This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Dynamic Random Choice

Ricky Li [email protected]. I thank Victor Aguiar and Christopher Turansick for helpful comments. I especially thank Tomasz Strzalecki for his insightful comments, as well as his invaluable guidance throughout my research career.
(This version: June 20, 2022)
Abstract

I study dynamic random utility with finite choice sets and exogenous total menu variation, which I refer to as stochastic utility (SU). First, I characterize SU when each choice set has three elements. Next, I prove several mathematical identities for joint, marginal, and conditional Block–Marschak sums, which I use to obtain two characterizations of SU when each choice set but the last has three elements. As a corollary under the same cardinality restrictions, I sharpen an axiom to obtain a characterization of SU with full support over preference tuples. I conclude by characterizing SU without cardinality restrictions. All of my results hold over an arbitrary finite discrete time horizon.

1 Introduction and Related Literature

A classic result in decision theory is Sen (1971)’s characterization of deterministic choice functions that can be represented by strict preference relations. However, economic choice data is often nondeterministic. In such cases, the analogous primitive and representation is a stochastic choice function (SCF) and random utility (RU) model. Block et al. (1959) define RU on arbitrary finite choice sets and show that their axiom requiring that the SCF’s Block–Marschak sums be nonnegative is necessary; Falmagne (1978) and Barberá and Pattanaik (1986) complete the characterization of RU by showing that this axiom is sufficient.

In addition to nondeterministic choices, economic agents also often make choices across time, leading to a richer primitive than that of static random environments: a dynamic stochastic choice function (DSCF). The corresponding economic model of interest is dynamic random utility (DRU), some variants of which have been examined in recent work. Frick et al. (2019) examine dynamic random choice over the domain of Kreps and Porteus (1978)’s decision trees, where choices in each period are lotteries over consumption-continuation menu pairs. In this choice environment, choices are risky and future menu variation can be endogenously determined. Furthermore, since present choices constrain the set of possible future menus, the DSCF exhibits what Frick et al. (2019) deem limited observability. Frick et al. (2019) characterize a model of dynamic random expected utility over arbitrary finite time periods, as well as sharper Bayesian variants with nonmyopic agents. Kashaev and Aguiar (2022) axiomatize a model of DRU over a domain of consumption vectors in +K\mathbb{R}_{+}^{K}. In their setup, each period’s menus are derived from exogenous budget planes, following the static framework of Kitamura and Stoye (2018). Hence, Kashaev and Aguiar (2022)’s axioms exploit partial exogenous menu variation by assuming that only a finite subset of the set of menus that can be derived from arbitrary subsets of +k\mathbb{R}_{+}^{k} are observable. Unlike the aforementioned choice environments, I study a model of DRU with riskless finite choice sets and full exogenous menu variation. To distinguish this setting from the others, I will henceforth refer to this paper’s variant of DRU as stochastic utility (SU), as originally named and defined in Strzalecki (2021).

The recent work most similar to mine is Chambers et al. (2021), who study a model of correlated random utility (CRU) with riskless finite choice sets and full exogenous menu variation. Their primitive is a (two-agent) correlated choice rule, whereas my primitive is a (multi-period) DSCF. In this paper, I show that under arbitrary extrapolation following zero-probability choices, each DSCF induces a stream of multi-agent correlated choice rules, each of which is marginally consistent in the last period. I also show that there is an equivalence between SU representations of a DSCF and CRU representations of the induced full-period correlated choice rule. One interpretation that bridges the gap between our models is to imagine the agent’s current and future selves in my setup as different agents in Chambers et al. (2021)’s setup.

Using a graph-theoretic approach, Chambers et al. (2021) characterize CRU with two agents where at least one choice set is three or less elements. I provide two characterizations of SU for arbitrary finite time periods where all but the last choice set is three elements. One of those characterizations leverages axioms whose two-agent analogs play a similar role in the aforementioned result of Chambers et al. (2021), but my approach uses a different proof strategy that does not involve graphs. I discuss the relationship between my and their axioms in greater detail later in this paper. Chambers et al. (2021) also find a counterexample to CRU under their axioms for larger choice environments, state an additional axiom which disciplines the correlated choice rule’s capacity, and characterize CRU without cardinality restrictions using an analog of McFadden and Richter (1990)’s Axiom of Revealed Stochastic Preference; each of these results straightforwardly yield analogous results about SU over two periods. I characterize SU without cardinality restrictions over arbitrary finite time periods using an analog of Clark (1996)’s Coherency axiom. Finally, Chambers et al. (2021) also study correlated random choice over lotteries over finite prize sets and characterize a model of correlated random expected utility.

The rest of the paper proceeds as follows. Section 2 defines the choice environment, primitive, and model. Section 3 states the axioms and main results. Section 4 contains some useful auxiliary results, including the joint, marginal, and conditional Block–Marschak identities, and all proofs.

2 Stochastic Utility

2.1 Primitive

There are nn time periods, indexed by t=1,,nt=1,\ldots,n. For each tt, let XtX_{t} be a finite choice set, t\mathcal{M}_{t} be the set of nonempty subsets of XtX_{t}, and Δ(Xt)\Delta(X_{t}) be the set of probability distributions over XtX_{t}. Given a finite choice set XX and the set of its nonempty subsets \mathcal{M}, say that ρ:X\rho:\mathcal{M}\rightarrow X is a (static) stochastic choice function (SCF) if ρ(,A)Δ(A)\rho(\cdot,A)\in\Delta(A) for each AA\in\mathcal{M}.

Definition 2.1.

A dynamic stochastic choice function (DSCF) is a tuple ρ:=(ρ1,,ρn)\rho:=(\rho_{1},\ldots,\rho_{n}) such that ρ1:1Δ(X1)\rho_{1}:\mathcal{M}_{1}\rightarrow\Delta(X_{1}) is a SCF and, for each 1<tn1<t\leq n, ρt:t1×tΔ(Xt)\rho_{t}:\mathcal{H}_{t-1}\times\mathcal{M}_{t}\rightarrow\Delta(X_{t}) maps each t1t-1-history to the SCF ρt(|ht1)\rho_{t}(\cdot|h_{t-1}),111Note that the domain of ρt(|ht1)\rho_{t}(\cdot|h_{t-1}) is the full set of period-tt menus t\mathcal{M}_{t}, independently of which history ht1h_{t-1} is observed. In Frick et al. (2019)’s setup, the domain of ρt(|ht1)\rho_{t}(\cdot|h_{t-1}) is itself a function of ht1h_{t-1} and need not be the entire set t\mathcal{M}_{t}. These features of their DSCF illustrate endogenous menu variation and limited observability, respectively. where the set of t1t-1-histories is defined recursively:222Let 1:={(A1,x1)1×X1:ρ1(x1,A1)>0}\mathcal{H}_{1}:=\{(A_{1},x_{1})\in\mathcal{M}_{1}\times X_{1}:\rho_{1}(x_{1},A_{1})>0\}.

t1:={(At1,xt1;ht2)t1×Xt1×t2:ρt1(xt1,At1|ht2)>0}\mathcal{H}_{t-1}:=\{(A_{t-1},x_{t-1};h_{t-2})\in\mathcal{M}_{t-1}\times X_{t-1}\times\mathcal{H}_{t-2}:\rho_{t-1}(x_{t-1},A_{t-1}|h_{t-2})>0\}

For each 1tn1\leq t\leq n, let poset (Lt,t):=(2Xt,)(L_{t},\leq_{t}):=(2^{X_{t}},\subseteq). Define their product poset to be (L,)(L,\leq), where L=×t=1nLtL=\times_{t=1}^{n}L_{t} and ABA\leq B if and only if AtBtA_{t}\subseteq B_{t} for each 1tn1\leq t\leq n. Given a set of times TN:={1,,n}T\subseteq N:=\{1,\ldots,n\}, let subscript TT denote a vector indexed by tTt\in T, and let t:=N\{t}-t:=N\backslash\{t\}. For vectors indexed by NN, I omit the subscript entirely. Say that AT<<BTA_{T}<<B_{T} if AtBtA_{t}\subsetneq B_{t} for all tTt\in T, and say that yTxTXTy_{T}\neq\neq x_{T}\in X_{T} if ytxty_{t}\neq x_{t} for all tTt\in T.

A choice path is a tuple (A,x)t:=(At,xt;;A1,x1)(A,x)^{t}:=(A_{t},x_{t};\ldots;A_{1},x_{1}). Let (A,x)(A,x) denote an nn-period choice path. A zero-probability choice path is a choice path (A,x)t(A,x)^{t} such that ρ1(x1,A1)=0\rho_{1}(x_{1},A_{1})=0 or ρs(xs,As|(A,x)s1)=0\rho_{s}(x_{s},A_{s}|(A,x)^{s-1})=0 for some 1<st1<s\leq t. For each 1<tn1<t\leq n, each zero-probability choice path (A,x)t1(A,x)^{t-1}, and each AttA_{t}\in\mathcal{M}_{t}, define ρt(,At|(A,x)t1)\rho_{t}(\cdot,A_{t}|(A,x)^{t-1}) to be any probability distribution over AtA_{t}. I take this augmented DSCF ρ\rho as primitive. Note that for any At:=(A1,,At)A_{\leq t}:=(A_{1},\ldots,A_{t}), ρ\rho admits a well-defined joint distribution pt(|At)Δ(At)p_{t}(\cdot|A_{\leq t})\in\Delta(A_{\leq t}), defined as pt(xt,At):=ρ1(x1,A1)s=2tρs(xs,As|(A,x)s1)p_{t}(x_{\leq t},A_{\leq t}):=\rho_{1}(x_{1},A_{1})\prod_{s=2}^{t}\rho_{s}(x_{s},A_{s}|(A,x)^{s-1}). Let p:=pnp:=p_{n}. Note that for any 1r<tn1\leq r<t\leq n and any (A1,,At)(A_{1},\ldots,A_{t}), prp_{r} is the marginal distribution of ptp_{t} on ×s=1rAs\times_{s=1}^{r}A_{s}:

x>rA>rpt(xr,Ar;x>r,A>r)=ρ1(x1,A1)s=2rρs(xs,As|(A,x)s1)×\displaystyle\sum_{x_{>r}\in A_{>r}}p_{t}(x_{\leq r},A_{\leq r};x_{>r},A_{>r})=\rho_{1}(x_{1},A_{1})\prod_{s=2}^{r}\rho_{s}(x_{s},A_{s}|(A,x)^{s-1})\ \times
xr+1Ar+1[ρr+1(xr+1,Ar+1|(A,x)r)[[xtAtρt(xt,At|(A,x)t1)]]]\displaystyle\sum_{x_{r+1}\in A_{r+1}}\bigg{[}\rho_{r+1}(x_{r+1},A_{r+1}|(A,x)^{r})\bigg{[}\cdots\bigg{[}\sum_{x_{t}\in A_{t}}\rho_{t}(x_{t},A_{t}|(A,x)^{t-1})\bigg{]}\cdots\bigg{]}\bigg{]}
=ρ1(x1,A1)s=2rρs(xs,As|(A,x)s1)=pr(xr,Ar)\displaystyle=\rho_{1}(x_{1},A_{1})\prod_{s=2}^{r}\rho_{s}(x_{s},A_{s}|(A,x)^{s-1})=p_{r}(x_{\leq r},A_{\leq r})
Definition 2.2.

Given A<<XA<<X and xACx\in A^{C}, their joint Block–Marschak (BM) sum is

m(x,A):=BAC(1)t=1n(|Bt||AtC|)p(x,B)m(x,A):=\sum_{B\geq A^{C}}(-1)^{\sum_{t=1}^{n}(|B_{t}|-|A_{t}^{C}|)}p(x,B)

Joint BM sums are the multi-period analog of Block et al. (1959)’s BM sums. As in the static case, many of my forthcoming axioms will impose discipline on joint BM sums. Unlike the static case, these axioms alone are insufficient for SU.

2.2 Model

For each 1tn1\leq t\leq n, let PtP_{t} be the set of strict preference relations on XtX_{t} and let PT:=×tTPtP_{T}:=\times_{t\in T}P_{t}. Given xtAttx_{t}\notin A_{t}\in\mathcal{M}_{t}, say that xttAtx_{t}\succ_{t}A_{t} if xttytx_{t}\succ_{t}y_{t} for all ytAty_{t}\in A_{t}. Given xtAttx_{t}\in A_{t}\in\mathcal{M}_{t}, let Ct(xt,At):={tPt:xttAt\{xt}}C_{t}(x_{t},A_{t}):=\{\succ_{t}\ \in P_{t}:x_{t}\succ_{t}A_{t}\backslash\{x_{t}\}\}, and let C(xt,At):=Ct(xt,At)×PtC(x_{t},A_{t}):=C_{t}(x_{t},A_{t})\times P_{-t}. Given history ht:=(A,x)th_{t}:=(A,x)^{t}, let C(ht):=s=1tC(xs,As)C(h_{t}):=\bigcap_{s=1}^{t}C(x_{s},A_{s}). Given xTATx_{T}\in A_{T}, let C(x,A)T:=tTC(xt,At)=×tTCt(xt,At)×PTC(x,A)^{T}:=\bigcap_{t\in T}C(x_{t},A_{t})=\times_{t\in T}C_{t}(x_{t},A_{t})\times P_{-T}. Given TTNT^{\prime}\subseteq T\subseteq N, let CT(xT,AT):=×tTCt(xt,At)×PT\TC_{T}(x_{T^{\prime}},A_{T^{\prime}}):=\times_{t\in T^{\prime}}C_{t}(x_{t},A_{t})\times P_{T\backslash T^{\prime}}.

Definition 2.3.

A stochastic utility (SU) representation of ρ\rho is a probability measure μΔ(P)\mu\in\Delta(P) such that ρ1(x1,A1)=μ(C(x1,A1))\rho_{1}(x_{1},A_{1})=\mu(C(x_{1},A_{1})) for all x1A11x_{1}\in A_{1}\in\mathcal{M}_{1} and

ρt(xt,At|ht1)=μ(C(xt,At)|C(ht1))\rho_{t}(x_{t},A_{t}|h_{t-1})=\mu(C(x_{t},A_{t})|C(h_{t-1}))

for all 1<tn1<t\leq n, ht1t1h_{t-1}\in\mathcal{H}_{t-1}, and xtAttx_{t}\in A_{t}\in\mathcal{M}_{t}.

Given AtXtA_{t}\subsetneq X_{t} and xtAtcx_{t}\in A_{t}^{c}, define their joint upper edge set to be Et(xt,At):={tPt:AttxttAtC\{xt}}E_{t}(x_{t},A_{t}):=\{\succ_{t}\in P_{t}:A_{t}\succ_{t}x_{t}\succ_{t}A_{t}^{C}\backslash\{x_{t}\}\}. In words, this is the set of period-tt preferences that rank xtx_{t} on the uppermost edge of AtCA_{t}^{C} and below the lowermost edge of AA. Given AT<<XTA_{T}<<X_{T} and xTATCx_{T}\in A_{T}^{C}, define E(xt,At):=Et(xt,At)×PtE(x_{t},A_{t}):=E_{t}(x_{t},A_{t})\times P_{-t} and E(x,A)T=tTE(xt,At)E(x,A)^{T}=\bigcap_{t\in T}E(x_{t},A_{t}). Given TTNT^{\prime}\subseteq T\subseteq N, let ET(xT,AT):=×tTEt(xt,At)×PT\TE_{T}(x_{T^{\prime}},A_{T^{\prime}}):=\times_{t\in T^{\prime}}E_{t}(x_{t},A_{t})\times P_{T\backslash T^{\prime}}.

3 Results

The first result characterizes SU representations as probability measures that assign every joint upper edge set its corresponding joint Block–Marschak sum. It also establishes an equivalence between SU representations of ρ\rho and CRUM representations of the induced correlated choice rule pp, as defined in Chambers et al. (2021).

Proposition 3.1.

The following are equivalent.

  1. 1.

    μ\mu is an SU representation of ρ\rho.

  2. 2.

    μ(C(x,A))=p(x,A)\mu(C(x,A))=p(x,A) for all xAx\in A\in\mathcal{M}.

  3. 3.

    μ(E(x,A))=m(x,A)\mu(E(x,A))=m(x,A) for all A<<XA<<X and xACx\in A^{C}.

The next result uses the following axiom to characterize SU when all choice sets have three elements. I abuse notation to let {x}C=({xt}C)t=1n\{x\}^{C}=(\{x_{t}\}^{C})_{t=1}^{n}.

Axiom 3.2 (Joint Supermodularity).

For all 1tn1\leq t\leq n and ytxtXty_{t}\neq x_{t}\in X_{t},

B{x}C:t=1n|Bt|evenp(y,B)B{x}C:t=1n|Bt|oddp(y,B)\sum_{B\geq\{x\}^{C}:\sum_{t=1}^{n}|B_{t}|\text{even}}p(y,B)\geq\sum_{B\geq\{x\}^{C}:\sum_{t=1}^{n}|B_{t}|\text{odd}}p(y,B)
Example 3.3.

Let n=2n=2 and |X1|=|X2|=3|X_{1}|=|X_{2}|=3. Joint Supermodularity requires that for any baX1b\neq a\in X_{1} and yxX2y\neq x\in X_{2},

p(b,{b,c};y,{y,z})+p(b,X1;y,X2)p(b,{b,c};y,X2)+p(b,X1;y,{y,z})\displaystyle p(b,\{b,c\};y,\{y,z\})+p(b,X_{1};y,X_{2})\geq p(b,\{b,c\};y,X_{2})+p(b,X_{1};y,\{y,z\})
Theorem 3.4.

Suppose |Xt|=3|X_{t}|=3 for all 1tn1\leq t\leq n. ρ\rho has a unique SU representation if and only if it satisfies Joint Supermodularity and Marginal Consistency.

The proof of this result proceeds from the observation that when all choice sets have three elements, the candidate SU representation is pinned down by joint BM sums of the form m(y,{x})m(y,\{x\}), where I again abuse notation and let {x}=({xt})t=1n\{x\}=(\{x_{t}\})_{t=1}^{n}. The next result characterizes SU under a relaxation of the last period’s cardinality restrictions with the following two axioms.

Axiom 3.5 (Joint BM Nonnegativity).

m(x,A)0m(x,A)\geq 0 for all A<<XA<<X and xACx\in A^{C}.

If m(x,A)>0m(x,A)>0 for all A<<XA<<X and xACx\in A^{C}, say that ρ\rho satisfies Joint BM Positivity. The two-period version of this axiom is equivalent to Chambers et al. (2021)’s Axiom 3. Note that when all choice sets have three elements, Joint BM Nonnegativity implies Joint Supermodularity, since B{x}C:t=1n|Bt|evenp(y,B)B{x}C:t=1n|Bt|oddp(y,B)=B{x}C(1)t=1n|Bt|2np(y,B)=m(y,{x})0\sum_{B\geq\{x\}^{C}:\sum_{t=1}^{n}|B_{t}|\text{even}}p(y,B)-\sum_{B\geq\{x\}^{C}:\sum_{t=1}^{n}|B_{t}|\text{odd}}p(y,B)=\sum_{B\geq\{x\}^{C}}(-1)^{\sum_{t=1}^{n}|B_{t}|-2n}p(y,B)=m(y,\{x\})\geq 0. As I show in the proof of Theorem 3.4, Joint Supermodularity and the following axiom imply Joint BM Nonnegativity under these cardinality restrictions.

Axiom 3.6 (Marginal Consistency).

For all 1t<n1\leq t<n and xtAttx_{-t}\in A_{-t}\in\mathcal{M}_{-t},

xtAtp(xt,At;xt,At)\sum_{x_{t}\in A_{t}}p(x_{t},A_{t};x_{-t},A_{-t})

is constant in AtA_{t}.333For xnAnnx_{-n}\in A_{-n}\in\mathcal{M}_{-n} and any AnA_{n}, we have xnAnp(xn,An;xn,An)=pn1(xn,An)\sum_{x_{n}\in A_{n}}p(x_{-n},A_{-n};x_{n},A_{n})=p_{n-1}(x_{-n},A_{-n}), since pn1p_{n-1} is the marginal of pp on AnA_{-n}.

