ω×{fβαyβαe(j2)zαβe(j1)ϵαβω1+j1Ωfαβyαβe(j1)zβαe(j2)ϵβαω1+j2Ω}+((ω1,y)(ω2,z))\displaystyle\begin{aligned} &\sigma_{xyz}^{[2]ee(n)}(2band)=-\frac{1}{2}\sum\limits_{\alpha\beta{{j}_{1}}{{j}_{2}}\mathbf{k}}{\frac{v_{\beta\beta}^{x({{j}_{1}}+{{j}_{2}}+n)}}{-{{\omega}_{2}}-{{\omega}_{1}}+({{j}_{1}}+{{j}_{2}})\Omega}}\\ &~{}\times\{\frac{{{f}_{\beta\alpha}}y_{\beta\alpha}^{e(-{{j}_{2}})}z_{\alpha\beta}^{e(-{{j}_{1}})}}{{{\epsilon}_{\alpha\beta}}-{{\omega}_{1}}+{{j}_{1}}\Omega}-\frac{{{f}_{\alpha\beta}}y_{\alpha\beta}^{e(-{{j}_{1}})}z_{\beta\alpha}^{e(-{{j}_{2}})}}{{{\epsilon}_{\beta\alpha}}-{{\omega}_{1}}+{{j}_{2}}\Omega}\}+\left(({{\omega}_{1}},y)\leftrightarrow({{\omega}_{2}},z)\right)\\ \end{aligned} (S36)

S3 Conductivities in terms of velocity matrix elements

We can represent the linear and nonlinear conductivities in terms of the velocity operator matrix elements using Eq. (S35). The linear response is given by:

σxz[1]e(n)=ijαβ𝐤fβαvβαx(j+n)vαβz(j)(ϵαβ+jΩω1)(ϵαβ+jΩ)σxz[1]i(n)=α𝐤vααx(n)1iω1kzfα\displaystyle\begin{aligned} &\sigma_{xz}^{[1]e(n)}=-i\sum\limits_{j\alpha\beta\mathbf{k}}{{{f}_{\beta\alpha}}\frac{v_{\beta\alpha}^{x(j+n)}v_{\alpha\beta}^{z(-j)}}{({{\epsilon}_{\alpha\beta}}+j\Omega-{{\omega}_{1}})({{\epsilon}_{\alpha\beta}}+j\Omega)}}\\ &{{\sigma}^{[1]i(n)}_{xz}}=\sum\limits_{\alpha\mathbf{k}}{v_{\alpha\alpha}^{x(n)}\frac{1}{i{{\omega}_{1}}}{{\partial}_{{{k}_{z}}}}{{f}_{\alpha}}}\end{aligned} (S37)

