This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Dynamical behavior of Pielou’s difference system with exponential term 111 Corresponding author. E-mail address:mouyang@xmut.edu.cn

Ouyang Miao1,2,∗, Qianhong Zhang3
1School of Mathematics, Southwest Jiaotong University,
Chengdu, Sichuan 610000,China
2School of Mathematics and Statistics, Xiamen University of Technology,
Xiamen, Fujian 361000, China
3School of Mathematics and Statistics, Guizhou University of Finance and Economics,
Guiyang, Guizhou 550025, China

Abstract

In this paper, we investigate a type of Pielou’s difference system with exponential term

yn+1=aznp+zneyn,zn+1=bynq+ynezn.y_{n+1}=\frac{az_{n}}{p+z_{n}}e^{-y_{n}},\;\;\;\;\;\;\\ z_{n+1}=\frac{by_{n}}{q+y_{n}}e^{-z_{n}}.

where the parameters a,b,p,q,a,b,p,q, are positive real numbers and the initial values y0,z0y_{0},z_{0} are arbitrary nonnegative real numbers. Using the mean value theorem and Lyapunov functional skills, we obtained some sufficient conditions which guarantee the boundedness and persistence of solution, and global asymptotic stability of the equilibriums. Moreover, two numerical examples are given to elaborate on the results.

MSC: 39A10   CLC: O159.7

Keywords: difference equation, equilibrium point; stability, boundedness, persistence, stability

1. Motivation

Discrete time single-species model is the most appropriate mathematical description of life histories of organism whose reproduction occurs only once a year during a very short season. These models are widely used in fisheries and many organisms [1-5].

In 1965, Pielou’s equation, as a discrete analogue of the delay logistic equation, was proposed by Pielou [6-7].

xn+1=αxn1+xn1,n=0,1,2,,x_{n+1}=\frac{\alpha x_{n}}{1+x_{n-1}},n=0,1,2,..., (1.1)

where pp is a positive real number.

In fact, there are many conclusions on Pielou’s equation that can be accounted briefly: If α1\alpha\leq 1, then zero is a globally asymptotically stable equilibrium of Eq.(1.1) , if α>1\alpha>1, and x0(0,)x_{0}\in(0,\infty), then y¯=α1\bar{y}=\alpha-1 is a positive globally asymptotically stable equilibrium of Eq(1.1) . Other properties, such as periodicity, oscillation of Pielou’s equation, one can refer to [8-12].

In 2001, Metwally, Grove and Ladas [13] investigated the global stability of a difference model in mathematical biology

xn+1=α+βxn1exn,n=0,1,2,,x_{n+1}=\alpha+\beta x_{n-1}\mathrm{e}^{-x_{n}},\quad n=0,1,2,\ldots, (1.2)

where α\alpha is the immigration rate and β\betathe population growth rate.

In 2006, Ozturk [14] researched the convergence, the boundedness and periodic character of the positive solutions of the following difference equation

xn+1=α+βexnγ+xn1,n=0,1,2,,x_{n+1}=\frac{\alpha+\beta e^{-x_{n}}}{\gamma+x_{n-1}},\quad n=0,1,2,\ldots, (1.3)

where the constants α,β,γ\alpha,\beta,\gamma, and the initial values x1,x0,x_{-1},x_{0}, are positive real numbers.

Based on the previous works, Papaschinopoulos et al. [15] studied the asymptotic behavior of the solutions of two difference equations systems with exponential form, respectively.

xn+1=a+byn1exn,yn+1=c+dxn1eyn.xn+1=a+byn1eyn,yn+1=c+dxn1exn.\begin{array}[]{cc}x_{n+1}=a+by_{n-1}e^{-x_{n}},&y_{n+1}=c+dx_{n-1}e^{-y_{n}}.\\ \\ x_{n+1}=a+by_{n-1}e^{-y_{n}},&y_{n+1}=c+dx_{n-1}e^{-x_{n}}.\end{array} (1.4)

where the constants a,b,c,da,b,c,d, and the initial values x1,x0,y1,y0x_{-1},x_{0},y_{-1},y_{0} are positive real numbers.

Also, Papaschinopoulos et al.[16] studied the asymptotic behavior of the solutions of difference systems of exponential form, respectively,

xn+1=α+βeynγ+yn1,yn+1=δ+ϵexnζ+xn1.xn+1=α+βeynγ+xn1,yn+1=δ+ϵexnζ+yn1.xn+1=α+βexnγ+yn1,yn+1=δ+ϵeynζ+xn1.\begin{array}[]{ll}x_{n+1}=\frac{\alpha+\beta e^{-y_{n}}}{\gamma+y_{n-1}},&y_{n+1}=\frac{\delta+\epsilon e^{-x_{n}}}{\zeta+x_{n-1}}.\\ \\ x_{n+1}=\frac{\alpha+\beta e^{-y_{n}}}{\gamma+x_{n-1}},&y_{n+1}=\frac{\delta+\epsilon e^{-x_{n}}}{\zeta+y_{n-1}}.\\ \\ x_{n+1}=\frac{\alpha+\beta e^{-x_{n}}}{\gamma+y_{n-1}},&y_{n+1}=\frac{\delta+\epsilon e^{-y_{n}}}{\zeta+x_{n-1}}.\end{array} (1.5)

where α,β,γ,δ,ϵ,ζ\alpha,\beta,\gamma,\delta,\epsilon,\zeta, and the initial values x1,x0,y1,y0x_{-1},x_{0},y_{-1},y_{0} are positive constants.

Hereafter, many researchers have worked out colorful homologous-series results. Readers can refer to [17-30].

In this paper, by incorporating Pielou’s equation to extend exponential type difference system, we study the dynamical behavior of the solutions to the following system

yn+1=aznp+zneyn,zn+1=bynq+ynezn.y_{n+1}=\frac{az_{n}}{p+z_{n}}e^{-y_{n}},\;\;\;\;\;\;\\ z_{n+1}=\frac{by_{n}}{q+y_{n}}e^{-z_{n}}. (1.6)

where the parameters a,b,p,qa,\;b,\;p,\;q\; are positive numbers, and the initial values x0,y0x_{0},y_{0} are arbitrary nonnegative real numbers.

The main aim of our work is to study the boundedness and persistence of positive solutions of system (1.6), and its asymptotic behavior. Furthermore, using the iteration method of nonlinear difference equations and Lyapunov function skills, we derive some conditions so that system (1.6) has a unique positive equilibrium, and global asymptotically stability of the equilibrium.