If pp satisfies Marginal Consistency, define p(xt,At):=p(xt,{xt};xt,At)p(x_{-t},A_{-t}):=p(x_{t},\{x_{t}\};x_{-t},A_{-t}) for any xtXtx_{t}\in X_{t}. For any T{1,,n}T\subsetneq\{1,\ldots,n\}, AT=(At)tTA_{T}=(A_{t})_{t\in T}, and AT=(At)tTA_{-T}=(A_{t})_{t\notin T}, I show via induction on the size of TT that Marginal Consistency implies a well-defined marginal distribution over ATA_{-T}, defined by p(xT,AT;yT,{y}T)p(x_{-T},A_{-T};y_{T},\{y\}_{T}) for any yTXTy_{T}\in X_{T}. The base case (|T|=1|T|=1) follows directly from the content of Marginal Consistency. Inductive step (1<|T|<n1<|T|<n): fix tTt\in T, ytXty_{t}\in X_{t}, and yT\{t}XT\{t}y_{T\backslash\{t\}}\in X_{T\backslash\{t\}} Then

xTATp(xT,AT;xT,AT)=xtAtxT\{t}AT\{t}p(xt,At;xT\{t},AT\{t};xT,AT)\displaystyle\sum_{x_{T}\in A_{T}}p(x_{T},A_{T};x_{-T},A_{-T})=\sum_{x_{t}\in A_{t}}\sum_{x_{T\backslash\{t\}}\in A_{T\backslash\{t\}}}p(x_{t},A_{t};x_{T\backslash\{t\}},A_{T\backslash\{t\}};x_{-T},A_{-T})
=xtAtp(xt,At;yT\{t},{y}T\{t};xT,AT)=p(yT,{y}T;xT,AT)\displaystyle=\sum_{x_{t}\in A_{t}}p(x_{t},A_{t};y_{T\backslash\{t\}},\{y\}_{T\backslash\{t\}};x_{-T},A_{-T})=p(y_{T},\{y\}_{T};x_{-T},A_{-T})

where the second equality follows from the inductive hypothesis and the third equality follows from Marginal Consistency. To compensate for the latent last-period marginality I assume in pp, my axiom of Marginal Consistency is weaker than Chambers et al. (2021)’s Axiom 2 of Marginality.

Theorem 3.7.

Suppose |Xt|=3|X_{t}|=3 for all 1t<n1\leq t<n. ρ\rho has an SU representation if and only if it satisfies Joint BM Nonnegativity and Marginal Consistency.444A previous draft of this paper incorrectly stated this result without the cardinality restrictions.

The proof of the backwards direction of Theorem 3.7 proceeds through a series of five claims. First, I recursively define a set function ν\nu, whose domain is not the entire power set 2P2^{P} but instead tuples of cylinders. The first two claims enforce two necessary additive properties of ν\nu. The next two claims allow for the construction of a probability measure μΔ(P)\mu\in\Delta(P) that extends ν\nu. The last claim verifies that μ\mu assigns each joint upper edge set its corresponding joint BM sum. By sharpening Joint BM Nonnegativity to Positivity, Theorem 3.7 admits a corollary that characterizes SU with full support.

Corollary 3.8.

Suppose |Xt|=3|X_{t}|=3 for all 1t<n1\leq t<n. ρ\rho has an SU representation with full support over PP if and only if it satisfies Joint BM Positivity and Marginal Consistency.

Next, I present an alternative characterization of SU under the same cardinality restrictions. For any An<<XnA_{-n}<<X_{-n} and xnAnCx_{-n}\in A_{-n}^{C}, define their marginal Block–Marschak (BM) sum to be

m(xn,An):=xnXnm(xn,An;xn,)=BnAnC(1)t=1n1|Bt||AtC|pn(xn,Bn)\displaystyle m(x_{-n},A_{-n}):=\sum_{x_{n}\in X_{n}}m(x_{-n},A_{-n};x_{n},\emptyset)=\sum_{B_{-n}\geq A_{-n}^{C}}(-1)^{\sum_{t=1}^{n-1}|B_{t}|-|A_{t}^{C}|}p_{-n}(x_{-n},B_{-n})

Recall that pn:=pn1p_{-n}:=p_{n-1} is well-defined without assuming Marginal Consistency of pp.

Axiom 3.9 (Partial Marginal BM Nonnegativity).

For all 1t<n1\leq t<n and ytxtXty_{t}\neq x_{t}\in X_{t}, m(yn,{x}n)0m(y_{-n},\{x\}_{-n})\geq 0.

Note that Joint BM Nonnegativity implies Partial Marginal BM Nonnegativity, since each marginal BM sum is itself a sum of joint BM sums. Next, for any An<<XnA_{-n}<<X_{-n} and xnAnCx_{-n}\in A_{-n}^{C} with m(xn,An)>0m(x_{-n},A_{-n})>0, define their conditional SCF555Strictly speaking, ρn(xn,An|(x,A)n)\rho_{n}(x_{n},A_{n}|(x,A)^{-n}) need not be nonnegative, even assuming Partial Marginal BM Nonnegativity. Let n=2n=2, |X1|=3|X_{1}|=3, (x,A)n=(y1,{x1})(x,A)^{-n}=(y_{1},\{x_{1}\}), and x2A2=X2x_{2}\in A_{2}=X_{2}: then ρ2(x2,A2|(y1,{x1}))=p(y1,z1;x2,A2)p(y1,X1;x2,A2)ρ1(y1,z1)ρ1(y1,X1)\rho_{2}(x_{2},A_{2}|(y_{1},\{x_{1}\}))=\frac{p(y_{1},z_{1};x_{2},A_{2})-p(y_{1},X_{1};x_{2},A_{2})}{\rho_{1}(y_{1},z_{1})-\rho_{1}(y_{1},X_{1})}. Let ρ1(y1,z1)=12\rho_{1}(y_{1},z_{1})=\frac{1}{2}, ρ2(x2,A2|{y1,z1},y1)=0\rho_{2}(x_{2},A_{2}|\{y_{1},z_{1}\},y_{1})=0, ρ1(y1,X1)=14\rho_{1}(y_{1},X_{1})=\frac{1}{4}, and ρ2(x2,A2|X1,y1)=1\rho_{2}(x_{2},A_{2}|X_{1},y_{1})=1. The following axiom enforces that conditional SCFs are indeed SCFs. as

ρn(xn,An|(x,A)n):=DnAnCm(xn,An;xn,Dn)m(xn,An)\displaystyle\rho_{n}(x_{n},A_{n}|(x,A)^{-n}):=\frac{\sum_{D_{n}\subseteq A_{n}^{C}}m(x_{-n},A_{-n};x_{n},D_{n})}{m(x_{-n},A_{-n})}

for any xnAnnx_{n}\in A_{n}\in\mathcal{M}_{n}666If xnAnx_{n}\notin A_{n}, define ρn(xn,An|(x,A)n):=0\rho_{n}(x_{n},A_{n}|(x,A)^{-n}):=0. and their conditional Block–Marschak sum as

m(xn,An|(x,A)n):=BnAnC(1)|Bn||AnC|ρn(xn,Bn|(x,A)n)\displaystyle m(x_{n},A_{n}|(x,A)^{-n}):=\sum_{B_{n}\supseteq A_{n}^{C}}(-1)^{|B_{n}|-|A_{n}^{C}|}\rho_{n}(x_{n},B_{n}|(x,A)^{-n})

for any AnXnA_{n}\subsetneq X_{n} and xnAnCx_{n}\in A_{n}^{C}.

Axiom 3.10 (Partial Conditional BM Nonnegativity).

For all 1t<n1\leq t<n, ytxtXty_{t}\neq x_{t}\in X_{t} with m(yn,{x}n)>0m(y_{-n},\{x\}_{-n})>0, AnXnA_{n}\subsetneq X_{n}, and xnAnCx_{n}\in A_{n}^{C}, m(xn,An|(y,{x})n)0m(x_{n},A_{n}|(y,\{x\})^{-n})\geq 0.

Lemma 4.9 shows that m(xn,An|(x,A)n)=m(x,A)m(xn,An)m(x_{n},A_{n}|(x,A)^{-n})=\frac{m(x,A)}{m(x_{-n},A_{-n})} and hence Joint BM Nonnegativity implies Partial Conditional BM Nonnegativity.

Axiom 3.11 ((n)(-n)-Marginal Consistency).

pnp_{-n} satisfies Marginal Consistency.

By the argument following Axiom 3.6, Marginal Consistency of pp implies (n)(-n)-Marginal Consistency.777In the context of that argument, take T={t,n}T=\{t,n\} for any 1t<n11\leq t<n-1. To see that the converse does not hold in general, let n=2n=2: then (n)(-n)-Marginal Consistency is satisfied by definition of ρ1\rho_{1}, but x1A1p(x1,A1;x2,A2)\sum_{x_{1}\in A_{1}}p(x_{1},A_{1};x_{2},A_{2}) need not be constant in A1A_{1}. Finally, say that (xni,Ani)iI(x_{-n}^{i},A_{-n}^{i})_{i\in I} partition history hn1n1h_{n-1}\in\mathcal{H}_{n-1} if {E(xni,Ani)}\{E(x_{-n}^{i},A_{-n}^{i})\} is a partition of C(hn1)C(h_{n-1}). Given partition (xni,Ani)iI(x_{-n}^{i},A_{-n}^{i})_{i\in I} of hn1h_{n-1}, let I={iI:m(xni,Ani)>0}I^{\prime}=\{i\in I:m(x_{-n}^{i},A_{-n}^{i})>0\}.

Axiom 3.12 ((n)(-n)-Conditional Consistency).

For any xnAnnx_{n}\in A_{n}\in\mathcal{M}_{n} and (A,x)nn1(A,x)^{-n}\in\mathcal{H}_{n-1} with partition (yni,{xi}n)iI(y_{-n}^{i},\{x^{i}\}_{-n})_{i\in I},

ρn(xn,An|(A,x)n)=iIρn(xn,An|(yi,{xi})n)m(yni,{xi}n)pn(xn,An)\displaystyle\rho_{n}(x_{n},A_{n}|(A,x)^{-n})=\sum_{i\in I^{\prime}}\rho_{n}(x_{n},A_{n}|(y^{i},\{x^{i}\})^{-n})\frac{m(y_{-n}^{i},\{x^{i}\}_{-n})}{p_{n}(x_{-n},A_{-n})}

This axiom is similar in spirit to Frick et al. (2019)’s Linear History Independence axiom. However, since my choice environment consists of riskless finite sets, the set of observable histories is coarser than that of Frick et al. (2019)’s setup. In particular, ρn(|(yi,{xi})n)\rho_{n}(\cdot|(y^{i},\{x^{i}\})^{-n}) must be counterfactually extrapolated, whereas the analog of this SCF in Frick et al. (2019)’s environment can be directly observed.

Theorem 3.13.

Suppose |Xt|=3|X_{t}|=3 for all 1t<n1\leq t<n. ρ\rho has an SU representation if and only if it satisfies Axioms 3.9-3.12.

The proof of the backwards direction of Theorem 3.13 proceeds by constructing a marginal SU representation μnΔ(Pn)\mu_{-n}\in\Delta(P_{-n}) for the first n1n-1 periods, a conditional RU representation μnΔ(Pn)\mu^{\succ_{-n}}\in\Delta(P_{n}) for each nsupp μn\succ_{-n}\in\text{supp }\mu_{-n}, and finally a candidate SU representation μΔ(P)\mu\in\Delta(P) that mixes the conditional RU representations (μn)(\mu^{\succ_{-n}}) according to μn\mu_{-n}. Finally, I characterize SU for arbitrary finite choice sets over an arbitrary finite time horizon, using the following axiom.

Axiom 3.14 (Joint Coherency).

For any (xi,Ai)i=1k(x^{i},A^{i})_{i=1}^{k} with xiAix^{i}\in A^{i}\in\mathcal{M} for each 1ik1\leq i\leq k and for any (λi)i=1k(\lambda^{i})_{i=1}^{k}\subseteq\mathbb{R},

i=1kλi𝟙C(xi,Ai)0i=1kλip(xi,Ai)0\displaystyle\sum_{i=1}^{k}\lambda^{i}\mathbbm{1}_{C(x^{i},A^{i})}\geq 0\implies\sum_{i=1}^{k}\lambda^{i}p(x^{i},A^{i})\geq 0

Joint Coherency is the multiperiod analog of Clark (1996)’s Coherency axiom, which in turn is based on De Finetti (1937)’s characterization of finitely additive probability measures on an algebra of sets.

Theorem 3.15.

ρ\rho has an SU representation if and only if it satisfies Joint Coherency.

4 Appendix

4.1 The Möbius Inversion

Let (L,)(L,\leq) be a finite, partially ordered set (poset). The following definition and lemma are due to Van Lint and Wilson (2001) Equations 25.2 and 25.5.

Definition 4.1.

The Möbius function mL:L2m_{L}:L^{2}\rightarrow\mathbb{Z} is

mL(a,b)={1a=b0abac<bmL(a,c)a<b\displaystyle m_{L}(a,b)=\begin{cases}1&a=b\\ 0&a\nleq b\\ -\sum_{a\leq c<b}m_{L}(a,c)&a<b\end{cases}

Let the zeta function of LL, denoted ζL\zeta_{L}, be the indicator function for the set L2\leq\ \subseteq L^{2}. By Van Lint and Wilson (2001) Equation 25.1, mLm_{L} is the |L|×|L||L|\times|L| matrix inverse of ζL\zeta_{L}.

Lemma 4.2.

Given a function f:Lf:L\rightarrow\mathbb{R}, define F(a):=baf(b)F(a):=\sum_{b\geq a}f(b). Then

f(a)=bamL(a,b)F(b)\displaystyle f(a)=\sum_{b\geq a}m_{L}(a,b)F(b)
Proof.

This proof is adapted from page 336 of Van Lint and Wilson (2001). Fix f:Lf:L\rightarrow\mathbb{R} and define FF as above. Observe that

acbmL(a,c)=cLmL(a,c)ζL(c,b)={1a=b0else\displaystyle\sum_{a\leq c\leq b}m_{L}(a,c)=\sum_{c\in L}m_{L}(a,c)\zeta_{L}(c,b)=\begin{cases}1&a=b\\ 0&\text{else}\end{cases}

where the first equality holds because mL(a,c)=0m_{L}(a,c)=0 if aca\nleq c and ζL(c,b)=1\zeta_{L}(c,b)=1 if cbc\leq b and 0 else, and the second equality holds because mLζLm_{L}\zeta_{L} is the L×LL\times L identity matrix. Thus,

bamL(a,b)F(b)=bamL(a,b)(cbf(c))=caf(c)(abcmL(a,b))=f(a)\displaystyle\sum_{b\geq a}m_{L}(a,b)F(b)=\sum_{b\geq a}m_{L}(a,b)\bigg{(}\sum_{c\geq b}f(c)\bigg{)}=\sum_{c\geq a}f(c)\bigg{(}\sum_{a\leq b\leq c}m_{L}(a,b)\bigg{)}=f(a)

Lemma 4.2 shows how to recover any real-valued poset-defined function given its sums over upper contour sets and the poset’s Möbius function. This procedure is known as the Möbius inversion. The following lemma is due to Van Lint and Wilson (2001) Theorem 25.1(i). It states the Möbius function for the power set of a finite set under the inclusion partial order.

Lemma 4.3.

Fix finite XX and let L=2XL=2^{X} with =\leq=\subseteq. Then

mL(A,B)={(1)|B||A|AB0else\displaystyle m_{L}(A,B)=\begin{cases}(-1)^{|B|-|A|}&A\subseteq B\\ 0&\text{else}\end{cases}
Proof.

See page 343 of Van Lint and Wilson (2001). ∎

Given posets (Li,i)i=1n(L_{i},\leq_{i})_{i=1}^{n}, define their product poset to be (L,)(L,\leq), where L=×i=1nLiL=\times_{i=1}^{n}L_{i} and aba\leq b if and only if aiibia_{i}\leq_{i}b_{i} for each ii. Let mim_{i} denote the Möbius function of LiL_{i}. The following lemma generalizes Godsil (2018) Lemma 3.1 to state the Möbius function for nn-ary product posets for arbitrary finite nn.

Lemma 4.4.

For all a,bLa,b\in L, the Möbius function mL:L2m_{L}:L^{2}\rightarrow\mathbb{Z} satisfies

mL(a,b)=i=1nmLi(ai,bi)\displaystyle m_{L}(a,b)=\prod_{i=1}^{n}m_{L_{i}}(a_{i},b_{i})
Proof.

Let a,bLa,b\in L. By definition of L\leq_{L}, ζL(a,b)=1\zeta_{L}(a,b)=1 if and only if ζLi(ai,bi)=1\zeta_{L_{i}}(a_{i},b_{i})=1 for each ii. Hence, ζL(a,b)=i=1nζLi(ai,bi)\zeta_{L}(a,b)=\prod_{i=1}^{n}\zeta_{L_{i}}(a_{i},b_{i}), which implies the |L|×|L||L|\times|L| matrix ζL\zeta_{L} is the Kronecker product of the |Li|×|Li||L_{i}|\times|L_{i}| matrices ζLi\zeta_{L_{i}}, denoted i=1nζLi\bigotimes_{i=1}^{n}\zeta_{L_{i}}.888See Definition 2.1 of Schacke (2004) for a definition of the Kronecker product. Then

mL=(ζL)1=(i=1nζLi)1=i=1n(ζLi)1=i=1nmLim_{L}=(\zeta_{L})^{-1}=\bigg{(}\bigotimes_{i=1}^{n}\zeta_{L_{i}}\bigg{)}^{-1}=\bigotimes_{i=1}^{n}(\zeta_{L_{i}})^{-1}=\bigotimes_{i=1}^{n}m_{L_{i}}

where the third equality follows from KRON 10 of Schacke (2004).999Formally, I can show this by inducting on nn. The base case (n=1n=1) immediately follows. Inductive step: (i=1nζLi)1=((i=1n1ζLi)ζLn)1=(i=1n1ζLi)1(ζLn)1=i=1n(ζLi)1(\bigotimes_{i=1}^{n}\zeta_{L_{i}})^{-1}=((\bigotimes_{i=1}^{n-1}\zeta_{L_{i}})\otimes\zeta_{L_{n}})^{-1}=(\bigotimes_{i=1}^{n-1}\zeta_{L_{i}})^{-1}\otimes(\zeta_{L_{n}})^{-1}=\bigotimes_{i=1}^{n}(\zeta_{L_{i}})^{-1}, where the second equality follows from KRON 10 of Schacke (2004) and the third equality follows from the inductive hypothesis. By definition of the Kronecker product, we conclude

mL(a,b)=i=1nmLi(ai,bi)\displaystyle m_{L}(a,b)=\prod_{i=1}^{n}m_{L_{i}}(a_{i},b_{i})

. ∎

4.2 BM Sum Identities

The following lemma shows how to recover pp from lower contour sums of joint BM sums.

Lemma 4.5.

For all A<<XA<<X and xACx\in A^{C},

p(x,AC)=BAm(x,B)\displaystyle p(x,A^{C})=\sum_{B\leq A}m(x,B)
Proof.

