This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Doubly structured mapping problems of the form Δx=y\Delta x=y and Δz=w\Delta^{*}z=w

Mohit Kumar Baghel Punit Sharma
Abstract

For a given class of structured matrices 𝕊\mathbb{S}, we find necessary and sufficient conditions on vectors x,wn+mx,w\in{\mathbb{C}}^{n+m} and y,zny,z\in{\mathbb{C}}^{n} for which there exists Δ=[Δ1Δ2]\Delta=[\Delta_{1}~{}\Delta_{2}] with Δ1𝕊\Delta_{1}\in\mathbb{S} and Δ2n,m\Delta_{2}\in{\mathbb{C}}^{n,m} such that Δx=y\Delta x=y and Δz=w\Delta^{*}z=w. We also characterize the set of all such mappings Δ\Delta and provide sufficient conditions on vectors x,y,zx,y,z, and ww to investigate a Δ\Delta with minimal Frobenius norm. The structured classes 𝕊\mathbb{S} we consider include (skew)-Hermitian, (skew)-symmetric, pseudo(skew)-symmetric, JJ-(skew)-symmetric, pseudo(skew)-Hermitian, positive (semi)definite, and dissipative matrices. These mappings are then used in computing the structured eigenvalue/eigenpair backward errors of matrix pencils arising in optimal control.

keywords:
structured matrix, backward error, minimal Frobenius norm, Hermitian, positive definite, positive semidefinite, Hamiltonian , dissipative matrix AMS subject classification. 15A04, 15A60, 15A63, 65F20, 65F35,
journal: Linear Algebra and its Applicationsfootnotetext: Department of Mathematics, Indian Institute of Technology Delhi, Hauz Khas, 110016, India; {maz188260, punit.sharma}@maths.iitd.ac.in. P.S. acknowledges the support of the DST-Inspire Faculty Award (MI01807-G) by Government of India.

1 Introduction

Problem 1 (Doubly structured mapping problem).

For a given class of structured matrices 𝕊n,n\mathbb{S}\subseteq{\mathbb{C}}^{n,n}, and vectors x,wn+mx,w\in{\mathbb{C}}^{n+m} and y,zny,z\in{\mathbb{C}}^{n}, we consider the following mapping problem:

  • 1.

    Existence: Find necessary and sufficient conditions on vectors x,y,zx,y,z, and ww for the existence of Δ=[Δ1Δ2]\Delta=[\Delta_{1}~{}\Delta_{2}], where Δ1𝕊\Delta_{1}\in\mathbb{S} and Δ2n,m\Delta_{2}\in{\mathbb{C}}^{n,m} such that Δx=y\Delta x=y and Δz=w\Delta^{*}z=w.

    We call such a mapping Δ\Delta as doubly structured mapping (DSM) as it has two structures defined on it; (i) conjugate transpose of Δ\Delta satisfies Δz=w\Delta^{*}z=w, and (ii) Δ\Delta has the form Δ=[Δ1Δ2]\Delta=[\Delta_{1}~{}\Delta_{2}] with Δ1𝕊\Delta_{1}\in\mathbb{S}.

  • 2.

    Characterization: Determine the set

    𝒮d𝕊:={Δ:Δ=[Δ1Δ2],Δ1𝕊,Δ2n,m,Δx=y,Δz=w}\mathcal{S}_{d}^{\mathbb{S}}:=\{\Delta:~{}\Delta=[\Delta_{1}~{}\Delta_{2}],\,\Delta_{1}\in\mathbb{S},\Delta_{2}\in{\mathbb{C}}^{n,m},\ \Delta x=y,\,\Delta^{*}z=w\} (1)

    of all such doubly structured mappings.

  • 3.

    Minimal Frobenius norm: Characterize all solutions to the doubly structured mapping problem that have minimal Frobenius norm.

The structures we consider on Δ1\Delta_{1} in a DSM problem include symmetric, skew-symmetric, pseudosymmetric, pseudoskew-symmetric, Hermitian, skew-Hermitian, pseudo-Hermitian, pseudoskew-Hermitian, positive (negative) semidefinite, and dissipative matrices.

The minimal norm solutions to such doubly structured mappings can be very handy in the perturbation analysis of matrix pencils arising in control systems [14]. In particular, for the computation of structured eigenvalue/eigenpair backward errors of matrix pencils L(z)L(z) of the form

L(z)=M+zN:=[0JRB(JR)00B0S]+z[0E0E00000],L(z)=M+zN:=\left[\begin{array}[]{ccc}0&J-R&B\\ (J-R)^{*}&0&0\\ B^{*}&0&S\end{array}\right]+z\left[\begin{array}[]{ccc}0&E&0\\ -E^{*}&0&0\\ 0&0&0\end{array}\right], (2)

where J,R,E,Qn,nJ,R,E,Q\in{\mathbb{C}}^{n,n}, Bn,mB\in{\mathbb{C}}^{n,m} and Sn,mS\in{\mathbb{C}}^{n,m} satisfy J=JJ^{*}=-J, R=RR^{*}=R is positive semidefinite, E=EE^{*}=E, and S=SS^{*}=S is positive definite. The pencil L(z)L(z) arises in HH_{\infty} control problems and in the passivity analysis of dynamical systems [10, 16]. One example of such a system is a port-Hamiltonian descriptor system [5, 18]. Our work is motivated by [14], where the eigenpair backward errors have been computed while preserving the block and symmetry structures of pencils of the form L(z)L(z), where only the Hermitian structure was considered on RR. The definiteness structure on RR describes the energy dissipation in the system and guarantees the stability of the underlying port-Hamiltonian system [15, 9]. This makes it essential to preserve the definiteness of RR to preserve the system’s port-Hamiltonian structure.

The standard mapping problem for matrices is to find Δn,n\Delta\in{\mathbb{C}}^{n,n} for given vectors xnx\in{\mathbb{C}}^{n} and yny\in{\mathbb{C}}^{n}, such that Δx=y\Delta x=y. Such mapping problems have been well studied in [11], where authors provide complete, unified, and explicit solutions for structured mappings from Lie and Jordan algebras associated with orthosymmetric scalar products. The minimal norm solutions to the structured mappings provide an important tool in solving nearness problems for control systems, e.g. [6, 7, 12, 13, 4]. The DSMs extend the mapping problem of finding Δn,n\Delta\in{\mathbb{C}}^{n,n} for given vectors x,y,z,wnx,y,z,w\in{\mathbb{C}}^{n} such that Δx=y\Delta x=y and Δz=w\Delta^{*}z=w [12, 13].

This paper is organized as follows: In Section 2, we review some preliminary results on mapping problems. In Section 3, we present necessary and sufficient conditions for the existence of DSMs with structures belonging to a Jordan or a Lie algebra. In particular, we consider doubly structured Hermitian, skew-Hermitian, symmetric, and skew-symmetric mapping problems. We provide solutions to the doubly structured semidefinite mapping problem in Section 4. In Section 5, we introduce two types of doubly structured dissipative mappings. The minimal norm solutions to the DSM problems are then used in estimating various structured eigenpair backward errors for the pencil L(z)L(z) arising in control systems, see Section 6.

Notation

In the following, we denote the identity matrix of size n×nn\times n by InI_{n}, the spectral norm of a matrix or a vector by \|\cdot\| and the Frobenius norm by F{\|\cdot\|}_{F}. The Moore-Penrose pseudoinverse of a matrix or a vector XX is denoted by XX^{\dagger} and 𝒫X=InXX\mathcal{P}_{X}=I_{n}-XX^{\dagger} denotes the orthogonal projection onto the null space of n×nn\times n matrix XX^{*}. For a square matrix AA, its Hermitian and skew-Hermitian parts are respectively denoted by AH=A+A2A_{H}=\frac{A+A^{*}}{2} and AS=AA2A_{S}=\frac{A-A^{*}}{2}. For A=A𝔽n,nA=A^{*}\in\mathbb{F}^{n,n}, where 𝔽{,}\mathbb{F}\in\{{\mathbb{R}},{\mathbb{C}}\}, we denote A0A\succ 0 (A0A\prec 0) and A0A\succeq 0 (AA\preceq) if AA is Hermitian positive definite (negative definite) and Hermitian positive semidefinite (negative semidefinite). Λ(A)\Lambda(A) denotes the set of all eigenvalues of the matrix AA. Herm(n){\rm Herm}(n), SHerm(n){\rm SHerm}(n), Sym(n){\rm Sym}(n), and SSym(n){\rm SSym}(n) stand respectively for the set of n×nn\times n Hermitian, skew-Hermitian, symmetric, and skew-symmetric matrices.

2 Preliminaries

In this section, we state some elementary lemmas and recall some mapping results that will be necessary to solve the DSM problem.

Lemma 1.

[3] Let the integer ss be such that 0<s<n0<s<n, and R=Rn,nR=R^{*}\in{\mathbb{C}}^{n,n} be partitioned as R=[BCCD]R=\left[\begin{array}[]{cc}B&C^{*}\\ C&D\end{array}\right] with Bs,sB\in{\mathbb{C}}^{s,s}, Cns,sC\in{\mathbb{C}}^{n-s,s} and Dns,nsD\in{\mathbb{C}}^{n-s,n-s}. Then R0R\succeq 0 if and only if

  1. 1.

    B0B\succeq 0,

  2. 2.

    ker(B)ker(C)\ker(B)\subseteq\ker(C), and

  3. 3.

    DCBC0D-CB^{{\dagger}}C^{*}\succeq 0, where BB^{{\dagger}} denotes the Moore-Penrose pseudoinverse of BB.

Lemma 2.

[4] Let X,Yn,mX,Y\in{\mathbb{C}}^{n,m}. Suppose that rank(X)=r\mathop{\mathrm{rank}}(X)=r and consider the reduced singular value decomposition X=U1Σ1V1X=U_{1}\Sigma_{1}V_{1}^{*} with U1n,r,Σ1r,rU_{1}\in{\mathbb{C}}^{n,r},\Sigma_{1}\in{\mathbb{C}}^{r,r} and V1m,rV_{1}\in{\mathbb{C}}^{m,r}. If XY+YX0X^{*}Y+Y^{*}X\succeq 0, then U1(YX+(YX))U10U_{1}^{*}\left(YX^{\dagger}+(YX^{\dagger})^{*}\right)U_{1}\succeq 0.

Lemma 3.

Let X,Y,Z,Wn,mX,Y,Z,W\in{\mathbb{C}}^{n,m} with XW=YZX^{*}W=Y^{*}Z. Suppose that rank(X)=rank(Z)=r\mathop{\mathrm{rank}}(X)=\mathop{\mathrm{rank}}(Z)=r and consider the reduced singular value decompositions X=U1Σ1V1X=U_{1}\Sigma_{1}V_{1}^{*} and Z=U~1Σ~1V~1Z=\tilde{U}_{1}\tilde{\Sigma}_{1}\tilde{V}_{1}^{*}, where U1,U~1n,rU_{1},\tilde{U}_{1}\in{\mathbb{C}}^{n,r}, V1,V~1m,rV_{1},\tilde{V}_{1}\in{\mathbb{C}}^{m,r}, and Σ1,Σ~1\Sigma_{1},\tilde{\Sigma}_{1} are the diagonal matrices containing the nonzero singular values of XX and ZZ, respectively. If U1=U~1U_{1}=\tilde{U}_{1}, then

U1(YX±(YX))U1=U1(YX±WZ)U1.\displaystyle U_{1}^{*}\left(YX^{\dagger}\pm(YX^{\dagger})^{*}\right)U_{1}=U_{1}^{*}\left(YX^{\dagger}\pm WZ^{\dagger}\right)U_{1}. (3)
Proof.

The proof follows using the fact that U1=U~1U_{1}=\tilde{U}_{1} and XW=YZX^{*}W=Y^{*}Z. In fact, we have

U1(YX±WZ)U1=U1YXU1±Σ11V1V1Σ1U1WZU1=U1YXU1±Σ11V1XWZU1(X=V1Σ1U1)=U1YXU1±Σ11V1YZZU1(XW=YZ)=U1YXU1±Σ11V1YU1U1U1(U1=U~1,U1U1=ZZ)=U1YXU1±Σ11V1YU1=U1YXU1±U1U1Σ11V1YU1(U1U1=Ir)=U1YXU1±U1XYU1(X=U1Σ11V1)=U1(YX±(YX))U1.\displaystyle\begin{split}U_{1}^{*}\left(YX^{\dagger}\pm WZ^{\dagger}\right)U_{1}&=U_{1}^{*}YX^{\dagger}U_{1}\pm\Sigma_{1}^{-1}V_{1}^{*}V_{1}\Sigma_{1}U_{1}^{*}WZ^{\dagger}U_{1}\\ &=U_{1}^{*}YX^{\dagger}U_{1}\pm\Sigma_{1}^{-1}V_{1}^{*}X^{*}WZ^{\dagger}U_{1}\quad\,(\because X^{*}=V_{1}\Sigma_{1}U_{1}^{*})\\ &=U_{1}^{*}YX^{\dagger}U_{1}\pm\Sigma_{1}^{-1}V_{1}^{*}Y^{*}ZZ^{\dagger}U_{1}\quad~{}~{}(\because X^{*}W=Y^{*}Z)\\ &=U_{1}^{*}YX^{\dagger}U_{1}\pm\Sigma_{1}^{-1}V_{1}^{*}Y^{*}U_{1}U_{1}^{*}U_{1}\quad\,(\because U_{1}=\tilde{U}_{1},\,U_{1}U_{1}^{*}=ZZ^{\dagger})\\ &=U_{1}^{*}YX^{\dagger}U_{1}\pm\Sigma_{1}^{-1}V_{1}^{*}Y^{*}U_{1}\\ &=U_{1}^{*}YX^{\dagger}U_{1}\pm U_{1}^{*}U_{1}\Sigma_{1}^{-1}V_{1}^{*}Y^{*}U_{1}\quad(\because U_{1}^{*}U_{1}=I_{r})\\ &=U_{1}^{*}YX^{\dagger}U_{1}\pm U_{1}^{*}X^{{\dagger}^{*}}Y^{*}U_{1}\quad\quad\quad~{}\,(\because X^{{\dagger}^{*}}=U_{1}\Sigma_{1}^{-1}V_{1}^{*})\\ &=U_{1}^{*}\left(YX^{\dagger}\pm(YX^{\dagger})^{*}\right)U_{1}.\\ \end{split}

Lemma 4.

[8, P.57] Let A,Bn,nA,B\in{\mathbb{C}}^{n,n}. If B0,AB0B\succeq 0,A-B\succeq 0, then AB{\|A\|}\geq{\|B\|} where \|\cdot\| is any unitarily invariant matrix norm.

2.1 Mapping results

Here, we recall some mapping results from the literature that will be useful in solving DSM problem for various structures. We start with a result from [17] that solves the standard mapping problem with no structure on it.

Theorem 1.

[17] Let x,yn{0}x,y\in{\mathbb{C}}^{n}\setminus\{0\} and define 𝒮:={Δn,n:Δx=y}{\mathcal{S}}:=\{{\Delta}\in{\mathbb{C}}^{n,n}~{}:~{}{\Delta}x=y\}. Then 𝒮{\mathcal{S}}\neq\emptyset and

𝒮={yx+Z𝒫x:Zn,n}.{\mathcal{S}}=\{yx^{\dagger}+Z\mathcal{P}_{x}~{}:~{}Z\in{\mathbb{C}}^{n,n}\}.

Moreover, infΔ𝒮ΔF=yx,\inf_{{\Delta}\in{\mathcal{S}}}{\|{\Delta}\|}_{F}=\frac{\|y\|}{\|x\|}, where the infimum is attained by Δ^=yx\hat{{\Delta}}=yx^{\dagger}.

We next recall a few mapping results from [1] that give a characterization and minimal Frobenius norm solution for the Hermitian, skew-Hermitian, complex symmetric, and complex skew-symmetric mapping problems.

Theorem 2.

[1] Let x,yn{0}x,y\in{\mathbb{C}}^{n}\setminus\{0\} and let 𝒮:={Δn,n:Δ=Δ,Δx=y}{\mathcal{S}}:=\{{\Delta}\in{\mathbb{C}}^{n,n}~{}:~{}{\Delta}^{*}={\Delta},\,{\Delta}x=y\}. Then 𝒮\mathcal{S}\neq\emptyset if and only if xyx^{*}y\in{\mathbb{R}}. If the later condition holds, then

𝒮={yx+(yx)(xy)xx+𝒫xH𝒫x:Hn,n,H=H}.{\mathcal{S}}=\left\{yx^{\dagger}+(yx^{\dagger})^{*}-(x^{\dagger}y)xx^{\dagger}+\mathcal{P}_{x}H\mathcal{P}_{x}~{}:~{}H\in{\mathbb{C}}^{n,n},\,H^{*}=H\right\}. (4)

Moreover, infΔ𝒮ΔF2=2yxF2trace((xy)xx)\inf_{{\Delta}\in{\mathcal{S}}}{\|{\Delta}\|}_{F}^{2}=2{\|yx^{\dagger}\|}_{F}^{2}-\mathop{\mathrm{trace}}((x^{\dagger}y)^{*}xx^{\dagger}), where the infimum is uniquely attained by Δ^=yx+(yx)(xy)xx\hat{{\Delta}}=yx^{\dagger}+(yx^{\dagger})^{*}-(x^{\dagger}y)xx^{\dagger} which is obtained by setting H=0H=0 in (4).

Theorem 3.

[1] Let x,yn{0}x,y\in{\mathbb{C}}^{n}\setminus\{0\} and let 𝒮:={Δn,n:Δx=y,Δ=Δ}{\mathcal{S}}:=\{{\Delta}\in{\mathbb{C}}^{n,n}~{}:~{}{\Delta}x=y,{\Delta}^{*}=-{\Delta}\}. Then 𝒮\mathcal{S}\neq\emptyset if and only if xyix^{*}y\in i{\mathbb{R}}. If the later condition holds, then

𝒮={yx(yx)+(xy)xx+𝒫xS𝒫x:Sn,n,S=S}.{\mathcal{S}}=\{yx^{\dagger}-(yx^{\dagger})^{*}+(x^{\dagger}y)xx^{\dagger}+\mathcal{P}_{x}S\mathcal{P}_{x}~{}:~{}S\in{\mathbb{C}}^{n,n},\,S^{*}=-S\}.

Moreover, infΔ𝒮ΔF2=2yxF2trace((xy)xx)\inf_{{\Delta}\in{\mathcal{S}}}{\|{\Delta}\|}_{F}^{2}=2{\|yx^{\dagger}\|}_{F}^{2}-\mathop{\mathrm{trace}}((x^{\dagger}y)^{*}xx^{\dagger}), where the infimum is uniquely attained by Δ^=yx(yx)+(xy)xx\hat{{\Delta}}=yx^{\dagger}-(yx^{\dagger})^{*}+(x^{\dagger}y)xx^{\dagger}.

Theorem 4.

[1] Let x,yn{0}x,y\in{\mathbb{C}}^{n}\setminus\{0\} and let 𝒮:={Δn,n:ΔT=Δ,Δx=y}{\mathcal{S}}:=\{{\Delta}\in{\mathbb{C}}^{n,n}~{}:~{}{\Delta}^{T}={\Delta},\,{\Delta}x=y\}. Then 𝒮\mathcal{S}\neq\emptyset and

𝒮={yx+(yx)T(xx)Tyx+(𝒫x)TH𝒫x:Hn,n,HT=H}.{\mathcal{S}}=\left\{yx^{\dagger}+(yx^{\dagger})^{T}-(xx^{\dagger})^{T}yx^{\dagger}+(\mathcal{P}_{x})^{T}H\mathcal{P}_{x}~{}:~{}H\in{\mathbb{C}}^{n,n},\,H^{T}=H\right\}. (5)

Moreover, infΔ𝒮ΔF2=2yxF2trace(yx(yx)(xx)T)\inf_{{\Delta}\in{\mathcal{S}}}{\|{\Delta}\|}_{F}^{2}=2{\|yx^{\dagger}\|}_{F}^{2}-\mathop{\mathrm{trace}}(yx^{\dagger}(yx^{\dagger})^{*}(xx^{\dagger})^{T}), where the infimum is uniquely attained by Δ^=yx+(yx)T(xx)Tyx\hat{{\Delta}}=yx^{\dagger}+(yx^{\dagger})^{T}-(xx^{\dagger})^{T}yx^{\dagger} which is obtained by setting H=0H=0 in (5).

Theorem 5.

[1] Let x,yn{0}x,y\in{\mathbb{C}}^{n}\setminus\{0\} and let 𝒮:={Δn,n:ΔT=Δ,Δx=y}{\mathcal{S}}:=\{{\Delta}\in{\mathbb{C}}^{n,n}~{}:~{}{\Delta}^{T}=-{\Delta},\,{\Delta}x=y\}. Then 𝒮\mathcal{S}\neq\emptyset if and only if xTy=0x^{T}y=0. If the later condition holds, then

𝒮={yx(yx)T+(xx)Tyx+(𝒫x)TH𝒫x:Hn,n,HT=H}.{\mathcal{S}}=\left\{yx^{\dagger}-(yx^{\dagger})^{T}+(xx^{\dagger})^{T}yx^{\dagger}+(\mathcal{P}_{x})^{T}H\mathcal{P}_{x}~{}:~{}H\in{\mathbb{C}}^{n,n},\,H^{T}=-H\right\}. (6)

Moreover, infΔ𝒮ΔF2=2yxF2trace(yx(yx)(xx)T)\inf_{{\Delta}\in{\mathcal{S}}}{\|{\Delta}\|}_{F}^{2}=2{\|yx^{\dagger}\|}_{F}^{2}-\mathop{\mathrm{trace}}(yx^{\dagger}(yx^{\dagger})^{*}(xx^{\dagger})^{T}), where the infimum is uniquely attained by Δ^=yx(yx)T+(xx)Tyx\hat{{\Delta}}=yx^{\dagger}-(yx^{\dagger})^{T}+(xx^{\dagger})^{T}yx^{\dagger} which is obtained by setting H=0H=0 in (6).

The next result from [13] solves the mapping problem of finding Δn,n{\Delta}\in{\mathbb{C}}^{n,n} for given vectors x,y,z,,wnx,y,z,,w\in{\mathbb{C}}^{n} such that Δx=y{\Delta}x=y and Δz=w{\Delta}^{*}z=w.

Theorem 6.

[13] Let x,wm{0},y,zn{0}x,w\in{\mathbb{C}}^{m}\setminus\{0\},y,z\in{\mathbb{C}}^{n}\setminus\{0\} and let

𝒮:={Δn,m:Δx=y,Δz=w}.{\mathcal{S}}:=\{{\Delta}\in{\mathbb{C}}^{n,m}~{}:~{}{\Delta}x=y,{\Delta}^{*}z=w\}.

Then 𝒮\mathcal{S}\neq\emptyset if and only if xw=yzx^{*}w=y^{*}z. If the later condition holds, then

𝒮={yx+(wz)(wz)xx+𝒫zR𝒫x:Rn,m}.{\mathcal{S}}=\{yx^{\dagger}+(wz^{\dagger})^{*}-(wz^{\dagger})^{*}xx^{\dagger}+\mathcal{P}_{z}R\mathcal{P}_{x}~{}:~{}R\in{\mathbb{C}}^{n,m}\}.

Moreover, infΔ𝒮ΔF2=yxF2+wzF2trace(wz(wz)xx)\inf_{{\Delta}\in{\mathcal{S}}}{\|{\Delta}\|}_{F}^{2}={\|yx^{\dagger}\|}_{F}^{2}+{\|wz^{\dagger}\|}_{F}^{2}-\mathop{\mathrm{trace}}(wz^{\dagger}(wz^{\dagger})^{*}xx^{\dagger}), where the infimum is uniquely attained by Δ^=yx+(wz)(wz)xx\hat{{\Delta}}=yx^{\dagger}+(wz^{\dagger})^{*}-(wz^{\dagger})^{*}xx^{\dagger}.

We close this subsection by stating two results that provide solutions to the positive semidefinite mapping problem and dissipative mapping problem, respectively.

Theorem 7.

[12, Theorem 2.3] Let x,yn{0}x,y\in{\mathbb{C}}^{n}\setminus\{0\} and let 𝒮:={Δn,n:Δx=y,Δ=Δ0}{\mathcal{S}}:=\{{\Delta}\in{\mathbb{C}}^{n,n}~{}:~{}{\Delta}x=y,\,{\Delta}={\Delta}^{*}\succeq 0\}. Then 𝒮{\mathcal{S}}\neq\emptyset if and only if xy>0x^{*}y>0. If the later condition holds, then

𝒮={yyxy+𝒫xK𝒫x:Kn,m,K0}.{\mathcal{S}}=\left\{\frac{yy^{*}}{x^{*}y}+\mathcal{P}_{x}K\mathcal{P}_{x}~{}:~{}K\in{\mathbb{C}}^{n,m},\,K\succeq 0\right\}.

Moreover, infΔ𝒮ΔF2=yF2xy\inf_{{\Delta}\in{\mathcal{S}}}{\|{\Delta}\|}_{F}^{2}=\frac{\|y\|_{F}^{2}}{x^{*}y} and infimum is uniquely attained by the rank one matrix Δ^=yyxy\hat{{\Delta}}=\frac{yy^{*}}{x^{*}y}.

Theorem 8.

[4] Let x,yn{0}x,y\in{\mathbb{C}}^{n}\setminus\{0\} and let 𝒮:={Δn,n:Δ+Δ0,Δx=y}\mathcal{S}:=\{\Delta\in{\mathbb{C}}^{n,n}~{}:~{}\Delta+\Delta^{*}\succeq 0,~{}\Delta x=y\}. Then 𝒮\mathcal{S}\neq\emptyset if and only if Re(xy)0\mathop{\mathrm{Re}}{(x^{*}y)}\geq 0. Moreover, if Re(xy)>0\mathop{\mathrm{Re}}{(x^{*}y)}>0, then

𝒮={yx+(yx)𝒫x+xxZ𝒫x+𝒫xK𝒫x+𝒫xG𝒫x:Z,K,Gn,nsatisfy(8)},\displaystyle\mathcal{S}=\Big{\{}yx^{\dagger}+{(yx^{\dagger})}^{*}\mathcal{P}_{x}+xx^{\dagger}Z\mathcal{P}_{x}+\mathcal{P}_{x}K\mathcal{P}_{x}+\mathcal{P}_{x}G\mathcal{P}_{x}:~{}Z,K,G\in{\mathbb{C}}^{n,n}~{}\text{satisfy}~{}\eqref{eq:cond1 a}\Big{\}}, (7)

where

G=G,K0,andK14Re(xy)(2y+Zx)(2y+Zx).\displaystyle G^{*}=-G,\quad K\succeq 0,\quad\text{and}\quad K-\frac{1}{4\mathop{\mathrm{Re}}{(x^{*}y)}}\left(2y+Z^{*}x\right)\left(2y+Z^{*}x\right)^{*}. (8)

Further,

infΔ𝒮ΔF2= 2y2x2|xy|2x4,\inf_{\Delta\in\mathcal{S}}{\|\Delta\|}_{F}^{2}\;=\;2\frac{{\|y\|}^{2}}{{\|x\|}^{2}}-\frac{{|x^{*}y|}^{2}}{{\|x\|}^{4}},

where the infimum is uniquely attained by :=yx(yx)𝒫x\mathcal{H}:=yx^{\dagger}-{(yx^{\dagger})}^{*}\mathcal{P}_{x}, which is obtained by setting K=0K=0, G=0G=0, and Z=2(yx)Z=-2(yx^{\dagger})^{*} in (7).

3 DSM problems with structures belonging to a Jordan or a Lie algebra

In this section, we define the structures on Δ1{\Delta}_{1} in a DSM problem that are associated with some orthosymmetric scalar product. Let Mn,nM\in{\mathbb{C}}^{n,n} be unitary such that MM is either symmetric or skew-symmetric or Hermitian or skew-Hermitian. Define the scalar product ,M:n×n{\langle{\cdot,\cdot\rangle}}_{M}:{\mathbb{C}}^{n}\times{\mathbb{C}}^{n}\longmapsto{\mathbb{C}} by

x,yM:={yTMx, bilinear formyMx,sesquilinear.{\langle{x,y\rangle}}_{M}:=\begin{cases}y^{T}Mx,&\text{ bilinear form}\\ y^{*}Mx,&~{}\text{sesquilinear}.\end{cases}

Then the adjoint of a matrix An,nA\in{\mathbb{C}}^{n,n} with respect to the scalar product ,M{\langle{\cdot,\cdot\rangle}}_{M} is denoted by AA^{\star} and defined by

A={M1ATM, for bilinear formM1AM,for sesquilinear.A^{\star}=\begin{cases}M^{-1}A^{T}M,&\text{ for bilinear form}\\ M^{-1}A^{*}M,&~{}\text{for sesquilinear}.\end{cases}

We also have a Lie algebra 𝕃\mathbb{L} and a Jordan algebra 𝕁\mathbb{J}, associated with ,M{\langle{\cdot,\cdot\rangle}}_{M} defined by

𝕃:={An,n:A=A}and𝕁:={An,n:A=A},\mathbb{L}:=\left\{A\in{\mathbb{C}}^{n,n}:~{}A^{\star}=-A\right\}\quad\text{and}\quad\mathbb{J}:=\left\{A\in{\mathbb{C}}^{n,n}:~{}A^{\star}=A\right\},

respectively, see [11] for more details. We refer to [11, Table 2.1] for some known structured matrices in some 𝕃\mathbb{L} or 𝕁\mathbb{J} associated with a scalar product. This include symmetric, skew-symmetric, pseudosymmetric, pseudoskew-symmetric, Hermitian, skew-Hermitian, pseudo-Hermitian, pseudoskew-Hermitian, etc.

If 𝕊{𝕃,𝕁}\mathbb{S}\in\{\mathbb{L},\mathbb{J}\} and if we define M𝕊:={MA:A𝕊}M\mathbb{S}:=\{MA:~{}A\in\mathbb{S}\}, then it is easy to check that

A𝕊MA{Herm(n),SHerm(n),Sym(n),SSym(n)}.A\in\mathbb{S}\Longleftrightarrow{MA}\in\{{\rm Herm}(n),{\rm SHerm}(n),{\rm Sym}(n),{\rm SSym}(n)\}. (9)

In view of (9), the following result shows that the doubly structured mapping problems with Δ1{Herm(n),SHerm(n),Sym(n),SSym(n)}{\Delta}_{1}\in\{{\rm Herm}(n),{\rm SHerm}(n),{\rm Sym}(n),{\rm SSym}(n)\} are prototypes of more general structured matrices belonging to Jordan and Lie algebras [11, 2].

Theorem 9.

Consider a Lie algebra 𝕃\mathbb{L} and a Jordan algebra 𝕁\mathbb{J}, associated with a scalar product ,M{\langle{\cdot,\cdot\rangle}}_{M} and let 𝕊{𝕃,𝕁}\mathbb{S}\in\{\mathbb{L},\mathbb{J}\}. Then for given vectors x,wn+mx,w\in{\mathbb{C}}^{n+m} and y,zny,z\in{\mathbb{C}}^{n}, 𝒮d𝕊\mathcal{S}_{d}^{\mathbb{S}}\neq\emptyset if and only if 𝒮d𝕊\mathcal{S}_{d}^{\mathbb{S}^{\prime}}\neq\emptyset for some 𝕊{Herm(n),SHerm(n),Sym(n),SSym(n)}\mathbb{S}^{\prime}\in\{{\rm Herm}(n),{\rm SHerm}(n),{\rm Sym}(n),{\rm SSym}(n)\}. Further, Δ^\hat{\Delta} is of minimal Frobenius norm in 𝒮d𝕊\mathcal{S}_{d}^{\mathbb{S}} if and only if MΔ^M\hat{\Delta} is of minimal Frobenius norm in 𝒮d𝕊\mathcal{S}_{d}^{\mathbb{S}^{\prime}}.

Given Theorem 9, the DSM problem with structures belonging to 𝕃\mathbb{L} or 𝕁\mathbb{J} can be solved by reducing it to the DSM problem for 𝕊{Herm(n),SHerm(n),Sym(n),SSym(n)}\mathbb{S}^{\prime}\in\{{\rm Herm}(n),{\rm SHerm}(n),{\rm Sym}(n),{\rm SSym}(n)\}. Thus, in the following, we only consider the DSMs with structures 𝕊{Herm(n),SHerm(n),Sym(n),SSym(n)}\mathbb{S}^{\prime}\in\{{\rm Herm}(n),{\rm SHerm}(n),{\rm Sym}(n),{\rm SSym}(n)\}.

3.1 Doubly structured Hermitian mappings

This section considers the doubly structured Hermitian mapping (DSHM) problem, i.e., when 𝕊=Herm(n)\mathbb{S}={\rm Herm}(n) in Problem 1. We have the following result that completely solves the existence and characterization problem for DSHMs and provides sufficient conditions for the minimal norm solution to the DSHM problem.

Theorem 10.

Given x=[x1Tx2T]Tx=[x_{1}^{T}~{}x_{2}^{T}]^{T} with x1nx_{1}\in{\mathbb{C}}^{n} and x2mx_{2}\in{\mathbb{C}}^{m}, y,zny,z\in{\mathbb{C}}^{n}, and w=[w1Tw2T]Tw=[w_{1}^{T}~{}w_{2}^{T}]^{T} with w1nw_{1}\in{\mathbb{C}}^{n} and w2mw_{2}\in{\mathbb{C}}^{m}. Define

𝒮dHerm:={Δ:Δ=[Δ1Δ2],Δ1n,n,Δ2n,m,Δ1=Δ1,Δx=y,Δz=w}.\mathcal{S}_{d}^{{\rm Herm}}:=\left\{{\Delta}:~{}{\Delta}=[{\Delta}_{1}~{}{\Delta}_{2}],\,{\Delta}_{1}\in{\mathbb{C}}^{n,n},\,{\Delta}_{2}\in{\mathbb{C}}^{n,m},\,{\Delta}_{1}^{*}={\Delta}_{1},\,{\Delta}x=y,\,{\Delta}^{*}z=w\right\}. (10)

Then 𝒮dHerm\mathcal{S}_{d}^{{\rm Herm}}\neq\emptyset if and only if xw=yzx^{*}w=y^{*}z and zw1z^{*}w_{1}\in{\mathbb{R}}. If the later conditions hold true, then

𝒮dHerm={H+H~(K,R):Kn,n,Rn,m,K=K},\mathcal{S}_{d}^{{\rm Herm}}=\left\{H+\widetilde{H}(K,R):~{}K\in{\mathbb{C}}^{n,n},\,R\in{\mathbb{C}}^{n,m},\,K^{*}=K\right\}, (11)

where H=[H1H2]H=[H_{1}~{}H_{2}] and H~(K,R)=[H~1(K)H~2(K,R)]\widetilde{H}(K,R)=[\widetilde{H}_{1}(K)~{}\widetilde{H}_{2}(K,R)] with H1,H2,H~1(K),H~2(K,R)H_{1},H_{2},\widetilde{H}_{1}(K),\widetilde{H}_{2}(K,R) given by

H1\displaystyle H_{1} =\displaystyle= w1z+(w1z)(zw1)zz,\displaystyle w_{1}z^{\dagger}+(w_{1}z^{\dagger})^{*}-(z^{\dagger}w_{1})zz^{\dagger}, (12)
H2\displaystyle H_{2} =\displaystyle= yx2(w1z+(w1z)(zw1)zz)x1x2+(w2z)𝒫x2,\displaystyle yx_{2}^{\dagger}-\left(w_{1}z^{\dagger}+(w_{1}z^{\dagger})^{*}-(z^{\dagger}w_{1})zz^{\dagger}\right)x_{1}x_{2}^{\dagger}+(w_{2}z^{\dagger})^{*}\mathcal{P}_{x_{2}}, (13)
H~1(K)\displaystyle\widetilde{H}_{1}(K) =\displaystyle= 𝒫zK𝒫z,\displaystyle\mathcal{P}_{z}K\mathcal{P}_{z}, (14)
H~2(K,R)\displaystyle\widetilde{H}_{2}(K,R) =\displaystyle= 𝒫zR𝒫x2𝒫zK𝒫zx1x2,\displaystyle\mathcal{P}_{z}R\mathcal{P}_{x_{2}}-\mathcal{P}_{z}K\mathcal{P}_{z}x_{1}x_{2}^{\dagger}, (15)

and

infΔ𝒮dHermΔF2H1F2+infKn,nH2+H~2(K,0)F2.\inf_{{\Delta}\in\mathcal{S}_{d}^{{\rm Herm}}}{\|{\Delta}\|}_{F}^{2}~{}\geq~{}{\|H_{1}\|}_{F}^{2}+\inf_{K\in{\mathbb{C}}^{n,n}}{\big{\|}H_{2}+\widetilde{H}_{2}(K,0)\big{\|}}_{F}^{2}. (16)

Moreover, if x1=αzx_{1}=\alpha z for some nonzero α\alpha\in{\mathbb{C}}, then equality holds in (10) and we have

infΔ𝒮dHermΔF2=H1F2+H2F2,\inf_{{\Delta}\in\mathcal{S}_{d}^{{\rm Herm}}}{\|{\Delta}\|}_{F}^{2}={\|H_{1}\|}_{F}^{2}+{\|H_{2}\|}_{F}^{2},

where infimum is uniquely attained by the matrix HH.