2. Persistence and boundedness

In order to establish the persistence and boundedness of system (1.6), we introduce the following definitions and notations.

Definition 2.1 Let (yn,zn)(y_{n},z_{n}) be an solution of system (1.6), the boundedness and persistence of (yn,zn)(y_{n},z_{n}) is defined as follows:

(i) The sequences {yn},{zn}\{y_{n}\},\{z_{n}\} of positive solution are said to be bounded, if there exist positive real numbers N1,N2,N_{1},N_{2}, such that suppyn(0,N1],suppzn(0,N2],n=1,2,.\mbox{supp}y_{n}\subset\left(0,N_{1}\right],\mbox{supp}z_{n}\subset\left(0,N_{2}\right],n=1,2,\cdots.

(ii) The sequences {yn},{zn}\{y_{n}\},\{z_{n}\} of positive solution are said to be persistence, if there exist positive real numbers M1,M2,M_{1},M_{2}, such that suppyn[M1,),suppzn[M2,),n=1,2,.\mbox{supp}y_{n}\subset\left[M_{1},\infty\right),\mbox{supp}z_{n}\subset\left[M_{2},\infty\right),n=1,2,\cdots.

(iii) The sequences {yn},{zn}\{y_{n}\},\{z_{n}\} of positive numbers are said to be bounded and persistence if there exist positive real numbers M1,N1,M2,N2M_{1},N_{1},M_{2},N_{2} such that suppyn[M1,N1],suppzn[M2,N2],\mbox{supp}y_{n}\subset[M_{1},N_{1}],\mbox{supp}z_{n}\subset[M_{2},N_{2}], n=1,2,n=1,2,\cdots.

Theorem 2.1 Consider system (1.6), if p,q(0,+),a,b(0,1),y0,z0(0,+)p,q\in(0,+\infty),a,b\in(0,1),y_{0},z_{0}\in(0,+\infty), then the following statements are true.

(i) the positive solution yn,zn{y_{n}},{z_{n}} of system (1.6) is bounded.

(ii) the positive solution yn,zn{y_{n}},{z_{n}} of system (1.6) is persistence.

Proof. (i) Let {yn},{zn}\{y_{n}\},\{z_{n}\} be the solution sequence of system (1.6), for any positive initial values, obviously, yn>0,zn>0.{y_{n}}>0,{z_{n}}>0. Therefore

eyn1,ezn1.e^{-y_{n}}\leq 1,\ \ e^{-z_{n}}\leq 1. (2.1)

From (1.6) and (2.1), we have

{yn+1aznp+zn,zn+1bynq+yn.\left\{\begin{array}[]{l}y_{n+1}\leq\frac{az_{n}}{p+z_{n}},\\ \\ z_{n+1}\leq\frac{by_{n}}{q+y_{n}}.\end{array}\right. (2.2)

Consider the system of difference equations

{xn+1=awnp+wn,wn+1=bxnq+xn.\left\{\begin{array}[]{l}x_{n+1}=\frac{aw_{n}}{p+w_{n}},\\ \\ w_{n+1}=\frac{bx_{n}}{q+x_{n}}.\end{array}\right. (2.3)

Let (xn,wn)(x_{n},w_{n}) be a solution of (2.3) such that

x0=y0,w0=z0.x_{0}=y_{0},\ \ w_{0}=z_{0}. (2.4)

Simplify (2.3), we get

{xn+1=abxn1pq+(p+b)xn1,wn+1=abwn1pq+(q+a)wn1.\left\{\begin{array}[]{l}x_{n+1}=\frac{abx_{n-1}}{pq+(p+b)x_{n-1}},\\ \\ w_{n+1}=\frac{abw_{n-1}}{pq+(q+a)w_{n-1}}.\end{array}\right. (2.5)

Set

Xn=1xn,Wn=1wn.X_{n}=\frac{1}{x_{n}},\ W_{n}=\frac{1}{w_{n}}.

(2.4) turns to

X0=1y0,W0=1z0.X_{0}=\frac{1}{y_{0}},\ \ W_{0}=\frac{1}{z_{0}}. (2.6)

Then (2.5) turns into

{Xn+1=p+bab+pqabXn1,Wn+1=q+aab+pqabWn1.\left\{\begin{array}[]{l}X_{n+1}=\frac{p+b}{ab}+\frac{pq}{ab}X_{n-1},\\ \\ W_{n+1}=\frac{q+a}{ab}+\frac{pq}{ab}W_{n-1}.\end{array}\right. (2.7)

From (2.6) and (2.7), we obtain

{Xn=λ1(pqab)n+λ2(pqab)n+p+babpq,Wn=μ1(pqab)n+μ2(pqab)n+q+aabpq.\left\{\begin{array}[]{l}X_{n}=\lambda_{1}\left(\sqrt{\frac{pq}{ab}}\right)^{n}+\lambda_{2}\left(-\sqrt{\frac{pq}{ab}}\right)^{n}+\frac{p+b}{ab-pq},\\ \\ W_{n}=\mu_{1}\left(\sqrt{\frac{pq}{ab}}\right)^{n}+\mu_{2}\left(-\sqrt{\frac{pq}{ab}}\right)^{n}+\frac{q+a}{ab-pq}.\end{array}\right. (2.8)

Where λ1,λ2,μ1,μ2\lambda_{1},\lambda_{2},\mu_{1},\mu_{2} are expressions of X0,W0X_{0},W_{0}.

From the relations between (2.2) and (2.7), we know

{yn+11λ1(pqab)n+λ2(pqab)n+p+babpq,zn+11μ1(pqab)n+μ2(pqab)n+q+aabpq.\left\{\begin{array}[]{l}y_{n+1}\leq\frac{1}{\lambda_{1}\left(\sqrt{\frac{pq}{ab}}\right)^{n}+\lambda_{2}\left(-\sqrt{\frac{pq}{ab}}\right)^{n}+\frac{p+b}{ab-pq}},\\ \\ z_{n+1}\leq\frac{1}{\mu_{1}\left(\sqrt{\frac{pq}{ab}}\right)^{n}+\mu_{2}\left(-\sqrt{\frac{pq}{ab}}\right)^{n}+\frac{q+a}{ab-pq}}.\par\end{array}\right. (2.9)

From Eq.(1.6), without lose of correctness, we can get some loose upper bound to simplfy the expression,

{yn+1a,zn+1b.\left\{\begin{array}[]{l}y_{n+1}\leq a,\\ \\ z_{n+1}\leq b.\end{array}\right. (2.10)

Therefore, we have the boundedness of the solution of Eq.(1.6) .