By Lemmas 4.3 and 4.4, I obtain

mL(A,B)={(1)t=1n(|Bt||At|)AB0else\displaystyle m_{L}(A,B)=\begin{cases}(-1)^{\sum_{t=1}^{n}(|B_{t}|-|A_{t}|)}&A\leq B\\ 0&\text{else}\end{cases}

For each 1tn1\leq t\leq n, fix any AtXtA_{t}\subsetneq X_{t} and xtAtCx_{t}\in A_{t}^{C}. Define f:Lf:L\rightarrow\mathbb{R} as

f(B):=(1)t=1n(|Bt||AtC|)p(x,B)\displaystyle f(B):=(-1)^{\sum_{t=1}^{n}(|B_{t}|-|A_{t}^{C}|)}p(x,B)

and F:LF:L\rightarrow\mathbb{R} as F(D):=BDf(B)F(D):=\sum_{B\geq D}f(B). Applying the Möbius inversion from Lemma 4.2,

f(D)=BD(1)t=1n(|Bt||Dt|)F(B)\displaystyle f(D)=\sum_{B\geq D}(-1)^{\sum_{t=1}^{n}(|B_{t}|-|D_{t}|)}F(B)

which implies

p(x,AC)=f(AC)=BAC(1)t=1n(|Bt||AtC|)F(B)=DAm(x,D)\displaystyle p(x,A^{C})=f(A^{C})=\sum_{B\geq A^{C}}(-1)^{\sum_{t=1}^{n}(|B_{t}|-|A_{t}^{C}|)}F(B)=\sum_{D\leq A}m(x,D)

The last equality follows by matching terms across sums via the bijection DCACDAD^{C}\geq A^{C}\iff D\leq A:

(1)t=1n(|DtC||AtC|)F(DC)=BDC(1)t=1n(|DtC||AtC|)f(B)\displaystyle(-1)^{\sum_{t=1}^{n}(|D_{t}^{C}|-|A_{t}^{C}|)}F(D^{C})=\sum_{B\geq D^{C}}(-1)^{\sum_{t=1}^{n}(|D_{t}^{C}|-|A_{t}^{C}|)}f(B)
=BDC(1)t=1n(|Bt||DtC|)p(x,B)=m(x,D)\displaystyle=\sum_{B\geq D^{C}}(-1)^{\sum_{t=1}^{n}(|B_{t}|-|D_{t}^{C}|)}p(x,B)=m(x,D)

where the second equality follows by observing that (1)k=(1)k(-1)^{k}=(-1)^{-k}. ∎

Lemma 4.5 is the dynamic analog of Chambers and Echenique (2016)’s Lemma 7.4(I), which is stated in that reference without proof. An analogous argument shows how to recover ρn(|ht1)\rho_{n}(\cdot|h_{t-1}) from lower contour sums of (history-)conditional BM sums.

Lemma 4.6.

For all (A,x)nn1(A,x)^{-n}\in\mathcal{H}_{n-1}, AnXnA_{n}\subsetneq X_{n} and xnAnCx_{n}\in A_{n}^{C},

ρn(xn,AnC|(A,x)n)=BnAnm(xn,Bn|(A,x)n)\rho_{n}(x_{n},A_{n}^{C}|(A,x)^{-n})=\sum_{B_{n}\subseteq A_{n}}m(x_{n},B_{n}|(A,x)^{-n})

where

m(xn,Bn|(A,x)n):=DnBnC(1)|Dn||BnC|ρn(xn,Dn|(A,x)n)m(x_{n},B_{n}|(A,x)^{-n}):=\sum_{D_{n}\supseteq B_{n}^{C}}(-1)^{|D_{n}|-|B_{n}^{C}|}\rho_{n}(x_{n},D_{n}|(A,x)^{-n})
Proof.

By Lemma 4.3, the Möbius function for Ln=(2Xn,)L_{n}=(2^{X_{n}},\subseteq) is

mLn(An,Bn)={(1)|Bn||An|AnBn0else\displaystyle m_{L_{n}}(A_{n},B_{n})=\begin{cases}(-1)^{|B_{n}|-|A_{n}|}&A_{n}\subseteq B_{n}\\ 0&\text{else}\end{cases}

Fix any (A,x)nn1(A,x)^{-n}\in\mathcal{H}_{n-1}, AnXnA_{n}\subsetneq X_{n} and xnAnCx_{n}\in A_{n}^{C}. Define f:Lnf:L_{n}\rightarrow\mathbb{R} as

f(Bn):=(1)|Bn||AnC|ρn(xn,Bn|(A,x)n)\displaystyle f(B_{n}):=(-1)^{|B_{n}|-|A_{n}^{C}|}\rho_{n}(x_{n},B_{n}|(A,x)^{-n})

and F:LnF:L_{n}\rightarrow\mathbb{R} as F(Dn):=BnDnf(Bn)F(D_{n}):=\sum_{B_{n}\supseteq D_{n}}f(B_{n}). Applying the Möbius inversion from Lemma 4.2,

f(Dn)=BnDn(1)|Bn||Dn|F(Bn)\displaystyle f(D_{n})=\sum_{B_{n}\supseteq D_{n}}(-1)^{|B_{n}|-|D_{n}|}F(B_{n})

which implies

ρn(xn,AnC|(A,x)n)=f(AnC)=BnAnC(1)|Bn||AnC|F(Bn)=DnAnm(xn,Dn|(A,x)n)\displaystyle\rho_{n}(x_{n},A_{n}^{C}|(A,x)^{-n})=f(A_{n}^{C})=\sum_{B_{n}\supseteq A_{n}^{C}}(-1)^{|B_{n}|-|A_{n}^{C}|}F(B_{n})=\sum_{D_{n}\subseteq A_{n}}m(x_{n},D_{n}|(A,x)^{-n})

The last equality follows by matching terms across sums via the bijection DnCAnCDnAnD_{n}^{C}\supseteq A_{n}^{C}\iff D_{n}\subseteq A_{n}:

(1)|DnC||AnC|F(DnC)=BnDnC(1)|DnC||AnC|f(Bn)\displaystyle(-1)^{|D_{n}^{C}|-|A_{n}^{C}|}F(D_{n}^{C})=\sum_{B_{n}\supseteq D_{n}^{C}}(-1)^{|D_{n}^{C}|-|A_{n}^{C}|}f(B_{n})
=BnDnC(1)|Bn||DnC|ρn(xn,Bn|(A,x)n)=m(xn,Dn|(A,x)n)\displaystyle=\sum_{B_{n}\supseteq D_{n}^{C}}(-1)^{|B_{n}|-|D_{n}^{C}|}\rho_{n}(x_{n},B_{n}|(A,x)^{-n})=m(x_{n},D_{n}|(A,x)^{-n})

where the second equality follows by observing that (1)k=(1)k(-1)^{k}=(-1)^{-k}. ∎

Strictly speaking, Lemma 4.6 holds for SCFs and BM sums that are conditional on histories. However, the same argument implies that for any A<<XA<<X and xAx\notin A with m(xn,An)>0m(x_{-n},A_{-n})>0,

ρn(xn,AnC|(x,A)n)=BnAnm(xn,Bn|(x,A)n)\rho_{n}(x_{n},A_{n}^{C}|(x,A)^{-n})=\sum_{B_{n}\subseteq A_{n}}m(x_{n},B_{n}|(x,A)^{-n})

This follows by fixing A<<XA<<X and xAx\notin A with m(xn,An)>0m(x_{-n},A_{-n})>0, defining f(Bn):=(1)|Bn||AnC|ρn(xn,Bn|(x,A)n)f(B_{n}):=(-1)^{|B_{n}|-|A_{n}^{C}|}\rho_{n}(x_{n},B_{n}|(x,A)^{-n}) and F(Dn):=BnDnf(Bn)F(D_{n}):=\sum_{B_{n}\supseteq D_{n}}f(B_{n}), applying the Möbius inversion as before, and concluding that ρn(xn,AnC|(x,A)n)=BnAnC(1)|Bn||AnC|F(Bn)=DnAnm(xn,Dn|(x,A)n)\rho_{n}(x_{n},A_{n}^{C}|(x,A)^{-n})=\sum_{B_{n}\supseteq A_{n}^{C}}(-1)^{|B_{n}|-|A_{n}^{C}|}F(B_{n})=\sum_{D_{n}\subseteq A_{n}}m(x_{n},D_{n}|(x,A)^{-n}) via matching terms: for any DnCAnCD_{n}^{C}\supseteq A_{n}^{C},

(1)|DnC||AnC|F(DnC)=BnDnC(1)|DnC||AnC|f(Bn)\displaystyle(-1)^{|D_{n}^{C}|-|A_{n}^{C}|}F(D_{n}^{C})=\sum_{B_{n}\supseteq D_{n}^{C}}(-1)^{|D_{n}^{C}|-|A_{n}^{C}|}f(B_{n})
=BnDnC(1)|Bn||DnC|ρn(xn,Bn|(x,A)n)=m(xn,Dn|(x,A)n)\displaystyle=\sum_{B_{n}\supseteq D_{n}^{C}}(-1)^{|B_{n}|-|D_{n}^{C}|}\rho_{n}(x_{n},B_{n}|(x,A)^{-n})=m(x_{n},D_{n}|(x,A)^{-n})

The following lemma equates two different (single-period) sums of joint BM sums under Marginal Consistency.

Lemma 4.7.

Assume pp satisfies Marginal Consistency. For any 1tn1\leq t\leq n, AtXt\emptyset\subsetneq A_{t}\subsetneq X_{t}, At<<XtA_{-t}<<X_{-t}, and xtAtx_{-t}\notin A_{-t},

xtAtCm(xt,At;xt,At)=ytAtm(yt,At\{yt};xt,At)\sum_{x_{t}\in A_{t}^{C}}m(x_{t},A_{t};x_{-t},A_{-t})=\sum_{y_{t}\in A_{t}}m(y_{t},A_{t}\backslash\{y_{t}\};x_{-t},A_{-t})
Proof.

Expanding the left-hand side yields

BtAtC(1)it|Bi||AiC|[BtAtC(1)|Bt||AtC|p(AtC,Bt;xt,Bt)]\sum_{B_{-t}\geq A_{-t}^{C}}(-1)^{\sum_{i\neq t}|B_{i}|-|A_{i}^{C}|}\bigg{[}\sum_{B_{t}\supseteq A_{t}^{C}}(-1)^{|B_{t}|-|A_{t}^{C}|}p(A_{t}^{C},B_{t};x_{-t},B_{-t})\bigg{]}

and expanding the right-hand side yields

BtAtC(1)it|Bi||AiC|[ytAtBtAtC{yt}(1)|Bt||AtC|1p(yt,Bt;xt,Bt)]\sum_{B_{-t}\geq A_{-t}^{C}}(-1)^{\sum_{i\neq t}|B_{i}|-|A_{i}^{C}|}\bigg{[}\sum_{y_{t}\in A_{t}}\sum_{B_{t}\supseteq A_{t}^{C}\cup\{y_{t}\}}(-1)^{|B_{t}|-|A_{t}^{C}|-1}p(y_{t},B_{t};x_{-t},B_{-t})\bigg{]}

I will show that the inner sums are equal by matching terms. Expanding the first inner sum yields

p(xt,Bt)+BtAtC(1)|Bt||AtC|[p(xt,Bt)p(Bt\AtC,Bt;xt,Bt)]\displaystyle p(x_{-t},B_{-t})+\sum_{B_{t}\supsetneq A_{t}^{C}}(-1)^{|B_{t}|-|A_{t}^{C}|}\big{[}p(x_{-t},B_{-t})-p(B_{t}\backslash A_{t}^{C},B_{t};x_{-t},B_{-t})\big{]}
=BtAtC(1)|Bt||AtC|p(xt,Bt)BtAtC(1)|Bt||AtC|p(Bt\AtC,Bt;xt,Bt)\displaystyle=\sum_{B_{t}\supseteq A_{t}^{C}}(-1)^{|B_{t}|-|A_{t}^{C}|}p(x_{-t},B_{-t})-\sum_{B_{t}\supsetneq A_{t}^{C}}(-1)^{|B_{t}|-|A_{t}^{C}|}p(B_{t}\backslash A_{t}^{C},B_{t};x_{-t},B_{-t})
=p(xt,Bt)BtAtC(1)|Bt||AtC|+BtAtC(1)|Bt||AtC|+1p(Bt\AtC,Bt;xt,Bt)\displaystyle=p(x_{-t},B_{-t})\sum_{B_{t}\supseteq A_{t}^{C}}(-1)^{|B_{t}|-|A_{t}^{C}|}+\sum_{B_{t}\supsetneq A_{t}^{C}}(-1)^{|B_{t}|-|A_{t}^{C}|+1}p(B_{t}\backslash A_{t}^{C},B_{t};x_{-t},B_{-t})
=BtAtCxtBt\AtC(1)|Bt||AtC|+1p(xt,Bt;xt,Bt)\displaystyle=\sum_{B_{t}\supsetneq A_{t}^{C}}\sum_{x_{t}\in B_{t}\backslash A_{t}^{C}}(-1)^{|B_{t}|-|A_{t}^{C}|+1}p(x_{t},B_{t};x_{-t},B_{-t})

where the first line follows from Marginal Consistency. To see the last equality, observe that

BtAtC(1)|Bt||AtC|=k=0|At|(1)k(|At|k)=0\sum_{B_{t}\supseteq A_{t}^{C}}(-1)^{|B_{t}|-|A_{t}^{C}|}=\sum_{k=0}^{|A_{t}|}(-1)^{k}\binom{|A_{t}|}{k}=0

since, for each 0k|At|0\leq k\leq|A_{t}|, there are (|At|k)\binom{|A_{t}|}{k} supersets of AtCA_{t}^{C} with |AtC|+k|A_{t}^{C}|+k elements. Since (1)n=(1)n+2(-1)^{n}=(-1)^{n+2}, matching terms across inner sums via the bijection ytAt,BtAtC{yt}BtAtC,ytBt\AtCy_{t}\in A_{t},B_{t}\supseteq A_{t}^{C}\cup\{y_{t}\}\iff B_{t}\supsetneq A_{t}^{C},y_{t}\in B_{t}\backslash A_{t}^{C} completes the proof. ∎

Lemma 4.7 is the dynamic analog of Chambers and Echenique (2016)’s Lemma 7.4(II), which is stated in that reference without proof. Note that since pn1p_{n-1} is the marginal of pp over AnA_{-n}, the result of Lemma 4.7 for t=nt=n goes through without assuming Marginal Consistency. Lemma 4.7 admits the following corollary, which equates multi-period sums of Block-Marschak sums.

Corollary 4.8.

Assume pp satisfies Marginal Consistency. For any (nonempty) set of indices T{1,,n}T\subseteq\{1,\ldots,n\}, any <<AT<<XT\emptyset<<A_{T}<<X_{T}, AT<<XTA_{-T}<<X_{-T}, and xTATx_{-T}\notin\notin A_{-T},101010Let AT:=(At)tTA_{T}:=(A_{t})_{t\in T} and say that xTATx_{T}\notin\notin A_{-T} if xtAtx_{t}\notin A_{t} for all tTt\in T.

xTATCm(xT,AT;xT,AT)=yTATm(yT,(A\{y})T;xT,AT)\sum_{x_{T}\in A_{T}^{C}}m(x_{T},A_{T};x_{-T},A_{-T})=\sum_{y_{T}\in A_{T}}m(y_{T},(A\backslash\{y\})_{T};x_{-T},A_{-T})

where (A\{y})T:=(At\{yt})tT(A\backslash\{y\})_{T}:=(A_{t}\backslash\{y_{t}\})_{t\in T}.

Proof.

I prove this by inducting on the cardinality of TT. The base case (|T|=1|T|=1) is Lemma 4.7. Inductive step: suppose the equality holds for all T{1,,n}T\subseteq\{1,\ldots,n\} with |T|=k|T|=k. Fix T={t1,,tk+1}{1,,n}T=\{t_{1},\ldots,t_{k+1}\}\subseteq\{1,\ldots,n\} and let Tk=T\{tk+1}T_{k}=T\backslash\{t_{k+1}\}. Then

xTATCm(xT,AT;xT,AT)=xtk+1Atk+1C[xTkATkCm(xTk,ATk;xtk+1,Atk+1;xT,AT)]\displaystyle\sum_{x_{T}\in A_{T}^{C}}m(x_{T},A_{T};x_{-T},A_{-T})=\sum_{x_{t_{k+1}}\in A_{t_{k+1}}^{C}}\bigg{[}\sum_{x_{T_{k}}\in A_{T_{k}}^{C}}m(x_{T_{k}},A_{T_{k}};x_{t_{k+1}},A_{t_{k+1}};x_{-T},A_{-T})\bigg{]}
=xtk+1Atk+1C[yTkATkm(yTk,(A\{y})Tk;xtk+1,Atk+1;xT,AT)]\displaystyle=\sum_{x_{t_{k+1}}\in A_{t_{k+1}}^{C}}\bigg{[}\sum_{y_{T_{k}}\in A_{T_{k}}}m(y_{T_{k}},(A\backslash\{y\})_{T_{k}};x_{t_{k+1}},A_{t_{k+1}};x_{-T},A_{-T})\bigg{]}
=yTkATk[xtk+1Atk+1Cm(yTk,(A\{y})Tk;xtk+1,Atk+1;xT,AT)]\displaystyle=\sum_{y_{T_{k}}\in A_{T_{k}}}\bigg{[}\sum_{x_{t_{k+1}}\in A_{t_{k+1}}^{C}}m(y_{T_{k}},(A\backslash\{y\})_{T_{k}};x_{t_{k+1}},A_{t_{k+1}};x_{-T},A_{-T})\bigg{]}
=yTkATk[ytk+1Atk+1m(yTk,(A\{y})Tk;ytk+1,Atk+1\{ytk+1};xT,AT)]\displaystyle=\sum_{y_{T_{k}}\in A_{T_{k}}}\bigg{[}\sum_{y_{t_{k+1}}\in A_{t_{k+1}}}m(y_{T_{k}},(A\backslash\{y\})_{T_{k}};y_{t_{k+1}},A_{t_{k+1}}\backslash\{y_{t_{k+1}}\};x_{-T},A_{-T})\bigg{]}
=yTATm(yT,(A\{y})T;xT,AT)\displaystyle=\sum_{y_{T}\in A_{T}}m(y_{T},(A\backslash\{y\})_{T};x_{-T},A_{-T})

where the second equality follows from the inductive hypothesis and the fourth equality follows from Lemma 4.7. ∎

The next result verifies that joint BM sums can be decomposed into products of marginal and conditional BM sums.

Lemma 4.9.

For any An<<XnA_{-n}<<X_{-n} and xnAnCx_{-n}\in A_{-n}^{C} with m(xn,An)>0m(x_{-n},A_{-n})>0 and any AnnA_{n}\in\mathcal{M}_{n},

xnAnρn(xn,An|(x,A)n)=1andm(xn,An|(x,A)n)m(xn,An)=m(x,A)\displaystyle\sum_{x_{n}\in A_{n}}\rho_{n}(x_{n},A_{n}|(x,A)^{-n})=1\ \ \ \text{and}\ \ \ m(x_{n},A_{n}|(x,A)^{-n})m(x_{-n},A_{-n})=m(x,A)
Proof.