Proof.

Let us suppose that 𝒮dHerm\mathcal{S}_{d}^{{\rm Herm}}\neq\emptyset. Then there exists Δ=[Δ1Δ2]{\Delta}=[{\Delta}_{1}~{}{\Delta}_{2}] with Δ1n,n{\Delta}_{1}\in{\mathbb{C}}^{n,n} and Δ2n,m{\Delta}_{2}\in{\mathbb{C}}^{n,m} such that Δ1=Δ1,Δx=y{\Delta}_{1}^{*}={\Delta}_{1},{\Delta}x=y, and Δz=w{\Delta}^{*}z=w. This implies that yz=(Δx)z=xΔz=xwy^{*}z=({\Delta}x)^{*}z=x^{*}{\Delta}^{*}z=x^{*}w. Also, zw1=zΔ1z=zΔ1z=(Δ1z)z=w1zz^{*}w_{1}=z^{*}{\Delta}_{1}^{*}z=z^{*}{\Delta}_{1}z=({\Delta}_{1}^{*}z)^{*}z=w_{1}^{*}z, since Δ1z=w1{\Delta}_{1}^{*}z=w_{1} and Δ1=Δ1{\Delta}_{1}^{*}={\Delta}_{1}. This implies that zw1z^{*}w_{1}\in{\mathbb{R}}. Conversely, if xw=yz,zw1x^{*}w=y^{*}z,z^{*}w_{1}\in{\mathbb{R}}, then H=[H1H2]H=[H_{1}~{}H_{2}] satisfies that Hx=y,Hz=wHx=y,H^{*}z=w, and H1=H1H_{1}^{*}=H_{1}, which implies that H𝒮dHermH\in\mathcal{S}_{d}^{{\rm Herm}}.

Next, we prove (11). First suppose that Δ𝒮dHerm{\Delta}\in\mathcal{S}_{d}^{{\rm Herm}}, i.e., Δ=[Δ1Δ2]{\Delta}=[{\Delta}_{1}~{}{\Delta}_{2}], such that Δx=y,Δz=w{\Delta}x=y,{\Delta}^{*}z=w, and Δ1=Δ1{\Delta}_{1}^{*}={\Delta}_{1}. This implies that

Δ1x1+Δ2x2=y,Δ1z=w1andΔ2z=w2.\displaystyle{\Delta}_{1}x_{1}+{\Delta}_{2}x_{2}=y,\quad{\Delta}_{1}z=w_{1}\quad\text{and}\quad{\Delta}_{2}^{*}z=w_{2}. (17)

Since Δ1\Delta_{1} is a Hermitian matrix taking zz to w1w_{1}, from Theorem 2 Δ1{\Delta}_{1} has the form

Δ1=w1z+(w1z)(zw1)zz+𝒫zK𝒫z{\Delta}_{1}=w_{1}z^{\dagger}+(w_{1}z^{\dagger})^{*}-(z^{\dagger}w_{1})zz^{\dagger}+\mathcal{P}_{z}K\mathcal{P}_{z} (18)

for some Hermitian matrix Kn,nK\in{\mathbb{C}}^{n,n}. By substituting Δ1{\Delta}_{1} from (18) in (17), we get

Δ2x2=y(w1z+(w1z)(zw1)zz+𝒫zK𝒫z)x1andΔ2z=w2,\displaystyle{\Delta}_{2}x_{2}=y-\left(w_{1}z^{\dagger}+(w_{1}z^{\dagger})^{*}-(z^{\dagger}w_{1})zz^{\dagger}+\mathcal{P}_{z}K\mathcal{P}_{z}\right)x_{1}\quad\text{and}\quad{\Delta}_{2}^{*}z=w_{2}, (19)

i.e., a mapping of the form Δ2x2=y~{\Delta}_{2}x_{2}=\tilde{y} and Δ2z=w2{\Delta}_{2}^{*}z=w_{2}, where y~=y(w1z+(w1z)(zw1)zz+𝒫zK𝒫z)x1\tilde{y}=y-(w_{1}z^{\dagger}+(w_{1}z^{\dagger})^{*}-(z^{\dagger}w_{1})zz^{\dagger}+\mathcal{P}_{z}K\mathcal{P}_{z})x_{1}. The vectors x2,y~,zx_{2},\tilde{y},z, and w2w_{2} satisfy

y~z\displaystyle\tilde{y}^{*}z =\displaystyle= (y(w1z+(w1z)(zw1)zz+𝒫zK𝒫z)x1)z\displaystyle\left(y-(w_{1}z^{\dagger}+(w_{1}z^{\dagger})^{*}-(z^{\dagger}w_{1})zz^{\dagger}+\mathcal{P}_{z}K\mathcal{P}_{z})x_{1}\right)^{*}z
=\displaystyle= yzx1w1((w1z+(w1z)(zw1)zz+𝒫zK𝒫z)z=Δ1z=w1)\displaystyle y^{*}z-x_{1}^{*}w_{1}\quad(\because(w_{1}z^{\dagger}+(w_{1}z^{\dagger})^{*}-(z^{\dagger}w_{1})zz^{\dagger}+\mathcal{P}_{z}K\mathcal{P}_{z})z={\Delta}_{1}z=w_{1})
=\displaystyle= x2w2(xw=x1w1+x2w2andxw=yz).\displaystyle x_{2}^{*}w_{2}\quad(\because x^{*}w=x_{1}^{*}w_{1}+x_{2}^{*}w_{2}~{}\text{and}~{}x^{*}w=y^{*}z).

Therefore, from Theorem 6, Δ2\Delta_{2} can be written as

Δ2=y~x2+(w2z)(w2z)x2x2+𝒫zR𝒫x2,{\Delta}_{2}=\tilde{y}x_{2}^{\dagger}+(w_{2}z^{\dagger})^{*}-(w_{2}z^{\dagger})^{*}x_{2}x_{2}^{\dagger}+\mathcal{P}_{z}R\mathcal{P}_{x_{2}}, (20)

for some Rn,mR\in{\mathbb{C}}^{n,m}.

Thus, in view of  (18) and (20), we have

[Δ1Δ2]\displaystyle\left[{\Delta}_{1}~{}{\Delta}_{2}\right] =\displaystyle= [w1z+(w1z)(zw1)zz+𝒫zK𝒫zy~x2+(w2z)(w2z)x2x2+𝒫zR𝒫x2]\displaystyle\big{[}w_{1}z^{\dagger}+(w_{1}z^{\dagger})^{*}-(z^{\dagger}w_{1})zz^{\dagger}+\mathcal{P}_{z}K\mathcal{P}_{z}~{}~{}~{}\tilde{y}x_{2}^{\dagger}+(w_{2}z^{\dagger})^{*}-(w_{2}z^{\dagger})^{*}x_{2}x_{2}^{\dagger}+\mathcal{P}_{z}R\mathcal{P}_{x_{2}}\big{]} (21)
=\displaystyle= [H1+H~1(K)H2+H~2(K,R)]\displaystyle\big{[}H_{1}+\tilde{H}_{1}(K)~{}~{}H_{2}+\tilde{H}_{2}(K,R)\big{]}
=\displaystyle= H+H~(K,R).\displaystyle H+\widetilde{H}(K,R).

This proves “\subseteq” in (11).

Conversely, let [Δ1Δ2]=[H1+H~1(K)H2+H~2(K,R)][\Delta_{1}~{}\Delta_{2}]=[H_{1}+\widetilde{H}_{1}(K)~{}~{}H_{2}+\widetilde{H}_{2}(K,R)], where H1,H~1(K),H2H_{1},\widetilde{H}_{1}(K),H_{2}, and H~2(K,R)\widetilde{H}_{2}(K,R) are defined by (12)-(15) for some matrices Rn,mR\in{\mathbb{C}}^{n,m} and Kn,nK\in{\mathbb{C}}^{n,n} such that K=KK^{*}=K. Then it is easy to check that [Δ1Δ2]x=y[\Delta_{1}~{}\Delta_{2}]x=y and [Δ1Δ2]z=w[\Delta_{1}~{}\Delta_{2}]^{*}z=w since xw=yzx^{*}w=y^{*}z. Also (H1+H~1(K))=H1+H~1(K)(H_{1}+\widetilde{H}_{1}(K))^{*}=H_{1}+\widetilde{H}_{1}(K) since zw1z^{*}w_{1}\in{\mathbb{R}} and K=KK^{*}=K. Hence [Δ1Δ2]𝒮dHerm[\Delta_{1}~{}\Delta_{2}]\in\mathcal{S}_{d}^{{\rm Herm}}. This shows “\supseteq” in (11).

In view of (11), we have

infΔ𝒮dHermΔF2\displaystyle\inf_{{\Delta}\in\mathcal{S}_{d}^{{\rm Herm}}}{\|{\Delta}\|}_{F}^{2} =\displaystyle= infKn,n,Rn,m,K=KH+H~(K,R)F2\displaystyle\inf_{K\in{\mathbb{C}}^{n,n},R\in{\mathbb{C}}^{n,m},K^{*}=K}{\left\|H+\widetilde{H}(K,R)\right\|}_{F}^{2}
=\displaystyle= infKn,n,Rn,m,K=K([H1H2]+[H~1(K)H~2(K,R)]F2)\displaystyle\inf_{K\in{\mathbb{C}}^{n,n},R\in{\mathbb{C}}^{n,m},K^{*}=K}\left({\big{\|}\big{[}H_{1}~{}H_{2}\big{]}+\big{[}\widetilde{H}_{1}(K)~{}\widetilde{H}_{2}(K,R)\big{]}\big{\|}}_{F}^{2}\right)
=\displaystyle= infKn,n,Rn,m,K=K(H1+H~1(K)F2+H2+H~2(K,R)F2)\displaystyle\inf_{K\in{\mathbb{C}}^{n,n},R\in{\mathbb{C}}^{n,m},K^{*}=K}\left({\big{\|}H_{1}+\widetilde{H}_{1}(K)\big{\|}}_{F}^{2}+{\big{\|}H_{2}+\widetilde{H}_{2}(K,R)\big{\|}}_{F}^{2}\right)
\displaystyle\geq infKn,n,K=KH1+H~1(K)F2+infKn,n,Rn,m,K=KH2+H~2(K,R)F2\displaystyle\inf_{K\in{\mathbb{C}}^{n,n},K^{*}=K}{\big{\|}H_{1}+\widetilde{H}_{1}(K)\big{\|}}_{F}^{2}+\inf_{K\in{\mathbb{C}}^{n,n},R\in{\mathbb{C}}^{n,m},K^{*}=K}{\big{\|}H_{2}+\widetilde{H}_{2}(K,R)\big{\|}}_{F}^{2}
=\displaystyle= H1F2+infKn,n,Rn,m,K=KH2+H~2(K,R)F2\displaystyle{\|H_{1}\|}_{F}^{2}+\inf_{K\in{\mathbb{C}}^{n,n},R\in{\mathbb{C}}^{n,m},K^{*}=K}{\big{\|}H_{2}+\widetilde{H}_{2}(K,R)\big{\|}}_{F}^{2}
=\displaystyle= H1F2+infKn,n,K=K(infRn,mH2+H~2(K,R)F2)\displaystyle{\|H_{1}\|}_{F}^{2}+\inf_{K\in{\mathbb{C}}^{n,n},K^{*}=K}\Big{(}\inf_{R\in{\mathbb{C}}^{n,m}}{\big{\|}H_{2}+\widetilde{H}_{2}(K,R)\big{\|}}_{F}^{2}\Big{)}
=\displaystyle= H1F2+infKn,n,K=KH2+H~2(K,0)F2,\displaystyle{\|H_{1}\|}_{F}^{2}+\inf_{K\in{\mathbb{C}}^{n,n},K^{*}=K}{\big{\|}H_{2}+\widetilde{H}_{2}(K,0)\big{\|}}_{F}^{2}, (24)

where the first inequality in (LABEL:eq:firstineq) follows due to the fact that for any two real valued functions ff and gg defined on the same domain, inf(f+g)inff+infg\inf(f+g)\geq\inf f+\inf g. Also equality in (3.1) follows since the infimum in the first term is attained when K=0K=0. In fact, for any Kn,nK\in{\mathbb{C}}^{n,n} such that K=KK^{*}=K, we have (H1+H~1(K))z=w1(H_{1}+\widetilde{H}_{1}(K))z=w_{1}, which implies from Theorem 2 that the minimum of H1+H~1(K)F{\|H_{1}+\widetilde{H}_{1}(K)\|}_{F} is attained when K=0K=0. Further, for a fixed KK and for any Rn,mR\in{\mathbb{C}}^{n,m}, H2+H~2(K,R)H_{2}+\widetilde{H}_{2}(K,R) is a matrix satisfying (H2+H~2(K,R))x2=y~(H_{2}+\widetilde{H}_{2}(K,R))x_{2}=\tilde{y} and (H2+H~2(K,R))z=w2(H_{2}+\widetilde{H}_{2}(K,R))^{*}z=w_{2}. This implies from Theorem 6 that for any fixed KK, the minimum of H2+H~2(K,R)F{\|H_{2}+\widetilde{H}_{2}(K,R)\|}_{F} over RR is attained when R=0R=0, which yields (24). This proves (10).

Next suppose if x1=αzx_{1}=\alpha z for some nonzero α\alpha\in{\mathbb{C}}, then H~2(K,0)=0\widetilde{H}_{2}(K,0)=0 for every Kn,nK\in{\mathbb{C}}^{n,n}. This implies from (24) that

infΔ𝒮dHermΔF2H1F2+H2F2=HF2,\displaystyle\inf_{{\Delta}\in\mathcal{S}_{d}^{{\rm Herm}}}{\|{\Delta}\|}_{F}^{2}~{}\geq~{}{\|H_{1}\|}_{F}^{2}+{\|H_{2}\|}_{F}^{2}\,=\,{\|H\|}_{F}^{2}, (25)

and in this case the lower bound is attained since H𝒮dHermH\in\mathcal{S}_{d}^{{\rm Herm}}. This completes the proof.       

3.2 Doubly structured skew-Hermitian mappings

A result analogous to Theorem 10 can be obtained for doubly structured skew-Hermitian mappings (DSSHMs), i.e., when 𝕊=SHerm(n)\mathbb{S}={\rm SHerm}(n) in Problem 1. In the following, we state the result for DSSHMs and skip its proof as it is similar to the proof of Theorem 10.

Theorem 11.

Given x=[x1Tx2T]Tx=[x_{1}^{T}~{}x_{2}^{T}]^{T} with x1nx_{1}\in{\mathbb{C}}^{n} and x2mx_{2}\in{\mathbb{C}}^{m}, y,zny,z\in{\mathbb{C}}^{n}, and w=[w1Tw2T]Tw=[w_{1}^{T}~{}w_{2}^{T}]^{T} with w1nw_{1}\in{\mathbb{C}}^{n} and w2mw_{2}\in{\mathbb{C}}^{m}. Define

𝒮dSHerm:={Δ:Δ=[Δ1Δ2],Δ1n,n,Δ2n,m,Δ1=Δ1,Δx=y,Δz=w}.\mathcal{S}_{d}^{{\rm SHerm}}:=\left\{{\Delta}:~{}{\Delta}=[{\Delta}_{1}~{}{\Delta}_{2}],\,{\Delta}_{1}\in{\mathbb{C}}^{n,n},\,{\Delta}_{2}\in{\mathbb{C}}^{n,m},\,{\Delta}_{1}^{*}=-{\Delta}_{1},\,{\Delta}x=y,\,{\Delta}^{*}z=w\right\}.

Then 𝒮dSHerm\mathcal{S}_{d}^{{\rm SHerm}}\neq\emptyset if and only if xw=yzx^{*}w=y^{*}z and zw1iz^{*}w_{1}\in i{\mathbb{R}}. If the later conditions hold true, then

𝒮dSHerm={H+H~(K,R):Kn,n,Rn,m,K=K},\mathcal{S}_{d}^{{\rm SHerm}}=\left\{H+\widetilde{H}(K,R):~{}K\in{\mathbb{C}}^{n,n},\,R\in{\mathbb{C}}^{n,m},\,K^{*}=-K\right\},

where H=[H1H2]H=[H_{1}~{}H_{2}] and H~(K,R)=[H~1(K)H~2(K,R)]\widetilde{H}(K,R)=[\widetilde{H}_{1}(K)~{}\widetilde{H}_{2}(K,R)] with H1,H2,H~1(K),H~2(K,R)H_{1},H_{2},\widetilde{H}_{1}(K),\widetilde{H}_{2}(K,R) given by

H1\displaystyle H_{1} =\displaystyle= w1z+(w1z)+(zw1)zz,\displaystyle-w_{1}z^{\dagger}+(w_{1}z^{\dagger})^{*}+(z^{\dagger}w_{1})zz^{\dagger},
H2\displaystyle H_{2} =\displaystyle= yx2(w1z+(w1z)+(zw1)zz)x1x2+(w2z)𝒫x2,\displaystyle yx_{2}^{\dagger}-\left(-w_{1}z^{\dagger}+(w_{1}z^{\dagger})^{*}+(z^{\dagger}w_{1})zz^{\dagger}\right)x_{1}x_{2}^{\dagger}+(w_{2}z^{\dagger})^{*}\mathcal{P}_{x_{2}},
H~1(K)\displaystyle\widetilde{H}_{1}(K) =\displaystyle= PzKPz,\displaystyle P_{z}KP_{z},
H~2(K,R)\displaystyle\widetilde{H}_{2}(K,R) =\displaystyle= PzRPx2PzKPzx1x2,\displaystyle P_{z}RP_{x_{2}}-P_{z}KP_{z}x_{1}x_{2}^{\dagger},

and

infΔ𝒮dSHermΔF2H1F2+infKn,nH2+H~2(K,0)F2.\inf_{{\Delta}\in\mathcal{S}_{d}^{{\rm SHerm}}}{\|{\Delta}\|}_{F}^{2}~{}\geq~{}{\|H_{1}\|}_{F}^{2}+\inf_{K\in{\mathbb{C}}^{n,n}}{\big{\|}H_{2}+\widetilde{H}_{2}(K,0)\big{\|}}_{F}^{2}. (26)

Moreover, if x1=αzx_{1}=\alpha z for some nonzero α\alpha\in{\mathbb{C}}, then equality holds in (26) and we have

infΔ𝒮dSHermΔF2=H1F2+H2F2,\inf_{{\Delta}\in\mathcal{S}_{d}^{{\rm SHerm}}}{\|{\Delta}\|}_{F}^{2}={\|H_{1}\|}_{F}^{2}+{\|H_{2}\|}_{F}^{2},

where infimum is uniquely attained by the matrix HH.

3.3 Doubly structured complex symmetric/skew-symmetric mappings

In this section, we consider the doubly structured symmetric mapping (DSSM) problem, i.e., when 𝕊=Sym(n)\mathbb{S}={\rm Sym}(n) in Problem 1. We have the following result for DSSMs, proof of which is kept in A.

Theorem 12.

Given x=[x1Tx2T]Tx=[x_{1}^{T}~{}x_{2}^{T}]^{T} with x1nx_{1}\in{\mathbb{C}}^{n} and x2mx_{2}\in{\mathbb{C}}^{m}, y,zny,z\in{\mathbb{C}}^{n}, and w=[w1Tw2T]Tw=[w_{1}^{T}~{}w_{2}^{T}]^{T} with w1nw_{1}\in{\mathbb{C}}^{n} and w2mw_{2}\in{\mathbb{C}}^{m}. Define

𝒮dSym:={Δ:Δ=[Δ1Δ2],Δ1n,n,Δ2n,m,Δ1T=Δ1,Δx=y,Δz=w}.\mathcal{S}_{d}^{{\rm Sym}}:=\left\{{\Delta}:~{}{\Delta}=[{\Delta}_{1}~{}{\Delta}_{2}],\,{\Delta}_{1}\in{\mathbb{C}}^{n,n},\,{\Delta}_{2}\in{\mathbb{C}}^{n,m},\,{\Delta}_{1}^{T}={\Delta}_{1},\,{\Delta}x=y,\,{\Delta}^{*}z=w\right\}. (27)

Then 𝒮dSym\mathcal{S}_{d}^{{\rm Sym}}\neq\emptyset if and only if xw=yzx^{*}w=y^{*}z. If the later conditions hold true, then

𝒮dSym={H+H~(K,R):Kn,n,Rn,m,KT=K},\mathcal{S}_{d}^{{\rm Sym}}=\left\{H+\widetilde{H}(K,R):~{}K\in{\mathbb{C}}^{n,n},\,R\in{\mathbb{C}}^{n,m},\,K^{T}=K\right\}, (28)

where H=[H1H2]H=[H_{1}~{}H_{2}] and H~(K,R)=[H~1(K)H~2(K,R)]\widetilde{H}(K,R)=[\widetilde{H}_{1}(K)~{}\widetilde{H}_{2}(K,R)] with H1,H2,H~1(K),H~2(K,R)H_{1},H_{2},\widetilde{H}_{1}(K),\widetilde{H}_{2}(K,R) given by

H1\displaystyle H_{1} =\displaystyle= w¯1z¯+(w¯1z¯)Tz¯Tz¯Tw¯1z¯,\displaystyle\bar{w}_{1}\bar{z}^{\dagger}+(\bar{w}_{1}\bar{z}^{\dagger})^{T}-\bar{z}^{{\dagger}^{T}}\bar{z}^{T}\bar{w}_{1}\bar{z}^{\dagger}, (29)
H2\displaystyle H_{2} =\displaystyle= yx2(w¯1z¯+(w¯1z¯)Tz¯Tz¯Tw¯1z¯)x1x2+(w2z)𝒫x2,\displaystyle yx_{2}^{\dagger}-\left(\bar{w}_{1}\bar{z}^{\dagger}+(\bar{w}_{1}\bar{z}^{\dagger})^{T}-\bar{z}^{{\dagger}^{T}}\bar{z}^{T}\bar{w}_{1}\bar{z}^{\dagger}\right)x_{1}x_{2}^{\dagger}+(w_{2}z^{\dagger})^{*}\mathcal{P}_{x_{2}}, (30)
H~1(K)\displaystyle\widetilde{H}_{1}(K) =\displaystyle= 𝒫z¯TK𝒫z¯,\displaystyle\mathcal{P}_{\bar{z}}^{T}K\mathcal{P}_{\bar{z}}, (31)
H~2(K,R)\displaystyle\widetilde{H}_{2}(K,R) =\displaystyle= 𝒫zR𝒫x2(𝒫z¯)TK𝒫z¯x1x2,\displaystyle\mathcal{P}_{z}R\mathcal{P}_{x_{2}}-(\mathcal{P}_{\bar{z}})^{T}K\mathcal{P}_{\bar{z}}x_{1}x_{2}^{\dagger}, (32)

and

infΔ𝒮dSymΔF2H1F2+infKn,nH2+H~2(K,0)F2.\inf_{{\Delta}\in\mathcal{S}_{d}^{{\rm Sym}}}{\|{\Delta}\|}_{F}^{2}~{}\geq~{}{\|H_{1}\|}_{F}^{2}+\inf_{K\in{\mathbb{C}}^{n,n}}{\big{\|}H_{2}+\widetilde{H}_{2}(K,0)\big{\|}}_{F}^{2}. (33)

Moreover, if x1=αz¯x_{1}=\alpha\bar{z} for some nonzero α\alpha\in{\mathbb{C}}, then equality holds in (33) and we have

infΔ𝒮dSymΔF2=H1F2+H2F2,\inf_{{\Delta}\in\mathcal{S}_{d}^{{\rm Sym}}}{\|{\Delta}\|}_{F}^{2}={\|H_{1}\|}_{F}^{2}+{\|H_{2}\|}_{F}^{2},

where infimum is uniquely attained by the matrix HH.

Proof.

See A.       

A result analogous to Theorem 12 can be obtained for doubly structured skew-symmetric mappings, i.e., when 𝕊=SSym(n)\mathbb{S}={\rm SSym}(n) in Problem 1 as follows.

Theorem 13.

Given x=[x1Tx2T]Tx=[x_{1}^{T}~{}x_{2}^{T}]^{T} with x1nx_{1}\in{\mathbb{C}}^{n} and x2mx_{2}\in{\mathbb{C}}^{m}, y,zny,z\in{\mathbb{C}}^{n}, and w=[w1Tw2T]Tw=[w_{1}^{T}~{}w_{2}^{T}]^{T} with w1nw_{1}\in{\mathbb{C}}^{n} and w2mw_{2}\in{\mathbb{C}}^{m}. Define

𝒮dSSym:={Δ:Δ=[Δ1Δ2],Δ1n,n,Δ2n,m,Δ1T=Δ1,Δx=y,Δz=w}.\mathcal{S}_{d}^{{\rm SSym}}:=\left\{{\Delta}:~{}{\Delta}=[{\Delta}_{1}~{}{\Delta}_{2}],\,{\Delta}_{1}\in{\mathbb{C}}^{n,n},\,{\Delta}_{2}\in{\mathbb{C}}^{n,m},\,{\Delta}_{1}^{T}=-{\Delta}_{1},\,{\Delta}x=y,\,{\Delta}^{*}z=w\right\}. (34)

Then 𝒮dSSym\mathcal{S}_{d}^{{\rm SSym}}\neq\emptyset if and only if xw=yzx^{*}w=y^{*}z and zTw1=0z^{T}w_{1}=0. If the later conditions hold true, then

𝒮dSSym={H+H~(K,R):Kn,n,Rn,m,KT=K},\mathcal{S}_{d}^{{\rm SSym}}=\left\{H+\widetilde{H}(K,R):~{}K\in{\mathbb{C}}^{n,n},\,R\in{\mathbb{C}}^{n,m},\,K^{T}=-K\right\}, (35)

where H=[H1H2]H=[H_{1}~{}H_{2}] and H~(K,R)=[H~1(K)H~2(K,R)]\widetilde{H}(K,R)=[\widetilde{H}_{1}(K)~{}\widetilde{H}_{2}(K,R)] with H1,H2,H~1(K),H~2(K,R)H_{1},H_{2},\widetilde{H}_{1}(K),\widetilde{H}_{2}(K,R) given by

H1\displaystyle H_{1} =\displaystyle= w¯1z¯+(w¯1z¯)T+z¯Tz¯Tw¯1z¯,\displaystyle-\bar{w}_{1}\bar{z}^{\dagger}+(\bar{w}_{1}\bar{z}^{\dagger})^{T}+\bar{z}^{{\dagger}^{T}}\bar{z}^{T}\bar{w}_{1}\bar{z}^{\dagger}, (36)
H2\displaystyle H_{2} =\displaystyle= yx2(w¯1z¯+(w¯1z¯)T+z¯Tz¯Tw¯1z¯)x1x2+(w2z)𝒫x2,\displaystyle yx_{2}^{\dagger}-\left(-\bar{w}_{1}\bar{z}^{\dagger}+(\bar{w}_{1}\bar{z}^{\dagger})^{T}+\bar{z}^{{\dagger}^{T}}\bar{z}^{T}\bar{w}_{1}\bar{z}^{\dagger}\right)x_{1}x_{2}^{\dagger}+(w_{2}z^{\dagger})^{*}\mathcal{P}_{x_{2}}, (37)
H~1(K)\displaystyle\widetilde{H}_{1}(K) =\displaystyle= 𝒫z¯TK𝒫z¯,\displaystyle\mathcal{P}_{\bar{z}}^{T}K\mathcal{P}_{\bar{z}}, (38)
H~2(K,R)\displaystyle\widetilde{H}_{2}(K,R) =\displaystyle= 𝒫zR𝒫x2(𝒫z¯)TK𝒫z¯x1x2,\displaystyle\mathcal{P}_{z}R\mathcal{P}_{x_{2}}-(\mathcal{P}_{\bar{z}})^{T}K\mathcal{P}_{\bar{z}}x_{1}x_{2}^{\dagger}, (39)

and

infΔ𝒮dSSymΔF2H1F2+infKn,nH2+H~2(K,0)F2.\inf_{{\Delta}\in\mathcal{S}_{d}^{{\rm SSym}}}{\|{\Delta}\|}_{F}^{2}~{}\geq~{}{\|H_{1}\|}_{F}^{2}+\inf_{K\in{\mathbb{C}}^{n,n}}{\big{\|}H_{2}+\widetilde{H}_{2}(K,0)\big{\|}}_{F}^{2}. (40)

Moreover, if x1=αz¯x_{1}=\alpha\bar{z} for some nonzero α\alpha\in{\mathbb{C}}, then equality holds in (40) and we have

infΔ𝒮dSSymΔF2=H1F2+H2F2,\inf_{{\Delta}\in\mathcal{S}_{d}^{{\rm SSym}}}{\|{\Delta}\|}_{F}^{2}={\|H_{1}\|}_{F}^{2}+{\|H_{2}\|}_{F}^{2},

where infimum is uniquely attained by the matrix HH.

Proof.

The proof follows on the lines of the proof of Theorem 12 (see A) by using Theorem 5 in place of Theorem 4.       

4 Solution to the doubly structured semidefinite mapping problem

This section considers the doubly structured positive semidefinite mapping (DSPSDM) problem, i.e., when 𝕊\mathbb{S} is the set of all n×nn\times n positive semidefinite matrices in Problem 1. We first prove a lemma that will be needed in characterizing the set of all solutions to the DSPSD mapping problem.

Lemma 5.

Let A,Bn,nA,B\in{\mathbb{C}}^{n,n} such that B0B\succeq 0. If λΛ(A)\lambda\in\Lambda(A) implies that Re(λ)0\mathop{\mathrm{Re}}(\lambda)\leq 0, then Re(trace(AB))0\mathop{\mathrm{Re}}{(\mathop{\mathrm{trace}}(AB))}\leq 0.

Proof.

Let λ1,,λn\lambda_{1},\ldots,\lambda_{n} be the eigenvalues of AA. Then by assumption Re(λi)0\mathop{\mathrm{Re}}{(\lambda_{i})}\leq 0 for all ii. Also, B0B\succeq 0 implies that there exists a unitary matrix Un,nU\in{\mathbb{C}}^{n,n} such that UBU=DU^{*}BU=D, where D=diag(d1,,dn)D=\text{diag}(d_{1},\ldots,d_{n}) with di0d_{i}\geq 0 for all ii. Thus we have

trace(AB)=trace(AUDU)=trace(UAUD)=j=1na~jjdj,\text{trace}(AB)=\text{trace}(AUDU^{*})=\text{trace}(U^{*}AUD)=\sum_{j=1}^{n}\widetilde{a}_{jj}d_{j}, (41)

where UAU=(a~ij)U^{*}AU=(\widetilde{a}_{ij}). This implies that

Re(trace(AB))=j=1nRe(a~jj)djmaxja~jjj=1nRe(a~jj)=maxja~jjj=1nReλj0,\displaystyle\mathop{\mathrm{Re}}{(\text{trace}(AB))}=\sum_{j=1}^{n}\mathop{\mathrm{Re}}{(\widetilde{a}_{jj})}d_{j}\leq\max_{j}\widetilde{a}_{jj}\cdot\sum_{j=1}^{n}\mathop{\mathrm{Re}}{(\widetilde{a}_{jj})}=\max_{j}\widetilde{a}_{jj}\cdot\sum_{j=1}^{n}\mathop{\mathrm{Re}}{\lambda_{j}}\leq 0,

since AA and UAUU^{*}AU are unitary similar and have the same eigenvalues, and di0d_{i}\geq 0 and Re(λi)0\mathop{\mathrm{Re}}{(\lambda_{i})}\leq 0 for all i=1,,ni=1,\ldots,n.       

We have the following result that completely solves the existence and characterization problem for DSPSDMs and provides sufficient conditions for the minimal norm solution to the DSPSDM problem.

Theorem 14.

Given x=[x1Tx2T]Tx=[x_{1}^{T}~{}x_{2}^{T}]^{T} with x1nx_{1}\in{\mathbb{C}}^{n} and x2m{0}x_{2}\in{\mathbb{C}}^{m}\setminus\{0\}, y,zny,z\in{\mathbb{C}}^{n}, and w=[w1Tw2T]Tw=[w_{1}^{T}~{}w_{2}^{T}]^{T} with w1n{0}w_{1}\in{\mathbb{C}}^{n}\setminus\{0\} and w2m{0}w_{2}\in{\mathbb{C}}^{m}\setminus\{0\}. Define

𝒮dPSD:={Δ:Δ=[Δ1Δ2],Δ1n,n,Δ2n,m,Δ10,Δx=y,Δz=w}.\mathcal{S}_{d}^{{\rm PSD}}:=\left\{{\Delta}:~{}{\Delta}=[{\Delta}_{1}~{}{\Delta}_{2}],\,{\Delta}_{1}\in{\mathbb{C}}^{n,n},\,{\Delta}_{2}\in{\mathbb{C}}^{n,m},\,{\Delta}_{1}\succeq 0,\,{\Delta}x=y,\,{\Delta}^{*}z=w\right\}. (42)

Then 𝒮dPSD\mathcal{S}_{d}^{{\rm PSD}}\neq\emptyset if and only if xw=yzx^{*}w=y^{*}z and zw1>0z^{*}w_{1}>0. If the later conditions hold true, then

𝒮dPSD={H+H~(K,R):Kn,n,Rn,m,K0},\mathcal{S}_{d}^{{\rm PSD}}=\left\{H+\widetilde{H}(K,R):~{}K\in{\mathbb{C}}^{n,n},\,R\in{\mathbb{C}}^{n,m},\,K\succeq 0\right\}, (43)

where H=[H1H2]H=[H_{1}~{}H_{2}] and H~(K,R)=[H~1(K)H~2(K,R)]\widetilde{H}(K,R)=[\widetilde{H}_{1}(K)~{}\widetilde{H}_{2}(K,R)] with H1,H2,H~1(K),H~2(K,R)H_{1},H_{2},\widetilde{H}_{1}(K),\widetilde{H}_{2}(K,R) given by

H1\displaystyle H_{1} =\displaystyle= w1w1zw1\displaystyle\frac{w_{1}w_{1}^{*}}{z^{*}w_{1}} (44)
H2\displaystyle H_{2} =\displaystyle= yx2x22w1w1x1x2(zw1)+zw2z2(w2x2)zx2z2\displaystyle\frac{yx_{2}^{*}}{\|x_{2}\|^{2}}-\frac{w_{1}w_{1}^{*}x_{1}x_{2}^{\dagger}}{(z^{*}w_{1})}+\frac{zw_{2}^{*}}{\|z\|^{2}}-\frac{(w_{2}^{*}x_{2})zx_{2}^{\dagger}}{\|z\|^{2}} (45)
H~1(K)\displaystyle\widetilde{H}_{1}(K) =\displaystyle= 𝒫zK𝒫z\displaystyle\mathcal{P}_{z}K\mathcal{P}_{z} (46)
H~2(K,R)\displaystyle\widetilde{H}_{2}(K,R) =\displaystyle= 𝒫zR𝒫x2𝒫zK𝒫zx1x2,\displaystyle\mathcal{P}_{z}R\mathcal{P}_{x_{2}}-\mathcal{P}_{z}K\mathcal{P}_{z}x_{1}x_{2}^{\dagger}, (47)

and

infΔ𝒮dPSDΔF2H1F2+infKn,nH2+H~2(K,0)F2.\inf_{{\Delta}\in\mathcal{S}_{d}^{{\rm PSD}}}{\|{\Delta}\|}_{F}^{2}~{}\geq~{}{\|H_{1}\|}_{F}^{2}+\inf_{K\in{\mathbb{C}}^{n,n}}{\big{\|}H_{2}+\widetilde{H}_{2}(K,0)\big{\|}}_{F}^{2}. (48)

Moreover, if x1=αzx_{1}=\alpha z for some nonzero α\alpha\in{\mathbb{C}}, or, if all eigenvalues of the matrix :=yx1w1x1zw1w1x1\mathcal{M}:=yx_{1}^{*}-\frac{w_{1}^{*}x_{1}}{z^{*}w_{1}}w_{1}x_{1}^{*} lie in the left half of the complex plane, i.e., λΛ()\lambda\in\Lambda(\mathcal{M}) implies that Re(λ)0\mathop{\mathrm{Re}}{(\lambda)}\leq 0, then we have

infΔ𝒮dPSDΔF2=H1F2+H2F2,\inf_{{\Delta}\in\mathcal{S}_{d}^{{\rm PSD}}}{\|{\Delta}\|}_{F}^{2}~{}=~{}{\|H_{1}\|}_{F}^{2}+{\|H_{2}\|}_{F}^{2},

where the infimum is uniquely attained by the matrix HH.