and the second-order responses

σxyz[2]ee(n)=12αγβj1j2𝐤vβαx(j1+j2+n)(ϵαβω2ω1+(j1+j2)Ω)(ϵαγ+j2Ω)(ϵγβ+j1Ω){fβγvαγy(j2)vγβz(j1)ϵγβω1+j1Ωfγαvγβy(j1)vαγz(j2)ϵαγω1+j2Ω}+((ω1,y)(ω2,z))σxyz[2]ei(n)=12αβj𝐤vβαx(j+n)vαβy(j)kzfβαω1(ϵαβ+jΩω1ω2)(ϵαβ+jΩ)+((ω1,y)(ω2,z))σxyz[2]ie(n)=αβj𝐤vβαx(j+n)/2ϵαβω1ω2+jΩky(fβαvαβz(j)(ϵαβ+jΩω1)(ϵαβ+jΩ))+i2αβjj2𝐤vβαx(j+j2+n)fβαvαβz(j)(ϵαβω1ω2+(j+j2)Ω)(ϵαβ+jΩ)(ξααy(j2)ξββy(j2))ϵαβ+jΩω1+((ω1,y)(ω2,z))σxyz[2]ii(n)=12α𝐤vααx(n)kzkyfαω1(ω1+ω2)+ω1ω2.\displaystyle\begin{aligned} &\sigma_{xyz}^{[2]ee(n)}=\frac{1}{2}\sum\limits_{\alpha\neq\gamma\neq\beta{{j}_{1}}{{j}_{2}}\mathbf{k}}{\frac{v_{\beta\alpha}^{x({{j}_{1}}+{{j}_{2}}+n)}}{({{\epsilon}_{\alpha\beta}}-{{\omega}_{2}}-{{\omega}_{1}}+({{j}_{1}}+{{j}_{2}})\Omega)({{\epsilon}_{\alpha\gamma}}+{{j}_{2}}\Omega)({{\epsilon}_{\gamma\beta}}+{{j}_{1}}\Omega)}}\{\frac{{{f}_{\beta\gamma}}v_{\alpha\gamma}^{y(-{{j}_{2}})}v_{\gamma\beta}^{z(-{{j}_{1}})}}{{{\epsilon}_{\gamma\beta}}-{{\omega}_{1}}+{{j}_{1}}\Omega}-\frac{{{f}_{\gamma\alpha}}v_{\gamma\beta}^{y(-{{j}_{1}})}v_{\alpha\gamma}^{z(-{{j}_{2}})}}{{{\epsilon}_{\alpha\gamma}}-{{\omega}_{1}}+{{j}_{2}}\Omega}\}\\ &~{}~{}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,+\left(({{\omega}_{1}},y)\leftrightarrow({{\omega}_{2}},z)\right)\\ &\sigma_{xyz}^{[2]ei(n)}=\frac{1}{2}\sum\limits_{\alpha\beta j\mathbf{k}}{\frac{v_{\beta\alpha}^{x(j+n)}v_{\alpha\beta}^{y(-j)}{{\partial}_{{{k}_{z}}}}{{f}_{\beta\alpha}}}{{{\omega}_{1}}({{\epsilon}_{\alpha\beta}}+j\Omega-{{\omega}_{1}}-{{\omega}_{2}})({{\epsilon}_{\alpha\beta}}+j\Omega)}}~{}+\left(({{\omega}_{1}},y)\leftrightarrow({{\omega}_{2}},z)\right)\\ &\sigma_{xyz}^{[2]ie(n)}=\sum\limits_{\alpha\beta j\mathbf{k}}{\frac{-v_{\beta\alpha}^{x(j+n)}/2}{{{\epsilon}_{\alpha\beta}}-{{\omega}_{1}}-{{\omega}_{2}}+j\Omega}{{\partial}_{{{k}_{y}}}}\left(\frac{{{f}_{\beta\alpha}}v_{\alpha\beta}^{z(-j)}}{({{\epsilon}_{\alpha\beta}}+j\Omega-{{\omega}_{1}})({{\epsilon}_{\alpha\beta}}+j\Omega)}\right)}\\ &\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,~{}~{}+\frac{i}{2}\sum\limits_{\alpha\beta j{{j}_{2}}\mathbf{k}}{\frac{v_{\beta\alpha}^{x(j+{{j}_{2}}+n)}{{f}_{\beta\alpha}}v_{\alpha\beta}^{z(-j)}}{({{\epsilon}_{\alpha\beta}}-{{\omega}_{1}}-{{\omega}_{2}}+(j+{{j}_{2}})\Omega)({{\epsilon}_{\alpha\beta}}+j\Omega)}\frac{(\xi_{\alpha\alpha}^{y(-{{j}_{2}})}-\xi_{\beta\beta}^{y(-{{j}_{2}})})}{{{\epsilon}_{\alpha\beta}}+j\Omega-{{\omega}_{1}}}}+\left(({{\omega}_{1}},y)\leftrightarrow({{\omega}_{2}},z)\right)\\ &~{}\sigma_{xyz}^{[2]ii(n)}=\frac{1}{2}\sum\limits_{\alpha\mathbf{k}}{\frac{v_{\alpha\alpha}^{x(n)}{{\partial}_{{{k}_{z}}}}{{\partial}_{{{k}_{y}}}}{{f}_{\alpha}}}{{{\omega}_{1}}({{\omega}_{1}}+{{\omega}_{2}})}}+{{\omega}_{1}}\leftrightarrow{{\omega}_{2}}.\\ \end{aligned} (S38)

S4 Covariant derivative details

The covariant derivative of an operator SS defined in the main text is

(Sαβ);𝐤=𝐤SαβiSαβ(ξααξββ).\displaystyle{{\left({{S}_{\alpha\beta}}\right)}_{;\mathbf{k}}}={{\partial}_{\mathbf{k}}}{{S}_{\alpha\beta}}-i{{S}_{\alpha\beta}}({{\xi}_{\alpha\alpha}}-{{\xi}_{\beta\beta}}). (S39)

Let us expand the above equation in terms of Fourier components as

mn(Sαm,βnei(mn)Ωt);𝐤=mn𝐤(Sαm,βnei(mn)Ωt)iei(mn+pq)Ωtmnpq(Sαm,βn)(ξαp,αqξβp,βq).\displaystyle\sum\limits_{mn}{{{\left({{S}_{\alpha m,\beta n}}{{e}^{i(m-n)\Omega t}}\right)}_{;\mathbf{k}}}}=\sum\limits_{mn}{{{\partial}_{\mathbf{k}}}\left({{S}_{\alpha m,\beta n}}{{e}^{i(m-n)\Omega t}}\right)}-i{{e}^{i(m-n+p-q)\Omega t}}\sum\limits_{mnpq}{\left({{S}_{\alpha m,\beta n}}\right)({{\xi}_{\alpha p,\alpha q}}-{{\xi}_{\beta p,\beta q}})}. (S40)

Multiplying each side to eijΩt{{e}^{-ij\Omega t}} and take the integral 1/T0T()dt1/T\mathop{\int}_{0}^{T}(...)dt we reach at