Fix any An<<XnA_{-n}<<X_{-n} and xnAnCx_{-n}\in A_{-n}^{C} with m(xn,An)>0m(x_{-n},A_{-n})>0 and any AnnA_{n}\in\mathcal{M}_{n}. Note that for fixed xnAnx_{n}\in A_{n},

DnAnCm(xn,An;xn,Dn)\displaystyle\sum_{D_{n}\subseteq A_{n}^{C}}m(x_{-n},A_{-n};x_{n},D_{n})
=BnAnC(1)t=1n1|Bt||AtC|pn(xn,Bn)DnAnCBnDnC(1)|Bn||DnC|ρn(xn,Bn|(B,x)n)\displaystyle=\sum_{B_{-n}\geq A_{-n}^{C}}(-1)^{\sum_{t=1}^{n-1}|B_{t}|-|A_{t}^{C}|}p_{-n}(x_{-n},B_{-n})\sum_{D_{n}\subseteq A_{n}^{C}}\sum_{B_{n}\supseteq D_{n}^{C}}(-1)^{|B_{n}|-|D_{n}^{C}|}\rho_{n}(x_{n},B_{n}|(B,x)^{-n})
=BnAnC:pn(xn,Bn)>0(1)t=1n1|Bt||AtC|pn(xn,Bn)DnAnCm(xn,Dn|(B,x)n)\displaystyle=\sum_{B_{-n}\geq A_{-n}^{C}:p_{-n}(x_{-n},B_{-n})>0}(-1)^{\sum_{t=1}^{n-1}|B_{t}|-|A_{t}^{C}|}p_{-n}(x_{-n},B_{-n})\sum_{D_{n}\subseteq A_{n}^{C}}m(x_{n},D_{n}|(B,x)^{-n})
=BnAnC(1)t=1n1|Bt||AtC|p(xn,Bn;xn,An)\displaystyle=\sum_{B_{-n}\geq A_{-n}^{C}}(-1)^{\sum_{t=1}^{n-1}|B_{t}|-|A_{t}^{C}|}p(x_{-n},B_{-n};x_{n},A_{n})

where the second equality holds because every sum is equal to itself excluding the terms equal to zero and by the definition of m(xn,Dn|(B,x)n)m(x_{n},D_{n}|(B,x)^{-n}) given in Lemma 4.6, and the third equality follows from Lemma 4.6. Substituting the above yields

xnAnρn(xn,An|(x,A)n)=xnAnDnAnCm(xn,An;xn,Dn)m(xn,An)\displaystyle\sum_{x_{n}\in A_{n}}\rho_{n}(x_{n},A_{n}|(x,A)^{-n})=\frac{\sum_{x_{n}\in A_{n}}\sum_{D_{n}\subseteq A_{n}^{C}}m(x_{-n},A_{-n};x_{n},D_{n})}{m(x_{-n},A_{-n})}
=BnAnC(1)t=1n1|Bt||AtC|xnAnp(xn,Bn;xn,An)m(xn,An)=1\displaystyle=\frac{\sum_{B_{-n}\geq A_{-n}^{C}}(-1)^{\sum_{t=1}^{n-1}|B_{t}|-|A_{t}^{C}|}\sum_{x_{n}\in A_{n}}p(x_{-n},B_{-n};x_{n},A_{n})}{m(x_{-n},A_{-n})}=1

by definition of m(xn,An)m(x_{-n},A_{-n}). Next,

m(xn,An|(x,A)n)m(xn,An)=BnAnC(1)|Bn||AnC|DnBnCm(xn,An;xn,Dn)\displaystyle m(x_{n},A_{n}|(x,A)^{-n})m(x_{-n},A_{-n})=\sum_{B_{n}\supseteq A_{n}^{C}}(-1)^{|B_{n}|-|A_{n}^{C}|}\sum_{D_{n}\subseteq B_{n}^{C}}m(x_{-n},A_{-n};x_{n},D_{n})
=BnAnC(1)|Bn||AnC|BnAnC(1)t=1n1|Bt||AtC|p(xn,Bn;xn,Bn)=m(x,A)\displaystyle=\sum_{B_{n}\supseteq A_{n}^{C}}(-1)^{|B_{n}|-|A_{n}^{C}|}\sum_{B_{-n}\geq A_{-n}^{C}}(-1)^{\sum_{t=1}^{n-1}|B_{t}|-|A_{t}^{C}|}p(x_{-n},B_{-n};x_{n},B_{n})=m(x,A)

where the second equality follows from above. ∎

4.3 Proof of Proposition 3.1

Proof.

(1) \implies (2): Fix any xAx\in A\in\mathcal{M}. If p(x,A)=ρ(x1,A1)t=2nρt(xt,At|(A,x)t1)=0p(x,A)=\rho(x_{1},A_{1})\prod_{t=2}^{n}\rho_{t}(x_{t},A_{t}|(A,x)^{t-1})=0, then μ(C(x1,A1))=ρ1(x1,A1)=0\mu(C(x_{1},A_{1}))=\rho_{1}(x_{1},A_{1})=0 or μ(C(xt,At)|C(A,x)t1)=ρt(xt,At|(A,x)t1)=0\mu(C(x_{t},A_{t})|C(A,x)^{t-1})=\rho_{t}(x_{t},A_{t}|(A,x)^{t-1})=0 for some 1<tn1<t\leq n with (A,x)t1t1(A,x)^{t-1}\in\mathcal{H}_{t-1}, by definition of pp.111111If ρ1(x1,A1)>0\rho_{1}(x_{1},A_{1})>0, then at least one term in the product t=2nρt(xt,At|(A,x)t1)\prod_{t=2}^{n}\rho_{t}(x_{t},A_{t}|(A,x)^{t-1}) is zero. Let t=min{1<sn:ρs(xs,As|(A,x)s1)=0}t=\min\{1<s\leq n:\rho_{s}(x_{s},A_{s}|(A,x)^{s-1})=0\}: then for all 1<s<t1<s<t, ρs(xs,As|(A,x)s1)>0\rho_{s}(x_{s},A_{s}|(A,x)^{s-1})>0 and (A,x)s1s1(A,x)^{s-1}\in\mathcal{H}_{s-1}, by definition of s1\mathcal{H}_{s-1}. Hence, (A,x)t1t1(A,x)^{t-1}\in\mathcal{H}_{t-1}.

If the former, then C(x,A)C(x1,A1)C(x,A)\subseteq C(x_{1},A_{1}) implies μ(C(x,A))μ(C(x1,A1))=0\mu(C(x,A))\leq\mu(C(x_{1},A_{1}))=0. If the latter, then C(x,A)s=1tC(xs,As)C(x,A)\subseteq\bigcap_{s=1}^{t}C(x_{s},A_{s}) implies μ(C(x,A))μ(s=1tC(xs,As))=0\mu(C(x,A))\leq\mu\big{(}\bigcap_{s=1}^{t}C(x_{s},A_{s})\big{)}=0.121212If (A,x)t1t1(A,x)^{t-1}\in\mathcal{H}_{t-1}, then ρs(xs,As|(A,x)s1)>0\rho_{s}(x_{s},A_{s}|(A,x)^{s-1})>0 for all 1<s<t1<s<t and ρ1(x1,A1)>0\rho_{1}(x_{1},A_{1})>0, by definition of t1\mathcal{H}_{t-1}. I claim that μ(C(A,x)s)>0\mu(C(A,x)^{s})>0 for all 1<st11<s\leq t-1. Base case: μ(C(A,x)2)=μ(C(x1,A1)C(x2,A2))=μ(C(x2,A2)|C(x1,A1))μ(C(x1,A1))=ρ2(x2,A2|A1,x1)ρ1(x1,A1)>0\mu(C(A,x)^{2})=\mu(C(x_{1},A_{1})\cap C(x_{2},A_{2}))=\mu(C(x_{2},A_{2})|C(x_{1},A_{1}))\mu(C(x_{1},A_{1}))=\rho_{2}(x_{2},A_{2}|A_{1},x_{1})\rho_{1}(x_{1},A_{1})>0. Inductive step: suppose μ(C(A,x)s)>0\mu(C(A,x)^{s})>0 for 1<s<t11<s<t-1. Since (A,x)t1t1(A,x)^{t-1}\in\mathcal{H}_{t-1}, (A,x)ss(A,x)^{s}\in\mathcal{H}_{s}. Hence, μ(C(A,x)s+1)=μ(C(A,x)sC(xs+1,As+1))=μ(C(xs+1,As+1)|C(A,x)s)μ(C(A,x)s)=ρs+1(xs+1,As+1|(A,x)s)μ(C(A,x)s)>0\mu(C(A,x)^{s+1})=\mu(C(A,x)^{s}\cap C(x_{s+1},A_{s+1}))=\mu(C(x_{s+1},A_{s+1})|C(A,x)^{s})\mu(C(A,x)^{s})=\rho_{s+1}(x_{s+1},A_{s+1}|(A,x)^{s})\mu(C(A,x)^{s})>0. Finally, since μ(C(A,x)t1)>0\mu(C(A,x)^{t-1})>0, we can write μ(s=1tC(xs,As))=μ(C(xt,At)|C(A,x)t1)μ(C(A,x)t1)=ρt(xt,At|(A,x)t1)μ(C(A,x)t1)=0\mu(\bigcap_{s=1}^{t}C(x_{s},A_{s}))=\mu(C(x_{t},A_{t})|C(A,x)^{t-1})\mu(C(A,x)^{t-1})=\rho_{t}(x_{t},A_{t}|(A,x)^{t-1})\mu(C(A,x)^{t-1})=0. In either case, μ(C(x,A))=0=p(x,A)\mu(C(x,A))=0=p(x,A), as desired. If ρ(x1,A1)t=2nρt(xt,At|(A,x)t1)=p(x,A)>0\rho(x_{1},A_{1})\prod_{t=2}^{n}\rho_{t}(x_{t},A_{t}|(A,x)^{t-1})=p(x,A)>0, then every multiplicand of that product is positive. Hence,131313By the previous footnote, μ(C(A,x)t1)>0\mu(C(A,x)^{t-1})>0 for all 1<tn1<t\leq n.

μ(C(x,A))=μ(C(x1,A1))t=2nμ(C(xt,At)|C(A,x)t1)=ρ(x1,A1)t=2nρt(xt,At|(A,x)t1)=p(x,A)\mu(C(x,A))=\mu(C(x_{1},A_{1}))\prod_{t=2}^{n}\mu(C(x_{t},A_{t})|C(A,x)^{t-1})=\rho(x_{1},A_{1})\prod_{t=2}^{n}\rho_{t}(x_{t},A_{t}|(A,x)^{t-1})=p(x,A)

(2) \implies (3): Fix any A<<XA<<X and xACx\in A^{C}. Since xttAtC\{xt}x_{t}\succ_{t}A_{t}^{C}\backslash\{x_{t}\} if and only if BtCtxttBt\{xt}B_{t}^{C}\succ_{t}x_{t}\succ_{t}B_{t}\backslash\{x_{t}\} for some BtAtCB_{t}\supseteq A_{t}^{C},

C(x,AC)=BACE(x,BC)C(x,A^{C})=\bigcup_{B\geq A^{C}}E(x,B^{C})

and this union is disjoint. Hence,

p(x,AC)=BACμ(E(x,BC))p(x,A^{C})=\sum_{B\geq A^{C}}\mu(E(x,B^{C}))

By Lemma 4.2 with f(B)=μ(E(x,BC))f(B)=\mu(E(x,B^{C})) and F(A)=p(x,A)F(A)=p(x,A),

μ(E(x,A))=f(AC)=BACmL(AC,B)p(x,B)=m(x,A)\mu(E(x,A))=f(A^{C})=\sum_{B\geq A^{C}}m_{L}(A^{C},B)p(x,B)=m(x,A)

(3) \implies (1): For all yDy\in D\in\mathcal{M}, yttDt\{yt}y_{t}\succ_{t}D_{t}\backslash\{y_{t}\} if and only if BttyttBtC\{yt}B_{t}\succ_{t}y_{t}\succ_{t}B_{t}^{C}\backslash\{y_{t}\} for some BtDtCB_{t}\subseteq D_{t}^{C} implies

C(y,D)=BDCE(y,B)C(y,D)=\bigcup_{B\leq D^{C}}E(y,B)

and this union is disjoint. By Lemma 4.5,

μ(C(y,D))=BDCm(y,B)=p(y,D)\mu(C(y,D))=\sum_{B\leq D^{C}}m(y,B)=p(y,D)

Fix any x1A11x_{1}\in A_{1}\in\mathcal{M}_{1} and fix A11A_{-1}\in\mathcal{M}_{-1}: since {C(x1,A1;x1,A1)}x1A1\{C(x_{1},A_{1};x_{-1},A_{-1})\}_{x_{-1}\in A_{-1}} partitions C(x1,A1)C(x_{1},A_{1}),

μ(C(x1,A1))=x1A1μ(C(x1,A1;x1,A1))=x1A1p(x1,A1;x1,A1)=ρ1(x1,A1)\mu(C(x_{1},A_{1}))=\sum_{x_{-1}\in A_{-1}}\mu(C(x_{1},A_{1};x_{-1},A_{-1}))=\sum_{x_{-1}\in A_{-1}}p(x_{1},A_{1};x_{-1},A_{-1})=\rho_{1}(x_{1},A_{1})

In particular, μ(C(h1))=ρ1(x1,A1)>0\mu(C(h_{1}))=\rho_{1}(x_{1},A_{1})>0 for any h1=(A1,x1)1h_{1}=(A_{1},x_{1})\in\mathcal{H}_{1}, by definition of 1\mathcal{H}_{1}. Next, fix any 2<tn2<t\leq n, ht1t1h_{t-1}\in\mathcal{H}_{t-1}, and AttA_{\geq t}\in\mathcal{M}_{\geq t}. Since {C(ht1;xt,At)}xtAt\{C(h_{t-1};x_{\geq t},A_{\geq t})\}_{x_{\geq t}\in A_{\geq t}} partitions C(ht1)C(h_{t-1}),

μ(C(ht1))=xtAtμ(C(ht1;xt,At))=xtAtp(ht1;xt,At)\displaystyle\mu(C(h_{t-1}))=\sum_{x_{\geq t}\in A_{\geq t}}\mu(C(h_{t-1};x_{\geq t},A_{\geq t}))=\sum_{x_{\geq t}\in A_{\geq t}}p(h_{t-1};x_{\geq t},A_{\geq t})
=pt1(ht1)=ρ1(x1,A1)s=2t1ρs(xs,As|(A,x)s1)>0\displaystyle=p_{t-1}(h_{t-1})=\rho_{1}(x_{1},A_{1})\prod_{s=2}^{t-1}\rho_{s}(x_{s},A_{s}|(A,x)^{s-1})>0

by definition of t1\mathcal{H}_{t-1}. Hence, for all 1<tn1<t\leq n, ht1=(A,x)t1t1h_{t-1}=(A,x)^{t-1}\in\mathcal{H}_{t-1}, and xtAttx_{t}\in A_{t}\in\mathcal{M}_{t},

μ(C(xt,At)|C(ht1))=μ(C(ht1;xt,At))μ(C(ht1))\displaystyle\mu(C(x_{t},A_{t})|C(h_{t-1}))=\frac{\mu(C(h_{t-1};x_{t},A_{t}))}{\mu(C(h_{t-1}))}
=ρ1(x1,A1)s=2tρs(xs,As|(A,x)s1)ρ1(x1,A1)s=2t1ρs(xs,As|(A,x)s1)=ρt(xt,At|ht1)\displaystyle=\frac{\rho_{1}(x_{1},A_{1})\prod_{s=2}^{t}\rho_{s}(x_{s},A_{s}|(A,x)^{s-1})}{\rho_{1}(x_{1},A_{1})\prod_{s=2}^{t-1}\rho_{s}(x_{s},A_{s}|(A,x)^{s-1})}=\rho_{t}(x_{t},A_{t}|h_{t-1})

4.4 Proof of Theorem 3.4

Proof.

()(\implies): As I have shown, pp satisfies Marginal Consistency by Proposition 3.1. To see that pp satisfies Joint Supermodularity, fix ytxtXty_{t}\neq x_{t}\in X_{t} for each 1tn1\leq t\leq n. By Proposition 3.1,

B{x}C:t=1n|Bt|evenp(y,B)B{x}C:t=1n|Bt|oddp(y,B)\displaystyle\sum_{B\geq\{x\}^{C}:\sum_{t=1}^{n}|B_{t}|\text{even}}p(y,B)-\sum_{B\geq\{x\}^{C}:\sum_{t=1}^{n}|B_{t}|\text{odd}}p(y,B)
=B{y,z}N(1)t=1n|Bt|2np(x,B)=m(y,{x})=μ(E(y,{x}))0\displaystyle=\sum_{B\geq\{y,z\}_{N}}(-1)^{\sum_{t=1}^{n}|B_{t}|-2n}p(x,B)=m(y,\{x\})=\mu(E(y,\{x\}))\geq 0

()(\impliedby): Define μ(xyz):=m(y,{x})0\mu(xyz):=m(y,\{x\})\geq 0. Observe that

Pμ()=dX[e(X\{d})m(e,{d})]=dXm(d,)=dXp(d,X)=1\displaystyle\sum_{\succ\in P}\mu(\succ)=\sum_{d\in X}\bigg{[}\sum_{e\in(X\backslash\{d\})}m(e,\{d\})\bigg{]}=\sum_{d\in X}m(d,\emptyset)=\sum_{d\in X}p(d,X)=1

where (X\{d})=(Xt\{dt})1tn(X\backslash\{d\})=(X_{t}\backslash\{d_{t}\})_{1\leq t\leq n}, the first equality follows from counting (since there is a bijection between preference tuples and their first- and second-ranked elements in each component), the second equality follows from Corollary 4.8, and the third equality follows by definition of mm. Hence, μ\mu is a probability measure over PP. Next, fix any A<<XA<<X and xACx\in A^{C}. For i=0,1,2i=0,1,2, let Ti:={t{1,,n}:|At|=i}T_{i}:=\{t\in\{1,\ldots,n\}:|A_{t}|=i\}. Since A<<XA<<X, {T0,T1,T2}\{T_{0},T_{1},T_{2}\} partition {1,,n}\{1,\ldots,n\}. Since

E(x,A)=yT0xT0yT2AT2E(yT0,{x}T0;xT1,AT1;yT2,(A\{y})T2)E(x,A)=\bigcup_{y_{T_{0}}\neq x_{T_{0}}}\bigcup_{y_{T_{2}}\in A_{T_{2}}}E(y_{T_{0}},\{x\}_{T_{0}};x_{T_{1}},A_{T_{1}};y_{T_{2}},(A\backslash\{y\})_{T_{2}})

and this union is disjoint,

μ(E(x,A))=yT0xT0yT2AT2m(yT0,{x}T0;xT1,AT1;yT2,(A\{y})T2)=m(x,A)\displaystyle\mu(E(x,A))=\sum_{y_{T_{0}}\neq x_{T_{0}}}\sum_{y_{T_{2}}\in A_{T_{2}}}m(y_{T_{0}},\{x\}_{T_{0}};x_{T_{1}},A_{T_{1}};y_{T_{2}},(A\backslash\{y\})_{T_{2}})=m(x,A)

where the second equality follows from Corollary 4.8. By Proposition 3.1, μ\mu is an SU representation of ρ\rho. Finally, suppose μ\mu^{\prime} is an SU representation of ρ\rho. Fix any xyzPxyz\ \in P: by Proposition 3.1,

μ(xyz)=μ(E(y,{x}))=m(y,{x})=μ(xyz)\mu(xyz)=\mu(E(y,\{x\}))=m(y,\{x\})=\mu(xyz)

Hence, μ\mu is unique. ∎

4.5 Proof of Theorem 3.7

Proof.

()(\implies): By Proposition 3.1, Joint BM Nonnegativity and Marginal Consistency are necessary for SU, since m(x,A)=μ(E(x,A))0m(x,A)=\mu(E(x,A))\geq 0 for all A<<XA<<X and xAcx\in A^{c}, and xtAtp(xt,At;xt,At)=μ(C(xt,At))\sum_{x_{t}\in A_{t}}p(x_{t},A_{t};x_{-t},A_{-t})=\mu(C(x_{-t},A_{-t})) is constant in AtA_{t} for all 1t<n1\leq t<n and xtAttx_{-t}\in A_{-t}\in\mathcal{M}_{-t}.

()(\impliedby): First, I define the tt-cylinders.

Definition 4.10.