Proof.

Suppose that 𝒮dPSD\mathcal{S}_{d}^{{\rm PSD}}\neq\emptyset and let Δ𝒮dPSD{\Delta}\in\mathcal{S}_{d}^{{\rm PSD}}. Then Δ=[Δ1Δ2]{\Delta}=[{\Delta}_{1}~{}{\Delta}_{2}] with Δ1n,n,Δ2n,m{\Delta}_{1}\in{\mathbb{C}}^{n,n},\,{\Delta}_{2}\in{\mathbb{C}}^{n,m} such that Δ10{\Delta}_{1}\succeq 0, Δx=y{\Delta}x=y, and Δz=w{\Delta}^{*}z=w. This implies that yz=(Δx)z=xΔz=xwy^{*}z=({\Delta}x)^{*}z=x^{*}{\Delta}^{*}z=x^{*}w. Also, zw1=zΔ1z=zΔ1z0z^{*}w_{1}=z^{*}{\Delta}_{1}^{*}z=z^{*}{\Delta}_{1}z\geq 0, since Δ1z=w1{\Delta}_{1}^{*}z=w_{1} and Δ1=Δ10{\Delta}_{1}^{*}={\Delta}_{1}\succeq 0. In fact, we have zw1>0z^{*}w_{1}>0, since if zw1=0z^{*}w_{1}=0, then this implies that zΔ1z=0z^{*}{\Delta}_{1}^{*}z=0 and hence w1=Δ1z=0w_{1}={\Delta}_{1}z=0, which is a contradiction as w10w_{1}\neq 0. Conversely, let xw=yzx^{*}w=y^{*}z and zw1>0z^{*}w_{1}>0. Then it is easy to see that the matrix H=[H1H2]H=[H_{1}~{}H_{2}] satisfies Hx=y,Hz=wHx=y,H^{*}z=w. Also H10H_{1}\succeq 0 for being a rank one symmetric matrix, which implies that H𝒮dPSDH\in\mathcal{S}_{d}^{{\rm PSD}}.

Next, we prove (43). For this, let Δ𝒮dPSD{\Delta}\in\mathcal{S}_{d}^{{\rm PSD}}, i.e., Δ=[Δ1Δ2]{\Delta}=[{\Delta}_{1}~{}{\Delta}_{2}] such that Δx=y,Δz=w{\Delta}x=y,{\Delta}^{*}z=w, and Δ10{\Delta}_{1}\succeq 0. This implies that

Δ1x1+Δ2x2=y,Δ1z=w1andΔ2z=w2.{\Delta}_{1}x_{1}+{\Delta}_{2}x_{2}=y,\quad{\Delta}_{1}z=w_{1}\quad\text{and}\quad{\Delta}_{2}^{*}z=w_{2}. (49)

Since Δ10{\Delta}_{1}\succeq 0 taking zz to w1w_{1}, from Theorem 7 Δ1{\Delta}_{1} has the form

Δ1=w1w1zw1+𝒫zK𝒫z,{\Delta}_{1}=\frac{w_{1}w_{1}^{*}}{z^{*}w_{1}}+\mathcal{P}_{z}K\mathcal{P}_{z}, (50)

for some positive semidefinite matrix Kn,nK\in{\mathbb{C}}^{n,n}. By substituting Δ1\Delta_{1} from (50) in (49), we get

Δ2x2=y~andΔ2z=w2,{\Delta}_{2}x_{2}=\tilde{y}\quad\text{and}\quad{\Delta}_{2}^{*}z=w_{2}, (51)

where y~=y(w1w1zw1+𝒫zK𝒫z)x1\tilde{y}=y-\left(\frac{w_{1}w_{1}^{*}}{z^{*}w_{1}}+\mathcal{P}_{z}K\mathcal{P}_{z}\right)x_{1}. Again since y~z=x2w2\tilde{y}^{*}z=x_{2}^{*}w_{2}, in view of Theorem 6 Δ2\Delta_{2} has the form

Δ2=y~x2+(w2z)(w2z)x2x2+𝒫zR𝒫x2,{\Delta}_{2}=\tilde{y}x_{2}^{\dagger}+(w_{2}z^{\dagger})^{*}-(w_{2}z^{\dagger})^{*}x_{2}x_{2}^{\dagger}+\mathcal{P}_{z}R\mathcal{P}_{x_{2}}, (52)

for some Rn,mR\in{\mathbb{C}}^{n,m}. Thus in view of (50) and (52), we have

[Δ1Δ2]\displaystyle[{\Delta}_{1}~{}\,{\Delta}_{2}] =\displaystyle= [w1w1zw1+𝒫zK𝒫zy~x2+(w2z)(w2z)x2x2+𝒫zR𝒫x2]\displaystyle\left[\begin{array}[]{cc}\frac{w_{1}w_{1}^{*}}{z^{*}w_{1}}+\mathcal{P}_{z}K\mathcal{P}_{z}&\tilde{y}x_{2}^{\dagger}+(w_{2}z^{\dagger})^{*}-(w_{2}z^{\dagger})^{*}x_{2}x_{2}^{\dagger}+\mathcal{P}_{z}R\mathcal{P}_{x_{2}}\end{array}\right] (54)
=\displaystyle= [w1w1zw1yx2(w1x1)w1x2+(w2z)(w2z)x2x2]\displaystyle\left[\begin{array}[]{cc}\frac{w_{1}w_{1}^{*}}{z^{*}w_{1}}&yx_{2}^{\dagger}-(w_{1}^{*}x_{1})w_{1}x_{2}^{\dagger}+(w_{2}z^{\dagger})^{*}-(w_{2}z^{\dagger})^{*}x_{2}x_{2}^{\dagger}\end{array}\right]
+\displaystyle+ [𝒫zK𝒫z𝒫zR𝒫x2𝒫zK𝒫zx1x2]\displaystyle\left[\mathcal{P}_{z}K\mathcal{P}_{z}~{}~{}\mathcal{P}_{z}R\mathcal{P}_{x_{2}}-\mathcal{P}_{z}K\mathcal{P}_{z}x_{1}x_{2}^{\dagger}\right]
=\displaystyle= [H1H2]+[H~1(K)H~2(K,R)]\displaystyle\big{[}H_{1}~{}H_{2}\big{]}+\big{[}\widetilde{H}_{1}(K)~{}\,\widetilde{H}_{2}(K,R)\big{]}
=\displaystyle= H+H~(K,R).\displaystyle H+\widetilde{H}(K,R). (57)

This proves “\subseteq” in (43).

Conversely, let xw=yzx^{*}w=y^{*}z and zw1>0z^{*}w_{1}>0 and consider [Δ1Δ2]=[H1+H~1(K)H2+H~2(K,R)][\Delta_{1}~{}\Delta_{2}]=[H_{1}+\widetilde{H}_{1}(K)~{}\,H_{2}+\widetilde{H}_{2}(K,R)], where H1,H~1(K),H2H_{1},\widetilde{H}_{1}(K),H_{2}, and H~2(K,R)\widetilde{H}_{2}(K,R) given by (44)-(47) for some matrices Rn,mR\in{\mathbb{C}}^{n,m} and Kn,nK\in{\mathbb{C}}^{n,n} such that K0K\succeq 0. Then, it is easy to verify that [Δ1Δ2]x=y[\Delta_{1}~{}\Delta_{2}]x=y and [Δ1Δ2]z=w[\Delta_{1}~{}\Delta_{2}]^{*}z=w. Also, Δ1=H1+H~1(K)0\Delta_{1}=H_{1}+\widetilde{H}_{1}(K)\succeq 0, being the sum of two positive semidefinite matrices. This implies [Δ1Δ2]𝒮dPSD[\Delta_{1}~{}\Delta_{2}]\in\mathcal{S}_{d}^{{\rm PSD}} and hence shows ``"``\supseteq" in (43).

In view of (43) and by following the arguments similar to the proof of (10) in Theorem 10, we have that

infΔ𝒮dPSDΔF2H1F2+infKn,n,K0H2+H~2(K,0)F2.\inf_{{\Delta}\in\mathcal{S}_{d}^{{\rm PSD}}}{\|{\Delta}\|}_{F}^{2}\geq{\|H_{1}\|}_{F}^{2}+\inf_{K\in{\mathbb{C}}^{n,n},K\succeq 0}{\big{\|}H_{2}+\widetilde{H}_{2}(K,0)\big{\|}}_{F}^{2}. (58)

Next we show that equality holds in (58) for two cases. First suppose that x1=αzx_{1}=\alpha z for some nonzero α\alpha\in{\mathbb{C}}. Then 𝒫zx1=0\mathcal{P}_{z}x_{1}=0 and thus H~2(K,0)=0\widetilde{H}_{2}(K,0)=0 for any K0K\succeq 0. This implies from (58) that

infΔ𝒮dPSDΔF2H1F2+H2F2=HF2,\inf_{{\Delta}\in\mathcal{S}_{d}^{{\rm PSD}}}{\|{\Delta}\|}_{F}^{2}\geq{\|H_{1}\|}_{F}^{2}+{\|H_{2}\|}_{F}^{2}={\|H\|}_{F}^{2},

and the lower bound is uniquely attained since H𝒮dPSDH\in\mathcal{S}_{d}^{{\rm PSD}}. Now suppose that λΛ()\lambda\in\Lambda(\mathcal{M}), where :=yx1w1x1zw1w1x1\mathcal{M}:=yx_{1}^{*}-\frac{w_{1}^{*}x_{1}}{z^{*}w_{1}}w_{1}x_{1}^{*} implies that Re(λ)0\mathop{\mathrm{Re}}{(\lambda)}\leq 0. Then for any Kn,nK\in{\mathbb{C}}^{n,n} such that K0K\succeq 0, we have

H2+H~2(K,0)F2\displaystyle{\|H_{2}+\widetilde{H}_{2}(K,0)\|}_{F}^{2} (59)
=\displaystyle= H2F2+H~2(K,0)F2+2Re(trace(H2H~2(K,0)))\displaystyle{\|H_{2}\|}_{F}^{2}+{\|\widetilde{H}_{2}(K,0)\|}_{F}^{2}+2\mathop{\mathrm{Re}}\left(\mathop{\mathrm{trace}}\big{(}H_{2}\widetilde{H}_{2}^{*}(K,0)\big{)}\right)
=\displaystyle= H2F2+H~2(K,0)F2+2Re(trace((yx2x22w1w1x1x2(zw1)x22+zw2z2(w2x2)zx2z2x22)(𝒫zK𝒫zx1x2x22)))\displaystyle{\|H_{2}\|}_{F}^{2}+{\|\widetilde{H}_{2}(K,0)\|}_{F}^{2}+2\mathop{\mathrm{Re}}\bigg{(}\mathop{\mathrm{trace}}\Big{(}\big{(}\frac{yx_{2}^{*}}{\|x_{2}\|^{2}}-\frac{w_{1}w_{1}^{*}x_{1}x_{2}^{*}}{(z^{*}w_{1})\|x_{2}\|^{2}}+\frac{zw_{2}^{*}}{\|z\|^{2}}-\frac{(w_{2}^{*}x_{2})zx_{2}^{*}}{\|z\|^{2}\|x_{2}\|^{2}}\big{)}\big{(}-\frac{\mathcal{P}_{z}K\mathcal{P}_{z}x_{1}x_{2}^{*}}{\|x_{2}\|^{2}}\big{)}^{*}\Big{)}\bigg{)}
=\displaystyle= H2F2+H~2(K,0)F22Re(trace(𝒫zK𝒫zx22))\displaystyle{\|H_{2}\|}_{F}^{2}+{\|\widetilde{H}_{2}(K,0)\|}_{F}^{2}-2\mathop{\mathrm{Re}}\bigg{(}\mathop{\mathrm{trace}}\Big{(}\mathcal{M}\frac{\mathcal{P}_{z}K\mathcal{P}_{z}}{\|x_{2}\|^{2}}\Big{)}\bigg{)}
\displaystyle\geq H2F2+H~2(K,0)F2H2F2,\displaystyle{\|H_{2}\|}_{F}^{2}+{\|\widetilde{H}_{2}(K,0)\|}_{F}^{2}\geq{\|H_{2}\|}_{F}^{2}, (60)

where (59) follows by repeated use of the identity trace(AB)=trace(BA)\text{trace}(AB)=\text{trace}(BA) for matrix A,Bn,nA,B\in{\mathbb{C}}^{n,n}, and the fact that 𝒫zz=0\mathcal{P}_{z}z=0. The last inequality (60) follows because of the fact that Re(trace(𝒫zK𝒫z))0\mathop{\mathrm{Re}}(\text{trace}(\mathcal{M}\mathcal{P}_{z}K\mathcal{P}_{z}))\leq 0, this is due to Lemma 5, since 𝒫zK𝒫z0\mathcal{P}_{z}K\mathcal{P}_{z}\succeq 0 as K0K\succeq 0, and by assumption that λΛ()\lambda\in\Lambda(\mathcal{M}) implies Re(λ)0\mathop{\mathrm{Re}}{(\lambda)}\leq 0. This implies from (60) that

infKn,n,K0H2+H~2(K,0)F2H2F2.\inf_{K\in{\mathbb{C}}^{n,n},K\succeq 0}{\big{\|}H_{2}+\widetilde{H}_{2}(K,0)\big{\|}}_{F}^{2}\geq{\|H_{2}\|}_{F}^{2}. (61)

Thus from (58) and (61), we have that

infΔ𝒮dPSDΔF2H1F2+H2F2=HF2,\inf_{{\Delta}\in\mathcal{S}_{d}^{{\rm PSD}}}{\|{\Delta}\|}_{F}^{2}\geq{\|H_{1}\|}_{F}^{2}+{\|H_{2}\|}_{F}^{2}={\|H\|}_{F}^{2},

and again the lower bound is uniquely attained since H𝒮dPSDH\in\mathcal{S}_{d}^{{\rm PSD}}. This completes the proof.       

Remark 1.

We note that although in Theorem 14, we considered only the DSPSDM problem, there is a corresponding result for the doubly structured negative semidefinite mapping (DSNSDM) problem, i.e. when 𝕊\mathbb{S} is the set of n×nn\times n negative semidefinite matrices in Problem 1. The corresponding result for DSNSDMs follows from Theorem 14 by replacing w1w_{1} with w1-w_{1} and x1x_{1} with x1-x_{1}.

5 Solution to the doubly structured dissipative mapping problem

Let Diss(n){\rm Diss}(n) denote the set of all n×nn\times n dissipative matrices, i.e., ADiss(n)A\in{\rm Diss}(n) implies that A+A0A+A^{*}\succeq 0. In this section, we consider two types of doubly structured dissipative mapping (DSDM) problems: (i) for given vectors x,w,y,znx,w,y,z\in{\mathbb{C}}^{n}, find ΔDiss(n)\Delta\in{\rm Diss}(n) such that Δx=y\Delta x=y, and Δz=w\Delta^{*}z=w. We call this mapping problem as Type-1 DSDM problem; (ii) for given vectors x,wn+mx,w\in{\mathbb{C}}^{n+m}, and y,zny,z\in{\mathbb{C}}^{n}, find Δ=[Δ1Δ2]\Delta=[\Delta_{1}~{}\Delta_{2}] with Δ1Diss(n)\Delta_{1}\in{\rm Diss}(n) and Δ2n,m\Delta_{2}\in{\mathbb{C}}^{n,m} such that Δx=y\Delta x=y and Δz=w\Delta^{*}z=w. We call this mapping problem a Type-2 DSDM problem.

5.0.1 Type-1 doubly structured dissipative mappings

In the following, we tackle the type-1 DSDM problem in a general case when X,Y,ZX,Y,Z, and WW are matrices of size n×mn\times m. The result provides a complete, unified, and explicit solution to the Type-1 DSDM problem when XX and ZZ share the same range space.

Theorem 15.

Let X,Y,Z,Wn,mX,Y,Z,W\in{\mathbb{C}}^{n,m} with rank(X)=rank(Z)=r\text{rank}(X)=\text{rank}(Z)=r, and let X=UΣV,Z=U~Σ~V~X=U\Sigma V^{*},Z=\widetilde{U}\widetilde{\Sigma}\widetilde{V}^{*} be the singular value decompositions of XX and ZZ with U=[U1U2],U~=[U~1U~2]U=\left[U_{1}~{}U_{2}\right],\widetilde{U}=\left[\widetilde{U}_{1}~{}\widetilde{U}_{2}\right], where U1,U~1n,rU_{1},\widetilde{U}_{1}\in{\mathbb{C}}^{n,r}. Define 𝒮d1Diss:={Δn,n:Δ+Δ0,ΔX=Y,ΔZ=W}\mathcal{S}_{d_{1}}^{Diss}:=\{{\Delta}\in{\mathbb{C}}^{n,n}~{}:~{}{\Delta}+{\Delta}^{*}\succeq 0,~{}{\Delta}X=Y,{\Delta}^{*}Z=W\}. Suppose that U1=U~1U_{1}=\widetilde{U}_{1} and ker(U1(YX+(YX))U1)ker(U2(YX+WZ)U1)\ker(U_{1}^{*}(YX^{\dagger}+(YX^{\dagger})^{*})U_{1})\subseteq\ker(U_{2}^{*}(YX^{\dagger}+WZ^{\dagger})U_{1}). Then 𝒮d1Diss\mathcal{S}_{d_{1}}^{Diss}\neq\emptyset if and only if

YXX=Y,WZZ=W,XW=YZ,XY+YX0.YX^{\dagger}X=Y,\quad WZ^{\dagger}Z=W,\quad X^{*}W=Y^{*}Z,\quad X^{*}Y+Y^{*}X\succeq 0. (62)

Moreover, if 𝒮d1Diss\mathcal{S}_{d_{1}}^{Diss}\neq\emptyset, then

  1. 1.

    Characterization:

    𝒮d1Diss={U[U1YXU1U1(WZ)U2U2YXU1U2(K+G)U2]U:K,Gn,nsatisfy(66)},\displaystyle\mathcal{S}_{d_{1}}^{Diss}=\left\{U\left[\begin{array}[]{cc}U_{1}^{*}YX^{\dagger}U_{1}&U_{1}^{*}(WZ^{\dagger})^{*}U_{2}\\ U_{2}^{*}YX^{\dagger}U_{1}&U_{2}^{*}(K+G)U_{2}\end{array}\right]U^{*}:~{}K,G\in{\mathbb{C}}^{n,n}~{}\text{satisfy}~{}\eqref{eq:cond1 n}\right\}, (65)

    where

    G=G,K0,KU2JU20,G^{*}=-G,\quad K\succeq 0,\quad K-U_{2}JU_{2}^{*}\succeq 0, (66)

    with J=12U2(YX+WZ)(YX+(YX))(YX+WZ)U2J=\frac{1}{2}U_{2}^{*}(YX^{\dagger}+WZ^{\dagger}){\left(YX^{\dagger}+(YX^{\dagger})^{*}\right)}^{{\dagger}}(YX^{\dagger}+WZ^{\dagger})^{*}U_{2}.

  2. 2.

    Minimal norm mapping:

    infA𝒮d1DissAF2=YXF2+WZF2trace(WZ(WZ)XX)+JF2,\inf_{A\in\mathcal{S}_{d_{1}}^{Diss}}{\|A\|}_{F}^{2}\;=\;{\|YX^{\dagger}\|}_{F}^{2}+{\|WZ^{\dagger}\|}_{F}^{2}-{\rm trace}\left(WZ^{\dagger}(WZ^{\dagger})^{*}XX^{\dagger}\right)+{\|J\|}_{F}^{2}, (67)

    where the infimum is uniquely attained by the matrix

    :=YX+(WZ)(WZ)XX+𝒫ZU2JU2𝒫X=U[U1YXU1U1(WZ)U2U2YXU1J]U\displaystyle\mathcal{H}:=YX^{\dagger}+(WZ^{\dagger})^{*}-{(WZ^{\dagger})}^{*}XX^{\dagger}+\mathcal{P}_{Z}U_{2}JU_{2}^{*}\mathcal{P}_{X}=U\left[\begin{array}[]{cc}U_{1}^{*}YX^{\dagger}U_{1}&U_{1}^{*}(WZ^{\dagger})^{*}U_{2}\\ U_{2}^{*}YX^{\dagger}U_{1}&J\end{array}\right]U^{*} (70)

    which is obtained by setting K=U2JU2K=U_{2}JU_{2}^{*} and G=0G=0 in (65).

Proof.

First suppose that Δ𝒮d1Diss{\Delta}\in\mathcal{S}_{d_{1}}^{Diss}, i.e., Δ+Δ0{\Delta}+{\Delta}^{*}\succeq 0, ΔX=Y{\Delta}X=Y, and ΔZ=W{\Delta}^{*}Z=W. Then clearly YXX=ΔXXX=ΔX=YYX^{\dagger}X={\Delta}XX^{\dagger}X={\Delta}X=Y and WZZ=ΔZZZ=ΔZ=WWZ^{\dagger}Z={\Delta}^{*}ZZ^{\dagger}Z={\Delta}^{*}Z=W. Also, XW=XΔZ=(ΔX)Z=YZX^{*}W=X^{*}{\Delta}^{*}Z=({\Delta}X)^{*}Z=Y^{*}Z and XY+YX=XΔX+XΔX=X(Δ+Δ)X0X^{*}Y+Y^{*}X=X^{*}{\Delta}X+X^{*}{\Delta}^{*}X=X^{*}({\Delta}+{\Delta}^{*})X\succeq 0. Conversely, suppose that X,Y,ZX,Y,Z, and WW satisfy (62). Then the matrix \mathcal{H} defined in (70) satisfies X=Y\mathcal{H}X=Y and Z=W\mathcal{H}^{*}Z=W. Further, we have

+\displaystyle\mathcal{H}+{\mathcal{H}}^{*} =\displaystyle= U[U1(YX+(YX))U1U1((WZ)+(YX))U2U2(WZ+YX)U12J]U,\displaystyle U\left[\begin{array}[]{cc}U_{1}^{*}\left(YX^{\dagger}+(YX^{\dagger})^{*}\right)U_{1}&U_{1}^{*}\left((WZ^{\dagger})^{*}+(YX^{\dagger})^{*}\right)U_{2}\\ U_{2}^{*}\left(WZ^{\dagger}+YX^{\dagger}\right)U_{1}&2J\end{array}\right]U^{*},

with J=12U2(YX+WZ)(YX+(YX))((YX)+(WZ))U2J=\frac{1}{2}U_{2}^{*}(YX^{\dagger}+WZ^{\dagger}){\left(YX^{\dagger}+(YX^{\dagger})^{*}\right)}^{{\dagger}}((YX^{\dagger})^{*}+(WZ^{\dagger})^{*})U_{2}. Clearly J=JJ=J^{*} and in fact J0J\succeq 0 from Lemma 2, since XY+YX0X^{*}Y+Y^{*}X\succeq 0. Thus in view of Lemma 1, we have +0\mathcal{H}+{\mathcal{H}}^{*}\succeq 0, since from Lemma 2 U1(YX+(YX))U10U_{1}^{*}\left(YX^{\dagger}+(YX^{\dagger})^{*}\right)U_{1}\succeq 0, by assumption ker(U1(YX+(YX))U1)ker(U2(YX+WZ)U1)\ker(U_{1}^{*}(YX^{\dagger}+(YX^{\dagger})^{*})U_{1})\subseteq\ker(U_{2}^{*}(YX^{\dagger}+WZ^{\dagger})U_{1}), and J0J\succeq 0. This implies that 𝒮d1Diss\mathcal{H}\in\mathcal{S}_{d_{1}}^{Diss}.

Next, we prove (65). First suppose that Δ𝒮d1Diss{\Delta}\in\mathcal{S}_{d_{1}}^{Diss}, i.e., Δ+Δ0{\Delta}+{\Delta}^{*}\succeq 0, ΔX=Y{\Delta}X=Y, and ΔZ=W{\Delta}^{*}Z=W. Let Σ=[Σ1000],Σ~=[Σ~1000],V=[V1V2],V~=[V~1V~2]\Sigma=\left[\begin{array}[]{cc}\Sigma_{1}&0\\ 0&0\end{array}\right],\widetilde{\Sigma}=\left[\begin{array}[]{cc}\widetilde{\Sigma}_{1}&0\\ 0&0\end{array}\right],V=\left[\begin{array}[]{cc}V_{1}&V_{2}\end{array}\right],\widetilde{V}=\left[\begin{array}[]{cc}\widetilde{V}_{1}&\widetilde{V}_{2}\end{array}\right], where V1,V~1m,rV_{1},\widetilde{V}_{1}\in{\mathbb{C}}^{m,r}, V2,V~2m,mrV_{2},\widetilde{V}_{2}\in{\mathbb{C}}^{m,m-r}, and Σ1,Σ~1r,r\Sigma_{1},\widetilde{\Sigma}_{1}\in{\mathbb{C}}^{r,r} such that X=U1Σ1V1X=U_{1}\Sigma_{1}V_{1}^{*} and Z=U~1Σ~1V~1Z=\widetilde{U}_{1}\widetilde{\Sigma}_{1}\widetilde{V}_{1}^{*} become the reduced SVDs of XX and ZZ, respectively. Now consider

Δ^=UΔU=Δ^H+Δ^S,\widehat{{\Delta}}=U^{*}{\Delta}U=\widehat{\Delta}_{H}+\widehat{\Delta}_{S}, (72)

where

Δ^H=UΔHU=[H11H12H12H22]andΔ^S=UΔSU=[S11S12S12S22].\widehat{\Delta}_{H}=U^{*}{\Delta}_{H}U=\left[\begin{array}[]{cc}H_{11}&H_{12}\\ H_{12}^{*}&H_{22}\end{array}\right]\quad\text{and}\quad\widehat{\Delta}_{S}=U^{*}{\Delta}_{S}U=\left[\begin{array}[]{cc}S_{11}&S_{12}\\ -S_{12}^{*}&S_{22}\end{array}\right].

Clearly, ΔF=Δ^F{\|{\Delta}\|}_{F}={\|\widehat{\Delta}\|}_{F}, since Frobenius norm is unitarily invariant, and also ΔH0{\Delta}_{H}\succeq 0 if and only if Δ^H0\widehat{\Delta}_{H}\succeq 0. As ΔX=Y{\Delta}X=Y, we have UΔUUX=UYU^{*}\Delta UU^{*}X=U^{*}Y which implies that

Δ^[U1U2]X=[U1YU2Y][H11+S11H12+S12H12S12H22+S22][Σ1V10]=[U1YU2Y].\displaystyle\widehat{\Delta}\left[\begin{array}[]{c}U_{1}^{*}\\ U_{2}^{*}\end{array}\right]X=\left[\begin{array}[]{c}U_{1}^{*}Y\\ U_{2}^{*}Y\end{array}\right]\Longrightarrow\left[\begin{array}[]{cc}H_{11}+S_{11}&H_{12}+S_{12}\\ H_{12}^{*}-S_{12}^{*}&H_{22}+S_{22}\end{array}\right]\left[\begin{array}[]{c}\Sigma_{1}V_{1}^{*}\\ 0\end{array}\right]=\left[\begin{array}[]{c}U_{1}^{*}Y\\ U_{2}^{*}Y\end{array}\right]. (83)

This implies that

(H11+S11)Σ1V1=U1Yand(H12S12)Σ1V1=U2Y.\left(H_{11}+S_{11}\right)\Sigma_{1}V_{1}^{*}=U_{1}^{*}Y\quad\text{and}\quad\left(H_{12}^{*}-S_{12}^{*}\right)\Sigma_{1}V_{1}^{*}=U_{2}^{*}Y. (84)

Thus from (84), we have

H11+S11=U1YV1Σ11=U1YXU1H_{11}+S_{11}=U_{1}^{*}YV_{1}\Sigma_{1}^{-1}=U_{1}^{*}YX^{\dagger}U_{1} (85)

and

H12S12=U2YV1Σ11=U2YXU1,H_{12}^{*}-S_{12}^{*}=U_{2}^{*}YV_{1}\Sigma_{1}^{-1}=U_{2}^{*}YX^{\dagger}U_{1}, (86)

since X=V1Σ11U1X^{\dagger}=V_{1}\Sigma_{1}^{-1}U_{1}^{*} and XU1=V1Σ11X^{\dagger}U_{1}=V_{1}\Sigma_{1}^{-1}. Similarly, ΔZ=W{\Delta}^{*}Z=W implies that UΔUUZ=UWU^{*}{\Delta}^{*}UU^{*}Z=U^{*}W and we have

Δ^[U1U2]Z=[U1WU2W][H11S11H12S12H12+S12H22S22][Σ~1V~10]=[U1WU2W],\displaystyle\widehat{\Delta}^{*}\left[\begin{array}[]{c}U_{1}^{*}\\ U_{2}^{*}\end{array}\right]Z=\left[\begin{array}[]{c}U_{1}^{*}W\\ U_{2}^{*}W\end{array}\right]\Longrightarrow\left[\begin{array}[]{cc}H_{11}-S_{11}&H_{12}-S_{12}\\ H_{12}^{*}+S_{12}^{*}&H_{22}-S_{22}\end{array}\right]\left[\begin{array}[]{c}\widetilde{\Sigma}_{1}\widetilde{V}_{1}^{*}\\ 0\end{array}\right]=\left[\begin{array}[]{c}U_{1}^{*}W\\ U_{2}^{*}W\end{array}\right],

since U~1=U1\widetilde{U}_{1}=U_{1} and Z=U1Σ~1V~1Z=U_{1}\widetilde{\Sigma}_{1}\widetilde{V}_{1}^{*}. This implies that

(H11S11)Σ~1V~1=U1Wand(H12+S12)Σ~1V~1=U2W.\left(H_{11}-S_{11}\right)\widetilde{\Sigma}_{1}\widetilde{V}_{1}^{*}=U_{1}^{*}W\quad\text{and}\quad\left(H_{12}^{*}+S_{12}^{*}\right)\widetilde{\Sigma}_{1}\widetilde{V}_{1}^{*}=U_{2}^{*}W.

Thus, we have

H11S11=U1WV~1Σ~11=U1WZU1H_{11}-S_{11}=U_{1}^{*}W\widetilde{V}_{1}\widetilde{\Sigma}_{1}^{-1}=U_{1}^{*}WZ^{\dagger}U_{1} (88)

and

H12+S12=U2WV~1Σ~11=U2WZU1,H_{12}^{*}+S_{12}^{*}=U_{2}^{*}W\widetilde{V}_{1}\widetilde{\Sigma}_{1}^{-1}=U_{2}^{*}WZ^{\dagger}U_{1}, (89)

since Z=V~1Σ~11U1Z^{\dagger}=\widetilde{V}_{1}\widetilde{\Sigma}_{1}^{-1}U_{1}^{*} and ZU1=V~1Σ~11Z^{\dagger}U_{1}=\widetilde{V}_{1}\widetilde{\Sigma}_{1}^{-1}. Thus from (85) and (88),

H11=U1(YX+WZ2)U1=U1(YX+(YX)2)U1\displaystyle H_{11}=U_{1}^{*}\left(\frac{YX^{\dagger}+WZ^{\dagger}}{2}\right)U_{1}=U_{1}^{*}\left(\frac{YX^{\dagger}+(YX^{\dagger})^{*}}{2}\right)U_{1} (90)

and

S11=U1(YXWZ2)U1=U1(YX(YX)2)U1,\displaystyle S_{11}=U_{1}^{*}\left(\frac{YX^{\dagger}-WZ^{\dagger}}{2}\right)U_{1}=U_{1}^{*}\left(\frac{YX^{\dagger}-(YX^{\dagger})^{*}}{2}\right)U_{1}, (91)

where in (90) and (91), we have used Lemma 3. Similarly, from (86) and (89)

H12=U2(YX+WZ2)U1andS12=U2(WZYX2)U1.H_{12}^{*}=U_{2}^{*}\left(\frac{YX^{\dagger}+WZ^{\dagger}}{2}\right)U_{1}\quad\text{and}\quad S_{12}^{*}=U_{2}^{*}\left(\frac{WZ^{\dagger}-YX^{\dagger}}{2}\right)U_{1}. (92)

Note that since XY+YX0X^{*}Y+Y^{*}X\succeq 0, in view of Lemma 2 , we have that H110H_{11}\succeq 0. Therefore

Δ^=[U1YXU1U1(WZ)U2U2YXU1H22+S22],\widehat{\Delta}=\left[\begin{array}[]{cc}U_{1}^{*}YX^{\dagger}U_{1}&U_{1}^{*}(WZ^{\dagger})^{*}U_{2}\\ U_{2}^{*}YX^{\dagger}U_{1}&H_{22}+S_{22}\end{array}\right], (93)

where H22,S22nr,nrH_{22},S_{22}\in{\mathbb{C}}^{n-r,n-r} are such that Δ^H0\widehat{\Delta}_{H}\succeq 0 and Δ^S=Δ^S\widehat{\Delta}_{S}^{*}=-\widehat{\Delta}_{S}. That means, S22S_{22} satisfies that S22=S22S_{22}^{*}=-S_{22}, and in view of Lemma 1 H22H_{22} satisfies the constraints H220H_{22}\succeq 0 and H22J0H_{22}-J\succeq 0 with J=12U2(YX+WZ)(YX+(YX))(YX+WZ)U2J=\frac{1}{2}U_{2}^{*}(YX^{\dagger}+WZ^{\dagger}){\left(YX^{\dagger}+(YX^{\dagger})^{*}\right)}^{{\dagger}}(YX^{\dagger}+WZ^{\dagger})^{*}U_{2}. Thus from (72), we have

Δ\displaystyle{\Delta} =\displaystyle= [U1U2][U1YXU1U1(WZ)U2U2YXU1H22+S22][U1U2].\displaystyle\left[\begin{array}[]{cc}U_{1}&U_{2}\end{array}\right]\left[\begin{array}[]{cc}U_{1}^{*}YX^{\dagger}U_{1}&U_{1}^{*}(WZ^{\dagger})^{*}U_{2}\\ U_{2}^{*}YX^{\dagger}U_{1}&H_{22}+S_{22}\end{array}\right]\left[\begin{array}[]{c}U_{1}^{*}\\ U_{2}^{*}\end{array}\right]. (99)

By setting K=U2H22U2K=U_{2}H_{22}U_{2}^{*} and G=U2S22U2G=U_{2}S_{22}U_{2}^{*} in (99), we obtain that

Δ=U[U1YXU1U1(WZ)U2U2YXU1U2(K+G)U2]U,{\Delta}=U\left[\begin{array}[]{cc}U_{1}^{*}YX^{\dagger}U_{1}&U_{1}^{*}(WZ^{\dagger})^{*}U_{2}\\ U_{2}^{*}YX^{\dagger}U_{1}&U_{2}^{*}(K+G)U_{2}\end{array}\right]U^{*}, (100)

where GG and KK satisfy the conditions (66). This proves ``"``\subseteq" in (65).

