This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Duality for Composite Optimization Problem within the Framework of Abstract Convexity

\nameEwa Bednarczuka and Hung T.T.a CONTACT The Hung Tran. Email: [email protected]
Disclaimer: This work represents only the author’s view and the European Commission is not responsible for any use that may be made of the information it contains. aDepartment of Modeling and Optimization in Dynamical System, System Research Institute-Polish Academy of Science, Warsaw, Poland
Abstract

We study conjugate and Lagrange dualities for composite optimization problems within the framework of abstract convexity. We provide conditions for zero duality gap in conjugate duality. For Lagrange duality, intersection property is applied to obtain zero duality gap. Connection between Lagrange dual and conjugate dual is also established. Examples related to convex and weakly convex functions are given.

keywords:
Abstract convexity; Φ\Phi-convexity; ε\varepsilon-subdifferentials; Conjugate dual; Lagrange dual; Zero duality gap; Nonconvex programming; Global Optimization
articletype: ARTICLE TEMPLATE
{amscode}

49J27; 49J35; 49N15; 90C46; 90C26

1 Introduction

During the last eighty years, convexity has become an essential part in the development of optimization, nonlinear analysis etc. With the surge of computational power, interests in machine learning and data science have risen, which make convexity the backbone of many theories and applications. Together with convexity, there are also many works that try to go beyond convexity which include functions like: strongly convex [1], quasi-convex, pseudo-convex, strongly para-convex and para-convex [2], delta-convex [3], approximately convex [4] etc…

Abstract convexity encompasses many of the above mentioned classes of functions. Abstract convexity, presented in the monographs of Rubinov [5], Pallaschke and Rolewicz [6] is based on the idea to bring convexity outside the range of linearity, by introducing the nonlinear environment where a function becomes an upper envelope of a subset of functions with specific rules. The term “abstract convexity” was used by Rubinov [5] to describe functions which are upper envelopes of a given class of function Φ\Phi, i.e.

f(x)=supϕΦ{ϕ(x):X,ϕf},f(x)=\sup_{\phi\in\Phi}\left\{\phi(x)\ :X\to\mathbb{R},\ \phi\leq f\right\},

where XX is a nonempty set.

Consequently, the concept of abstract convexity works well with classical convex functions. As the supremum operation is retained, many global properties of convex analysis are still in effect for abstract convexity. Till now, the books of Pallaschke and Rolewicz [6], and the monograph of Singer [7] gathered many results about abstract convexity, especially about conjugation, subdifferential and duality. They also have historical results of the main ideas of abstract convexity and its applications. In [5], Rubinov presented basic notions of abstract convexity and applications to global optimization problems.

It has been fifty years since the theory of abstract convexity started. It has made great progress in many disciplines with applications in both theory and computation. In [8], the authors investigated the class of increasing star-shaped functions and constructed an algorithm to solve the global optimization problem using abstract convexity. They also generalized the cutting plane algorithm for nonconvex global minimization problems [8, 9]. While in [10, 11, 12], a general version of monotone operator is developed based on abstract convexity.

In this paper, we pay special attention to duality theory for composite minimization problem by using abstract convexity. We mainly study the conjugate and Lagrangian dualities within the abstract convexity for the composite minimization problem,

infxXf(x)+g(Lx),\inf_{x\in X}f(x)+g(Lx), (CP)

where XX and YY are the domain sets (spaces) of the functions ff and gg, the mapping L:XYL:X\to Y maps XX into YY.

The composite optimization problem is taken as our main interest as it is a general problem of many optimization formulation. One can think of (CP) as nonlinear programming problem, min-max optimization, constrained and unconstrained problem. These problems have been studied extensively in [13, 14]. On the other hand, composite problem can also be considered as a regularized problem by treating the g(Lx)g(Lx) as a penalty term. Such problems are knows as total variation model in image deblurring and denoising [15].

Several efforts have been made for the last twenty years to investigate dualities for optimization problem within the framework of abstract convexity. In [16] strong duality is proved for infimal convolution of Fenchel’s duality. In [17], zero duality gap and exact multiplier of augmented Lagrangian are investigated by using the framework of abstract convexity. While in [18, 19] necessary and sufficient conditions are given to achieve minimax equality from a general Lagrangian using the definition of abstract convexity. In the works of Dolgopolik [20], Gorokhovik and Tykoun [21, 22], the authors applied abstract convexity to approximate the class of nonsmooth functions and formulate necessary optimal conditions for global nonsmooth nonconvex problem. The authors in [23] investigated the problem of minimizing the finite sum of arbitrary functions and provided conditions for zero duality gap through infimal convolution dual. On the other hand, in [24], the problem of zero duality gap is studied with the help of perturbation function.

Our contribution is as follow. Inspired by Moreau’s general subdifferential and conjugation [25], we utilize the framework of abstract conjugation and abstract subdifferential [16] and construct conjugate dual problem to (CP). We derive conditions for zero duality gap and strong duality. As we have different variable spaces of ff and gg , the conditions we propose reduce to the ones proposed in e.g. [23] when LL is the identity mapping. In deriving the Lagrangian dual problem we make use of the intersection property for abstract convex functions, [24, 19] to obtain Lagrange zero duality gap. We also discuss the relationship between conjugate and Lagrangian duals.

The structure of paper is as follows. In Section 2, we state the framework of abstract convexity with conjugation and subdifferential as well as some basic properties for abstract convex functions. Section 3 contains the definition of the composite minimization problem and way to construct the conjugate dual problem. Section 4 contains our main result about zero duality gap given in Theorem 4.3. In Section 5, we provide conditions for strong duality in Theorem 5.2 and Corollary 5.3. In Section 6, we prove Lagrange zero duality gap in Theorem 6.5. The equivalence of conjugate dual and Lagrange dual is examined under some conditions in Corollary 6.8.

2 Preliminaries

Let XX be a nonempty set. A function f:X(,+]f:X\to\left(-\infty,+\infty\right] is proper if its domain, denoted by dom f={xX:f(x)<+}\text{dom }f=\left\{x\in X:f\left(x\right)<+\infty\right\} is nonempty.

Let Φ={ϕ:X}\Phi=\left\{\phi:X\to\mathbb{R}\right\} be a collection of real-valued functions, which is closed under addition of a constant. The support set of ff with respect to Φ\Phi is defined as

suppΦf={ϕΦ:f(x)ϕ(x)(xX)}.\text{supp}_{\Phi}f=\left\{\phi\in\Phi:f\left(x\right)\geq\phi\left(x\right)\left(\forall x\in X\right)\right\}.

For f,g:X(,+]f,g:X\to\left(-\infty,+\infty\right], we write fgf(x)g(x)f\leq g\Leftrightarrow f\left(x\right)\leq g\left(x\right) for all xXx\in X. Elements of Φ\Phi are called elementary functions.

Definition 2.1.

[5, 6] A function f:X(,+]f:X\to\left(-\infty,+\infty\right] is Φ\Phi-convex if

f(x)=supϕsuppΦfϕ(x),xX.f\left(x\right)=\sup_{\phi\in\text{supp}_{\Phi}f}\phi\left(x\right),\ \forall x\in X. (1)

A function ff is Φ\Phi-convex at x0Xx_{0}\in X if f(x0)=supϕsuppΦfϕ(x0)f(x_{0})=\sup_{\phi\in\text{supp}_{\Phi}f}\phi\left(x_{0}\right).

Note that when a function f:X(,+]f:X\to(-\infty,+\infty] is Φ\Phi-convex, then supp f\text{supp }f is nonempty, since otherwise, ff\equiv-\infty.

Definition 2.2.

[5, 6] A Φ\Phi-conjugate f:Φ(,+]f^{*}:\Phi\to(-\infty,+\infty] of ff is defined as

fΦ(ϕ):=supxX{ϕ(x)f(x)}.f_{\Phi}^{*}\left(\phi\right):=\sup_{x\in X}\left\{\phi\left(x\right)-f\left(x\right)\right\}. (2)

Analogously, we can define Φ\Phi-biconjugate f:X(,+]f^{**}:X\to(-\infty,+\infty] of function ff as

fΦ(x):=supϕΦ{ϕ(x)fΦ(ϕ)}.f^{**}_{\Phi}(x):=\sup_{\phi\in\Phi}\left\{\phi(x)-f^{*}_{\Phi}(\phi)\right\}. (3)

As in convex analysis, the following result holds.

Theorem 2.3.

[5, 6] A function f:X(,+]f:X\to\left(-\infty,+\infty\right] is Φ\Phi-convex if and only if

f(x)=fΦ(x),xXf(x)=f^{**}_{\Phi}(x),\ \forall x\in X (4)

In view of this theorem, we say that ff is Φ\Phi-convex at a point x0Xx_{0}\in X if fΦ(x0)=f(x0)f^{**}_{\Phi}(x_{0})=f(x_{0}).

Example 2.4.

Let XX be a Banach space with the topological dual XX^{*} and

Φconv:={ϕ:Xϕ(x)=u,x+c,uX,c}.\Phi_{conv}:=\left\{\phi:X\to\mathbb{R}\,\mid\,\phi\left(x\right)=\left\langle u,x\right\rangle+c,u\in X^{*},c\in\mathbb{R}\right\}. (5)

If a function f:X(,+]f:X\to(-\infty,+\infty] is Φconv\Phi_{conv}-convex, then it is proper, convex and lower semi-continuous. When XX is a locally convex space, [26], then ff is Φconv\Phi_{conv}-convex if and only if ff is proper, convex and lower semi-continuous.

Example 2.5.

Let XX be a Hilbert space with the inner product ,\left\langle\cdot,\cdot\right\rangle and the norm x,x=x2\left\langle x,x\right\rangle=\left\|x\right\|^{2}. Let aa\in\mathbb{R}, take ΦQ,a\Phi_{Q,a} as a collection of quadratic functions

ΦQ,a:={ϕ:X|ϕ(x)=ax2+u,x+c where c,uX}.\Phi_{Q,a}:=\left\{\phi:X\to\mathbb{R}\ |\ \phi\left(x\right)=a\left\|x\right\|^{2}+\left\langle u,x\right\rangle+c\text{ where }c\in\mathbb{R},u\in X\right\}. (6)

A function f:X(,+]f:X\to(-\infty,+\infty] is ΦQ,a\Phi_{Q,a}-convex, if for every xXx\in X, we have

f(x)=supϕΦQ,a{ϕ(x)|ϕf}.f(x)=\sup_{\phi\in\Phi_{Q,a}}\{\phi(x)\ |\ \phi\leq f\}.

Since ΦQ,a\Phi_{Q,a} consists of continuous functions, ff is lower semi-continuous on XX. Depending upon the sign of aa, we get the following.

  • If a=0a=0 then we go back to the affine elementary functions as in Example 2.4, so ff is lsc proper convex if ff is ΦQ,a\Phi_{Q,a}-convex.

  • If a>0a>0, ff is ΦQ,a\Phi_{Q,a}-convex, then ff is strongly convex with modulus aa. One can look at the definition of a strongly convex function in [1, Definition 4.1].

  • If a<0a<0 and ff is ΦQ,a\Phi_{Q,a}-convex, then ff is a weakly convex function with modulus aa [1, Definition 4.1], see also [2].

For equivalent definitions of weakly convex functions and related facts, see e.g. [27, 28] and the references therein.

Definition 2.6.

Let XX be a normed space with the norm \lVert\cdot\rVert. A function f:X(,+]f:X\to\left(-\infty,+\infty\right] is weakly convex with modulus ρ0\rho\geq 0 or ρ\rho-weakly convex if f+ρ2f+\rho\left\|\cdot\right\|^{2} is a convex function. When ρ=0\rho=0, ff becomes a convex function.

Note that many authors consider the class

ΦQ:={ϕ:X|ϕ(x)=ax2+u,x+c where a0,c,uX},\Phi_{Q}:=\left\{\phi:X\to\mathbb{R}\ |\ \phi\left(x\right)=a\left\|x\right\|^{2}+\left\langle u,x\right\rangle+c\text{ where }a\leq 0,c\in\mathbb{R},u\in X\right\}, (7)

where XX is a Hilbert space, see e.g. [5, Example 6.2]. For this class of elementary functions, the set ΦQ\Phi_{Q}-convex functions coincides with the set of all lower semi-continuous functions defined on XX and minorized by a function from ΦQ\Phi_{Q}, see [5, Proposition 6.3]. Quadratically minorized functions have also been investigated in [28]. The starting point of numerous variant concepts of convex functions stems from the work of Hyers and Ulam [3], where they defined δ\delta-convex function for δ0\delta\geq 0, next approximately convex functions were investigated in e.g. [29, 4, 30] and the references therein. Rolewicz has coined the term ”paraconvexity”, [2], by turning δ\delta into a non-negative function. The definitions of strong and weak convexity were also given in [1] by Vial.

Definition 2.7.

[5, 6] Let XX be a nonempty set and f:X(,+]f:X\to\left(-\infty,+\infty\right]. A Φ\Phi-subgradient of ff at a point xdom fx\in\text{dom }f is any element ϕΦ\phi\in\Phi such that

f(y)f(x)ϕ(y)ϕ(x),yX.f\left(y\right)-f\left(x\right)\geq\phi\left(y\right)-\phi\left(x\right),\quad\forall y\in X. (8)

The collection of all Φ\Phi-subgradients of ff at xx is called the Φ\Phi-subdifferentials of ff at xx and is denoted by Φf(x)\partial_{\Phi}f(x),

Φf(x):={ϕΦ|(yX)f(y)f(x)ϕ(y)ϕ(x)}.\partial_{\Phi}f\left(x\right):=\left\{\phi\in\Phi\,|\,\left(\forall y\in X\right)\ f\left(y\right)-f\left(x\right)\geq\phi\left(y\right)-\phi\left(x\right)\right\}. (9)

Furthermore, for ε0\varepsilon\geq 0, the εΦ\varepsilon-\Phi-subdifferentials of ff at xdom fx\in\text{dom }f, ε,Φf(x)\partial_{\varepsilon,\Phi}f(x), is defined as

ε,Φf(x):={ϕΦf(y)f(x)ϕ(y)ϕ(x)ε,yX},\partial_{\varepsilon,\Phi}f(x):=\{\phi\in\Phi\,\mid\,f\left(y\right)-f\left(x\right)\geq\phi\left(y\right)-\phi\left(x\right)-\varepsilon,\quad\forall y\in X\}, (10)

an elements of ε,Φf(x)\partial_{\varepsilon,\Phi}f(x) are called (ε,Φ)(\varepsilon,\Phi)-subgradients of ff at xdom fx\in\text{dom\,}f.

Additional facts and results of ε\varepsilon-Φ\Phi subdifferentials can be found in [16, 10].

The following properties follow directly from the definitions.

Proposition 2.8.

Let XX be a nonempty set and f:X(,+]f:X\to\left(-\infty,+\infty\right].

  1. (i)

    For all xdom fx\in\text{dom }f and ε0\varepsilon\geq 0, an element ϕΦ\phi\in\Phi is a (ε,Φ)(\varepsilon,\Phi)-subgradient of ff at xx if and only if

    f(x)+fΦ(ϕ)ϕ(x)+ε.f(x)+f^{*}_{\Phi}(\phi)\leq\phi(x)+\varepsilon. (11)
  2. (ii)

    dom f=ε>0ε,Φf(X)\text{dom }f^{*}=\bigcap_{\varepsilon>0}\partial_{\varepsilon,\Phi}f\left(X\right).

The proof for (i) can be found in [5, Proposition 7.10] and (ii) in [23, Proposition 2.4].

3 Construction of the conjugate dual

We consider the composite minimization problem

infxXf(x)+g(Lx)\inf_{x\in X}f\left(x\right)+g\left(Lx\right) (CP)

where XX is a nonempty set and YY is a vector space, f:X(,+]f:X\to\left(-\infty,+\infty\right], g:Y(,+]g:Y\to\left(-\infty,+\infty\right] and L:XYL:X\to Y is a mapping from XX to YY. Note that here we do not assume that LL is linear and continuous.

Let Φ\Phi be a set of elementary functions ϕ:X\phi:X\to\mathbb{R} and let Ψ\Psi be a set of elementary functions ψ:Y\psi:Y\to\mathbb{R}. Assume that both classes are closed under addition of constants and 0Φ,0Ψ0\in\Phi,0\in\Psi.

We introduce the conjugate dual of (CP) by considering perturbed minimization problems of the form

infxXf(x)+g(Lx+y),yY.\inf_{x\in X}f\left(x\right)+g\left(Lx+y\right),\quad y\in Y. (12)

Following the classical ideas coming from convex analysis, see e.g. [31, 14], we calculate the conjugate of the function β:X×Y(,+]\beta:X\times Y\to(-\infty,+\infty], where

β(x,y):=f(x)+g(Lx+y),xX,yY.\beta(x,y):=f\left(x\right)+g\left(Lx+y\right),\ \ x\in X,\ y\in Y.

Note that, in the convex case, conjugation is taken with respect to linear functionals, while here we are considering elementary functions ϕ,ψ\phi,\psi from given classes Φ\Phi and Ψ\Psi, respectively, see e.g. [25].

Now, We define the conjugate of β\beta with respect to the coupling function

c:Φ×Ψ×X×Y\displaystyle c:\Phi\times\Psi\times X\times Y \displaystyle\to\mathbb{R}
(ϕ,ψ,x,y)\displaystyle\left(\phi,\psi,x,y\right) ϕ(x)+ψ(Lx+y)ψ(Lx).\displaystyle\mapsto\phi(x)+\psi(Lx+y)-\psi(Lx). (13)

For other types of coupling functions defined on Cartesian products of elementary function sets, see e.g., [32].

The c-conjugate of β\beta, βc:Φ×Ψ(,+]\beta^{c}:\Phi\times\Psi\rightarrow(-\infty,+\infty], is defined as

βc(ϕ,ψ)=supxXsupyY{c(ϕ,ψ,x,y)β(x,y)}.\beta^{c}(\phi,\psi)=\sup_{x\in X}\sup_{y\in Y}\left\{c(\phi,\psi,x,y)-\beta(x,y)\right\}. (14)

The conjugate dual to problem (CP) is defined as

supψΨβc(0,ψ).\sup_{\psi\in\Psi}-\beta^{c}(0,\psi). (15)

Investigation of the relationship between (CP) and problem (15) is the main focus of the paper. To write (15) in a more explicit form, observe that the objective function of (15) (the dual objective) is equal to

βc(0,ψ)\displaystyle-\beta^{c}(0,\psi) =supxXsupyY{c(0,ψ,x,y)β(x,y)}\displaystyle=-\sup_{x\in X}\sup_{y\in Y}\left\{c(0,\psi,x,y)-\beta(x,y)\right\}
=supxXsupyY{ψ(Lx+y)ψ(Lx)f(x)g(Lx+y)}\displaystyle=-\sup_{x\in X}\sup_{y\in Y}\left\{\psi(Lx+y)-\psi(Lx)-f(x)-g(Lx+y)\right\}
=supxXsupz=Lx+y{ψ(z)ψ(Lx)f(x)g(z)}\displaystyle=-\sup_{x\in X}\sup_{z=Lx+y}\left\{\psi(z)-\psi(Lx)-f(x)-g(z)\right\}
=supxX{ψ(Lx)f(x)+supzY{ψ(z)g(z)}}\displaystyle=-\sup_{x\in X}\left\{-\psi(Lx)-f(x)+\sup_{z\in Y}\{\psi(z)-g(z)\}\right\}
=supxX{ψ(Lx)f(x)}gΨ(ψ)\displaystyle=-\sup_{x\in X}\left\{-\psi(Lx)-f(x)\right\}-g^{*}_{\Psi}(\psi)

Hence, the conjugate dual problem takes the form

supψΨβc(0,ψ)=supψΨsupxX{ψ(Lx)f(x)}gΨ(ψ).\sup_{\psi\in\Psi}-\beta^{c}(0,\psi)=\sup_{\psi\in\Psi}-\sup_{x\in X}\left\{-\psi(Lx)-f(x)\right\}-g^{*}_{\Psi}(\psi). (DCP)

Notice that we have kept the formulation of supxX{ψ(Lx)f(x)}\sup_{x\in X}\left\{-\psi(Lx)-f(x)\right\} in the dual problem (DCP), since we do not know if ψL\psi\circ L belongs to the class Φ\Phi in general. Below, we give some examples where we further investigate the dual problem.

Example 3.1.

In some cases, we can rewrite the conjugate dual (DCP) in an equivalent and more convenient way.

  • If, for any ψΨ\psi\in\Psi, ψLΦ-\psi\circ L\in\Phi (alternatively, we can assume that ψLΦ\psi\circ L\in\Phi and Φ\Phi is symmetric i.e. ϕΦ-\phi\in\Phi for all ϕΦ\phi\in\Phi) we obtain

    supxX{f(x)ψ(Lx)}=fΦ(ψL),\sup\limits_{x\in X}\{-f(x)-\psi(Lx)\}=f^{*}_{\Phi}\left(-\psi\circ L\right), (17)

    and the conjugate dual problem (DCP) takes the form

    supψΨβc(0,ψ)=supψΨfΦ(ψL)gΨ(ψ).\sup_{\psi\in\Psi}-\beta^{c}(0,\psi)=\sup_{\psi\in\Psi}-f^{*}_{\Phi}\left(-\psi\circ L\right)-g^{*}_{\Psi}(\psi). (18)

    With the help of the operator L:XYL:X\rightarrow Y we define another class of elementary functions as follows

    ΦL:={ψL:X,ψΨ},\Phi_{L}:=\left\{-\psi\circ L:X\to\mathbb{R},\ \psi\in\Psi\right\},

    and the dual (18) can be written as

    supϕΦL,ψΨϕ+ψL=0fΦL(ϕ)gΨ(ψ).\sup_{\begin{subarray}{c}\phi\in\Phi_{L},\psi\in\Psi\\ \phi+\psi\circ L=0\end{subarray}}-f^{*}_{\Phi_{L}}\left(\phi\right)-g^{*}_{\Psi}(\psi). (19)
  • If Φ\Phi is symmetric, and for any ψΨ\psi\in\Psi, ψL\psi\circ L is Φ\Phi-convex, we have

    ψ(Lx)=sup{ϕ(x):ϕsupp ψL}.\psi(Lx)=\sup\left\{\phi(x):\phi\in\text{supp }\psi\circ L\right\}.

    The optimal value of the dual problem (DCP) (obtained with the help of the coupling function cc from (13)) satisfies

    supψΨβc(0,ψ)\displaystyle\sup_{\psi\in\Psi}-\beta^{c}(0,\psi) =supψΨinfxXf(x)+ψ(Lx)gΨ(ψ)\displaystyle=\sup_{\psi\in\Psi}\inf_{x\in X}f\left(x\right)+\psi\left(Lx\right)-g^{*}_{\Psi}\left(\psi\right)
    =supψΨ{infxX(f(x)+supϕsupp ψLϕ(x))gΨ(ψ)}\displaystyle=\sup_{\psi\in\Psi}\left\{\inf_{x\in X}\left(f(x)+\sup_{\phi\in\text{supp }\psi\circ L}\phi(x)\right)-g^{*}_{\Psi}(\psi)\right\}
    supψΨsupϕsupp ψL{infxX(f(x)+ϕ(x))gΨ(ψ)}\displaystyle\geq\sup_{\psi\in\Psi}\sup_{\phi\in\text{supp }\psi\circ L}\left\{\inf_{x\in X}\left(f(x)+\phi(x)\right)-g^{*}_{\Psi}(\psi)\right\}
    supψΨ,ϕsupp ψLfΦ(ϕ)gΨ(ψ).\displaystyle\geq\sup_{\psi\in\Psi,\phi\in\text{supp }\psi\circ L}-f^{*}_{\Phi}(-\phi)-g^{*}_{\Psi}(\psi). (20)

    Clearly, the Φ\Phi-convexity of ψL\psi\circ L is more general than the condition ψLΦ\psi\circ L\in\Phi. However, assuming the latter, we obtain, from (DCP) i.e.

    supψΨβc(0,ψ)=supψΨfΦ(ψL)gΨ(ψ).\sup_{\psi\in\Psi}-\beta^{c}(0,\psi)=\sup_{\psi\in\Psi}-f^{*}_{\Phi}(-\psi\circ L)-g^{*}_{\Psi}(\psi).

    If X=Y,Φ=ΨX=Y,\Phi=\Psi are symmetric, and L:XXL:X\to X is such that ψLΦ\psi\circ L\in\Phi, for any ψΨ\psi\in\Psi then

    supxX{f(x)ψ(Lx)}=fΨ(ψL),\sup\limits_{x\in X}\{-f(x)-\psi(Lx)\}=f^{*}_{\Psi}(-\psi\circ L),

    and the conjugate dual (DCP) takes the form

    supψΨβc(0,ψ)=supψΨfΨ(ψL)gΨ(ψ).\sup_{\psi\in\Psi}-\beta^{c}(0,\psi)=\sup_{\psi\in\Psi}-f^{*}_{\Psi}(-\psi\circ L)-g^{*}_{\Psi}(\psi). (21)

    If LL is the identity operator, then (CP) becomes the minimization problem

    infxXf(x)+g(x)\inf_{x\in X}f(x)+g(x)

    for which the conjugate dual (21) has been discussed in [24, 23].

3.1 Conjugate dual for specific classes Φ,Ψ\Phi,\Psi

Now, we discuss the conjugate dual problem (DCP) when Φ,Ψ\Phi,\Psi are the sets of linear and quadratic functions i.e. Φconv,Ψconv\Phi_{conv},\Psi_{conv} and ΦQ,a,ΨQ,a\Phi_{Q,a},\Psi_{Q,a} given by (5) and (6) respectively.