For 1k|Xt|1\leq k\leq|X_{t}|, a 𝐤\boldsymbol{k}-sequence is a (distinct) sequence of elements (xt1,,xtk)(x_{t}^{1},\ldots,x_{t}^{k}) in XtX_{t} and its 𝐭\boldsymbol{t}-cylinder141414This definition is analogous to Chambers and Echenique (2016)’s Chapter 7 definition of cylinders. is

Ixt1,,xtk:={tPt:xt1ttxtktXt\{xt1,,xtk}}\displaystyle I_{x_{t}^{1},\ldots,x_{t}^{k}}:=\big{\{}\succ_{t}\ \in P_{t}:x_{t}^{1}\succ_{t}\cdots\succ_{t}x_{t}^{k}\succ_{t}X_{t}\backslash\{x_{t}^{1},\ldots,x_{t}^{k}\}\big{\}}

A kk-sequence’s tt-cylinder is the set of period-tt preferences that rank that kk-sequence in order above all other elements. Let t\mathcal{I}_{t} be the set of all tt-cylinders, and let :=×t=1nt\mathcal{I}:=\times_{t=1}^{n}\mathcal{I}_{t}. Observe that t\mathcal{I}_{t} contains all singletons, since Ixt1,,xt|Xt|1=Ixt1,,xt|Xt|={t}I_{x_{t}^{1},\ldots,x_{t}^{|X_{t}|-1}}=I_{x_{t}^{1},\ldots,x_{t}^{|X_{t}|}}=\{\succ_{t}\} for the unique t\succ_{t} satisfying xt1ttxt|Xt|x_{t}^{1}\succ_{t}\cdots\succ_{t}x_{t}^{|X_{t}|}. For 1t<n1\leq t<n, observe that t\mathcal{I}_{t} only contains tt-cylinders of kk-sequences for k=1,2,3k=1,2,3. Given (nonempty) menu AtA_{t}, let π(At)\pi(A_{t}) be the set of all |At||A_{t}|-sequences that permute AtA_{t}. Now, I recursively define ν:0\nu:\mathcal{I}\rightarrow\mathbb{R}_{\geq 0}.151515My definition of ν\nu is the multiperiod analog of Chambers and Echenique (2016) (7.4). First, define

ν(Ixn1,xn2×Ixn1):=m(xn2,{x}n1;xn1,)\displaystyle\nu(I_{x_{-n}^{1},x_{-n}^{2}}\times I_{x_{n}^{1}}):=m(x_{-n}^{2},\{x\}_{-n}^{1};x_{n}^{1},\emptyset)

Next, for 1<k|Xn|1<k\leq|X_{n}| and xnK:=(xn1,,xnk)x_{n}^{K}:=(x_{n}^{1},\ldots,x_{n}^{k}), let An={xn1,,xnk1}A_{n}=\{x_{n}^{1},\ldots,x_{n}^{k-1}\} and define

ν(Ixn1,xn2×IxnK):={0τnπ(An)ν(Ixn1,xn2×Iτn)=0ν(Ixn1,xn2×IxnK1)m(xn2,{x}n1;xnk,Aj)τnπ(An)ν(Ixn1,xn2×Iτn)else\displaystyle\nu(I_{x_{-n}^{1},x_{-n}^{2}}\times I_{x_{n}^{K}}):=\begin{cases}0&\sum_{\tau_{n}\in\pi(A_{n})}\nu(I_{x_{-n}^{1},x_{-n}^{2}}\times I_{\tau_{n}})=0\\ \frac{\nu(I_{x_{-n}^{1},x_{-n}^{2}}\times I_{x_{n}^{K-1}})m(x_{-n}^{2},\{x\}_{-n}^{1};x_{n}^{k},A_{j})}{\sum_{\tau_{n}\in\pi(A_{n})}\nu(I_{x_{-n}^{1},x_{-n}^{2}}\times I_{\tau_{n}})}&\text{else}\end{cases}

Finally, for each II\in\mathcal{I}, let T1={1tn1:It=Ixt1}T_{1}=\{1\leq t\leq n-1:I_{t}=I_{x_{t}^{1}}\} and T3={1tn1:It=Ixt1,xt2,xt3}T_{3}=\{1\leq t\leq n-1:I_{t}=I_{x_{t}^{1},x_{t}^{2},x_{t}^{3}}\}, and define

ν(I):=xT12xT11ν(IxT11,xT12×IxT31,xT32×I(T1T3))\displaystyle\nu(I):=\sum_{x_{T_{1}}^{2}\neq\neq x_{T_{1}}^{1}}\nu(I_{x_{T_{1}}^{1},x_{T_{1}}^{2}}\times I_{x_{T_{3}}^{1},x_{T_{3}}^{2}}\times I_{-(T_{1}\cup T_{3})})

Note that Joint BM Nonnegativity implies ν0\nu\geq 0.

Definition 4.11.

For any k=(k1,,kn)k=(k_{1},\ldots,k_{n}) with 0kt<|Xt|0\leq k_{t}<|X_{t}|, the first additive property 𝐩1(𝐤)\boldsymbol{p_{1}(k)} holds if for all AA with |At|=kt|A_{t}|=k_{t} and all xtAtCx_{t}\in A_{t}^{C},

τ×tTπ(At)ν(Iτ,xT×IxT)=m(xT,AT;xT,)\displaystyle\sum_{\tau\in\times_{t\in-T}\pi(A_{t})}\nu(I_{\tau,x_{-T}}\times I_{x_{T}})=m(x_{-T},A_{-T};x_{T},\emptyset)

where T={1tn:kt=0}T=\{1\leq t\leq n:k_{t}=0\}.

Claim 4.12.

p1(k)p_{1}(k) holds for all kk with 0kt<|Xt|0\leq k_{t}<|X_{t}| for each 1tn1\leq t\leq n.

Proof.

Base case (0kt<30\leq k_{t}<3 for all 1t<n1\leq t<n, kn=0k_{n}=0): Fix any AA with |At|=kt|A_{t}|=k_{t} for 1t<n1\leq t<n and An=A_{n}=\emptyset, and fix any xACx\in A^{C}. For 0i<30\leq i<3, let Ti={1t<n:kt=i}T_{i}=\{1\leq t<n:k_{t}=i\}. Label xT01:=xT0x_{T_{0}}^{1}:=x_{T_{0}}, AT1={x1}T1A_{T_{1}}=\{x^{1}\}_{T_{1}}, xT12:=xT1x_{T_{1}}^{2}:=x_{T_{1}}, AT2={x1,x2}T2A_{T_{2}}=\{x^{1},x^{2}\}_{T_{2}}, and xT23:=xT2x_{T_{2}}^{3}:=x_{T_{2}}. Then

τT2{x1x2,x2x1}T2ν(IxT01×IxT11,xT12×IτT2,xT23×Ixn)\displaystyle\sum_{\tau_{T_{2}}\in\{x^{1}x^{2},x^{2}x^{1}\}_{T_{2}}}\nu(I_{x_{T_{0}}^{1}}\times I_{x_{T_{1}}^{1},x_{T_{1}}^{2}}\times I_{\tau_{T_{2}},x_{T_{2}}^{3}}\times I_{x_{n}})
=τT2{x1x2,x2x1}T2xT02xT01ν(IxT01,xT02×IxT11,xT12×IτT2×Ixn)\displaystyle=\sum_{\tau_{T_{2}}\in\{x^{1}x^{2},x^{2}x^{1}\}_{T_{2}}}\sum_{x_{T_{0}}^{2}\neq\neq x_{T_{0}}^{1}}\nu(I_{x_{T_{0}}^{1},x_{T_{0}}^{2}}\times I_{x_{T_{1}}^{1},x_{T_{1}}^{2}}\times I_{\tau_{T_{2}}}\times I_{x_{n}})
=eT0{x1}T0CeT2AT2m(eT0,{x1}T0;xT12,{x2}T1;eT2,(A\{e})T2;xn,)\displaystyle=\sum_{e_{T_{0}}\in\{x^{1}\}_{T_{0}}^{C}}\sum_{e_{T_{2}}\in A_{T_{2}}}m(e_{T_{0}},\{x^{1}\}_{T_{0}};x_{T_{1}}^{2},\{x^{2}\}_{T_{1}};e_{T_{2}},(A\backslash\{e\})_{T_{2}};x_{n},\emptyset)
=m(xT01,;xT12,{x1}T1;xT23,AT2;xn,)\displaystyle=m(x_{T_{0}}^{1},\emptyset;x_{T_{1}}^{2},\{x^{1}\}_{T_{1}};x_{T_{2}}^{3},A_{T_{2}};x_{n},\emptyset)

where the last equality follows from Corollary 4.8.

First inductive step (kt=1k_{t}=1 for all 1t<n1\leq t<n, 0<kn<|Xn|0<k_{n}<|X_{n}|): Fix any AA with At={xt1}A_{t}=\{x_{t}^{1}\} for all 1t<n1\leq t<n and An={xn1,,xnkn}A_{n}=\{x_{n}^{1},\ldots,x_{n}^{k_{n}}\}. Fix any xACx\in A^{C}. First, observe that

τnπ(An)ν(Ixn1,xn×Iτn)=ynAn[τAn\{yn}ν(Ixn1,xn×Iτ,yn)]\displaystyle\sum_{\tau_{n}\in\pi(A_{n})}\nu(I_{x_{-n}^{1},x_{-n}}\times I_{\tau_{n}})=\sum_{y_{n}\in A_{n}}\bigg{[}\sum_{\tau\in A_{n}\backslash\{y_{n}\}}\nu(I_{x_{-n}^{1},x_{-n}}\times I_{\tau,y_{n}})\bigg{]}
=ynAnm(xn,{x1}n;yn,An\{yn})=xnAnCm(xn,{x1}n;xn,An)\displaystyle=\sum_{y_{n}\in A_{n}}m(x_{-n},\{x^{1}\}_{-n};y_{n},A_{n}\backslash\{y_{n}\})=\sum_{x_{n}\in A_{n}^{C}}m(x_{-n},\{x^{1}\}_{-n};x_{n},A_{n})

where the first equality holds because permuting AnA_{n} is equivalent to choosing the last element and permuting the remaining kn1k_{n}-1 elements, the second equality holds by the inductive hypothesis p(kn,kn1)p(k_{-n},k_{n}-1),161616Strictly speaking, for kn=1k_{n}=1 the inner sum on the first line is not well-defined. However, in this case it still holds that ν(Ixn1,xn×Ixn1)=m(xn,{x1}n;xn1,)=xnxn1m(xn,{x1}n;xn,{xn1})\nu(I_{x_{-n}^{1},x_{-n}}\times I_{x_{n}^{1}})=m(x_{-n},\{x^{1}\}_{-n};x_{n}^{1},\emptyset)=\sum_{x_{n}\neq x_{n}^{1}}m(x_{-n},\{x^{1}\}_{-n};x_{n},\{x_{n}^{1}\}), where the first equality follows by p(kn,0)p(k_{-n},0) (or directly by definition of ν\nu). and the third equality holds by Lemma 4.7. There are two cases.

  1. 1.

    If τnπ(An)ν(Ixn1,xn×Iτn)=0\sum_{\tau_{n}\in\pi(A_{n})}\nu(I_{x_{-n}^{1},x_{-n}}\times I_{\tau_{n}})=0, then for each τnπ(An)\tau_{n}\in\pi(A_{n}) it follows by definition of ν\nu that ν(Ixn1,xn×Iτn,xn)=0\nu(I_{x_{-n}^{1},x_{-n}}\times I_{\tau_{n},x_{n}})=0. Furthermore, Joint BM Nonnegativity implies m(xn,{x1}n;xn,An)=0m(x_{-n},\{x^{1}\}_{-n};x_{n},A_{n})=0 for each xnAnCx_{n}\in A_{n}^{C}. Hence,

    τnπ(An)ν(Ixn1,xn×Iτn,xn)=0=m(xn,{x1}n;xn,An)\displaystyle\sum_{\tau_{n}\in\pi(A_{n})}\nu(I_{x_{-n}^{1},x_{-n}}\times I_{\tau_{n},x_{n}})=0=m(x_{-n},\{x^{1}\}_{-n};x_{n},A_{n})

    as desired.

  2. 2.

    If τnπ(An)ν(Ixn1,xn×Iτn)>0\sum_{\tau_{n}\in\pi(A_{n})}\nu(I_{x_{-n}^{1},x_{-n}}\times I_{\tau_{n}})>0, then for each τnπ(An)\tau_{n}\in\pi(A_{n}) it follows by definition of ν\nu that

    τnπ(An)ν(Ixn1,xn×Iτn,xn)=τnπ(An)[ν(Ixn1,xn×Iτn)m(xn,{x1}n;xn,An)τnπ(An)ν(Ixn1,xn×Iτn)]\displaystyle\sum_{\tau_{n}\in\pi(A_{n})}\nu(I_{x_{-n}^{1},x_{-n}}\times I_{\tau_{n},x_{n}})=\sum_{\tau_{n}\in\pi(A_{n})}\Bigg{[}\frac{\nu(I_{x_{-n}^{1},x_{-n}}\times I_{\tau_{n}})m(x_{-n},\{x^{1}\}_{-n};x_{n},A_{n})}{\sum_{\tau_{n}^{\prime}\in\pi(A_{n})}\nu(I_{x_{-n}^{1},x_{-n}}\times I_{\tau_{n}^{\prime}})}\Bigg{]}
    =m(xn,{x1}n;xn,An)\displaystyle=m(x_{-n},\{x^{1}\}_{-n};x_{n},A_{n})

    as desired.

Second inductive step (0kt<30\leq k_{t}<3 for all 1t<n1\leq t<n, kt1k_{t}\neq 1 for some 1t<n1\leq t<n, 0<kn<|Xn|0<k_{n}<|X_{n}|): Fix any AA with |At|=kt|A_{t}|=k_{t} for 1tn1\leq t\leq n and any xACx\in A^{C}. For 0i<30\leq i<3, let Ti={1t<n:kt=i}T_{i}=\{1\leq t<n:k_{t}=i\}. By assumption, AT0=A_{T_{0}}=\emptyset. Label xT01:=xT0x_{T_{0}}^{1}:=x_{T_{0}}, AT1={x1}T1A_{T_{1}}=\{x^{1}\}_{T_{1}}, xT12:=xT1x_{T_{1}}^{2}:=x_{T_{1}}, AT2={x1,x2}T2A_{T_{2}}=\{x^{1},x^{2}\}_{T_{2}}, xT23:=xT2x_{T_{2}}^{3}:=x_{T_{2}}, and An={xn1,,xnkn}A_{n}=\{x_{n}^{1},\ldots,x_{n}^{k_{n}}\}. First, observe that

τT2{x1x2,x2x1}T2τnπ(An)ν(IxT01×IxT11,xT12×IτT2,xT23×Iτn)\displaystyle\sum_{\tau_{T_{2}}\in\{x^{1}x^{2},x^{2}x^{1}\}_{T_{2}}}\sum_{\tau_{n}\in\pi(A_{n})}\nu(I_{x_{T_{0}}^{1}}\times I_{x_{T_{1}}^{1},x_{T_{1}}^{2}}\times I_{\tau_{T_{2}},x_{T_{2}}^{3}}\times I_{\tau_{n}})
=ynAn[τT2{x1x2,x2x1}T2τπ(An\{yn})ν(IxT01×IxT11,xT12×IτT2,xT23×Iτ,yn)]\displaystyle=\sum_{y_{n}\in A_{n}}\bigg{[}\sum_{\tau_{T_{2}}\in\{x^{1}x^{2},x^{2}x^{1}\}_{T_{2}}}\sum_{\tau\in\pi(A_{n}\backslash\{y_{n}\})}\nu(I_{x_{T_{0}}^{1}}\times I_{x_{T_{1}}^{1},x_{T_{1}}^{2}}\times I_{\tau_{T_{2}},x_{T_{2}}^{3}}\times I_{\tau,y_{n}})\bigg{]}
=ynAnm(xT01,;xT12,{x1}T1;xT23,AT2;yn,An\{yn})=xnAnCm(xT01,;xT12,{x1}T1;xT23,AT2;xn,An)\displaystyle=\sum_{y_{n}\in A_{n}}m(x_{T_{0}}^{1},\emptyset;x_{T_{1}}^{2},\{x^{1}\}_{T_{1}};x_{T_{2}}^{3},A_{T_{2}};y_{n},A_{n}\backslash\{y_{n}\})=\sum_{x_{n}\in A_{n}^{C}}m(x_{T_{0}}^{1},\emptyset;x_{T_{1}}^{2},\{x^{1}\}_{T_{1}};x_{T_{2}}^{3},A_{T_{2}};x_{n},A_{n})

where the first equality holds because permuting AnA_{n} is equivalent to choosing the last element and permuting the remaining kn1k_{n}-1 elements, the second equality holds by the inductive hypothesis p1(kn,kn1)p_{1}(k_{-n},k_{n}-1),171717Strictly speaking, for kn=1k_{n}=1 the inner sum on the second line is not well-defined. However, in this case it still holds that τT2{x1x2,x2x1}T2ν(IxT01×IxT11,xT12×IτT2,xT23×Ixn1)=m(xT01,;xT12,{x1}T1;xT23,AT2;xn1,)=xnxn1m(xT01,;xT12,{x1}T1;xT23,AT2;xn,{xn1})\sum_{\tau_{T_{2}}\in\{x^{1}x^{2},x^{2}x^{1}\}_{T_{2}}}\nu(I_{x_{T_{0}}^{1}}\times I_{x_{T_{1}}^{1},x_{T_{1}}^{2}}\times I_{\tau_{T_{2}},x_{T_{2}}^{3}}\times I_{x_{n}^{1}})=m(x_{T_{0}}^{1},\emptyset;x_{T_{1}}^{2},\{x^{1}\}_{T_{1}};x_{T_{2}}^{3},A_{T_{2}};x_{n}^{1},\emptyset)=\sum_{x_{n}\neq x_{n}^{1}}m(x_{T_{0}}^{1},\emptyset;x_{T_{1}}^{2},\{x^{1}\}_{T_{1}};x_{T_{2}}^{3},A_{T_{2}};x_{n},\{x_{n}^{1}\}), where the first equality follows from p(kn,0p(k_{-n},0, as shown in the base case. and the third equality holds because of Lemma 4.7. There are two cases.

  1. 1.

    If

    τT2{x1x2,x2x1}T2τnπ(An)ν(IxT01×IxT11,xT12×IτT2,xT23×Iτn)\displaystyle\sum_{\tau_{T_{2}}\in\{x^{1}x^{2},x^{2}x^{1}\}_{T_{2}}}\sum_{\tau_{n}\in\pi(A_{n})}\nu(I_{x_{T_{0}}^{1}}\times I_{x_{T_{1}}^{1},x_{T_{1}}^{2}}\times I_{\tau_{T_{2}},x_{T_{2}}^{3}}\times I_{\tau_{n}})
    =τT2{x1x2,x2x1}T2xT02xT01τnπ(An)ν(IxT01,xT02×IxT11,xT12×IτT2×Iτn)=0\displaystyle=\sum_{\tau_{T_{2}}\in\{x^{1}x^{2},x^{2}x^{1}\}_{T_{2}}}\sum_{x_{T_{0}}^{2}\neq\neq x_{T_{0}}^{1}}\sum_{\tau_{n}\in\pi(A_{n})}\nu(I_{x_{T_{0}}^{1},x_{T_{0}}^{2}}\times I_{x_{T_{1}}^{1},x_{T_{1}}^{2}}\times I_{\tau_{T_{2}}}\times I_{\tau_{n}})=0

    where the second equality follows by definition of ν\nu, then ν0\nu\geq 0 implies that for each xT02xT01x_{T_{0}}^{2}\neq\neq x_{T_{0}}^{1} and τT2{x1x2,x2x1}T2\tau_{T_{2}}\in\{x^{1}x^{2},x^{2}x^{1}\}_{T_{2}}, τnπ(An)ν(IxT01,xT02×IxT11,xT12×IτT2×Iτn)=0\sum_{\tau_{n}\in\pi(A_{n})}\nu(I_{x_{T_{0}}^{1},x_{T_{0}}^{2}}\times I_{x_{T_{1}}^{1},x_{T_{1}}^{2}}\times I_{\tau_{T_{2}}}\times I_{\tau_{n}})=0. By definition of ν\nu, it follows that ν(IxT01,xT02×IxT11,xT12×IτT2×Iτn,xn)=0\nu(I_{x_{T_{0}}^{1},x_{T_{0}}^{2}}\times I_{x_{T_{1}}^{1},x_{T_{1}}^{2}}\times I_{\tau_{T_{2}}}\times I_{\tau_{n},x_{n}})=0. Furthermore, Joint BM Nonnegativity implies m(xT01,;xT12,{x1}T1;xT23,AT2;xn,An)=0m(x_{T_{0}}^{1},\emptyset;x_{T_{1}}^{2},\{x^{1}\}_{T_{1}};x_{T_{2}}^{3},A_{T_{2}};x_{n},A_{n})=0 for each xnAnCx_{n}\in A_{n}^{C}. Hence,

    τT2{x1x2,x2x1}T2τnπ(An)ν(IxT01×IxT11,xT12×IτT2,xT23×Iτn,xn)\displaystyle\sum_{\tau_{T_{2}}\in\{x^{1}x^{2},x^{2}x^{1}\}_{T_{2}}}\sum_{\tau_{n}\in\pi(A_{n})}\nu(I_{x_{T_{0}}^{1}}\times I_{x_{T_{1}}^{1},x_{T_{1}}^{2}}\times I_{\tau_{T_{2}},x_{T_{2}}^{3}}\times I_{\tau_{n},x_{n}})
    =τT2{x1x2,x2x1}T2xT02xT01τnπ(An)ν(IxT01,xT02×IxT11,xT12×IτT2×Iτn,xn)\displaystyle=\sum_{\tau_{T_{2}}\in\{x^{1}x^{2},x^{2}x^{1}\}_{T_{2}}}\sum_{x_{T_{0}}^{2}\neq\neq x_{T_{0}}^{1}}\sum_{\tau_{n}\in\pi(A_{n})}\nu(I_{x_{T_{0}}^{1},x_{T_{0}}^{2}}\times I_{x_{T_{1}}^{1},x_{T_{1}}^{2}}\times I_{\tau_{T_{2}}}\times I_{\tau_{n},x_{n}})
    =0=m(xT01,;xT12,{x1}T1;xT23,AT2;xn,An)\displaystyle=0=m(x_{T_{0}}^{1},\emptyset;x_{T_{1}}^{2},\{x^{1}\}_{T_{1}};x_{T_{2}}^{3},A_{T_{2}};x_{n},A_{n})

    as desired.