(ii) Consider the function

f(x)=axp+x,(resp. g(x)=bxq+x).f(x)=\frac{ax}{p+x},\ \ \ (\mbox{resp. }g(x)=\frac{bx}{q+x}).

where x(0,+).x\in(0,+\infty). Since f(x)=ap(p+x)2>0,(resp.g(x)=bq(q+x)2>0,f^{\prime}(x)=\frac{ap}{(p+x)^{2}}>0,(\mbox{resp.}g^{\prime}(x)=\frac{bq}{(q+x)^{2}}>0, it’s easy to know f(x),g(x)f(x),g(x) are increasing functions. So, for (y0,z0)(0,+)\forall(y_{0},z_{0})\in(0,+\infty)

{yn+1az0p+z0eb,zn+1by0q+y0ea.\left\{\begin{array}[]{l}y_{n+1}\geq\frac{az_{0}}{p+z_{0}}e^{-b},\\ \\ z_{n+1}\geq\frac{by_{0}}{q+y_{0}}e^{-a}.\end{array}\right. (2.11)

It shows the solutions of Eq.(1.6) is permanent.

Theorem 2.2. The positive solution yn,zn{y_{n}},{z_{n}} of system (1.6) are boundedness and persistence.

3. Stability

In order to obtain the existence and the attractivity of the unique positive equilibrium of system (1.6), we give the following definitions, notations and Lemmas.

Definition 3.1 [14] Let IRI\subset R and let f,g:I×IIf,g:I\times I\rightarrow I be continuous differential functions. Consider the systems of difference equations

yn+1=f(yn,zn),zn+1=g(yn,zn),n=0,1,2,,y_{n+1}=f\left(y_{n},z_{n}\right),z_{n+1}=g\left(y_{n},z_{n}\right),\quad n=0,1,2,\cdots, (3.1)

where the initial conditions y0,z0Iy_{0},z_{0}\in I. (y¯,z¯)(\bar{y},\bar{z}) is said to be an equilibrium of Eq. (3.1) if

y¯=f(y¯,z¯),z¯=g(y¯,z¯).\bar{y}=f(\bar{y},\bar{z}),\bar{z}=g(\bar{y},\bar{z}).

Definition 3.2 [14] (i) The equilibrium (y¯,z¯)(\bar{y},\bar{z}) of Eq. (3.1) is called locally stable if for every ε>0\varepsilon>0, there exists δ>0\delta>0 such that y0,z0Iy_{0},z_{0}\in I with |y0y¯|+|z0z¯|<δ\left|y_{0}-\bar{y}\right|+\left|z_{0}-\bar{z}\right|<\delta , then |yny¯|+|znz¯|<ε\left|y_{n}-\bar{y}\right|+\left|z_{n}-\bar{z}\right|<\varepsilon for all n0.n\geq 0.
(ii) The equilibrium (y¯,z¯)(\bar{y},\bar{z}) of Eq. (3.1) is called locally asymptotically stable if it is locally stable, and if there exists γ>0\gamma>0 such that y0,z0Iy_{0},z_{0}\in I with |y0y¯|+|z0z¯|<γ\left|y_{0}-\bar{y}\right|+\left|z_{0}-\bar{z}\right|<\gamma, then limnyn=y¯,limnzn=z¯.\lim_{n\rightarrow\infty}y_{n}=\bar{y},\lim_{n\rightarrow\infty}z_{n}=\bar{z}.
(iii) The equilibrium (y¯,z¯)(\bar{y},\bar{z}) of Eq. (3.1) is called a global attractor if for every y0,z0Iy_{0},z_{0}\in I we have limnyn=y¯,limnzn=z¯\lim_{n\rightarrow\infty}y_{n}=\bar{y},\lim_{n\rightarrow\infty}z_{n}=\bar{z}.
(iv) The equilibrium (y¯,z¯)(\bar{y},\bar{z}) of Eq. (3.1) is called globally asymptotically stable if it is locally stable and a global attractor.
(v) The equilibrium (y¯,z¯)(\bar{y},\bar{z}) of Eq. (3.1) is unstable if it is not stable.

Theorem 3.1. (i) System (1.6) always has a zero equilibrium.
(ii) If

abpq>1,\frac{ab}{pq}>1, (3.2)

then system (1.6) has a unique positive equilibrium.

Proof (i) It’s obvious. So we omit.
(ii) Let (y¯,z¯)(\bar{y},\bar{z}) be the positive equilibrium of system (1.6), i.e.

y¯=az¯p+z¯ey¯,z¯=by¯q+y¯ez¯.\bar{y}=\frac{a\bar{z}}{p+\bar{z}}e^{-\bar{y}},\quad\bar{z}=\frac{b\bar{y}}{q+\bar{y}}e^{-\bar{z}}. (3.3)

From (2.11), we know

0y0eb<y¯<a, 0z0ea<z¯<b.0\leq y_{0}e^{-b}<\bar{y}<a,\ \ 0\leq z_{0}e^{-a}<\bar{z}<b. (3.4)

We consider the homologous algebraic system of system (1.6),

y=azp+zey,z=byq+yez.y=\frac{az}{p+z}e^{-y},\quad z=\frac{by}{q+y}e^{-z}. (3.5)

From (3.5), one has that

z=pyeyayey,y=qzezbzez.z=\frac{pye^{y}}{a-ye^{y}},\ \ y=\frac{qze^{z}}{b-ze^{z}}. (3.6)

Substituting (3.6) into system (3.5), we get

epyeyayey=byq+yayeypyey,eqzezbzez=azp+zbzezqzez.e^{\frac{pye^{y}}{a-ye^{y}}}=\frac{by}{q+y}\frac{a-ye^{y}}{pye^{y}},\ \ e^{\frac{qze^{z}}{b-ze^{z}}}=\frac{az}{p+z}\frac{b-ze^{z}}{qze^{z}}. (3.7)

Set

G(y)=epyeyayey+bq+yyeyapey,G(y)=e^{\frac{pye^{y}}{a-ye^{y}}}+\frac{b}{q+y}\frac{ye^{y}-a}{pe^{y}}, (3.8)

Let ϵ10+\epsilon_{1}\rightarrow 0^{+},

G(ϵ1)=1abpq,G(\epsilon_{1})=1-\frac{ab}{pq}, (3.9)

Since condition (3.2) is satisfied, we have

G(ϵ1)<0.G(\epsilon_{1})<0. (3.10)