Example 3.2.

Let XX and YY be Banach spaces with the topological duals X,YX^{*},Y^{*} and their bilinear forms ,X,,Y\langle\cdot,\cdot\rangle_{X},\langle\cdot,\cdot\rangle_{Y}, respectively. Let L:XYL:X\to Y be a linear continuous operator with the conjugate L:YXL^{*}:Y^{*}\to X^{*}. We define the sets Φ\Phi and Ψ\Psi of elementary functions as follows.

  1. (i)

    For the case of affine elementary functions, (cf. (5) above),

    Φconv\displaystyle\Phi_{conv} :={ϕ:X|ϕ(x)=u,xX+c,uX,c}\displaystyle:=\left\{\phi:X\to\mathbb{R}\ |\ \phi\left(x\right)=\left\langle u,x\right\rangle_{X}+c,u\in X^{*},c\in\mathbb{R}\right\}
    Ψconv\displaystyle\Psi_{conv} :={ψ:Y|ψ(y)=v,yY+d,vY,d}\displaystyle:=\left\{\psi:Y\to\mathbb{R}\ |\ \psi\left(y\right)=\left\langle v,y\right\rangle_{Y}+d,v\in Y^{*},d\in\mathbb{R}\right\}

    we have ψ(Lx+y)ψ(Lx)=ψ(y)\psi(Lx+y)-\psi(Lx)=\psi(y) which leads to the coupling function as defined in the convex case [14]. We have

    supxX{f(x)ψ(Lx)}\displaystyle\sup\limits_{x\in X}\{-f(x)-\psi(Lx)\} =supxX{f(x)v,LxY}d\displaystyle=\sup\limits_{x\in X}\{-f(x)-\langle v,Lx\rangle_{Y}\}-d
    =supxX{f(x)Lv,xX}d.\displaystyle=\sup\limits_{x\in X}\{-f(x)-\langle L^{*}v,x\rangle_{X}\}-d.

    Since LvXL^{*}v\in X^{*}, we have ψLΦconv-\psi\circ L\in\Phi_{conv} so

    supxX{f(x)Lv,xXd}=fΦconv(ψL)\sup\limits_{x\in X}\{-f(x)-\langle L^{*}v,x\rangle_{X}-d\}=f^{*}_{\Phi_{conv}}(-\psi\circ L)

    and the dual problem

    supψΨconvβc(0,ψ)=supψΨconvfΦconv(ψL)gΨconv(ψ).\sup_{\psi\in\Psi_{conv}}-\beta^{c}(0,\psi)=\sup_{\psi\in\Psi_{conv}}-f^{*}_{\Phi_{conv}}\left(-\psi\circ L\right)-g^{*}_{\Psi_{conv}}(\psi). (22)

    Note that the condition ψLΦconv\psi\circ L\in\Phi_{conv} is satisfied thanks to the form of Φconv\Phi_{conv}, Ψconv\Psi_{conv}, and (22) coincides with the classical Fenchel dual investigated e.g. in [31, Chapter 1, Section 2].

  2. (ii)

    In the case of quadratic elementary functions (a,ba,b\in\mathbb{R}, cf. formula (6) above),

    ΦQ,a\displaystyle\Phi_{Q,a} =:{ϕ:X|ϕ(x)=axX2+u,xX+c,uX,c},\displaystyle=:\left\{\phi:X\to\mathbb{R}\ |\ \phi\left(x\right)=a\left\|x\right\|_{X}^{2}+\left\langle u,x\right\rangle_{X}+c,u\in X^{*},c\in\mathbb{R}\right\}, (23)
    ΨQ,b\displaystyle\Psi_{Q,b} =:{ψ:Y|ψ(y)=byY2+v,yY+d,vY,d},\displaystyle=:\left\{\psi:Y\to\mathbb{R}\ |\ \psi\left(y\right)=b\left\|y\right\|_{Y}^{2}+\left\langle v,y\right\rangle_{Y}+d,v\in Y^{*},d\in\mathbb{R}\right\}, (24)

    one cannot express ψL\psi\circ L as a function in ΦQ,a\Phi_{Q,a}. However, we have

    ψ(Lx)\displaystyle\psi\left(Lx\right) =bLxY2+v,LxY+d\displaystyle=b\left\|Lx\right\|_{Y}^{2}+\left\langle v,Lx\right\rangle_{Y}+d
    =bxL2+Lv,xX+d,\displaystyle=b\left\|x\right\|_{L}^{2}+\left\langle L^{*}v,x\right\rangle_{X}+d,

    with xL=LLx,xX\|x\|_{L}=\langle L^{*}Lx,x\rangle_{X}, [33]. Thus, the dual problem (DCP) takes the form

    supψΨQ,bβc(0,ψ)\displaystyle\sup_{\psi\in\Psi_{Q,b}}-\beta^{c}(0,\psi) =supψΨQ,binfxXf(x)+ψ(Lx)gΨQ,b(ψ)\displaystyle=\sup_{\psi\in\Psi_{Q,b}}\inf_{x\in X}f\left(x\right)+\psi\left(Lx\right)-g^{*}_{\Psi_{Q,b}}\left(\psi\right)
    =supψΨQ,binfxXf(x)+bxL2+Lv,xX+dgΨQ,b(ψ)\displaystyle=\sup_{\psi\in\Psi_{Q,b}}\inf_{x\in X}f\left(x\right)+b\|x\|_{L}^{2}+\left\langle L^{*}v,x\right\rangle_{X}+d-g^{*}_{\Psi_{Q,b}}\left(\psi\right)
    =supψΨQ,b(f+bL2)ΦQ,a(Lv,Xd)gΨQ,b(ψ).\displaystyle=\sup_{\psi\in\Psi_{Q,b}}-\left(f+b\|\cdot\|_{L}^{2}\right)^{*}_{\Phi_{Q,a}}\left(-\left\langle L^{*}v,\cdot\right\rangle_{X}-d\right)-g^{*}_{\Psi_{Q,b}}\left(\psi\right). (25)
  3. (iii)

    In the construction of dual problem (15), the roles of Φ\Phi and Ψ\Psi are not symmetric. We can see this by considering the following pair of elementary functions,

    ΦQ,a\displaystyle\Phi_{Q,a} :={ϕ:X|ϕ(x)=axX2+u,xX+c,uX,c},\displaystyle:=\left\{\phi:X\to\mathbb{R}\ |\ \phi\left(x\right)=a\left\|x\right\|_{X}^{2}+\left\langle u,x\right\rangle_{X}+c,u\in X^{*},c\in\mathbb{R}\right\},
    Ψconv\displaystyle\Psi_{conv} :={ψ:Y|ψ(y)=v,yY+d,vY,d}.\displaystyle:=\left\{\psi:Y\to\mathbb{R}\ |\ \psi\left(y\right)=\left\langle v,y\right\rangle_{Y}+d,v\in Y^{*},d\in\mathbb{R}\right\}.

    In this case, since ψΨconv\psi\in\Psi_{conv} is an affine function we have

    ψL()=v,LYd=Lv,Xd:=ϕ()ΦQ,a-\psi\circ L(\cdot)=-\langle v,L\cdot\rangle_{Y}-d=-\langle L^{*}v,\cdot\rangle_{X}-d:=\phi(\cdot)\in\Phi_{Q,a}

    and the dual problem has the same form as (22)

    supψΨconvβc(0,ψ)\displaystyle\sup_{\psi\in\Psi_{conv}}-\beta^{c}(0,\psi) =supψΨconvfΦQ,a(ψL)gΨconv(ψ)\displaystyle=\sup_{\psi\in\Psi_{conv}}-f^{*}_{\Phi_{Q,a}}\left(-\psi\circ L\right)-g^{*}_{\Psi_{conv}}(\psi) (26)

    However, when reversing the roles of Φ\Phi and Ψ\Psi i.e. by taking

    Φconv\displaystyle\Phi_{conv} :={ϕ:X|ϕ(x)=u,xX+c,uX,c}\displaystyle:=\left\{\phi:X\to\mathbb{R}|\ \phi\left(x\right)=\left\langle u,x\right\rangle_{X}+c,u\in X^{*},c\in\mathbb{R}\right\}
    ΨQ,b\displaystyle\Psi_{Q,b} :={ψ:Y|ψ(y)=byY2+v,yY+d,vY,b,d}.\displaystyle:=\left\{\psi:Y\to\mathbb{R}|\ \psi\left(y\right)=b\left\|y\right\|^{2}_{Y}+\left\langle v,y\right\rangle_{Y}+d,v\in Y^{*},b,d\in\mathbb{R}\right\}.

    we cannot write the dual problem in the form (22), but it is possible to write, for any ψΨQ,b\psi\in\Psi_{Q,b},

    ψ(Lx)=bLxY2+v,LxY+d=ψ1(x)+ψ2(x),\psi(Lx)=b\lVert Lx\rVert^{2}_{Y}+\langle v,Lx\rangle_{Y}+d=\psi_{1}(x)+\psi_{2}(x),

    where ψ1(x)=bLxY2,ψ2(x)=Lv,xX+d\psi_{1}(x)=b\lVert Lx\rVert^{2}_{Y},\psi_{2}(x)=\langle L^{*}v,x\rangle_{X}+d and the dual problem takes the form

    supψΨQ,bψL=ψ1+ψ2βc(0,ψ)=supψΨQ,bψL=ψ1+ψ2(f+ψ1)ΦA(ψ2)gΨQ,b(ψ).\sup_{\begin{subarray}{c}\psi\in\Psi_{Q,b}\\ \psi\circ L=\psi_{1}+\psi_{2}\end{subarray}}-\beta^{c}(0,\psi)=\sup_{\begin{subarray}{c}\psi\in\Psi_{Q,b}\\ \psi\circ L=\psi_{1}+\psi_{2}\end{subarray}}-\left(f+\psi_{1}\right)^{*}_{\Phi_{A}}\left(-\psi_{2}\right)-g^{*}_{\Psi_{Q,b}}\left(\psi\right). (27)

Unlike the dual problems, considered in [24, 23] where L=IdL=Id, the appearance of general operators LL in the minimization problem (CP) makes it more difficult to present the dual problem without imposing additional assumptions.

Remark 1.

It is clear from the formula (3) and the above examples that the presence of constants in the definition of elementary functions is inessential in the cc-conjugate of β\beta. Thus, in the sequel, we consider classes Φ\Phi and Ψ\Psi of functions in which constants are omitted. For the general consideration related to this fact, see [5, formula 1.4.4].

4 Zero Duality Gap for Conjugate Dual

Having defined the dual problem (DCP), now, we discuss conditions for weak duality and zero duality gap. As in (CP), we assume that the sets Φ\Phi and Ψ\Psi of elementary functions are defined on XX and YY, respectively, and both contain zeros, i.e., 0Φ,0Ψ0\in\Phi,0\in\Psi.

Let XX be a nonempty set and let YY be a vector space. Let L:XYL:X\to Y be a mapping from XX to YY. The dual problem (DCP) can be equivalently rewritten in the form

val(DCP):=supψΨβc(0,ψ)\displaystyle val(DCP):=\sup_{\psi\in\Psi}-\beta^{c}(0,\psi) =infψΨ{(f+ψL)Φ(0)+gΨ(ψ)}\displaystyle=-\inf_{\psi\in\Psi}\left\{\left(f+\psi\circ L\right)^{*}_{\Phi}\left(0\right)+g^{*}_{\Psi}\left(\psi\right)\right\} (28)

For the problem (CP), we have

val(CP):=infxXf(x)+g(Lx)=(f+gL)Φ(0).val(CP):=\inf_{x\in X}f\left(x\right)+g\left(Lx\right)=-\left(f+g\circ L\right)^{*}_{\Phi}\left(0\right). (29)

Weak duality, i.e. the inequality val(CP)val(DCP)val(CP)\geq val(DCP) means that

(f+gL)Φ(0)infψΨ(f+ψL)Φ(0)+gΨ(ψ).\left(f+g\circ L\right)^{*}_{\Phi}\left(0\right)\leq\inf_{\psi\in\Psi}\left(f+\psi\circ L\right)^{*}_{\Phi}\left(0\right)+g^{*}_{\Psi}\left(\psi\right). (30)

In fact, a more general inequality holds true.

Theorem 4.1.

For any ϕΦ\phi\in\Phi, it holds

(f+gL)Φ(ϕ)infψΨ(f+ψL)Φ(ϕ)+gΨ(ψ).\left(f+g\circ L\right)^{*}_{\Phi}\left(\phi\right)\leq\inf_{\psi\in\Psi}\left(f+\psi\circ L\right)^{*}_{\Phi}\left(\phi\right)+g^{*}_{\Psi}\left(\psi\right).
Proof.

For any ψΨ\psi\in\Psi and ϕΦ\phi\in\Phi, we have

(f+gL)Φ(ϕ)\displaystyle\left(f+g\circ L\right)^{*}_{\Phi}\left(\phi\right) =supxXϕ(x)f(x)g(Lx)\displaystyle=\sup_{x\in X}\phi\left(x\right)-f\left(x\right)-g\left(Lx\right)
=supxXϕ(x)f(x)g(Lx)+ψ(Lx)ψ(Lx)\displaystyle=\sup_{x\in X}\phi\left(x\right)-f\left(x\right)-g\left(Lx\right)+\psi\left(Lx\right)-\psi\left(Lx\right)
supxX{ϕ(x)f(x)ψ(Lx)}+supxX{ψ(Lx)g(Lx)}\displaystyle\leq\sup_{x\in X}\left\{\phi\left(x\right)-f\left(x\right)-\psi\left(Lx\right)\right\}+\sup_{x\in X}\left\{\psi\left(Lx\right)-g\left(Lx\right)\right\}
(f+ψL)Φ(ϕ)+supyL(X){ψ(y)g(y)}\displaystyle\leq\left(f+\psi\circ L\right)^{*}_{\Phi}\left(\phi\right)+\sup_{y\in L(X)}\left\{\psi\left(y\right)-g\left(y\right)\right\}
(f+ψL)Φ(ϕ)+gΨ(ψ).\displaystyle\leq\left(f+\psi\circ L\right)^{*}_{\Phi}\left(\phi\right)+g^{*}_{\Psi}\left(\psi\right).

Since (f+gL)Φ(ϕ)\left(f+g\circ L\right)^{*}_{\Phi}\left(\phi\right) is a lower bound of (f+ψL)Φ(ϕ)+gΨ(ψ)\left(f+\psi\circ L\right)^{*}_{\Phi}\left(\phi\right)+g^{*}_{\Psi}\left(\psi\right) for arbitrary ψΨ\psi\in\Psi, we get

(f+gL)Φ(ϕ)infψΨ(f+ψL)Φ(ϕ)+gΨ(ψ),\left(f+g\circ L\right)^{*}_{\Phi}\left(\phi\right)\leq\inf_{\psi\in\Psi}\left(f+\psi\circ L\right)^{*}_{\Phi}\left(\phi\right)+g^{*}_{\Psi}\left(\psi\right),

which completes the proof. ∎

By taking ϕ=0\phi=0 in the above theorem, we obtain the weak duality (30) between (CP) and (DCP). Note that no additional assumptions are imposed on the functions ψL\psi\circ L and ϕ\phi. However, when zero duality gap is considered, we need to assume a relationship between Φ\Phi and Ψ\Psi.

Our first result of zero duality gap is related to [23, Theorem 3.5].

Theorem 4.2.

Let XX be a nonempty set and YY be a vector space. Let f:X(,+]f:X\to\left(-\infty,+\infty\right], g:Y(,+]g:Y\to\left(-\infty,+\infty\right], and L:XYL:X\to Y be a mapping. Assume that dom gL(dom f)\text{dom }g\cap L\left(\text{dom }f\right)\neq\emptyset. Suppose 0Φ0\in\Phi and 0Ψ0\in\Psi. The following are equivalent.

  1. (i)

    For every ε>0\varepsilon>0, there exist xεX,ψεε,Ψg(Lxε)x_{\varepsilon}\in X,\psi_{\varepsilon}\in\partial_{\varepsilon,\Psi}g(Lx_{\varepsilon}) such that (f+ψεL)Φ(0)f(xε)ψε(Lxε)+ε\left(f+\psi_{\varepsilon}\circ L\right)^{*}_{\Phi}\left(0\right)\leq-f(x_{\varepsilon})-\psi_{\varepsilon}\left(Lx_{\varepsilon}\right)+\varepsilon.

  2. (ii)

    val(CP)=(f+gL)Φ(0)=infψΨ(f+ψL)Φ(0)+gΨ(ψ)=val(DCP)<+-val(CP)=\left(f+g\circ L\right)^{*}_{\Phi}\left(0\right)=\inf_{\psi\in\Psi}\left(f+\psi\circ L\right)^{*}_{\Phi}\left(0\right)+g^{*}_{\Psi}\left(\psi\right)=-val(DCP)<+\infty.

Proof.

(i) \Rightarrow (ii): Thanks to Theorem 4.1, we only need to prove that

infψΨ(f+ψL)Φ(0)+gΨ(ψ)(f+gL)Φ(0)<+.\inf_{\psi\in\Psi}\left(f+\psi\circ L\right)^{*}_{\Phi}\left(0\right)+g^{*}_{\Psi}\left(\psi\right)\leq\left(f+g\circ L\right)^{*}_{\Phi}\left(0\right)<+\infty.

Let ε>0\varepsilon>0. From (i), there exist xεXx_{\varepsilon}\in X and ψεε,Ψg(Lxε)\psi_{\varepsilon}\in\partial_{\varepsilon,\Psi}g\left(Lx_{\varepsilon}\right) such that

(f+ψεL)Φ(0)f(xε)ψε(Lxε)+ε.\left(f+\psi_{\varepsilon}\circ L\right)^{*}_{\Phi}\left(0\right)\leq-f(x_{\varepsilon})-\psi_{\varepsilon}\left(Lx_{\varepsilon}\right)+\varepsilon.

From the definition of infimum, we have

infψΨ(f+ψL)Φ(0)+gΨ(ψ)\displaystyle\inf_{\psi\in\Psi}\left(f+\psi\circ L\right)^{*}_{\Phi}\left(0\right)+g^{*}_{\Psi}\left(\psi\right) (f+ψεL)Φ(0)+gΨ(ψε)\displaystyle\leq\left(f+\psi_{\varepsilon}\circ L\right)^{*}_{\Phi}\left(0\right)+g^{*}_{\Psi}\left(\psi_{\varepsilon}\right)
f(xε)ψε(Lxε)+gΨ(ψε)+ε.\displaystyle\leq-f\left(x_{\varepsilon}\right)-\psi_{\varepsilon}\left(Lx_{\varepsilon}\right)+g^{*}_{\Psi}\left(\psi_{\varepsilon}\right)+\varepsilon. (31)

By using inequality (11) applied to gg and taking into account ψεε,Ψg(Lxε)\psi_{\varepsilon}\in\partial_{\varepsilon,\Psi}g(Lx_{\varepsilon}), we obtain

f(xε)ψε(Lxε)+gΨ(ψε)+ε\displaystyle-f\left(x_{\varepsilon}\right)-\psi_{\varepsilon}\left(Lx_{\varepsilon}\right)+g^{*}_{\Psi}\left(\psi_{\varepsilon}\right)+\varepsilon f(xε)g(Lxε)+2ε\displaystyle\leq-f\left(x_{\varepsilon}\right)-g\left(Lx_{\varepsilon}\right)+2\varepsilon (32)
(f+gL)Φ(0)+2ε.\displaystyle\leq\left(f+g\circ L\right)^{*}_{\Phi}\left(0\right)+2\varepsilon.

Finally, by using (31) and (32),

infψΨ(f+ψL)Φ(0)+gΨ(ψ)(f+gL)Φ(0)+2ε.\inf_{\psi\in\Psi}\left(f+\psi\circ L\right)^{*}_{\Phi}\left(0\right)+g^{*}_{\Psi}\left(\psi\right)\leq\left(f+g\circ L\right)^{*}_{\Phi}\left(0\right)+2\varepsilon.

As both sides of the above inequality do not depend on xεx_{\varepsilon} or ψε\psi_{\varepsilon}, we can let ε0\varepsilon\to 0 and obtain zero duality gap

infψΨ(f+ψL)Φ(0)+gΨ(ψ)(f+gL)Φ(0).\inf_{\psi\in\Psi}\left(f+\psi\circ L\right)^{*}_{\Phi}\left(0\right)+g^{*}_{\Psi}\left(\psi\right)\leq\left(f+g\circ L\right)^{*}_{\Phi}\left(0\right).

From (31) and (32), we have

(f+gL)Φ(0)f(xε)g(Lxε)+2ε<+,\left(f+g\circ L\right)_{\Phi}^{*}\left(0\right)\leq-f\left(x_{\varepsilon}\right)-g\left(Lx_{\varepsilon}\right)+2\varepsilon<+\infty,

from the assumption of ff and gg. Thus (f+gL)Φ(0)<+\left(f+g\circ L\right)_{\Phi}^{*}\left(0\right)<+\infty.

(ii) \Rightarrow (i): From the definition of supremum, for every ε>0\varepsilon>0 there exists an xεXx_{\varepsilon}\in X such that

(f+gL)Φ(0)f(xε)g(Lxε)+ε/2.\left(f+g\circ L\right)^{*}_{\Phi}\left(0\right)\leq-f\left(x_{\varepsilon}\right)-g\left(Lx_{\varepsilon}\right)+\varepsilon/2.

Also, there exists ψεΨ\psi_{\varepsilon}\in\Psi such that

(f+ψεL)Φ(0)+gΨ(ψε)ε/2<infψΨ(f+ψL)Φ(0)+gΨ(ψ).\left(f+\psi_{\varepsilon}\circ L\right)^{*}_{\Phi}\left(0\right)+g^{*}_{\Psi}\left(\psi_{\varepsilon}\right)-\varepsilon/2<\inf_{\psi\in\Psi}\left(f+\psi\circ L\right)^{*}_{\Phi}\left(0\right)+g^{*}_{\Psi}\left(\psi\right).

Zero duality gap gives us

(f+ψεL)Φ(0)+gΨ(ψε)ε/2f(xε)g(Lxε)+ε/2.\left(f+\psi_{\varepsilon}\circ L\right)^{*}_{\Phi}\left(0\right)+g^{*}_{\Psi}\left(\psi_{\varepsilon}\right)-\varepsilon/2\leq-f\left(x_{\varepsilon}\right)-g\left(Lx_{\varepsilon}\right)+\varepsilon/2.

After rearranging both sides, we get

[(f+ψεL)Φ(0)+f(xε)+ψε(Lxε)]+[gΨ(ψε)+g(Lxε)ψε(Lxε)]<ε.\left[\left(f+\psi_{\varepsilon}\circ L\right)^{*}_{\Phi}\left(0\right)+f\left(x_{\varepsilon}\right)+\psi_{\varepsilon}\left(Lx_{\varepsilon}\right)\right]+\left[g^{*}_{\Psi}\left(\psi_{\varepsilon}\right)+g\left(Lx_{\varepsilon}\right)-\psi_{\varepsilon}\left(Lx_{\varepsilon}\right)\right]<\varepsilon.

By the definition of conjugate function, each of the two terms is non-negative, and so each of them has to be smaller than ε\varepsilon. Thus

(f+ψεL)Φ(0)\displaystyle\left(f+\psi_{\varepsilon}\circ L\right)^{*}_{\Phi}\left(0\right) <f(xε)ψε(Lxε)+ε\displaystyle<-f\left(x_{\varepsilon}\right)-\psi_{\varepsilon}\left(Lx_{\varepsilon}\right)+\varepsilon
gΨ(ψε)+g(Lxε)ψε(Lxε)\displaystyle g^{*}_{\Psi}\left(\psi_{\varepsilon}\right)+g\left(Lx_{\varepsilon}\right)-\psi_{\varepsilon}\left(Lx_{\varepsilon}\right) <ε,\displaystyle<\varepsilon,

which implies that ψεε,Ψg(Lxε)\psi_{\varepsilon}\in\partial_{\varepsilon,\Psi}g\left(Lx_{\varepsilon}\right). Hence, (i) holds. ∎

Remark 2.

Observe that, in some cases, we cannot find ϕΦ,ψΨ\phi\in\Phi,\psi\in\Psi such that ϕ+ψ=0\phi+\psi=0 (this latter condition is used in [23, Theorem 3.5]). In the case X=Y,Φ=Ψ,L=IdX=Y,\Phi=\Psi,L=Id and Φ\Phi is symmetric (for any ψΦ,ψΦ\psi\in\Phi,-\psi\in\Phi), Theorem (4.2)-(i) means that, for ψεε,Φg(xε)\psi_{\varepsilon}\in\partial_{\varepsilon,\Phi}g(x_{\varepsilon}),

f(x)ψε(x)(f+ψε)Φ(0)f(xε)ψε(xε)+ε,-f(x)-\psi_{\varepsilon}(x)\leq\left(f+\psi_{\varepsilon}\right)^{*}_{\Phi}\left(0\right)\leq-f(x_{\varepsilon})-\psi_{\varepsilon}\left(x_{\varepsilon}\right)+\varepsilon,

i.e. ψεε,Φf(xε)-\psi_{\varepsilon}\in\partial_{\varepsilon,\Phi}f(x_{\varepsilon}). This means that 0ε>0ε,Φ(f+g)(X)0\in\bigcap_{\varepsilon>0}\partial_{\varepsilon,\Phi}(f+g)(X), which reduces to the respective condition used in [23, Theorem 3.5-(i)] for proving zero duality gap.