  2. 2.

    If

    τT2{x1x2,x2x1}T2xT02xT01τnπ(An)ν(IxT01,xT02×IxT11,xT12×IτT2×Iτn)>0\sum_{\tau_{T_{2}}\in\{x^{1}x^{2},x^{2}x^{1}\}_{T_{2}}}\sum_{x_{T_{0}}^{2}\neq\neq x_{T_{0}}^{1}}\sum_{\tau_{n}\in\pi(A_{n})}\nu(I_{x_{T_{0}}^{1},x_{T_{0}}^{2}}\times I_{x_{T_{1}}^{1},x_{T_{1}}^{2}}\times I_{\tau_{T_{2}}}\times I_{\tau_{n}})>0

    Let T>={τT2{x1x2,x2x1}T2,xT02xT01:τnπ(An)ν(IxT01,xT02×IxT11,xT12×IτT2×Iτn)>0}T_{>}=\{\tau_{T_{2}}\in\{x^{1}x^{2},x^{2}x^{1}\}_{T_{2}},x_{T_{0}}^{2}\neq\neq x_{T_{0}}^{1}:\sum_{\tau_{n}\in\pi(A_{n})}\nu(I_{x_{T_{0}}^{1},x_{T_{0}}^{2}}\times I_{x_{T_{1}}^{1},x_{T_{1}}^{2}}\times I_{\tau_{T_{2}}}\times I_{\tau_{n}})>0\} and T={τT2{x1x2,x2x1}T2,xT02xT01:τnπ(An)ν(IxT01,xT02×IxT11,xT12×IτT2×Iτn)=0}T=\{\tau_{T_{2}}\in\{x^{1}x^{2},x^{2}x^{1}\}_{T_{2}},x_{T_{0}}^{2}\neq\neq x_{T_{0}}^{1}:\sum_{\tau_{n}\in\pi(A_{n})}\nu(I_{x_{T_{0}}^{1},x_{T_{0}}^{2}}\times I_{x_{T_{1}}^{1},x_{T_{1}}^{2}}\times I_{\tau_{T_{2}}}\times I_{\tau_{n}})=0\}. For (τT2,xT02)T(\tau_{T_{2}},x_{T_{0}}^{2})\in T, it follows that ν(IxT01,xT02×IxT11,xT12×IτT2×Iτn,xn)=0\nu(I_{x_{T_{0}}^{1},x_{T_{0}}^{2}}\times I_{x_{T_{1}}^{1},x_{T_{1}}^{2}}\times I_{\tau_{T_{2}}}\times I_{\tau_{n},x_{n}})=0 for each τnπ(An)\tau_{n}\in\pi(A_{n}) and therefore

    m((x2,{x1})T0T1;τT2,2,{τ1}T2;xn,An)=τnπ(An)ν(IxT01,xT02×IxT11,xT12×IτT2×Iτn,xn)=0\displaystyle m((x^{2},\{x^{1}\})_{T_{0}\cup T_{1}};\tau_{T_{2},2},\{\tau_{1}\}_{T_{2}};x_{n},A_{n})=\sum_{\tau_{n}\in\pi(A_{n})}\nu(I_{x_{T_{0}}^{1},x_{T_{0}}^{2}}\times I_{x_{T_{1}}^{1},x_{T_{1}}^{2}}\times I_{\tau_{T_{2}}}\times I_{\tau_{n},x_{n}})=0

    where the first equality follows by p(1,,1,kn)p(1,\ldots,1,k_{n}). Hence,

    τT2{x1x2,x2x1}T2τnπ(An)ν(IxT01×IxT11,xT12×IτT2,xT23×Iτn,xn)\displaystyle\sum_{\tau_{T_{2}}\in\{x^{1}x^{2},x^{2}x^{1}\}_{T_{2}}}\sum_{\tau_{n}\in\pi(A_{n})}\nu(I_{x_{T_{0}}^{1}}\times I_{x_{T_{1}}^{1},x_{T_{1}}^{2}}\times I_{\tau_{T_{2}},x_{T_{2}}^{3}}\times I_{\tau_{n},x_{n}})
    =τT2{x1x2,x2x1}T2xT02xT01τnπ(An)ν(IxT01,xT02×IxT11,xT12×IτT2×Iτn,xn)\displaystyle=\sum_{\tau_{T_{2}}\in\{x^{1}x^{2},x^{2}x^{1}\}_{T_{2}}}\sum_{x_{T_{0}}^{2}\neq\neq x_{T_{0}}^{1}}\sum_{\tau_{n}\in\pi(A_{n})}\nu(I_{x_{T_{0}}^{1},x_{T_{0}}^{2}}\times I_{x_{T_{1}}^{1},x_{T_{1}}^{2}}\times I_{\tau_{T_{2}}}\times I_{\tau_{n},x_{n}})
    =(τT2,xT02)T>τnπ(An)ν(IxT01,xT02×IxT11,xT12×IτT2×Iτn,xn)\displaystyle=\sum_{(\tau_{T_{2}},x_{T_{0}}^{2})\in T_{>}}\sum_{\tau_{n}\in\pi(A_{n})}\nu(I_{x_{T_{0}}^{1},x_{T_{0}}^{2}}\times I_{x_{T_{1}}^{1},x_{T_{1}}^{2}}\times I_{\tau_{T_{2}}}\times I_{\tau_{n},x_{n}})
    =(τT2,xT02)T>τnπ(An)ν(IxT01,xT02×IxT11,xT12×IτT2×Iτn)m((x2,{x1})T0T1;τT2,2,{τ1}T2;xn,An)τnπ(An)ν(IxT01,xT02×IxT11,xT12×IτT2×Iτn)\displaystyle=\sum_{(\tau_{T_{2}},x_{T_{0}}^{2})\in T_{>}}\sum_{\tau_{n}\in\pi(A_{n})}\frac{\nu(I_{x_{T_{0}}^{1},x_{T_{0}}^{2}}\times I_{x_{T_{1}}^{1},x_{T_{1}}^{2}}\times I_{\tau_{T_{2}}}\times I_{\tau_{n}})m((x^{2},\{x^{1}\})_{T_{0}\cup T_{1}};\tau_{T_{2},2},\{\tau_{1}\}_{T_{2}};x_{n},A_{n})}{\sum_{\tau_{n}^{\prime}\in\pi(A_{n})}\nu(I_{x_{T_{0}}^{1},x_{T_{0}}^{2}}\times I_{x_{T_{1}}^{1},x_{T_{1}}^{2}}\times I_{\tau_{T_{2}}}\times I_{\tau_{n}^{\prime}})}
    =(τT2,xT02)T>m((x2,{x1})T0T1;τT2,2,{τ1}T2;xn,An)\displaystyle=\sum_{(\tau_{T_{2}},x_{T_{0}}^{2})\in T_{>}}m((x^{2},\{x^{1}\})_{T_{0}\cup T_{1}};\tau_{T_{2},2},\{\tau_{1}\}_{T_{2}};x_{n},A_{n})
    =τT2{x1x2,x2x1}T2xT02xT01m((x2,{x1})T0T1;τT2,2,{τ1}T2;xn,An)\displaystyle=\sum_{\tau_{T_{2}}\in\{x^{1}x^{2},x^{2}x^{1}\}_{T_{2}}}\sum_{x_{T_{0}}^{2}\neq\neq x_{T_{0}}^{1}}m((x^{2},\{x^{1}\})_{T_{0}\cup T_{1}};\tau_{T_{2},2},\{\tau_{1}\}_{T_{2}};x_{n},A_{n})
    =m(xT01,;xT12,{x1}T1;xT23,AT2;xn,An)\displaystyle=m(x_{T_{0}}^{1},\emptyset;x_{T_{1}}^{2},\{x^{1}\}_{T_{1}};x_{T_{2}}^{3},A_{T_{2}};x_{n},A_{n})

    as desired.

Definition 4.13.

For any 1tn1\leq t\leq n and k=(k1,,kn)k=(k_{1},\ldots,k_{n}) with 0<ks|Xs|0<k_{s}\leq|X_{s}| and kt<|Xt|k_{t}<|X_{t}|, the second additive property 𝐩2(𝐭,𝐤)\boldsymbol{p_{2}(t,k)} holds if for all AA with |As|=ks|A_{s}|=k_{s} and τ×s=1nπ(As)\tau\in\times_{s=1}^{n}\pi(A_{s}),

xtAtCν(Iτt×Iτt,xt)=ν(Iτt×Iτt)\sum_{x_{t}\in A_{t}^{C}}\nu(I_{\tau_{-t}}\times I_{\tau_{t},x_{t}})=\nu(I_{\tau_{-t}}\times I_{\tau_{t}})
Claim 4.14.

p2(t,k)p_{2}(t,k) holds for all 1tn1\leq t\leq n and kk with 0<ks|Xs|0<k_{s}\leq|X_{s}| and kt<|Xt|k_{t}<|X_{t}|.

Proof.

Fix any 1tn1\leq t\leq n and kk with 0<ks|Xs|0<k_{s}\leq|X_{s}| and kt<|Xt|k_{t}<|X_{t}|. The following cases are exhaustive.

  1. 1.

    (t=nt=n and ks=2k_{s}=2 for all 1s<n1\leq s<n): Fix any AA with |As|=2|A_{s}|=2 for 1s<n1\leq s<n and |An|=kn|A_{n}|=k_{n}, and fix τ×s=1nπ(As)\tau\in\times_{s=1}^{n}\pi(A_{s}). Label τs=xs1,xs2\tau_{s}=x_{s}^{1},x_{s}^{2} for 1s<n1\leq s<n. There are two subcases: if

    τnπ(An)ν(Ixn1,xn2×Iτn)=0\sum_{\tau_{n}^{\prime}\in\pi(A_{n})}\nu(I_{x_{-n}^{1},x_{-n}^{2}}\times I_{\tau_{n}^{\prime}})=0

    then ν(Ixn1,xn2×Iτn,xn)=0\nu(I_{x_{-n}^{1},x_{-n}^{2}}\times I_{\tau_{n},x_{n}})=0 for each xnAnCx_{n}\in A_{n}^{C} by definition of ν\nu and ν(Ixn1,xn2×Iτn)=0\nu(I_{x_{-n}^{1},x_{-n}^{2}}\times I_{\tau_{n}^{\prime}})=0 for each τnπ(An)\tau_{n}^{\prime}\in\pi(A_{n}) since ν0\nu\geq 0. Hence,

    xnAnCν(Ixn1,xn2×Iτn,xn)=0=ν(Ixn1,xn2×Iτn)\displaystyle\sum_{x_{n}\in A_{n}^{C}}\nu(I_{x_{-n}^{1},x_{-n}^{2}}\times I_{\tau_{n},x_{n}})=0=\nu(I_{x_{-n}^{1},x_{-n}^{2}}\times I_{\tau_{n}})

    as desired. Else,

    xnAnCν(Ixn1,xn2×Iτn,xn)=xnAnC[ν(Ixn1,xn2×Iτn)m(xn2,{x}n1;xn,An)τnπ(An)ν(Ixn1,xn2×Iτn)]\displaystyle\sum_{x_{n}\in A_{n}^{C}}\nu(I_{x_{-n}^{1},x_{-n}^{2}}\times I_{\tau_{n},x_{n}})=\sum_{x_{n}\in A_{n}^{C}}\Bigg{[}\frac{\nu(I_{x_{-n}^{1},x_{-n}^{2}}\times I_{\tau_{n}})m(x_{-n}^{2},\{x\}_{-n}^{1};x_{n},A_{n})}{\sum_{\tau_{n}^{\prime}\in\pi(A_{n})}\nu(I_{x_{-n}^{1},x_{-n}^{2}}\times I_{\tau_{n}^{\prime}})}\Bigg{]}
    =ν(Ixn1,xn2×Iτn)[xnAnCm(xn2,{x}n1;xn,An)τnπ(An)ν(Ixn1,xn2×Iτn)]\displaystyle=\nu(I_{x_{-n}^{1},x_{-n}^{2}}\times I_{\tau_{n}})\Bigg{[}\frac{\sum_{x_{n}\in A_{n}^{C}}m(x_{-n}^{2},\{x\}_{-n}^{1};x_{n},A_{n})}{\sum_{\tau_{n}^{\prime}\in\pi(A_{n})}\nu(I_{x_{-n}^{1},x_{-n}^{2}}\times I_{\tau_{n}^{\prime}})}\Bigg{]}
    =ν(Ixn1,xn2×Iτn)\displaystyle=\nu(I_{x_{-n}^{1},x_{-n}^{2}}\times I_{\tau_{n}})

    where the last equality follows from p1(1,,1,kn1)p_{1}(1,\ldots,1,k_{n}-1).181818Note that 0kn1<|Xn|0\leq k_{n}-1<|X_{n}|. See the proof of the first inductive step of Claim 4.12.

  2. 2.

    (t=nt=n and ks2k_{s}\neq 2 for some 1s<n1\leq s<n): Fix any AA with |As|=ks|A_{s}|=k_{s} for all 1sn1\leq s\leq n, and fix τ×s=1nπ(As)\tau\in\times_{s=1}^{n}\pi(A_{s}). For i=1,2,3i=1,2,3, let Si={1s<n:ks=i}S_{i}=\{1\leq s<n:k_{s}=i\} and note that these form a partition of {1,,n1}\{1,\ldots,n-1\}. Label τS1=xS11\tau_{S_{1}}=x_{S_{1}}^{1}, τS2=xS21,xS22\tau_{S_{2}}=x_{S_{2}}^{1},x_{S_{2}}^{2}, and τS3=xS31,xS32,xS33\tau_{S_{3}}=x_{S_{3}}^{1},x_{S_{3}}^{2},x_{S_{3}}^{3}. It follows that

    xnAnCν(Iτn×Iτn,xn)=xnAnCν(IxS11×IxS21,xS22×IxS31,xS32,xS33×Iτn,xn)\displaystyle\sum_{x_{n}\in A_{n}^{C}}\nu(I_{\tau_{-n}}\times I_{\tau_{n},x_{n}})=\sum_{x_{n}\in A_{n}^{C}}\nu(I_{x_{S_{1}}^{1}}\times I_{x_{S_{2}}^{1},x_{S_{2}}^{2}}\times I_{x_{S_{3}}^{1},x_{S_{3}}^{2},x_{S_{3}}^{3}}\times I_{\tau_{n},x_{n}})
    =xS12xS11xnAnCν(IxS11,xS12×IxS21,xS22×IxS31,xS32×Iτn,xn)\displaystyle=\sum_{x_{S_{1}}^{2}\neq\neq x_{S_{1}}^{1}}\sum_{x_{n}\in A_{n}^{C}}\nu(I_{x_{S_{1}}^{1},x_{S_{1}}^{2}}\times I_{x_{S_{2}}^{1},x_{S_{2}}^{2}}\times I_{x_{S_{3}}^{1},x_{S_{3}}^{2}}\times I_{\tau_{n},x_{n}})
    =xS12xS11ν(IxS11,xS12×IxS21,xS22×IxS31,xS32×Iτn)\displaystyle=\sum_{x_{S_{1}}^{2}\neq\neq x_{S_{1}}^{1}}\nu(I_{x_{S_{1}}^{1},x_{S_{1}}^{2}}\times I_{x_{S_{2}}^{1},x_{S_{2}}^{2}}\times I_{x_{S_{3}}^{1},x_{S_{3}}^{2}}\times I_{\tau_{n}})
    =ν(IxS11×IxS21,xS22×IxS31,xS32,xS33×Iτn)=ν(Iτn×Iτn)\displaystyle=\nu(I_{x_{S_{1}}^{1}}\times I_{x_{S_{2}}^{1},x_{S_{2}}^{2}}\times I_{x_{S_{3}}^{1},x_{S_{3}}^{2},x_{S_{3}}^{3}}\times I_{\tau_{n}})=\nu(I_{\tau_{-n}}\times I_{\tau_{n}})

    where the first and last equalities follow by definition of SiS_{i} and τn\tau_{-n}, the second and fourth follow by definition of ν\nu, and the third follows from my proof of p2(2,,2,kn)p_{2}(2,\ldots,2,k_{n}) from above.

  3. 3.