On the other hand, from (3.8),

G(a)=epaeyaaea+bq+aaeaapea>0.G(a)=e^{\frac{pae^{y}}{a-ae^{a}}}+\frac{b}{q+a}\frac{ae^{a}-a}{pe^{a}}>0. (3.11)

and

G(y)=epyeyayap(y+1)ey(ayey)2+ey+apeybq+y+ayeypeyb(q+y)2>0.G^{\prime}(y)=e^{\frac{pye^{y}}{a-y}}\cdot\frac{ap(y+1)e^{y}}{\left(a-ye^{y}\right)^{2}}+\frac{e^{y}+a}{pe^{y}}\cdot\frac{b}{q+y}+\frac{a-ye^{y}}{pe^{y}}\frac{b}{(q+y)^{2}}>0. (3.12)

(3.12) implies G(y)G(y) is an increasing function for y(ϵ1,a)y\in(\epsilon_{1},a).
Similarly, set

H(z)=eqzezbzez+ap+zzezbqez,H(z)=e^{\frac{qze^{z}}{b-ze^{z}}}+\frac{a}{p+z}\frac{ze^{z}-b}{qe^{z}}, (3.13)

Let ϵ20+\epsilon_{2}\rightarrow 0^{+},

H(ϵ2)=1abpq,H(\epsilon_{2})=1-\frac{ab}{pq}, (3.14)

Noting condition (3.2), we have

H(ϵ2)<0.H(\epsilon_{2})<0. (3.15)

From (3.13), we have

H(b)=eqbezbbeb+ap+bbebbqeb>0,H(b)=e^{\frac{qbe^{z}}{b-be^{b}}}+\frac{a}{p+b}\frac{be^{b}-b}{qe^{b}}>0, (3.16)

and

H(z)=eqzezbzbq(z+1)ez(bzez)2+ez+bqezap+z+bzezqeza(p+z)2>0.H^{\prime}(z)=e^{\frac{qze^{z}}{b-z}}\cdot\frac{bq(z+1)e^{z}}{\left(b-ze^{z}\right)^{2}}+\frac{e^{z}+b}{qe^{z}}\cdot\frac{a}{p+z}+\frac{b-ze^{z}}{qe^{z}}\frac{a}{(p+z)^{2}}>0. (3.17)

(3.17) shows H(z)H(z) is increasing function for z(ϵ2,b)z\in(\epsilon_{2},b).

Therefore, we have that (y¯,z¯)(ϵ1,a)×(ϵ2,b)(\bar{y},\bar{z})\in(\epsilon_{1},a)\times(\epsilon_{2},b) is the unique positive equilibrium of (1.6).

To have a more accurate estimation of (y¯,z¯)(\bar{y},\bar{z}), we give a more narrow range by (2.9). Here, noting the lower upper bounds as y,zy^{*},z^{*} ,

yn+1<abpqp+b=y,zn+1<abpqq+a=z.y_{n+1}<\frac{ab-pq}{p+b}=y^{*},\ \ z_{n+1}<\frac{ab-pq}{q+a}=z^{*}. (3.18)

Set (y,z)(y_{*},z_{*}) be higher bound of (y¯,z¯)(\bar{y},\bar{z}) , i. e.,

y=qzezbzez<yn+1,z=pyeyayey<zn+1.y_{*}=\frac{qz_{*}e^{z_{*}}}{b-z_{*}e^{z_{*}}}<y_{n+1},\ \ z_{*}=\frac{py_{*}e^{y_{*}}}{a-y_{*}e^{y_{*}}}<z_{n+1}. (3.19)

In fact, considering function g(x)=cxexdxexg(x)=\frac{cxe^{x}}{d-xe^{x}}, since g(x)=cd(x+1)ex(dxex)2>0g^{\prime}(x)=\frac{cd(x+1)e^{x}}{(d-xe^{x})^{2}}>0 for x(0,)x\in(0,\infty). That means yy (resp. zz) in (3.6) will attain its minimums when zz (resp. yy) come to the minimum.

Now, let’s find the expressions of y,zy_{*},z_{*}.
Noting (1.6), since yn+1y_{n+1} increases responding znz_{n}, decrease responding yny_{n}, we have

ynazp+zey,znbyq+yez.y_{n}\geq\frac{az_{*}}{p+z_{*}}e^{-y^{*}},\ \ z_{n}\geq\frac{by_{*}}{q+y_{*}}e^{-z^{*}}. (3.20)

By the definition of equilibrium, noting (3.18), there exists N>0,N>0, for n>N,n>N, yn=y,zn=zy_{n}=y_{*},z_{n}=z_{*}, i.e.,

y=azp+zey,z=byq+yez.y_{*}=\frac{az_{*}}{p+z_{*}}e^{-y^{*}},\ \ z_{*}=\frac{by_{*}}{q+y_{*}}e^{-z^{*}}. (3.21)

Manipulating (3.21), we have

y=abe(y+z)pqbez+p,z=abe(y+z)pqaey+q.y_{*}=\frac{abe^{-\left(y^{*}+z^{*}\right)}-pq}{be^{-z^{*}}+p},\ \ z_{*}=\frac{abe^{-\left(y^{*}+z^{*}\right)}-pq}{ae^{-y^{*}}+q}. (3.22)

The unique positive equilibrium (y¯,z¯)(\bar{y},\bar{z}) of system (1.6)

y<y¯<y,z<z¯<z.y_{*}<\bar{y}<y^{*},\ \ z_{*}<\bar{z}<z^{*}. (3.23)

The proof is completed.

Theorem 3.2. (i) If

ap<1,bq<1.\frac{a}{p}<1,\ \ \frac{b}{q}<1. (3.24)

(0,0)(0,0) is locally asymptotically stable.

(ii) If

ey>a,ez>b.e^{y_{*}}>a,\ \ e^{z_{*}}>b. (3.25)

(y¯,z¯)(\bar{y},\bar{z}) is locally asymptotically stable.

Proof. (i) From system (1.6), the linearized equation of system (1.6) at (0,0)(0,0) is

ϕn+1=Tϕn.\phi_{n+1}=T~{}\phi_{n}. (3.26)

where

ϕn=[ynzn],T=[0apbq0].\begin{array}[]{ll}\phi_{n}=\left[\begin{array}[]{c}y_{n}\\ z_{n}\end{array}\right],&T=\left[\begin{array}[]{cc}0&\frac{a}{p}\\ \frac{b}{q}&0\end{array}\right].\end{array} (3.27)

Under condition (3.24), by Theorem 1.3.7 [25], the equilibrium point (0,0) of system (1.6) is locally asymptotically stable.