Condition (i) of Theorem 4.2, could be replaced by conditions which are easier to be checked, when we introduce the following assumption: for given ϕΦ,ψΨ\phi\in\Phi,\psi\in\Psi,

ϕψLΦ.\displaystyle\phi-\psi\circ L\in\Phi. (33)

Note that condition (34) below will be used in the sequel to check zero duality gap.

Remark 3.

When Φ\Phi is a convex cone, then (33) is satisfied when ψLrec Φ-\psi\circ L\in\text{rec }\Phi where rec Φ={φF(X):φ+ΦΦ}\text{rec }\Phi=\left\{\varphi\in F(X):\varphi+\Phi\subset\Phi\right\} is the recession cone of Φ\Phi and F(X)F(X) is a linear space of all functions defined on XX.

Theorem 4.3.

Let f:X(,+],g:Y(,+]f:X\to\left(-\infty,+\infty\right],g:Y\to\left(-\infty,+\infty\right] be such that dom gL(dom f)\text{dom }g\cap L\left(\text{dom }f\right)\neq\emptyset. Let L:XYL:X\to Y be a mapping from XX into YY. Suppose that 0Φ0\in\Phi and 0Ψ0\in\Psi. Consider the following conditions.

  1. (i)

    For every ε>0\varepsilon>0, there exist xεX,ϕεε,Φf(xε),ψεε,Ψg(Lxε)x_{\varepsilon}\in X,\phi_{\varepsilon}\in\partial_{\varepsilon,\Phi}f(x_{\varepsilon}),\psi_{\varepsilon}\in\partial_{\varepsilon,\Psi}g\left(Lx_{\varepsilon}\right) such that

    {ϕε(z)+ψε(Lz)εzXϕε(xε)+ψε(Lxε)ε.\begin{cases}\phi_{\varepsilon}(z)+\psi_{\varepsilon}(Lz)\geq-\varepsilon&\forall z\in X\\ \phi_{\varepsilon}(x_{\varepsilon})+\psi_{\varepsilon}(Lx_{\varepsilon})\leq\varepsilon.\end{cases} (34)
  2. (ii)

    val(CP)=(f+gL)Φ(0)=infψΨ(f+ψL)Φ(0)+gΨ(ψ)=val(DCP)<+-val(CP)=\left(f+g\circ L\right)^{*}_{\Phi}\left(0\right)=\inf_{\psi\in\Psi}\left(f+\psi\circ L\right)^{*}_{\Phi}\left(0\right)+g^{*}_{\Psi}\left(\psi\right)=-val(DCP)<+\infty.

We have (i) \Rightarrow (ii). If, for every ε>0\varepsilon>0, there exists ψεΨ\psi_{\varepsilon}\in\Psi such that

(f+ψεL)Φ(0)+gΨ(ψε)ε/2<infψΨ(f+ψL)Φ(0)+gΨ(ψ)\left(f+\psi_{\varepsilon}\circ L\right)^{*}_{\Phi}\left(0\right)+g^{*}_{\Psi}\left(\psi_{\varepsilon}\right)-\varepsilon/2<\inf_{\psi\in\Psi}\left(f+\psi\circ L\right)^{*}_{\Phi}\left(0\right)+g^{*}_{\Psi}\left(\psi\right)

and ψεLΦ-\psi_{\varepsilon}\circ L\in\Phi, then (i)\Leftrightarrow(ii).

Proof.

(i) \Rightarrow (ii). For any ψΨ\psi\in\Psi

infψΨ((f+ψL)Φ(0)+gΨ(ψ))(f+ψL)Φ(0)+gΨ(ψ).\inf_{\psi\in\Psi}\left(\left(f+\psi\circ L\right)^{*}_{\Phi}\left(0\right)+g^{*}_{\Psi}\left(\psi\right)\right)\leq\left(f+\psi\circ L\right)^{*}_{\Phi}\left(0\right)+g^{*}_{\Psi}\left(\psi\right).

By using inequality (11), for ψεε,Ψg(Lxε),ϕεε,Φf(xε)\psi_{\varepsilon}\in\partial_{\varepsilon,\Psi}g(Lx_{\varepsilon}),\phi_{\varepsilon}\in\partial_{\varepsilon,\Phi}f(x_{\varepsilon})

(f+ψεL)Φ(0)+gΨ(ψε)\displaystyle\left(f+\psi_{\varepsilon}\circ L\right)^{*}_{\Phi}\left(0\right)+g^{*}_{\Psi}\left(\psi_{\varepsilon}\right) (f+ψεL)Φ(0)+ψε(Lxε)g(Lxε)+ε\displaystyle\leq\left(f+\psi_{\varepsilon}\circ L\right)^{*}_{\Phi}\left(0\right)+\psi_{\varepsilon}\left(Lx_{\varepsilon}\right)-g\left(Lx_{\varepsilon}\right)+\varepsilon
=supxX{ψε(Lx)f(x)}+ψε(Lxε)g(Lxε)+ε\displaystyle=\sup_{x\in X}\left\{-\psi_{\varepsilon}\left(Lx\right)-f\left(x\right)\right\}+\psi_{\varepsilon}\left(Lx_{\varepsilon}\right)-g\left(Lx_{\varepsilon}\right)+\varepsilon
fΦ(ϕε)+ψε(Lxε)g(Lxε)+2ε\displaystyle\leq f^{*}_{\Phi}\left(\phi_{\varepsilon}\right)+\psi_{\varepsilon}\left(Lx_{\varepsilon}\right)-g\left(Lx_{\varepsilon}\right)+2\varepsilon
ϕε(xε)f(xε)+ε+ψε(Lxε)g(Lxε)+2ε\displaystyle\leq\phi_{\varepsilon}\left(x_{\varepsilon}\right)-f\left(x_{\varepsilon}\right)+\varepsilon+\psi_{\varepsilon}\left(Lx_{\varepsilon}\right)-g\left(Lx_{\varepsilon}\right)+2\varepsilon
3εf(xε)g(Lxε)\displaystyle\leq 3\varepsilon-f\left(x_{\varepsilon}\right)-g\left(Lx_{\varepsilon}\right)
3ε+(f+gL)Φ(0),\displaystyle\leq 3\varepsilon+\left(f+g\circ L\right)^{*}_{\Phi}\left(0\right),

where in the third estimation, we use (34) to obtain fΦ(ϕε)f^{*}_{\Phi}(\phi_{\varepsilon}).

By letting ε0\varepsilon\to 0 we obtain zero duality gap. We can use the same argument as in Theorem 4.2 to prove that

(f+gL)Φ(0)<+.\left(f+g\circ L\right)^{*}_{\Phi}\left(0\right)<+\infty.

(ii) \Rightarrow (i). We have

infψΨ((f+ψL)Φ(0)+gΨ(ψ))=(f+gL)Φ(0)<+,\inf_{\psi\in\Psi}\left(\left(f+\psi\circ L\right)^{*}_{\Phi}\left(0\right)+g^{*}_{\Psi}\left(\psi\right)\right)=\left(f+g\circ L\right)^{*}_{\Phi}\left(0\right)<+\infty,

so for every ε>0\varepsilon>0, there exists ψεΨ\psi_{\varepsilon}\in\Psi such that

(f+ψεL)Φ(0)+gΨ(ψε)ε/2<(f+gL)Φ(0),\left(f+\psi_{\varepsilon}\circ L\right)^{*}_{\Phi}\left(0\right)+g^{*}_{\Psi}\left(\psi_{\varepsilon}\right)-\varepsilon/2<\left(f+g\circ L\right)^{*}_{\Phi}\left(0\right),

and ψεLΦ-\psi_{\varepsilon}\circ L\in\Phi. Moreover, there exists an xεXx_{\varepsilon}\in X such that

(f+gL)Φ(0)<ε/2f(xε)g(Lxε).\left(f+g\circ L\right)^{*}_{\Phi}\left(0\right)<\varepsilon/2-f\left(x_{\varepsilon}\right)-g\left(Lx_{\varepsilon}\right).

Combining the two inequalities gives us

(f+ψεL)Φ(0)+gΨ(ψε)+f(xε)+g(Lxε)<ε.\left(f+\psi_{\varepsilon}\circ L\right)^{*}_{\Phi}\left(0\right)+g^{*}_{\Psi}\left(\psi_{\varepsilon}\right)+f\left(x_{\varepsilon}\right)+g\left(Lx_{\varepsilon}\right)<\varepsilon.

By adding and substracting ψε(Lxε)\psi_{\varepsilon}\left(Lx_{\varepsilon}\right), we get

[(f+ψεL)Φ(0)+f(xε)+ψε(Lxε)]+[gΨ(ψε)+g(Lxε)ψε(Lxε)]<ε.\left[\left(f+\psi_{\varepsilon}\circ L\right)^{*}_{\Phi}\left(0\right)+f\left(x_{\varepsilon}\right)+\psi_{\varepsilon}\left(Lx_{\varepsilon}\right)\right]+\left[g^{*}_{\Psi}\left(\psi_{\varepsilon}\right)+g\left(Lx_{\varepsilon}\right)-\psi_{\varepsilon}\left(Lx_{\varepsilon}\right)\right]<\varepsilon.

Since each term is nonnegative, we obtain

(f+ψεL)Φ(0)+f(xε)+ψε(Lxε)\displaystyle\left(f+\psi_{\varepsilon}\circ L\right)^{*}_{\Phi}\left(0\right)+f\left(x_{\varepsilon}\right)+\psi_{\varepsilon}\left(Lx_{\varepsilon}\right) ε\displaystyle\leq\varepsilon
gΨ(ψε)+g(Lxε)ψε(Lxε)\displaystyle g^{*}_{\Psi}\left(\psi_{\varepsilon}\right)+g\left(Lx_{\varepsilon}\right)-\psi_{\varepsilon}\left(Lx_{\varepsilon}\right) ε.\displaystyle\leq\varepsilon.

Since ψεLΦ-\psi_{\varepsilon}\circ L\in\Phi, and thus (f+ψεL)Φ(0)=fΦ(ψεL)\left(f+\psi_{\varepsilon}\circ L\right)^{*}_{\Phi}\left(0\right)=f^{*}_{\Phi}\left(-\psi_{\varepsilon}\circ L\right). By the above inequalities, ψεε,Ψg(Lxε)\psi_{\varepsilon}\in\partial_{\varepsilon,\Psi}g\left(Lx_{\varepsilon}\right) and

(f+ψεL)Φ(0)+f(xε)+ψε(Lxε)=fΦ(ψεL)+f(xε)+ψε(Lxε)ε\left(f+\psi_{\varepsilon}\circ L\right)^{*}_{\Phi}\left(0\right)+f\left(x_{\varepsilon}\right)+\psi_{\varepsilon}\left(Lx_{\varepsilon}\right)=f^{*}_{\Phi}\left(-\psi_{\varepsilon}\circ L\right)+f\left(x_{\varepsilon}\right)+\psi_{\varepsilon}(Lx_{\varepsilon})\leq\varepsilon

which is equivalent to ψεLε,Φf(xε)-\psi_{\varepsilon}\circ L\in\partial_{\varepsilon,\Phi}f\left(x_{\varepsilon}\right). Hence, (i) is proved. ∎

Next we obtain the existence of optimal solution to (CP) in the spirit of [23, Theorem 3.6].

Theorem 4.4.

Let f:X(,+],g:Y(,+]f:X\to\left(-\infty,+\infty\right],g:Y\to\left(-\infty,+\infty\right] be such that dom gL(dom f)\text{dom }g\cap L\left(\text{dom }f\right)\neq\emptyset and let L:XYL:X\to Y be a mapping from XX into YY. Suppose that 0Φ,0Ψ0\in\Phi,0\in\Psi and xdom gL(dom f)x\in\text{dom }g\cap L\left(\text{dom }f\right). Consider the following conditions.

  1. (i)

    For all ε>0\varepsilon>0, there exist ϕεε,Φf(x),ψεε,Ψg(Lx)\phi_{\varepsilon}\in\partial_{\varepsilon,\Phi}f(x),\psi_{\varepsilon}\in\partial_{\varepsilon,\Psi}g\left(Lx\right) such that

    {ϕε(z)+ψε(Lz)εfor all zXϕε(x)+ψε(Lx)ε.\displaystyle\begin{cases}\phi_{\varepsilon}(z)+\psi_{\varepsilon}(Lz)\geq-\varepsilon\quad\text{for all }z\in X\\ \phi_{\varepsilon}(x)+\psi_{\varepsilon}(Lx)\leq\varepsilon.\end{cases}
  2. (ii)

    val(CP)=(f+gL)Φ(0)=infψΨ(f+ψL)Φ(0)+gΨ(ψ)=val(DCP)<+-val(CP)=\left(f+g\circ L\right)^{*}_{\Phi}\left(0\right)=\inf_{\psi\in\Psi}\left(f+\psi\circ L\right)^{*}_{\Phi}\left(0\right)+g^{*}_{\Psi}\left(\psi\right)=val(DCP)<+\infty and xx is an optimal solution to (CP).

We have (i) \Rightarrow (ii). For every ε>0\varepsilon>0, if there exists ψεΨ,(f+ψεL)Φ(0)+gΨ(ψε)ε/2<infψΨ(f+ψL)Φ(0)+gΨ(ψ)\psi_{\varepsilon}\in\Psi,\left(f+\psi_{\varepsilon}\circ L\right)^{*}_{\Phi}\left(0\right)+g^{*}_{\Psi}\left(\psi_{\varepsilon}\right)-\varepsilon/2<\inf_{\psi\in\Psi}\left(f+\psi\circ L\right)^{*}_{\Phi}\left(0\right)+g^{*}_{\Psi}\left(\psi\right) such that ψεLΦ-\psi_{\varepsilon}\circ L\in\Phi, then the two statements are equivalent.

Proof.

The lines of the proof coincide with the ones of Theorem 4.3. We only need to prove that xx is an optimal solution to (CP). Now as (i) holds for all ε>0\varepsilon>0, we have

infψΨ((f+ψL)Φ(0)+gΨ(ψ))\displaystyle\inf_{\psi\in\Psi}\left(\left(f+\psi\circ L\right)^{*}_{\Phi}\left(0\right)+g^{*}_{\Psi}\left(\psi\right)\right) (f+ψεL)Φ(0)+gΨ(ψε)\displaystyle\leq\left(f+\psi_{\varepsilon}\circ L\right)^{*}_{\Phi}\left(0\right)+g^{*}_{\Psi}\left(\psi_{\varepsilon}\right)
3εf(x)g(Lx)\displaystyle\leq 3\varepsilon-f\left(x\right)-g\left(Lx\right)
3ε+(f+gL)Φ(0).\displaystyle\leq 3\varepsilon+\left(f+g\circ L\right)^{*}_{\Phi}(0).

Letting ε0\varepsilon\to 0 in the above inequality as it holds for all ε>0\varepsilon>0. We obtain zero duality gap

infψΨ((f+ψL)Φ(0)+gΨ(ψ))=(f+gL)Φ(0).\inf_{\psi\in\Psi}\left(\left(f+\psi\circ L\right)^{*}_{\Phi}\left(0\right)+g^{*}_{\Psi}\left(\psi\right)\right)=(f+g\circ L)^{*}_{\Phi}(0).

Notice that

infzXf(z)+g(Lz)=(f+gL)Φ(0)f(x)+g(Lx).\inf_{z\in X}f(z)+g(Lz)=-(f+g\circ L)^{*}_{\Phi}(0)\geq f\left(x\right)+g\left(Lx\right).

As (f+gL)Φ(0)<+(f+g\circ L)^{*}_{\Phi}(0)<+\infty, the primal problem (CP) is finite with xx as an optimal solution. ∎

Remark 4.
111We thank an annonymuous referee for this observation

Let us observe that the condition (i) of Theorem 4.3 and Theorem 4.4 can be replaced by the condition

ϕε(x)+ψε(Lx)=0,xX.\phi_{\varepsilon}(x)+\psi_{\varepsilon}(Lx)=0,\quad\forall x\in X. (35)

Indeed, if (35) holds, which means ψεL=ϕεΦ-\psi_{\varepsilon}\circ L=\phi_{\varepsilon}\in\Phi, then (34) and (33) are satisfied.

4.1 Zero duality gap for specific classes Φ,Ψ\Phi,\ \Psi

Consider the classes of elementary functions as in (6). i.e. ΦQ,a\Phi_{Q,a} and ΨQ,b\Psi_{Q,b} defined in (23) and (24) for a,b0a,b\leq 0. We let c=d=0c=d=0 because they do not affect the dual problem and the condition for zero duality gap. The dual problem (25) takes the form

supψΨQ,bψ()=bY2+v,Y(f+bLY2)ΦQ,a(Lv,)gΨQ,b(ψ).\sup_{\begin{subarray}{c}\psi\in\Psi_{Q,b}\\ \psi(\cdot)=-b\|\cdot\|^{2}_{Y}+\langle v,\cdot\rangle_{Y}\end{subarray}}-\left(f+b\left\|L\cdot\right\|_{Y}^{2}\right)^{*}_{\Phi_{Q,a}}\left(-\langle L^{*}v,\cdot\rangle\right)-g^{*}_{\Psi_{Q,b}}\left(\psi\right). (36)
Proposition 4.5.

Let XX and YY be Hilbert spaces with inner products, ,X\langle\cdot,\cdot\rangle_{X} and ,Y\langle\cdot,\cdot\rangle_{Y}, respectively. Let L:XYL:X\rightarrow Y be a continuous linear operator from XX to YY, and f:X(,+]f:X\rightarrow(-\infty,+\infty] be a weakly convex function with modulus aa. Then f(x)bLxY2f(x)-b\lVert Lx\rVert^{2}_{Y} is weakly convex with modulus a+bL(X,Y)2a+b\lVert L\rVert^{2}_{\mathcal{L}(X,Y)}.

Proof.

By Definition 2.6, a function f:X(,+]f:X\rightarrow(-\infty,+\infty] is weakly convex on XX with modulus a>0a>0 if f+axX2f+a\lVert x\rVert^{2}_{X}, is a convex function, or equivalently for any x1,x2Xx_{1},x_{2}\in X and λ[0,1]\lambda\in[0,1],

f(λx1+(1λ)x2)λf(x1)+(1λ)f(x2)+aλ(1λ)x1x2X2.f(\lambda x_{1}+(1-\lambda)x_{2})\leq\lambda f(x_{1})+(1-\lambda)f(x_{2})+a\lambda(1-\lambda)\|x_{1}-x_{2}\|_{X}^{2}.

Now we analyze the weak convexity of the function f(x)bLxY2f(x)-b\lVert Lx\rVert^{2}_{Y}, where b0b\geq 0. We have

L(λx1+(1λ)x2)Y2\displaystyle\lVert L(\lambda x_{1}+(1-\lambda)x_{2})\rVert^{2}_{Y} =λLx1+(1λ)Lx2Y2\displaystyle=\lVert\lambda Lx_{1}+(1-\lambda)Lx_{2}\rVert^{2}_{Y}
=λ2Lx1Y2+(1λ)2Lx2Y2+2λ(1λ)Lx1,Lx2Y\displaystyle=\lambda^{2}\lVert Lx_{1}\rVert^{2}_{Y}+(1-\lambda)^{2}\lVert Lx_{2}\rVert^{2}_{Y}+2\lambda(1-\lambda)\langle Lx_{1},Lx_{2}\rangle_{Y}
=λLx1Y2+(1λ)Lx2Y2λ(1λ)Lx1Lx2Y2.\displaystyle=\lambda\lVert Lx_{1}\rVert^{2}_{Y}+(1-\lambda)\lVert Lx_{2}\rVert^{2}_{Y}-\lambda(1-\lambda)\lVert Lx_{1}-Lx_{2}\rVert^{2}_{Y}.

Denote xλ:=λx1+(1λ)x2x_{\lambda}:=\lambda x_{1}+\left(1-\lambda\right)x_{2} for λ[0,1]\lambda\in\left[0,1\right]. Therefore,

f(xλ)bLxλY2\displaystyle f\left(x_{\lambda}\right)-b\left\|Lx_{\lambda}\right\|_{Y}^{2} λ(f(x1)bLx1Y2)+(1λ)(f(x2)bLx2Y2)\displaystyle\leq\lambda\left(f\left(x_{1}\right)-b\left\|Lx_{1}\right\|_{Y}^{2}\right)+\left(1-\lambda\right)\left(f\left(x_{2}\right)-b\left\|Lx_{2}\right\|_{Y}^{2}\right)
+bλ(1λ)Lx1Lx2Y2+aλ(1λ)x1x2X2.\displaystyle+b\lambda\left(1-\lambda\right)\left\|Lx_{1}-Lx_{2}\right\|_{Y}^{2}+a\lambda\left(1-\lambda\right)\left\|x_{1}-x_{2}\right\|_{X}^{2}.

As LL is linear and continuous, we obtain

f(xλ)bLxλY2\displaystyle f\left(x_{\lambda}\right)-b\left\|Lx_{\lambda}\right\|_{Y}^{2} λ(f(x1)bLx1Y2)+(1λ)(f(x2)bLx2Y2)\displaystyle\leq\lambda\left(f\left(x_{1}\right)-b\left\|Lx_{1}\right\|_{Y}^{2}\right)+\left(1-\lambda\right)\left(f\left(x_{2}\right)-b\left\|Lx_{2}\right\|_{Y}^{2}\right)
+(a+bL(X,Y)2)λ(1λ)x1x2X2,\displaystyle+\left(a+b\lVert L\rVert^{2}_{\mathcal{L}(X,Y)}\right)\lambda\left(1-\lambda\right)\left\|x_{1}-x_{2}\right\|_{X}^{2},

where L(X,Y)=supxX1LxY\lVert L\rVert_{\mathcal{L}(X,Y)}=\sup_{\|x\|_{X}\leq 1}\|Lx\|_{Y}. This means f(x)bLxY2f(x)-b\lVert Lx\rVert^{2}_{Y} is weakly convex with modulus a+bL(X,Y)2a+b\lVert L\rVert^{2}_{\mathcal{L}(X,Y)}. ∎

The following corollary follows from Theorem 4.3.

Corollary 4.6.

Let X,YX,Y be Hilbert spaces. Let f:X(,+],g:Y(,+]f:X\to\left(-\infty,+\infty\right],\ g:Y\to\left(-\infty,+\infty\right] and L:XYL:X\to Y be a continuous linear operator. Assume that a0,ba\geq 0,b\in\mathbb{R}, c=d=0c=d=0 in the definitions of the classes of elementary functions ΦQ,a\Phi_{Q,a} and ΨQ,b\Psi_{Q,b} ((23) and (24)), respectively, and dom gL(dom f)\text{dom }g\cap L\left(\text{dom }f\right)\neq\emptyset. The following are equivalent.

  1. (i)

    For every ε>0\varepsilon>0, there exist xεX,ψεε,ΨQ,bg(Lxε),ϕεε,ΦQ,a(f+bεLY2)(xε)x_{\varepsilon}\in X,\psi_{\varepsilon}\in\partial_{\varepsilon,\Psi_{Q,b}}g\left(Lx_{\varepsilon}\right),\phi_{\varepsilon}\in\partial_{\varepsilon,\Phi_{Q,a}}\left(f+b_{\varepsilon}\left\|L\cdot\right\|_{Y}^{2}\right)\left(x_{\varepsilon}\right) such that

    {ϕε(x)+ψε(Lx)bLxY2εxXϕε(xε)+ψε(Lxε)bLxεY2+ε,\displaystyle\begin{cases}\phi_{\varepsilon}\left(x\right)+\psi_{\varepsilon}\left(Lx\right)\geq b\left\|Lx\right\|_{Y}^{2}-\varepsilon&\forall x\in X\\ \phi_{\varepsilon}\left(x_{\varepsilon}\right)+\psi_{\varepsilon}\left(Lx_{\varepsilon}\right)\leq b\left\|Lx_{\varepsilon}\right\|_{Y}^{2}+\varepsilon,\end{cases}

    where ψε(y)=byY2+vε,yY\psi_{\varepsilon}(y)=b\|y\|^{2}_{Y}+\langle v_{\varepsilon},y\rangle_{Y}.

  2. (ii)

    (f+gL)ΦQ,a(0)=infψΨQ,b(f+bLY2)ΦQ,a(Lv,X)+gΨQ,b(ψ)<+\left(f+g\circ L\right)^{*}_{\Phi_{Q,a}}\left(0\right)={\displaystyle\inf_{\psi\in\Psi_{Q,b}}}\left(f+b\left\|L\cdot\right\|_{Y}^{2}\right)^{*}_{\Phi_{Q,a}}\left(-\langle L^{*}v,\cdot\rangle_{X}\right)+g^{*}_{\Psi_{Q,b}}\left(\psi\right)<+\infty, where ψ(y)=byY2+v,yY\psi(y)=b\|y\|^{2}_{Y}+\langle v,y\rangle_{Y}.

Proof.