For the other side inclusion in (65), let AA be any matrix of the form

A=U[U1YXU1U1(WZ)U2U2YXU1U2(K+G)U2]U,A=U\left[\begin{array}[]{cc}U_{1}^{*}YX^{\dagger}U_{1}&U_{1}^{*}(WZ^{\dagger})^{*}U_{2}\\ U_{2}^{*}YX^{\dagger}U_{1}&U_{2}^{*}(K+G)U_{2}\end{array}\right]U^{*},

where KK and GG satisfy the conditions (66). Then using the fact that U1U1+U2U2=UU=InU_{1}U_{1}^{*}+U_{2}U_{2}^{*}=UU^{*}=I_{n}, U1U1=XX=ZZU_{1}U_{1}^{*}=XX^{\dagger}=ZZ^{\dagger}, U1U1=IrU_{1}^{*}U_{1}=I_{r}, and U2U2=InrU_{2}^{*}U_{2}=I_{n-r}, AA can be written as

A=YX+(WZ)(WZ)XX+𝒫Z(K+G)𝒫X.\displaystyle A=YX^{\dagger}+(WZ^{\dagger})^{*}-{(WZ^{\dagger})}^{*}XX^{\dagger}+\mathcal{P}_{Z}(K+G)\mathcal{P}_{X}. (101)

Clearly AA satisfies that AX=YAX=Y and AZ=WA^{*}Z=W, since YXX=YYX^{\dagger}X=Y, WZZ=WWZ^{\dagger}Z=W, 𝒫XX=0\mathcal{P}_{X}X=0 and 𝒫ZZ=0\mathcal{P}_{Z}Z=0. Further, in view of (66) and Lemma 1 we have that

U(A+A)U=[U1(YX+(YX))U1U1(YX+WZ)U2U2(YX+WZ)U1U2(2K)U2]0,U^{*}(A+A^{*})U=\left[\begin{array}[]{cc}U_{1}^{*}\left(YX^{\dagger}+(YX^{\dagger})^{*}\right)U_{1}&U_{1}^{*}\left(YX^{\dagger}+WZ^{\dagger}\right)^{*}U_{2}\\ U_{2}^{*}\left(YX^{\dagger}+WZ^{\dagger}\right)U_{1}&U_{2}^{*}(2K)U_{2}\end{array}\right]\succeq 0,

since U1(YX+(YX))U10U_{1}^{*}\left(YX^{\dagger}+(YX^{\dagger})^{*}\right)U_{1}\succeq 0 from Lemma 2 as XY+YX0X^{*}Y+Y^{*}X\succeq 0, by assumption ker(U1(YX+(YX))U1)ker(U2(YX+WZ)U1)\ker(U_{1}^{*}(YX^{\dagger}+(YX^{\dagger})^{*})U_{1})\subseteq\ker(U_{2}^{*}(YX^{\dagger}+WZ^{\dagger})U_{1}), and U2KU2J0U_{2}^{*}KU_{2}-J\succeq 0, since KK satisfies that KU2JU20K-U_{2}JU_{2}^{*}\succeq 0. This implies that A+A0A+A^{*}\succeq 0 and hence A𝒮d1DissA\in\mathcal{S}_{d_{1}}^{Diss}. This proves ``"``\supseteq" in (65).

Suppose that 𝒮d1Diss\mathcal{S}_{d_{1}}^{Diss}\neq\emptyset and let Δ𝒮d1Diss{\Delta}\in\mathcal{S}_{d_{1}}^{Diss}, then from (65) we have that

ΔF2\displaystyle{\|{\Delta}\|}_{F}^{2} =\displaystyle= [U1YXU1U1(WZ)U2U2YXU1U2(K+G)U2]F2\displaystyle\left\|\left[\begin{array}[]{cc}U_{1}^{*}YX^{\dagger}U_{1}&U_{1}^{*}(WZ^{\dagger})^{*}U_{2}\\ U_{2}^{*}YX^{\dagger}U_{1}&U_{2}^{*}(K+G)U_{2}\end{array}\right]\right\|_{F}^{2}
=\displaystyle= UYXU1F2+U1(WZ)U2F2+U2(K+G)U2F2\displaystyle\left\|U^{*}YX^{\dagger}U_{1}\right\|_{F}^{2}+{\|U_{1}^{*}(WZ^{\dagger})^{*}U_{2}\|}_{F}^{2}+{\|U_{2}^{*}(K+G)U_{2}\|}_{F}^{2}
=\displaystyle= YXU1F2+U1(WZ)U2F2+U2(K+G)U2F2\displaystyle\left\|YX^{\dagger}U_{1}\right\|_{F}^{2}+{\|U_{1}^{*}(WZ^{\dagger})^{*}U_{2}\|}_{F}^{2}+{\|U_{2}^{*}(K+G)U_{2}\|}_{F}^{2}
=\displaystyle= YXF2+U1(WZ)UF2+U2(K+G)U2F2YXU2F2U1(WZ)U1F2\displaystyle{\|YX^{\dagger}\|}_{F}^{2}+{\|U_{1}^{*}(WZ^{\dagger})^{*}U\|}_{F}^{2}+{\|U_{2}^{*}(K+G)U_{2}\|}_{F}^{2}-{\|YX^{\dagger}U_{2}\|}_{F}^{2}-{\|U_{1}^{*}(WZ^{\dagger})^{*}U_{1}\|}_{F}^{2}
=\displaystyle= YXF2+(WZ)F2+U2(K+G)U2F2YXU2F2U1(WZ)U1F2U2(WZ)F2\displaystyle{\|YX^{\dagger}\|}_{F}^{2}+{\|(WZ^{\dagger})^{*}\|}_{F}^{2}+{\|U_{2}^{*}(K+G)U_{2}\|}_{F}^{2}-{\|YX^{\dagger}U_{2}\|}_{F}^{2}-{\|U_{1}^{*}(WZ^{\dagger})^{*}U_{1}\|}_{F}^{2}-{\|U_{2}^{*}(WZ^{\dagger})^{*}\|}_{F}^{2}
=\displaystyle= YXF2+(WZ)F2+U2(K+G)U2F2U1(WZ)U1F2(XU2=0,ZU2=0)\displaystyle{\|YX^{\dagger}\|}_{F}^{2}+{\|(WZ^{\dagger})^{*}\|}_{F}^{2}+{\|U_{2}^{*}(K+G)U_{2}\|}_{F}^{2}-{\|U_{1}^{*}(WZ^{\dagger})^{*}U_{1}\|}_{F}^{2}\quad(\because X^{\dagger}U_{2}=0,\,Z^{\dagger}U_{2}=0)
=\displaystyle= YXF2+(WZ)F2+U2(K+G)U2F2trace(U1WZU1U1(WZ)U1)\displaystyle{\|YX^{\dagger}\|}_{F}^{2}+{\|(WZ^{\dagger})^{*}\|}_{F}^{2}+{\|U_{2}^{*}(K+G)U_{2}\|}_{F}^{2}-{\rm trace}(U_{1}^{*}WZ^{\dagger}U_{1}U_{1}^{*}(WZ^{\dagger})^{*}U_{1})
=\displaystyle= YXF2+(WZ)F2+U2(K+G)U2F2trace(WZZZ(WZ)XX)(U1U1=XX=ZZ)\displaystyle{\|YX^{\dagger}\|}_{F}^{2}+{\|(WZ^{\dagger})^{*}\|}_{F}^{2}+{\|U_{2}^{*}(K+G)U_{2}\|}_{F}^{2}-{\rm trace}(WZ^{\dagger}ZZ^{\dagger}(WZ^{\dagger})^{*}XX^{\dagger})\quad(\because U_{1}U_{1}^{*}=XX^{\dagger}=ZZ^{\dagger})
=\displaystyle= YXF2+(WZ)F2+U2(K+G)U2F2trace(WZ(WZ)XX)\displaystyle{\|YX^{\dagger}\|}_{F}^{2}+{\|(WZ^{\dagger})^{*}\|}_{F}^{2}+{\|U_{2}^{*}(K+G)U_{2}\|}_{F}^{2}-{\rm trace}(WZ^{\dagger}(WZ^{\dagger})^{*}XX^{\dagger})
=\displaystyle= YXF2+(WZ)F2+U2KU2F2+U2GU2F2trace(WZ(WZ)XX)\displaystyle{\|YX^{\dagger}\|}_{F}^{2}+{\|(WZ^{\dagger})^{*}\|}_{F}^{2}+{\|U_{2}^{*}KU_{2}\|}_{F}^{2}+{\|U_{2}^{*}GU_{2}\|}_{F}^{2}-{\rm trace}(WZ^{\dagger}(WZ^{\dagger})^{*}XX^{\dagger})

where the last equality follows as for any square matrix A=AH+ASA=A_{H}+A_{S} we have AF2=AHF2+ASF2{\|A\|}_{F}^{2}={\|A_{H}\|}_{F}^{2}+{\|A_{S}\|}_{F}^{2}. This implies that

infΔ𝒮d1DissΔF2\displaystyle\inf_{{\Delta}\in\mathcal{S}_{d_{1}}^{Diss}}{\|{\Delta}\|}_{F}^{2}
=infK,Gn,n,G=G,KU2JU20YXF2+(WZ)F2+U2KU2F2+U2GU2F2trace(WZ(WZ)XX)\displaystyle=\inf_{K,G\in{\mathbb{C}}^{n,n},G^{*}=-G,K-U_{2}JU_{2}^{*}\succeq 0}{\|YX^{\dagger}\|}_{F}^{2}+{\|(WZ^{\dagger})^{*}\|}_{F}^{2}+{\|U_{2}^{*}KU_{2}\|}_{F}^{2}+{\|U_{2}^{*}GU_{2}\|}_{F}^{2}-{\rm trace}(WZ^{\dagger}(WZ^{\dagger})^{*}XX^{\dagger})
infKn,n,KU2JU20YXF2+(WZ)F2+U2KU2F2trace(WZ(WZ)XX)\displaystyle\geq\inf_{K\in{\mathbb{C}}^{n,n},K-U_{2}JU_{2}^{*}\succeq 0}{\|YX^{\dagger}\|}_{F}^{2}+{\|(WZ^{\dagger})^{*}\|}_{F}^{2}+{\|U_{2}^{*}KU_{2}\|}_{F}^{2}-{\rm trace}(WZ^{\dagger}(WZ^{\dagger})^{*}XX^{\dagger}) (105)
YXF2+(WZ)F2+JF2trace(WZ(WZ)XX),\displaystyle\geq{\|YX^{\dagger}\|}_{F}^{2}+{\|(WZ^{\dagger})^{*}\|}_{F}^{2}+{\|J\|}_{F}^{2}-{\rm trace}(WZ^{\dagger}(WZ^{\dagger})^{*}XX^{\dagger}),\ (106)

where the first inequality in (105) is obvious since for any Gn,nG\in{\mathbb{C}}^{n,n} U2GU2F0{\|U_{2}^{*}GU_{2}\|}_{F}\geq 0 and the second inequality is due to Lemma 4, since F{\|\cdot\|}_{F} is unitarily invariant and J0J\succeq 0 implies that for any Kn,nK\in{\mathbb{C}}^{n,n} such that KU2JU20K-U_{2}JU_{2}^{*}\succeq 0 we have KFU2JU2F=JF{\|K\|}_{F}\geq{\|U_{2}JU_{2}^{*}\|}_{F}={\|J\|}_{F}. Thus by setting K=U2JU2K=U_{2}JU_{2}^{*} and G=0G=0, we obtain a unique matrix \mathcal{H} that attains the lower bound in (106), i.e.,

infΔ𝒮d1DissΔF2=F2=YXF2+WZF2trace(WZ(WZ)XX)+JF2.\displaystyle\inf_{{\Delta}\in\mathcal{S}_{d_{1}}^{Diss}}{\|{\Delta}\|}_{F}^{2}={\|\mathcal{H}\|}_{F}^{2}={\|YX^{\dagger}\|}_{F}^{2}+{\|WZ^{\dagger}\|}_{F}^{2}-{\rm{trace}}(WZ^{\dagger}(WZ^{\dagger})^{*}XX^{\dagger})+{\|J\|}_{F}^{2}.

This competes the proof. ∎

The vector case Type-1 DSDMs, i.e., when m=1m=1 in Theorem 15, is particularly interesting. This is because (i) the conditions on the free matrices in (65) are more simplified, and (ii) it will be used in computing the structured eigenpair backward errors for pencil L(z)L(z) defined in (2), see Section 6. For future reference, we state the vector case separately.

Theorem 16.

Let x,y,wn{0}x,y,w\in{\mathbb{C}}^{n}\setminus\{0\} and let z=αxz=\alpha x for some nonzero α\alpha\in{\mathbb{C}}. Suppose that Re(xy)0\mathop{\mathrm{Re}}{(x^{*}y)}\neq 0. Then 𝒮d1Diss\mathcal{S}_{d_{1}}^{\rm Diss}\neq\emptyset if and only if xw=yzx^{*}w=y^{*}z and Re(xy)>0\mathop{\mathrm{Re}}{(x^{*}y)}>0.

Moreover, if 𝒮d1Diss\mathcal{S}_{d_{1}}^{Diss}\neq\emptyset, then

𝒮d1Diss={yx+(wz)(wz)xx+𝒫x(K+G)𝒫x:K,Gn,nsatisfy(108)},\displaystyle\mathcal{S}_{d_{1}}^{\rm Diss}=\Big{\{}yx^{\dagger}+(wz^{\dagger})^{*}-(wz^{\dagger})xx^{\dagger}+\mathcal{P}_{x}(K+G)\mathcal{P}_{x}:~{}K,G\in{\mathbb{C}}^{n,n}~{}\text{satisfy}~{}\eqref{eq:cond1t1vec a}\Big{\}}, (107)

where

G=G,K0,andK𝒫xJ𝒫x0,\displaystyle G^{*}=-G,\quad K\succeq 0,\quad\text{and}\quad K-\mathcal{P}_{x}J\mathcal{P}_{x}\succeq 0, (108)

where J=14Re(xy)(y+α¯|α|2w)(y+α¯|α|2w)J=\frac{1}{4\mathop{\mathrm{Re}}{(x^{*}y)}}\left(y+\frac{\bar{\alpha}}{{|\alpha|}^{2}}w\right)\left(y+\frac{\bar{\alpha}}{{|\alpha|}^{2}}w\right)^{*}. Further,

infΔ𝒮d1DissΔF2=y2x2w2z2|wx|2x2z2+JF2,\inf_{\Delta\in\mathcal{S}_{d_{1}}^{\rm Diss}}{\|\Delta\|}_{F}^{2}\;=\;\frac{{\|y\|}^{2}}{{\|x\|}^{2}}-\frac{{\|w\|}^{2}}{{\|z\|}^{2}}-\frac{|w^{*}x|^{2}}{{\|x\|}^{2}{\|z\|}^{2}}+{\|J\|}_{F}^{2},

where the infimum is uniquely attained by :=yx+(wz)𝒫x+𝒫xJ𝒫x\mathcal{H}:=yx^{\dagger}+{(wz^{\dagger})}^{*}\mathcal{P}_{x}+\mathcal{P}_{x}J\mathcal{P}_{x}, which is obtained by setting K=𝒫xJ𝒫xK=\mathcal{P}_{x}J\mathcal{P}_{x} and G=0G=0 in (107).

Remark 2.

If we consider the DSM Problem 1 with Δ1+Δ10{\Delta}_{1}+{\Delta}_{1}\preceq 0, then the corresponding result follows from Theorem 15 by replacing everywhere the positive semidefinite constraint “\succeq” with the negative semidefinite constraint “\preceq”.

5.0.2 Type-2 doubly structured dissipative mappings

In this section, we consider the Type-2 DSDM problem, i.e. when 𝕊=Diss(n)\mathbb{S}={\rm Diss}(n) in Problem 1. We have the following result that completely solves the existence and characterization problem of the Type-2 DSDM problem and derives sufficient conditions for computing the minimal norm solution to the Type-2 DSDM problem.

Theorem 17.

Given x=[x1Tx2T]Tx=[x_{1}^{T}~{}\,x_{2}^{T}]^{T} with x1nx_{1}\in{\mathbb{C}}^{n} and x2m{0}x_{2}\in{\mathbb{C}}^{m}\setminus\{0\}, y,zny,z\in{\mathbb{C}}^{n}, and w=[w1Tw2T]Tw=[w_{1}^{T}~{}\,w_{2}^{T}]^{T} with w1n{0}w_{1}\in{\mathbb{C}}^{n}\setminus\{0\} and w2m{0}w_{2}\in{\mathbb{C}}^{m}\setminus\{0\}. Define

𝒮d2Diss:={Δ:[Δ1Δ2],Δ1n,n,Δ2n,m,Δ1+Δ10,Δx=y,Δz=w}.{\mathcal{S}}_{d_{2}}^{\rm Diss}:=\left\{{\Delta}~{}:~{}[{\Delta}_{1}~{}\,{\Delta}_{2}],\,{\Delta}_{1}\in{\mathbb{C}}^{n,n},\,{\Delta}_{2}\in{\mathbb{C}}^{n,m},\,{\Delta}_{1}+{\Delta}_{1}^{*}\succeq 0,\,{\Delta}x=y,\,{\Delta}^{*}z=w\right\}. (109)

Then 𝒮d2Diss{\mathcal{S}}_{d_{2}}^{\rm Diss}\neq\emptyset if and only if xw=yzx^{*}w=y^{*}z and Re(zw1)0\mathop{\mathrm{Re}}{(z^{*}w_{1})}\geq 0. If xw=yzx^{*}w=y^{*}z and Re(zw1)>0\mathop{\mathrm{Re}}{(z^{*}w_{1})}>0, then

𝒮d2Diss={H+H~(Z,K,G,R):Rn,m,K,G,Zn,nsatisfy(111)},{\mathcal{S}}_{d_{2}}^{\rm Diss}=\left\{H+\widetilde{H}(Z,K,G,R):\,R\in{\mathbb{C}}^{n,m},\,K,G,Z\in{\mathbb{C}}^{n,n}~{}\text{satisfy}~{}\eqref{1cond vec}\right\}, (110)

where

G=G,K0,andK14Re(zw1)(2w1+Zz)(2w1+Zz)0,\displaystyle G^{*}=-G,\quad K\succeq 0,\quad\text{and}\quad K-\frac{1}{4\mathop{\mathrm{Re}}{(z^{*}w_{1})}}\left(2w_{1}+Z^{*}z\right)\left(2w_{1}+Z^{*}z\right)^{*}\succeq 0, (111)

H=[H1H2]H=[H_{1}~{}\,H_{2}] and H~(Z,K,G,R)=[H~1(Z,K,G)H~2(Z,K,G,R)]\widetilde{H}(Z,K,G,R)=[\widetilde{H}_{1}(Z,K,G)~{}\,\widetilde{H}_{2}(Z,K,G,R)] with H1H_{1}, H2H_{2}, H~1(Z,K,G)\widetilde{H}_{1}(Z,K,G), H~2(Z,K,G,R)\widetilde{H}_{2}(Z,K,G,R) given by

H1\displaystyle H_{1} =\displaystyle= (w1z)+𝒫zw1z\displaystyle(w_{1}z^{\dagger})^{*}+\mathcal{P}_{z}w_{1}z^{\dagger} (112)
H2\displaystyle H_{2} =\displaystyle= yx2(w1z)x1x2𝒫zw1zx1x2+(w2z)(w2z)x2x2\displaystyle yx_{2}^{\dagger}-(w_{1}z^{\dagger})^{*}x_{1}x_{2}^{\dagger}-\mathcal{P}_{z}w_{1}z^{\dagger}x_{1}x_{2}^{\dagger}+(w_{2}z^{\dagger})^{*}-(w_{2}z^{\dagger})^{*}x_{2}x_{2}^{\dagger} (113)
H~1(Z,K,G)\displaystyle\widetilde{H}_{1}(Z,K,G) =\displaystyle= 𝒫zZzz+𝒫zK𝒫z𝒫zG𝒫z\displaystyle\mathcal{P}_{z}Z^{*}zz^{\dagger}+\mathcal{P}_{z}K\mathcal{P}_{z}-\mathcal{P}_{z}G\mathcal{P}_{z} (114)
H~2(Z,K,G,R)\displaystyle\widetilde{H}_{2}(Z,K,G,R) =\displaystyle= 𝒫zZzzx1x2𝒫zK𝒫zx1x2+𝒫zG𝒫zx1x2+𝒫zR𝒫x2,\displaystyle-\mathcal{P}_{z}Z^{*}zz^{\dagger}x_{1}x_{2}^{\dagger}-\mathcal{P}_{z}K\mathcal{P}_{z}x_{1}x_{2}^{\dagger}+\mathcal{P}_{z}G\mathcal{P}_{z}x_{1}x_{2}^{\dagger}+\mathcal{P}_{z}R\mathcal{P}_{x_{2}}, (115)

and

infΔ𝒮d2DissΔF2H^1F2+infZ,K,Gsatisfying(111)H2+H~2(Z,K,G,0)F2,\inf_{\Delta\in{\mathcal{S}}_{d_{2}}^{\rm Diss}}{\|\Delta\|}_{F}^{2}\geq{\|\hat{H}_{1}\|}_{F}^{2}+\inf_{Z,K,G\,\text{satisfying}~{}\eqref{1cond vec}}{\|H_{2}+\widetilde{H}_{2}(Z,K,G,0)\|}_{F}^{2}, (116)

where

H^1:=H12Pzw1z.\hat{H}_{1}:=H_{1}-2P_{z}w_{1}z^{\dagger}. (117)

Moreover, if y=βzy=\beta z for some β\beta\in{\mathbb{C}} and zz is orthogonal to x1x_{1}, then

infΔ𝒮d2DissΔF2=H^1F2+H^2F2,\inf_{\Delta\in{\mathcal{S}}_{d_{2}}^{\rm Diss}}{\|\Delta\|}_{F}^{2}={\|\hat{H}_{1}\|}_{F}^{2}+{\|\hat{H}_{2}\|}_{F}^{2}, (118)

where H^1\hat{H}_{1} is defined by (117) and H^2:=yx2(w1z)x1x2+(w2z)(w2z)x2x2\hat{H}_{2}:=yx_{2}^{\dagger}-(w_{1}z^{\dagger})^{*}x_{1}x_{2}^{\dagger}+(w_{2}z^{\dagger})^{*}-(w_{2}z^{\dagger})^{*}x_{2}x_{2}^{\dagger}, and the infimum in (118) is uniquely attained by the matrix H^=[H^1H^2]\hat{H}=[\hat{H}_{1}~{}\,\hat{H}_{2}].

Proof.

First suppose that 𝒮d2Diss{\mathcal{S}}_{d_{2}}^{\rm Diss}\neq\emptyset and let Δ𝒮d2Diss\Delta\in{\mathcal{S}}_{d_{2}}^{\rm Diss}. Then Δ=[Δ1Δ2]{\Delta}=[{\Delta}_{1}~{}\,{\Delta}_{2}] with Δ1n,n\Delta_{1}\in{\mathbb{C}}^{n,n}, Δ2n,m\Delta_{2}\in{\mathbb{C}}^{n,m} such that Δ1+Δ10{\Delta}_{1}+{\Delta}_{1}^{*}\succeq 0, Δx=y{\Delta}x=y, and Δz=w{\Delta}^{*}z=w. This implies that yz=(Δx)z=xΔz=xwy^{*}z=({\Delta}x)^{*}z=x^{*}{\Delta}^{*}z=x^{*}w. Since Δz=w\Delta^{*}z=w, we have Δ1z=w1{\Delta}_{1}^{*}z=w_{1} which implies that

2Re(zw1)=zw1+w1z=zΔ1z+zΔ1z=z(Δ1+Δ1)z0,2\mathop{\mathrm{Re}}{(z^{*}w_{1})}=z^{*}w_{1}+w_{1}^{*}z=z^{*}{\Delta}_{1}^{*}z+z^{*}{\Delta}_{1}z=z^{*}({\Delta}_{1}+{\Delta}_{1}^{*})z\geq 0,

since Δ1+Δ10{\Delta}_{1}+{\Delta}_{1}^{*}\succeq 0. Conversely, let xw=yzx^{*}w=y^{*}z and Re(zw1)0\mathop{\mathrm{Re}}{(z^{*}w_{1})}\geq 0. Then it is easy to check that H^=[H^1H^2]\hat{H}=[\hat{H}_{1}~{}\,\hat{H}_{2}] with H^1:=H12Pzw1z\hat{H}_{1}:=H_{1}-2P_{z}w_{1}z^{\dagger} and H^2:=H2+2Pzw1zx1x2\hat{H}_{2}:=H_{2}+2P_{z}w_{1}z^{\dagger}x_{1}x_{2}^{\dagger} satisfies H^x=y\hat{H}x=y and H^z=w\hat{H}^{*}z=w. Further,

H^1+H^1\displaystyle\hat{H}_{1}+\hat{H}_{1}^{*} =\displaystyle= (w1z)𝒫zw1z+(w1z)(w1z)𝒫z=(zw1+w1z)zz0,\displaystyle(w_{1}z^{\dagger})^{*}-\mathcal{P}_{z}w_{1}z^{\dagger}+(w_{1}z^{\dagger})-(w_{1}z^{\dagger})^{*}\mathcal{P}_{z}=(z^{*}w_{1}+w_{1}^{*}z)zz^{\dagger}\succeq 0,

since Re(zw1)0\mathop{\mathrm{Re}}{(z^{*}w_{1})}\geq 0 and zz0zz^{\dagger}\succeq 0 being a rank one symmetric matrix. This implies that H^𝒮d2Diss\hat{H}\in{\mathcal{S}}_{d_{2}}^{\rm Diss}.

Next we prove (110). For this, let Δ𝒮d2Diss{\Delta}\in{\mathcal{S}}_{d_{2}}^{\rm Diss}, i.e., Δ=[Δ1Δ2]{\Delta}=[{\Delta}_{1}~{}\,{\Delta}_{2}] such that Δx=y{\Delta}x=y, Δz=w{\Delta}^{*}z=w, and Δ1+Δ10{\Delta}_{1}+{\Delta}_{1}^{*}\succeq 0. This implies that

Δ1x1+Δ2x2=y,Δ1z=w1,andΔ2z=w2.{\Delta}_{1}x_{1}+{\Delta}_{2}x_{2}=y,\quad{\Delta}_{1}^{*}z=w_{1},\quad\text{and}\quad{\Delta}_{2}^{*}z=w_{2}. (119)

Since Δ1+Δ10{\Delta}_{1}+{\Delta}_{1}^{*}\succeq 0 with Δ1{\Delta}_{1}^{*} taking zz to w1w_{1}, from Theorem 8

Δ1=w1z+(w1z)𝒫z+zzZ𝒫z+𝒫zK𝒫z+𝒫zG𝒫z,{\Delta}_{1}^{*}=w_{1}z^{\dagger}+(w_{1}z^{\dagger})^{*}\mathcal{P}_{z}+zz^{\dagger}Z\mathcal{P}_{z}+\mathcal{P}_{z}K\mathcal{P}_{z}+\mathcal{P}_{z}G\mathcal{P}_{z},

or, equivalently,

Δ1=(w1z)+𝒫zw1z+𝒫zZzz+𝒫zK𝒫z𝒫zG𝒫z,{\Delta}_{1}=(w_{1}z^{\dagger})^{*}+\mathcal{P}_{z}w_{1}z^{\dagger}+\mathcal{P}_{z}Z^{*}zz^{\dagger}+\mathcal{P}_{z}K\mathcal{P}_{z}-\mathcal{P}_{z}G\mathcal{P}_{z}, (120)

for some Z,K,Gn,nZ,K,G\in{\mathbb{C}}^{n,n} such that

G=G,K0,andK14Re(zw1)(2w1+Zz)(2w1+Zz)0.G^{*}=-G,\quad K\succeq 0,\quad\text{and}\quad K-\frac{1}{4\mathop{\mathrm{Re}}{(z^{*}w_{1})}}\left(2w_{1}+Z^{*}z\right)\left(2w_{1}+Z^{*}z\right)^{*}\succeq 0.

By substituting Δ1{\Delta}_{1} from (120) in (119), we get

Δ2x2=y~andΔ2z=w2,\displaystyle{\Delta}_{2}x_{2}=\tilde{y}\quad\text{and}\quad{\Delta}_{2}^{*}z=w_{2}, (121)

where y~=yΔ1x1=y((w1z)+Pzw1z+PzZzz+PzKPzPzGPz)x1\tilde{y}=y-{\Delta}_{1}x_{1}=y-\left((w_{1}z^{\dagger})^{*}+P_{z}w_{1}z^{\dagger}+P_{z}Z^{*}zz^{\dagger}+P_{z}KP_{z}-P_{z}GP_{z}\right)x_{1}. Again since y~z=x2w2\tilde{y}^{*}z=x_{2}^{*}w_{2}, in view of Theorem 6 Δ2{\Delta}_{2} has the form

Δ2=y~x2+(w2z)(w2z)x2x2+𝒫zR𝒫x2,\displaystyle{\Delta}_{2}=\tilde{y}x_{2}^{\dagger}+(w_{2}z^{\dagger})^{*}-(w_{2}z^{\dagger})^{*}x_{2}x_{2}^{\dagger}+\mathcal{P}_{z}R\mathcal{P}_{x_{2}}, (122)

for some Rn,mR\in{\mathbb{C}}^{n,m}. In view of (120) and (122), we have

[Δ1Δ2]=[H1H2]+[H~1(Z,K,G)H~2(Z,K,G,R)]=H+H~(Z,K,G,R).\displaystyle[{\Delta}_{1}~{}\,{\Delta}_{2}]=[H_{1}~{}\,H_{2}]+[\widetilde{H}_{1}(Z,K,G)~{}\,\widetilde{H}_{2}(Z,K,G,R)]=H+\widetilde{H}(Z,K,G,R). (123)

This proves “\subseteq” in (110).

Conversely, let xw=yzx^{*}w=y^{*}z and Re(zw1)0\mathop{\mathrm{Re}}{(z^{*}w_{1})}\geq 0, consider [Δ1Δ2]=[H1+H~1(Z,K,G)H2+H~2(Z,K,G,R)][{\Delta}_{1}~{}\,{\Delta}_{2}]=\big{[}H_{1}+\widetilde{H}_{1}(Z,K,G)~{}~{}H_{2}+\widetilde{H}_{2}(Z,K,G,R)\big{]}, where H1H_{1}, H2H_{2}, H~1(Z,K,G)\widetilde{H}_{1}(Z,K,G), and H~2(Z,K,G,R)\widetilde{H}_{2}(Z,K,G,R) be given by (112)–(115) for some matrices Rn,mR\in{\mathbb{C}}^{n,m} and Z,K,Gn,nZ,K,G\in{\mathbb{C}}^{n,n} satisfying (111). Then a straight-forward calculation shows that [Δ1Δ2]x=y[{\Delta}_{1}~{}\,{\Delta}_{2}]x=y and [Δ1Δ2]z=w[{\Delta}_{1}~{}\,{\Delta}_{2}]^{*}z=w. Also Δ1+Δ10{\Delta}_{1}+{\Delta}_{1}^{*}\succeq 0. To see this, let u1=zzu_{1}=\frac{z}{\|z\|} and U2n,n1U_{2}\in{\mathbb{C}}^{n,n-1} be such that U=[u1U2]U=[u_{1}~{}\,U_{2}] becomes unitary. This implies that

Δ1\displaystyle{\Delta}_{1}^{*} =\displaystyle= (H1+H~1(Z,K,G))=w1z+(w1z)𝒫z+zzZ𝒫z+𝒫zK𝒫z+𝒫zG𝒫z\displaystyle(H_{1}+\widetilde{H}_{1}(Z,K,G))^{*}=w_{1}z^{\dagger}+(w_{1}z^{\dagger})^{*}\mathcal{P}_{z}+zz^{\dagger}Z\mathcal{P}_{z}+\mathcal{P}_{z}K\mathcal{P}_{z}+\mathcal{P}_{z}G\mathcal{P}_{z} (126)
=\displaystyle= w1z+(w1z)U2U2+zzZU2U2+U2U2KU2U2+U2U2GU2U2\displaystyle w_{1}z^{\dagger}+(w_{1}z^{\dagger})^{*}U_{2}U_{2}^{*}+zz^{\dagger}ZU_{2}U_{2}^{*}+U_{2}U_{2}^{*}KU_{2}U_{2}^{*}+U_{2}U_{2}^{*}GU_{2}U_{2}^{*}
=\displaystyle= (u1u1+U2U2)(w1z)u1u1+u1u1(w1z)U2U2+u1u1ZU2U2+U2U2(K+G)U2U2\displaystyle(u_{1}u_{1}^{*}+U_{2}U_{2}^{*})(w_{1}z^{\dagger})u_{1}u_{1}^{*}+u_{1}u_{1}^{*}(w_{1}z^{\dagger})^{*}U_{2}U_{2}^{*}+u_{1}u_{1}^{*}ZU_{2}U_{2}^{*}+U_{2}U_{2}^{*}(K+G)U_{2}U_{2}^{*}
=\displaystyle= U[u1(w1z)u1u1(w1z)U2+u1ZU2U2(w1z)u1U2(K+G)U2]U\displaystyle U\left[\begin{array}[]{cc}u_{1}^{*}(w_{1}z^{\dagger})u_{1}&u_{1}^{*}(w_{1}z^{\dagger})^{*}U_{2}+u_{1}^{*}ZU_{2}\\ U_{2}^{*}(w_{1}z^{\dagger})u_{1}&U_{2}^{*}(K+G)U_{2}\end{array}\right]U^{*}
=\displaystyle= U[zw1w1U2z+zZU2zU2w1zU2(K+G)U2]U,\displaystyle U\left[\begin{array}[]{cc}z^{\dagger}w_{1}&\frac{w_{1}^{*}U_{2}}{\|z\|}+\frac{z^{*}ZU_{2}}{\|z\|}\\ \frac{U_{2}^{*}w_{1}}{\|z\|}&U_{2}^{*}(K+G)U_{2}\end{array}\right]U^{*}, (129)

where we have used the fact that UU=InUU^{*}=I_{n} and u1=zzu_{1}=\frac{z}{\|z\|}. Thus in view of Lemma 1 and (129), we have that Δ1+Δ10{\Delta}_{1}+{\Delta}_{1}^{*}\succeq 0, since Z,K,GZ,K,G satisfy (111). This proves “\supseteq” in (110).