(Sαβ(j));𝐤=𝐤(Sαβ(j))ij2(Sαβ(j+j2))(ξαα(j2)ξββ(j2))\displaystyle{{\left(S_{\alpha\beta}^{(-j)}\right)}_{;\mathbf{k}}}={{\partial}_{\mathbf{k}}}\left(S_{\alpha\beta}^{(-j)}\right)-i\sum\limits_{{{j}_{2}}}{\left(S_{\alpha\beta}^{(-j+{{j}_{2}})}\right)(\xi_{\alpha\alpha}^{(-{{j}_{2}})}-\xi_{\beta\beta}^{(-{{j}_{2}})})} (S41)

On the other hand, there is an identity regarding the covariant derivative of position operators [23]

α(xβαeyαγexαγeyβαe)=i[(yβγe);kx(xβγe);ky].\displaystyle\sum\limits_{\alpha}{\left(x_{\beta\alpha}^{e}y_{\alpha\gamma}^{e}-x_{\alpha\gamma}^{e}y_{\beta\alpha}^{e}\right)}=-i[{{\left(y_{\beta\gamma}^{e}\right)}_{;{{k}_{x}}}}-{{\left(x_{\beta\gamma}^{e}\right)}_{;{{k}_{y}}}}]. (S42)

Taking the Fourier components of the above equation it gives

αj2(xβαe(j1+j2)yαγe(j2)xαγe(j1+j2)yβαe(j2))=i[(yβγe(j1));kx(xβγe(j1));ky]\displaystyle\sum\limits_{\alpha{{j}_{2}}}{\left(x_{\beta\alpha}^{e({{j}_{1}}+{{j}_{2}})}y_{\alpha\gamma}^{e(-{{j}_{2}})}-x_{\alpha\gamma}^{e({{j}_{1}}+{{j}_{2}})}y_{\beta\alpha}^{e(-{{j}_{2}})}\right)}=-i[{{\left(y_{\beta\gamma}^{e({{j}_{1}})}\right)}_{;{{k}_{x}}}}-{{\left(x_{\beta\gamma}^{e({{j}_{1}})}\right)}_{;{{k}_{y}}}}] (S43)

S5 DC photocurrents

In this section, we rewrite the DC response of the Floquet system in the first and second order of perturbation.

At the first order of perturbation, we write interband components of the conductivity at zero frequency as:

σxz[1]e(0)(0)=jαβ𝐤fβαvβαx(j)zαβe(j)ϵαβ+jΩ=ijαβ𝐤fβαxβαe(j)zαβe(j)\displaystyle\sigma_{xz}^{[1]e(0)}(0)=\sum\limits_{j\alpha\beta\mathbf{k}}{{{f}_{\beta{\alpha}}}\frac{v_{\beta\alpha}^{x(j)}z_{\alpha\beta}^{e(-j)}}{{{\epsilon}_{\alpha\beta}}+j\Omega}}=-i\sum\limits_{j\alpha\beta\mathbf{k}}{{{f}_{\beta{\alpha}}}x_{\beta\alpha}^{e(j)}z_{\alpha\beta}^{e(-j)}} (S44)
=ijαβ𝐤fβ(xβαe(j)zαβe(j)zβαe(j)xαβe(j))=β𝐤fβΩβxz,\displaystyle=-i\sum\limits_{j\alpha\beta\mathbf{k}}{{{f}_{\beta}}(x_{\beta\alpha}^{e(j)}z_{\alpha\beta}^{e(-j)}-z_{\beta\alpha}^{e(-j)}x_{\alpha\beta}^{e(j)})=}-\sum\limits_{\beta\mathbf{k}}{{{f}_{\beta}}\Omega_{\beta}^{xz}},

where we define the Berry curvature as:

Ωβxzijα(xβαe(j)zαβe(j)zβαe(j)xαβe(j))\displaystyle\Omega_{\beta}^{xz}\equiv i\sum\limits_{j\alpha}{(x_{\beta\alpha}^{e(j)}z_{\alpha\beta}^{e(-j)}-z_{\beta\alpha}^{e(-j)}x_{\alpha\beta}^{e(j)})} (S45)

and indeed if bands are fully occupied, σxz[1]e(0)(0)\sigma_{xz}^{[1]e(0)}(0) will be proportional to the Chern number of occupied bands.

Let us find the formula of second-order conductivity for Floquet systems when ω1=ω2=ω{{\omega}_{1}}=-{{\omega}_{2}}=\omega.

The full intraband contribution σ[2]ii{{\sigma}^{[2]ii}} is given by

σxyz[2]ii(0)(ω,ω)=12ω2α𝐤vααx(0)kzkyfα\displaystyle\sigma_{xyz}^{[2]ii(0)}(\omega,-\omega)=\frac{-1}{2{\omega}^{2}}\sum\limits_{\alpha\mathbf{k}}v_{\alpha\alpha}^{x(0)}{{\partial}_{{{k}_{z}}}}{{\partial}_{{{k}_{y}}}}{{f}_{\alpha}} (S46)

which is divergent at ω=0\omega=0 and shows a Drude peak.