Let ε>0\varepsilon>0. By (i), there exist xεX,ψεε,ΨQ,bg(Lxε),ϕεε,ΦQ,a(f+bεLY2)(xε)x_{\varepsilon}\in X,\psi_{\varepsilon}\in\partial_{\varepsilon,\Psi_{Q,b}}g\left(Lx_{\varepsilon}\right),\phi_{\varepsilon}\in\partial_{\varepsilon,\Phi_{Q,a}}\left(f+b_{\varepsilon}\left\|L\cdot\right\|_{Y}^{2}\right)\left(x_{\varepsilon}\right) such that for all xXx\in X,

ϕε(x)+ψε(Lx)=axX2+uε,xX+bLxY2+vε,LxYbLxY2ε,\displaystyle\phi_{\varepsilon}\left(x\right)+\psi_{\varepsilon}\left(Lx\right)=a\lVert x\rVert^{2}_{X}+\langle u_{\varepsilon},x\rangle_{X}+b\lVert Lx\rVert^{2}_{Y}+\langle v_{\varepsilon},Lx\rangle_{Y}\geq b\lVert Lx\rVert^{2}_{Y}-\varepsilon,

where uεX,vεYu_{\varepsilon}\in X,v_{\varepsilon}\in Y, i.e.,

axX2+uε+Lvε,xX+ε0,xX.a\lVert x\rVert^{2}_{X}+\langle u_{\varepsilon}+L^{*}v_{\varepsilon},x\rangle_{X}+\varepsilon\geq 0,\quad\forall x\in X. (37)

Hence, it must be uε=Lvεu_{\varepsilon}=-L^{*}v_{\varepsilon}. Thus, for ϕεε,ΦQ,a(f+bLY2)(xε)\phi_{\varepsilon}\in\partial_{\varepsilon,\Phi_{Q,a}}\left(f+b\left\|L\cdot\right\|_{Y}^{2}\right)\left(x_{\varepsilon}\right), we can write

f(xε)+bLxεY2+(f+bLY2)ΦQ,a(ϕε)\displaystyle f\left(x_{\varepsilon}\right)+b\left\|Lx_{\varepsilon}\right\|_{Y}^{2}+\left(f+b\left\|L\cdot\right\|_{Y}^{2}\right)^{*}_{\Phi_{Q,a}}\left(\phi_{\varepsilon}\right) ϕε(xε)+ε\displaystyle\leq\phi_{\varepsilon}\left(x_{\varepsilon}\right)+\varepsilon
(f+ψL)ΦQ,a(0)\displaystyle\left(f+\psi\circ L\right)^{*}_{\Phi_{Q,a}}\left(0\right) f(xε)ψ(Lxε)+3ε,\displaystyle\leq-f\left(x_{\varepsilon}\right)-\psi\left(Lx_{\varepsilon}\right)+3\varepsilon,

which is similar to the proof of Theorem 4.2, so the assertion follows from Theorem 4.2. ∎

Observe that the above corollary does not hold for ΦQ,a\Phi_{Q,a} with a<0a<0 due to formula (37).

We give simple examples illustrating Theorem 4.3.

Example 4.7.
  • Let f(x)=(x+1)2,g(x)=4x2,L=Idf\left(x\right)=\left(x+1\right)^{2},g\left(x\right)=4x^{2},L=Id and

    Φ\displaystyle\Phi ={ϕ(x)=ax2+bx,a0,b},\displaystyle=\left\{\phi\left(x\right)=-ax^{2}+bx,a\geq 0,b\in\mathbb{R}\right\},
    Ψ\displaystyle\Psi ={ψ(x)=cx,c},\displaystyle=\left\{\psi\left(x\right)=cx,c\in\mathbb{R}\right\},

    (c.f. Remark 1).

    The conjugates of ff and gg are given as

    fΦ(ϕ)\displaystyle f^{*}_{\Phi}\left(\phi\right) =(b2)24(a+1)1,a0,b\displaystyle=\frac{\left(b-2\right)^{2}}{4\left(a+1\right)}-1,\quad a\geq 0,b\in\mathbb{R}
    gΨ(ψ)\displaystyle g^{*}_{\Psi}\left(\psi\right) =c216,c.\displaystyle=\frac{c^{2}}{16},\quad c\in\mathbb{R}.

    The ε\varepsilon-subdifferentials of ff and gg at x0x_{0} are given as

    ε,Φf(x0)\displaystyle\partial_{\varepsilon,\Phi}f\left(x_{0}\right) ={ϕ(x)=ax2+bx:(a+1)(x0b22(a+1))2ε,a0,b},\displaystyle=\left\{\phi\left(x\right)=-ax^{2}+bx:\left(a+1\right)\left(x_{0}-\frac{b-2}{2\left(a+1\right)}\right)^{2}\leq\varepsilon,a\geq 0,b\in\mathbb{R}\right\},
    ε,Ψg(x0)\displaystyle\partial_{\varepsilon,\Psi}g\left(x_{0}\right) ={ψ(x)=cx:(2x0c4)2ε,c}.\displaystyle=\left\{\psi\left(x\right)=cx:\left(2x_{0}-\frac{c}{4}\right)^{2}\leq\varepsilon,c\in\mathbb{R}\right\}.

    To verify condition (i) of Theorem 4.3, we find xε,ψεε,Ψg(xε),ϕεε,Φf(xε)x_{\varepsilon}\in\mathbb{R},\psi_{\varepsilon}\in\partial_{\varepsilon,\Psi}g\left(x_{\varepsilon}\right),\phi_{\varepsilon}\in\partial_{\varepsilon,\Phi}f\left(x_{\varepsilon}\right) such that

    {ϕε(x)+ψε(x)εxϕε(xε)+ψε(xε)ε.\begin{cases}\phi_{\varepsilon}\left(x\right)+\psi_{\varepsilon}\left(x\right)\geq-\varepsilon&\forall x\in\mathbb{R}\\ \phi_{\varepsilon}\left(x_{\varepsilon}\right)+\psi_{\varepsilon}\left(x_{\varepsilon}\right)\leq\varepsilon\end{cases}.

    Now consider the first inequality

    ϕε(x)+ψε(x)=ax2+(b+c)xεx,\phi_{\varepsilon}\left(x\right)+\psi_{\varepsilon}\left(x\right)=-ax^{2}+\left(b+c\right)x\geq-\varepsilon\quad\forall x\in\mathbb{R},

    which gives a=0,b+c=0a=0,b+c=0, so the second inequality i.e. ϕε(xε)+ψε(xε)ε\phi_{\varepsilon}\left(x_{\varepsilon}\right)+\psi_{\varepsilon}\left(x_{\varepsilon}\right)\leq\varepsilon, holds for xεx_{\varepsilon}\in\mathbb{R}. Hence, Theorem 4.3-(i) holds.

    Moreover, as ψεε,Ψg(xε),ϕεε,Φf(xε)\psi_{\varepsilon}\in\partial_{\varepsilon,\Psi}g\left(x_{\varepsilon}\right),\phi_{\varepsilon}\in\partial_{\varepsilon,\Phi}f\left(x_{\varepsilon}\right), we have

    {(xεb22)2ε(2xε+b4)2ε.\begin{cases}\left(x_{\varepsilon}-\frac{b-2}{2}\right)^{2}\leq\varepsilon\\ \left(2x_{\varepsilon}+\frac{b}{4}\right)^{2}\leq\varepsilon\end{cases}.

    Let ε0\varepsilon\to 0, we obtain b=2x0+2,c=8x0b=2x_{0}+2,c=8x_{0}. Since b+c=0b+c=0, we get x0=15x_{0}=-\frac{1}{5}. With x0,a,b,cx_{0},a,b,c calculated above we get

    infxXf(x)+g(x)=f(x0)+g(x0)\displaystyle\inf_{x\in X}f(x)+g(x)=f\left(x_{0}\right)+g\left(x_{0}\right) =45,\displaystyle=\frac{4}{5},

    and

    supψΨ(f+ψ)Φ(0)gΨ(ψ)=fΦ(ϕε)gΨ(ψε)\displaystyle\sup_{\psi\in\Psi}-(f+\psi)^{*}_{\Phi}(0)-g^{*}_{\Psi}(\psi)=-f^{*}_{\Phi}\left(\phi_{\varepsilon}\right)-g^{*}_{\Psi}\left(\psi_{\varepsilon}\right) =80400=45.\displaystyle=\frac{80}{400}=\frac{4}{5}.

    Hence, we achieve zero duality gap.

  • Now we reverse the roles of Φ\Phi and Ψ\Psi i.e.

    Φ\displaystyle\Phi ={ϕ(x)=cx,c},\displaystyle=\left\{\phi\left(x\right)=cx,c\in\mathbb{R}\right\},
    Ψ\displaystyle\Psi ={ψ(x)=ax2+bx,a0,b}.\displaystyle=\left\{\psi\left(x\right)=-ax^{2}+bx,a\geq 0,b\in\mathbb{R}\right\}.

    Then the conjugates of ff and gg are

    fΦ(ϕ)\displaystyle f^{*}_{\Phi}\left(\phi\right) =(c2)241,\displaystyle=\frac{\left(c-2\right)^{2}}{4}-1,
    gΨ(ψ)\displaystyle g^{*}_{\Psi}\left(\psi\right) =b24(a+4).\displaystyle=\frac{b^{2}}{4\left(a+4\right)}.

    The ε\varepsilon-subdifferentials of ff and gg are

    ε,Φf(xε)\displaystyle\partial_{\varepsilon,\Phi}f\left(x_{\varepsilon}\right) ={ϕ(x)=cx:(xεc22)2ε,c},\displaystyle=\left\{\phi\left(x\right)=cx:\left(x_{\varepsilon}-\frac{c-2}{2}\right)^{2}\leq\varepsilon,c\in\mathbb{R}\right\},
    ε,Ψg(xε)\displaystyle\partial_{\varepsilon,\Psi}g\left(x_{\varepsilon}\right) ={ψ(x)=ax2+bx:(xεb2(a+4))2εa+4,a0,b}.\displaystyle=\left\{\psi\left(x\right)=-ax^{2}+bx:\left(x_{\varepsilon}-\frac{b}{2\left(a+4\right)}\right)^{2}\leq\frac{\varepsilon}{a+4},a\geq 0,b\in\mathbb{R}\right\}.

    We need to find xε,ϕεε,Φf(xε),ψεε,Ψg(xε)x_{\varepsilon}\in\mathbb{R},\phi_{\varepsilon}\in\partial_{\varepsilon,\Phi}f\left(x_{\varepsilon}\right),\psi_{\varepsilon}\in\partial_{\varepsilon,\Psi}g\left(x_{\varepsilon}\right) such that

    {ϕε(x)+ψε(x)εxϕε(xε)+ψε(xε)ε.\begin{cases}\phi_{\varepsilon}\left(x\right)+\psi_{\varepsilon}\left(x\right)\geq-\varepsilon&\forall x\in\mathbb{R}\\ \phi_{\varepsilon}\left(x_{\varepsilon}\right)+\psi_{\varepsilon}\left(x_{\varepsilon}\right)\leq\varepsilon\end{cases}.

    The first inequality, for all xx\in\mathbb{R},

    ϕε(x)+ψε(x)=ax2+(b+c)xε,\phi_{\varepsilon}\left(x\right)+\psi_{\varepsilon}\left(x\right)=-ax^{2}+\left(b+c\right)x\geq-\varepsilon,

    also implies a=0,b+c=0a=0,b+c=0, so the second inequality is automatically satisfied. Repeating the same steps as before, we achieve zero duality gap at value 4/54/5 which is the same in the previous case. However, this time condition (33) does not hold for any ψΨ\psi\in\Psi and 0, because there is no ϕΦ\phi\in\Phi such that

    ϕ(x)=ψ(x)=ax2bx,\phi(x)=-\psi\left(x\right)=ax^{2}-bx,

    unless a=0a=0.

In some cases, if Theorem 4.3-(i) is not satisfied, we need to check zero duality gap in a another way. Let us consider the following example.

Example 4.8.

Let X=Y=X=Y=\mathbb{R}, f(x,y)=3x2+2y2f\left(x,y\right)=3x^{2}+2y^{2}, g(x)=(x1)2,L(x,y)=xyg\left(x\right)=-\left(x-1\right)^{2},L\left(x,y\right)=x-y. The classes of elementary functions are defined as

Φ\displaystyle\Phi ={ϕ(x,y)=a(x2+y2)+b1x+b2y,a0,b1,b2}\displaystyle=\left\{\phi\left(x,y\right)=-a\left(x^{2}+y^{2}\right)+b_{1}x+b_{2}y,\ a\geq 0,b_{1},b_{2}\in\mathbb{R}\right\}
Ψ\displaystyle\Psi ={ψ(x)=cx2+dx,c0,d},\displaystyle=\left\{\psi\left(x\right)=-cx^{2}+dx,\ c\geq 0,d\in\mathbb{R}\right\},

(c.f. Remark 1).

We have

fΦ(ϕ)\displaystyle f^{*}_{\Phi}\left(\phi\right) =b124(a+3)+b224(a+2),\displaystyle=\frac{b_{1}^{2}}{4\left(a+3\right)}+\frac{b_{2}^{2}}{4\left(a+2\right)},
ε,Φf(xε,yε)\displaystyle\partial_{\varepsilon,\Phi}f\left(x_{\varepsilon},y_{\varepsilon}\right) ={ϕ(x,y)=a(x2+y2)+b1x+b2y,s.t. (a+3)(xεb12(a+3))2+(a+2)(yεb22(a+2))2ε,\displaystyle=\begin{cases}\phi\left(x,y\right)=-a\left(x^{2}+y^{2}\right)+b_{1}x+b_{2}y,\\ \text{s.t. }\left(a+3\right)\left(x_{\varepsilon}-\frac{b_{1}}{2\left(a+3\right)}\right)^{2}+\left(a+2\right)\left(y_{\varepsilon}-\frac{b_{2}}{2\left(a+2\right)}\right)^{2}\leq\varepsilon\end{cases},
gΨ(ψ)\displaystyle g^{*}_{\Psi}\left(\psi\right) ={+0c<1 or c=1,d21c=1,d=2(d2)24(c1)+1c>1,\displaystyle=\begin{cases}+\infty&0\leq c<1\text{ or }c=1,d\neq 2\\ 1&c=1,d=2\\ \frac{\left(d-2\right)^{2}}{4\left(c-1\right)}+1&c>1\end{cases},
ε,Ψg(xε)\displaystyle\partial_{\varepsilon,\Psi}g\left(x_{\varepsilon}\right) ={ψ(x)=cx2+dx(c1)(xεd22(c1))2ε,c>1ψ(x)=x2+2xc=1,d=2,xε.\displaystyle=\begin{cases}\psi\left(x\right)=-cx^{2}+dx&\left(c-1\right)\left(x_{\varepsilon}-\frac{d-2}{2\left(c-1\right)}\right)^{2}\leq\varepsilon,c>1\\ \psi\left(x\right)=-x^{2}+2x&c=1,d=2,\forall x_{\varepsilon}.\end{cases}

One option is to find, for ε>0\varepsilon>0, xε,yε,ϕεε,Φf(xε,yε),ψεε,Ψg(L(xε,yε))x_{\varepsilon},y_{\varepsilon}\in\mathbb{R},\phi_{\varepsilon}\in\partial_{\varepsilon,\Phi}f\left(x_{\varepsilon},y_{\varepsilon}\right),\psi_{\varepsilon}\in\partial_{\varepsilon,\Psi}g\left(L\left(x_{\varepsilon},y_{\varepsilon}\right)\right) such that

{ϕε(x,y)+ψε(L(x,y))εx,yϕε(xε,yε)+ψε(L(xε,yε))ε.\begin{cases}\phi_{\varepsilon}\left(x,y\right)+\psi_{\varepsilon}\left(L\left(x,y\right)\right)\geq-\varepsilon&\forall x,y\in\mathbb{R}\\ \phi_{\varepsilon}\left(x_{\varepsilon},y_{\varepsilon}\right)+\psi_{\varepsilon}\left(L\left(x_{\varepsilon},y_{\varepsilon}\right)\right)\leq\varepsilon.\end{cases} (38)

The first inequality is

ϕε(x,y)+ψε(L(x,y))\displaystyle\phi_{\varepsilon}\left(x,y\right)+\psi_{\varepsilon}\left(L\left(x,y\right)\right) ε\displaystyle\geq-\varepsilon
a(x2+y2)+b1x+b2yc(xy)2+d(xy)+ε\displaystyle-a\left(x^{2}+y^{2}\right)+b_{1}x+b_{2}y-c\left(x-y\right)^{2}+d\left(x-y\right)+\varepsilon 0\displaystyle\geq 0
(a+c)(x2+y2)+2cxy+(b1+d)x+(b2d)y+ε\displaystyle-\left(a+c\right)\left(x^{2}+y^{2}\right)+2cxy+\left(b_{1}+d\right)x+\left(b_{2}-d\right)y+\varepsilon 0,\displaystyle\geq 0,

which gives us a=c=0,b1+d=b2d=0a=c=0,b_{1}+d=b_{2}-d=0, so the second inequality of (38) holds for any x,yx,y\in\mathbb{R}. However, there are no element in ε,Ψg(L(xε,yε))\partial_{\varepsilon,\Psi}g\left(L\left(x_{\varepsilon},y_{\varepsilon}\right)\right) such that c=0c=0, and we cannot applied condition (i) of Corollary 4.3 to determine zero duality gap.

One option is that instead of solving (38), we take ψεε,Ψg(L(xε,yε))\psi_{\varepsilon}\in\partial_{\varepsilon,\Psi}g\left(L\left(x_{\varepsilon},y_{\varepsilon}\right)\right) and calculate ε,Φ(f+ψεL)(xε,yε)\partial_{\varepsilon,\Phi}\left(f+\psi_{\varepsilon}\circ L\right)\left(x_{\varepsilon},y_{\varepsilon}\right). We consider the simplest case where ψε(x)=x2+2x\psi_{\varepsilon}\left(x\right)=-x^{2}+2x and we calculate

(f+ψεL)Φ(ϕ)=(a+2)A2(a+1)B22AB+(b12)A+(b2+2)B,\left(f+\psi_{\varepsilon}\circ L\right)^{*}_{\Phi}\left(\phi\right)=-\left(a+2\right)A^{2}-\left(a+1\right)B^{2}-2AB+\left(b_{1}-2\right)A+\left(b_{2}+2\right)B,

where A=ab12a+b1b242(a2+3a+1),B=ab2+2ab1+2b2+62(a2+3a+1)A=\frac{ab_{1}-2a+b_{1}-b_{2}-4}{2\left(a^{2}+3a+1\right)},B=\frac{ab_{2}+2a-b_{1}+2b_{2}+6}{2\left(a^{2}+3a+1\right)}, for a0a\geq 0. We examine whether 0ε,Φ(f+ψεL)(xε,yε)0\in\partial_{\varepsilon,\Phi}\left(f+\psi_{\varepsilon}\circ L\right)\left(x_{\varepsilon},y_{\varepsilon}\right) by checking the inequality

(f+ψεL)Φ(0)+(f+ψεL)(xε,yε)ε.\left(f+\psi_{\varepsilon}\circ L\right)^{*}_{\Phi}\left(0\right)+\left(f+\psi_{\varepsilon}\circ L\right)\left(x_{\varepsilon},y_{\varepsilon}\right)\leq\varepsilon.

Substituting ϕ=0\phi=0 or a=b1=b2=0a=b_{1}=b_{2}=0, we have

2xε2+yε2+2xεyε+2(xεyε)+5ε.2x_{\varepsilon}^{2}+y_{\varepsilon}^{2}+2x_{\varepsilon}y_{\varepsilon}+2\left(x_{\varepsilon}-y_{\varepsilon}\right)+5\leq\varepsilon.

This inequality has solution xε,yεx_{\varepsilon},y_{\varepsilon} as the left hand side is a parabola with minimum value ε-\varepsilon. Thus, condition (i) of Theorem 4.2 is satisfied, and we have zero duality gap for the conjugate duality.

Theorem 4.2 is more general than Theorem 4.3 but it requires more calculations than the latter. Sometimes, it is more convenient to calculate ε\varepsilon-subdifferential of ff and gg than ε\varepsilon-subdifferential of (f+ψεL)(f+\psi_{\varepsilon}\circ L) where ψεε,Ψg(Lxε)\psi_{\varepsilon}\in\partial_{\varepsilon,\Psi}g(Lx_{\varepsilon}).

5 Strong Duality for Conjugate Dual

In this section, we investigate strong duality for the conjugate dual (DCP), i.e., we provide conditions for zero duality gap and the existence of solution to the dual problem (DCP); the respective conditions are expressed in terms of additivity of epigraphs of the conjugate functions.

Definition 5.1.

The epigraph of a function f:X(,+]f:X\to(-\infty,+\infty] is a subset of X×X\times\mathbb{R} defined as

epi f:={(x,r)X×:f(x)r}.\text{epi }f:=\left\{(x,r)\in X\times\mathbb{R}:f(x)\leq r\right\}. (39)

We have

epi fΦ:={(ϕ,r)Φ×:fΦ(ϕ)r}.\text{epi }f^{*}_{\Phi}:=\left\{(\phi,r)\in\Phi\times\mathbb{R}:f^{*}_{\Phi}(\phi)\leq r\right\}. (40)

In consequence, if (ϕ,r)epi fΦ(\phi,r)\in\text{epi }f^{*}_{\Phi}, then ϕdom fΦ\phi\in\text{dom }f^{*}_{\Phi}. To investigate strong duality, together with (33), we need the following condition: for a given ϕΦ\phi\in\Phi and ψΨ\psi\in\Psi

ϕ+ψLΦ.\phi+\psi\circ L\in\Phi. (41)
Remark 5.

Note that (41) is satisfied when ψLlin Φ\psi\circ L\in\text{lin }\Phi where lin Φ\text{lin }\Phi is the linear space generated by Φ\Phi.

Theorem 5.2.

Let XX be a nonempty set and YY be a vector space. Let f:X(,+]f:X\to\left(-\infty,+\infty\right] and g:Y(,+]g:Y\to\left(-\infty,+\infty\right] be proper functions. Let Φ\Phi and Ψ\Psi be sets of elementary functions defined on XX and YY, respectively. Let L:XYL:X\to Y be a mapping from XX to YY. Assume that dom gL(dom f)\text{dom }g\cap L\left(\text{dom }f\right)\neq\emptyset and consider the following conditions.

  1. (i)

    Every (ϕ,cϕ)epi (f+gL)Φ(\phi,c_{\phi})\in\text{epi }(f+g\circ L)^{*}_{\Phi}, can be expressed as (ϕ,cϕ)=(φ+ψL,cφ+cψ)(\phi,c_{\phi})=(\varphi+\psi\circ L,c_{\varphi}+c_{\psi}), where (φ,cφ)epi fΦ(\varphi,c_{\varphi})\in\text{epi }f^{*}_{\Phi} and (ψ,cψ)epi gΨ(\psi,c_{\psi})\in\text{epi }g^{*}_{\Psi}.

  2. (ii)

    For any ϕΦ\phi\in\Phi, it holds (f+gL)Φ(ϕ)=infψΨ(f+ψL)Φ(ϕ)+gΨ(ψ)\left(f+g\circ L\right)^{*}_{\Phi}\left(\phi\right)=\inf_{\psi\in\Psi}\left(f+\psi\circ L\right)^{*}_{\Phi}\left(\phi\right)+g^{*}_{\Psi}\left(\psi\right) and the infimum is attained.

We have (i) \Rightarrow (ii). Moreover, for any ϕΦ\phi\in\Phi, if ψ¯Ψ\bar{\psi}\in\Psi is a solution to the problem

infψΨ(f+ψL)Φ(ϕ)+gΨ(ψ),\inf_{\psi\in\Psi}\left(f+\psi\circ L\right)^{*}_{\Phi}\left(\phi\right)+g^{*}_{\Psi}\left(\psi\right), (42)

and conditions (41), (33) hold for ψ¯\bar{\psi} and ϕ\phi, then (ii) \Rightarrow (i).

Proof.

(i) \Rightarrow (ii): If ϕdom (f+gL)Φ\phi\notin\text{dom }(f+g\circ L)^{*}_{\Phi}, then (f+gL)Φ(ϕ)=+(f+g\circ L)^{*}_{\Phi}(\phi)=+\infty and (ii) holds. Consider the case ϕdom (f+gL)Φ\phi\in\text{dom }(f+g\circ L)^{*}_{\Phi}. By Theorem 4.1, for every ϕΦ\phi\in\Phi, we have

(f+gL)Φ(ϕ)infψΨ(f+ψL)Φ(ϕ)+gΨ(ψ).\left(f+g\circ L\right)^{*}_{\Phi}\left(\phi\right)\leq\inf_{\psi\in\Psi}\left(f+\psi\circ L\right)^{*}_{\Phi}\left(\phi\right)+g^{*}_{\Psi}\left(\psi\right). (43)

We start by proving the opposite inequality. Since (ϕ,(f+gL)Φ(ϕ))epi (f+gL)Φ\left(\phi,\left(f+g\circ L\right)^{*}_{\Phi}\left(\phi\right)\right)\in\text{epi }\left(f+g\circ L\right)^{*}_{\Phi}, by (i), there exist (φ,cf)epi fΦ\left(\varphi,c_{f}\right)\in\text{epi }f^{*}_{\Phi} and (ψ0,cg)epi gΨ\left(\psi_{0},c_{g}\right)\in\text{epi }g^{*}_{\Psi} such that

ϕ(x)\displaystyle\phi\left(x\right) =φ(x)+ψ0(Lx),xX\displaystyle=\varphi\left(x\right)+\psi_{0}\left(Lx\right),\quad\forall x\in X
(f+gL)Φ(ϕ)\displaystyle\left(f+g\circ L\right)^{*}_{\Phi}\left(\phi\right) =cf+cg.\displaystyle=c_{f}+c_{g}.