In view of (110), we have

infΔ𝒮d2DissΔF2\displaystyle\inf_{{\Delta}\in{\mathcal{S}}_{d_{2}}^{\rm Diss}}{\|{\Delta}\|}_{F}^{2} =\displaystyle= infRn,m,K,G,Zn,nsatisfying(111)H+H~(Z,K,G,R)F2\displaystyle\inf_{R\in{\mathbb{C}}^{n,m},K,G,Z\in{\mathbb{C}}^{n,n}~{}\text{satisfying}~{}\eqref{1cond vec}}{\|H+\widetilde{H}(Z,K,G,R)\|}_{F}^{2}
=\displaystyle= infRn,m,K,G,Zn,nsatisfying(111)([H1H2]+[H~1(Z,K,G)H~2(Z,K,G,R)]F2)\displaystyle\inf_{R\in{\mathbb{C}}^{n,m},K,G,Z\in{\mathbb{C}}^{n,n}~{}\text{satisfying}~{}\eqref{1cond vec}}\left({\left\|\big{[}H_{1}~{}\,H_{2}\big{]}+\big{[}\widetilde{H}_{1}(Z,K,G)~{}\,\widetilde{H}_{2}(Z,K,G,R)\big{]}\right\|}_{F}^{2}\right)
=\displaystyle= infRn,m,K,G,Zn,nsatisfying(111)(H1+H~1(Z,K,G)F2+H2+,H~2(Z,K,G,R)F2)\displaystyle\inf_{R\in{\mathbb{C}}^{n,m},K,G,Z\in{\mathbb{C}}^{n,n}~{}\text{satisfying}~{}\eqref{1cond vec}}\left({\left\|H_{1}+\widetilde{H}_{1}(Z,K,G)\right\|}_{F}^{2}+{\left\|H_{2}+,\widetilde{H}_{2}(Z,K,G,R)\right\|}_{F}^{2}\right)
\displaystyle\geq infK,G,Zn,nsatisfying(111)H1+H~1(Z,K,G)F2\displaystyle\inf_{K,G,Z\in{\mathbb{C}}^{n,n}~{}\text{satisfying}~{}\eqref{1cond vec}}{\left\|H_{1}+\widetilde{H}_{1}(Z,K,G)\right\|}_{F}^{2}
+\displaystyle+ infRn,m,K,G,Zn,nsatisfying(111)H2+,H~2(Z,K,G,R)F2\displaystyle\inf_{R\in{\mathbb{C}}^{n,m},K,G,Z\in{\mathbb{C}}^{n,n}~{}\text{satisfying}~{}\eqref{1cond vec}}{\left\|H_{2}+,\widetilde{H}_{2}(Z,K,G,R)\right\|}_{F}^{2}
=\displaystyle= H1+H~1(2(w1z),0,0)F2+infRn,m,K,G,Zn,nsatisfying(111)H2+,H~2(Z,K,G,R)F2\displaystyle{\left\|H_{1}+\widetilde{H}_{1}(-2(w_{1}z^{\dagger})^{*},0,0)\right\|}_{F}^{2}+\inf_{R\in{\mathbb{C}}^{n,m},K,G,Z\in{\mathbb{C}}^{n,n}~{}\text{satisfying}~{}\eqref{1cond vec}}{\left\|H_{2}+,\widetilde{H}_{2}(Z,K,G,R)\right\|}_{F}^{2}
=\displaystyle= H^1F2+infK,G,Zn,nsatisfying(111)(infRn,mH2+,H~2(Z,K,G,R)F2)\displaystyle{\left\|\hat{H}_{1}\right\|}_{F}^{2}+\inf_{K,G,Z\in{\mathbb{C}}^{n,n}~{}\text{satisfying}~{}\eqref{1cond vec}}\left(\inf_{R\in{\mathbb{C}}^{n,m}}{\left\|H_{2}+,\widetilde{H}_{2}(Z,K,G,R)\right\|}_{F}^{2}\right)
=\displaystyle= H^1F2+infK,G,Zn,nsatisfying(111)H2+H~2(Z,K,G,0)F2,\displaystyle{\left\|\hat{H}_{1}\right\|}_{F}^{2}+\inf_{K,G,Z\in{\mathbb{C}}^{n,n}~{}\text{satisfying}~{}\eqref{1cond vec}}{\left\|H_{2}+\widetilde{H}_{2}(Z,K,G,0)\right\|}_{F}^{2}, (132)

where the first inequality in (5.0.2) follows due to the fact that for any two real valued functions ff and gg defined on the same domain, inf(f+g)inff+infg\inf(f+g)\geq\inf f+\inf g. Also equality in (LABEL:eq:proofdissnorm2) follows since the infimum in the first term is attained when K=0K=0, G=0G=0, and Z=2(w1z)Z=-2(w_{1}z^{\dagger})^{*}. In fact, for any K,G,Zn,nK,G,Z\in{\mathbb{C}}^{n,n} satisfying (111), the matrix H1+H~1(Z,K,G)H_{1}+\widetilde{H}_{1}(Z,K,G) is a dissipative map taking zz to w1w_{1}, which implies from Theorem 8 that the minimum of H1+H~1(Z,K,G)F{\|H_{1}+\widetilde{H}_{1}(Z,K,G)\|}_{F} is attained when K=0K=0, G=0G=0, and Z=2(w1z)Z=-2(w_{1}z^{\dagger})^{*}, i.e., for H^1=H1+H~1(2(w1z),0,0)=H12Pzw1z\hat{H}_{1}=H_{1}+\widetilde{H}_{1}(-2(w_{1}z^{\dagger})^{*},0,0)=H_{1}-2P_{z}w_{1}z^{\dagger} defined by (117). Similarly, for a fixed K,G,Zn,nK,G,Z\in{\mathbb{C}}^{n,n} satisfying (111) and for any Rn,,mR\in{\mathbb{C}}^{n,,m}, the matrix H2+H~2(Z,K,G,R)H_{2}+\widetilde{H}_{2}(Z,K,G,R) satisfies that (H2+H~2(Z,K,G,R))x2=y~(H_{2}+\widetilde{H}_{2}(Z,K,G,R))x_{2}=\tilde{y} and (H2+H~2(Z,K,G,R))z=w2(H_{2}+\widetilde{H}_{2}(Z,K,G,R))^{*}z=w_{2}. This implies from Theorem 6 that for any fixed Z,K,GZ,K,G, the minimum of H2+H~2(Z,K,G,R)F{\|H_{2}+\widetilde{H}_{2}(Z,K,G,R)\|}_{F} over RR is attained when R=0R=0. This justifies (132) and hence proves (116).

Next we prove (118) under the assumption that y=βzy=\beta z for some β\beta\in{\mathbb{C}} and zz is orthogonal to x1x_{1}. For this, let us first estimate the infimum in the right hand side of (132). For any Z,K,Gn,nZ,K,G\in{\mathbb{C}}^{n,n} satisfying (111), we have

H2+H~2(Z,K,G,0)F2\displaystyle{\|H_{2}+\widetilde{H}_{2}(Z,K,G,0)\|}_{F}^{2}
=H2F2+H~2(Z,K,G,0)F2+2Re(trace((H2)(H~2(Z,K,G,0))))\displaystyle={\|H_{2}\|}_{F}^{2}+{\|\widetilde{H}_{2}(Z,K,G,0)\|}_{F}^{2}+2\mathop{\mathrm{Re}}\left(\mathop{\mathrm{trace}}\big{(}(H_{2})(\widetilde{H}_{2}(Z,K,G,0))^{*}\big{)}\right)
=H^2F2+H~2(Z,K,G,0)F2\displaystyle={\|\hat{H}_{2}\|}_{F}^{2}+{\|\widetilde{H}_{2}(Z,K,G,0)\|}_{F}^{2}
2Re(trace((yx2(w1z)x1x2+(w2z)Px2)(x1x2)(PzK+PzG)Pz))\displaystyle-2\mathop{\mathrm{Re}}\left(\mathop{\mathrm{trace}}\big{(}(yx_{2}^{\dagger}-(w_{1}z^{\dagger})^{*}x_{1}x_{2}^{\dagger}+(w_{2}z^{\dagger})^{*}P_{x_{2}})(x_{1}x_{2}^{\dagger})^{*}(P_{z}K+P_{z}G)P_{z}\big{)}\right) (133)
=H^2F2+H~2(Z,K,G,0)F2\displaystyle={\|\hat{H}_{2}\|}_{F}^{2}+{\|\widetilde{H}_{2}(Z,K,G,0)\|}_{F}^{2}
2Re(trace(Pz(yx2(w1z)x1x2+(w2z)Px2)(x1x2)(PzK+PzG)))\displaystyle-2\mathop{\mathrm{Re}}\left(\mathop{\mathrm{trace}}\big{(}P_{z}(yx_{2}^{\dagger}-(w_{1}z^{\dagger})^{*}x_{1}x_{2}^{\dagger}+(w_{2}z^{\dagger})^{*}P_{x_{2}})(x_{1}x_{2}^{\dagger})^{*}(P_{z}K+P_{z}G)\big{)}\right)
=H^2F2+H~2(Z,K,G,0)F2(Pzy=0,andPz(z)=0)\displaystyle={\|\hat{H}_{2}\|}_{F}^{2}+{\|\widetilde{H}_{2}(Z,K,G,0)\|}_{F}^{2}\quad(\because P_{z}y=0,~{}\text{and}~{}P_{z}(z^{\dagger})^{*}=0)
H^2F2,\displaystyle\geq{\|\hat{H}_{2}\|}_{F}^{2},

where the equality in (133) follows from (115) and (113) using the fact that zz is orthogonal to x1x_{1} and by setting H^2:=yx2(w1z)x1x2+(w2z)𝒫x2\hat{H}_{2}:=yx_{2}^{\dagger}-(w_{1}z^{\dagger})^{*}x_{1}x_{2}^{\dagger}+(w_{2}z^{\dagger})^{*}\mathcal{P}_{x_{2}}. This implies that

infK,G,Zn,nsatisfying(111)H2+H~2(Z,K,G,0)F2H^2F2\inf_{K,G,Z\in{\mathbb{C}}^{n,n}~{}\text{satisfying}~{}\eqref{1cond vec}}{\left\|H_{2}+\widetilde{H}_{2}(Z,K,G,0)\right\|}_{F}^{2}\geq{\|\hat{H}_{2}\|}_{F}^{2} (134)

In view of (132) and (134), when y=βzy=\beta z for some β\beta\in{\mathbb{C}} and zx1z\perp x_{1}, we have that

infΔ𝒮d2DissΔF2H^1F2+H^2F2.\inf_{{\Delta}\in{\mathcal{S}}_{d_{2}}^{\rm Diss}}{\|{\Delta}\|}_{F}^{2}~{}\geq~{}{\|\hat{H}_{1}\|}_{F}^{2}+{\|\hat{H}_{2}\|}_{F}^{2}. (135)

Notice that the lower bound in (135) is uniquely attained for Δ=[H^1H^2]{\Delta}=[\hat{H}_{1}~{}\,\hat{H}_{2}] which is obtained by taking Z=2(w1z)Z=-2(w_{1}z^{\dagger})^{*}, K=0K=0, G=0G=0, and R=0R=0 in (110). This completes the proof.       

Remark 3.

A remark similar to Remark 2 also holds for Type-2 DSDMs.

6 DSM’s in computing structured eigenpair backward errors of pencils L(z)L(z)

Consider the pencil L(z)L(z) in the form (2) that arises in passivity analysis of port-Hamiltonian systems. In this section, we exploit the minimal-norm DSMs from Section 5 to develop eigenpair backward error estimates under block- and symmetry-structure-preserving perturbations. These results extend the work done in [14], where the pencil L(z)L(z) was considered without semidefinite structure on the block RR. Let us introduce the perturbation ΔM+zΔN\Delta_{M}+z\Delta_{N} of the pencil L(z)=M+zNL(z)=M+zN, where

ΔM=[0ΔJΔRΔBΔJΔR00ΔB00]andΔN=[0ΔE0ΔE00000],\Delta_{M}=\left[\begin{array}[]{ccc}0&\Delta_{J}-\Delta_{R}&\Delta_{B}\\ \Delta_{J}^{*}-\Delta_{R}^{*}&0&0\\ \Delta^{*}_{B}&0&0\end{array}\right]\quad\text{and}\quad{\Delta}_{N}=\left[\begin{array}[]{ccc}0&{\Delta}_{E}&0\\ -{\Delta}_{E}^{*}&0&0\\ 0&0&0\end{array}\right], (136)

for ΔJ,ΔR,ΔEn,n\Delta_{J},\Delta_{R},\Delta_{E}\in{\mathbb{C}}^{n,n} and ΔBn,m\Delta_{B}\in{\mathbb{C}}^{n,m}, that affect the blocks J,R,E,BJ,R,E,B of L(z)L(z). Thus motivated by [14], we define various structured eigenpair backward errors of L(z)L(z) for a given pair (λ,u)×2n+m{0}(\lambda,u)\in{\mathbb{C}}\times{\mathbb{C}}^{2n+m}\setminus\{0\} as follows:

  1. 1.

    the block-structure-preserving eigenpair backward error η(J,R,E,B,λ,u)\eta^{\mathcal{B}}(J,R,E,B,\lambda,u) of L(z)L(z) with respect to perturbations from the set

    (J,R,E,B):=\displaystyle\mathcal{B}(J,R,E,B):= {ΔM+zΔN:ΔM,ΔNdefined  by(136)for\displaystyle\big{\{}\Delta_{M}+z\Delta_{N}:~{}\Delta_{M},\Delta_{N}~{}\text{defined\, by}~{}\eqref{eq:pertumn}~{}\text{for} (137)
    ΔJ,ΔR,ΔEn,n,ΔBn,m}\displaystyle~{}\Delta_{J},\Delta_{R},\Delta_{E}\in{\mathbb{C}}^{n,n},~{}\Delta_{B}\in{\mathbb{C}}^{n,m}\big{\}}

    is defined by

    η(J,R,E,B,λ,u)=\displaystyle\eta^{\mathcal{B}}(J,R,E,B,\lambda,u)= {[ΔMΔN]F:((MΔM)+λ(NΔN))u=0,\displaystyle\big{\{}{\|\left[\Delta_{M}~{}\Delta_{N}\right]\|}_{F}:~{}\left((M-\Delta_{M})+\lambda(N-\Delta_{N})\right)u=0, (138)
    ΔM+zΔN(J,R,E,B)};\displaystyle\Delta_{M}+z\Delta_{N}\in\mathcal{B}(J,R,E,B)\big{\}};
  2. 2.

    the symmetry-structure-preserving eigenpair backward error η𝒮(J,R,E,B,λ,u)\eta^{\mathcal{S}}(J,R,E,B,\lambda,u) of L(z)L(z) with respect to perturbations from the set

    𝒮(J,R,E,B):=\displaystyle\mathcal{S}(J,R,E,B):= {ΔM+zΔN:ΔM,ΔNdefined  by(136)forΔJ,ΔR,ΔEn,n,\displaystyle\big{\{}\Delta_{M}+z\Delta_{N}:~{}\Delta_{M},\Delta_{N}~{}\text{defined\, by}~{}\eqref{eq:pertumn}~{}\text{for}~{}\Delta_{J},\Delta_{R},\Delta_{E}\in{\mathbb{C}}^{n,n}, (139)
    ΔBn,m,ΔJ=ΔJ,ΔR=ΔR,ΔE=ΔE}\displaystyle~{}\Delta_{B}\in{\mathbb{C}}^{n,m},~{}\Delta_{J}^{*}=-\Delta_{J},\Delta_{R}^{*}=\Delta_{R},\Delta_{E}^{*}=\Delta_{E}\big{\}}

    is defined by

    η𝒮(J,R,E,B,λ,u)=\displaystyle\eta^{\mathcal{S}}(J,R,E,B,\lambda,u)= {[ΔMΔN]F:((MΔM)+λ(NΔN))u=0,\displaystyle\big{\{}{\|\left[\Delta_{M}~{}\Delta_{N}\right]\|}_{F}:~{}\left((M-\Delta_{M})+\lambda(N-\Delta_{N})\right)u=0, (140)
    ΔM+zΔN𝒮(J,R,E,B)};\displaystyle\Delta_{M}+z\Delta_{N}\in\mathcal{S}(J,R,E,B)\big{\}};
  3. 3.

    the semidefinite-structure-preserving eigenpair backward error η𝒮d(J,R,E,B,λ,u)\eta^{\mathcal{S}_{d}}(J,R,E,B,\lambda,u) of L(z)L(z) with respect to perturbations from the set

    𝒮d(J,R,E,B):=\displaystyle\mathcal{S}_{d}(J,R,E,B):= {ΔM+zΔN:ΔM,ΔNdefined  by(136)forΔJ,ΔR,ΔEn,n,\displaystyle\big{\{}\Delta_{M}+z\Delta_{N}:~{}\Delta_{M},\Delta_{N}~{}\text{defined\, by}~{}\eqref{eq:pertumn}~{}\text{for}~{}\Delta_{J},\Delta_{R},\Delta_{E}\in{\mathbb{C}}^{n,n}, (141)
    ΔBn,m,ΔJ=ΔJ,ΔR0,ΔE=ΔE}\displaystyle~{}\Delta_{B}\in{\mathbb{C}}^{n,m},~{}\Delta_{J}^{*}=-\Delta_{J},\Delta_{R}\succeq 0,\Delta_{E}^{*}=\Delta_{E}\big{\}}

    is defined by

    η𝒮d(J,R,E,B,λ,u)=\displaystyle\eta^{\mathcal{S}_{d}}(J,R,E,B,\lambda,u)= {[ΔMΔN]F:((MΔM)+λ(NΔN))u=0,\displaystyle\big{\{}{\|\left[\Delta_{M}~{}\Delta_{N}\right]\|}_{F}:~{}\left((M-\Delta_{M})+\lambda(N-\Delta_{N})\right)u=0, (142)
    ΔM+zΔN𝒮d(J,R,E,B)}.\displaystyle\Delta_{M}+z\Delta_{N}\in\mathcal{S}_{d}(J,R,E,B)\big{\}}.

We note that by choosing different perturbation sets in (137), (139), and (141), the corresponding backward errors can be defined by allowing perturbations only to specific blocks J,R,E,BJ,R,E,B of L(z)L(z). For example, if we chose (J,R):=(J,R,0,0)\mathcal{B}(J,R):=\mathcal{B}(J,R,0,0), where ΔE=0\Delta_{E}=0 and ΔB=0\Delta_{B}=0 in (137) to allow perturbation only in blocks JJ and RR of L(z)L(z), then the corresponding backward error is given by η(J,R,λ,u):=η(J,R,0,0,λ,u)\eta^{\mathcal{B}}(J,R,\lambda,u):=\eta^{\mathcal{B}}(J,R,0,0,\lambda,u). Similarly, the backward errors η𝒮(J,R,λ,u)\eta^{\mathcal{S}}(J,R,\lambda,u) and η𝒮d(J,R,λ,u)\eta^{\mathcal{S}_{d}}(J,R,\lambda,u) can be defined by restricting the perturbation sets as 𝒮(J,R):=𝒮(J,R,0,0)\mathcal{S}(J,R):=\mathcal{S}(J,R,0,0) and 𝒮d(J,R):=𝒮d(J,R,0,0)\mathcal{S}_{d}(J,R):=\mathcal{S}_{d}(J,R,0,0), where ΔE=0\Delta_{E}=0 and ΔB=0\Delta_{B}=0 in (139) and (141), respectively.

The block- and symmetry-structure-preserving eigenpair backward errors η(,,,,λ,u)\eta^{\mathcal{B}}(\cdot,\cdot,\cdot,\cdot,\lambda,u) and η𝒮(,,,,λ,u)\eta^{\mathcal{S}}(\cdot,\cdot,\cdot,\cdot,\lambda,u) were studied in [14] for different combinations of perturbation blocks J,R,EJ,R,E, and BB of L(z)L(z). In the following, we obtain results only for the semidefinite-structure-preserving backward error η𝒮d(J,R,E,B,λ,u)\eta^{\mathcal{S}_{d}}(J,R,E,B,\lambda,u). The backward errors for other combination of the blocks J,R,E,BJ,R,E,B of L(z)L(z) can be obtained analogously, see B.

Remark 4.

Let L(z)L(z) be a pencil in the form (2), λi\lambda\in i{\mathbb{R}}, and u=[u1Tu2Tu3T]Tu=\big{[}u_{1}^{T}~{}u_{2}^{T}~{}u_{3}^{T}\big{]}^{T} be such that u1,u2nu_{1},u_{2}\in{\mathbb{C}}^{n}, and u3mu_{3}\in{\mathbb{C}}^{m}. Then for any ΔL(z)=ΔM+zΔN\Delta L(z)=\Delta_{M}+z\Delta_{N}, where ΔM\Delta_{M} and ΔN\Delta_{N} are defined by (136) for ΔJ,ΔR,ΔEn,n\Delta_{J},\Delta_{R},\Delta_{E}\in{\mathbb{C}}^{n,n} and ΔBn,m\Delta_{B}\in{\mathbb{C}}^{n,m}, we have (L(λ)ΔL(λ))u=0\left(L(\lambda)-\Delta L(\lambda)\right)u=0 if and only if

(ΔJΔR+λΔE)u2+ΔBu3\displaystyle({\Delta}_{J}-{\Delta}_{R}+{\lambda}{\Delta}_{E})u_{2}+{\Delta}_{B}u_{3} =\displaystyle= (JR+λE)u2+Bu3\displaystyle(J-R+{\lambda}E)u_{2}+Bu_{3}
(ΔJΔRλΔE)u1\displaystyle({\Delta}_{J}^{*}-{\Delta}_{R}^{*}-{\lambda}{\Delta}_{E}^{*})u_{1} =\displaystyle= ((JR)λE)u1\displaystyle((J-R)^{*}-{\lambda}E^{*})u_{1}
ΔBu1\displaystyle{\Delta}_{B}^{*}u_{1} =\displaystyle= Bu1+Su3\displaystyle B^{*}u_{1}+Su_{3}

if and only if

[ΔJΔR+λΔE=:Δ1ΔB=:Δ2][u2u3]=:x\displaystyle\left[\begin{array}[]{cc}\underbrace{{\Delta}_{J}-{\Delta}_{R}+{\lambda}{\Delta}_{E}}_{=:\Delta_{1}}&\underbrace{{\Delta}_{B}}_{=:\Delta_{2}}\end{array}\right]\underbrace{\left[\begin{array}[]{c}u_{2}\\ u_{3}\end{array}\right]}_{=:x} =\displaystyle= (JR+λE)u2+Bu3=:y\displaystyle\underbrace{(J-R+{\lambda}E)u_{2}+Bu_{3}}_{=:y} (146)
[ΔJΔR+λΔEΔB]u1=:z\displaystyle\left[\begin{array}[]{cc}{\Delta}_{J}-{\Delta}_{R}+{\lambda}{\Delta}_{E}&{\Delta}_{B}\end{array}\right]^{*}\underbrace{u_{1}}_{=:z} =\displaystyle= [(J+R+λE)u1Bu1+Su3]=:w,\displaystyle\underbrace{\left[\begin{array}[]{c}-(J+R+{\lambda}E)u_{1}\\ B^{*}u_{1}+Su_{3}\end{array}\right]}_{=:w}, (150)

since λi\lambda\in i{\mathbb{R}}. Thus for any ΔL(z)=ΔM+zΔN\Delta L(z)=\Delta_{M}+z\Delta_{N} and (λ,u)i×2n+m{0}(\lambda,u)\in i{\mathbb{R}}\times{\mathbb{C}}^{2n+m}\setminus\{0\}, (L(λ)ΔL(λ))u=0\left(L(\lambda)-\Delta L(\lambda)\right)u=0 is equivalent to solving the doubly structured mapping defined by (146)-(150), where the structure on Δ1\Delta_{1} depends on the structures imposed on the perturbations ΔJ\Delta_{J}, ΔR\Delta_{R}, and ΔE\Delta_{E}.

In view of (146) and (150), the following lemma is analogous to [14, Lemma 6.2] that will be useful in preserving the semidefinite structure on RR in the backward error η𝒮d(J,R,E,B,λ,u)\eta^{\mathcal{S}_{d}}(J,R,E,B,\lambda,u).

Lemma 6.

Let L(z)L(z) be a pencil as in (2), and let λi{\lambda}\in i{\mathbb{R}} and u2n+m{0}u\in{\mathbb{C}}^{2n+m}\setminus\{0\}. Partition u=[u1Tu2Tu3T]Tu=[u_{1}^{T}~{}u_{2}^{T}~{}u_{3}^{T}]^{T} such that u1,u2nu_{1},u_{2}\in{\mathbb{C}}^{n} and u3mu_{3}\in{\mathbb{C}}^{m}, and let x,y,zx,y,z and ww be defined by (146) and (150). Then the following statements are equivalent.

  1. 1.

    There exists ΔJ,ΔR,ΔEn,n{\Delta}_{J},{\Delta}_{R},{\Delta}_{E}\in{\mathbb{C}}^{n,n} and ΔBn,m{\Delta}_{B}\in{\mathbb{C}}^{n,m} such that ΔJSHerm(n){\Delta}_{J}\in{\rm SHerm}(n), ΔR0{\Delta}_{R}\succeq 0, and ΔEHerm(n){\Delta}_{E}\in{\rm Herm}(n) satisfying (146) and (150).

  2. 2.

    There exists Δ=[Δ1Δ2]{\Delta}=[{\Delta}_{1}~{}{\Delta}_{2}], Δ1n,n{\Delta}_{1}\in{\mathbb{C}}^{n,n}, Δ2n,m{\Delta}_{2}\in{\mathbb{C}}^{n,m} such that Δ1+Δ10{\Delta}_{1}+{\Delta}_{1}^{*}\preceq 0, Δx=y{\Delta}x=y, and Δz=w{\Delta}^{*}z=w.

  3. 3.

    u3=0u_{3}=0.

Moreover, we have

inf{[ΔJΔRΔEΔB]F2:ΔJSHerm(n),ΔR,ΔEHerm(n),ΔR0,\displaystyle\inf\Big{\{}{\left\|\big{[}{\Delta}_{J}~{}{\Delta}_{R}~{}{\Delta}_{E}~{}{\Delta}_{B}\big{]}\right\|}_{F}^{2}:~{}{\Delta}_{J}\in{\rm SHerm}(n),{\Delta}_{R},{\Delta}_{E}\in{\rm Herm}(n),\Delta_{R}\succeq 0, (151)
ΔBn,msatisfying(146)and(150)}\displaystyle~{}{\Delta}_{B}\in{\mathbb{C}}^{n,m}~{}\text{satisfying}~{}\eqref{dsmequi1}~{}\text{and}~{}\eqref{dsmequi2}\Big{\}}
=inf{Δ1+Δ12F2+11+|λ|2Δ1Δ12F2+Δ2F2:Δ=[Δ1Δ2],Δ1n,n,\displaystyle=\inf\bigg{\{}{\left\|\frac{{\Delta}_{1}+{\Delta}_{1}^{*}}{2}\right\|}_{F}^{2}+\frac{1}{1+|{\lambda}|^{2}}{\left\|\frac{{\Delta}_{1}-{\Delta}_{1}^{*}}{2}\right\|}_{F}^{2}+{\|{\Delta}_{2}\|}_{F}^{2}:~{}{\Delta}=\big{[}{\Delta}_{1}~{}{\Delta}_{2}\big{]},~{}{\Delta}_{1}\in{\mathbb{C}}^{n,n}, (152)
Δ2n,m,Δ1+Δ10,Δx=y,Δz=w}.\displaystyle{\Delta}_{2}\in{\mathbb{C}}^{n,m},~{}{\Delta}_{1}+{\Delta}_{1}^{*}\preceq 0,~{}{\Delta}x=y,{\Delta}^{*}z=w\bigg{\}}.
Proof.

The proof is similar to the proof of [14, Lemma 6.2] due to Type-2 doubly structured dissipative mapping from Theorem 17.       

Theorem 18.

Let L(z)L(z) be a pencil as in (2), let λi{0}{\lambda}\in i{\mathbb{R}}\setminus\{0\} and u2n+m{0}u\in{\mathbb{C}}^{2n+m}\setminus\{0\}. Partition u=[u1Tu2Tu3T]Tu=[u_{1}^{T}~{}u_{2}^{T}~{}u_{3}^{T}]^{T} such that u1,u2nu_{1},u_{2}\in{\mathbb{C}}^{n}, and u3nu_{3}\in{\mathbb{C}}^{n}. Set y~=(JR+λE)u2\tilde{y}=(J-R+{\lambda}E)u_{2} and w1=(J+R+λE)u1w_{1}=-(J+R+{\lambda}E)u_{1}. Then η𝒮d(J,R,E,B,λ,u)\eta^{\mathcal{S}_{d}}(J,R,E,B,{\lambda},u) is finite if and only if u3=0u_{3}=0. If the later condition holds and if u2u_{2} satisfies that Ru20Ru_{2}\neq 0 and u2=αu1u_{2}=\alpha u_{1} for some nonzero α\alpha\in{\mathbb{C}}, then

11+|λ|2H1F2+H2F2(η𝒮d(J,R,E,B,λ,u))2H1F2+H2F2,\frac{1}{1+|{\lambda}|^{2}}{\|H_{1}\|}_{F}^{2}+{\|H_{2}\|}_{F}^{2}\leq\left(\eta^{\mathcal{S}_{d}}(J,R,E,B,{\lambda},u)\right)^{2}\leq{\|H_{1}\|}_{F}^{2}+{\|H_{2}\|}_{F}^{2}, (153)

where

H1=y~u2+(w1u1)𝒫u2+𝒫u2J𝒫u2withJ=14Re(u2y~)(y~+α|α|2w1)(y~+α|α|2w1)H_{1}=\tilde{y}u_{2}^{\dagger}+(w_{1}u_{1}^{\dagger})^{*}\mathcal{P}_{u_{2}}+\mathcal{P}_{u_{2}}J\mathcal{P}_{u_{2}}\quad\text{with}\quad J=\frac{1}{4\mathop{\mathrm{Re}}{(u_{2}^{*}{\tilde{y}}})}\big{(}\tilde{y}+\frac{\alpha}{|\alpha|^{2}}w_{1}\big{)}\big{(}\tilde{y}+\frac{\alpha}{|\alpha|^{2}}w_{1}\big{)}^{*} (154)

and H2=u1u1BH_{2}=u_{1}u_{1}^{\dagger}B.

Proof.

In view of Remark 4 and Lemma 6, we obtain that η𝒮d(J,R,E,B,λ,u)\eta^{\mathcal{S}_{d}}(J,R,E,B,{\lambda},u) is finite if and only if u3=0u_{3}=0. Thus by substituting u3=0u_{3}=0 in (146) and (150), and using Lemma 6 in (142), we have that

(η𝒮d(J,R,E,B,λ,u))2=inf{Δ1+Δ12F2+11+|λ|2Δ1Δ12F2+Δ2F2:Δ1n,n,\displaystyle\left(\eta^{\mathcal{S}_{d}}(J,R,E,B,{\lambda},u)\right)^{2}=\inf\Big{\{}{\left\|\frac{{\Delta}_{1}+{\Delta}_{1}^{*}}{2}\right\|}_{F}^{2}+\frac{1}{1+|{\lambda}|^{2}}{\left\|\frac{{\Delta}_{1}-{\Delta}_{1}^{*}}{2}\right\|}_{F}^{2}+{\|{\Delta}_{2}\|}_{F}^{2}:~{}{\Delta}_{1}\in{\mathbb{C}}^{n,n},
Δ2n,m,Δ1+Δ10,Δ1u2=y~,Δ1u1=w1,Δ2u1=Bu1}.\displaystyle\hskip 56.9055pt{\Delta}_{2}\in{\mathbb{C}}^{n,m},~{}{\Delta}_{1}+{\Delta}_{1}^{*}\preceq 0,~{}{\Delta}_{1}u_{2}=\tilde{y},{\Delta}_{1}^{*}u_{1}=w_{1},~{}\Delta_{2}^{*}u_{1}=B^{*}u_{1}\Big{\}}. (155)

If u2=αu1u_{2}=\alpha u_{1} for some nonzero α\alpha\in{\mathbb{C}} and u2ker(R)u_{2}\notin\text{ker}(R), then from Theorem 15 and Remark 2 there always exists a Type-1 doubly structured dissipative mapping Δ1\Delta_{1} such that Δ1+Δ10{\Delta}_{1}+{\Delta}_{1}^{*}\preceq 0 and

Δ1u2=y~,andΔ1u1=w1.{\Delta}_{1}u_{2}=\tilde{y},\quad\text{and}\quad{\Delta}_{1}^{*}u_{1}=w_{1}. (156)

This is because of Theorem 16 as the necessary and sufficient conditions u1w1=y~u2u_{1}^{*}w_{1}={\tilde{y}}^{*}u_{2} and Re(u2y~)0\mathop{\mathrm{Re}}{(u_{2}^{*}\tilde{y})}\leq 0 for the existence of such a Δ1\Delta_{1} are satisfied, since R0R\succeq 0, J=JJ^{*}=-J, E=EE^{*}=E, and λi\lambda\in i{\mathbb{R}}. Further, the minimal Frobenius norm of such a Δ1\Delta_{1} is attained by the unique matrix H1H_{1} defined in (154). Similarly, from Theorem 1, for any u1u_{1} there always exists Δ2n,m\Delta_{2}\in{\mathbb{C}}^{n,m} such that Δ2u1=Bu1\Delta_{2}^{*}u_{1}=B^{*}u_{1} and the minimal Frobenius norm of such a Δ2\Delta_{2} is attained by H2:=u1u1BH_{2}:=u_{1}u_{1}^{\dagger}B.

Next, observe that for any Δ1n,n\Delta_{1}\in{\mathbb{C}}^{n,n}, we have Δ1F2=Δ1+Δ12F2+Δ1Δ12F2{\|\Delta_{1}\|}_{F}^{2}={\left\|\frac{\Delta_{1}+\Delta_{1}^{*}}{2}\right\|}_{F}^{2}+{\left\|\frac{\Delta_{1}-\Delta_{1}^{*}}{2}\right\|}_{F}^{2}. This implies that for any Δ1n,n\Delta_{1}\in{\mathbb{C}}^{n,n} and Δ2n,m\Delta_{2}\in{\mathbb{C}}^{n,m}, we have

11+|λ|2Δ1F2+Δ2F2Δ1+Δ12F2+11+|λ|2Δ1Δ12F2+Δ2F2Δ1F2+Δ2F2.\frac{1}{1+|\lambda|^{2}}{\|\Delta_{1}\|}_{F}^{2}+{\|\Delta_{2}\|}_{F}^{2}\leq{\left\|\frac{\Delta_{1}+\Delta_{1}^{*}}{2}\right\|}_{F}^{2}+\frac{1}{1+|\lambda|^{2}}{\left\|\frac{\Delta_{1}-\Delta_{1}^{*}}{2}\right\|}_{F}^{2}+{\|\Delta_{2}\|}_{F}^{2}\leq{\|\Delta_{1}\|}_{F}^{2}+{\|\Delta_{2}\|}_{F}^{2}. (157)

Thus by taking the infimum over all Δ1n,n\Delta_{1}\in{\mathbb{C}}^{n,n} and Δ2n,m\Delta_{2}\in{\mathbb{C}}^{n,m} satisfying the mappings in the right hand side of (156), and by using the minimal Frobenius norm mappings H1H_{1} and H2H_{2}, we obtain (153). This completes the proof.       

6.1 Numerical experiments

In Table 1, we present some numerical experiments to illustrate the results of this section. We generate a random pencil L(z)L(z) of the form (2) with no eigenvalues on the imaginary axis and compare the various eigenpair backward errors for perturbations to all the blocks JJ, RR, EE, and BB of L(z)L(z). The λ\lambda-values are chosen randomly on the imaginary axis, and u2n+mu\in{\mathbb{C}}^{2n+m} is chosen to satisfy the conditions of Theorem 18. The block structured backward error η(J,R,E,B,λ,u)\eta^{\mathcal{B}}(J,R,E,B,\lambda,u) and the symmetry structured eigenpair backward error η𝒮(J,R,E,B,λ,u)\eta^{\mathcal{S}}(J,R,E,B,\lambda,u) were obtained in [14, Theorem 6.3]. The semidefinite structure-preserving backward error η𝒮d(J,R,E,B,λ,u)\eta^{\mathcal{S}_{d}}(J,R,E,B,\lambda,u) is obtained in Theorem 18. We observe that the eigenpair backward error is significantly larger when semidefinite structure-preserving perturbations are considered instead of block structure-preserving ones or symmetry structure-preserving ones. The tightness of the lower and upper bounds for η𝒮d(J,R,E,B,λ,u)\eta^{\mathcal{S}_{d}}(J,R,E,B,\lambda,u) depends on the value of λ\lambda, as shown in Theorem 18.