The interband-intraband contribution can be written as:

σxyz[2]ei(0)(ω,ω)=i2jαβ𝐤vβαx(j)yαβe(j)kzfβαω(ϵαβ+jΩ)+((ω,y)(ω,z))\displaystyle\sigma_{xyz}^{[2]ei(0)}(\omega,-\omega)=\frac{i}{2}\sum\limits_{j\alpha\beta\mathbf{k}}{\frac{v_{\beta\alpha}^{x(j)}y_{\alpha\beta}^{e(-j)}{{\partial}_{{{k}_{z}}}}{{f}_{\beta\alpha}}}{\omega({{\epsilon}_{\alpha\beta}}+j\Omega)}+\left((\omega,y)\leftrightarrow(-\omega,z)\right)} (S47)
=12jαβ𝐤xβαe(j)yαβe(j)kzfβαω+((ω,y)(ω,z))\displaystyle=\frac{1}{2}\sum\limits_{j\alpha\beta\mathbf{k}}{\frac{x_{\beta\alpha}^{e(j)}y_{\alpha\beta}^{e(-j)}{{\partial}_{{{k}_{z}}}}{{f}_{\beta\alpha}}}{\omega}+\left((\omega,y)\leftrightarrow(-\omega,z)\right)}
=12jαβ𝐤xβαe(j)yαβe(j)xαβe(j)yβαe(j)ωkzfβ+((ω,y)(ω,z))\displaystyle=\frac{1}{2}\sum\limits_{j\alpha\beta\mathbf{k}}{\frac{x_{\beta\alpha}^{e(j)}y_{\alpha\beta}^{e(-j)}-x_{\alpha\beta}^{e(j)}y_{\beta\alpha}^{e(-j)}}{\omega}{{\partial}_{{{k}_{z}}}}{{f}_{\beta}}+\left((\omega,y)\leftrightarrow(-\omega,z)\right)}
=i2β𝐤Ωβxyωkzfβ+((ω,y)(ω,z))\displaystyle=\frac{-i}{2}\sum\limits_{\beta\mathbf{k}}{\frac{\Omega_{\beta}^{xy}}{\omega}{{\partial}_{{{k}_{z}}}}{{f}_{\beta}}+\left((\omega,y)\leftrightarrow(-\omega,z)\right)}

Taking the integration by part in Eq. (S47) leads to

σxyz[2]ei(0)(ω,ω)=i2β𝐤fβkzΩβxyω+((ω,y)(ω,z))\displaystyle\sigma_{xyz}^{[2]ei(0)}(\omega,-\omega)=\frac{i}{2}\sum\limits_{\beta\mathbf{k}}{{f}_{\beta}}{\frac{{{\partial}_{{{k}_{z}}}}\Omega_{\beta}^{xy}}{\omega}+\left((\omega,y)\leftrightarrow(-\omega,z)\right)} (S48)

where 𝐤fβkzΩβxy\sum_{\mathbf{k}}{{{f}_{\beta}}{{\partial}_{{{k}_{z}}}}\Omega_{\beta}^{xy}} is called ”Berry curvature dipole”.

The interband-interband contribution σ[2]ee{{\sigma}^{[2]ee}} can be divided into diagonal and off-diagonal parts. The diagonal part σxyz;d[2]ee\sigma_{xyz;d}^{[2]ee} is written after defining ϵ=ω1+ω2\epsilon={{\omega}_{1}}+{{\omega}_{2}} as:

σxyz;d[2]ee(0)(ω1,ω2)=12αβj1j2𝐤vααx(j1+j2)ϵ+(j1+j2)Ω{fαβyαβe(j2)zβαe(j1)ϵβαω1+j1Ωfβαyβαe(j1)zαβe(j2)ϵαβω1+j2Ω}+((ω1,y)(ω2,z))\displaystyle\sigma_{xyz;d}^{[2]ee(0)}({{\omega}_{1}},{{\omega}_{2}})=\frac{-1}{2}\sum\limits_{\alpha\beta{{j}_{1}}{{j}_{2}}\mathbf{k}}{\frac{v_{\alpha\alpha}^{x({{j}_{1}}+{{j}_{2}})}}{-\epsilon+({{j}_{1}}+{{j}_{2}})\Omega}}\{\frac{{{f}_{\alpha\beta}}y_{\alpha\beta}^{e(-{{j}_{2}})}z_{\beta\alpha}^{e(-{{j}_{1}})}}{{{\epsilon}_{\beta\alpha}}-{{\omega}_{1}}+{{j}_{1}}\Omega}-\frac{{{f}_{\beta\alpha}}y_{\beta\alpha}^{e(-{{j}_{1}})}z_{\alpha\beta}^{e(-{{j}_{2}})}}{{{\epsilon}_{\alpha\beta}}-{{\omega}_{1}}+{{j}_{2}}\Omega}\}+\left(({{\omega}_{1}},y)\leftrightarrow({{\omega}_{2}},z)\right) (S49)
=12αβj1j2𝐤Δαβx(j1+j2)ϵ+(j1+j2)Ω{fαβyαβe(j2)zβαe(j1)ϵβαω1+j1Ω}+((ω1,y)(ω2,z))\displaystyle=\frac{-1}{2}\sum\limits_{\alpha\beta{{j}_{1}}{{j}_{2}}\mathbf{k}}{\frac{\Delta_{\alpha\beta}^{x({{j}_{1}}+{{j}_{2}})}}{-\epsilon+({{j}_{1}}+{{j}_{2}})\Omega}}\{\frac{{{f}_{\alpha\beta}}y_{\alpha\beta}^{e(-{{j}_{2}})}z_{\beta\alpha}^{e(-{{j}_{1}})}}{{{\epsilon}_{\beta\alpha}}-{{\omega}_{1}}+{{j}_{1}}\Omega}\}+\left(({{\omega}_{1}},y)\leftrightarrow({{\omega}_{2}},z)\right)
=12αβj1j2𝐤Δαβx(j1+j2)fαβϵ+(j1+j2)Ω{yαβe(j2)zβαe(j1)ϵβαω1+j1Ω+zαβe(j2)yβαe(j1)ϵβαω2+j1Ω}\displaystyle=\frac{-1}{2}\sum\limits_{\alpha\beta{{j}_{1}}{{j}_{2}}\mathbf{k}}{\frac{\Delta_{\alpha\beta}^{x({{j}_{1}}+{{j}_{2}})}{{f}_{\alpha\beta}}}{-\epsilon+({{j}_{1}}+{{j}_{2}})\Omega}}\{\frac{y_{\alpha\beta}^{e(-{{j}_{2}})}z_{\beta\alpha}^{e(-{{j}_{1}})}}{{{\epsilon}_{\beta\alpha}}-{{\omega}_{1}}+{{j}_{1}}\Omega}+\frac{z_{\alpha\beta}^{e(-{{j}_{2}})}y_{\beta\alpha}^{e(-{{j}_{1}})}}{{{\epsilon}_{\beta\alpha}}-{{\omega}_{2}}+{{j}_{1}}\Omega}\}
=12αβj1j2𝐤Δαβx(j1+j2)fαβϵ+(j1+j2)Ωyαβe(j2)zβαe(j1){1ϵβαω1+j1Ω+1ϵαβω2+j2Ω}\displaystyle=\frac{-1}{2}\sum\limits_{\alpha\beta{{j}_{1}}{{j}_{2}}\mathbf{k}}{\frac{\Delta_{\alpha\beta}^{x({{j}_{1}}+{{j}_{2}})}{{f}_{\alpha\beta}}}{-\epsilon+({{j}_{1}}+{{j}_{2}})\Omega}}y_{\alpha\beta}^{e(-{{j}_{2}})}z_{\beta\alpha}^{e(-{{j}_{1}})}\{\frac{1}{{{\epsilon}_{\beta\alpha}}-{{\omega}_{1}}+{{j}_{1}}\Omega}+\frac{1}{{{\epsilon}_{\alpha\beta}}-{{\omega}_{2}}+{{j}_{2}}\Omega}\}

where Δαβx(j1+j2)=vααx(j1+j2)vββx(j1+j2)\Delta_{\alpha\beta}^{x({{j}_{1}}+{{j}_{2}})}=v_{\alpha\alpha}^{x({{j}_{1}}+{{j}_{2}})}-v_{\beta\beta}^{x({{j}_{1}}+{{j}_{2}})}. Therefore, by setting ω1=ω2=ω{{\omega}_{1}}=-{{\omega}_{2}}=\omega we obtain the ”injection current” which is the generalization of Eq. (61) of [32].

σxyzinj(ω,ω)=12αβj1j2𝐤Δαβx(j1+j2)fαβϵ+(j1+j2)Ωyαβe(j2)zβαe(j1){1ϵβαω+j1Ω+1ϵαβ+ω+j2Ω}\displaystyle\sigma_{xyz}^{\text{inj}}(\omega,-\omega)=\frac{-1}{2}\sum\limits_{\alpha\beta{{j}_{1}}{{j}_{2}}\mathbf{k}}{\frac{\Delta_{\alpha\beta}^{x({{j}_{1}}+{{j}_{2}})}{{f}_{\alpha\beta}}}{-\epsilon+({{j}_{1}}+{{j}_{2}})\Omega}}y_{\alpha\beta}^{e(-{{j}_{2}})}z_{\beta\alpha}^{e(-{{j}_{1}})}\{\frac{1}{{{\epsilon}_{\beta\alpha}}-\omega+{{j}_{1}}\Omega}+\frac{1}{{{\epsilon}_{\alpha\beta}}+\omega+{{j}_{2}}\Omega}\} (S50)