(ii) The linearized system of system (1.6) at (y¯,z¯)(\bar{y},\bar{z}) is

ϕn+1=T(y¯,z¯)ϕn=[az¯ey¯p+z¯apey¯(p+z¯)2bqez¯(q+y¯)2by¯ez¯q+y¯]ϕn.\phi_{n+1}=T_{(\bar{y},\bar{z})}\phi_{n}=\left[\begin{array}[]{cc}-\frac{a\bar{z}e^{-\bar{y}}}{p+\bar{z}}&\frac{ape^{-\bar{y}}}{\left(p+\bar{z}\right)^{2}}\\ \\ \frac{bqe^{-\bar{z}}}{\left(q+\bar{y}\right)^{2}}&-\frac{b\bar{y}e^{-\bar{z}}}{q+\bar{y}}\end{array}\right]~{}\phi_{n}. (3.28)

where

T(y¯,z¯)=[ABCD].T_{(\bar{y},\bar{z})}=\left[\begin{array}[]{cc}A&B\\ C&D\end{array}\right].

In fact,

|A|+|B|=|az¯ey¯p+z¯|+|apey¯(p+z¯)2|=az¯ey¯(p+z¯)+apey¯(p+z¯)2<aey¯<aey,|C|+|D|=|bqez¯(q+y¯)2|+|by¯ez¯q+y¯|=by¯ez¯(q+y¯)+bqez¯(q+y¯)2<bez¯<bez.\begin{array}[]{c}|A|+|B|=\left|-\frac{a\bar{z}e^{-\bar{y}}}{p+\bar{z}}\right|+\left|\frac{ape^{-\bar{y}}}{(p+\bar{z})^{2}}\right|=\frac{a\bar{z}e^{-\bar{y}}(p+\bar{z})+ape^{-\bar{y}}}{(p+\bar{z})^{2}}<ae^{-\bar{y}}<ae^{-y_{*}},\\ \\ |C|+|D|=\left|\frac{bqe^{-\bar{z}}}{(q+\bar{y})^{2}}\right|+\left|-\frac{b\bar{y}e^{-\bar{z}}}{q+\bar{y}}\right|=\frac{b\bar{y}e^{-\bar{z}}(q+\bar{y})+bqe^{-\bar{z}}}{(q+\bar{y})^{2}}<be^{-\bar{z}}<be^{-z_{*}}.\end{array} (3.29)

Noting condition (3.25), the inequations (3.29) implies

|A|+|B|<1,|C|+|D|<1.|A|+|B|<1,\ \ |C|+|D|<1. (3.30)

The eigenvalue equation of (3.28) is

λ2+(A+D)λ+(ADBC)=0.\lambda^{2}+\left(A+D\right)\lambda+\left(AD-BC\right)=0. (3.31)

From (3.30), one has

|A+D|<1+(ADBC)<2.|A+D|<1+(AD-BC)<2. (3.32)

by Theorem 1.1.1 [26], the eigenvalues of Eq.(3.31) lie inside the unit disk. So the positive equilibrium (y¯,z¯)(\bar{y},\bar{z}) of system (1.6) is locally asymptotically stable.

The proof is completed.

Theorem 3.3. (i) If

ab<min(p,q),ab<\min(p,q), (3.33)

the zero equilibrium is a global attractor.
(ii) If

azy¯(p+z)ey,byz¯(q+y)ez.az^{*}\leq\bar{y}\left(p+z^{*}\right)e^{y_{*}},\ \ ~{}~{}~{}~{}~{}~{}by^{*}\leq\bar{z}\left(q+y^{*}\right)e^{z_{*}}. (3.34)

the equilibrium (y¯,z¯)(\bar{y},\bar{z}) is a global attractor.
Proof. Consider the following discrete time analog of the Lyapunov function, mentioned in [31].

Vn(y¯,z¯)=[(yny¯)1ln(yny¯)]+[(znz¯)1ln(znz¯)].V_{n}(\bar{y},\bar{z})=\left[\left(y_{n}-\bar{y}\right)-1-\ln\left(y_{n}-\bar{y}\right)\right]+\left[\left(z_{n}-\bar{z}\right)-1-\ln\left(z_{n}-\bar{z}\right)\right].

The nonnegativity of VnV_{n} follows from:

x1lnx0,x>0.x-1-\ln x\geq 0,\quad\forall x>0.

Herefore, we have

ln(yn+1y¯yny¯)yn+1ynyn+1y¯,ln(zn+1z¯znz¯)zn+1znzn+1z¯.-\ln\left(\frac{y_{n+1}-\bar{y}}{y_{n}-\bar{y}}\right)\leq-\frac{y_{n+1}-y_{n}}{y_{n+1}-\bar{y}},\ \ -\ln\left(\frac{z_{n+1}-\bar{z}}{z_{n}-\bar{z}}\right)\leq-\frac{z_{n+1}-z_{n}}{z_{n+1}-\bar{z}}.

Assume

Vn+1(y¯,z¯)Vn(y¯,z¯)=[(yn+1y¯)1ln(yn+1y¯)][(zn+1z¯)1ln(zn+1z¯)][(yny¯)1ln(yny¯)]+[(znz¯)1ln(znz¯)](yn+1yn)(11yn+1y¯)+(zn+1zn)(11zn+1z¯)(aϵ1)(yn+1y¯1yn+1y¯)+(bϵ2)(zn+1z¯1zn+1z¯).\begin{array}[]{ll}V_{n+1}(\bar{y},\bar{z})-V_{n}(\bar{y},\bar{z})=&\left[\left(y_{n+1}-\bar{y}\right)-1-\ln\left(y_{n+1}-\bar{y}\right)\right]-\left[\left(z_{n+1}-\bar{z}\right)-1-\ln\left(z_{n+1}-\bar{z}\right)\right]\\ \\ &-\left[\left(y_{n}-\bar{y}\right)-1-\ln\left(y_{n}-\bar{y}\right)\right]+\left[\left(z_{n}-\bar{z}\right)-1-\ln\left(z_{n}-\bar{z}\right)\right]\\ \\ &\leq\left(y_{n+1}-y_{n}\right)\left(1-\frac{1}{y_{n+1}-\bar{y}}\right)+\left(z_{n+1}-z_{n}\right)\left(1-\frac{1}{z_{n+1}-\bar{z}}\right)\\ \\ &\leq(a-\epsilon_{1})(\frac{y_{n+1}-\bar{y}-1}{y_{n+1}-\bar{y}})+(b-\epsilon_{2})(\frac{z_{n+1}-\bar{z}-1}{z_{n+1}-\bar{z}}).\end{array} (3.35)