Thus

(f+gL)Φ(ϕ)\displaystyle\left(f+g\circ L\right)^{*}_{\Phi}\left(\phi\right) =cf+cg\displaystyle=c_{f}+c_{g}
fΦ(φ)+gΨ(ψ0)\displaystyle\geq f^{*}_{\Phi}\left(\varphi\right)+g^{*}_{\Psi}\left(\psi_{0}\right)
=supxX{φ(x)f(x)}+gΨ(ψ0)\displaystyle=\sup_{x\in X}\left\{\varphi\left(x\right)-f\left(x\right)\right\}+g^{*}_{\Psi}\left(\psi_{0}\right)
=supxX{ϕ(x)ψ0(Lx)f(x)}+gΨ(ψ0)\displaystyle=\sup_{x\in X}\left\{\phi\left(x\right)-\psi_{0}\left(Lx\right)-f\left(x\right)\right\}+g^{*}_{\Psi}\left(\psi_{0}\right)
=(f+ψ0L)Φ(ϕ)+gΨ(ψ0)\displaystyle=\left(f+\psi_{0}\circ L\right)^{*}_{\Phi}\left(\phi\right)+g^{*}_{\Psi}\left(\psi_{0}\right)
infψΨ(f+ψL)Φ(ϕ)+gΨ(ψ),\displaystyle\geq\inf_{\psi\in\Psi}\left(f+\psi\circ L\right)^{*}_{\Phi}\left(\phi\right)+g^{*}_{\Psi}\left(\psi\right),

and we have (ii). The infimum is attained from the above inequality, as

+>cf+cg=(f+gL)Φ(ϕ)\displaystyle+\infty>c_{f}+c_{g}=\left(f+g\circ L\right)^{*}_{\Phi}\left(\phi\right) (f+ψ0L)Φ(ϕ)+gΨ(ψ0)\displaystyle\geq\left(f+\psi_{0}\circ L\right)^{*}_{\Phi}\left(\phi\right)+g^{*}_{\Psi}\left(\psi_{0}\right)
infψΨ(f+ψL)Φ(ϕ)+gΨ(ψ)\displaystyle\geq\inf_{\psi\in\Psi}\left(f+\psi\circ L\right)^{*}_{\Phi}\left(\phi\right)+g^{*}_{\Psi}\left(\psi\right)
(f+gL)Φ(ϕ),\displaystyle\geq\left(f+g\circ L\right)^{*}_{\Phi}\left(\phi\right),

so ψ0Ψ\psi_{0}\in\Psi solves problem (42).

(ii) \Rightarrow (i): From (ii), let (ϕ,cf)epi fΦ(\phi,c_{f})\in\text{epi }f^{*}_{\Phi} and ψ¯\bar{\psi} be a solution to the problem (42) for ϕΦ\phi\in\Phi. As (f+ψ¯L)Φ(ϕ)+gΨ(ψ¯)<+\left(f+\bar{\psi}\circ L\right)^{*}_{\Phi}(\phi)+g^{*}_{\Psi}(\bar{\psi})<+\infty, we can find cgc_{g}\in\mathbb{R} such that (ψ¯,cg)epi gΨ(\bar{\psi},c_{g})\in\text{epi }g^{*}_{\Psi}. Moreover, from (41), ϕ+ψ¯L:=φΦ\phi+\bar{\psi}\circ L:=\varphi\in\Phi, we have

cf+cg\displaystyle c_{f}+c_{g} fΦ(ϕ)+gΨ(ψ¯)\displaystyle\geq f^{*}_{\Phi}\left(\phi\right)+g^{*}_{\Psi}\left(\bar{\psi}\right)
=supxX{φ(x)ψ¯(Lx)f(x)}+gΨ(ψ¯)\displaystyle=\sup_{x\in X}\left\{\varphi\left(x\right)-\bar{\psi}(Lx)-f\left(x\right)\right\}+g^{*}_{\Psi}\left(\bar{\psi}\right)
=(f+ψ¯L)Φ(φ)+gΨ(ψ¯)\displaystyle=(f+\bar{\psi}\circ L)^{*}_{\Phi}(\varphi)+g^{*}_{\Psi}(\bar{\psi})
(f+gL)Φ(φ).\displaystyle\geq\left(f+g\circ L\right)^{*}_{\Phi}(\varphi).

This means (φ,cf+cg)epi (f+gL)Φ\left(\varphi,c_{f}+c_{g}\right)\in\text{epi }(f+g\circ L)^{*}_{\Phi}.

On the other hand, let (ϕ,r)epi (f+gL)Φ\left(\phi,r\right)\in\text{epi }\left(f+g\circ L\right)^{*}_{\Phi}. We want to prove that there exist (φ,cf)epi fΦ(\varphi,c_{f})\in\text{epi }f^{*}_{\Phi} and (ψ,cg)epi gΨ(\psi,c_{g})\in\text{epi }g^{*}_{\Psi} such that

(ϕ,r)=(φ+ψL,cf+cg).(\phi,r)=(\varphi+\psi\circ L,c_{f}+c_{g}).

From (ii), for ϕΦ\phi\in\Phi, there exists ψ¯Ψ\bar{\psi}\in\Psi such that ψ¯\bar{\psi} is the solution to the problem (42) i.e.

(f+gL)Φ(ϕ)=(f+ψ¯L)Φ(ϕ)+gΨ(ψ¯).\left(f+g\circ L\right)^{*}_{\Phi}\left(\phi\right)=\left(f+\bar{\psi}\circ L\right)^{*}_{\Phi}\left(\phi\right)+g^{*}_{\Psi}\left(\bar{\psi}\right).

Therefore, we have

r\displaystyle r (f+gL)Φ(ϕ)\displaystyle\geq\left(f+g\circ L\right)^{*}_{\Phi}\left(\phi\right)
r\displaystyle r (f+ψ¯L)Φ(ϕ)+gΨ(ψ¯)\displaystyle\geq\left(f+\bar{\psi}\circ L\right)^{*}_{\Phi}\left(\phi\right)+g^{*}_{\Psi}\left(\bar{\psi}\right)
rgΨ(ψ¯)\displaystyle r-g^{*}_{\Psi}\left(\bar{\psi}\right) supxX{ϕ(x)ψ¯(Lx)f(x)}.\displaystyle\geq\sup_{x\in X}\left\{\phi\left(x\right)-\bar{\psi}\left(Lx\right)-f\left(x\right)\right\}.

Condition (33) gives us φ:=ϕψ¯LΦ\varphi:=\phi-\bar{\psi}\circ L\in\Phi. Then

rgΨ(ψ¯)\displaystyle r-g^{*}_{\Psi}\left(\bar{\psi}\right) supxX{φ(x)f(x)}=fΦ(φ).\displaystyle\geq\sup_{x\in X}\left\{\varphi\left(x\right)-f\left(x\right)\right\}=f^{*}_{\Phi}\left(\varphi\right).

Therefore, (φ,rgΨ(ψ¯))epi fΦ\left(\varphi,r-g^{*}_{\Psi}\left(\bar{\psi}\right)\right)\in\text{epi }f^{*}_{\Phi} and (ψ¯,gΨ(ψ¯))epi gΨ\left(\bar{\psi},g^{*}_{\Psi}\left(\bar{\psi}\right)\right)\in\text{epi }g^{*}_{\Psi}, which means we can decompose (ϕ,r)\left(\phi,r\right) into (φ,rgΨ(ψ¯))\left(\varphi,r-g^{*}_{\Psi}\left(\bar{\psi}\right)\right) and (ψ¯,gΨ(ψ¯))\left(\bar{\psi},g^{*}_{\Psi}\left(\bar{\psi}\right)\right). Hence, the proof is finished. ∎

Remark 6.
  • Observe that condition (ii) of Theorem 5.2 implies the strong duality relationship between (CP) and (DCP), i.e. zero duality gap holds

    val(CP)=(f+gL)Φ(0)=infψΨ(f+ψL)Φ(0)+gΨ(ψ)=val(DCP),-val(CP)=\left(f+g\circ L\right)^{*}_{\Phi}\left(0\right)=\inf_{\psi\in\Psi}\left(f+\psi\circ L\right)^{*}_{\Phi}\left(0\right)+g^{*}_{\Psi}\left(\psi\right)=-val(DCP),

    and the dual problem (DCP) is solvable.

  • The assumption (i) in Theorem 5.2 does not coincide with the following

    epi (f+gL)Φ=epi fΦ+epi (gL)Φ,\text{epi }(f+g\circ L)_{\Phi}^{*}=\text{epi }f_{\Phi}^{*}+\text{epi }(g\circ L)_{\Phi}^{*},

    (see also [16, Theorem 3.1]), because we consider the set B:={(ψL,r):(ψ,r)epi gΨ}B:=\left\{(\psi\circ L,r):(\psi,r)\in\text{epi }g_{\Psi}^{*}\right\} instead of epi (gL)Φ\text{epi }(g\circ L)_{\Phi}^{*}, where (ψ,r)epi gΨ(\psi,r)\in\text{epi }g_{\Psi}^{*}. Then the assumption (i) of Theorem 5.2 is

    epi (f+gL)Φ=epi fΦ+B,\text{epi }(f+g\circ L)_{\Phi}^{*}=\text{epi }f_{\Phi}^{*}+B,

    whenever ϕ+ψLΦ\phi+\psi\circ L\in\Phi holds true for any ψdom gΨ,ϕdom fΦ\psi\in\text{dom }g^{*}_{\Psi},\phi\in\text{dom }f^{*}_{\Phi}. Examples of classes of elementary functions, where condition ϕ+ψLΦ\phi+\psi\circ L\in\Phi is satisfied, can be found in Example 3.2-3.

Corollary 5.3.

Let XX be a nonempty set and YY be a vector space. Let f:X(,+],g:Y(,+]f:X\to\left(-\infty,+\infty\right],\ g:Y\to\left(-\infty,+\infty\right] and L:XYL:X\to Y be a mapping from XX to YY. Let Φ,Ψ\Phi,\Psi be sets of elementary functions on XX and YY, respectively. Assume that dom gL(dom f)\text{dom }g\cap L\left(\text{dom }f\right)\neq\emptyset. Let

  1. (i)

    epi (f+gL)Φ=epi fΦ+epi (gL)Φ\text{epi }\left(f+g\circ L\right)^{*}_{\Phi}=\text{epi }f^{*}_{\Phi}+\text{epi }\left(g\circ L\right)^{*}_{\Phi},

  2. (ii)

    For ϕΦ\phi\in\Phi, infψΨ(f+ψL)Φ(ϕ)+gΨ(ψ)=(f+gL)Φ(ϕ)\inf_{\psi\in\Psi}\left(f+\psi\circ L\right)^{*}_{\Phi}\left(\phi\right)+g^{*}_{\Psi}\left(\psi\right)=\left(f+g\circ L\right)^{*}_{\Phi}\left(\phi\right) and the infimum is attained.

Consider the following conditions.

  1. a.

    For any pair (ϕ,r)epi (gL)Φ(\phi,r)\in\text{epi }(g\circ L)^{*}_{\Phi}, there exists ψΨ\psi\in\Psi such that ϕψL\phi\leq\psi\circ L and gΨ(ψ)rg^{*}_{\Psi}(\psi)\leq r

  2. b.

    There exists ψΨ\psi\in\Psi such that gΨ(ψ)0g^{*}_{\Psi}(\psi)\leq 0 and gLψLg\circ L\leq\psi\circ L.

  3. c.

    For any pair (ϕ,r)epi (f+gL)Φ(\phi,r)\in\text{epi }\left(f+g\circ L\right)^{*}_{\Phi} and a given ψΨ\psi\in\Psi, there exist ϕ1,ϕ2Φ\phi_{1},\phi_{2}\in\Phi such that ϕψLϕ1\phi-\psi\circ L\geq\phi_{1} and ψLϕ2\psi\circ L\geq\phi_{2}

  4. d.

    ΦΦΦ\Phi-\Phi\subset\Phi, for any ε1,ε2>0\varepsilon_{1},\varepsilon_{2}>0 and a given ψΨ\psi\in\Psi, there exist xε2X,ϕε2ε2,Φ(gL)(xε2)x_{\varepsilon_{2}}\in X,\phi_{\varepsilon_{2}}\in\partial_{\varepsilon_{2},\Phi}\left(g\circ L\right)\left(x_{\varepsilon_{2}}\right) such that

    ψ(Lxε2)ϕε2(xε2)+ε1>supxXψ(Lx)ϕε2(x).\psi\left(Lx_{\varepsilon_{2}}\right)-\phi_{\varepsilon_{2}}\left(x_{\varepsilon_{2}}\right)+\varepsilon_{1}>\sup_{x\in X}\psi\left(Lx\right)-\phi_{\varepsilon_{2}}\left(x\right).

If (a)\left(a\right) or (b)\left(b\right) hold, then (i) \Rightarrow (ii). If (c)\left(c\right) or (d)\left(d\right) hold for ψ¯Ψ\bar{\psi}\in\Psi at which the infimum in (ii) is attained, then (ii) \Rightarrow (i).

Proof.

(i)\Rightarrow (ii): For any ϕΦ,(ϕ,(f+gL)Φ(ϕ))epi (f+gL)Φ\phi\in\Phi,\left(\phi,\left(f+g\circ L\right)^{*}_{\Phi}\left(\phi\right)\right)\in\text{epi }\left(f+g\circ L\right)^{*}_{\Phi}. There exist two pairs (ϕ1,c1)epi fΦ\left(\phi_{1},c_{1}\right)\in\text{epi }f^{*}_{\Phi} and (ϕ2,c2)epi (gL)Φ\left(\phi_{2},c_{2}\right)\in\text{epi }\left(g\circ L\right)^{*}_{\Phi} such that ϕ=ϕ1+ϕ2\phi=\phi_{1}+\phi_{2} and c1+c2=(f+gL)Φ(ϕ)c_{1}+c_{2}=\left(f+g\circ L\right)^{*}_{\Phi}\left(\phi\right). Thanks to Theorem 4.1, for any ϕΦ\phi\in\Phi, we have

infψΨ(f+ψL)Φ(ϕ)+gΨ(ψ)(f+gL)Φ(ϕ),\inf_{\psi\in\Psi}\left(f+\psi\circ L\right)^{*}_{\Phi}\left(\phi\right)+g^{*}_{\Psi}\left(\psi\right)\geq\left(f+g\circ L\right)^{*}_{\Phi}\left(\phi\right),

so we need to prove the reverse inequality. Consider

infψΨ(f+ψL)Φ(ϕ)+gΨ(ψ)(f+ψL)Φ(ϕ)+gΨ(ψ)\inf_{\psi\in\Psi}\left(f+\psi\circ L\right)^{*}_{\Phi}\left(\phi\right)+g^{*}_{\Psi}\left(\psi\right)\leq\left(f+\psi\circ L\right)^{*}_{\Phi}\left(\phi\right)+g^{*}_{\Psi}\left(\psi\right) (44)

Assume (a)\left(a\right). We can find ψ0Ψ\psi_{0}\in\Psi such that ϕ2ψ0L\phi_{2}\leq\psi_{0}\circ L and gΨ(ψ0)c2g^{*}_{\Psi}(\psi_{0})\leq c_{2}. Note that

ϕ1=ϕϕ2ϕψ0L.\phi_{1}=\phi-\phi_{2}\geq\phi-\psi_{0}\circ L.

Hence,

infψΨ(f+ψL)Φ(ϕ)+gΨ(ψ)\displaystyle\inf_{\psi\in\Psi}\left(f+\psi\circ L\right)^{*}_{\Phi}\left(\phi\right)+g^{*}_{\Psi}\left(\psi\right) (f+ψ0L)Φ(ϕ)+gΨ(ψ0)\displaystyle\leq\left(f+\psi_{0}\circ L\right)^{*}_{\Phi}\left(\phi\right)+g^{*}_{\Psi}\left(\psi_{0}\right)
supxX{ϕ(x)f(x)ψ0(Lx)}+c2\displaystyle\leq\sup_{x\in X}\left\{\phi\left(x\right)-f\left(x\right)-\psi_{0}\left(Lx\right)\right\}+c_{2}
supxX{ϕ1(x)f(x)}+c2\displaystyle\leq\sup_{x\in X}\left\{\phi_{1}\left(x\right)-f\left(x\right)\right\}+c_{2}
=fΦ(ϕ1)+c2\displaystyle=f^{*}_{\Phi}\left(\phi_{1}\right)+c_{2}
c1+c2=(f+gL)Φ(ϕ).\displaystyle\leq c_{1}+c_{2}=\left(f+g\circ L\right)^{*}_{\Phi}\left(\phi\right). (45)

Inequality (45) gives us

(f+gL)Φ(ϕ)(f+ψ0L)Φ(ϕ)+gΨ(ψ0)(f+gL)Φ(ϕ)<+,(f+g\circ L)^{*}_{\Phi}(\phi)\leq\left(f+\psi_{0}\circ L\right)^{*}_{\Phi}\left(\phi\right)+g^{*}_{\Psi}\left(\psi_{0}\right)\leq(f+g\circ L)^{*}_{\Phi}(\phi)<+\infty,

and the infimum in (ii) is attained at ψ0\psi_{0}.

Now let (b)\left(b\right) hold. There exists ψ0Ψ\psi_{0}\in\Psi such that gLψ0Lg\circ L\leq\psi_{0}\circ L and gΨ(ψ0)0g^{*}_{\Psi}(\psi_{0})\leq 0. We have

infψΨ(f+ψL)Φ(ϕ)+gΨ(ψ)\displaystyle\inf_{\psi\in\Psi}\left(f+\psi\circ L\right)^{*}_{\Phi}\left(\phi\right)+g^{*}_{\Psi}\left(\psi\right) (f+ψ0L)Φ(ϕ)+gΨ(ψ0)\displaystyle\leq\left(f+\psi_{0}\circ L\right)^{*}_{\Phi}\left(\phi\right)+g^{*}_{\Psi}\left(\psi_{0}\right)
supxX{ϕ1(x)f(x)}+supxX{ϕ2(x)ψ0(Lx)}\displaystyle\leq\sup_{x\in X}\left\{\phi_{1}\left(x\right)-f\left(x\right)\right\}+\sup_{x\in X}\left\{\phi_{2}(x)-\psi_{0}\left(Lx\right)\right\}
fΦ(ϕ1)+supxX{ϕ2(x)g(Lx)}\displaystyle\leq f^{*}_{\Phi}(\phi_{1})+\sup_{x\in X}\left\{\phi_{2}(x)-g\left(Lx\right)\right\}
fΦ(ϕ1)+(gL)Φ(ϕ2)\displaystyle\leq f^{*}_{\Phi}\left(\phi_{1}\right)+(g\circ L)^{*}_{\Phi}(\phi_{2})
c1+c2=(f+gL)Φ(ϕ),\displaystyle\leq c_{1}+c_{2}=\left(f+g\circ L\right)^{*}_{\Phi}\left(\phi\right), (46)

where we have used ϕ=ϕ1+ϕ2\phi=\phi_{1}+\phi_{2} in the second inequality. The attainment of the infimum of (ii) at ψ0Ψ\psi_{0}\in\Psi follows in the same way as in the proof with condition (a).

(ii)\Rightarrow(i): Let (ϕ1,c1)epi fΦ,(ϕ2,c2)epi (gL)Φ\left(\phi_{1},c_{1}\right)\in\text{epi }f^{*}_{\Phi},\left(\phi_{2},c_{2}\right)\in\text{epi }\left(g\circ L\right)^{*}_{\Phi} we have

c1+c2fΦ(ϕ1)+(gL)Φ(ϕ2)(f+gL)Φ(ϕ1+ϕ2),c_{1}+c_{2}\geq f^{*}_{\Phi}\left(\phi_{1}\right)+\left(g\circ L\right)^{*}_{\Phi}\left(\phi_{2}\right)\geq\left(f+g\circ L\right)^{*}_{\Phi}\left(\phi_{1}+\phi_{2}\right),

so (ϕ1+ϕ2,c1+c2)epi (f+gL)Φ\left(\phi_{1}+\phi_{2},c_{1}+c_{2}\right)\in\text{epi }\left(f+g\circ L\right)^{*}_{\Phi}, which means

epi (f+gL)Φepi fΦ+epi (gL)Φ.\text{epi }\left(f+g\circ L\right)^{*}_{\Phi}\supset\text{epi }f^{*}_{\Phi}+\text{epi }\left(g\circ L\right)^{*}_{\Phi}.

We want to prove the reverse inclusion. Take (ϕ,r)epi (f+gL)Φ\left(\phi,r\right)\in\text{epi }\left(f+g\circ L\right)^{*}_{\Phi}. From (ii), there exists ψ¯Ψ\bar{\psi}\in\Psi which is a solution to the problem,

infψΨ(f+ψL)Φ(ϕ)+gΨ(ψ)\displaystyle\inf_{\psi\in\Psi}\left(f+\psi\circ L\right)^{*}_{\Phi}\left(\phi\right)+g^{*}_{\Psi}\left(\psi\right) =(f+ψ¯L)Φ(ϕ)+gΨ(ψ¯)\displaystyle=\left(f+\bar{\psi}\circ L\right)^{*}_{\Phi}\left(\phi\right)+g^{*}_{\Psi}\left(\bar{\psi}\right)
=(f+gL)Φ(ϕ)r.\displaystyle=\left(f+g\circ L\right)^{*}_{\Phi}\left(\phi\right)\leq r. (47)

We assume (c)\left(c\right) holds. There exist ϕ1,ϕ2Φ\phi_{1},\phi_{2}\in\Phi such that ϕϕ1+ψ¯L\phi\geq\phi_{1}+\bar{\psi}\circ L, ψ¯Lϕ2\bar{\psi}\circ L\geq\phi_{2}, so that (gL)Φ(ϕ2)gΨ(ψ¯)(g\circ L)^{*}_{\Phi}(\phi_{2})\leq g^{*}_{\Psi}(\bar{\psi}) and

(f+ψ¯L)Φ(ϕ)=supxxϕ(x)ψ¯(Lx)f(x)supxxϕ1(x)f(x)=fΦ(ϕ1).\left(f+\bar{\psi}\circ L\right)^{*}_{\Phi}\left(\phi\right)=\sup_{x\in x}\phi\left(x\right)-\bar{\psi}\left(Lx\right)-f\left(x\right)\geq\sup_{x\in x}\phi_{1}\left(x\right)-f\left(x\right)=f^{*}_{\Phi}(\phi_{1}). (48)

Combining this with (47) and (48), we obtain

fΦ(ϕ1)+(gL)Φ(ϕ2)(f+ψ¯L)Φ(ϕ)+gΨ(ψ¯)r.f^{*}_{\Phi}\left(\phi_{1}\right)+(g\circ L)^{*}_{\Phi}\left(\phi_{2}\right)\leq\left(f+\bar{\psi}\circ L\right)^{*}_{\Phi}\left(\phi\right)+g^{*}_{\Psi}\left(\bar{\psi}\right)\leq r.

By taking (ϕ2,(gL)Φ(ϕ2))epi (gL)Φ\left(\phi_{2},\left(g\circ L\right)^{*}_{\Phi}\left(\phi_{2}\right)\right)\in\text{epi }\left(g\circ L\right)^{*}_{\Phi}, we can make (ϕ1,r(gL)Φ(ϕ2))epi fΦ\left(\phi_{1},r-\left(g\circ L\right)^{*}_{\Phi}\left(\phi_{2}\right)\right)\in\text{epi }f^{*}_{\Phi}. This means

(ϕ2,(gL)Φ(ϕ2))+(ϕ1,r(gL)Φ(ϕ2))=(ϕ,r).\left(\phi_{2},\left(g\circ L\right)^{*}_{\Phi}\left(\phi_{2}\right)\right)+\left(\phi_{1},r-\left(g\circ L\right)^{*}_{\Phi}\left(\phi_{2}\right)\right)=\left(\phi,r\right).

Thus, we have

epi (f+gL)Φepi fΦ+epi (gL)Φ.\text{epi }\left(f+g\circ L\right)^{*}_{\Phi}\subset\text{epi }f^{*}_{\Phi}+\text{epi }\left(g\circ L\right)^{*}_{\Phi}. (49)

Now, let (d)\left(d\right) hold. Let ψ¯Ψ\bar{\psi}\in\Psi be a solution to the infimum problem in (ii). For every ε1,ε2>0\varepsilon_{1},\varepsilon_{2}>0, there exist xε2Xx_{\varepsilon_{2}}\in X, ϕε2ε2,Φ(gL)(xε2)\phi_{\varepsilon_{2}}\in\partial_{\varepsilon_{2},\Phi}\left(g\circ L\right)\left(x_{\varepsilon_{2}}\right) such that

supxX{ψ¯(Lx)ϕε2(x)}>ψ¯(Lxε2)+ϕε2(xε2)ε1.-\sup_{x\in X}\left\{\bar{\psi}\left(Lx\right)-\phi_{\varepsilon_{2}}\left(x\right)\right\}>-\bar{\psi}\left(Lx_{\varepsilon_{2}}\right)+\phi_{\varepsilon_{2}}\left(x_{\varepsilon_{2}}\right)-\varepsilon_{1}.