Next consider the off-diagonal component of σ[2]ee{{\sigma}^{[2]ee}}

σxyz;o[2]ee(0)(ω,ω)=12αβγj1j2𝐤vβαx(j1+j2)ϵαβϵ+(j1+j2)Ω{fβγyαγe(j2)zγβe(j1)ϵγβω+j1Ωfγαyγβe(j1)zαγe(j2)ϵαγω+j2Ω}+((ω,y)(ω,z))\displaystyle\sigma_{xyz;o}^{[2]ee(0)}(\omega,-\omega)=\frac{-1}{2}\sum\limits_{\alpha\neq\beta\gamma{{j}_{1}}{{j}_{2}}\mathbf{k}}{\frac{v_{\beta\alpha}^{x({{j}_{1}}+{{j}_{2}})}}{{{\epsilon}_{\alpha\beta}}-\epsilon+({{j}_{1}}+{{j}_{2}})\Omega}}\{\frac{{{f}_{\beta\gamma}}y_{\alpha\gamma}^{e(-{{j}_{2}})}z_{\gamma\beta}^{e(-{{j}_{1}})}}{{{\epsilon}_{\gamma\beta}}-\omega+{{j}_{1}}\Omega}-\frac{{{f}_{\gamma\alpha}}y_{\gamma\beta}^{e(-{{j}_{1}})}z_{\alpha\gamma}^{e(-{{j}_{2}})}}{{{\epsilon}_{\alpha\gamma}}-\omega+{{j}_{2}}\Omega}\}+\left((\omega,y)\leftrightarrow(-\omega,z)\right) (S51)
=i2αβγj1j2𝐤xβαe(j1+j2){fβγyαγe(j2)zγβe(j1)ϵγβω+j1Ωfγαyγβe(j1)zαγe(j2)ϵαγω+j2Ω}+((ω,y)(ω,z))\displaystyle=\frac{i}{2}\sum\limits_{\alpha\beta\gamma{{j}_{1}}{{j}_{2}}\mathbf{k}}{x_{\beta\alpha}^{e({{j}_{1}}+{{j}_{2}})}}\{\frac{{{f}_{\beta\gamma}}y_{\alpha\gamma}^{e(-{{j}_{2}})}z_{\gamma\beta}^{e(-{{j}_{1}})}}{{{\epsilon}_{\gamma\beta}}-\omega+{{j}_{1}}\Omega}-\frac{{{f}_{\gamma\alpha}}y_{\gamma\beta}^{e(-{{j}_{1}})}z_{\alpha\gamma}^{e(-{{j}_{2}})}}{{{\epsilon}_{\alpha\gamma}}-\omega+{{j}_{2}}\Omega}\}+\left((\omega,y)\leftrightarrow(-\omega,z)\right)
=i2αβγj1j2𝐤(xβαe(j1+j2)yαγe(j2)xαγe(j1+j2)yβαe(j2)){fβγzγβe(j1)ϵγβω+j1Ω}+((ω,y)(ω,z))\displaystyle=\frac{i}{2}\sum\limits_{\alpha\beta\gamma{{j}_{1}}{{j}_{2}}\mathbf{k}}{\left(x_{\beta\alpha}^{e({{j}_{1}}+{{j}_{2}})}y_{\alpha\gamma}^{e(-{{j}_{2}})}-x_{\alpha\gamma}^{e({{j}_{1}}+{{j}_{2}})}y_{\beta\alpha}^{e(-{{j}_{2}})}\right)}\{\frac{{{f}_{\beta\gamma}}z_{\gamma\beta}^{e(-{{j}_{1}})}}{{{\epsilon}_{\gamma\beta}}-\omega+{{j}_{1}}\Omega}\}+\left((\omega,y)\leftrightarrow(-\omega,z)\right)

Using Eq. (S43) and definition gαβz(j)(ω)fβαzαβe(j)ϵαβ+jΩωg_{\alpha\beta}^{z(-j)}(\omega)\equiv\frac{{{f}_{\beta\alpha}}z_{\alpha\beta}^{e(-j)}}{{{\epsilon}_{\alpha\beta}}+j\Omega-\omega} we obtain

σxyz;o[2]ee(0)(ω,ω)=12βγj1𝐤((yβγe(j1));kx(xβγe(j1));ky){gγβz(j1)(ω)}+((ω,y)(ω,z))\displaystyle\sigma_{xyz;o}^{[2]ee(0)}(\omega,-\omega)=\frac{1}{2}\sum\limits_{\beta\gamma{{j}_{1}}\mathbf{k}}{\left({{\left(y_{\beta\gamma}^{e({{j}_{1}})}\right)}_{;{{k}_{x}}}}-{{\left(x_{\beta\gamma}^{e({{j}_{1}})}\right)}_{;{{k}_{y}}}}\right)}\{g_{\gamma\beta}^{z(-{{j}_{1}})}(\omega)\}+\left((\omega,y)\leftrightarrow(-\omega,z)\right) (S52)

On the other hand, the intraband-interband conductivity can be written as:

σxyz[2]ie(0)=αβj𝐤ivβαx(j)/2ϵαβϵ+jΩky(gαβz(j)(ω))12jj2αβ𝐤vβαx(j+j2)gαβz(j)(ω)ϵαβϵ+(j+j2)Ω{ξααy(j2)ξββy(j2)}+((ω,y)(ω,z))\displaystyle\sigma_{xyz}^{[2]ie(0)}=\sum\limits_{\alpha\beta j\mathbf{k}}{\frac{-iv_{\beta\alpha}^{x(j)}/2}{{{\epsilon}_{\alpha\beta}}-\epsilon+j\Omega}{{\partial}_{{{k}_{y}}}}\left(g_{\alpha\beta}^{z(-j)}(\omega)\right)}-\frac{1}{2}\sum\limits_{j{{j}_{2}}\alpha\beta\mathbf{k}}{\frac{v_{\beta\alpha}^{x(j+{{j}_{2}})}g_{\alpha\beta}^{z(-j)}(\omega)}{{{\epsilon}_{\alpha\beta}}-\epsilon+(j+{{j}_{2}})\Omega}\{}\xi_{\alpha\alpha}^{y(-{{j}_{2}})}-\xi_{\beta\beta}^{y(-{{j}_{2}})}\}+\left((\omega,y)\leftrightarrow(-\omega,z)\right) (S53)
=αβj𝐤xβαe(j)2ky(gαβz(j)(ω))+jj2αβ𝐤ixβαe(j+j2)gαβz(j)(ω)2{ξααy(j2)ξββy(j2)}+((ω,y)(ω,z))\displaystyle=\sum\limits_{\alpha\beta j\mathbf{k}}{\frac{-x_{\beta\alpha}^{e(j)}}{2}{{\partial}_{{{k}_{y}}}}\left(g_{\alpha\beta}^{z(-j)}(\omega)\right)}+\sum\limits_{j{{j}_{2}}\alpha\beta\mathbf{k}}{\frac{ix_{\beta\alpha}^{e(j+{{j}_{2}})}g_{\alpha\beta}^{z(-j)}(\omega)}{2}\{}\xi_{\alpha\alpha}^{y(-{{j}_{2}})}-\xi_{\beta\beta}^{y(-{{j}_{2}})}\}+\left((\omega,y)\leftrightarrow(-\omega,z)\right)
=12αβj𝐤xβαe(j)(gαβz(j)(ω));ky+((ω,y)(ω,z))\displaystyle=\frac{-1}{2}\sum\limits_{\alpha\beta j\mathbf{k}}{x_{\beta\alpha}^{e(j)}{{\left(g_{\alpha\beta}^{z(-j)}(\omega)\right)}_{;{{k}_{y}}}}}+\left((\omega,y)\leftrightarrow(-\omega,z)\right)
=12αβj𝐤(xβαe(j));kygαβz(j)(ω)+((ω,y)(ω,z))\displaystyle=\frac{1}{2}\sum\limits_{\alpha\beta j\mathbf{k}}{{{\left(x_{\beta\alpha}^{e(j)}\right)}_{;{{k}_{y}}}}g_{\alpha\beta}^{z(-j)}(\omega)}+\left((\omega,y)\leftrightarrow(-\omega,z)\right)

where we have used integration by part to obtain the last line. So the combination of σxyz;o[2]ee(0)\sigma_{xyz;o}^{[2]ee(0)} and σxyz[2]ie(0)\sigma_{xyz}^{[2]ie(0)} gives

σxyz;o[2]ee(0)+σxyz[2]ie(0)=12βγj1(yβγe(j1));kx{gγβz(j1)(ω)}+((ω,y)(ω,z))\displaystyle\sigma_{xyz;o}^{[2]ee(0)}+\sigma_{xyz}^{[2]ie(0)}=\frac{1}{2}\sum\limits_{\beta\gamma{{j}_{1}}}{{{\left(y_{\beta\gamma}^{e({{j}_{1}})}\right)}_{;{{k}_{x}}}}}\{g_{\gamma\beta}^{z(-{{j}_{1}})}(\omega)\}+\left((\omega,y)\leftrightarrow(-\omega,z)\right) (S54)

This is the generalization of Eq. (93) of [32] and can be represented as

σxyz[2]ee+ie(0)=12αβj1𝐤fαβSαβxyz(j1)𝒫1ωϵβαj1ΩiπAαβxyz(j1)δ(ωϵβαj1Ω)\displaystyle\sigma_{xyz}^{[2]ee+ie(0)}=\frac{-1}{2}\sum\limits_{\alpha\beta{{j}_{1}}\mathbf{k}}{{{f}_{\alpha\beta}}S_{\alpha\beta}^{xyz({{j}_{1}})}\mathcal{P}\frac{1}{\omega-{{\epsilon}_{\beta\alpha}}-{{j}_{1}}\Omega}-i\pi A_{\alpha\beta}^{xyz({{j}_{1}})}}\delta(\omega-{{\epsilon}_{\beta\alpha}}-{{j}_{1}}\Omega) (S55)
Sαβxyz(j1)=(yαβe(j1));kxzβαe(j1)+(zβαe(j1));kxyαβe(j1),\displaystyle S_{\alpha\beta}^{xyz({{j}_{1}})}={{\left(y_{\alpha\beta}^{e({{j}_{1}})}\right)}_{;{{k}_{x}}}}z_{\beta\alpha}^{e(-{{j}_{1}})}+{{\left(z_{\beta\alpha}^{e({-{j}_{1}})}\right)}_{;{{k}_{x}}}}y_{\alpha\beta}^{e({{j}_{1}})},
Aαβxyz(j1)=(yαβe(j1));kxzβαe(j1)(zβαe(j1));kxyαβe(j1),\displaystyle A_{\alpha\beta}^{xyz({{j}_{1}})}={{\left(y_{\alpha\beta}^{e({{j}_{1}})}\right)}_{;{{k}_{x}}}}z_{\beta\alpha}^{e(-{{j}_{1}})}-{{\left(z_{\beta\alpha}^{e({-{j}_{1}})}\right)}_{;{{k}_{x}}}}y_{\alpha\beta}^{e({{j}_{1}})},