Consider the zero equilibrium (0,0),

Vn+1(0,0)Vn(0,0)(aϵ1)(yn+11yn+1)+(bϵ2)(zn+11zn+1)=(aϵ1)(azn(p+zn)eynazn)+(bϵ2)(byn(q+yn)eznbyn)(aϵ1)(ab(p+ϵ2)eϵ1aϵ2)+(bϵ2)(ba(q+ϵ1)eϵ2bϵ1).\begin{array}[]{ll}V_{n+1}(0,0)-V_{n}(0,0)&\leq(a-\epsilon_{1})(\frac{y_{n+1}-1}{y_{n+1}})+(b-\epsilon_{2})(\frac{z_{n+1}-1}{z_{n+1}})\\ \\ &=(a-\epsilon_{1})(\frac{az_{n}-(p+z_{n})e^{y_{n}}}{az_{n}})+(b-\epsilon_{2})(\frac{by_{n}-(q+y_{n})e^{z_{n}}}{by_{n}})\\ \\ &\leq(a-\epsilon_{1})(\frac{ab-(p+\epsilon_{2})e^{\epsilon_{1}}}{a\epsilon_{2}})+(b-\epsilon_{2})(\frac{ba-(q+\epsilon_{1})e^{\epsilon_{2}}}{b\epsilon_{1}}).\end{array} (3.36)

Set ϵ=min(ϵ1,ϵ2),\epsilon=\min(\epsilon_{1},\epsilon_{2}), (3.36) becomes

Vn+1(0,0)Vn(0,0)(aϵ)(ab(p+ϵ)eϵaϵ)+(bϵ)(ab(q+ϵ)eϵbϵ).V_{n+1}(0,0)-V_{n}(0,0)\leq(a-\epsilon)(\frac{ab-(p+\epsilon)e^{\epsilon}}{a\epsilon})+(b-\epsilon)(\frac{ab-(q+\epsilon)e^{\epsilon}}{b\epsilon}). (3.37)

Let ϵ0+\epsilon\rightarrow 0^{+}, since (3.33) holds true, we have

Vn+1(0,0)Vn(0,0)0,V_{n+1}(0,0)-V_{n}(0,0)\leq 0, (3.38)

for all n0n\geq 0.

For the fact VnV_{n} is non-increasing and non-negative, we know that limnVn0.\lim_{n\rightarrow\infty}V_{n}\geq 0. Hence,

limn(Vn+1Vn)=0.\lim_{n\rightarrow\infty}(V_{n+1}-V_{n})=0.

It follows that limnyn=0,limnzn=0\lim_{n\rightarrow\infty}y_{n}=0,\lim_{n\rightarrow\infty}z_{n}=0. Furthermore, VnV0V_{n}\leq V_{0}, for all n0n\geq 0, which shows that (0,0)[ϵ1,a]×[ϵ2,b](0,0)\in[\epsilon_{1},a]\times[\epsilon_{2},b] is a global attractor.

(ii ) Next, we will prove the globally asymptotically stability of the unique positive equilibrium (y¯,z¯)(\bar{y},\bar{z}).
We consider the following discrete time analog of the Lyapunov function

Wn(y¯,z¯)=y¯(yny¯1lnyny¯)+z¯(znz¯1lnznz¯).W_{n}(\bar{y},\bar{z})=\bar{y}\left(\frac{y_{n}}{\bar{y}}-1-\ln\frac{y_{n}}{\bar{y}}\right)+\bar{z}\left(\frac{z_{n}}{\bar{z}}-1-\ln\frac{z_{n}}{\bar{z}}\right).

The nonnegativity of WnW_{n} follows from the following inequality:

x1lnx0,x>0.x-1-\ln x\geq 0,\quad\forall x>0.

Furthermore,

ln(yn+1yn)yn+1ynyn+1,ln(zn+1zn)zn+1znzn+1.-\ln\left(\frac{y_{n+1}}{y_{n}}\right)\leq-\frac{y_{n+1}-y_{n}}{y_{n+1}},\ \ -\ln\left(\frac{z_{n+1}}{z_{n}}\right)\leq-\frac{z_{n+1}-z_{n}}{z_{n+1}}.

Since (3.34) holds true, it follows that

Wn+1Wn=y¯(yn+1y¯1lnyn+1y¯)+z¯(zn+1z¯1lnzn+1z¯)y¯(yny¯1lnyny¯)z¯(znz¯1lnznz¯)(yn+1yn)(1y¯yn+1)+(zn+1zn)(1z¯zn+1)=(yn+1yn)azny¯(p+zn)eynazn+(zn+1zn)bynz¯(q+yn)eznbyn(yy)azy¯(p+z)eyaz+(zz)byz¯(q+y)ezby0.\ \begin{array}[]{ll}W_{n+1}-W_{n}=&\bar{y}\left(\frac{y_{n+1}}{\bar{y}}-1-\ln\frac{y_{n+1}}{\bar{y}}\right)+\bar{z}\left(\frac{z_{n+1}}{\bar{z}}-1-\ln\frac{z_{n+1}}{\bar{z}}\right)\\ \\ &-\bar{y}\left(\frac{y_{n}}{\bar{y}}-1-\ln\frac{y_{n}}{\bar{y}}\right)-\bar{z}\left(\frac{z_{n}}{\bar{z}}-1-\ln\frac{z_{n}}{\bar{z}}\right)\\ \\ &\leq\left(y_{n+1}-y_{n}\right)\left(1-\frac{\bar{y}}{y_{n+1}}\right)+\left(z_{n+1}-z_{n}\right)\left(1-\frac{\bar{z}}{z_{n+1}}\right)\\ \\ &=\left(y_{n+1}-y_{n}\right)\frac{az_{n}-\bar{y}\left(p+z_{n}\right)e^{y_{n}}}{az_{n}}+\left(z_{n+1}-z_{n}\right)\frac{by_{n}-\bar{z}\left(q+y_{n}\right)e^{z_{n}}}{by_{n}}\\ \\ &\leq\left(y^{*}-y_{*}\right)\frac{az^{*}-\bar{y}\left(p+z^{*}\right)e^{y_{*}}}{az^{*}}+\left(z^{*}-z_{*}\right)\frac{by^{*}-\bar{z}\left(q+y^{*}\right)e^{z_{*}}}{by^{*}}\\ \\ &\leq 0.\end{array} (3.39)

In fact, f(x)=p+xaxf(x)=\frac{p+x}{ax} is a non-increase function , p+xaxp+xax,-\frac{p+x}{ax}\leq-\frac{p+x^{*}}{ax^{*}}, for x(x,x)\forall x\in(x_{*},x^{*}).
As WnW_{n} being non-increasing and non-negative, it follows that limnWn0.\lim_{n\rightarrow\infty}W_{n}\geq 0. Hence,

limnWn+1Wn=0.\lim_{n\rightarrow\infty}W_{n+1}-W_{n}=0.