We have

(f+ψ¯L)Φ(ϕ)\displaystyle\left(f+\bar{\psi}\circ L\right)^{*}_{\Phi}\left(\phi\right) =supxX{ϕ(x)f(x)ψ¯(Lx)}\displaystyle=\sup_{x\in X}\left\{\phi\left(x\right)-f\left(x\right)-\bar{\psi}\left(Lx\right)\right\}
supxX{ϕ(x)ϕε2(x)f(x)}supxX{ψ¯(Lx)ϕε2(x)}\displaystyle\geq\sup_{x\in X}\left\{\phi\left(x\right)-\phi_{\varepsilon_{2}}\left(x\right)-f\left(x\right)\right\}-\sup_{x\in X}\left\{\bar{\psi}\left(Lx\right)-\phi_{\varepsilon_{2}}\left(x\right)\right\} (50)

As ϕϕε2:=φε2Φ\phi-\phi_{\varepsilon_{2}}:=\varphi_{\varepsilon_{2}}\in\Phi, we can write supxX{ϕ(x)ϕε2(x)f(x)}=fΦ(φε2)\sup_{x\in X}\left\{\phi\left(x\right)-\phi_{\varepsilon_{2}}\left(x\right)-f\left(x\right)\right\}=f^{*}_{\Phi}\left(\varphi_{\varepsilon_{2}}\right). Since gΨ(ψ¯)ψ¯(y)g(y)g^{*}_{\Psi}\left(\bar{\psi}\right)\geq\bar{\psi}\left(y\right)-g\left(y\right) for any yYy\in Y, we can set y=Lxε2y=Lx_{\varepsilon_{2}}. Combining this with (50) gives us

(f+ψ¯L)Φ(ϕ)+gΨ(ψ¯)\displaystyle\left(f+\bar{\psi}\circ L\right)^{*}_{\Phi}\left(\phi\right)+g^{*}_{\Psi}\left(\bar{\psi}\right) >fΦ(φε2)ψ¯(Lxε2)+ϕε2(xε2)ε1+ψ¯(Lxε2)g(Lxε2)\displaystyle>f^{*}_{\Phi}\left(\varphi_{\varepsilon_{2}}\right)-\bar{\psi}\left(Lx_{\varepsilon_{2}}\right)+\phi_{\varepsilon_{2}}\left(x_{\varepsilon_{2}}\right)-\varepsilon_{1}+\bar{\psi}\left(Lx_{\varepsilon_{2}}\right)-g\left(Lx_{\varepsilon_{2}}\right)
>fΦ(φε2)+ϕε2(xε2)g(Lxε2)ε1\displaystyle>f^{*}_{\Phi}\left(\varphi_{\varepsilon_{2}}\right)+\phi_{\varepsilon_{2}}\left(x_{\varepsilon_{2}}\right)-g\left(Lx_{\varepsilon_{2}}\right)-\varepsilon_{1}
>fΦ(φε2)+(gL)Φ(ϕε2)ε1ε2,\displaystyle>f^{*}_{\Phi}\left(\varphi_{\varepsilon_{2}}\right)+(g\circ L)^{*}_{\Phi}(\phi_{\varepsilon_{2}})-\varepsilon_{1}-\varepsilon_{2},

as ϕε2ε2,Φg(Lxε2)\phi_{\varepsilon_{2}}\in\partial_{\varepsilon_{2},\Phi}g\left(Lx_{\varepsilon_{2}}\right). From (47), we have

r\displaystyle r >(f+ψ¯L)Φ(ϕ)+gΨ(ψ¯)\displaystyle>\left(f+\bar{\psi}\circ L\right)^{*}_{\Phi}\left(\phi\right)+g^{*}_{\Psi}\left(\bar{\psi}\right)
>fΦ(φε2)+(gL)Φ(ϕε2)ε2ε1.\displaystyle>f^{*}_{\Phi}\left(\varphi_{\varepsilon_{2}}\right)+\left(g\circ L\right)^{*}_{\Phi}\left(\phi_{\varepsilon_{2}}\right)-\varepsilon_{2}-\varepsilon_{1}.

We obtain (φε2,r+ε1+ε2(gL)Φ(ϕε2))epi fΦ\left(\varphi_{\varepsilon_{2}},r+\varepsilon_{1}+\varepsilon_{2}-\left(g\circ L\right)^{*}_{\Phi}\left(\phi_{\varepsilon_{2}}\right)\right)\in\text{epi }f^{*}_{\Phi} and (ϕε2,(gL)Φ(ϕε2))epi (gL)Φ\left(\phi_{\varepsilon_{2}},\left(g\circ L\right)^{*}_{\Phi}(\phi_{\varepsilon_{2}})\right)\in\text{epi }\left(g\circ L\right)^{*}_{\Phi}. This means epi (f+gL)Φepi fΦ+epi (gL)Φ\text{epi }\left(f+g\circ L\right)^{*}_{\Phi}\subset\text{epi }f^{*}_{\Phi}+\text{epi }\left(g\circ L\right)^{*}_{\Phi}, so we have (49). ∎

Remark 7.
  • In Theorem 5.2 and Corollary 5.3, to obtain condition (ii), the assumptions mostly rely on gg and the set of elementary functions Ψ\Psi. Thus, with appropriate choices of Ψ\Psi, we can guarantee the attainment of the infimum in (ii). The motivation comes from the fact that in the construction of the conjugate dual, we perturb gg but not ff.

  • If 0Φ0\in\Phi, then the condition ΦΦΦ\Phi-\Phi\subset\Phi implies symmetry of the set Φ\Phi. Because we can take 0ϕΦ0-\phi\in\Phi for any ϕΦ\phi\in\Phi.

  • It is true that epi f=supp f\text{epi }f^{*}=\text{supp }f. To see this, let us take (ϕ,r)epi f(\phi,r)\in\text{epi }f^{*}, then ϕ(x)rf(x)\phi(x)-r\leq f(x) for all xXx\in X. As Φ\Phi is closed under addition of constant, we have ϕrΦ\phi-r\in\Phi and ϕrsupp f\phi-r\in\text{supp }f. Conversely, if ϕsupp f\phi\in\text{supp }f then (ϕ,0)epi f(\phi,0)\in\text{epi }f^{*} (see [16]).

  • Corollary 5.3-(i) is closed to the additivity of the support of the conjugate in [16, Theorem 5.1]

    suppΦ(f+gL)=supp Φf+supp Φ(gL),\text{supp}_{\Phi}(f+g\circ L)=\text{supp }_{\Phi}f+\text{supp }_{\Phi}(g\circ L),

    while in general, [16, Proposition 2.2], we have

    suppΦ(f+gL)=coΦ(supp Φf+supp Φ(gL)),\text{supp}_{\Phi}(f+g\circ L)=\text{co}_{\Phi}\left(\text{supp }_{\Phi}f+\text{supp }_{\Phi}(g\circ L)\right),

    where coΦA\text{co}_{\Phi}A is the Φ\Phi-convex hull of AΦA\subset\Phi i.e.

    coΦA=supp ΦfA,where fA(x)=supϕAϕ(x),xX.\text{co}_{\Phi}A=\text{supp }_{\Phi}f_{A},\quad\text{where }f_{A}(x)=\sup_{\phi\in A}\phi(x),\quad\forall x\in X.
  • In the classical convex analysis, when XX and YY are separated locally convex spaces. For lower semicontinuous proper convex functions f,gf,g and a continuous linear mapping LL, [31, Theorem 14.1], condition ensuring strong duality are expressed with the help of regularity condition (RC)5Φ(RC)_{5}^{\Phi} as defined in [31, Chapter 4, Section 14] while in Theorem 5.2 and Corollary 5.3, we are using assumptions related to the additivity of epigraph of the conjugate. We refer the reader to Section 16 in [31] for the discussion of relationship between different regularity conditions ensuring strong duality.

We give an example of a convex problem satisfying the assumption (i) of Theorem 5.2.

Example 5.4.

Let f(x,y)=x2+y2,g(x)=2x2,L(x,y)=x+yf\left(x,y\right)=x^{2}+y^{2},g\left(x\right)=2x^{2},L\left(x,y\right)=x+y and

Φ\displaystyle\Phi ={ϕ(x,y)=a(x2+y2)+b1x+b2y,a0,b1,b2},\displaystyle=\left\{\phi\left(x,y\right)=-a\left(x^{2}+y^{2}\right)+b_{1}x+b_{2}y,a\geq 0,b_{1},b_{2}\in\mathbb{R}\right\},
Ψ\displaystyle\Psi ={ψ(x)=cx,c}.\displaystyle=\left\{\psi\left(x\right)=cx,c\in\mathbb{R}\right\}.

Condition (41), ϕ+ψLΦ\phi+\psi\circ L\in\Phi, always holds for all ϕΦ,ψΨ\phi\in\Phi,\psi\in\Psi (see Example 3.2-3). Let us denote

ϕ(x,y)\displaystyle\phi(x,y) =a(x2+y2)+b1x+b2y,a0\displaystyle=-a(x^{2}+y^{2})+b_{1}x+b_{2}y,a\geq 0
φ(x,y)\displaystyle\varphi(x,y) =a1(x2+y2)+b11x+b12y,a10\displaystyle=-a_{1}(x^{2}+y^{2})+b_{11}x+b_{12}y,a_{1}\geq 0
ψ(x)\displaystyle\psi(x) =cx.\displaystyle=cx.

We want to calculate

(ϕ,c1)epi (f+gL)Φ\displaystyle\left(\phi,c_{1}\right)\in\text{epi }\left(f+g\circ L\right)_{\Phi}^{*} a0,4b1b2(3+a)(b12+b22)4(4(3+a)2)c1\displaystyle\Leftrightarrow a\geq 0,\frac{4b_{1}b_{2}-\left(3+a\right)\left(b_{1}^{2}+b_{2}^{2}\right)}{4\left(4-\left(3+a\right)^{2}\right)}\leq c_{1}
(φ,c2)epi fΦ\displaystyle\left(\varphi,c_{2}\right)\in\text{epi }f_{\Phi}^{*} a10,b112+b1224(a1+1)c2\displaystyle\Leftrightarrow a_{1}\geq 0,\frac{b_{11}^{2}+b_{12}^{2}}{4\left(a_{1}+1\right)}\leq c_{2}
(ψ,c3)epi gΨ\displaystyle\left(\psi,c_{3}\right)\in\text{epi }g_{\Psi}^{*} ψΨ,c28c3\displaystyle\Leftrightarrow\psi\in\Psi,\frac{c^{2}}{8}\leq c_{3}

Let us take (ϕ,c1)epi (f+gL)Φ\left(\phi,c_{1}\right)\in\text{epi }\left(f+g\circ L\right)_{\Phi}^{*} then we want decompose ϕ=φ+ψL\phi=\varphi+\psi\circ L and c1=c2+c3c_{1}=c_{2}+c_{3} where (φ,c2)epi fΦ\left(\varphi,c_{2}\right)\in\text{epi }f_{\Phi}^{*} and (ψ,c3)epi gΨ\left(\psi,c_{3}\right)\in\text{epi }g_{\Psi}^{*}. We have the following system

{a=a1c+b11=b1c+b12=b2\begin{cases}a=a_{1}\\ c+b_{11}=b_{1}\\ c+b_{12}=b_{2}\end{cases}

We can choose c=c3=0,a=a1=0,b1=b2c=c_{3}=0,a=a_{1}=0,b_{1}=b_{2} so b1=b11=b2=b12b_{1}=b_{11}=b_{2}=b_{12} and c1=c2c_{1}=c_{2}. Taking b1=1=c1b_{1}=1=c_{1} and assumption (i) of Theorem 5.2 is satisfied. Thus, we have strong duality for conjugate duality. Note that if Φ\Phi is composed of affine functions only, we arrive at the same conclusion.

6 Lagrange Dual

6.1 Construction of Lagrangian Primal-Dual Problems

Of equal importance is a problem to restate the results from [24], which connects the Conjugate Duality with Lagrange Duality. In the case we have an operator L:XYL:X\to Y in the formulation of problem (CP). For other construction of Lagrangian dual proposed recently, see e.g. [34] and the references therein.

In this Section, we give new results for zero duality gap for Lagrange dual of composite problems. To construct Lagrangian dual, we introduce the Lagrangian function :X×Ψ(,+]\mathcal{L}:X\times\Psi\to(-\infty,+\infty] as follow

(x,ψ)=f(x)+ψ(Lx)gΨ(ψ),\mathcal{L}(x,\psi)=f(x)+\psi(Lx)-g^{*}_{\Psi}(\psi), (51)

where Ψ\Psi is a set of elementary functions defined on YY. In the case Ψ\Psi is a convex set then (x,ψ)\mathcal{L}(x,\psi) is concave with respect to ψΨ\psi\in\Psi. The Lagrangian dual is

val(LD)=supψΨinfxX(x,ψ)=supψΨinfxXf(x)+ψ(Lx)gΨ(ψ),val(LD)=\sup_{\psi\in\Psi}\inf_{x\in X}\mathcal{L}(x,\psi)=\sup_{\psi\in\Psi}\inf_{x\in X}f(x)+\psi(Lx)-g^{*}_{\Psi}(\psi), (LD)

and the corresponding Lagrangian primal

val(LP):=infxXsupψΨ(x,ψ)=infxXsupψΨf(x)+ψ(Lx)gΨ(ψ),val(LP):=\inf_{x\in X}\sup_{\psi\in\Psi}\mathcal{L}(x,\psi)=\inf_{x\in X}\sup_{\psi\in\Psi}f(x)+\psi(Lx)-g^{*}_{\Psi}(\psi), (LP)

Let us state the weak duality for Lagrangian duality.

Theorem 6.1.

Let f:X(,+],g:Y(,+]f:X\to(-\infty,+\infty],\ g:Y\to(-\infty,+\infty] and L:XYL:X\to Y be a mapping. Let Φ,Ψ\Phi,\Psi be sets of elementary functions defined on XX and YY, respectively. It holds

supψΨinfxX(x,ψ)infxXsupψΨ(x,ψ)\sup_{\psi\in\Psi}\inf_{x\in X}\mathcal{L}(x,\psi)\leq\inf_{x\in X}\sup_{\psi\in\Psi}\mathcal{L}(x,\psi)

This result holds true for any functions not necessarily of the form (51). First we notice that Lagrangian primal (LP) is not equivalent to the composite problem (CP) as

infxXsupψΨf(x)+ψ(Lx)gΨ(ψ)\displaystyle\inf_{x\in X}\sup_{\psi\in\Psi}f(x)+\psi(Lx)-g^{*}_{\Psi}(\psi) =infxXf(x)+supψΨψ(Lx)gΨ(ψ)\displaystyle=\inf_{x\in X}f(x)+\sup_{\psi\in\Psi}\psi(Lx)-g^{*}_{\Psi}(\psi)
=infxXf(x)+gΨ(Lx)\displaystyle=\inf_{x\in X}f(x)+g^{**}_{\Psi}(Lx)
infxXf(x)+g(Lx).\displaystyle\leq\inf_{x\in X}f(x)+g(Lx).

Even though the Lagrange dual and conjugate dual are the same, the primal problems are different. Since our main focus is (CP), we discuss the assumptions which make these two primal problems equivalent. Clearly, we can assume

infxXf(x)+gΨ(Lx)=infxXf(x)+g(Lx).\inf_{x\in X}f(x)+g^{**}_{\Psi}(Lx)=\inf_{x\in X}f(x)+g(Lx). (52)

Usually, in the classical convex approach, gg is lsc and convex iff gΨ=gg^{**}_{\Psi}=g so condition (52) holds. Conversely, we have the following.

Proposition 6.2.

Let f:X(,+],g:Y(,+]f:X\to(-\infty,+\infty],\ g:Y\to(-\infty,+\infty] where XX is a nonempty set and YY is a vector space. Let L:XYL:X\to Y be a mapping. Let Φ,Ψ\Phi,\Psi be the sets of elementary functions defined on XX and YY, respectively. Assume (52) holds, if there exists an x0Xx_{0}\in X such that

infxXf(x)+g(Lx)f(x0)+g(Lx0),\inf_{x\in X}f(x)+g(Lx)\geq f(x_{0})+g(Lx_{0}),

then gg is Ψ\Psi-convex at Lx0Lx_{0}.

Proof.

We have

infxXf(x)+g(Lx)f(x0)+g(Lx0).\inf_{x\in X}f\left(x\right)+g\left(Lx\right)\geq f\left(x_{0}\right)+g\left(Lx_{0}\right).

From (52) we have

f(x0)+g(Lx0)infxXf(x)+gΨ(Lx)f(x0)+gΨ(Lx0),f\left(x_{0}\right)+g\left(Lx_{0}\right)\leq\inf_{x\in X}f\left(x\right)+g^{**}_{\Psi}\left(Lx\right)\leq f\left(x_{0}\right)+g^{**}_{\Psi}\left(Lx_{0}\right),

which implies g(Lx0)gΨ(Lx0)g\left(Lx_{0}\right)\leq g^{**}_{\Psi}\left(Lx_{0}\right). From the definition of biconjugate function, gΨgg^{**}_{\Psi}\leq g, so we have g(Lx0)=gΨ(Lx0)g\left(Lx_{0}\right)=g^{**}_{\Psi}\left(Lx_{0}\right). Thus, gg is Ψ\Psi-convex at Lx0Lx_{0}. ∎

6.2 Lagrange Zero Duality Gap

In the present subsection, we discuss zero duality gap for Lagrange duality. We follow the result of [24] and exploit the intersection property to prove zero duality gap. In our context, Theorem 6.1 in [24] takes the following form.

Theorem 6.3.

(Theorem 6.1 [24]) Let X=YX=Y be a vector space, Φ\Phi be a convex set of elementary functions defined on XX. Let (x,ψ)\mathcal{L}(x,\psi) be Lagrangian given by (51) with L=IdL=Id. Then the following are equivalent.

  1. (i)

    For every α<infxXsupψΦ(x,ψ)\alpha<\inf_{x\in X}\sup_{\psi\in\Phi}\mathcal{L}\left(x,\psi\right), there exists ψ1,ψ2Φ\psi_{1},\psi_{2}\in\Phi and ϕ1supp (,ψ1),ϕ2supp (,ψ2)\phi_{1}\in\text{supp }\mathcal{L}\left(\cdot,\psi_{1}\right),\phi_{2}\in\text{supp }\mathcal{L}\left(\cdot,\psi_{2}\right) such that ϕ1,ϕ2\phi_{1},\phi_{2} have the intersection property at level α\alpha; i.e., for all t[0,1]t\in\left[0,1\right]

    [tϕ1+(1t)ϕ2<α][ϕ1<α]= or [tϕ1+(1t)ϕ2<α][ϕ2<α]=,\left[t\phi_{1}+\left(1-t\right)\phi_{2}<\alpha\right]\cap\left[\phi_{1}<\alpha\right]=\emptyset\text{ or }\left[t\phi_{1}+\left(1-t\right)\phi_{2}<\alpha\right]\cap\left[\phi_{2}<\alpha\right]=\emptyset,

    where [ϕ1<α]:={xX:ϕ1(x)<α}\left[\phi_{1}<\alpha\right]:=\left\{x\in X:\phi_{1}\left(x\right)<\alpha\right\}.

  2. (ii)

    val(LP)=val(DCP)val(LP)=val(DCP) i.e. infxXsupψΦ(x,ψ)=supψΦinfxX(x,ψ).\inf_{x\in X}\sup_{\psi\in\Phi}\mathcal{L}\left(x,\psi\right)=\sup_{\psi\in\Phi}\inf_{x\in X}\mathcal{L}\left(x,\psi\right).

The proof can be found in [19].

Remark 8.

In the case where for every α<infxXsupψΨ(x,ψ)\alpha<\inf_{x\in X}\sup_{\psi\in\Psi}\mathcal{L}(x,\psi), we have ψ1=ψ2\psi_{1}=\psi_{2}, i.e. ϕ1,ϕ2\phi_{1},\phi_{2} belong to the same support set supp (,ψ1)\text{supp }\mathcal{L}\left(\cdot,\psi_{1}\right) for some ψ1Ψ\psi_{1}\in\Psi, the assumption of concavity of the Lagrangian can be removed. (cf. [18]).

For convenience, we state a result from [24].

Lemma 6.4.

(Lemma 6.2 [24]) Let XX be a set, α\alpha\in\mathbb{R} and let ϕ1,ϕ2:X\phi_{1},\phi_{2}:X\to\mathbb{R}. Two functions ϕ1,ϕ2\phi_{1},\phi_{2} have the intersection property at level α\alpha if and only if there exists t0[0,1]t_{0}\in\left[0,1\right] such that t0ϕ1(x)+(1t0)ϕ2(x)αt_{0}\phi_{1}\left(x\right)+\left(1-t_{0}\right)\phi_{2}\left(x\right)\geq\alpha for all xXx\in X.

Observe that in Theorem 6.3, the class of elementary functions Φ\Phi is arbitrary. Below, we relate the intersection property to the lower semi-continuity of the optimal value function, VV, in the case where elementary functions satisfy additional conditions. For other results along this line, see e.g. [35, 36].

Let us define the optimal value function V:Y[,+)V:Y\to[-\infty,+\infty) as follow

V(y):=infxXβ(x,y)V(y):=\inf_{x\in X}\beta(x,y) (53)

where the function β\beta is defined at the beginning of Section 3. Similar to (52), we also define the following condition for any yYy\in Y

infxXf(x)+gΨ(Lx+y)=infxXf(x)+g(Lx+y).\inf_{x\in X}f(x)+g^{**}_{\Psi}(Lx+y)=\inf_{x\in X}f(x)+g(Lx+y). (54)

A function V:Y[,+)V:Y\to[-\infty,+\infty) is lower semi-continuous at a point y0Yy_{0}\in Y, if for every ε>0\varepsilon>0, there exists a neighborhood W(y0)W(y_{0}) such that

V(y)>V(y0)ε,yW(y0).V(y)>V(y_{0})-\varepsilon,\quad\forall y\in W(y_{0}). (55)

The following theorem below connects Theorem 4.2, the intersection property and the lower semi-continuity of the objective function at y0=0y_{0}=0.

Theorem 6.5.

Let f:X(,+],g:Y(,+]f:X\to\left(-\infty,+\infty\right],\ g:Y\to\left(-\infty,+\infty\right]. Let L:XYL:X\to Y be a mapping from XX to YY with dom gL(dom f)\text{dom }g\cap L\left(\text{dom }f\right)\neq\emptyset. Let Φ,Ψ\Phi,\Psi be sets of elementary functions defined on XX and YY, respectively. Let (x,ψ)\mathcal{L}(x,\psi) be the Lagrangian defined in (51). Assume Ψ\Psi is convex, 0Φ0\in\Phi and infxXf(x)+g(Lx)<+\inf_{x\in X}f(x)+g(Lx)<+\infty. Consider the following.

  1. (i)

    For every ε>0\varepsilon>0, there exist xεXx_{\varepsilon}\in X and ψεε,Ψg(Lxε)\psi_{\varepsilon}\in\partial_{\varepsilon,\Psi}g\left(Lx_{\varepsilon}\right) such that 0ε,Φ(f+ψεL)(xε)0\in\partial_{\varepsilon,\Phi}\left(f+\psi_{\varepsilon}\circ L\right)\left(x_{\varepsilon}\right).

  2. (ii)

    For every α<infxXsupψΨ(x,ψ)\alpha<\inf_{x\in X}\sup_{\psi\in\Psi}\mathcal{L}\left(x,\psi\right), there exists ϕ1,ϕ2Φ\phi_{1},\phi_{2}\in\Phi, ψ1,ψ2Ψ\psi_{1},\psi_{2}\in\Psi, ϕ1supp(,ψ1),ϕ2supp(,ψ2)\phi_{1}\in\text{supp}\mathcal{L}\left(,\psi_{1}\right),\phi_{2}\in\text{supp}\mathcal{L}\left(,\psi_{2}\right) such that the intersection property holds for ϕ1,ϕ2\phi_{1},\phi_{2} at level α\alpha.

  3. (iii)

    The function VV is lower semi-continuous at 0.

We have (i)\Rightarrow(ii). If condition (52) holds, then (ii)\Leftrightarrow(i). Moreover, if (52) holds and Ψ\Psi is composed of lower semi-continuous functions, then (ii)\Rightarrow(iii). (iii)\Rightarrow(ii) when Ψ\Psi is a collection of continuous functions and (54) holds.

Proof.

(i) \Rightarrow (ii): For every α\alpha\in\mathbb{R}, let α<infxXsupψΨ(x,ψ)\alpha<\inf_{x\in X}\sup_{\psi\in\Psi}\mathcal{L}\left(x,\psi\right). For every ε>0\varepsilon>0, we can find xεXx_{\varepsilon}\in X and ψεε,Ψg(Lxε)\psi_{\varepsilon}\in\partial_{\varepsilon,\Psi}g\left(Lx_{\varepsilon}\right) such that 0ε,Φ(f+ψεL)(xε)0\in\partial_{\varepsilon,\Phi}\left(f+\psi_{\varepsilon}\circ L\right)\left(x_{\varepsilon}\right),

(zX)f(z)+ψε(Lz)f(xε)+ψε(Lxε)ε.\left(\forall z\in X\right)\quad f\left(z\right)+\psi_{\varepsilon}\left(Lz\right)\geq f\left(x_{\varepsilon}\right)+\psi_{\varepsilon}\left(Lx_{\varepsilon}\right)-\varepsilon. (56)

We also have ψεε,Ψg(Lxε)\psi_{\varepsilon}\in\partial_{\varepsilon,\Psi}g\left(Lx_{\varepsilon}\right) so g(Lxε)+gΨ(ψε)ψε(Lxε)+εg(Lx_{\varepsilon})+g^{*}_{\Psi}(\psi_{\varepsilon})\leq\psi_{\varepsilon}(Lx_{\varepsilon})+\varepsilon. Putting this into (56),

f(z)+ψε(Lz)\displaystyle f\left(z\right)+\psi_{\varepsilon}\left(Lz\right) f(xε)+ψε(Lxε)ε\displaystyle\geq f\left(x_{\varepsilon}\right)+\psi_{\varepsilon}\left(Lx_{\varepsilon}\right)-\varepsilon
f(xε)+g(Lxε)+gΨ(ψε)2ε,\displaystyle\geq f\left(x_{\varepsilon}\right)+g\left(Lx_{\varepsilon}\right)+g^{*}_{\Psi}\left(\psi_{\varepsilon}\right)-2\varepsilon,

so

(z,ψε)=f(z)+ψε(Lz)gΨ(ψε)f(xε)+g(Lxε)2ε.\mathcal{L}\left(z,\psi_{\varepsilon}\right)=f\left(z\right)+\psi_{\varepsilon}\left(Lz\right)-g^{*}_{\Psi}\left(\psi_{\varepsilon}\right)\geq f\left(x_{\varepsilon}\right)+g\left(Lx_{\varepsilon}\right)-2\varepsilon. (57)

As ε>0\varepsilon>0 is arbitrary, we choose ε=(f(xε)+g(Lxε)α)/2>0\varepsilon=(f(x_{\varepsilon})+g(Lx_{\varepsilon})-\alpha)/2>0 so that (z,ψε)>α\mathcal{L}(z,\psi_{\varepsilon})>\alpha. Pick ϕ1Φ\phi_{1}\in\Phi and ψ1Ψ\psi_{1}\in\Psi such that ϕ1supp (,ψ1)\phi_{1}\in\text{supp }\mathcal{L}\left(\cdot,\psi_{1}\right). By choosing ϕ2=αΦ\phi_{2}=\alpha\in\Phi, we have ϕ2supp (,ψε)\phi_{2}\in\text{supp }\mathcal{L}\left(\cdot,\psi_{\varepsilon}\right). From Lemma 6.4 with t=1t=1 we have

(z,tψε+(1t)ψ1)=(z,ψε)>tα+(1t)ϕ1(x)=α,\mathcal{L}\left(z,t\psi_{\varepsilon}+\left(1-t\right)\psi_{1}\right)=\mathcal{L}\left(z,\psi_{\varepsilon}\right)>t\alpha+\left(1-t\right)\phi_{1}\left(x\right)=\alpha,

so the intersection property holds for ϕ1,ϕ2\phi_{1},\phi_{2} at level α\alpha. As α\alpha is arbitrary, we have (ii).