Table 1: Comparison of various block-/symmetry-/semidefinite-structure-preserving eigenpair backward errors of L(z)L(z) under perturbations to the blocks J,R,EJ,R,E, and BB of L(z)L(z). Here, l.b. and u.b. respectively stand for the terms lower and upper bound.
λ{\lambda} η\eta^{\mathcal{B}} l.b. of η𝒮\eta^{\mathcal{S}} u.b. of η𝒮\eta^{\mathcal{S}} l.b. of η𝒮d\eta^{\mathcal{S}_{d}} u.b. of η𝒮d\eta^{\mathcal{S}_{d}}
[14] [14, Theorem 6.3] [14, Theorem 6.3] Theorem 18 Theorem 18
0.1380i0.1380i 23.930523.9305 28.224828.2248 28.491928.4919 30.647630.6476 30.936630.9366
0.5100i0.5100i 23.590923.5909 25.749825.7498 29.001329.0013 27.934727.9347 31.338231.3382
0.8950i0.8950i 23.035523.0355 22.213422.2134 30.763030.7630 24.054224.0542 32.222332.2223
1.0480i1.0480i 22.816022.8160 20.915520.9155 32.055332.0553 22.628422.6284 32.698732.6987
1.3210i1.3210i 22.476422.4764 18.909118.9091 35.514335.5143 20.422520.4225 33.713433.7134
1.9080i1.9080i 22.072522.0725 15.864015.8640 48.959748.9597 17.070717.0707 36.537136.5371
2.5080i2.5080i 22.108722.1087 13.997513.9975 71.494271.4942 15.018415.0184 40.179440.1794

The eigenpair backward errors of L(z)L(z) when only specific blocks in the pencil L(z)L(z) are perturbed also follow similar lines and have been kept in B for future reference. In Table 2, we summarize the results for symmetry and semidefinite structure-preserving backward errors with respect to other combinations of the perturbation blocks JJ, RR, EE, and BB of L(z)L(z). Table 2 also covers the cases of symmetry structure-preserving backward errors left open in [14] .

Table 2: An overview of the results for the symmetry- or semidefinite-structure-preserving eigenpair backward error when only specific blocks in the pencil L(z)L(z) are perturbed.
perturbation blocks η𝒮(,,,,λ,u)\eta^{\mathcal{S}}(\cdot,\cdot,\cdot,\cdot,\lambda,u) η𝒮d(,,,,λ,u)\eta^{\mathcal{S}_{d}}(\cdot,\cdot,\cdot,\cdot,\lambda,u)
J and R [14, Theorem 4.14] Theorem 19
J and E [14, Theorem 4.6] [14, Theorem 4.6]
J and B Theorem 20 Theorem 20
R and E [14, Theorem 4.10] Theorem 24
R and B Theorem 21 Theorem 22
E and B Theorem 23 Theorem 23
J,R and E [15, Theorem 5.11] Theorem 25
J,R and B [14, Theorem 5.4] Theorem 28
R,E and B [15, Theorem 5.7] Theorem 27
J,E and B Theorem 26 Theorem 26
J,R,E and B [15, Theorem 6.3] Theorem 18

References

References

  • [1] Bibhas Adhikari, Backward Perturbation and Sensitivity analysis of Structured polynomial Eigenomial Eigenvalue Problem, PhD thesis, Department of Mathematics, IIT Guwahati, Assam, India, 2008.
  • [2] Bibhas Adhikari and Rafikul Alam, Structured procrustes problem, Linear Algebra and its Applications, 490 (2016), pp. 145–161.
  • [3] A. Albert, Conditions for positive and nonnegative definiteness in terms of pseudoinverses, SIAM Journal on Applied Mathematics, 17 (1969), pp. 434–440.
  • [4] Mohit Kumar Baghel, Nicolas Gillis, and Punit Sharma, Characterization of the dissipative mappings and their application to perturbations of dissipative-hamiltonian systems, Numerical Linear Algebra with Applications, (2021).
  • [5] Christopher Beattie, Volker Mehrmann, Hongguo Xu, and Hans Zwart, Linear port-hamiltonian descriptor systems, Mathematics of Control, Signals, and Systems, 30 (2018), p. 17.
  • [6] Shreemayee Bora, Michael Karow, Christian Mehl, and Punit Sharma, Structured eigenvalue backward errors of matrix pencils and polynomials with hermitian and related structures, SIAM Journal on Matrix Analysis and Applications, 35 (2014), pp. 453–475.
  • [7]  , Structured eigenvalue backward errors of matrix pencils and polynomials with palindromic structures, SIAM Journal on Matrix Analysis and Applications, 36 (2015), pp. 393–416.
  • [8] Philippe G Ciarlet, Philippe Gaston Ciarlet, Bernadette Miara, and Jean-Marie Thomas, Introduction to numerical linear algebra and optimisation, Cambridge University Press, 1989.
  • [9] Nicolas Gillis and Punit Sharma, Finding the nearest positive-real system, SIAM Journal on Numerical Analysis, 56 (2018), pp. 1022–1047.
  • [10] P. Kunkel and V. Mehrmann, Optimal control for unstructured nonlinear differential-algebraic equations of arbitrary index, Math. Control Signals Systems, 20 (2008), pp. 227–269.
  • [11] D S. Mackey, N. Mackey, and F. Tisseur, Structured mapping problems for matrices associated with scalar products. part i: Lie and jordan algebras, SIAM Journal on Matrix Analysis and Applications, 29 (2008), pp. 1389–1410.
  • [12] C. Mehl, V. Mehrmann, and P. Sharma, Stability radii for linear Hamiltonian systems with dissipation under structure-preserving perturbations, SIAM Journal on Matrix Analysis and Applications, 37 (2016), pp. 1625–1654.
  • [13]  , Stability radii for real linear Hamiltonian systems with perturbed dissipation, BIT Numerical Mathematics, 57 (2017), pp. 811–843.
  • [14] Christian Mehl, Volker Mehrmann, and Punit Sharma, Structured eigenvalue/eigenvector backward errors of matrix pencils arising in optimal control, Electronic Journal of Linear Algebra, 34 (2018).
  • [15] Christian Mehl, Volker Mehrmann, and Marek Wojtylak, Linear algebra properties of dissipative hamiltonian descriptor systems, SIAM Journal on Matrix Analysis and Applications, 39 (2018), pp. 1489–1519.
  • [16] V. Mehrmann, The Autonomous Linear Quadratic Control Problem, Theory and Numerical Solution, vol. 163 of Lecture Notes in Control and Inform. Sci., Springer-Verlag, Heidelberg, Jul 1991.
  • [17] Ji-Guang Sun, Backward perturbation analysis of certain characteristic subspaces, Numerische Mathematik, 65 (1993), pp. 357–382.
  • [18] A. J. Van der Schaft, Port-Hamiltonian differential-algebraic systems, in Surveys in Differential-Algebraic Equations, Springer, 2013, pp. 173–226.

Appendix A Proof of Theorem 12

Proof.

Let us suppose that 𝒮dSym\mathcal{S}_{d}^{{\rm Sym}}\neq\emptyset. Then there exists Δ=[Δ1Δ2]{\Delta}=[{\Delta}_{1}~{}{\Delta}_{2}] with Δ1n,n{\Delta}_{1}\in{\mathbb{C}}^{n,n} and Δ2n,m{\Delta}_{2}\in{\mathbb{C}}^{n,m} such that Δ1T=Δ1,Δx=y{\Delta}_{1}^{T}={\Delta}_{1},{\Delta}x=y, and Δz=w{\Delta}^{*}z=w. This implies that yz=(Δx)z=xΔz=xwy^{*}z=({\Delta}x)^{*}z=x^{*}{\Delta}^{*}z=x^{*}w. Conversely, if xw=yz,zTw1x^{*}w=y^{*}z,z^{T}w_{1}\in{\mathbb{R}}, then H=[H1H2]H=[H_{1}~{}H_{2}] satisfies that Hx=y,Hz=wHx=y,H^{*}z=w, and H1T=H1H_{1}^{T}=H_{1}, which implies that H𝒮dSymH\in\mathcal{S}_{d}^{{\rm Sym}}.

Next, we prove (28). First suppose that Δ𝒮dSym{\Delta}\in\mathcal{S}_{d}^{{\rm Sym}}, i.e., Δ=[Δ1Δ2]{\Delta}=[{\Delta}_{1}~{}{\Delta}_{2}], such that Δx=y,Δz=w{\Delta}x=y,{\Delta}^{*}z=w, and Δ1T=Δ1{\Delta}_{1}^{T}={\Delta}_{1}. This implies that

Δ1x1+Δ2x2=y,Δ¯1z=w1andΔ2z=w2.\displaystyle{\Delta}_{1}x_{1}+{\Delta}_{2}x_{2}=y,\quad\bar{{\Delta}}_{1}z=w_{1}\quad\text{and}\quad{\Delta}_{2}^{*}z=w_{2}. (158)

Since Δ1\Delta_{1} is a Complex-Symmetric matrix taking z¯\bar{z} to w1¯\bar{w_{1}}, from Theorem 4 Δ1{\Delta}_{1} has the form

Δ1=w¯1z¯+(w¯1z¯)Tz¯Tz¯Tw¯1z¯+(𝒫z¯)TK𝒫z¯{\Delta}_{1}=\bar{w}_{1}\bar{z}^{\dagger}+(\bar{w}_{1}\bar{z}^{\dagger})^{T}-\bar{z}^{{\dagger}^{T}}\bar{z}^{T}\bar{w}_{1}\bar{z}^{\dagger}+(\mathcal{P}_{\bar{z}})^{T}K\mathcal{P}_{\bar{z}} (159)

for some Complex-symetric matrix Kn,nK\in{\mathbb{C}}^{n,n}. By substituting Δ1{\Delta}_{1} from (159) in (158), we get

Δ2x2=y(w¯1z¯+(w¯1z¯)Tz¯Tz¯Tw¯1z¯+(𝒫z¯)TK𝒫z¯)x1andΔ2z=w2,\displaystyle{\Delta}_{2}x_{2}=y-\left(\bar{w}_{1}\bar{z}^{\dagger}+(\bar{w}_{1}\bar{z}^{\dagger})^{T}-\bar{z}^{{\dagger}^{T}}\bar{z}^{T}\bar{w}_{1}\bar{z}^{\dagger}+(\mathcal{P}_{\bar{z}})^{T}K\mathcal{P}_{\bar{z}}\right)x_{1}\quad\text{and}\quad{\Delta}_{2}^{*}z=w_{2}, (160)

i.e., a mapping of the form Δ2x2=y~{\Delta}_{2}x_{2}=\tilde{y} and Δ2z=w2{\Delta}_{2}^{*}z=w_{2}, where

y~=(y(w¯1z¯+(w¯1z¯)Tz¯Tz¯Tw¯1z¯+(𝒫z¯)TK𝒫z¯)x1).\tilde{y}=\left(y-(\bar{w}_{1}\bar{z}^{\dagger}+(\bar{w}_{1}\bar{z}^{\dagger})^{T}-\bar{z}^{{\dagger}^{T}}\bar{z}^{T}\bar{w}_{1}\bar{z}^{\dagger}+(\mathcal{P}_{\bar{z}})^{T}K\mathcal{P}_{\bar{z}})x_{1}\right).

The vectors x2,y~,zx_{2},\tilde{y},z, and w2w_{2} satisfy

y~z\displaystyle\tilde{y}^{*}z =\displaystyle= (y(w¯1z¯+(w¯1z¯)Tz¯Tz¯Tw¯1z¯+𝒫z¯TK𝒫z¯)x1)z\displaystyle\left(y-(\bar{w}_{1}\bar{z}^{\dagger}+(\bar{w}_{1}\bar{z}^{\dagger})^{T}-\bar{z}^{{\dagger}^{T}}\bar{z}^{T}\bar{w}_{1}\bar{z}^{\dagger}+\mathcal{P}_{\bar{z}}^{T}K\mathcal{P}_{\bar{z}})x_{1}\right)^{*}z
=\displaystyle= (yx1(w1z+(w1z)TzTzTw1z+𝒫zTK¯𝒫z)T)z\displaystyle\left(y^{*}-x_{1}^{*}({w}_{1}{z}^{\dagger}+({w}_{1}{z}^{\dagger})^{T}-{z}^{{\dagger}^{T}}{z}^{T}{w}_{1}{z}^{\dagger}+\mathcal{P}_{{z}}^{T}\bar{K}\mathcal{P}_{{z}})^{T}\right)z
=\displaystyle= (yx1(w1z+(w1z)TzTzTw1z+𝒫zTK¯𝒫z))z(KT=K)\displaystyle\left(y^{*}-x_{1}^{*}({w}_{1}{z}^{\dagger}+({w}_{1}{z}^{\dagger})^{T}-{z}^{{\dagger}^{T}}{z}^{T}{w}_{1}{z}^{\dagger}+\mathcal{P}_{{z}}^{T}\bar{K}\mathcal{P}_{{z}})\right)z\quad(\because K^{T}=K)
=\displaystyle= yzx1w1((w1z+(w1z)TzTzTw1z+𝒫zTK𝒫z)z=w1\displaystyle y^{*}z-x_{1}^{*}w_{1}\quad(\because({w}_{1}{z}^{\dagger}+({w}_{1}{z}^{\dagger})^{T}-{z}^{{\dagger}^{T}}{z}^{T}{w}_{1}{z}^{\dagger}+\mathcal{P}_{{z}}^{T}K\mathcal{P}_{{z}})z=w_{1}
=\displaystyle= x2w2(xw=x1w1+x2w2andxw=yz).\displaystyle x_{2}^{*}w_{2}\quad(\because x^{*}w=x_{1}^{*}w_{1}+x_{2}^{*}w_{2}~{}\text{and}~{}x^{*}w=y^{*}z).

Therefore, from Theorem 6, Δ2\Delta_{2} can be written as

Δ2=y~x2+(w2z)(w2z)x2x2+𝒫zR𝒫x2,{\Delta}_{2}=\tilde{y}x_{2}^{\dagger}+(w_{2}z^{\dagger})^{*}-(w_{2}z^{\dagger})^{*}x_{2}x_{2}^{\dagger}+\mathcal{P}_{z}R\mathcal{P}_{x_{2}}, (161)

for some Rn,mR\in{\mathbb{C}}^{n,m}.

Thus, in view of  (159) and (161), we have

[Δ1Δ2]\displaystyle\left[{\Delta}_{1}~{}{\Delta}_{2}\right] =\displaystyle= [w¯1z¯+(w¯1z¯)Tz¯Tz¯Tw¯1z¯+𝒫z¯TK𝒫z¯y~x2+(w2z)(w2z)x2x2+𝒫zR𝒫x2]\displaystyle\big{[}\bar{w}_{1}\bar{z}^{\dagger}+(\bar{w}_{1}\bar{z}^{\dagger})^{T}-\bar{z}^{{\dagger}^{T}}\bar{z}^{T}\bar{w}_{1}\bar{z}^{\dagger}+\mathcal{P}_{\bar{z}}^{T}K\mathcal{P}_{\bar{z}}~{}~{}~{}\tilde{y}x_{2}^{\dagger}+(w_{2}z^{\dagger})^{*}-(w_{2}z^{\dagger})^{*}x_{2}x_{2}^{\dagger}+\mathcal{P}_{z}R\mathcal{P}_{x_{2}}\big{]} (162)
=\displaystyle= [H1+H~1(K)H2+H~2(K,R)]\displaystyle\big{[}H_{1}+\tilde{H}_{1}(K)~{}~{}H_{2}+\tilde{H}_{2}(K,R)\big{]}
=\displaystyle= H+H~(K,R).\displaystyle H+\widetilde{H}(K,R).

This proves “\subseteq” in (28).

Conversely, let [Δ1Δ2]=[H1+H~1(K)H2+H~2(K,R)][\Delta_{1}~{}\Delta_{2}]=[H_{1}+\widetilde{H}_{1}(K)~{}~{}H_{2}+\widetilde{H}_{2}(K,R)], where H1,H~1(K),H2H_{1},\widetilde{H}_{1}(K),H_{2}, and H~2(K,R)\widetilde{H}_{2}(K,R) are defined by (29)-(32) for some matrices Rn,mR\in{\mathbb{C}}^{n,m} and Kn,nK\in{\mathbb{C}}^{n,n} such that KT=KK^{T}=K. Then it is easy to check that [Δ1Δ2]x=y[\Delta_{1}~{}\Delta_{2}]x=y and [Δ1Δ2]z=w[\Delta_{1}~{}\Delta_{2}]^{*}z=w since xw=yzx^{*}w=y^{*}z. Also (H1+H~1(K))T=H1+H~1(K)(H_{1}+\widetilde{H}_{1}(K))^{T}=H_{1}+\widetilde{H}_{1}(K) since KT=KK^{T}=K. Hence [Δ1Δ2]𝒮dSym[\Delta_{1}~{}\Delta_{2}]\in\mathcal{S}_{d}^{{\rm Sym}}. This shows “\supseteq” in (28).

In view of (28), we have

infΔ𝒮dSymΔF2\displaystyle\inf_{{\Delta}\in\mathcal{S}_{d}^{{\rm Sym}}}{\|{\Delta}\|}_{F}^{2} =\displaystyle= infKn,n,Rn,m,KT=KH+H~(K,R)F2\displaystyle\inf_{K\in{\mathbb{C}}^{n,n},R\in{\mathbb{C}}^{n,m},K^{T}=K}{\left\|H+\widetilde{H}(K,R)\right\|}_{F}^{2}
=\displaystyle= infKn,n,Rn,m,KT=K([H1H2]+[H~1(K)H~2(K,R)]F2)\displaystyle\inf_{K\in{\mathbb{C}}^{n,n},R\in{\mathbb{C}}^{n,m},K^{T}=K}\left({\big{\|}\big{[}H_{1}~{}H_{2}\big{]}+\big{[}\widetilde{H}_{1}(K)~{}\widetilde{H}_{2}(K,R)\big{]}\big{\|}}_{F}^{2}\right)
=\displaystyle= infKn,n,Rn,m,KT=K(H1+H~1(K)F2+H2+H~2(K,R)F2)\displaystyle\inf_{K\in{\mathbb{C}}^{n,n},R\in{\mathbb{C}}^{n,m},K^{T}=K}\left({\big{\|}H_{1}+\widetilde{H}_{1}(K)\big{\|}}_{F}^{2}+{\big{\|}H_{2}+\widetilde{H}_{2}(K,R)\big{\|}}_{F}^{2}\right)
\displaystyle\geq infKn,n,KT=KH1+H~1(K)F2+infKn,n,Rn,m,KT=KH2+H~2(K,R)F2\displaystyle\inf_{K\in{\mathbb{C}}^{n,n},K^{T}=K}{\big{\|}H_{1}+\widetilde{H}_{1}(K)\big{\|}}_{F}^{2}+\inf_{K\in{\mathbb{C}}^{n,n},R\in{\mathbb{C}}^{n,m},K^{T}=K}{\big{\|}H_{2}+\widetilde{H}_{2}(K,R)\big{\|}}_{F}^{2}
=\displaystyle= H1F2+infKn,n,Rn,m,KT=KH2+H~2(K,R)F2\displaystyle{\|H_{1}\|}_{F}^{2}+\inf_{K\in{\mathbb{C}}^{n,n},R\in{\mathbb{C}}^{n,m},K^{T}=K}{\big{\|}H_{2}+\widetilde{H}_{2}(K,R)\big{\|}}_{F}^{2}
=\displaystyle= H1F2+infKn,n,KT=K(infRn,mH2+H~2(K,R)F2)\displaystyle{\|H_{1}\|}_{F}^{2}+\inf_{K\in{\mathbb{C}}^{n,n},K^{T}=K}\Big{(}\inf_{R\in{\mathbb{C}}^{n,m}}{\big{\|}H_{2}+\widetilde{H}_{2}(K,R)\big{\|}}_{F}^{2}\Big{)}
=\displaystyle= H1F2+infKn,n,KT=KH2+H~2(K,0)F2,\displaystyle{\|H_{1}\|}_{F}^{2}+\inf_{K\in{\mathbb{C}}^{n,n},K^{T}=K}{\big{\|}H_{2}+\widetilde{H}_{2}(K,0)\big{\|}}_{F}^{2}, (165)

where the first inequality in (LABEL:eq:firstineq_T) follows due to the fact that for any two real valued functions ff and gg defined on the same domain, inf(f+g)inff+infg\inf(f+g)\geq\inf f+\inf g. Also equality in (A) follows since the infimum in the first term is attained when K=0K=0. In fact, for any Kn,nK\in{\mathbb{C}}^{n,n} such that KT=KK^{T}=K, we have (H1+H~1(K))z=w1(H_{1}+\widetilde{H}_{1}(K))z=w_{1}, which implies from Theorem 4 that the minimum of H1+H~1(K)F{\|H_{1}+\widetilde{H}_{1}(K)\|}_{F} is attained when K=0K=0. Further, for a fixed KK and for any Rn,mR\in{\mathbb{C}}^{n,m}, H2+H~2(K,R)H_{2}+\widetilde{H}_{2}(K,R) is a matrix satisfying (H2+H~2(K,R))x2=y~(H_{2}+\widetilde{H}_{2}(K,R))x_{2}=\tilde{y} and (H2+H~2(K,R))z=w2(H_{2}+\widetilde{H}_{2}(K,R))^{*}z=w_{2}. This implies from Theorem 6 that for any fixed KK, the minimum of H2+H~2(K,R)F{\|H_{2}+\widetilde{H}_{2}(K,R)\|}_{F} over RR is attained when R=0R=0, which yields (165). This proves (33).

Next suppose if x1=αzx_{1}=\alpha z for some nonzero α\alpha\in{\mathbb{C}}, then H~2(K,0)=0\widetilde{H}_{2}(K,0)=0 for every Kn,nK\in{\mathbb{C}}^{n,n}. This implies from (165) that

infΔ𝒮dSymΔF2H1F2+H2F2=HF2,\displaystyle\inf_{{\Delta}\in\mathcal{S}_{d}^{{\rm Sym}}}{\|{\Delta}\|}_{F}^{2}~{}\geq~{}{\|H_{1}\|}_{F}^{2}+{\|H_{2}\|}_{F}^{2}\,=\,{\|H\|}_{F}^{2}, (166)

and in this case the lower bound is attained since H𝒮dSymH\in\mathcal{S}_{d}^{{\rm Sym}}. This completes the proof.       

Appendix B Estimation of η𝒮(,,,,λ,u)\eta^{\mathcal{S}}(\cdot,\cdot,\cdot,\cdot,{\lambda},u) and η𝒮d(,,,,λ,u)\eta^{\mathcal{S}_{d}}(\cdot,\cdot,\cdot,\cdot,{\lambda},u) when perturbing any two/three of the blocks JJ, RR, EE and BB of the pencil L(z)L(z)

Let L(z)L(z) be a pencil of the form (2), λi{\lambda}\in i{\mathbb{R}} and u=[u1Tu2Tu3T]Tu=\big{[}u_{1}^{T}~{}u_{2}^{T}~{}u_{3}^{T}\big{]}^{T} with u1,u2n{0}u_{1},u_{2}\in{\mathbb{C}}^{n}\setminus\{0\} and u3mu_{3}\in{\mathbb{C}}^{m}.

B.1 Perturbing only JJ and RR

Suppose that only JJ and RR blocks of L(z)L(z) are subject to perturbation. Then in view of (138), (140) and (142), the corresponding backward errors are denoted by η(J,R,λ,u):=η(J,R,0,0,λ,u)\eta^{\mathcal{B}}(J,R,{\lambda},u):=\eta^{\mathcal{B}}(J,R,0,0,{\lambda},u), η𝒮(J,R,λ,u):=η𝒮(J,R,0,0,λ,u)\eta^{\mathcal{S}}(J,R,{\lambda},u):=\eta^{\mathcal{S}}(J,R,0,0,{\lambda},u), and η𝒮d(J,R,λ,u):=η𝒮d(J,R,0,0,λ,u)\eta^{\mathcal{S}_{d}}(J,R,{\lambda},u):=\eta^{\mathcal{S}_{d}}(J,R,0,0,{\lambda},u). In this case, the block-structured and the symmetry-structured backward errors η(J,R,λ,u)\eta^{\mathcal{B}}(J,R,{\lambda},u) and η𝒮(J,R,λ,u)\eta^{\mathcal{S}}(J,R,{\lambda},u) were obtained in [14, Theorem 4.14]. Thus, we provide estimation only for the semidefinte-structured backward error η𝒮d(J,R,λ,u)\eta^{\mathcal{S}_{d}}(J,R,{\lambda},u). In view of (146) and (150) , when ΔE=0,ΔB=0{\Delta}_{E}=0,{\Delta}_{B}=0 we obtain

(ΔJΔR)u2:=x\displaystyle({\Delta}_{J}-{\Delta}_{R})\underbrace{u_{2}}_{:=x} =\displaystyle= (JR+λE)u2+Bu3:=y\displaystyle\underbrace{(J-R+{\lambda}E)u_{2}+Bu_{3}}_{:=y} (167)
(ΔJΔR)u1:=z\displaystyle({\Delta}_{J}-{\Delta}_{R})^{*}\underbrace{u_{1}}_{:=z} =\displaystyle= (J+R+λE)u1:=w\displaystyle\underbrace{-(J+R+{\lambda}E)u_{1}}_{:=w} (168)
Bu1+Su3\displaystyle B^{*}u_{1}+Su_{3} =\displaystyle= 0.\displaystyle 0. (169)

This gives us the following lemma which is analogous to Lemma 6.

Lemma 7.

Let L(z)L(z) be a pencil as in (2), and let λi{\lambda}\in i{\mathbb{R}} and u2n+m{0}u\in{\mathbb{C}}^{2n+m}\setminus\{0\}. Partition u=[u1Tu2Tu3T]Tu=[u_{1}^{T}~{}u_{2}^{T}~{}u_{3}^{T}]^{T} such that u1,u2nu_{1},u_{2}\in{\mathbb{C}}^{n} and u3mu_{3}\in{\mathbb{C}}^{m}, and let x,y,zx,y,z and ww be defined as in (167) and (168). If z=αxz=\alpha x, then the following statements are equivalent.

  1. 1.

    There exists ΔJ,ΔRn,n{\Delta}_{J},{\Delta}_{R}\in{\mathbb{C}}^{n,n} such that ΔJSHerm(n),ΔR0{\Delta}_{J}\in{\rm SHerm}(n),{\Delta}_{R}\succeq 0 satisfying (167) and (168).

  2. 2.

    There exists Δn,n{\Delta}\in{\mathbb{C}}^{n,n} such that Δ+Δ0,Δx=y,Δz=w{\Delta}+{\Delta}^{*}\preceq 0,{\Delta}x=y,{\Delta}^{*}z=w.

  3. 3.

    u3Bu1=0u_{3}^{*}B^{*}u_{1}=0.

Moreover, we have

inf{[ΔJΔR]F2:ΔJSHerm(n),ΔRHerm(n),ΔR0,satisfying(167)and(168)}\displaystyle\inf\left\{{\|[{\Delta}_{J}~{}{\Delta}_{R}]\|}_{F}^{2}:~{}{\Delta}_{J}\in{\rm SHerm}(n),\,{\Delta}_{R}\in{\rm Herm}(n),\,{\Delta}_{R}\succeq 0,~{}\text{satisfying}~{}\eqref{dsmequiJR1}~{}\text{and}~{}\eqref{dsmequiJR2}\right\}
=inf{ΔF2:Δn,n,Δ+Δ0,Δx=y,Δz=w}.\displaystyle=~{}\inf\left\{{\|{\Delta}\|}_{F}^{2}~{}:~{}\Delta\in{\mathbb{C}}^{n,n},\,{\Delta}+{\Delta}^{*}\preceq 0,\,{\Delta}x=y,\,{\Delta}^{*}z=w\right\}.
Proof.

The proof is analogous to [14, Lemma 4.13] due to Type-1 doubly structured dissipative mapping from Theorem 16.       

Theorem 19.

Let L(z)L(z) be a pencil as in (2), let λi{0}{\lambda}\in i{\mathbb{R}}\setminus\{0\} and u2n+m{0}u\in{\mathbb{C}}^{2n+m}\setminus\{0\}. Partition u=[u1Tu2Tu3T]Tu=\big{[}u_{1}^{T}~{}u_{2}^{T}~{}u_{3}^{T}\big{]}^{T} such that u1,u2nu_{1},u_{2}\in{\mathbb{C}}^{n}, and u3mu_{3}\in{\mathbb{C}}^{m}. Set y~=(JR+λE)u2\tilde{y}=(J-R+{\lambda}E)u_{2} and w1=(J+R+λE)u1w_{1}=-(J+R+{\lambda}E)u_{1}. Let u2=αu1u_{2}=\alpha u_{1} for some nonzero α\alpha\in{\mathbb{C}}. Then η𝒮d(J,R,λ,u)\eta^{\mathcal{S}_{d}}(J,R,{\lambda},u) is finite if and only if u3=0u_{3}=0 and Bu1=0B^{*}u_{1}=0. If the later condition holds and if u2u_{2} satisfies that Ru20Ru_{2}\neq 0, then

η𝒮d(J,R,λ,u)=HF,\eta^{\mathcal{S}_{d}}(J,R,{\lambda},u)={\|H\|}_{F}, (170)

where

H=y~u2+(w1u1)𝒫u2+𝒫u2J𝒫u2,andJ=14Re(u2y~)(y~+α|α|2w1)(y~+α|α|2w1).H=\tilde{y}u_{2}^{\dagger}+(w_{1}u_{1}^{\dagger})^{*}\mathcal{P}_{u_{2}}+\mathcal{P}_{u_{2}}J\mathcal{P}_{u_{2}},\quad\text{and}\quad J=\frac{1}{4\mathop{\mathrm{Re}}{(u_{2}^{*}{\tilde{y}}})}\big{(}\tilde{y}+\frac{\alpha}{|\alpha|^{2}}w_{1}\big{)}\big{(}\tilde{y}+\frac{\alpha}{|\alpha|^{2}}w_{1}\big{)}^{*}.
Proof.

The proof is anologous to the proof of [14, Theorem 4.14] due to Lemma 7 and Theorem 16.       

B.2 Perturbing only JJ and BB

In this section, suppose that only JJ and BB blocks of L(z)L(z) are subject to perturbation. Then in view of (138), (140) and (142), the corresponding backward errors are denoted by η(J,B,λ,u):=η(J,0,0,B,λ,u),η𝒮(J,B,λ,u):=η𝒮(J,0,0,B,λ,u)\eta^{\mathcal{B}}(J,B,{\lambda},u):=\eta^{\mathcal{B}}(J,0,0,B,{\lambda},u),~{}\eta^{\mathcal{S}}(J,B,{\lambda},u):=\eta^{\mathcal{S}}(J,0,0,B,{\lambda},u), and η𝒮d(J,B,λ,u):=η𝒮d(J,0,0,B,λ,u)\eta^{\mathcal{S}_{d}}(J,B,{\lambda},u):=\eta^{\mathcal{S}_{d}}(J,0,0,B,{\lambda},u). Note that the block-structured backward error η(J,B,λ,u)\eta^{\mathcal{B}}(J,B,{\lambda},u) was obtained in [14, Theorem 4.17], but the symmetry-structured backward error η𝒮(J,B,λ,u)\eta^{\mathcal{S}}(J,B,{\lambda},u) were not known in [14] due to unavailability of the doubly structured skew-Hermitian mappings. Also note that η𝒮d(J,B,λ,u)=η𝒮(J,B,λ,u)\eta^{\mathcal{S}_{d}}(J,B,{\lambda},u)=\eta^{\mathcal{S}}(J,B,{\lambda},u), because we are not perturbing RR and there is no semidefinite structure on JJ and BB. To estimate η𝒮(J,B,λ,u)\eta^{\mathcal{S}}(J,B,{\lambda},u) from (146) and (150), when ΔR=0{\Delta}_{R}=0 and ΔE=0{\Delta}_{E}=0, we obtain

[ΔJ=:Δ1ΔB=:Δ2][u2u3]=:x\displaystyle\left[\begin{array}[]{cc}\underbrace{{\Delta}_{J}}_{=:\Delta_{1}}&\underbrace{{\Delta}_{B}}_{=:\Delta_{2}}\end{array}\right]\underbrace{\left[\begin{array}[]{c}u_{2}\\ u_{3}\end{array}\right]}_{=:x} =\displaystyle= (JR+λE)u2+Bu3=:y\displaystyle\underbrace{(J-R+{\lambda}E)u_{2}+Bu_{3}}_{=:y} (174)
[ΔJΔB]u1=:z\displaystyle\left[\begin{array}[]{cc}{\Delta}_{J}&{\Delta}_{B}\end{array}\right]^{*}\underbrace{u_{1}}_{=:z} =\displaystyle= [(J+R+λE)u1=:w1Bu1+Su3=:w2]=:w,\displaystyle\underbrace{\left[\begin{array}[]{c}-(J+R+{\lambda}E)u_{1}=:w_{1}\\ B^{*}u_{1}+Su_{3}=:w_{2}\end{array}\right]}_{=:w}, (178)

This leads to the following lemma.

Lemma 8.

Let L(z)L(z) be a pencil as in (2), and let λi{\lambda}\in i{\mathbb{R}} and u2n+m{0}u\in{\mathbb{C}}^{2n+m}\setminus\{0\}. Partition u=[u1Tu2Tu3T]Tu=[u_{1}^{T}~{}u_{2}^{T}~{}u_{3}^{T}]^{T} such that u1,u2nu_{1},u_{2}\in{\mathbb{C}}^{n} and u3mu_{3}\in{\mathbb{C}}^{m}, and let x,y,zx,y,z and ww be defined as in (174) and (178). Then the following statements are equivalent.

  1. 1.

    There exists ΔJn,n{\Delta}_{J}\in{\mathbb{C}}^{n,n} and ΔBn,m{\Delta}_{B}\in{\mathbb{C}}^{n,m} such that ΔJSHerm(n){\Delta}_{J}\in{\rm SHerm}(n) satisfying (174) and (178).

  2. 2.

    u3=0u_{3}=0 and Ru1=0Ru_{1}=0.

Proof.

The proof is immediate from Theorem 11 since J=JJ^{*}=-J, R0R\succeq 0, and E=EE^{*}=E.       

Theorem 20.

Let L(z)L(z) be a pencil as in (2), let λi{0}{\lambda}\in i{\mathbb{R}}\setminus\{0\} and u2n+m{0}u\in{\mathbb{C}}^{2n+m}\setminus\{0\}. Partition u=[u1Tu2Tu3T]Tu=\big{[}u_{1}^{T}~{}u_{2}^{T}~{}u_{3}^{T}\big{]}^{T} such that u1,u2nu_{1},u_{2}\in{\mathbb{C}}^{n}, and u3mu_{3}\in{\mathbb{C}}^{m}. Set y~=(JR+λE)u2\tilde{y}=(J-R+{\lambda}E)u_{2} and w1=(J+R+λE)u1w_{1}=-(J+R+{\lambda}E)u_{1}, X=[u2u1],Y=[y~w1]X=\big{[}u_{2}~{}u_{1}\big{]},Y=\big{[}\tilde{y}~{}-w_{1}\big{]}. Then η𝒮d(J,B,λ,u)\eta^{\mathcal{S}_{d}}(J,B,{\lambda},u) is finite if and only if u3=0u_{3}=0 and Ru1=0Ru_{1}=0. If the later condition holds and if YXX=Y,YX=XYYX^{\dagger}X=Y,~{}Y^{*}X=-X^{*}Y and if u2=αu1u_{2}=\alpha u_{1} for some nonzero α\alpha\in{\mathbb{C}}, then

η𝒮(J,B,λ,u)=H1F2+H2F2,\eta^{\mathcal{S}}(J,B,{\lambda},u)=\sqrt{{\|H_{1}\|}_{F}^{2}+{\|H_{2}\|}_{F}^{2}}, (179)

where

H1=YX(YX)XXYXandH2=u1u1B.H_{1}=YX^{\dagger}-(YX^{\dagger})^{*}-XX^{\dagger}YX^{\dagger}\quad\text{and}\quad H_{2}=u_{1}u_{1}^{\dagger}B. (180)
Proof.