    (1t<n1\leq t<n): Fix any AA with |As|=ks|A_{s}|=k_{s} and τ×s=1nπ(As)\tau\in\times_{s=1}^{n}\pi(A_{s}). For i=1,2,3i=1,2,3, let Si={1s<n:ks=i}S_{i}=\{1\leq s<n:k_{s}=i\} and note that these form a partition of {1,,n1}\{1,\ldots,n-1\}. Label τS1=xS11\tau_{S_{1}}=x_{S_{1}}^{1}, τS2=xS21,xS22\tau_{S_{2}}=x_{S_{2}}^{1},x_{S_{2}}^{2}, and τS3=xS31,xS32,xS33\tau_{S_{3}}=x_{S_{3}}^{1},x_{S_{3}}^{2},x_{S_{3}}^{3}. Since 0<kt<30<k_{t}<3, there are two subcases. If kt=1k_{t}=1, label τt=xt1\tau_{t}=x_{t}^{1}. Then by definition of ν\nu,

    xtxt1ν(Iτt×Ixt1,xt)=xtxt1ν(IxS1\{t}1×IxS21,xS22×IxS31,xS32,xS33×Iτn×Ixt1,xt)\displaystyle\sum_{x_{t}\neq x_{t}^{1}}\nu(I_{\tau_{-t}}\times I_{x_{t}^{1},x_{t}})=\sum_{x_{t}\neq x_{t}^{1}}\nu(I_{x_{S_{1}\backslash\{t\}}^{1}}\times I_{x_{S_{2}}^{1},x_{S_{2}}^{2}}\times I_{x_{S_{3}}^{1},x_{S_{3}}^{2},x_{S_{3}}^{3}}\times I_{\tau_{n}}\times I_{x_{t}^{1},x_{t}})
    =xtxt1xS1\{t}2xS1\{t}1ν(IxS1\{t}1,xS1S1\{t}2×IxS21,xS22×IxS31,xS32×Iτn×Ixt1,xt)\displaystyle=\sum_{x_{t}\neq x_{t}^{1}}\sum_{x_{S_{1}\backslash\{t\}}^{2}\neq\neq x_{S_{1}\backslash\{t\}}^{1}}\nu(I_{x_{S_{1}\backslash\{t\}}^{1},x_{S_{1}S_{1}\backslash\{t\}}^{2}}\times I_{x_{S_{2}}^{1},x_{S_{2}}^{2}}\times I_{x_{S_{3}}^{1},x_{S_{3}}^{2}}\times I_{\tau_{n}}\times I_{x_{t}^{1},x_{t}})
    =ν(Iτt×Ixt1)\displaystyle=\nu(I_{\tau_{-t}}\times I_{x_{t}^{1}})

    Similarly, if kt=2k_{t}=2 label τt=xt1,xt2\tau_{t}=x_{t}^{1},x_{t}^{2}. Then by definition of ν\nu,

    ν(Iτt×Ixt1,xt2,xt3)=ν(IxS11×IxS2\{t}1,xS2\{t}2×IxS31,xS32,xS33×Iτn×Ixt1,xt2,xt3)\displaystyle\nu(I_{\tau_{-t}}\times I_{x_{t}^{1},x_{t}^{2},x_{t}^{3}})=\nu(I_{x_{S_{1}}^{1}}\times I_{x_{S_{2}\backslash\{t\}}^{1},x_{S_{2}\backslash\{t\}}^{2}}\times I_{x_{S_{3}}^{1},x_{S_{3}}^{2},x_{S_{3}}^{3}}\times I_{\tau_{n}}\times I_{x_{t}^{1},x_{t}^{2},x_{t}^{3}})
    =xS12xS11ν(IxS11,xS12×IxS2\{t}1,xS2\{t}2×IxS31,xS32×Iτn×Ixt1,xt2)=ν(Iτt×Ixt1,xt2)\displaystyle=\sum_{x_{S_{1}}^{2}\neq\neq x_{S_{1}}^{1}}\nu(I_{x_{S_{1}}^{1},x_{S_{1}}^{2}}\times I_{x_{S_{2}\backslash\{t\}}^{1},x_{S_{2}\backslash\{t\}}^{2}}\times I_{x_{S_{3}}^{1},x_{S_{3}}^{2}}\times I_{\tau_{n}}\times I_{x_{t}^{1},x_{t}^{2}})=\nu(I_{\tau_{-t}}\times I_{x_{t}^{1},x_{t}^{2}})

    as desired.

Next, define μ:2P\mu:2^{P}\rightarrow\mathbb{R} as

μ():=ν(Ixn1,xn2,xn3×Ixn1,,xn|Xn|)\displaystyle\mu(\succ):=\nu(I_{x_{-n}^{1},x_{-n}^{2},x_{-n}^{3}}\times I_{x_{n}^{1},\ldots,x_{n}^{|X_{n}|}})

for the (unique) xn1,xn2,xn3x_{-n}^{1},x_{-n}^{2},x_{-n}^{3} and xn1,,xn|Xn|x_{n}^{1},\ldots,x_{n}^{|X_{n}|} satisfying xt1txt2txt3x_{t}^{1}\succ_{t}x_{t}^{2}\succ_{t}x_{t}^{3} for all 1t<n1\leq t<n and xn1nnxn|Xn|x_{n}^{1}\succ_{n}\cdots\succ_{n}x_{n}^{|X_{n}|}, and μ(C)=Cμ()\mu(C)=\sum_{\succ\in C}\mu(\succ) for all C2PC\in 2^{P}.

Claim 4.15.

μ\mu is a probability measure.

Proof.

Since μ0\mu\geq 0, it suffices to show that Pμ()=1\sum_{\succ\in P}\mu(\succ)=1. Rewriting this sum yields

Pμ()=τ×π(Xt)ν(Iτ)=yXτ×π(Xt\{yt})ν(Iτ,y)=yXm(y,(Xt\{yt}))\displaystyle\sum_{\succ\in P}\mu(\succ)=\sum_{\tau\in\times\pi(X_{t})}\nu(I_{\tau})=\sum_{y\in X}\sum_{\tau^{\prime}\in\times\pi(X_{t}\backslash\{y_{t}\})}\nu(I_{\tau^{\prime},y})=\sum_{y\in X}m(y,(X_{t}\backslash\{y_{t}\}))
=yXB({yt})(1)|Bt|np(y,B)=B:|Bt|1(1)|Bt|nyBp(y,B)=B:|Bt|1(1)|Bt|n\displaystyle=\sum_{y\in X}\sum_{B\geq(\{y_{t}\})}(-1)^{\sum|B_{t}|-n}p(y,B)=\sum_{B:|B_{t}|\geq 1}(-1)^{\sum|B_{t}|-n}\sum_{y\in B}p(y,B)=\sum_{B:|B_{t}|\geq 1}(-1)^{\sum|B_{t}|-n}
=B:|Bt|1t=1n(1)|Bt|1=t=1nBt:|Bt|1(1)|Bt|1=t=1nk=1|Xt|(1)k1(|Xt|k)=1\displaystyle=\sum_{B:|B_{t}|\geq 1}\prod_{t=1}^{n}(-1)^{|B_{t}|-1}=\prod_{t=1}^{n}\sum_{B_{t}:|B_{t}|\geq 1}(-1)^{|B_{t}|-1}=\prod_{t=1}^{n}\sum_{k=1}^{|X_{t}|}(-1)^{k-1}\binom{|X_{t}|}{k}=1

where the second equality holds because permuting XtX_{t} is equivalent to choosing the last element and permuting the remaining |Xt|1|X_{t}|-1 elements, the third equality holds by p1((|Xt|1))p_{1}((|X_{t}|-1)), the fifth equality follows from yXy\in X and B({yt})B\geq(\{y_{t}\}) iff |Bt|1|B_{t}|\geq 1 and yBy\in B, and the ninth equality follows from 1k=1n(1)k1(nk)=k=0n(1)k(nk)=(11)n=01-\sum_{k=1}^{n}(-1)^{k-1}\binom{n}{k}=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}=(1-1)^{n}=0 for all n1n\geq 1.

Claim 4.16.

μ\mu extends ν\nu.

Proof.

The proof proceeds by induction on the length of tt-cylinders’ kk-sequences. Base case (kt=2k_{t}=2 for all 1t<n1\leq t<n, kn=|Xn|k_{n}=|X_{n}|): for any xn1xn2Xnx_{-n}^{1}\neq\neq x_{-n}^{2}\in X_{-n} and τnπ(Xn)\tau_{n}\in\pi(X_{n}),

μ(Ixn1,xn2×Iτn)=ν(Ixn1,xn2,xn3×Iτn)=ν(Ixn1,xn2×Iτn)\displaystyle\mu(I_{x_{-n}^{1},x_{-n}^{2}}\times I_{\tau_{n}})=\nu(I_{x_{-n}^{1},x_{-n}^{2},x_{-n}^{3}}\times I_{\tau_{n}})=\nu(I_{x_{-n}^{1},x_{-n}^{2}}\times I_{\tau_{n}})

where the first equality follows because Ixn1,xn2×Iτn={}I_{x_{-n}^{1},x_{-n}^{2}}\times I_{\tau_{n}}=\{\succ\} for the (unique) \succ satisfying xn1nxn2nxn3x_{-n}^{1}\succ_{-n}x_{-n}^{2}\succ_{-n}x_{-n}^{3} and τn1nnτn|Xn|\tau_{n}^{1}\succ_{n}\cdots\succ_{n}\tau_{n}^{|X_{n}|} and the second equality holds by definition of ν\nu.

First inductive step (kt=2k_{t}=2 for all 1t<n1\leq t<n, 1kn<|Xn|1\leq k_{n}<|X_{n}|): for any xn1xn2Xnx_{-n}^{1}\neq\neq x_{-n}^{2}\in X_{-n}, AnA_{n} with |An|=kn|A_{n}|=k_{n}, and τnπ(An)\tau_{n}\in\pi(A_{n}),

μ(Ixn1,xn2×Iτn)=xnAnCμ(Ixn1,xn2×Iτn,xn)=xnAnCν(Ixn1,xn2×Iτn,xn)=ν(Ixn1,xn2×Iτn)\displaystyle\mu(I_{x_{-n}^{1},x_{-n}^{2}}\times I_{\tau_{n}})=\sum_{x_{n}\in A_{n}^{C}}\mu(I_{x_{-n}^{1},x_{-n}^{2}}\times I_{\tau_{n},x_{n}})=\sum_{x_{n}\in A_{n}^{C}}\nu(I_{x_{-n}^{1},x_{-n}^{2}}\times I_{\tau_{n},x_{n}})=\nu(I_{x_{-n}^{1},x_{-n}^{2}}\times I_{\tau_{n}})

where the first equality holds because Ixn1,xn2×Iτn=xnAnC(Ixn1,xn2×Iτn,xn)I_{x_{-n}^{1},x_{-n}^{2}}\times I_{\tau_{n}}=\bigcup_{x_{n}\in A_{n}^{C}}\big{(}I_{x_{-n}^{1},x_{-n}^{2}}\times I_{\tau_{n},x_{n}}\big{)} holds and is a disjoint union, the second equality follows from the inductive hypothesis, and the third equality follows from p2(n,2,,2,kn)p_{2}(n,2,\ldots,2,k_{n}).

Second inductive step (1kt31\leq k_{t}\leq 3 for all 1t<n1\leq t<n with kt2k_{t}\neq 2 for some 1t<n1\leq t<n, 1kn|Xn|1\leq k_{n}\leq|X_{n}|): fix any AA with |At|=kt|A_{t}|=k_{t} and any τ×π(At)\tau\in\times\pi(A_{t}). For i=1,2,3i=1,2,3, let Ti={1t<n:kt=i}T_{i}=\{1\leq t<n:k_{t}=i\} and note that these form a partition of {1,,n1}\{1,\ldots,n-1\}. Label τT1=xT11\tau_{T_{1}}=x_{T_{1}}^{1}, τT2=xT21,xT22\tau_{T_{2}}=x_{T_{2}}^{1},x_{T_{2}}^{2}, and τT3=xT31,xT32,xT33\tau_{T_{3}}=x_{T_{3}}^{1},x_{T_{3}}^{2},x_{T_{3}}^{3}. Hence,

μ(Iτ)=μ(IxT11×IxT21,xT22×IxT31,xT32,xT33×Iτn)=xT12xT11μ(IxT11,xT12×IxT21,xT22×IxT31,xT32×Iτn)\displaystyle\mu(I_{\tau})=\mu(I_{x_{T_{1}}^{1}}\times I_{x_{T_{2}}^{1},x_{T_{2}}^{2}}\times I_{x_{T_{3}}^{1},x_{T_{3}}^{2},x_{T_{3}}^{3}}\times I_{\tau_{n}})=\sum_{x_{T_{1}}^{2}\neq\neq x_{T_{1}}^{1}}\mu(I_{x_{T_{1}}^{1},x_{T_{1}}^{2}}\times I_{x_{T_{2}}^{1},x_{T_{2}}^{2}}\times I_{x_{T_{3}}^{1},x_{T_{3}}^{2}}\times I_{\tau_{n}})
=xT12xT11ν(IxT11,xT12×IxT21,xT22×IxT31,xT32×Iτn)=ν(Iτ)\displaystyle=\sum_{x_{T_{1}}^{2}\neq\neq x_{T_{1}}^{1}}\nu(I_{x_{T_{1}}^{1},x_{T_{1}}^{2}}\times I_{x_{T_{2}}^{1},x_{T_{2}}^{2}}\times I_{x_{T_{3}}^{1},x_{T_{3}}^{2}}\times I_{\tau_{n}})=\nu(I_{\tau})

where the second equality holds because IxT11×IxT21,xT22×IxT31,xT32,xT33×Iτn=xT12xT11IxT11,xT12×IxT21,xT22×IxT31,xT32×IτnI_{x_{T_{1}}^{1}}\times I_{x_{T_{2}}^{1},x_{T_{2}}^{2}}\times I_{x_{T_{3}}^{1},x_{T_{3}}^{2},x_{T_{3}}^{3}}\times I_{\tau_{n}}=\bigcup_{x_{T_{1}}^{2}\neq\neq x_{T_{1}}^{1}}I_{x_{T_{1}}^{1},x_{T_{1}}^{2}}\times I_{x_{T_{2}}^{1},x_{T_{2}}^{2}}\times I_{x_{T_{3}}^{1},x_{T_{3}}^{2}}\times I_{\tau_{n}} holds and is a disjoint union, the third equality follows from the first inductive step, and the fourth equality follows by definition of ν\nu. ∎

Claim 4.17.

μ(E(x,A))=m(x,A)\mu(E(x,A))=m(x,A) for all A<<XA<<X and xACx\in A^{C}.

Proof.

Fix any A<<XA<<X and xACx\in A^{C}, and let T={1tn:kt=0}T=\{1\leq t\leq n:k_{t}=0\}. Then

μ(E(x,A))=τ×Tπ(At)μ(Iτ,xT×IxT)=τ×Tπ(At)ν(Iτ,xT×IxT)=m(x,A)\displaystyle\mu(E(x,A))=\sum_{\tau\in\times_{-T}\pi(A_{t})}\mu(I_{\tau,x_{-T}}\times I_{x_{T}})=\sum_{\tau\in\times_{-T}\pi(A_{t})}\nu(I_{\tau,x_{-T}}\times I_{x_{T}})=m(x,A)

where the first equality holds because E(x,A)=τ×Tπ(At)Iτ,xT×IxTE(x,A)=\bigcup_{\tau\in\times_{-T}\pi(A_{t})}I_{\tau,x_{-T}}\times I_{x_{T}} holds and is a disjoint union, the second equality follows from Claim 4.16, and the third equality follows from p1(|A1|,,|An|)p_{1}(|A_{1}|,\ldots,|A_{n}|). ∎

By Proposition 3.1, I conclude μ\mu is an SU representation of ρ\rho. ∎

4.6 Proof of Corollary 3.8

Define ν\nu and μ\mu as in the proof of Theorem 3.7. Since Joint BM Positivity implies Joint BM Nonnegativity, μ\mu is an SU representation. By construction, ν>0\nu>0, and hence μ>0\mu>0.

4.7 Proof of Theorem 3.13

Proof.

(\implies): I have shown that SU implies Joint BM Nonnegativity and Marginal Consistency (Theorem 3.7), Joint BM Nonnegativity implies Partial Marginal and Conditional BM Nonnegativity (directly following Axioms 3.9 and 3.10), and Marginal Consistency implies (n)(-n)-Marginal Consistency (directly following Axiom 3.11). Hence, it remains to show that SU implies (n)(-n)-Conditional Consistency.

Let μ\mu be an SU representation and fix any xnAnnx_{n}\in A_{n}\in\mathcal{M}_{n} and (A,x)nn1(A,x)^{-n}\in\mathcal{H}_{n-1} with partition (yni,{xi}n)iI(y_{-n}^{i},\{x^{i}\}_{-n})_{i\in I}. Since |Xt|=3|X_{t}|=3 for all 1t<n1\leq t<n, I can identify each index ii with the (unique) preference tuple niPn\succ_{-n}^{i}\in P_{-n} satisfying En(yni,{xi}n)={ni}E_{-n}(y_{-n}^{i},\{x^{i}\}_{-n})=\{\succ_{-n}^{i}\}. Let (ni):={ni}×Pn=E(yi,{xi})n(\succ_{-n}^{i}):=\{\succ_{-n}^{i}\}\times P_{n}=E(y^{i},\{x^{i}\})^{-n} and define II^{\prime} as before: by Proposition 3.1, I={iI:μ(ni)>0}I^{\prime}=\{i\in I:\mu(\succ_{-n}^{i})>0\}, since μ(ni)=xnXnμ((ni)E(xn,))=xnXnm(yni,{xi}n;xn,)=m(yni,{xi}n)\mu(\succ_{-n}^{i})=\sum_{x_{n}\in X_{n}}\mu((\succ_{-n}^{i})\cap E(x_{n},\emptyset))=\sum_{x_{n}\in X_{n}}m(y_{-n}^{i},\{x^{i}\}_{-n};x_{n},\emptyset)=m(y_{-n}^{i},\{x^{i}\}_{-n}). Hence,

ρn(xn,An|(A,x)n)=μ(C(xn,An)|C(x,A)n)\displaystyle\rho_{n}(x_{n},A_{n}|(A,x)^{-n})=\mu(C(x_{n},A_{n})|C(x,A)^{-n})
=nC(x,A)n:μ(n)>0μ(C(xn,An)|n)μ(n|C(x,A)n)\displaystyle=\sum_{\succ_{-n}\in C(x,A)^{-n}:\mu(\succ_{-n})>0}\mu(C(x_{n},A_{n})|\succ_{-n})\mu(\succ_{-n}|C(x,A)^{-n})
=iIμ(C(xn,An)|ni)μ(ni|C(x,A)n)\displaystyle=\sum_{i\in I^{\prime}}\mu(C(x_{n},A_{n})|\succ_{-n}^{i})\mu(\succ_{-n}^{i}|C(x,A)^{-n})
=iIDnAnCμ((ni)E(xn,Dn))μ(ni)μ(ni)μ(C(x,A)n)\displaystyle=\sum_{i\in I^{\prime}}\frac{\sum_{D_{n}\subseteq A_{n}^{C}}\mu((\succ_{-n}^{i})\cap E(x_{n},D_{n}))}{\mu(\succ_{-n}^{i})}\frac{\mu(\succ_{-n}^{i})}{\mu(C(x,A)^{-n})}
=iIρn(xn,An|(yi,{xi})n)m(yni,{xi}n)pn(xn,An)\displaystyle=\sum_{i\in I^{\prime}}\rho_{n}(x_{n},A_{n}|(y^{i},\{x^{i}\})^{-n})\frac{m(y_{-n}^{i},\{x^{i}\}_{-n})}{p_{-n}(x_{-n},A_{-n})}

where the second equality follows from the Law of Total Probability, the fourth equality follows because DnAnC((ni)E(xn,Dn))=(ni)DnAnCE(xn,Dn)=(ni)C(xn,An)\bigcup_{D_{n}\subseteq A_{n}^{C}}((\succ_{-n}^{i})\cap E(x_{n},D_{n}))=(\succ_{-n}^{i})\cap\bigcup_{D_{n}\subseteq A_{n}^{C}}E(x_{n},D_{n})=(\succ_{-n}^{i})\cap C(x_{n},A_{n}) is a disjoint union, and the fifth equality follows by definition of ρn(xn,An|(yi,{xi})n)\rho_{n}(x_{n},A_{n}|(y^{i},\{x^{i}\})^{-n}) and by Proposition 3.1, since μ((ni)E(xn,Dn))=μ(E(yni;{xi}n;xn,Dn))=m(yni;{xi}n;xn,Dn)\mu((\succ_{-n}^{i})\cap E(x_{n},D_{n}))=\mu(E(y_{-n}^{i};\{x^{i}\}_{-n};x_{n},D_{n}))=m(y_{-n}^{i};\{x^{i}\}_{-n};x_{n},D_{n}) and μ(C(x,A)n)=μ(C(xn,An;xn,{xn})=p(xn,An;xn,{xn})=pn(xn,An)\mu(C(x,A)^{-n})=\mu(C(x_{-n},A_{-n};x_{n},\{x_{n}\})=p(x_{-n},A_{-n};x_{n},\{x_{n}\})=p_{-n}(x_{-n},A_{-n}).