(ii) \Rightarrow (i): As (52) holds, we have val(CP)=val(LP)val(CP)=val(LP). From the primal problem (CP), for every ε>0\varepsilon>0, there exists an xεXx_{\varepsilon}\in X such that

infxXf(x)+g(Lx)>f(xε)+g(Lxε)ε.\inf_{x\in X}f\left(x\right)+g\left(Lx\right)>f\left(x_{\varepsilon}\right)+g\left(Lx_{\varepsilon}\right)-\varepsilon.

Denoting α:=val(CP)ε\alpha:=val(\text{CP})-\varepsilon, we have α<val(CP)\alpha<val\left(\text{CP}\right). There exist ϕ1,ϕ2Φ\phi_{1},\phi_{2}\in\Phi and ψ1,ψ2Ψ\psi_{1},\psi_{2}\in\Psi such that ϕ1supp (,ψ1),ϕ2supp (,ψ2)\phi_{1}\in\text{supp }\mathcal{L}(\cdot,\psi_{1}),\phi_{2}\in\text{supp }\mathcal{L}(\cdot,\psi_{2}) and the intersection property holds at level α\alpha. Lemma 6.4 gives us a t0[0,1]t_{0}\in\left[0,1\right] such that

t0ϕ1(x)+(1t0)ϕ2(x)αxX.t_{0}\phi_{1}\left(x\right)+\left(1-t_{0}\right)\phi_{2}\left(x\right)\geq\alpha\quad\forall x\in X. (58)

Because ϕ1supp(,ψ1),ϕ2supp(,ψ2)\phi_{1}\in\text{supp}\mathcal{L}\left(\cdot,\psi_{1}\right),\phi_{2}\in\text{supp}\mathcal{L}\left(\cdot,\psi_{2}\right), we have

(x,ψ1)ϕ1(x) and (x,ψ2)ϕ2(x)xX.\mathcal{L}\left(x,\psi_{1}\right)\geq\phi_{1}\left(x\right)\text{ and }\mathcal{L}\left(x,\psi_{2}\right)\geq\phi_{2}\left(x\right)\quad\forall x\in X.

As Ψ\Psi is a convex set, t0ψ1+(1t0)ψ2Ψt_{0}\psi_{1}+\left(1-t_{0}\right)\psi_{2}\in\Psi. Moreover, (x,ψ)\mathcal{L}\left(x,\psi\right) is concave in the second variable, i.e. for all t[0,1]t\in\left[0,1\right] and ψ1,ψ2Ψ\psi_{1},\psi_{2}\in\Psi

(x,tψ1+(1t)ψ2)\displaystyle\mathcal{L}\left(x,t\psi_{1}+\left(1-t\right)\psi_{2}\right) =f(x)+tψ1(Lx)+(1t)ψ2(Lx)gΨ(tψ1+(1t)ψ2)\displaystyle=f\left(x\right)+t\psi_{1}\left(Lx\right)+\left(1-t\right)\psi_{2}\left(Lx\right)-g^{*}_{\Psi}\left(t\psi_{1}+\left(1-t\right)\psi_{2}\right)
t[f(x)+ψ1(Lx)gΨ(ψ1)]+(1t)[f(x)+ψ2(Lx)gΨ(ψ2)]\displaystyle\geq t\left[f\left(x\right)+\psi_{1}\left(Lx\right)-g^{*}_{\Psi}\left(\psi_{1}\right)\right]+\left(1-t\right)\left[f\left(x\right)+\psi_{2}\left(Lx\right)-g^{*}_{\Psi}\left(\psi_{2}\right)\right]
=t(x,ψ1)+(1t)(x,ψ2),\displaystyle=t\mathcal{L}\left(x,\psi_{1}\right)+\left(1-t\right)\mathcal{L}\left(x,\psi_{2}\right), (59)

where the inequality holds due to the concavity of gΨ-g^{*}_{\Psi}. Combining inequality (59) with (58), we get

(x,t0ψ1+(1t0)ψ2)\displaystyle\mathcal{L}\left(x,t_{0}\psi_{1}+\left(1-t_{0}\right)\psi_{2}\right) t0(x,ψ1)+(1t0)(x,ψ1)\displaystyle\geq t_{0}\mathcal{L}\left(x,\psi_{1}\right)+\left(1-t_{0}\right)\mathcal{L}\left(x,\psi_{1}\right)
t0ϕ1(x)+(1t0)ϕ2(x)α\displaystyle\geq t_{0}\phi_{1}\left(x\right)+\left(1-t_{0}\right)\phi_{2}\left(x\right)\geq\alpha
=val(CP)ε\displaystyle=val(\text{CP})-\varepsilon
=infxXf(x)+g(Lx)ε\displaystyle=\inf_{x\in X}f\left(x\right)+g\left(Lx\right)-\varepsilon
>f(xε)+g(Lxε)2ε.\displaystyle>f\left(x_{\varepsilon}\right)+g\left(Lx_{\varepsilon}\right)-2\varepsilon.

We obtain

(x,t0ψ1+(1t0)ψ2)>f(xε)+g(Lxε)2εxX\mathcal{L}\left(x,t_{0}\psi_{1}+\left(1-t_{0}\right)\psi_{2}\right)>f\left(x_{\varepsilon}\right)+g\left(Lx_{\varepsilon}\right)-2\varepsilon\quad\forall x\in X

By denoting ψ¯=t0ψ1+(1t0)ψ2\bar{\psi}=t_{0}\psi_{1}+\left(1-t_{0}\right)\psi_{2}, we get

(x,ψ¯)=f(x)+ψ¯(Lx)gΨ(ψ¯)>f(xε)+g(Lxε)2ε.\mathcal{L}\left(x,\bar{\psi}\right)=f\left(x\right)+\bar{\psi}\left(Lx\right)-g^{*}_{\Psi}\left(\bar{\psi}\right)>f\left(x_{\varepsilon}\right)+g\left(Lx_{\varepsilon}\right)-2\varepsilon. (60)

Rearranging both sides, we obtain

f(x)f(xε)>ψ¯(Lx)+g(Lxε)+gΨ(ψ¯)2ε.f\left(x\right)-f\left(x_{\varepsilon}\right)>-\bar{\psi}\left(Lx\right)+g\left(Lx_{\varepsilon}\right)+g^{*}_{\Psi}\left(\bar{\psi}\right)-2\varepsilon.

We have g(Lx)+gΨ(ψ)ψ(Lx)g(Lx)+g^{*}_{\Psi}(\psi)\geq\psi(Lx) for all xXx\in X and ψΨ\psi\in\Psi. From the previous inequality,

f(x)f(xε)>ψ¯(Lx)+ψ¯(Lxε)2ε.f\left(x\right)-f\left(x_{\varepsilon}\right)>-\bar{\psi}\left(Lx\right)+\bar{\psi}\left(Lx_{\varepsilon}\right)-2\varepsilon.

Because, in general, ψ¯L-\bar{\psi}\circ L does not belong to Φ\Phi, we cannot claim that ψ¯L2ε,Φf(xε)-\bar{\psi}\circ L\in\partial_{2\varepsilon,\Phi}f\left(x_{\varepsilon}\right), but we have

f(x)+ψ¯(Lx)f(xε)ψ¯(Lxε)>2ε,f\left(x\right)+\bar{\psi}\left(Lx\right)-f\left(x_{\varepsilon}\right)-\bar{\psi}\left(Lx_{\varepsilon}\right)>-2\varepsilon,

which means 02ε,Φ(f+ψ¯L)(xε)0\in\partial_{2\varepsilon,\Phi}\left(f+\bar{\psi}\circ L\right)\left(x_{\varepsilon}\right). On the other hand, from (60), for any xXx\in X, we have

f(x)+ψ¯(Lx)gΨ(ψ¯)>f(xε)+g(Lxε)2ε.f\left(x\right)+\bar{\psi}\left(Lx\right)-g^{*}_{\Psi}\left(\bar{\psi}\right)>f\left(x_{\varepsilon}\right)+g\left(Lx_{\varepsilon}\right)-2\varepsilon.

By choosing x=xεx=x_{\varepsilon}, we can write

ψ¯(Lxε)gΨ(ψ¯)>g(Lxε)2ε,\bar{\psi}\left(Lx_{\varepsilon}\right)-g^{*}_{\Psi}\left(\bar{\psi}\right)>g\left(Lx_{\varepsilon}\right)-2\varepsilon,

or

ψ¯(Lxε)+2ε>g(Lxε)+gΨ(ψ¯).\bar{\psi}\left(Lx_{\varepsilon}\right)+2\varepsilon>g\left(Lx_{\varepsilon}\right)+g^{*}_{\Psi}\left(\bar{\psi}\right).

This gives ψ¯2ε,Ψg(Lxε)\bar{\psi}\in\partial_{2\varepsilon,\Psi}g\left(Lx_{\varepsilon}\right). Thus, (i) holds.

(ii)\Rightarrow (iii): As the intersection property holds for every α\alpha\in\mathbb{R}, for every ε>0\varepsilon>0, we can take αε=infxXsupψΨ(x,ψ)ε/2=V(0)ε/2\alpha_{\varepsilon}=\inf_{x\in X}\sup_{\psi\in\Psi}\mathcal{L}\left(x,\psi\right)-\varepsilon/2=V(0)-\varepsilon/2. Now we can find ϕ1,ϕ2Φ,ψ1,ψ2Ψ\phi_{1},\phi_{2}\in\Phi,\psi_{1},\psi_{2}\in\Psi such that ϕ1()(,ψ1),ϕ2(,ψ2)\phi_{1}\left(\cdot\right)\leq\mathcal{L}\left(\cdot,\psi_{1}\right),\phi_{2}\leq\mathcal{L}\left(\cdot,\psi_{2}\right) for all xXx\in X, and ϕ1,ϕ2\phi_{1},\phi_{2} satisfy the intersection property at level αε\alpha_{\varepsilon}. Using Lemma 6.4, there exists t0[0,1]t_{0}\in\left[0,1\right] such that for all xXx\in X,

αε\displaystyle\alpha_{\varepsilon} t0ϕ1(x)+(1t0)ϕ2(x)t0(x,ψ1)+(1t0)(x,ψ2)\displaystyle\leq t_{0}\phi_{1}\left(x\right)+\left(1-t_{0}\right)\phi_{2}\left(x\right)\leq t_{0}\mathcal{L}\left(x,\psi_{1}\right)+\left(1-t_{0}\right)\mathcal{L}\left(x,\psi_{2}\right)
(x,t0ψ1+(1t0)ψ2).\displaystyle\leq\mathcal{L}\left(x,t_{0}\psi_{1}+\left(1-t_{0}\right)\psi_{2}\right). (61)

On the other hand, we have

(x,ψ)\displaystyle\mathcal{L}\left(x,\psi\right) =f(x)+ψ(Lx)gΨ(ψ)\displaystyle=f\left(x\right)+\psi\left(Lx\right)-g_{\Psi}^{*}\left(\psi\right)
=infyYf(x)+g(y)+ψ(Lx)ψ(y)\displaystyle=\inf_{y\in Y}f\left(x\right)+g\left(y\right)+\psi\left(Lx\right)-\psi\left(y\right)
f(x)+g(Lx+y)+ψ(Lx)ψ(Lx+y),\displaystyle\leq f\left(x\right)+g\left(Lx+y\right)+\psi\left(Lx\right)-\psi\left(Lx+y\right),

where xX,yYx\in X,y\in Y. Denoting ψ0=t0ψ1+(1t0)ψ2Ψ\psi_{0}=t_{0}\psi_{1}+\left(1-t_{0}\right)\psi_{2}\in\Psi, as Ψ\Psi is a convex set, (61) gives us

αε\displaystyle\alpha_{\varepsilon} f(x)+g(Lx+y)+ψ0(Lx)ψ0(Lx+y)\displaystyle\leq f\left(x\right)+g\left(Lx+y\right)+\psi_{0}\left(Lx\right)-\psi_{0}\left(Lx+y\right)
αε+ψ0(Lx+y)ψ0(Lx)\displaystyle\alpha_{\varepsilon}+\psi_{0}\left(Lx+y\right)-\psi_{0}\left(Lx\right) f(x)+g(Lx+y),\displaystyle\leq f\left(x\right)+g\left(Lx+y\right),

for any xX,yYx\in X,y\in Y. Since ψ0Ψ\psi_{0}\in\Psi is lower semi-continuous, the function ψx(y):=ψ0(Lx+y)\psi_{x}\left(y\right):=\psi_{0}\left(Lx+y\right) is also lower semi-continuous for all yYy\in Y. There exists a neighborhood W(0)YW\left(0\right)\subset Y such that

ψx(y)ψx(0)ε/2,yW(0).\psi_{x}\left(y\right)\geq\psi_{x}\left(0\right)-\varepsilon/2,\quad\forall y\in W\left(0\right).

Thus,

f(x)+g(Lx+y)αε+ψx(y)ψx(0)αε/2,f\left(x\right)+g\left(Lx+y\right)\geq\alpha_{\varepsilon}+\psi_{x}\left(y\right)-\psi_{x}\left(0\right)\geq\alpha-\varepsilon/2,

for all yW(0)y\in W\left(0\right). The inequality holds for all xXx\in X, we can take the infimum with respect to xXx\in X on both sides and obtain

V(y)=infxXf(x)+g(Lx+y)αεε/2=V(0)ε,V\left(y\right)=\inf_{x\in X}f\left(x\right)+g\left(Lx+y\right)\geq\alpha_{\varepsilon}-\varepsilon/2=V\left(0\right)-\varepsilon,

for all yW(0)y\in W\left(0\right). Hence, V(y)V\left(y\right) is lower semi-continuous at y=0y=0.

(iii)\Rightarrow(ii): Conversely, for every α,α<infxXsupψΨ(x,ψ)=V(0)\alpha\in\mathbb{R},\alpha<\inf_{x\in X}\sup_{\psi\in\Psi}\mathcal{L}(x,\psi)=V(0), we choose 3ε=V(0)α>03\varepsilon=V(0)-\alpha>0. There exists a neighborhood W(0)YW\left(0\right)\subset Y such that

V(0)εV(y),yW(0).V\left(0\right)-\varepsilon\leq V\left(y\right),\quad\forall y\in W\left(0\right).

Now considering

f(x)+gΨ(Lx+y)\displaystyle f\left(x\right)+g_{\Psi}^{**}\left(Lx+y\right) =supψΨf(x)+ψ(Lx+y)gΨ(ψ)\displaystyle=\sup_{\psi\in\Psi}f\left(x\right)+\psi\left(Lx+y\right)-g_{\Psi}^{*}\left(\psi\right)

We can find ψεΨ\psi_{\varepsilon}\in\Psi such that

f(x)+gΨ(Lx+y)\displaystyle f\left(x\right)+g_{\Psi}^{**}\left(Lx+y\right) <f(x)+ψε(Lx+y)gΨ(ψε)+ε\displaystyle<f\left(x\right)+\psi_{\varepsilon}\left(Lx+y\right)-g_{\Psi}^{*}\left(\psi_{\varepsilon}\right)+\varepsilon
f(x)gΨ(ψε)+ψε(Lx)+2ε,yW1(0).\displaystyle\leq f\left(x\right)-g_{\Psi}^{*}\left(\psi_{\varepsilon}\right)+\psi_{\varepsilon}\left(Lx\right)+2\varepsilon,\quad\forall y\in W_{1}(0).

In the last inequality, we can find a neighborhood W1(0)YW_{1}(0)\subset Y such that ψε\psi_{\varepsilon} is continuous at 0. Hence, for all yW1(0)W(0)y\in W_{1}(0)\cap W(0), we have

V(0)ε\displaystyle V\left(0\right)-\varepsilon V(y)=infxXf(x)+gΨ(Lx+y)\displaystyle\leq V\left(y\right)=\inf_{x\in X}f\left(x\right)+g_{\Psi}^{**}\left(Lx+y\right)
supψΨf(x)gΨ(ψ)+ψ(Lx+y),xX\displaystyle\leq\sup_{\psi\in\Psi}f\left(x\right)-g_{\Psi}^{*}\left(\psi\right)+\psi\left(Lx+y\right),\quad\forall x\in X
<f(x)gΨ(ψε)+ψε(Lx+y)+ε\displaystyle<f\left(x\right)-g_{\Psi}^{*}\left(\psi_{\varepsilon}\right)+\psi_{\varepsilon}\left(Lx+y\right)+\varepsilon
f(x)gΨ(ψε)+ψε(Lx)+2ε,yW1(0)\displaystyle\leq f\left(x\right)-g_{\Psi}^{*}\left(\psi_{\varepsilon}\right)+\psi_{\varepsilon}\left(Lx\right)+2\varepsilon,\quad\forall y\in W_{1}(0)
=(x,ψε)+2ε.\displaystyle=\mathcal{L}\left(x,\psi_{\varepsilon}\right)+2\varepsilon.

Finally, α=V(0)3ε(x,ψε)\alpha=V(0)-3\varepsilon\leq\mathcal{L}(x,\psi_{\varepsilon}) for all xXx\in X, we can take ϕ=αΦ\phi=\alpha\in\Phi and ϕsupp (,ψε)\phi\in\text{supp }\mathcal{L}\left(\cdot,\psi_{\varepsilon}\right). Then ϕ\phi has the intersection property at level α\alpha with any ϕ1supp (,ψ)\phi_{1}\in\text{supp }\mathcal{L}\left(\cdot,\psi\right), for ψΨ\psi\in\Psi. ∎

Now we can state zero duality gap for Lagrange dual problem.

Proposition 6.6.

Let f:X(,+],g:Y(,+]f:X\to\left(-\infty,+\infty\right],g:Y\to\left(-\infty,+\infty\right]. Let L:XYL:X\to Y be a mapping from XX to YY with dom gL(dom f)\text{dom }g\cap L\left(\text{dom }f\right)\neq\emptyset. Let Φ,Ψ\Phi,\Psi be sets of elementary functions defined on XX and YY, respectively. Let (x,ψ)\mathcal{L}(x,\psi) be the Lagrangian defined by (51). Assume Ψ\Psi is convex, 0Φ0\in\Phi and (52) holds. We further assume infxXf(x)+g(Lx)<+\inf_{x\in X}f(x)+g(Lx)<+\infty. The following are equivalent.

  1. (i)

    For every α<infxXsupψΨ(x,ψ)\alpha<\inf_{x\in X}\sup_{\psi\in\Psi}\mathcal{L}\left(x,\psi\right), there exists ψ1,ψ2Ψ\psi_{1},\psi_{2}\in\Psi and ϕ¯1supp (,ψ1),ϕ¯2supp (,ψ2)\bar{\phi}_{1}\in\text{supp }\mathcal{L}\left(\cdot,\psi_{1}\right),\bar{\phi}_{2}\in\text{supp }\mathcal{L}\left(\cdot,\psi_{2}\right) such that ϕ¯1,ϕ¯2\bar{\phi}_{1},\bar{\phi}_{2} have the intersection property at level α\alpha.

  2. (ii)

    infxXf(x)+g(Lx)=infxXsupψΨ(x,ψ)=supψΨinfxX(x,ψ)<+.\displaystyle{\inf_{x\in X}f(x)+g(Lx)=\inf_{x\in X}\sup_{\psi\in\Psi}\mathcal{L}\left(x,\psi\right)=\sup_{\psi\in\Psi}\inf_{x\in X}\mathcal{L}\left(x,\psi\right)<+\infty}.

Proof.

By applying Theorem 6.5 and Theorem 4.2, we obtain the assertion. ∎

Remark 9.
  • In order to work with the intersection property, we need to find ψ1,ψ2Ψ\psi_{1},\psi_{2}\in\Psi and ϕ1supp (,ψ1),ϕ2(,ψ2)\phi_{1}\in\text{supp }\mathcal{L}\left(\cdot,\psi_{1}\right),\phi_{2}\in\mathcal{L}\left(\cdot,\psi_{2}\right). Because α<infxXsupψΨ(x,ψ)\alpha<\inf_{x\in X}\sup_{\psi\in\Psi}\mathcal{L}\left(x,\psi\right), so αsupp (,ψ)\alpha\in\text{supp }\mathcal{L}\left(\cdot,\psi\right) for any ψΨ\psi\in\Psi. We can set ϕ1=αΦ\phi_{1}=\alpha\in\Phi, and the intersection property always holds for any ϕ2supp (,ψ2)\phi_{2}\in\text{supp }\mathcal{L}\left(\cdot,\psi_{2}\right), as [ϕ1<α]=\left[\phi_{1}<\alpha\right]=\emptyset.

  • Let Ψ\Psi be symmetric, and for every ε>0\varepsilon>0, there exist x¯X\bar{x}\in X, ψ1LΦ\psi_{1}\circ L\in\Phi for ψ1Ψ\psi_{1}\in\Psi, such that ψ1Lε,Φf(x¯)\psi_{1}\circ L\in\partial_{\varepsilon,\Phi}f\left(\bar{x}\right). We have, for all yXy\in X

    f(y)f(x¯)\displaystyle f\left(y\right)-f\left(\bar{x}\right) ψ1(Ly)ψ1(Lx¯)ε\displaystyle\geq\psi_{1}\left(Ly\right)-\psi_{1}\left(L\bar{x}\right)-\varepsilon
    f(y)ψ1(Ly)gΨ(ψ1)\displaystyle f\left(y\right)-\psi_{1}\left(Ly\right)-g^{*}_{\Psi}\left(-\psi_{1}\right) f(x¯)ψ1(Lx¯)gΨ(ψ1)ε\displaystyle\geq f\left(\bar{x}\right)-\psi_{1}\left(L\bar{x}\right)-g^{*}_{\Psi}\left(-\psi_{1}\right)-\varepsilon
    (y,ψ1)\displaystyle\mathcal{L}\left(y,-\psi_{1}\right) (x¯,ψ1)ε,\displaystyle\geq\mathcal{L}\left(\bar{x},-\psi_{1}\right)-\varepsilon,

    so x¯\bar{x} is a ε\varepsilon-approximate solution to the problem infxX(x,ψ1)\inf_{x\in X}\mathcal{L}\left(x,-\psi_{1}\right).

We can replace assumption (52) with a stronger one by the following lemma.

Lemma 6.7.

Assume infxXf(x)+g(Lx)<+\inf_{x\in X}f(x)+g(Lx)<+\infty and let (x,ψ)\mathcal{L}(x,\psi) be the Lagrangian function given by (51). Then condition (52) i.e.,

infxXf(x)+g(Lx)=infxXf(x)+gΨ(Lx),\inf_{x\in X}f(x)+g(Lx)=\inf_{x\in X}f(x)+g^{**}_{\Psi}(Lx),

holds if and only if for every ε0\varepsilon\geq 0, there exists xεXx_{\varepsilon}\in X such that

infxXsupψΨ(x,ψ)>f(xε)+g(Lxε)ε.\inf_{x\in X}\sup_{\psi\in\Psi}\mathcal{L}(x,\psi)>f(x_{\varepsilon})+g(Lx_{\varepsilon})-\varepsilon. (62)
Proof.

If condition (52) holds i.e.,

infxXf(x)+g(Lx)=infxXf(x)+gΨ(Lx),\inf_{x\in X}f(x)+g(Lx)=\inf_{x\in X}f(x)+g^{**}_{\Psi}(Lx),

then for every ε>0\varepsilon>0, one can find an xεXx_{\varepsilon}\in X such that infxXf(x)+g(Lx)>f(xε)+g(Lxε)ε\inf_{x\in X}f(x)+g(Lx)>f(x_{\varepsilon})+g(Lx_{\varepsilon})-\varepsilon. Hence,

infxXsupψΨ(x,ψ)=infxXf(x)+gΨ(Lx)>f(xε)+g(Lxε)ε.\inf_{x\in X}\sup_{\psi\in\Psi}\mathcal{L}(x,\psi)=\inf_{x\in X}f(x)+g^{**}_{\Psi}(Lx)>f(x_{\varepsilon})+g(Lx_{\varepsilon})-\varepsilon.