It follows that

limnyn=y¯,limnzn=z¯.\lim_{n\rightarrow\infty}y_{n}=\bar{y},\lim_{n\rightarrow\infty}z_{n}=\bar{z}.

Furthermore, WnW0W_{n}\leq W_{0} for all n0n\geq 0, which shows that (y¯,z¯)[y,y]×[z,z](\bar{y},\bar{z})\in[y_{*},y^{*}]\times[z_{*},z^{*}] is a global attractor.

Theorem 3.4. (i) If (3.33), the zero equilibrium is global asympotically stable.
(ii) If (3.34), the positive equilibrium (y¯,z¯)(\bar{y},\bar{z}) is global asympotically stable.

Proof. By Theorem 3.2, Theorem 3.3, the equilibrium (0,0)(0,0) and (y¯,z¯)(\bar{y},\bar{z}) of system (1.6) is globally asymptotically stable.

4. Numerical examples

Example 4.1 Consider the parameters a=0.8,b=0.9,p=0.6,q=0.5,a=0.8,b=0.9,p=0.6,q=0.5, and initial values y(1)0=0.35,z(1)0=0.26,y(1)_{0}=0.35,z(1)_{0}=0.26, the Pielou’s system with exponential terms (1.6) is as follows,

yn+1=0.8zn0.6+zneyn,zn+1=0.9yn0.5+ynezn.y_{n+1}=\frac{0.8z_{n}}{0.6+z_{n}}e^{-y_{n}},\;\;\;\;\;\;\\ z_{n+1}=\frac{0.9y_{n}}{0.5+y_{n}}e^{-z_{n}}. (4.1)

The solution of Eq.(4.1) (yn,zn)[az0p+z0ea,a]×[by0q+y0eb,b]=[0.1087,0.8]×[0.1507,0.9](y_{n},z_{n})\in[\frac{az_{0}}{p+z_{0}}e^{-a},a]\times[\frac{by_{0}}{q+y_{0}}e^{-b},b]=[0.1087,0.8]\times[0.1507,0.9].
For the initial value y(2)0=0.05,z(2)0=0.02y(2)_{0}=0.05,z(2)_{0}=0.02 , the solution (yn,zn)[0.0116,0.8]×[0.0333,0.9](y_{n},z_{n})\in[0.0116,0.8]\times[0.0333,0.9].

Refer to caption

(a) y(1)0=0.35,z(1)0=0.26.y(1)_{0}=0.35,z(1)_{0}=0.26.

Refer to caption

(b)y(2)0=0.05,z(2)0=0.02.y(2)_{0}=0.05,z(2)_{0}=0.02.

Figure 1: The positive equilibrium dynamics of system (4.1).

It is obvious that conditions (3.2),(3.25) and (3.34) are satisfied. For the positive initial value wherever, Eq.(4.1) has the unique positive equilibrium (y¯,z¯)[y,y]×[z,z](\bar{y},\bar{z})\in[y_{*},y^{*}]\times[z_{*},z^{*}],(see Fig.1-Fig.2).
where

y=abe(y+z)pqbez+p=0.0751,y=p+babp2=0.2800.y_{*}=\frac{abe^{-\left(y^{*}+z^{*}\right)}-pq}{be^{-z^{*}}+p}=0.0751,\ \ y^{*}=\frac{p+b}{ab-p^{2}}=0.2800.\\
z=abe(y+z)pqaey+q=0.0850,z=q+aabq2=0.3231.z_{*}=\frac{abe^{-\left(y^{*}+z^{*}\right)}-pq}{ae^{-y^{*}}+q}=0.0850,\ \ z^{*}=\frac{q+a}{ab-q^{2}}=0.3231.
Refer to caption
Figure 2: The comparation of solutions of system (4.1) from (y(1)0,z(1)0)(y(1)_{0},z(1)_{0}) and (y(2)0,z(2)0)(y(2)_{0},z(2)_{0}).

Example 4.2 Consider the parameters a=0.6,b=0.5,p=0.8,q=0.9,a=0.6,b=0.5,p=0.8,q=0.9, the Pielou’s system with exponential terms (1.6) is as follows,

yn+1=0.6zn0.8+zneyn,zn+1=0.5yn0.9+ynezn.y_{n+1}=\frac{0.6z_{n}}{0.8+z_{n}}e^{-y_{n}},\;\;\;\;\;\;\\ z_{n+1}=\frac{0.5y_{n}}{0.9+y_{n}}e^{-z_{n}}. (4.2)

For the positive initial value wherever, the solution of Eq.(4.2) (yn,zn)[0,0.6]×[0,0.5](y_{n},z_{n})\in[0,0.6]\times[0,0.5].

The parameters meet that conditions (3.24) and (3.33) . It is obvious that (0,0)(0,0) is the globally asymptotic stable. (see Fig.3-Fig.4.).

Refer to caption

(a) y(1)0=0.35,z(1)0=0.26.y(1)_{0}=0.35,z(1)_{0}=0.26.

Refer to caption

(b) y(2)0=0.05,z(2)0=0.02.y(2)_{0}=0.05,z(2)_{0}=0.02.

Figure 3: The zero equilibrium dynamics of system (4.2).
Refer to caption
Figure 4: The comparation of solutions of system (4.2) from (y(1)0,z(1)0)(y(1)_{0},z(1)_{0}) and (y(2)0,z(2)0)(y(2)_{0},z(2)_{0}).

5. Conclusions


(i) System(1.6) is always persistent and bounded for p,q(0,),a,b(0,1)p,q\in(0,\infty),a,b\in(0,1).

(ii) System(1.6) always has a zero equilibrium; If a<p,b<qa<p,~{}~{}b<q, and ab<min(p,q),ab<\min(p,q), then (0,0) is global asymptotic stable.

(iii) If ab>pqab>pq , System(1.6) has a unique positive equilibrium y¯,z¯(y,y)×(z,z)\bar{y},\bar{z}\in(y_{*},y^{*})\times(z_{*},z^{*}); Moreover, if ey>a,ez>be^{y_{*}}>a,~{}~{}e^{z_{*}}>b and azy¯(p+z)ey,byz¯(q+y)ezaz^{*}\leq\bar{y}\left(p+z^{*}\right)e^{y_{*}},\ ~{}by^{*}\leq\bar{z}\left(q+y^{*}\right)e^{z_{*}},then (y¯,z¯)(\bar{y},\bar{z}) is global asymptotic stable.