Given the formula (S55) as a generalization of Eq. (94) of Ref. [32], the photocurrents like shift current, intrinsic Fermi surface effect and gyration current can be derived easily.

For example, the ”shift current”, a current under the incident linearly polarized field in the time-reversal invariant systems, can be obtained from Eq. (S55) by keeping only the Dirac delta function part

σxyzshift=π2βγj1fβγδ(ϵγβω+j1Ω)Im[(yβγe(j1));kxzγβe(j1)+(zβγe(j1));kxyγβe(j1)]\displaystyle\sigma_{xyz}^{\text{shift}}=\frac{-\pi}{2}\sum\limits_{\beta\gamma{{j}_{1}}}{{{f}_{\beta\gamma}}\delta({{\epsilon}_{\gamma\beta}}-\omega+{{j}_{1}}\Omega)\operatorname{Im}\left[{{\left(y_{\beta\gamma}^{e({{j}_{1}})}\right)}_{;{{k}_{x}}}}z_{\gamma\beta}^{e(-{{j}_{1}})}+{{\left(z_{\beta\gamma}^{e({{j}_{1}})}\right)}_{;{{k}_{x}}}}y_{\gamma\beta}^{e(-{{j}_{1}})}\right]} (S56)

This is consistent with Eq. (104) of [32].

Refer to caption
Figure S1: Quasienergy band structure (a1), ideal occupation of Floquet bands (a2), linear optical conductivity (b), and nonlinear optical conductivity (c-d) of the driven one-dimensional model defined in Eq. (12). The color scale in (a1) shows the physical weights WαnW^{n}_{\alpha} and jj-photon-assisted optical transitions are marked with arrows, also the occupied bands are marked with hollow circles. The parameters are ω1=ω2=ω\omega_{1}=\omega_{2}=\omega and A=0.3A=0.3. The linear (nonlinear) conductivities are in units of e2/(e3/)e^{2}/\hbar(e^{3}/\hbar) and ω\omega is in units of Ω\Omega. The σ[2](0)\sigma^{[2](0)} in panels (c-d) are scaled which are shown on the plots.

S6 optical conductivity for ideal occupation of states

In this section, we numerically calculate the linear and nonlinear optical conductivity for the one-dimensional driven model presented in Eq. (12) of the main text, assuming ideal occupation of Floquet states, i.e., the lower (upper) Floquet band is fully occupied. The band structure and occupation of the model are shown in Fig. S1(a). Note that the lower Floquet band has quasienergies between Ω/2<ϵ1<0-\Omega/2<\epsilon_{1}<0, while the upper Floquet band occupies 0<ϵ2<Ω/20<\epsilon_{2}<\Omega/2. Bands in other sidebands, with quasienergy εα=ϵα+nΩ,n\varepsilon_{\alpha}=\epsilon_{\alpha}+n\Omega,~{}n\in\mathbb{Z} for α=1(2)\alpha=1(2), are also referred to as the lower (upper) Floquet bands.

The intraband conductivities σ[1]i,σ[2]ei,σ[2]ii\sigma^{[1]i},\sigma^{[2]ei},\sigma^{[2]ii} are identically zero since the derivative of the occupation is zero at all 𝐤\mathbf{k}-points. The linear conductivity is depicted in Fig. S1(b), where the origin of the peaks and dips is marked with arrows indicating jj-assisted transition origins, which can be traced back to Fig. S1(a1). The allowed optical transitions occur between filled and empty bands, and the key transitions involve states with higher physical weights, as shown by the color scale on the bands. Note that due to the different occupations of states, the sign of the peaks differs from those in Fig. 1(b) of the main text.

The interband-interband second-order conductivity is shown in Fig. S1(c), which shares some qualitative similarities with Fig. 1(e) of the main text. The number of peaks and dips is relatively low because only ω\omega resonances are active, while 2ω2\omega resonances are not enabled, as can be verified from Eq. (S49). In contrast, Fig. S1(d) shows σ[2]ie(ω,ω)\sigma^{[2]ie}(\omega,\omega), which has more peaks due to the presence of both ω\omega and 2ω2\omega resonances. The prominent heterodyne σ(±1)\sigma^{(\pm 1)} responses are noticeable in all figures at low frequencies, originating from transitions near the dynamical gaps at ϵ=±Ω/2\epsilon=\pm\Omega/2.