In view of Remark 4 and Lemma 8, we obtain that η𝒮(J,B,λ,u)\eta^{\mathcal{S}}(J,B,{\lambda},u) is finite if and only if u3=0u_{3}=0 and Ru1=0Ru_{1}=0. Thus by using u3=0u_{3}=0 and Ru1=0Ru_{1}=0 in (174) and (178), and using Lemma 8 in the definition of η𝒮(J,B,λ,u)\eta^{\mathcal{S}}(J,B,\lambda,u) from (140), we have that

η𝒮(J,B,λ,u)=inf{ΔF2:Δ=[ΔJΔB],ΔJn,n,ΔBn,m,ΔJ=ΔJ,\displaystyle\eta^{\mathcal{S}}(J,B,{\lambda},u)=\inf\Big{\{}{\|{\Delta}\|}_{F}^{2}~{}:~{}{\Delta}=\big{[}{\Delta}_{J}~{}{\Delta}_{B}\big{]},\,{\Delta}_{J}\in{\mathbb{C}}^{n,n},\,{\Delta}_{B}\in{\mathbb{C}}^{n,m},\,{\Delta}_{J}^{*}=-{\Delta}_{J},
ΔJu2=y~,ΔJu1=w1,ΔBu1=Bu1}\displaystyle{\Delta}_{J}u_{2}=\tilde{y},\,{\Delta}_{J}^{*}u_{1}=w_{1},\,{\Delta}_{B}^{*}u_{1}=B^{*}u_{1}\Big{\}}
=inf{ΔF2:Δ=[ΔJΔB],ΔJn,n,ΔBn,m,ΔJ=ΔJ,\displaystyle=\inf\Big{\{}{\|{\Delta}\|}_{F}^{2}~{}:~{}{\Delta}=\big{[}{\Delta}_{J}~{}{\Delta}_{B}\big{]},\,{\Delta}_{J}\in{\mathbb{C}}^{n,n},\,{\Delta}_{B}\in{\mathbb{C}}^{n,m},\,{\Delta}_{J}^{*}=-{\Delta}_{J},
ΔJ[u2u1]=[y~w1],ΔBu1=Bu1}\displaystyle{\Delta}_{J}\big{[}u_{2}~{}u_{1}\big{]}=\big{[}\tilde{y}~{}-w_{1}\big{]},\,{\Delta}_{B}^{*}u_{1}=B^{*}u_{1}\Big{\}}
=inf{ΔF2:Δ=[ΔJΔB],ΔJn,n,ΔBn,m,ΔJ=ΔJ,\displaystyle=\inf\Big{\{}{\|{\Delta}\|}_{F}^{2}~{}:~{}{\Delta}=\big{[}{\Delta}_{J}~{}{\Delta}_{B}\big{]},\,{\Delta}_{J}\in{\mathbb{C}}^{n,n},\,{\Delta}_{B}\in{\mathbb{C}}^{n,m},\,{\Delta}_{J}^{*}=-{\Delta}_{J},
ΔJX=Y,ΔBu1=Bu1}.\displaystyle{\Delta}_{J}X=Y,\,{\Delta}_{B}^{*}u_{1}=B^{*}u_{1}\Big{\}}. (181)

If YXX=Y,YX=XYYX^{\dagger}X=Y,~{}Y^{*}X=-X^{*}Y and u2=αu1u_{2}=\alpha u_{1} for some nonzero α\alpha\in{\mathbb{C}}, then from [1, Theorem 2.2.3], there always exists a skew-Hermitian mapping ΔJ\Delta_{J} such that ΔJ=ΔJ{\Delta}_{J}^{*}=-{\Delta}_{J} and ΔJX=Y{\Delta}_{J}X=Y. The minimal Frobenius norm of such a ΔJ\Delta_{J} is attained by the unique matrix H1H_{1} defined in (180). Similarly, from Theorem 1, for any u1u_{1} there always exists ΔBn,m\Delta_{B}\in{\mathbb{C}}^{n,m} such that ΔBu1=Bu1\Delta_{B}^{*}u_{1}=B^{*}u_{1} and the minimal Frobenius norm of such a ΔB\Delta_{B} is attained by H2:=u1u1BH_{2}:=u_{1}u_{1}^{\dagger}B. Using the minimal Frobenius norm mappings H1H_{1} and H2H_{2}, we obtain (179). This completes the proof.

B.3 Perturbing only RR and BB

Here, suppose that only RR and BB blocks of L(z)L(z) are subject to perturbation. Then in view of (138), (140) and (142), the corresponding backward errors are denoted by η(R,B,λ,u):=η(0,R,0,B,λ,u)\eta^{\mathcal{B}}(R,B,{\lambda},u):=\eta^{\mathcal{B}}(0,R,0,B,{\lambda},u), η𝒮(R,B,λ,u):=η𝒮(0,R,0,B,λ,u)\eta^{\mathcal{S}}(R,B,{\lambda},u):=\eta^{\mathcal{S}}(0,R,0,B,{\lambda},u), and η𝒮d(R,B,λ,u):=η𝒮d(0,R,0,B,λ,u)\eta^{\mathcal{S}_{d}}(R,B,{\lambda},u):=\eta^{\mathcal{S}_{d}}(0,R,0,B,{\lambda},u). Note that the backward error η(R,B,λ,u)\eta^{\mathcal{B}}(R,B,{\lambda},u) was obtained in [14, Remark 4.18]. In this section, we compute the eigenpair backward errors η𝒮(R,B,λ,u)\eta^{\mathcal{S}}(R,B,{\lambda},u) and η𝒮d(R,B,λ,u)\eta^{\mathcal{S}_{d}}(R,B,{\lambda},u).

For this, observe from (146) and (150) that when ΔJ=0{\Delta}_{J}=0 and ΔE=0{\Delta}_{E}=0, we have

[ΔR=:Δ1ΔB=:Δ2][u2u3]=:x\displaystyle\left[\begin{array}[]{cc}\underbrace{-{\Delta}_{R}}_{=:\Delta_{1}}&\underbrace{{\Delta}_{B}}_{=:\Delta_{2}}\end{array}\right]\underbrace{\left[\begin{array}[]{c}u_{2}\\ u_{3}\end{array}\right]}_{=:x} =\displaystyle= (JR+λE)u2+Bu3=:y\displaystyle\underbrace{(J-R+{\lambda}E)u_{2}+Bu_{3}}_{=:y} (185)
[ΔRΔB]u1=:z\displaystyle\left[\begin{array}[]{cc}-{\Delta}_{R}&{\Delta}_{B}\end{array}\right]^{*}\underbrace{u_{1}}_{=:z} =\displaystyle= [(J+R+λE)u1=:w1Bu1+Su3=:w2]=:w,\displaystyle\underbrace{\left[\begin{array}[]{c}-(J+R+{\lambda}E)u_{1}=:w_{1}\\ B^{*}u_{1}+Su_{3}=:w_{2}\end{array}\right]}_{=:w}, (189)

In view of Theorem 10, there exists ΔRn,n{\Delta}_{R}\in{\mathbb{C}}^{n,n} and ΔBn,m{\Delta}_{B}\in{\mathbb{C}}^{n,m} such that ΔRHerm(n){\Delta}_{R}\in{\rm Herm}(n) satisfying (185) and (189) if and only if u3=0u_{3}=0 and u1(J+λE)u1=0u_{1}^{*}(J+\lambda E)u_{1}=0. We have the following result for η𝒮(R,B,λ,u)\eta^{\mathcal{S}}(R,B,{\lambda},u).

Theorem 21.

Let L(z)L(z) be a pencil as in (2), let λi{0}{\lambda}\in i{\mathbb{R}}\setminus\{0\} and u2n+m{0}u\in{\mathbb{C}}^{2n+m}\setminus\{0\}. Partition u=[u1Tu2Tu3T]Tu=\big{[}u_{1}^{T}~{}u_{2}^{T}~{}u_{3}^{T}\big{]}^{T} such that u1,u2nu_{1},u_{2}\in{\mathbb{C}}^{n}, and u3mu_{3}\in{\mathbb{C}}^{m}. Set y~=(JR+λE)u2\tilde{y}=(J-R+{\lambda}E)u_{2} and w1=(J+R+λE)u1w_{1}=-(J+R+{\lambda}E)u_{1}, X=[u2u1],Y=[y~w1]X=\big{[}u_{2}~{}u_{1}\big{]},Y=\big{[}\tilde{y}~{}w_{1}\big{]}. Then η𝒮d(R,B,λ,u)\eta^{\mathcal{S}_{d}}(R,B,{\lambda},u) is finite if and only if u3=0u_{3}=0 and u1(J+λE)u1=0u_{1}^{*}(J+\lambda E)u_{1}=0. If the later condition holds and if YXX=Y,YX=XYYX^{\dagger}X=Y,~{}Y^{*}X=X^{*}Y and if u2=αu1u_{2}=\alpha u_{1} for some nonzero α\alpha\in{\mathbb{C}}, then

η𝒮(R,B,λ,u)=H1F2+H2F2,\eta^{\mathcal{S}}(R,B,{\lambda},u)=\sqrt{{\|H_{1}\|}_{F}^{2}+{\|H_{2}\|}_{F}^{2}}, (190)

where

H1=YX+(YX)XXYXandH2=u1u1B.H_{1}=YX^{\dagger}+(YX^{\dagger})^{*}-XX^{\dagger}YX^{\dagger}\quad\text{and}\quad H_{2}=u_{1}u_{1}^{\dagger}B. (191)
Proof.

In view of Remark 4 and (185)-(189), we obtain that η𝒮(R,B,λ,u)\eta^{\mathcal{S}}(R,B,{\lambda},u) is finite if and only if u3=0u_{3}=0 and u1(J+λE)u1=0u_{1}^{*}(J+\lambda E)u_{1}=0. Thus by using u3=0u_{3}=0 (185) and (189), we have from (140) that

η𝒮(R,B,λ,u)=inf{ΔF2:Δ=[ΔRΔB],ΔRn,n,ΔBn,m,ΔR=ΔR,\displaystyle\eta^{\mathcal{S}}(R,B,{\lambda},u)=\inf\Big{\{}{\|{\Delta}\|}_{F}^{2}~{}:~{}{\Delta}=\big{[}{\Delta}_{R}~{}{\Delta}_{B}\big{]},\,{\Delta}_{R}\in{\mathbb{C}}^{n,n},\,{\Delta}_{B}\in{\mathbb{C}}^{n,m},\,{\Delta}_{R}^{*}={\Delta}_{R},
ΔRu2=y~,ΔRu1=w1,ΔBu1=Bu1}\displaystyle{\Delta}_{R}u_{2}=\tilde{y},\,{\Delta}_{R}^{*}u_{1}=w_{1},\,{\Delta}_{B}^{*}u_{1}=B^{*}u_{1}\Big{\}}
=inf{ΔF2:Δ=[ΔRΔB],ΔRn,n,ΔBn,m,ΔR=ΔR,\displaystyle=\inf\Big{\{}{\|{\Delta}\|}_{F}^{2}~{}:~{}{\Delta}=\big{[}{\Delta}_{R}~{}{\Delta}_{B}\big{]},\,{\Delta}_{R}\in{\mathbb{C}}^{n,n},\,{\Delta}_{B}\in{\mathbb{C}}^{n,m},\,{\Delta}_{R}^{*}={\Delta}_{R},
ΔR[u2u1]=[y~w1],ΔBu1=Bu1}\displaystyle{\Delta}_{R}\big{[}u_{2}~{}u_{1}\big{]}=\big{[}\tilde{y}~{}w_{1}\big{]},\,{\Delta}_{B}^{*}u_{1}=B^{*}u_{1}\Big{\}}
=inf{ΔF2:Δ=[ΔRΔB],ΔRn,n,ΔBn,m,ΔR=ΔR,\displaystyle=\inf\Big{\{}{\|{\Delta}\|}_{F}^{2}~{}:~{}{\Delta}=\big{[}{\Delta}_{R}~{}{\Delta}_{B}\big{]},\,{\Delta}_{R}\in{\mathbb{C}}^{n,n},\,{\Delta}_{B}\in{\mathbb{C}}^{n,m},\,{\Delta}_{R}^{*}={\Delta}_{R},
ΔRX=Y,ΔBu1=Bu1}\displaystyle{\Delta}_{R}X=Y,\,{\Delta}_{B}^{*}u_{1}=B^{*}u_{1}\Big{\}} (192)

If YXX=Y,YX=XYYX^{\dagger}X=Y,~{}Y^{*}X=X^{*}Y and u2=αu1u_{2}=\alpha u_{1} for some nonzero α\alpha\in{\mathbb{C}}, then from [1, Theorem 2.2.3], there always exists a Hermitian mapping ΔR\Delta_{R} such that ΔR=ΔR{\Delta}_{R}^{*}={\Delta}_{R} and ΔRX=Y{\Delta}_{R}X=Y. From [1, Theorem 2.2.3], the minimal Frobenius norm of such a ΔR\Delta_{R} is attained by the unique matrix H1H_{1} defined in (191). Similarly, from Theorem 1, for any u1u_{1} there always exists ΔBn,m\Delta_{B}\in{\mathbb{C}}^{n,m} such that ΔBu1=Bu1\Delta_{B}^{*}u_{1}=B^{*}u_{1} and the minimal Frobenius norm of such a ΔB\Delta_{B} is attained by H2:=u1u1BH_{2}:=u_{1}u_{1}^{\dagger}B. Using minimal Frobenius norm mappings H1H_{1} and H2H_{2}, we obtain (190). This completes the proof.       

Next, we estimate the semidefinite structured backward error η𝒮d(R,B,λ,u)\eta^{\mathcal{S}_{d}}(R,B,{\lambda},u). For this, we need the following lemma.

Lemma 9.

Let L(z)L(z) be a pencil as in (2), and let λi{\lambda}\in i{\mathbb{R}} and u2n+m{0}u\in{\mathbb{C}}^{2n+m}\setminus\{0\}. Partition u=[u1Tu2Tu3T]Tu=[u_{1}^{T}~{}u_{2}^{T}~{}u_{3}^{T}]^{T} such that u1,u2n{0}u_{1},u_{2}\in{\mathbb{C}}^{n}\setminus\{0\} and u3mu_{3}\in{\mathbb{C}}^{m}, and let x,y,zx,y,z and ww be defined as in (185) and (189). Then the following statements are equivalent.

  1. 1.

    There exists ΔRn,n{\Delta}_{R}\in{\mathbb{C}}^{n,n} and ΔBn,m{\Delta}_{B}\in{\mathbb{C}}^{n,m} such that ΔR0{\Delta}_{R}\succeq 0 satisfying (185) and (189).

  2. 2.

    There exists Δ=[Δ1Δ2]{\Delta}=[{\Delta}_{1}~{}{\Delta}_{2}], Δ1n,n{\Delta}_{1}\in{\mathbb{C}}^{n,n}, Δ2n,m{\Delta}_{2}\in{\mathbb{C}}^{n,m} such that Δ10{\Delta}_{1}\preceq 0, Δx=y{\Delta}x=y, and Δz=w{\Delta}^{*}z=w.

  3. 3.

    u3=0u_{3}=0, u1(J+λE)u1=0u_{1}^{*}(J+\lambda E)u_{1}=0, and Ru10Ru_{1}\neq 0.

Moreover, we have

inf{[ΔRΔB]F2:ΔRHerm(n)ΔR0ΔBn,msatisfying(185)and(189)}\displaystyle\inf\Big{\{}{\left\|\big{[}{\Delta}_{R}~{}{\Delta}_{B}\big{]}\right\|}_{F}^{2}:~{}{\Delta}_{R}\in{\rm Herm}(n)~{}{\Delta}_{R}\succeq 0~{}{\Delta}_{B}\in{\mathbb{C}}^{n,m}~{}\text{satisfying}~{}\eqref{dsmequiRB1}~{}\text{and}~{}\eqref{dsmequiRB2}\Big{\}}
=inf{ΔF2:Δ=[Δ1Δ2],Δ1n,n,Δ2n,m,Δ1=Δ10,Δx=y,Δz=w}.\displaystyle=\inf\bigg{\{}{\|{\Delta}\|}_{F}^{2}:~{}{\Delta}=\big{[}{\Delta}_{1}~{}{\Delta}_{2}\big{]},~{}{\Delta}_{1}\in{\mathbb{C}}^{n,n},{\Delta}_{2}\in{\mathbb{C}}^{n,m},~{}{\Delta}_{1}^{*}={\Delta}_{1}\preceq 0,~{}{\Delta}x=y,{\Delta}^{*}z=w\bigg{\}}.
Proof.

The proof is immediate from the doubly structured semidefinite mapping from Theorem 14.       

Theorem 22.

Let L(z)L(z) be a pencil as in (2), let λi{0}{\lambda}\in i{\mathbb{R}}\setminus\{0\} and u2n+m{0}u\in{\mathbb{C}}^{2n+m}\setminus\{0\}. Partition u=[u1Tu2Tu3T]Tu=\big{[}u_{1}^{T}~{}u_{2}^{T}~{}u_{3}^{T}\big{]}^{T} such that u1,u2nu_{1},u_{2}\in{\mathbb{C}}^{n}, and u3mu_{3}\in{\mathbb{C}}^{m}. Set y~=(JR+λE)u2\tilde{y}=(J-R+{\lambda}E)u_{2} and w1=(J+R+λE)u1w_{1}=-(J+R+{\lambda}E)u_{1}, X=[u2u1],Y=[y~w1]X=\big{[}u_{2}~{}u_{1}\big{]},Y=\big{[}\tilde{y}~{}w_{1}\big{]}. Then η𝒮d(R,B,λ,u)\eta^{\mathcal{S}_{d}}(R,B,{\lambda},u) is finite if and only if u3=0u_{3}=0, u1(J+λE)u1=0u_{1}^{*}(J+\lambda E)u_{1}=0, and Ru10Ru_{1}\neq 0. If the later condition holds and if YXX=Y,XY0YX^{\dagger}X=Y,~{}X^{*}Y\prec 0 and if u2=αu1u_{2}=\alpha u_{1} for some nonzero α\alpha\in{\mathbb{C}}, then

η𝒮d(R,B,λ,u)=H1F2+H2F2,\eta^{\mathcal{S}_{d}}(R,B,{\lambda},u)=\sqrt{{\|H_{1}\|}_{F}^{2}+{\|H_{2}\|}_{F}^{2}}, (193)

where

H1=Y(YX)1YandH2=u1u1B.H_{1}=Y(Y^{*}X)^{-1}Y^{*}\quad\text{and}\quad H_{2}=u_{1}u_{1}^{\dagger}B. (194)
Proof.

In view of Remark 4 and Lemma 9, we obtain that η𝒮d(R,B,λ,u)\eta^{\mathcal{S}_{d}}(R,B,{\lambda},u) is finite if and only if u3=0u_{3}=0, u1(J+λE)u1=0u_{1}^{*}(J+\lambda E)u_{1}=0, and Ru10Ru_{1}\neq 0. Thus by using u3=0u_{3}=0 in (190) and (191), and using Lemma 9 in (140), we have that

η𝒮d(R,B,λ,u)=inf{ΔF2:Δ=[Δ1Δ2],Δ1n,n,Δ2n,m,Δ1=Δ10,\displaystyle\eta^{\mathcal{S}_{d}}(R,B,{\lambda},u)=\inf\bigg{\{}{\|{\Delta}\|}_{F}^{2}~{}:~{}{\Delta}=\big{[}{\Delta}_{1}~{}{\Delta}_{2}\big{]},~{}{\Delta}_{1}\in{\mathbb{C}}^{n,n},{\Delta}_{2}\in{\mathbb{C}}^{n,m},~{}{\Delta}_{1}^{*}={\Delta}_{1}\preceq 0,
Δ1u2=y~,Δ1u1=w1,Δ2u1=Bu1}\displaystyle{\Delta}_{1}u_{2}=\tilde{y},{\Delta}_{1}^{*}u_{1}=w_{1},{\Delta}_{2}^{*}u_{1}=B^{*}u_{1}\bigg{\}}
=inf{ΔF2:Δ=[Δ1Δ2],Δ1n,n,Δ2n,m,Δ1=Δ10,\displaystyle=\inf\bigg{\{}{\|{\Delta}\|}_{F}^{2}~{}:~{}{\Delta}=\big{[}{\Delta}_{1}~{}{\Delta}_{2}\big{]},~{}{\Delta}_{1}\in{\mathbb{C}}^{n,n},{\Delta}_{2}\in{\mathbb{C}}^{n,m},~{}{\Delta}_{1}^{*}={\Delta}_{1}\preceq 0,
Δ1[u2u1]=[y~w1],Δ2u1=Bu1}\displaystyle{\Delta}_{1}\big{[}u_{2}~{}u_{1}\big{]}=\big{[}\tilde{y}~{}w_{1}\big{]},{\Delta}_{2}^{*}u_{1}=B^{*}u_{1}\bigg{\}}
=inf{ΔF2:Δ=[Δ1Δ2],Δ1n,n,Δ2n,m,Δ1=Δ10,\displaystyle=\inf\bigg{\{}{\|{\Delta}\|}_{F}^{2}~{}:~{}{\Delta}=\big{[}{\Delta}_{1}~{}{\Delta}_{2}\big{]},~{}{\Delta}_{1}\in{\mathbb{C}}^{n,n},~{}{\Delta}_{2}\in{\mathbb{C}}^{n,m},~{}{\Delta}_{1}^{*}={\Delta}_{1}\preceq 0,
Δ1X=Y,Δ2u1=Bu1}.\displaystyle{\Delta}_{1}X=Y,{\Delta}_{2}^{*}u_{1}=B^{*}u_{1}\bigg{\}}. (195)

If YXX=Y,XY0YX^{\dagger}X=Y,~{}X^{*}Y\prec 0, and u2=αu1u_{2}=\alpha u_{1} for some nonzero α\alpha\in{\mathbb{C}}, then from [13, Theorem 2.2], there always exists a negative definite mapping Δ1\Delta_{1} such that Δ1=Δ10{\Delta}_{1}^{*}={\Delta}_{1}\preceq 0 and Δ1X=Y{\Delta}_{1}X=Y. From [13, Theorem 2.2] the minimal Frobenius norm of such a Δ1\Delta_{1} is attained by the unique matrix H1H_{1} defined in (194). Similarly, from Theorem 1, for any u1u_{1} there always exists Δ2n,m\Delta_{2}\in{\mathbb{C}}^{n,m} such that Δ2u1=Bu1\Delta_{2}^{*}u_{1}=B^{*}u_{1} and the minimal Frobenius norm of such a Δ2\Delta_{2} is attained by H2:=u1u1BH_{2}:=u_{1}u_{1}^{\dagger}B. Thus using the minimal Frobenius norm mappings H1H_{1} and H2H_{2}, we obtain (193).       

B.4 Perturbing only EE and BB

In this section, suppose that only EE and BB blocks of L(z)L(z) are subject to perturbation. Then in view of (138), (140) and (142), the corresponding backward errors are denoted by η(E,B,λ,u):=η(0,0,E,B,λ,u)\eta^{\mathcal{B}}(E,B,{\lambda},u):=\eta^{\mathcal{B}}(0,0,E,B,{\lambda},u), η𝒮(E,B,λ,u):=η𝒮(0,0,E,B,λ,u)\eta^{\mathcal{S}}(E,B,{\lambda},u):=\eta^{\mathcal{S}}(0,0,E,B,{\lambda},u), and η𝒮d(E,B,λ,u):=η𝒮d(0,0,E,B,λ,u)\eta^{\mathcal{S}_{d}}(E,B,{\lambda},u):=\eta^{\mathcal{S}_{d}}(0,0,E,B,{\lambda},u). Again note that η(E,B,λ,u)\eta^{\mathcal{B}}(E,B,{\lambda},u) was obtained in [14, Theorem 4.19], and we have η𝒮d(E,B,λ,u)=η𝒮(E,B,λ,u)\eta^{\mathcal{S}_{d}}(E,B,{\lambda},u)=\eta^{\mathcal{S}}(E,B,{\lambda},u) because we are not perturbing RR and there is no semidefinite structure on EE or BB.

In view of (146) and (150), when ΔJ=0{\Delta}_{J}=0 and ΔR=0{\Delta}_{R}=0, we have

[λΔE=:Δ1ΔB=:Δ2][u2u3]=:x\displaystyle\left[\begin{array}[]{cc}\underbrace{{\lambda}{\Delta}_{E}}_{=:\Delta_{1}}&\underbrace{{\Delta}_{B}}_{=:\Delta_{2}}\end{array}\right]\underbrace{\left[\begin{array}[]{c}u_{2}\\ u_{3}\end{array}\right]}_{=:x} =\displaystyle= (JR+λE)u2+Bu3=:y\displaystyle\underbrace{(J-R+{\lambda}E)u_{2}+Bu_{3}}_{=:y} (199)
[λΔEΔB]u1=:z\displaystyle\left[\begin{array}[]{cc}{\lambda}{\Delta}_{E}&{\Delta}_{B}\end{array}\right]^{*}\underbrace{u_{1}}_{=:z} =\displaystyle= [(J+R+λE)u1=:w1Bu1+Su3=:w2]=:w,\displaystyle\underbrace{\left[\begin{array}[]{c}-(J+R+{\lambda}E)u_{1}=:w_{1}\\ B^{*}u_{1}+Su_{3}=:w_{2}\end{array}\right]}_{=:w}, (203)

As λi\lambda\in i{\mathbb{R}} and ΔE=ΔE\Delta_{E}^{*}=\Delta_{E}, we have that Δ1=λΔE\Delta_{1}=\lambda\Delta_{E} is skew-Hermitian. Then a direct application of the doubly structured skew-Hermitian mapping from Theorem 11 yields the following emma.

Lemma 10.

Let L(z)L(z) be a pencil as in (2), and let λi{\lambda}\in i{\mathbb{R}} and u2n+m{0}u\in{\mathbb{C}}^{2n+m}\setminus\{0\}. Partition u=[u1Tu2Tu3T]Tu=[u_{1}^{T}~{}u_{2}^{T}~{}u_{3}^{T}]^{T} such that u1,u2nu_{1},u_{2}\in{\mathbb{C}}^{n} and u3mu_{3}\in{\mathbb{C}}^{m}, and let x,y,zx,y,z and ww be defined as in (199) and (203). Then the following statements are equivalent.

  1. 1.

    There exists ΔEn,n{\Delta}_{E}\in{\mathbb{C}}^{n,n} and ΔBn,m{\Delta}_{B}\in{\mathbb{C}}^{n,m} such that ΔEHerm(n){\Delta}_{E}\in{\rm Herm}(n) satisfying (199) and (203).

  2. 2.

    There exists Δ=[Δ1Δ2]{\Delta}=[{\Delta}_{1}~{}{\Delta}_{2}], Δ1n,n{\Delta}_{1}\in{\mathbb{C}}^{n,n}, Δ2n,m{\Delta}_{2}\in{\mathbb{C}}^{n,m} such that Δ1=Δ1{\Delta}_{1}^{*}=-{\Delta}_{1}, Δx=y{\Delta}x=y, and Δz=w{\Delta}^{*}z=w.

  3. 3.

    u3=0u_{3}=0 and Ru1=0Ru_{1}=0.

Moreover, we have

inf{[ΔEΔB]F2:ΔEHerm(n),ΔBn,msatisfying(199)and(203)}\displaystyle\inf\Big{\{}{\left\|\big{[}{\Delta}_{E}~{}{\Delta}_{B}\big{]}\right\|}_{F}^{2}:~{}{\Delta}_{E}\in{\rm Herm}(n),~{}{\Delta}_{B}\in{\mathbb{C}}^{n,m}~{}\text{satisfying}~{}\eqref{dsmequiEB1}~{}\text{and}~{}\eqref{dsmequiEB2}\Big{\}}
=inf{1|λ|2Δ1F2+Δ2F2:Δ=[Δ1Δ2],Δ1n,n,Δ2n,m,Δ1=Δ1,Δx=y,Δz=w}.\displaystyle=\inf\bigg{\{}\frac{1}{|{\lambda}|^{2}}{\|{\Delta}_{1}\|}_{F}^{2}+{\|{\Delta}_{2}\|}_{F}^{2}:~{}{\Delta}=\big{[}{\Delta}_{1}~{}{\Delta}_{2}\big{]},~{}{\Delta}_{1}\in{\mathbb{C}}^{n,n},{\Delta}_{2}\in{\mathbb{C}}^{n,m},~{}{\Delta}_{1}^{*}=-{\Delta}_{1},~{}{\Delta}x=y,{\Delta}^{*}z=w\bigg{\}}.

The following result provides bounds for the backward error η𝒮(E,B,λ,u)\eta^{\mathcal{S}}(E,B,{\lambda},u).

Theorem 23.

Let L(z)L(z) be a pencil as in (2), let λi{0}{\lambda}\in i{\mathbb{R}}\setminus\{0\} and u2n+m{0}u\in{\mathbb{C}}^{2n+m}\setminus\{0\}. Partition u=[u1Tu2Tu3T]Tu=\big{[}u_{1}^{T}~{}u_{2}^{T}~{}u_{3}^{T}\big{]}^{T} such that u1,u2nu_{1},u_{2}\in{\mathbb{C}}^{n}, and u3mu_{3}\in{\mathbb{C}}^{m}. Set y~=(JR+λE)u2\tilde{y}=(J-R+{\lambda}E)u_{2} and w1=(J+R+λE)u1w_{1}=-(J+R+{\lambda}E)u_{1}, X=[u2u1],Y=[y~w1]X=\big{[}u_{2}~{}u_{1}\big{]},Y=\big{[}\tilde{y}~{}-w_{1}\big{]}. Then η𝒮(E,B,λ,u)\eta^{\mathcal{S}}(E,B,{\lambda},u) is finite if and only if u3=0u_{3}=0 and Ru1=0Ru_{1}=0. If the later conditions holds and if YXX=Y,YX=XYYX^{\dagger}X=Y,~{}Y^{*}X=-X^{*}Y and if u2=αu1u_{2}=\alpha u_{1} for some nonzero α\alpha\in{\mathbb{C}}, then

η𝒮(E,B,λ,u)=1|λ|2H1F2+H2F2,\eta^{\mathcal{S}}(E,B,{\lambda},u)=\sqrt{\frac{1}{|{\lambda}|^{2}}{\|H_{1}\|}_{F}^{2}+{\|H_{2}\|}_{F}^{2}}, (204)

where

H1=YX(YX)XXYXH2=u1u1B.H_{1}=YX^{\dagger}-(YX^{\dagger})^{*}-XX^{\dagger}YX^{\dagger}\quad H_{2}=u_{1}u_{1}^{\dagger}B. (205)
Proof.

In view of Lemma 10, the proof is similar to the proof of Theorem 20.       

B.5 Perturbing only RR and EE

Here suppose that only RR and EE blocks of L(z)L(z) are subject to perturbation. Then in view of (138), (140) and (142), the corresponding backward errors are denoted by η(R,E,λ,u):=η(0,R,E,0,λ,u)\eta^{\mathcal{B}}(R,E,{\lambda},u):=\eta^{\mathcal{B}}(0,R,E,0,{\lambda},u), η𝒮(R,E,λ,u):=η𝒮(0,R,E,0,λ,u)\eta^{\mathcal{S}}(R,E,{\lambda},u):=\eta^{\mathcal{S}}(0,R,E,0,{\lambda},u), and η𝒮d(R,E,λ,u):=η𝒮d(0,R,E,0,λ,u)\eta^{\mathcal{S}_{d}}(R,E,{\lambda},u):=\eta^{\mathcal{S}_{d}}(0,R,E,0,{\lambda},u). We note that the backward errors η(R,E,λ,u)\eta^{\mathcal{B}}(R,E,{\lambda},u)and η𝒮(R,E,λ,u)\eta^{\mathcal{S}}(R,E,{\lambda},u) were considered in [14, Theorem 4.10]. Thus, in this section, we consider only η𝒮d(R,E,λ,u)\eta^{\mathcal{S}_{d}}(R,E,{\lambda},u). From (146) and (150), when ΔJ=0{\Delta}_{J}=0 and ΔB=0{\Delta}_{B}=0 we get

(ΔR+λΔE)u2:=x\displaystyle(-{\Delta}_{R}+{\lambda}{\Delta}_{E})\underbrace{u_{2}}_{:=x} =\displaystyle= (JR+λE)u2+Bu3:=y\displaystyle\underbrace{(J-R+{\lambda}E)u_{2}+Bu_{3}}_{:=y} (206)
(ΔR+λΔE)u1:=z\displaystyle(-{\Delta}_{R}+{\lambda}{\Delta}_{E})^{*}\underbrace{u_{1}}_{:=z} =\displaystyle= (J+R+λE)u1:=w\displaystyle\underbrace{-(J+R+{\lambda}E)u_{1}}_{:=w} (207)
Bu1+Su3\displaystyle B^{*}u_{1}+Su_{3} =\displaystyle= 0.\displaystyle 0. (208)

This leads to the following lemma which will be useful in estimating η𝒮d(R,E,λ,u)\eta^{\mathcal{S}_{d}}(R,E,{\lambda},u).

Lemma 11.

Let L(z)L(z) be a pencil as in (2), and let λi{\lambda}\in i{\mathbb{R}} and u2n+m{0}u\in{\mathbb{C}}^{2n+m}\setminus\{0\}. Partition u=[u1Tu2Tu3T]Tu=[u_{1}^{T}~{}u_{2}^{T}~{}u_{3}^{T}]^{T} such that u1,u2nu_{1},u_{2}\in{\mathbb{C}}^{n} and u3mu_{3}\in{\mathbb{C}}^{m}, and let x,y,zx,y,z and ww be defined as in (206) and (207). If z=αxz=\alpha x for some nonzero α\alpha\in{\mathbb{C}}, then the following statements are equivalent.

  1. 1.

    There exists ΔR,ΔEn,n{\Delta}_{R},\Delta_{E}\in{\mathbb{C}}^{n,n} such that ΔEHerm(n){\Delta}_{E}\in{\rm Herm}(n) and ΔR0{\Delta}_{R}\succeq 0 satisfying (206) and (207).

  2. 2.

    There exists Δn,n{\Delta}\in{\mathbb{C}}^{n,n} such that Δ+Δ0{\Delta}+{\Delta}^{*}\preceq 0, Δx=y{\Delta}x=y, Δz=w{\Delta}^{*}z=w.

  3. 3.

    u3Bu1=0u_{3}^{*}B^{*}u_{1}=0.

Moreover, we have

inf{[ΔRΔE]F2:ΔE,ΔRHerm(n),ΔR0satisfying(206)and(207)}\displaystyle\inf\left\{{\left\|[{\Delta}_{R}~{}{\Delta}_{E}]\right\|}_{F}^{2}:{\Delta}_{E},\,{\Delta}_{R}\in{\rm Herm}(n),\,{\Delta}_{R}\succeq 0~{}\text{satisfying}~{}\eqref{dsmequiRE1}~{}\text{and}~{}\eqref{dsmequiRE2}\right\}
=inf{Δ+Δ2F2+1|λ|2ΔΔ2F2:Δn,n,Δ+Δ0,Δx=y,Δz=w}.\displaystyle=\inf\left\{{\left\|\frac{{\Delta}+{\Delta}^{*}}{2}\right\|}_{F}^{2}+\frac{1}{|{\lambda}|^{2}}{\left\|\frac{{\Delta}-{\Delta}^{*}}{2}\right\|}_{F}^{2}~{}:~{}\Delta\in{\mathbb{C}}^{n,n},\,{\Delta}+{\Delta}^{*}\preceq 0,\,{\Delta}x=y,\,{\Delta}^{*}z=w\right\}.
Proof.

The proof is analogous to [14, Lemma 4.9], due to Type-1 doubly structured dissipative mapping from Theorem 16.       

Theorem 24.