Conversely, assume that

infxXsupψΨ(x,ψ)>f(xε)+g(Lxε)ε.\inf_{x\in X}\sup_{\psi\in\Psi}\mathcal{L}(x,\psi)>f(x_{\varepsilon})+g(Lx_{\varepsilon})-\varepsilon.

We have

infxXsupψΨ(x,ψ)>f(xε)+g(Lxε)εinfxXf(x)+g(Lx)ε.\inf_{x\in X}\sup_{\psi\in\Psi}\mathcal{L}(x,\psi)>f(x_{\varepsilon})+g(Lx_{\varepsilon})-\varepsilon\geq\inf_{x\in X}f(x)+g(Lx)-\varepsilon.

Recall that,

infxXsupψΨ(x,ψ)=infxXf(x)+gΨ(Lx).\inf_{x\in X}\sup_{\psi\in\Psi}\mathcal{L}(x,\psi)=\inf_{x\in X}f(x)+g^{**}_{\Psi}(Lx).

Because g(Lx)gΨ(Lx)g(Lx)\geq g^{**}_{\Psi}(Lx) for all xXx\in X, we can write

infxXf(x)+g(Lx)infxXf(x)+gΨ(Lx)infxXf(x)+g(Lx)ε.\inf_{x\in X}f(x)+g(Lx)\geq\inf_{x\in X}f(x)+g^{**}_{\Psi}(Lx)\geq\inf_{x\in X}f(x)+g(Lx)-\varepsilon.

Both sides do not depend on ε\varepsilon, we can let ε0\varepsilon\to 0 and get the equality. ∎

In fact, condition (62) is stronger than intersection property, as we can see in the corollary below.

Corollary 6.8.

Let f:X(,+],g:Y(,+]f:X\to\left(-\infty,+\infty\right],g:Y\to\left(-\infty,+\infty\right] and let L:XYL:X\to Y be a mapping from XX to YY with dom gL(dom f)\text{dom }g\cap L\left(\text{dom }f\right)\neq\emptyset. Let Φ,Ψ\Phi,\Psi be sets of elementary functions defined on XX and YY, respectively. Let the Lagrangian function be defined by (51). Assume Ψ\Psi is convex, 0Φ0\in\Phi, infxXf(x)+g(Lx)<+\inf_{x\in X}f(x)+g(Lx)<+\infty. The following are equivalent.

  1. (i)

    For every ε>0\varepsilon>0, there exists xεXx_{\varepsilon}\in X such that infxXsupψΨ(x,ψ)f(xε)+g(Lxε)ε\displaystyle{\inf_{x\in X}\sup_{\psi\in\Psi}\mathcal{L}(x,\psi)}\geq f(x_{\varepsilon})+g(Lx_{\varepsilon})-\varepsilon.

  2. (ii)

    For every ε>0\varepsilon>0, there exist xεXx_{\varepsilon}\in X and ψεε,Ψg(Lxε)\psi_{\varepsilon}\in\partial_{\varepsilon,\Psi}g\left(Lx_{\varepsilon}\right) such that 0ε,Φ(f+ψεL)(xε)0\in\partial_{\varepsilon,\Phi}\left(f+\psi_{\varepsilon}\circ L\right)\left(x_{\varepsilon}\right).

  3. (iii)

    infxXf(x)+g(Lx)=infxXsupψΨ(x,ψ)=supψΨinfxX(x,ψ)<+.\displaystyle{\inf_{x\in X}f(x)+g(Lx)=\inf_{x\in X}\sup_{\psi\in\Psi}\mathcal{L}\left(x,\psi\right)=\sup_{\psi\in\Psi}\inf_{x\in X}\mathcal{L}\left(x,\psi\right)<+\infty}.

Proof.

Thanks to Theorem 4.2, Theorem 6.5 and Proposition 6.6, we have (ii)\Leftrightarrow (iii). We only need to prove (i)\Leftrightarrow(ii).

(i) \Rightarrow (ii): For every ε>0\varepsilon>0, we have

supψΨ(x,ψ)infxXsupψΨ(x,ψ)f(xε)+g(Lxε)ε.\sup_{\psi\in\Psi}\mathcal{L}(x,\psi)\geq\inf_{x\in X}\sup_{\psi\in\Psi}\mathcal{L}(x,\psi)\geq f(x_{\varepsilon})+g(Lx_{\varepsilon})-\varepsilon.

There also exists ψεΨ\psi_{\varepsilon}\in\Psi such that

(x,ψε)+εsupψΨ(x,ψ)f(xε)+g(Lxε)ε.\mathcal{L}(x,\psi_{\varepsilon})+\varepsilon\geq\sup_{\psi\in\Psi}\mathcal{L}(x,\psi)\geq f(x_{\varepsilon})+g(Lx_{\varepsilon})-\varepsilon.

Thus, (x,ψε)+εf(xε)+g(Lxε)ε\mathcal{L}(x,\psi_{\varepsilon})+\varepsilon\geq f(x_{\varepsilon})+g(Lx_{\varepsilon})-\varepsilon for all xXx\in X. While (x,ψε)=f(x)+ψε(Lx)gΨ(ψε)\mathcal{L}(x,\psi_{\varepsilon})=f(x)+\psi_{\varepsilon}(Lx)-g^{*}_{\Psi}(\psi_{\varepsilon}), we have

(xX)f(x)+ψε(Lx)gΨ(ψε)+εf(xε)+g(Lxε)ε.(\forall x\in X)\ f(x)+\psi_{\varepsilon}(Lx)-g^{*}_{\Psi}(\psi_{\varepsilon})+\varepsilon\geq f(x_{\varepsilon})+g(Lx_{\varepsilon})-\varepsilon. (63)

Let x=xεx=x_{\varepsilon} and we obtain

ψε(Lxε)gΨ(ψε)g(Lxε)2ε,\psi_{\varepsilon}(Lx_{\varepsilon})-g^{*}_{\Psi}(\psi_{\varepsilon})\geq g(Lx_{\varepsilon})-2\varepsilon,

so ψε2ε,Ψg(Lxε)\psi_{\varepsilon}\in\partial_{2\varepsilon,\Psi}g(Lx_{\varepsilon}). On the other hand, by using the property of Φ\Phi-conjugate,

(xX)g(Lx)+gΨ(ψε)ψε(Lx).(\forall x\in X)\ g(Lx)+g^{*}_{\Psi}(\psi_{\varepsilon})\geq\psi_{\varepsilon}(Lx).

By putting this in (63), we have 02ε,Φ(f+ψεL)(xε)0\in\partial_{2\varepsilon,\Phi}(f+\psi_{\varepsilon}\circ L)(x_{\varepsilon}). Hence, we prove (ii).

(ii) \Rightarrow (i): For every ε>0\varepsilon>0, there exist xεXx_{\varepsilon}\in X, ψεε,Ψg(Lxε)\psi_{\varepsilon}\in\partial_{\varepsilon,\Psi}g(Lx_{\varepsilon}) and 0ε,Φ(f+ψεL)(xε)0\in\partial_{\varepsilon,\Phi}(f+\psi_{\varepsilon}\circ L)(x_{\varepsilon}), i.e. for all zXz\in X

f(z)+ψε(Lz)f(xε)ψε(Lxε)ε.f(z)+\psi_{\varepsilon}(Lz)-f(x_{\varepsilon})-\psi_{\varepsilon}(Lx_{\varepsilon})\geq-\varepsilon.

Because ψεε,Ψg(Lxε)\psi_{\varepsilon}\in\partial_{\varepsilon,\Psi}g(Lx_{\varepsilon}), using inequality (11) we get,

f(z)+ψε(Lz)f(xε)\displaystyle f(z)+\psi_{\varepsilon}(Lz)-f(x_{\varepsilon}) ψε(Lxε)ε\displaystyle\geq\psi_{\varepsilon}(Lx_{\varepsilon})-\varepsilon
gΨ(ψε)+g(Lxε)2ε,\displaystyle\geq g^{*}_{\Psi}(\psi_{\varepsilon})+g(Lx_{\varepsilon})-2\varepsilon,

and

supψΨ(z,ψ)(z,ψε)=f(z)+ψε(Lz)gΨ(ψε)f(xε)+g(Lxε)2ε.\sup_{\psi\in\Psi}\mathcal{L}(z,\psi)\geq\mathcal{L}(z,\psi_{\varepsilon})=f(z)+\psi_{\varepsilon}(Lz)-g^{*}_{\Psi}(\psi_{\varepsilon})\geq f(x_{\varepsilon})+g(Lx_{\varepsilon})-2\varepsilon.

The right-hand side does not depend on zXz\in X, taking the infimum with respect to zXz\in X gives us

infzXsupψΨ(z,ψ)f(xε)+g(Lxε)2ε.\inf_{z\in X}\sup_{\psi\in\Psi}\mathcal{L}(z,\psi)\geq f(x_{\varepsilon})+g(Lx_{\varepsilon})-2\varepsilon.

We have proved (i). ∎

Having the class Ψ\Psi of elementary functions, we recall the notion of XX-convexity in [6, Proposition 1.2.3], by using fomula ϕ(x)=x(ϕ)\phi(x)=x(\phi) for xX,ϕΦx\in X,\phi\in\Phi. Together with the intersection property, we can prove Langrage zero duality gap as follow.

Proposition 6.9.

Assume that for every α,αinfxXf(x)+ψ(Lx)\alpha\in\mathbb{R},\alpha\leq\inf_{x\in X}f\left(x\right)+\psi\left(Lx\right), there exist ψsupp g,x0X\psi\in\text{supp }g,x_{0}\in X, such that f(x0)αψ(Lx0)f(x_{0})\leq\alpha\leq\psi(Lx_{0}). If x0A={xX:Lxsupp gΨ}x_{0}\in A=\left\{x\in X:Lx\in\text{supp }g^{*}_{\Psi}\right\}\neq\emptyset, then we have val(LP)=val(LD)val(LP)=val(LD).

Proof.

Let x0A,ψsupp gx_{0}\in A,\psi\in\text{supp }g be such that

f(x0)αψ(Lx0).f(x_{0})\leq\alpha\leq\psi(Lx_{0}).

Then gΨ(ψ)0g^{*}_{\Psi}\left(\psi\right)\leq 0. On the other hand, x0Ax_{0}\in A means

(ψΨ)ψ(Lx0)gΨ(ψ)supψΨψ(Lx0)gΨ(ψ)0.(\forall\psi\in\Psi)\ \psi(Lx_{0})\leq g^{*}_{\Psi}(\psi)\Leftrightarrow\sup_{\psi\in\Psi}\psi\left(Lx_{0}\right)-g^{*}_{\Psi}\left(\psi\right)\leq 0.

Moreover, ψ(Lx0)α\psi\left(Lx_{0}\right)\geq\alpha and

α\displaystyle\alpha infxXf(x)+ψ(Lx)\displaystyle\leq\inf_{x\in X}f\left(x\right)+\psi\left(Lx\right)
infxXf(x)+ψ(Lx)gΨ(ψ),as gΨ(ψ)0\displaystyle\leq\inf_{x\in X}f\left(x\right)+\psi\left(Lx\right)-g^{*}_{\Psi}\left(\psi\right),\quad\text{as }g^{*}_{\Psi}\left(\psi\right)\leq 0
supψΨinfxXf(x)+ψ(Lx)gΨ(ψ).\displaystyle\leq\sup_{\psi\in\Psi}\inf_{x\in X}f\left(x\right)+\psi\left(Lx\right)-g^{*}_{\Psi}\left(\psi\right).

And,

α\displaystyle\alpha f(x0)supψΨf(x0)+ψ(Lx0)gΨ(ψ)\displaystyle\geq f\left(x_{0}\right)\geq\sup_{\psi\in\Psi}f\left(x_{0}\right)+\psi\left(Lx_{0}\right)-g^{*}_{\Psi}\left(\psi\right)
infxXsupψΨf(x)+ψ(Lx)gΨ(ψ).\displaystyle\geq\inf_{x\in X}\sup_{\psi\in\Psi}f\left(x\right)+\psi\left(Lx\right)-g^{*}_{\Psi}\left(\psi\right).

Combining the two above inequalities, we obtain

supψΨinfxXf(x)+ψ(Lx)gΨ(ψ)infxXsupψΨf(x)+ψ(Lx)gΨ(ψ).\sup_{\psi\in\Psi}\inf_{x\in X}f\left(x\right)+\psi\left(Lx\right)-g^{*}_{\Psi}\left(\psi\right)\geq\inf_{x\in X}\sup_{\psi\in\Psi}f\left(x\right)+\psi\left(Lx\right)-g^{*}_{\Psi}\left(\psi\right).

Remark 10.

In Proposition 6.9, we can replace the assumption x0Ax_{0}\in A with g(Lx0)0g(Lx_{0})\leq 0, for x0Xx_{0}\in X. Then zero duality gap holds between (CP) and (LD). Because, for ψ0supp g\psi_{0}\in\text{supp }g and ψ0αf(x0)\psi_{0}\geq\alpha\geq f(x_{0}), we have

supψΨinfxXf(x)+ψ(Lx)gΨ(ψ)\displaystyle\sup_{\psi\in\Psi}\inf_{x\in X}f\left(x\right)+\psi\left(Lx\right)-g^{*}_{\Psi}\left(\psi\right) infxXf(x)+ψ0(Lx)gΨ(ψ0)\displaystyle\geq\inf_{x\in X}f\left(x\right)+\psi_{0}\left(Lx\right)-g^{*}_{\Psi}\left(\psi_{0}\right)
infxXf(x)+ψ0(Lx),as gΨ(ψ0)0\displaystyle\geq\inf_{x\in X}f\left(x\right)+\psi_{0}\left(Lx\right),\quad\text{as }g^{*}_{\Psi}\left(\psi_{0}\right)\leq 0
αf(x0)f(x0)+g(Lx0)\displaystyle\geq\alpha\geq f(x_{0})\geq f(x_{0})+g(Lx_{0})
infxXf(x)+g(Lx).\displaystyle\geq\inf_{x\in X}f(x)+g(Lx).

We complete this Section with two examples which illustrate Proposition 6.9.

Example 6.10.

Consider the functions f(x)=3x23x10,g(x)=2x2+x8f\left(x\right)=3x^{2}-3x-10,g\left(x\right)=-2x^{2}+x-8 and L=IdL=Id. Let

Φ=Ψ={ψ(x)=ax2+bx+c,a0,b,c},\Phi=\Psi=\left\{\psi\left(x\right)=-ax^{2}+bx+c,a\geq 0,b,c\in\mathbb{R}\right\},

is our sets of elementary functions. We want to find supp g\text{supp }g, i.e. the set of all ψΨ\psi\in\Psi such that

ψ(x)g(x)x.\psi\left(x\right)\leq g\left(x\right)\quad\forall x\in\mathbb{R}.

This gives us ψΨ\psi\in\Psi where a>2,c(1b)24(a2)8a>2,c\leq-\frac{\left(1-b\right)^{2}}{4\left(a-2\right)}-8 or ψ(x)=2x2+x8\psi\left(x\right)=-2x^{2}+x-8. Consider a>2a>2, for every α\alpha\in\mathbb{R} such that

αinfxf(x)+ψ(x)={c10if a=3,b=3,c9(b3)24(3a)10+cif 2<a<3,c(1b)24(a2)8if a>3.\alpha\leq\inf_{x}f\left(x\right)+\psi\left(x\right)=\begin{cases}c-10&\text{if }a=3,b=3,c\leq-9\\ -\frac{\left(b-3\right)^{2}}{4\left(3-a\right)}-10+c&\text{if }2<a<3,c\leq-\frac{\left(1-b\right)^{2}}{4\left(a-2\right)}-8\\ -\infty&\text{if }a>3.\end{cases}

We need to find x0x_{0} such that f(x0)αψ(x0)f\left(x_{0}\right)\leq\alpha\leq\psi\left(x_{0}\right), we can let α=infxf(x)+ψ(x)\alpha=\inf_{x}f\left(x\right)+\psi\left(x\right). There are two cases

  • α=c10\alpha=c-10 or α19\alpha\leq-19, we cannot find x0x_{0} such that f(x0)19f\left(x_{0}\right)\leq-19 as fmin=434f_{\min}=-\frac{43}{4}.

  • α=(b3)24(3a)10+c,\alpha=-\frac{\left(b-3\right)^{2}}{4\left(3-a\right)}-10+c, we have to solve f(x0)αψ(x0)f(x_{0})\leq\alpha\leq\psi(x_{0}) for x0x_{0}. We arrive at the following system

    ax2+bx+c\displaystyle-ax^{2}+bx+c (b3)24(3a)10+c\displaystyle\geq-\frac{\left(b-3\right)^{2}}{4\left(3-a\right)}-10+c
    3x23x10\displaystyle 3x^{2}-3x-10 (b3)24(3a)10+c\displaystyle\leq-\frac{\left(b-3\right)^{2}}{4\left(3-a\right)}-10+c
    2<a<3,\displaystyle 2<a<3, c(1b)24(a2)8.\displaystyle\ c\leq-\frac{\left(1-b\right)^{2}}{4\left(a-2\right)}-8.

    By direct calculations, there are no solution a,b,c,xa,b,c,x for the above system of inequalities.

    For ψ(x)=2x2+x8\psi\left(x\right)=-2x^{2}+x-8, and this turns into

    infxf(x)+g(x)=α=infxf(x)+ψ(x)supψψinfxf(x)+ψ(x),\inf_{x\in\mathbb{R}}f\left(x\right)+g\left(x\right)=\alpha=\inf_{x\in\mathbb{R}}f\left(x\right)+\psi\left(x\right)\leq\sup_{\psi\in\psi}\inf_{x\in\mathbb{R}}f\left(x\right)+\psi\left(x\right),

    which is zero duality gap.

Example 6.11.

Now consider the functions f(x)=x23x10,g(x)=2x+1f\left(x\right)=x^{2}-3x-10,g\left(x\right)=2x+1 with L=IdL=Id, and the set of elementary functions is

Φ=Ψ={ψ(x)=ax+b, where a,b}.\Phi=\Psi=\left\{\psi\left(x\right)=ax+b,\text{ where }a,b\in\mathbb{R}\right\}.

Calculating ψsupp g\psi\in\text{supp }g gives us a=2a=2 and b1b\leq 1. Now we find

α=infxf(x)+ψ(x)=infxx2x10+b=212+b.\alpha=\inf_{x\in\mathbb{R}}f\left(x\right)+\psi\left(x\right)=\inf_{x\in\mathbb{R}}x^{2}-x-10+b=-\frac{21}{2}+b.

We also calculate

gΨ(ψ)=supxXψ(x)g(x)=b1,g^{*}_{\Psi}\left(\psi\right)=\sup_{x\in X}\psi\left(x\right)-g\left(x\right)=b-1,

for b1b\leq 1. Observe that

supψ supp ginfxXf(x)+ψ(x)gΨ(ψ)\displaystyle\sup_{\psi\in\text{ supp g}}\inf_{x\in X}f\left(x\right)+\psi\left(x\right)-g^{*}_{\Psi}\left(\psi\right) =supψ supp ginfxXx2x10+bb+1\displaystyle=\sup_{\psi\in\text{ supp g}}\inf_{x\in X}x^{2}-x-10+b-b+1
=supψ supp ginfxXx2x9\displaystyle=\sup_{\psi\in\text{ supp g}}\inf_{x\in X}x^{2}-x-9
=infxXx2x9=infxf(x)+g(x),\displaystyle=\inf_{x\in X}x^{2}-x-9=\inf_{x\in\mathbb{R}}f\left(x\right)+g\left(x\right),

while

supψ supp ginfxXf(x)+ψ(x)gΨ(ψ)supψΨinfxXf(x)+ψ(x)gΨ(ψ).\sup_{\psi\in\text{ supp g}}\inf_{x\in X}f\left(x\right)+\psi\left(x\right)-g^{*}_{\Psi}\left(\psi\right)\leq\sup_{\psi\in\Psi}\inf_{x\in X}f\left(x\right)+\psi\left(x\right)-g^{*}_{\Psi}\left(\psi\right).

Thus we have zero duality gap.

Acknowledgments

The authors are thankful to the anonymous referees for their constructive comments and remarks which improve the quality of the paper.

This work has been supported by the ITN-ETN project TraDE-OPT funded by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No.861137

References

  • [1] Vial JP. Strong and weak convexity of sets and functions. Mathematics of Operations Research. 1983;8(2):231–259.
  • [2] Rolewicz S. On paraconvex multifunctions. Oper Research Verf(Methods of Oper Res). 1979;31:540–546.
  • [3] Hyers DH, Ulam SM. Approximately convex functions. Proceedings of the American Mathematical Society. 1952;3:821–828.
  • [4] Páles Z. On approximately convex functions. Proceedings of the American Mathematical Society. 2003;131(1):243–252.
  • [5] Rubinov AM. Abstract convexity and global optimization. Vol. 44. Springer Science & Business Media; 2013.
  • [6] Pallaschke DE, Rolewicz S. Foundations of mathematical optimization: convex analysis without linearity. Vol. 388. Springer Science & Business Media; 2013.
  • [7] Singer I. Abstract convex analysis. Vol. 25. John Wiley & Sons; 1997.
  • [8] Rubinov AM, Andramonov MY. Minimizing increasing star-shaped functions based on abstract convexity. Journal of Global Optimization. 1999;15(1):19–39.
  • [9] Andramonov M. A survey of methods of abstract convex programming. Journal of Statistics and Management Systems. 2002;5(1-3):21–37.
  • [10] Burachik RS, Rubinov A. On abstract convexity and set valued analysis. Journal of Nonlinear and Convex Analysis. 2008;9(1):105.
  • [11] Dutta J, Martinez-Legaz J, Rubinov A. Monotonic analysis over cones: I. Optimization. 2004;53(2):129–146.
  • [12] Eberhard A, Mohebi H. Maximal abstract monotonicity and generalized Fenchel’s conjugation formulas. Set-Valued and Variational Analysis. 2010;18(1):79–108.
  • [13] Rockafellar RT, Wets RJB. Variational analysis. Vol. 317. Springer Science & Business Media; 2009.
  • [14] Bonnans JF, Shapiro A. Perturbation analysis of optimization problems. Springer Science & Business Media; 2013.
  • [15] Beck A, Teboulle M. Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE transactions on image processing. 2009;18(11):2419–2434.
  • [16] Jeyakumar V, Rubinov A, Wu Z. Generalized Fenchel’s conjugation formulas and duality for abstract convex functions. Journal of optimization theory and applications. 2007;132(3):441–458.
  • [17] Burachik RS, Rubinov A. Abstract convexity and augmented lagrangians. SIAM Journal on Optimization. 2007;18(2):413–436.
  • [18] Syga M. Minimax theorems for ϕ\phi-convex functions: sufficient and necessary conditions. Optimization. 2016;65(3):635–649.
  • [19] Syga M. Minimax theorems for extended real-valued abstract convex–concave functions. Journal of Optimization Theory and Applications. 2018;176(2):306–318.
  • [20] Dolgopolik MV. Abstract convex approximations of nonsmooth functions. Optimization. 2015;64(7):1439–1469.
  • [21] Gorokhovik V, Tykoun A. Support points of lower semicontinuous functions with respect to the set of Lipschitz concave functions. Doklady of the National Academy of Sciences of Belarus. 2020;63(6):647–653.
  • [22] Gorokhovik V, Tykoun A. Abstract convexity of functions with respectto the set of Lipschitz (concave) functions. Proceedings of the Steklov Institute of Mathematics. 2020;309(1):S36–S46.
  • [23] Bui HT, Burachik RS, Kruger AY, et al. Zero duality gap conditions via abstract convexity. Optimization. 2021;:1–37.
  • [24] Bednarczuk EM, Syga M. On duality for nonconvex minimization problems within the framework of abstract convexity. Optimization. 2021;To be appeared.
  • [25] Moreau JJ. Inf-convolution, sous-additivité, convexité des fonctions numériques. Journal de Mathématiques Pures et Appliquées. 1970;.
  • [26] Ekeland I, Temam R. Convex analysis and variational problems. SIAM; 1999.
  • [27] Cannarsa P, Sinestrari C. Semiconcave functions, Hamilton-Jacobi equations, and optimal control. Vol. 58. Springer Science & Business Media; 2004.
  • [28] Attouch H, Aze D. Approximation and regularization of arbitrary functions in hilbert spaces by the lasry-lions method. In: Annales de l’Institut Henri Poincaré C, Analyse non linéaire; Vol. 10; Elsevier; 1993. p. 289–312.
  • [29] Daniilidis A, Georgiev P. Approximate convexity and submonotonicity. Journal of mathematical analysis and applications. 2004;291(1):292–301.
  • [30] Rolewicz S. On uniformly approximate convex and strongly alpha (.)-paraconvex functions. Control and Cybernetics. 2001;30(3):323–330.
  • [31] Bot RI. Conjugate duality in convex optimization. Vol. 637. Springer Science & Business Media; 2009.
  • [32] Oettli W, Schläger D. Conjugate functions for convex and nonconvex duality. Journal of Global Optimization. 1998;13(4):337–347.
  • [33] Bauschke HH, Combettes PL, et al. Convex analysis and monotone operator theory in hilbert spaces. Vol. 408. Springer; 2011.
  • [34] Burachik RS. On asymptotic lagrangian duality for nonsmooth optimization. ANZIAM journal. 2016;58:C93–C123.
  • [35] Rubinov AM, Huang X, Yang X. The zero duality gap property and lower semicontinuity of the perturbation function. Mathematics of Operations Research. 2002;27(4):775–791.
  • [36] Huang X, Yang X. Further study on augmented lagrangian duality theory. Journal of Global Optimization. 2005;31(2):193–210.