Conflict of interest

The authors declare that they have no competing interests.

Acknowledgment

This work was financially supported by Guizhou Scientific and Technological Platform Talents ([2022]020-1), Scientific Research Foundation of Guizhou Provincial Department of Science and Technology([2020]1Y008, [2022]021, [2022]026), and Scientific Climbing Programme of Xiamen University of Technology (XPDKQ20021).

Reference


[1] M. Kot, Elements of Mathematical Ecology , Cambridge University Press, New York, 2001.
[2] R. Beverton and S. Holt, On the dynamics of exploited fish populations, Fisheries Investigations, Ser 2, , 19 (1957), 1–533.
[3] MDL. Sen, The generalized Beverton-Holt equation and the control of populations, Applied Mathematical Modelling , 32 (2008), 2312-2328.
[4] X. Ding, W. Li , Stability and bifurcation of numerical discretization Nicholson blowflies equation with delay , Discrete Dyn. Nat. Soc , 2006 (2006), 1-12. Article ID 19413.
[5] A.J. Nicholson , An outline of the dynamics of animal populations , Aust. J. Zool , 2 (1954), 9-65 .
[6] E. C. Pielou, An Introduction to Mathematical Ecology , John Wiley &\& Sons, New York, 1965.
[7] E. C. Pielou, Population and Community Ecology, Gordon and Breach , New York, 1974.
[8] Camouzis, E. , Ladas, G. Periodically forced Pielou’s equation, J. Math. Anal. Appl, 333(1) (2007), 117-127.
[9] Kulenovic´\acute{c}, M.R.S. , Merino, Stability analysis of Pielou’s equation with period-two coefficient, J. Difference Equ. Appl, 13(5) (2007), 383-406.
[10] Ishihara, Keigo; Nakata, Yukihiko, On a generalization of the global attractivity for a periodically forced Pielou’s equation , J. Difference Equ. Appl. 18(3) (2012),375-396.
[11] Zhao, Houyu Analytic invariant curves for an iterative equation related to Pielou’s equation , J. Difference Equ. Appl. 19 (2013), no. 7, 1082-1092.
[12] Nyerges, Gabor, A note on a generalization of Pielou’s equation , J. Difference Equ. Appl. 14(5) (2008), 563-565.
[13] E. El-Metwally, E.A. Grove, G. Ladas, R. Levins, M. Radin, On the difference equation xn+1=α+βxn1exnx_{n}+1=\alpha+\beta x_{n}-1e^{-}x_{n} , Nonlinear Anal, 47 (2001), 4623-4634.
[14] I. Ozturk, F. Bozkurt, S. Ozen, On the difference equation yn+1=α+βeynγ+yn1y_{n}+1=\frac{\alpha}{+}\beta e^{-}y_{n}\gamma+y_{n}-1, Appl. Math. Comput, 181 (2006), 1387-1393.
[15] Papaschinopoulos, G.; Ellina, G.; Papadopoulos, K. B. , Asymptotic behavior of the positive solutions of an exponential type system of difference equations , Appl. Math. Comput, 245 (2014), 181-190.
[16] Papaschinopoulos, G.; Radin, M. ; Schinas, C. J. , Study of the asymptotic behavior of the solutions of three systems of difference equations of exponential form , Appl. Math. Comput, 218 (2012), 5310-5318.
[17] A. Matsumoto, F. Szidarovszky, Asymptotic behavior of a delay differential neoclassical growth model , Sustainability, 5 (2013), 440-455.
[18] X. Ding, R. Zhang , On the difference equationxn+1=(αxn+βxn1)exnx_{n}+1=(\alpha x_{n}+\beta x_{n}-1)e^{-}x_{n} , Adv. Difference Equ , 2008 (2008), http://dx.doi.org/10.1155/2008/876936. 7pages.
[19] L. Shaikhet, Stability of equilibrium states for a stochastically perturbed Mosquito population equation , Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl.Algorithms , 21 (2) (2014), . 185-196.
[20] T. Awerbuch, E. Camouzis, G. Ladas, R. Levins, E.A. Grove, M. Predescu , A nonlinear system of difference equations , linking mosquitoes, habitats and community interventions , Commun. Appl. Nonlinear Anal , 15 (2) (2008) 77-88.
[21] B. Iricanin, S. Stevic, On two systems of difference equations , Discrete Dyn. Nat. Soc , 4 (2010) . (Article ID 405121).
[22] G. Papaschinopoulos, N. Fotiades, C.J. Schinas, On a system of difference equations including exponential terms , J. Difference Equ. Appl , 20 (5-6) (2014), 717-732.
[23] MDL Sen, S. Alonso-Quesada, Control issues for the Beverton-Holt equation in ecology by locally monitoring the environment carrying capacity: Nonadaptive and adaptive cases, Applied Mathematics and Computation , 215 (2009), 2616-2633.
[24] M. Bohner, S. Streipert, Optimal harvesting policy for the Beverton-Holt model, Mathematical Biosciences and Engineering , 13 (2016), 673-695.
[25] V. L. Kocic, G. Ladas, Global behavior of nonlinear difference equations of higher order with application , Kluwer Academic Publishers, Dordrecht, 1993.
[26] M. R. S. Kulenonvic, G. Ladas, Dynamics of second order rational difference equations with open problems and conjectures , Chapaman &\& Hall/CRC,Boca Raton, 2002.
[27] Khan, A. Q.; Qureshi, M. N., Behavior of an exponential system of difference equations , Discrete Dyn. Nat. Soc, Art. ID 607281, 9 pp (2014).
[28] Papaschinopoulos, G.; Fotiades, N. ; Schinas, C. J., On a system of difference equations including negative exponential terms , J. Difference Equ. Appl., 20 (2014), 717-732.
[29] W. Chen, W. Wang, Global exponential stability for a delay differential neoclassical growth model , Adv. Difference Equ., 2014 (2014), 325.
[30] L. Shaikhet , Lyapunov Functionals and Stability of Stochastic Functional Differential Equations , Springer , Dordrecht, Heidelberg, New York, London,
[31] Enatsu, Y, Nakata, Y, Muroya, Y, Global stability for a class of discrete SIR epidemic models , Math. Biosci. Eng., 7 (2) (2010), 347-361.