(\impliedby): Since |Xt|=3|X_{t}|=3 for all 1t<n1\leq t<n,

m(yn,{x}n)=Bn{x}nC(1)t=1n1|Bt|2(n1)pn(yn,Bn)0\displaystyle m(y_{-n},\{x\}_{-n})=\sum_{B_{-n}\geq\{x\}_{-n}^{C}}(-1)^{\sum_{t=1}^{n-1}|B_{t}|-2(n-1)}p_{-n}(y_{-n},B_{-n})\geq 0
Bn{x}nC:t=1n1|Bt|evenpn(yn,Bn)Bn{x}nC:t=1n1|Bt|oddpn(yn,Bn)\displaystyle\iff\sum_{B_{-n}\geq\{x\}_{-n}^{C}:\sum_{t=1}^{n-1}|B_{t}|\text{even}}p_{-n}(y_{-n},B_{-n})\geq\sum_{B_{-n}\geq\{x\}_{-n}^{C}:\sum_{t=1}^{n-1}|B_{t}|\text{odd}}p_{-n}(y_{-n},B_{-n})

and hence Partial Marginal BM Nonnegativity is equivalent to Joint Supermodularity of pnp_{-n}. By definition, (n)(-n)-Marginal Consistency is equivalent to Marginal Consistency of pnp_{-n}. Hence, by Theorem 3.4, ρn\rho_{-n} has a unique SU representation μnΔ(Pn)\mu_{-n}\in\Delta(P_{-n}).

Next, fix any ynxnXny_{-n}\neq\neq x_{-n}\in X_{-n} with m(yn,{x}n)>0m(y_{-n},\{x\}_{-n})>0, and identify (yn,{x}n)(y_{-n},\{x\}_{-n}) with the (unique) n\succ_{-n} such that {n}=En(yn,{x}n)\{\succ_{-n}\}=E_{-n}(y_{-n},\{x\}_{-n}). For any xnAnnx_{n}\in A_{n}\in\mathcal{M}_{n}, Lemma 4.6 and Partial Conditional BM Nonnegativity imply

ρn(xn,An|(y,{x})n)=BnAnCm(xn,Bn|(y,{x})n)0\rho_{n}(x_{n},A_{n}|(y,\{x\})^{-n})=\sum_{B_{n}\subseteq A_{n}^{C}}m(x_{n},B_{n}|(y,\{x\})^{-n})\geq 0

Furthermore, by Lemma 4.9,

xnAnρn(xn,An|(y,{x})n)=1\sum_{x_{n}\in A_{n}}\rho_{n}(x_{n},A_{n}|(y,\{x\})^{-n})=1

Hence, ρn(|(y,{x})n)\rho_{n}(\cdot|(y,\{x\})^{-n}) is an SCF. By Block et al. (1959)’s characterization of static RU, Partial Conditional BM Nonnegativity implies that ρn(|(y,{x})n)\rho_{n}(\cdot|(y,\{x\})^{-n}) has an RU representation μnΔ(Pn)\mu^{\succ_{-n}}\in\Delta(P_{n}). For n\succ_{-n} with μn(n)=0\mu_{-n}(\succ_{-n})=0, define μnΔ(Pn)\mu^{\succ_{-n}}\in\Delta(P_{n}) to be any fixed probability measure over PnP_{n}.

Next, define μ:2P\mu:2^{P}\rightarrow\mathbb{R} as

μ():=μn(n)μn(n)\mu(\succ):=\mu_{-n}(\succ_{-n})\mu^{\succ_{-n}}(\succ_{n})

and μ(C):=Cμ()\mu(C):=\sum_{\succ\in C}\mu(\succ) for all (non-singleton) C2PC\in 2^{P}. By definition of μ\mu, μ0\mu\geq 0 and

Pμ()=nPnμn(n)nPnμn(n)=nPnμn(n)=1\sum_{\succ\in P}\mu(\succ)=\sum_{\succ_{-n}\in P_{-n}}\mu_{-n}(\succ_{-n})\sum_{\succ_{n}\in P_{n}}\mu^{\succ_{-n}}(\succ_{n})=\sum_{\succ_{-n}\in P_{-n}}\mu_{-n}(\succ_{-n})=1

Hence, μ\mu is a probability measure over PP. More generally, for any CnPnC_{-n}\subseteq P_{-n} and CnPnC_{n}\subseteq P_{n},

μ(Cn×Cn)=nCnμn(n)nCnμn(n)=nCnμn(n)μn(Cn)\mu(C_{-n}\times C_{n})=\sum_{\succ_{-n}\in C_{-n}}\mu_{-n}(\succ_{-n})\sum_{\succ_{n}\in C_{n}}\mu^{\succ_{-n}}(\succ_{n})=\sum_{\succ_{-n}\in C_{-n}}\mu_{-n}(\succ_{-n})\mu^{\succ_{-n}}(C_{n})

Hence, for any x1A11x_{1}\in A_{1}\in\mathcal{M}_{1},

μ(C(x1,A1))=μ(Cn(x1,A1)×Pn)=nCn(x1,A1)μn(n)μn(Pn)\displaystyle\mu(C(x_{1},A_{1}))=\mu(C_{-n}(x_{1},A_{1})\times P_{n})=\sum_{\succ_{-n}\in C_{-n}(x_{1},A_{1})}\mu_{-n}(\succ_{-n})\mu^{\succ_{-n}}(P_{n})
=μn(Cn(x1,A1))=ρ1(x1,A1)\displaystyle=\mu_{-n}(C_{-n}(x_{1},A_{1}))=\rho_{1}(x_{1},A_{1})

since μn\mu_{-n} is an SU representation of ρn\rho_{-n}. Similarly, fix any 1<t<n1<t<n and let T={1,,t}T=\{1,\ldots,t\}, T1=T\{t}T-1=T\backslash\{t\}. Fix any (A,x)T1t1(A,x)^{T-1}\in\mathcal{H}_{t-1} and xtAttx_{t}\in A_{t}\in\mathcal{M}_{t}: then

μ(C(xt,At)|C(A,x)T1)=μ(C(x,A)T)μ(C(x,A)T1)=μ(Cn(x,A)T×Pn)μ(Cn(x,A)T1×Pn)\displaystyle\mu(C(x_{t},A_{t})|C(A,x)^{T-1})=\frac{\mu(C(x,A)^{T})}{\mu(C(x,A)^{T-1})}=\frac{\mu(C_{-n}(x,A)^{T}\times P_{n})}{\mu(C_{-n}(x,A)^{T-1}\times P_{n})}
=μn(Cn(x,A)T)μn(Cn(x,A)T1)=pn(x,A)Tpn(x,A)T1=pt(x,A)Tpt1(x,A)T1=ρt(xt,At|(A,x)T1)\displaystyle=\frac{\mu_{-n}(C_{-n}(x,A)^{T})}{\mu_{-n}(C_{-n}(x,A)^{T-1})}=\frac{p_{-n}(x,A)^{T}}{p_{-n}(x,A)^{T-1}}=\frac{p_{t}(x,A)^{T}}{p_{t-1}(x,A)^{T-1}}=\rho_{t}(x_{t},A_{t}|(A,x)^{T-1})

where the fourth equality holds because μn\mu_{-n} being an SU representation of ρn\rho_{-n} and Cn(x,A)T=Cn(xT,AT;xn\T,{x}n\T)C_{-n}(x,A)^{T}=C_{-n}(x_{T},A_{T};x_{-n\backslash T},\{x\}_{-n\backslash T}) imply μn(Cn(x,A)T)=pn(xT,AT)\mu_{-n}(C_{-n}(x,A)^{T})=p_{-n}(x_{T},A_{T}), and the fifth equality holds because ptp_{t} and pt1p_{t-1} are the marginals of pnp_{n} on ATA_{T} and AT1A_{T-1}, respectively.

Finally, for any (A,x)nn1(A,x)^{-n}\in\mathcal{H}_{n-1} and xnAnnx_{n}\in A_{n}\in\mathcal{M}_{n}, let {ni}iI\{\succ_{-n}^{i}\}_{i\in I} be the unique singleton partition of (A,x)n(A,x)^{-n} and let I:={iI:μn(ni)>0}I^{\prime}:=\{i\in I:\mu_{-n}(\succ_{-n}^{i})>0\}. Identify ni\succ_{-n}^{i} with (yni,{xi}n)(y_{-n}^{i},\{x^{i}\}_{-n}) as before, and define (ni)(\succ_{-n}^{i}) as before. Then

μ(C(xn,An)|C(A,x)n)=iIμ(C(xn,An)|ni)μ(ni|C(x,A)n)\displaystyle\mu(C(x_{n},A_{n})|C(A,x)^{-n})=\sum_{i\in I^{\prime}}\mu(C(x_{n},A_{n})|\succ_{-n}^{i})\mu(\succ_{-n}^{i}|C(x,A)^{-n})
=iIμ(C(xn,An)(ni))μ(ni)μ(ni)μ(C(x,A)n)\displaystyle=\sum_{i\in I^{\prime}}\frac{\mu(C(x_{n},A_{n})\cap(\succ_{-n}^{i}))}{\mu(\succ_{-n}^{i})}\frac{\mu(\succ_{-n}^{i})}{\mu(C(x,A)^{-n})}
=iIμ({ni}×Cn(xn,An))μ(ni)μ(ni)μ(Cn(x,A)n×Pn)\displaystyle=\sum_{i\in I^{\prime}}\frac{\mu(\{\succ_{-n}^{i}\}\times C_{n}(x_{n},A_{n}))}{\mu(\succ_{-n}^{i})}\frac{\mu(\succ_{-n}^{i})}{\mu(C_{-n}(x,A)^{-n}\times P_{n})}
=iIμn(ni)μni(Cn(xn,An))μn(ni)μn(ni)μn(Cn(x,A)n)\displaystyle=\sum_{i\in I^{\prime}}\frac{\mu_{-n}(\succ_{-n}^{i})\mu^{\succ_{-n}^{i}}(C_{n}(x_{n},A_{n}))}{\mu_{-n}(\succ_{-n}^{i})}\frac{\mu_{-n}(\succ_{-n}^{i})}{\mu_{-n}(C_{-n}(x,A)^{-n})}
=iIDnAnCμn(ni)μni(En(xn,Dn))μn(ni)μn(ni)μn(Cn(x,A)n)\displaystyle=\sum_{i\in I^{\prime}}\frac{\sum_{D_{n}\subseteq A_{n}^{C}}\mu_{-n}(\succ_{-n}^{i})\mu^{\succ_{-n}^{i}}(E_{n}(x_{n},D_{n}))}{\mu_{-n}(\succ_{-n}^{i})}\frac{\mu_{-n}(\succ_{-n}^{i})}{\mu_{-n}(C_{-n}(x,A)^{-n})}
=iIDnAnCm(yni,{xi}n)m(xn,Dn|yni,{xi}n)m(yni,{xi}n)m(yni,{xi}n)pn(xn,An)\displaystyle=\sum_{i\in I^{\prime}}\frac{\sum_{D_{n}\subseteq A_{n}^{C}}m(y_{-n}^{i},\{x^{i}\}_{-n})m(x_{n},D_{n}|y_{-n}^{i},\{x^{i}\}_{-n})}{m(y_{-n}^{i},\{x^{i}\}_{-n})}\frac{m(y_{-n}^{i},\{x^{i}\}_{-n})}{p_{-n}(x_{-n},A_{-n})}
=iIρn(xn,An|(yi,{xi})n)m(yni,{xi}n)pn(xn,An)=ρn(xn,An|(A,x)n)\displaystyle=\sum_{i\in I^{\prime}}\rho_{n}(x_{n},A_{n}|(y^{i},\{x^{i}\})^{-n})\frac{m(y_{-n}^{i},\{x^{i}\}_{-n})}{p_{-n}(x_{-n},A_{-n})}=\rho_{n}(x_{n},A_{n}|(A,x)^{-n})

where the fifth equality holds because Cn(xn,An)=DnAnCEn(xn,Dn)C_{n}(x_{n},A_{n})=\bigcup_{D_{n}\subseteq A_{n}^{C}}E_{n}(x_{n},D_{n}) is disjoint, the sixth equality holds by applying Proposition 3.1 to (ρ,p,μ)n(\rho,p,\mu)_{-n} and the static analog of Proposition 3.1 to ρn(|yni,{xi}n)\rho_{n}(\cdot|y_{-n}^{i},\{x^{i}\}_{-n}) and μyni,{xi}n\mu^{y_{-n}^{i},\{x^{i}\}_{-n}} for each iIi\in I^{\prime},191919For the static analog of Proposition 3.1, see Proposition 7.3 of Chambers and Echenique (2016). the seventh equality holds by Lemma 4.9 and by definition of ρn(|yni,{xi}n)\rho_{n}(\cdot|y_{-n}^{i},\{x^{i}\}_{-n}), and the eighth equality holds by (n)(-n)-Conditional Consistency. ∎

4.8 Proof of Theorem 3.15

Proof.

(\implies): Let μ\mu be an SU representation, and fix any (xi,Ai)i=1k(x^{i},A^{i})_{i=1}^{k} with xiAix^{i}\in A^{i}\in\mathcal{M} for each 1ik1\leq i\leq k and any (λi)i=1k(\lambda^{i})_{i=1}^{k}\subseteq\mathbb{R} such that i=1kλi𝟙C(xi,Ai)0\sum_{i=1}^{k}\lambda^{i}\mathbbm{1}_{C(x^{i},A^{i})}\geq 0. Hence,

i=1kλip(xi,Ai)=i=1kλiμ(C(xi,Ai))=𝔼μ[i=1kλi𝟙C(xi,Ai)]0\displaystyle\sum_{i=1}^{k}\lambda^{i}p(x^{i},A^{i})=\sum_{i=1}^{k}\lambda^{i}\mu(C(x^{i},A^{i}))=\mathbb{E}_{\mu}\bigg{[}\sum_{i=1}^{k}\lambda^{i}\mathbbm{1}_{C(x^{i},A^{i})}\bigg{]}\geq 0

where the first equality follows from Proposition 3.1, the second equality follows from linearity of expectation and because the expectation of an indicator random variable of an event is the probability of that event, and the inequality follows because a convex combination of nonnegative numbers is nonnegative.

(\impliedby): Using the notation from Clark (1996), let 𝒜:={C(x,A)}xA\mathcal{A}:=\{C(x,A)\}_{x\in A\in\mathcal{M}} and note that P=C(x,{x}N)𝒜P=C(x,\{x\}_{N})\in\mathcal{A}. Let 𝒜^\hat{\mathcal{A}} be the algebra generated by 𝒜\mathcal{A}. First, I show 𝒜^=2P\hat{\mathcal{A}}=2^{P}. To show this, it suffices to show that 𝒜^\hat{\mathcal{A}} contains all singletons, since 𝒜^\hat{\mathcal{A}} is closed under finite unions and every event in 2P2^{P} is a finite union of singletons. Fix any P\succ\in P and identify it with its ranking of all elements in each period: (xt1,,xt|Xt|)t=1n(x_{t}^{1},\ldots,x_{t}^{|X_{t}|})_{t=1}^{n}. Define indices t1,,tnt_{1},\ldots,t_{n} such that |Xt1||Xtn||X_{t_{1}}|\leq\cdots\leq|X_{t_{n}}|. Hence,

{}=k=1|Xtn|C(xk,{xtk,,xt|Xt|}N)𝒜^\displaystyle\{\succ\}=\bigcap_{k=1}^{|X_{t_{n}}|}C(x^{k},\{x_{t}^{k},\ldots,x_{t}^{|X_{t}|}\}_{N})\in\hat{\mathcal{A}}

where xtk:=xt|Xt|x_{t}^{k}:=x_{t}^{|X_{t}|} and {xtk,,xt|Xt|}:={xt|Xt|}\{x_{t}^{k},\ldots,x_{t}^{|X_{t}|}\}:=\{x_{t}^{|X_{t}|}\} for k>|Xt|k>|X_{t}|, and since 𝒜^\hat{\mathcal{A}} is closed under finite intersections.202020For example, let n=2n=2 and =(x11x12x13,x21x22x23x24)\succ=(x_{1}^{1}x_{1}^{2}x_{1}^{3},x_{2}^{1}x_{2}^{2}x_{2}^{3}x_{2}^{4}). Then {}=C(x1,X)C(x12,x13;x22,{x22,x23,x24})C(x13,{x13};x23,x24}C(x13,{x13};x24,{x24})\{\succ\}=C(x^{1},X)\cap C(x_{1}^{2},x_{1}^{3};x_{2}^{2},\{x_{2}^{2},x_{2}^{3},x_{2}^{4}\})\cap C(x_{1}^{3},\{x_{1}^{3}\};x_{2}^{3},x_{2}^{4}\}\cap C(x_{1}^{3},\{x_{1}^{3}\};x_{2}^{4},\{x_{2}^{4}\}). Consider p:𝒜p:\mathcal{A}\rightarrow\mathbb{R} as p(C(x,A)):=p(x,A)p(C(x,A)):=p(x,A) and note that p(x,{x}N)=1p(x,\{x\}_{N})=1. By Theorem 1 of Clark (1996), there exists a finitely additive probability measure μ:2P[0,1]\mu:2^{P}\rightarrow[0,1] such that μ(C(x,A))=p(x,A)\mu(C(x,A))=p(x,A) for all xAx\in A\in\mathcal{M}. By Proposition 3.1, μ\mu is a SU representation of ρ\rho. ∎

References

  • Barberá and Pattanaik (1986) Salvador Barberá and Prasanta K. Pattanaik. Falmagne and the rationalizability of stochastic choices in terms of random orderings. Econometrica: Journal of the Econometric Society, pages 707–715, 1986.
  • Block et al. (1959) Henry David Block, Jacob Marschak, et al. Random orderings and stochastic theories of response. Technical report, Cowles Foundation for Research in Economics, Yale University, 1959.
  • Chambers and Echenique (2016) Christopher P. Chambers and Federico Echenique. Revealed preference theory, volume 56. Cambridge University Press, 2016.
  • Chambers et al. (2021) Christopher P. Chambers, Yusufcan Masatlioglu, and Christopher Turansick. Correlated choice. arXiv preprint arXiv:2103.05084, 2021.
  • Clark (1996) Stephen A. Clark. The random utility model with an infinite choice space. Economic Theory, 7(1):179–189, 1996.
  • De Finetti (1937) Bruno De Finetti. La prévision: ses lois logiques, ses sources subjectives. In Annales de l’institut Henri Poincaré, volume 7, pages 1–68, 1937.
  • Falmagne (1978) Jean-Claude Falmagne. A representation theorem for finite random scale systems. Journal of Mathematical Psychology, 18(1):52–72, 1978.
  • Frick et al. (2019) Mira Frick, Ryota Iijima, and Tomasz Strzalecki. Dynamic random utility. Econometrica, 87(6):1941–2002, 2019.
  • Godsil (2018) Chris Godsil. An introduction to the moebius function. arXiv preprint arXiv:1803.06664, 2018.
  • Kashaev and Aguiar (2022) Nail Kashaev and Victor H. Aguiar. Nonparametric analysis of dynamic random utility models. arXiv preprint arXiv:2204.07220, 2022.
  • Kitamura and Stoye (2018) Yuichi Kitamura and Jörg Stoye. Nonparametric analysis of random utility models. Econometrica, 86(6):1883–1909, 2018.
  • Kreps and Porteus (1978) David M. Kreps and Evan L. Porteus. Temporal resolution of uncertainty and dynamic choice theory. Econometrica: journal of the Econometric Society, pages 185–200, 1978.
  • McFadden and Richter (1990) Daniel McFadden and Marcel K. Richter. Stochastic rationality and revealed stochastic preference. Preferences, Uncertainty, and Optimality, Essays in Honor of Leo Hurwicz, Westview Press: Boulder, CO, pages 161–186, 1990.
  • Schacke (2004) Kathrin Schacke. On the kronecker product. Master’s thesis, University of Waterloo, 2004.
  • Sen (1971) Amartya K. Sen. Choice functions and revealed preference. The Review of Economic Studies, 38(3):307–317, 1971.
  • Strzalecki (2021) Tomasz Strzalecki. Stochastic Choice. 2021.
  • Van Lint and Wilson (2001) Jacobus Hendricus Van Lint and Richard Michael Wilson. A course in combinatorics. Cambridge university press, 2001.