Let L(z)L(z) be a pencil as in (2), let λi{0}{\lambda}\in i{\mathbb{R}}\setminus\{0\} and u2n+m{0}u\in{\mathbb{C}}^{2n+m}\setminus\{0\}. Partition u=[u1Tu2Tu3T]Tu=\big{[}u_{1}^{T}~{}u_{2}^{T}~{}u_{3}^{T}\big{]}^{T} such that u1,u2nu_{1},u_{2}\in{\mathbb{C}}^{n}, and u3mu_{3}\in{\mathbb{C}}^{m}. Set y~=(JR+λE)u2\tilde{y}=(J-R+{\lambda}E)u_{2} and w1=(J+R+λE)u1w_{1}=-(J+R+{\lambda}E)u_{1}. If u2=αu1u_{2}=\alpha u_{1} for some nonzero α\alpha\in{\mathbb{C}}, then η𝒮d(R,E,λ,u)\eta^{\mathcal{S}_{d}}(R,E,{\lambda},u) is finite if and only if u3=0u_{3}=0 and Bu1=0B^{*}u_{1}=0. If the later condition holds and if u2u_{2} satisfies that Ru20Ru_{2}\neq 0, then

HF|λ|η𝒮d(R,E,λ,u)H+H2F2+1|λ|2HH2F2,if|λ|1,\frac{\|H\|_{F}}{|{\lambda}|}\leq\eta^{\mathcal{S}_{d}}(R,E,{\lambda},u)\leq\sqrt{{\left\|\frac{H+H^{*}}{2}\right\|}_{F}^{2}+\frac{1}{|{\lambda}|^{2}}{\left\|\frac{H-H^{*}}{2}\right\|}_{F}^{2}},\quad\text{if}~{}|\lambda|\geq 1,

and

HFη𝒮d(R,E,λ,u)H+H2F2+1|λ|2HH2F2,if|λ|1,\|H\|_{F}\leq\eta^{\mathcal{S}_{d}}(R,E,{\lambda},u)\leq\sqrt{{\left\|\frac{H+H^{*}}{2}\right\|}_{F}^{2}+\frac{1}{|{\lambda}|^{2}}{\left\|\frac{H-H^{*}}{2}\right\|}_{F}^{2}},\quad\text{if}~{}|\lambda|\leq 1,

where

H=y~u2+(w1u1)𝒫u2+𝒫u2J𝒫u2andJ=14Re(u2y~)(y~+α|α|2w1)(y~+α|α|2w1).H=\tilde{y}u_{2}^{\dagger}+(w_{1}u_{1}^{\dagger})^{*}\mathcal{P}_{u_{2}}+\mathcal{P}_{u_{2}}J\mathcal{P}_{u_{2}}\quad\text{and}\quad J=\frac{1}{4\mathop{\mathrm{Re}}{(u_{2}^{*}{\tilde{y}}})}\big{(}\tilde{y}+\frac{\alpha}{|\alpha|^{2}}w_{1}\big{)}\big{(}\tilde{y}+\frac{\alpha}{|\alpha|^{2}}w_{1}\big{)}^{*}. (209)
Proof.

The proof is anologous to the proof of [14, Theorem 4.10] using Lemma 11 and Theorem 16.       

B.6 Perturbing only JJ, RR and EE

Suppose that the blocks JJ, RR and EE of L(z)L(z) are subject to perturbation. Then in view of (138), (140) and (142), the corresponding backward errors are denoted by η(J,R,E,λ,u):=η(J,R,E,0,λ,u)\eta^{\mathcal{B}}(J,R,E,{\lambda},u):=\eta^{\mathcal{B}}(J,R,E,0,{\lambda},u), η𝒮(J,R,E,λ,u):=η𝒮(J,R,E,0,λ,u)\eta^{\mathcal{S}}(J,R,E,{\lambda},u):=\eta^{\mathcal{S}}(J,R,E,0,{\lambda},u), and η𝒮d(J,R,E,λ,u):=η𝒮d(J,R,E,0,λ,u)\eta^{\mathcal{S}_{d}}(J,R,E,{\lambda},u):=\eta^{\mathcal{S}_{d}}(J,R,E,0,{\lambda},u). The block- and symmetry-structured backward errors η(J,R,E,λ,u)\eta^{\mathcal{B}}(J,R,E,{\lambda},u) and η𝒮(J,R,E,λ,u)\eta^{\mathcal{S}}(J,R,E,{\lambda},u) were obtained in  [14, Theorem 5.11]. In this section, we focus on estimating the backward error η𝒮d(J,R,E,λ,u)\eta^{\mathcal{S}_{d}}(J,R,E,{\lambda},u).

From (146) and (150), when ΔB=0{\Delta}_{B}=0 we have

(ΔJΔR+λΔE)u2:=x\displaystyle({\Delta}_{J}-{\Delta}_{R}+{\lambda}{\Delta}_{E})\underbrace{u_{2}}_{:=x} =\displaystyle= (JR+λE)u2+Bu3:=y\displaystyle\underbrace{(J-R+{\lambda}E)u_{2}+Bu_{3}}_{:=y} (210)
(ΔJΔR+λΔE)u1:=z\displaystyle({\Delta}_{J}-{\Delta}_{R}+{\lambda}{\Delta}_{E})^{*}\underbrace{u_{1}}_{:=z} =\displaystyle= (J+R+λE)u1:=w\displaystyle\underbrace{-(J+R+{\lambda}E)u_{1}}_{:=w} (211)
Bu1+Su3\displaystyle B^{*}u_{1}+Su_{3} =\displaystyle= 0.\displaystyle 0. (212)

In view of (210) and (212), we have the following lemma which is analogous to  6 for estimting η𝒮d(J,R,E,λ,u)\eta^{\mathcal{S}_{d}}(J,R,E,{\lambda},u).

Lemma 12.

Let L(z)L(z) be a pencil as in (2), and let λi{\lambda}\in i{\mathbb{R}} and u2n+m{0}u\in{\mathbb{C}}^{2n+m}\setminus\{0\}. Partition u=[u1Tu2Tu3T]Tu=[u_{1}^{T}~{}u_{2}^{T}~{}u_{3}^{T}]^{T} such that u1,u2nu_{1},u_{2}\in{\mathbb{C}}^{n} and u3mu_{3}\in{\mathbb{C}}^{m}, and let x,y,zx,y,z and ww be defined as in (210) and (211). If z=αxz=\alpha x, then the following statements are equivalent.

  1. 1.

    There exists ΔJ,ΔR,ΔEn,n{\Delta}_{J},{\Delta}_{R},\Delta_{E}\in{\mathbb{C}}^{n,n} such that ΔJSHerm(n){\Delta}_{J}\in{\rm SHerm}(n), ΔEHerm(n){\Delta}_{E}\in{\rm Herm}(n), and ΔR0{\Delta}_{R}\succeq 0 satisfying (210) and (211).

  2. 2.

    There exists Δn,n{\Delta}\in{\mathbb{C}}^{n,n} such that Δ+Δ0,Δx=y,Δz=w{\Delta}+{\Delta}^{*}\preceq 0,{\Delta}x=y,{\Delta}^{*}z=w.

  3. 3.

    u3Bu1=0u_{3}^{*}B^{*}u_{1}=0.

Moreover, we have

inf{[ΔJΔRΔE]F2:ΔJSHerm(n),ΔE,ΔRHerm(n),ΔR0,\displaystyle\inf\Big{\{}{\|[{\Delta}_{J}~{}{\Delta}_{R}~{}{\Delta}_{E}]\|}_{F}^{2}:{\Delta}_{J}\in{\rm SHerm}(n),{\Delta}_{E},~{}{\Delta}_{R}\in{\rm Herm}(n),{\Delta}_{R}\succeq 0,
satisfying(210)and(211)}\displaystyle\hskip 142.26378pt~{}\text{satisfying}~{}\eqref{dsmequiJRE1}~{}\text{and}~{}\eqref{dsmequiJRE2}\Big{\}}
=inf{Δ+Δ2F2+11+|λ|2ΔΔ2F2:Δn,n,Δ+Δ0,Δx=y,Δz=w}.\displaystyle=\inf\left\{{\left\|\frac{{\Delta}+{\Delta}^{*}}{2}\right\|}_{F}^{2}+\frac{1}{1+|{\lambda}|^{2}}{\left\|\frac{{\Delta}-{\Delta}^{*}}{2}\right\|}_{F}^{2}~{}:~{}\Delta\in{\mathbb{C}}^{n,n},\,{\Delta}+{\Delta}^{*}\preceq 0,\,{\Delta}x=y,\,{\Delta}^{*}z=w\right\}.
Proof.

The proof is analogous to [14, Lemma 5.10], due to Type-1 doubly structured dissipative mapping from Theorem 16.       

Theorem 25.

Let L(z)L(z) be a pencil as in (2), let λi{0}{\lambda}\in i{\mathbb{R}}\setminus\{0\} and u2n+m{0}u\in{\mathbb{C}}^{2n+m}\setminus\{0\}. Partition u=[u1Tu2Tu3T]Tu=\big{[}u_{1}^{T}~{}u_{2}^{T}~{}u_{3}^{T}\big{]}^{T} such that u1,u2nu_{1},u_{2}\in{\mathbb{C}}^{n}, and u3mu_{3}\in{\mathbb{C}}^{m}. Set y~=(JR+λE)u2\tilde{y}=(J-R+{\lambda}E)u_{2} and w1=(J+R+λE)u1w_{1}=-(J+R+{\lambda}E)u_{1}. If u2=αu1u_{2}=\alpha u_{1} for some nonzero α\alpha\in{\mathbb{C}}, then η𝒮d(J,R,λ,u)\eta^{\mathcal{S}_{d}}(J,R,{\lambda},u) is finite if and only if u3=0u_{3}=0 and Bu1=0B^{*}u_{1}=0. If the later condition holds and if u2u_{2} satisfies that Ru20Ru_{2}\neq 0, then

HF1+|λ|2η𝒮d(J,R,E,λ,u)H+H2F2+11+|λ|2HH2F2,\frac{\|H\|_{F}}{\sqrt{1+|{\lambda}|^{2}}}\leq\eta^{\mathcal{S}_{d}}(J,R,E,{\lambda},u)\leq\sqrt{{\left\|\frac{H+H^{*}}{2}\right\|}_{F}^{2}+\frac{1}{1+|{\lambda}|^{2}}{\left\|\frac{H-H^{*}}{2}\right\|}_{F}^{2}},

where

H=y~u2+(w1u1)𝒫u2+𝒫u2J𝒫u2andJ=14Re(u2y~)(y~+α|α|2w1)(y~+α|α|2w1).H=\tilde{y}u_{2}^{\dagger}+(w_{1}u_{1}^{\dagger})^{*}\mathcal{P}_{u_{2}}+\mathcal{P}_{u_{2}}J\mathcal{P}_{u_{2}}\quad\text{and}\quad J=\frac{1}{4\mathop{\mathrm{Re}}{(u_{2}^{*}{\tilde{y}}})}\big{(}\tilde{y}+\frac{\alpha}{|\alpha|^{2}}w_{1}\big{)}\big{(}\tilde{y}+\frac{\alpha}{|\alpha|^{2}}w_{1}\big{)}^{*}.
Proof.

The proof is anologous to the proof of [14, Theorem 5.11] due to Lemma 12 and Theorem 16.       

B.7 Perturbing only J,E and B

In this section, suppose that the blocks JJ, EE and BB of L(z)L(z) are subject to perturbation. Then in view of (138), (140) and (142), the corresponding backward errors are denoted by η(J,E,B,λ,u):=η(J,0,E,B,λ,u)\eta^{\mathcal{B}}(J,E,B,{\lambda},u):=\eta^{\mathcal{B}}(J,0,E,B,{\lambda},u), η𝒮(J,E,B,λ,u):=η𝒮(J,0,E,B,λ,u)\eta^{\mathcal{S}}(J,E,B,{\lambda},u):=\eta^{\mathcal{S}}(J,0,E,B,{\lambda},u), and η𝒮d(J,E,B,λ,u):=η𝒮d(J,E,B,λ,u)\eta^{\mathcal{S}_{d}}(J,E,B,{\lambda},u):=\eta^{\mathcal{S}_{d}}(J,E,B,{\lambda},u). The backward error η(J,E,B,λ,u)\eta^{\mathcal{B}}(J,E,B,{\lambda},u) was given in [14, Remark 5.8], and we have η𝒮d(J,E,B,λ,u)=η𝒮(J,E,B,λ,u)\eta^{\mathcal{S}_{d}}(J,E,B,{\lambda},u)=\eta^{\mathcal{S}}(J,E,B,{\lambda},u) because there is no semidefinite structure on JJ or EE or BB. Thus we focus on computing η𝒮(J,E,B,λ,u)\eta^{\mathcal{S}}(J,E,B,{\lambda},u).

From (146) and (150), when ΔR=0{\Delta}_{R}=0 we have

[ΔJ+λΔE=:Δ1ΔB=:Δ2][u2u3]=:x\displaystyle\left[\begin{array}[]{cc}\underbrace{{\Delta}_{J}+{\lambda}{\Delta}_{E}}_{=:\Delta_{1}}&\underbrace{{\Delta}_{B}}_{=:\Delta_{2}}\end{array}\right]\underbrace{\left[\begin{array}[]{c}u_{2}\\ u_{3}\end{array}\right]}_{=:x} =\displaystyle= (JR+λE)u2+Bu3=:y\displaystyle\underbrace{(J-R+{\lambda}E)u_{2}+Bu_{3}}_{=:y} (216)
[ΔJ+λΔEΔB]u1=:z\displaystyle\left[\begin{array}[]{cc}{\Delta}_{J}+{\lambda}{\Delta}_{E}&{\Delta}_{B}\end{array}\right]^{*}\underbrace{u_{1}}_{=:z} =\displaystyle= [(J+R+λE)u1=:w1Bu1+Su3=:w2]=:w,\displaystyle\underbrace{\left[\begin{array}[]{c}-(J+R+{\lambda}E)u_{1}=:w_{1}\\ B^{*}u_{1}+Su_{3}=:w_{2}\end{array}\right]}_{=:w}, (220)

Thus using doubly structured skew-Hermitian mapping from Theorem 11 in (216) and (220) gives the following lemma.

Lemma 13.

Let L(z)L(z) be a pencil as in (2), and let λi{\lambda}\in i{\mathbb{R}} and u2n+m{0}u\in{\mathbb{C}}^{2n+m}\setminus\{0\}. Partition u=[u1Tu2Tu3T]Tu=[u_{1}^{T}~{}u_{2}^{T}~{}u_{3}^{T}]^{T} such that u1,u2nu_{1},u_{2}\in{\mathbb{C}}^{n} and u3mu_{3}\in{\mathbb{C}}^{m}, and let x,y,zx,y,z and ww be defined as in (216) and (220). Then the following statements are equivalent.

  1. 1.

    There exists ΔJ,ΔEn,n{\Delta}_{J},~{}{\Delta}_{E}\in{\mathbb{C}}^{n,n} and ΔBn,m{\Delta}_{B}\in{\mathbb{C}}^{n,m} such that ΔJSHerm(n),ΔEHerm(n){\Delta}_{J}\in{\rm SHerm}(n),~{}{\Delta}_{E}\in{\rm Herm}(n) satisfying (216) and (220).

  2. 2.

    There exists Δ=[Δ1Δ2]{\Delta}=[{\Delta}_{1}~{}{\Delta}_{2}], Δ1n,n{\Delta}_{1}\in{\mathbb{C}}^{n,n}, Δ2n,m{\Delta}_{2}\in{\mathbb{C}}^{n,m} such that Δ1=Δ1{\Delta}_{1}^{*}=-{\Delta}_{1}, Δx=y{\Delta}x=y, and Δz=w{\Delta}^{*}z=w.

  3. 3.

    u3=0u_{3}=0 and Ru1=0Ru_{1}=0.

Moreover, we have

inf{[ΔJΔEΔB]F2:ΔJSHerm(n),ΔEHerm(n),ΔBn,msatisfying(216)and(220)}\displaystyle\inf\Big{\{}{\left\|\big{[}{\Delta}_{J}~{}{\Delta}_{E}~{}{\Delta}_{B}\big{]}\right\|}_{F}^{2}:~{}{\Delta}_{J}\in{\rm SHerm}(n),~{}{\Delta}_{E}\in{\rm Herm}(n),~{}{\Delta}_{B}\in{\mathbb{C}}^{n,m}~{}\text{satisfying}~{}\eqref{dsmequiJEB1}~{}\text{and}~{}\eqref{dsmequiJEB2}\Big{\}}
=inf{11+|λ|2Δ1F2+Δ2F2:Δ=[Δ1Δ2],Δ1n,n,Δ2n,m,Δ1=Δ1,Δx=y,Δz=w}.\displaystyle=\inf\bigg{\{}\frac{1}{1+|{\lambda}|^{2}}{\|{\Delta}_{1}\|}_{F}^{2}+{\|{\Delta}_{2}\|}_{F}^{2}:~{}{\Delta}=\big{[}{\Delta}_{1}~{}{\Delta}_{2}\big{]},~{}{\Delta}_{1}\in{\mathbb{C}}^{n,n},{\Delta}_{2}\in{\mathbb{C}}^{n,m},~{}{\Delta}_{1}^{*}=-{\Delta}_{1},~{}{\Delta}x=y,{\Delta}^{*}z=w\bigg{\}}.
Proof.

The proof is similar to [14, Lemma 5.6] due to doubly structured skew Hermitian mapping from Theorem 11.       

Theorem 26.

Let L(z)L(z) be a pencil as in (2), let λi{0}{\lambda}\in i{\mathbb{R}}\setminus\{0\} and u2n+m{0}u\in{\mathbb{C}}^{2n+m}\setminus\{0\}. Partition u=[u1Tu2Tu3T]Tu=\big{[}u_{1}^{T}~{}u_{2}^{T}~{}u_{3}^{T}\big{]}^{T} such that u1,u2nu_{1},u_{2}\in{\mathbb{C}}^{n}, and u3mu_{3}\in{\mathbb{C}}^{m}. Set y~=(JR+λE)u2\tilde{y}=(J-R+{\lambda}E)u_{2} and w1=(J+R+λE)u1w_{1}=-(J+R+{\lambda}E)u_{1}, X=[u2u1],Y=[y~w1]X=\big{[}u_{2}~{}u_{1}\big{]},Y=\big{[}\tilde{y}~{}-w_{1}\big{]}. Then η𝒮(E,B,λ,u)\eta^{\mathcal{S}}(E,B,{\lambda},u) is finite if and only if u3=0u_{3}=0 and Ru1=0Ru_{1}=0. If the later condition holds and if YXX=Y,YX=XYYX^{\dagger}X=Y,~{}Y^{*}X=-X^{*}Y, if u2=αu1u_{2}=\alpha u_{1} for some nonzero α\alpha\in{\mathbb{C}}, then

η𝒮(J,E,B,λ,u)=11+|λ|2H1F2+H2F2,\eta^{\mathcal{S}}(J,E,B,{\lambda},u)=\sqrt{\frac{1}{1+|{\lambda}|^{2}}{\|H_{1}\|}_{F}^{2}+{\|H_{2}\|}_{F}^{2}}, (221)

where

H1=YX(YX)XXYXandH2=u1u1B.H_{1}=YX^{\dagger}-(YX^{\dagger})^{*}-XX^{\dagger}YX^{\dagger}\quad\text{and}\quad H_{2}=u_{1}u_{1}^{\dagger}B. (222)
Proof.

In view of Remark 4 and Lemma 13, we have that η𝒮(J,E,B,λ,u)\eta^{\mathcal{S}}(J,E,B,{\lambda},u) is finite if and only if u3=0u_{3}=0 and Ru1=0Ru_{1}=0. Thus by using u3=0u_{3}=0 in (216) and (220), and using Lemma 13 in (140), we have that

η𝒮(J,E,B,λ,u)2=inf{11+|λ|2Δ1F2+Δ2F2:Δ1n,n,Δ2n,m,Δ1=Δ1,\displaystyle\eta^{\mathcal{S}}(J,E,B,{\lambda},u)^{2}=\inf\bigg{\{}\frac{1}{1+|{\lambda}|^{2}}{\|{\Delta}_{1}\|}_{F}^{2}+{\|{\Delta}_{2}\|}_{F}^{2}~{}:~{}{\Delta}_{1}\in{\mathbb{C}}^{n,n},{\Delta}_{2}\in{\mathbb{C}}^{n,m},~{}{\Delta}_{1}^{*}=-{\Delta}_{1},
Δ1u2=y~,Δ1u1=w1,Δ2u1=Bu1}\displaystyle{\Delta}_{1}u_{2}=\tilde{y},{\Delta}_{1}^{*}u_{1}=w_{1},{\Delta}_{2}^{*}u_{1}=B^{*}u_{1}\bigg{\}}
=inf{11+|λ|2Δ1F2+Δ2F2:Δ1n,n,Δ2n,m,Δ1=Δ1,\displaystyle=\inf\bigg{\{}\frac{1}{1+|{\lambda}|^{2}}{\|{\Delta}_{1}\|}_{F}^{2}+{\|{\Delta}_{2}\|}_{F}^{2}~{}:~{}{\Delta}_{1}\in{\mathbb{C}}^{n,n},{\Delta}_{2}\in{\mathbb{C}}^{n,m},~{}{\Delta}_{1}^{*}=-{\Delta}_{1},
Δ1[u2u1]=[y~w1],Δ2u1=Bu1}\displaystyle{\Delta}_{1}\big{[}u_{2}~{}u_{1}\big{]}=\big{[}\tilde{y}~{}-w_{1}\big{]},{\Delta}_{2}^{*}u_{1}=B^{*}u_{1}\bigg{\}}
=inf{11+|λ|2Δ1F2+Δ2F2:Δ1n,n,Δ2n,m,Δ1=Δ1,\displaystyle=\inf\bigg{\{}\frac{1}{1+|{\lambda}|^{2}}{\|{\Delta}_{1}\|}_{F}^{2}+{\|{\Delta}_{2}\|}_{F}^{2}~{}:~{}{\Delta}_{1}\in{\mathbb{C}}^{n,n},~{}{\Delta}_{2}\in{\mathbb{C}}^{n,m},~{}{\Delta}_{1}^{*}=-{\Delta}_{1},
Δ1X=Y,Δ2u1=Bu1}.\displaystyle{\Delta}_{1}X=Y,{\Delta}_{2}^{*}u_{1}=B^{*}u_{1}\bigg{\}}. (223)

If YXX=Y,YX=XYYX^{\dagger}X=Y,~{}Y^{*}X=-X^{*}Y and u2=αu1u_{2}=\alpha u_{1} for some nonzero α\alpha\in{\mathbb{C}}, then from [1, Theorem 2.2.3], there always exists a skew-Hermitian mapping Δ1\Delta_{1} such that Δ1=Δ1{\Delta}_{1}^{*}=-{\Delta}_{1} and Δ1X=Y{\Delta}_{1}X=Y. The minimal Frobenius norm of such a Δ1\Delta_{1} is attained by the unique matrix H1H_{1} defined in (222). Similarly, from Theorem 1, for any u1u_{1} there always exists Δ2n,m\Delta_{2}\in{\mathbb{C}}^{n,m} such that Δ2u1=Bu1\Delta_{2}^{*}u_{1}=B^{*}u_{1} and the minimal Frobenius norm of such a Δ2\Delta_{2} is attained by H2:=u1u1BH_{2}:=u_{1}u_{1}^{\dagger}B. Thus using the minimal Frobenius norm mappings H1H_{1} and H2H_{2}, we obtain (221). This completes the proof.       

B.8 Perturbing only R,E and B

Here, suppose that the blocks RR, EE and BB of L(z)L(z) are subject to perturbation. Then in view of (138), (140) and (142), the corresponding backward errors are denoted by η(R,E,B,λ,u):=η(0,R,E,B,λ,u)\eta^{\mathcal{B}}(R,E,B,{\lambda},u):=\eta^{\mathcal{B}}(0,R,E,B,{\lambda},u), η𝒮(R,E,B,λ,u):=η𝒮(0,R,E,B,λ,u)\eta^{\mathcal{S}}(R,E,B,{\lambda},u):=\eta^{\mathcal{S}}(0,R,E,B,{\lambda},u), and η𝒮d(R,E,B,λ,u):=η𝒮d(0,R,E,B,λ,u)\eta^{\mathcal{S}_{d}}(R,E,B,{\lambda},u):=\eta^{\mathcal{S}_{d}}(0,R,E,B,{\lambda},u). The block and symmetry structured backward errors η(R,E,B,λ,u)\eta^{\mathcal{B}}(R,E,B,{\lambda},u) and η𝒮(R,E,B,λ,u)\eta^{\mathcal{S}}(R,E,B,{\lambda},u) were obtained in [14, Theorem 5.7]. In this section we compute bounds for semidefinite structured backward error η𝒮d(R,E,B,λ,u)\eta^{\mathcal{S}_{d}}(R,E,B,{\lambda},u).

For this, from (146) and (150), when ΔJ=0{\Delta}_{J}=0 we have

[ΔR+λΔE=:Δ1ΔB=:Δ2][u2u3]=:x\displaystyle\left[\begin{array}[]{cc}\underbrace{-{\Delta}_{R}+{\lambda}{\Delta}_{E}}_{=:\Delta_{1}}&\underbrace{{\Delta}_{B}}_{=:\Delta_{2}}\end{array}\right]\underbrace{\left[\begin{array}[]{c}u_{2}\\ u_{3}\end{array}\right]}_{=:x} =\displaystyle= (JR+λE)u2+Bu3=:y\displaystyle\underbrace{(J-R+{\lambda}E)u_{2}+Bu_{3}}_{=:y} (227)
[ΔR+λΔEΔB]u1=:z\displaystyle\left[\begin{array}[]{cc}-{\Delta}_{R}+{\lambda}{\Delta}_{E}&{\Delta}_{B}\end{array}\right]^{*}\underbrace{u_{1}}_{=:z} =\displaystyle= [(J+R+λE)u1=:w1Bu1+Su3=:w2]=:w,.\displaystyle\underbrace{\left[\begin{array}[]{c}-(J+R+{\lambda}E)u_{1}=:w_{1}\\ B^{*}u_{1}+Su_{3}=:w_{2}\end{array}\right]}_{=:w},. (231)

The following lemma is analogous to [14, Lemma 6.2] that will be useful in computing η𝒮d(R,E,B,λ,u)\eta^{\mathcal{S}_{d}}(R,E,B,\lambda,u).

Lemma 14.

Let L(z)L(z) be a pencil as in (2), and let λi{\lambda}\in i{\mathbb{R}} and u2n+m{0}u\in{\mathbb{C}}^{2n+m}\setminus\{0\}. Partition u=[u1Tu2Tu3T]Tu=[u_{1}^{T}~{}u_{2}^{T}~{}u_{3}^{T}]^{T} such that u1,u2nu_{1},u_{2}\in{\mathbb{C}}^{n} and u3mu_{3}\in{\mathbb{C}}^{m}, and let x,y,zx,y,z and ww be defined as in (227) and (231). Then the following statements are equivalent.

  1. 1.

    There exists ΔR,ΔEn,n{\Delta}_{R},{\Delta}_{E}\in{\mathbb{C}}^{n,n} and ΔBn,m{\Delta}_{B}\in{\mathbb{C}}^{n,m} such that ΔR0{\Delta}_{R}\succeq 0, and ΔEHerm(n){\Delta}_{E}\in{\rm Herm}(n) satisfying (227) and (231).

  2. 2.

    There exists Δ=[Δ1Δ2]{\Delta}=[{\Delta}_{1}~{}{\Delta}_{2}], Δ1n,n{\Delta}_{1}\in{\mathbb{C}}^{n,n}, Δ2n,m{\Delta}_{2}\in{\mathbb{C}}^{n,m} such that Δ1+Δ10{\Delta}_{1}+{\Delta}_{1}^{*}\preceq 0, Δx=y{\Delta}x=y, and Δz=w{\Delta}^{*}z=w.

  3. 3.

    u3=0u_{3}=0.

Moreover, we have

inf{[ΔRΔEΔB]F2:ΔR,ΔEHerm(n),ΔR0,ΔBn,msatisfying(227)and(231)}\displaystyle\inf\left\{{\left\|\big{[}{\Delta}_{R}~{}{\Delta}_{E}~{}{\Delta}_{B}\big{]}\right\|}_{F}^{2}:{\Delta}_{R},{\Delta}_{E}\in{\rm Herm}(n),{\Delta}_{R}\succeq 0,\,{\Delta}_{B}\in{\mathbb{C}}^{n,m}~{}\text{satisfying}~{}\eqref{dsmequiREB1}~{}\text{and}~{}\eqref{dsmequiREB2}\right\}
=inf{Δ1+Δ12F2+1|λ|2Δ1Δ12F2+Δ2F2:Δ=[Δ1Δ2],Δ1n,n,Δ2n,m,\displaystyle=\inf\bigg{\{}{\left\|\frac{{\Delta}_{1}+{\Delta}_{1}^{*}}{2}\right\|}_{F}^{2}+\frac{1}{|{\lambda}|^{2}}{\left\|\frac{{\Delta}_{1}-{\Delta}_{1}^{*}}{2}\right\|}_{F}^{2}+{\|{\Delta}_{2}\|}_{F}^{2}:~{}{\Delta}=\big{[}{\Delta}_{1}~{}{\Delta}_{2}\big{]},~{}{\Delta}_{1}\in{\mathbb{C}}^{n,n},\,{\Delta}_{2}\in{\mathbb{C}}^{n,m},
Δ1+Δ10,Δx=y,Δz=w}.\displaystyle\hskip 170.71652pt{\Delta}_{1}+{\Delta}_{1}^{*}\preceq 0,~{}{\Delta}x=y,{\Delta}^{*}z=w\bigg{\}}.
Proof.

The proof is similar to the proof of [14, Lemma 5.6] due to Type-2 doubly structured dissipative mapping from Theorem 17.       

Theorem 27.

Let L(z)L(z) be a pencil as in (2), let λi{0}{\lambda}\in i{\mathbb{R}}\setminus\{0\} and u2n+m{0}u\in{\mathbb{C}}^{2n+m}\setminus\{0\}. Partition u=[u1Tu2Tu3T]Tu=[u_{1}^{T}~{}u_{2}^{T}~{}u_{3}^{T}]^{T} such that u1,u2nu_{1},u_{2}\in{\mathbb{C}}^{n}, and u3mu_{3}\in{\mathbb{C}}^{m}. Set y~=(JR+λE)u2\tilde{y}=(J-R+{\lambda}E)u_{2} and w1=(J+R+λE)u1w_{1}=-(J+R+{\lambda}E)u_{1}. Then η𝒮d(J,R,B,λ,u)\eta^{\mathcal{S}_{d}}(J,R,B,{\lambda},u) is finite if and only if u3=0u_{3}=0. If the later condition holds and if u2u_{2} satisfies that Ru20Ru_{2}\neq 0 and u2=αu1u_{2}=\alpha u_{1} for some nonzero α\alpha\in{\mathbb{C}}, then

H1F2+H2F2η𝒮d(R,E,B,λ,u)H1+H12F2+1|λ|2H1H12F2+H2F2,\sqrt{{\|H_{1}\|}_{F}^{2}+{\|H_{2}\|}_{F}^{2}}\leq\eta^{\mathcal{S}_{d}}(R,E,B,{\lambda},u)\leq\sqrt{{\left\|\frac{H_{1}+H_{1}^{*}}{2}\right\|}_{F}^{2}+\frac{1}{|{\lambda}|^{2}}{\left\|\frac{H_{1}-H_{1}^{*}}{2}\right\|}_{F}^{2}+{\|H_{2}\|}_{F}^{2}},

when |λ|1|\lambda|\leq 1, and

1|λ|2H1F2+H2F2η𝒮d(R,E,B,λ,u)H1+H12F2+1|λ|2H1H12F2+H2F2,\sqrt{\frac{1}{|\lambda|^{2}}{\|H_{1}\|}_{F}^{2}+{\|H_{2}\|}_{F}^{2}}\leq\eta^{\mathcal{S}_{d}}(R,E,B,{\lambda},u)\leq\sqrt{{\left\|\frac{H_{1}+H_{1}^{*}}{2}\right\|}_{F}^{2}+\frac{1}{|{\lambda}|^{2}}{\left\|\frac{H_{1}-H_{1}^{*}}{2}\right\|}_{F}^{2}+{\|H_{2}\|}_{F}^{2}},

when |λ|>1|\lambda|>1, where

H1=y~u2+(w1u1)𝒫u2+𝒫u2J𝒫u2withJ=14Re(u2y~)(y~+α|α|2w1)(y~+α|α|2w1),H_{1}=\tilde{y}u_{2}^{\dagger}+(w_{1}u_{1}^{\dagger})^{*}\mathcal{P}_{u_{2}}+\mathcal{P}_{u_{2}}J\mathcal{P}_{u_{2}}\quad\text{with}\quad J=\frac{1}{4\mathop{\mathrm{Re}}{(u_{2}^{*}{\tilde{y}}})}\big{(}\tilde{y}+\frac{\alpha}{|\alpha|^{2}}w_{1}\big{)}\big{(}\tilde{y}+\frac{\alpha}{|\alpha|^{2}}w_{1}\big{)}^{*},

where and H2=u1u1BH_{2}=u_{1}u_{1}^{\dagger}B.

Proof.

In view of Remark 4 and Lemma 14, the proof is similar to the proof of [14, Theorem 5.7].       

B.9 Perturbing only J,R and B

Finally, suppose that the blocks JJ, RR and BB of L(z)L(z) are subject to perturbation. Then in view of (138), (140) and (142), the corresponding backward errors are denoted by η(J,R,B,λ,u):=η(J,R,0,B,λ,u)\eta^{\mathcal{B}}(J,R,B,{\lambda},u):=\eta^{\mathcal{B}}(J,R,0,B,{\lambda},u), η𝒮(J,R,B,λ,u):=η𝒮(J,R,0,B,λ,u)\eta^{\mathcal{S}}(J,R,B,{\lambda},u):=\eta^{\mathcal{S}}(J,R,0,B,{\lambda},u), and η𝒮d(J,R,B,λ,u):=η𝒮d(J,R,0,B,λ,u)\eta^{\mathcal{S}_{d}}(J,R,B,{\lambda},u):=\eta^{\mathcal{S}_{d}}(J,R,0,B,{\lambda},u). Again note that the block and symmetry structured backward errors η(J,R,B,λ,u)\eta^{\mathcal{B}}(J,R,B,{\lambda},u) and η𝒮(J,R,B,λ,u)\eta^{\mathcal{S}}(J,R,B,{\lambda},u) were respectively obtained in [14, Theorem 5.3] and  [14, Theorem 5.4]. Thus, in this section, we focus only on computing the semidefinite structured backward error η𝒮d(J,R,B,λ,u)\eta^{\mathcal{S}_{d}}(J,R,B,{\lambda},u).

From (146) and (150), when ΔE=0{\Delta}_{E}=0 we have

[ΔJΔR=:Δ1ΔB=:Δ2][u2u3]=:x\displaystyle\left[\begin{array}[]{cc}\underbrace{{\Delta}_{J}-{\Delta}_{R}}_{=:\Delta_{1}}&\underbrace{{\Delta}_{B}}_{=:\Delta_{2}}\end{array}\right]\underbrace{\left[\begin{array}[]{c}u_{2}\\ u_{3}\end{array}\right]}_{=:x} =\displaystyle= (JR+λE)u2+Bu3=:y\displaystyle\underbrace{(J-R+{\lambda}E)u_{2}+Bu_{3}}_{=:y} (235)
[ΔJΔRΔB]u1=:z\displaystyle\left[\begin{array}[]{cc}{\Delta}_{J}-{\Delta}_{R}&{\Delta}_{B}\end{array}\right]^{*}\underbrace{u_{1}}_{=:z} =\displaystyle= [(J+R+λE)u1=:w1Bu1+Su3=:w2]=:w.\displaystyle\underbrace{\left[\begin{array}[]{c}-(J+R+{\lambda}E)u_{1}=:w_{1}\\ B^{*}u_{1}+Su_{3}=:w_{2}\end{array}\right]}_{=:w}. (239)

Then a direct use of Type-2 doubly structured dissipative mapping from Theorem 17 in (235) and (239), gives the following lemma.

Lemma 15.

Let L(z)L(z) be a pencil as in (2), and let λi{\lambda}\in i{\mathbb{R}} and u2n+m{0}u\in{\mathbb{C}}^{2n+m}\setminus\{0\}. Partition u=[u1Tu2Tu3T]Tu=[u_{1}^{T}~{}u_{2}^{T}~{}u_{3}^{T}]^{T} such that u1,u2nu_{1},u_{2}\in{\mathbb{C}}^{n} and u3mu_{3}\in{\mathbb{C}}^{m}, and let x,y,zx,y,z and ww be defined as in (235) and (239). Then the following statements are equivalent.

  1. 1.

    There exists ΔJ,ΔRn,n{\Delta}_{J},{\Delta}_{R}\in{\mathbb{C}}^{n,n} and ΔBn,m{\Delta}_{B}\in{\mathbb{C}}^{n,m} such that ΔJSHerm(n){\Delta}_{J}\in{\rm SHerm}(n), ΔR0{\Delta}_{R}\succeq 0 satisfying (235) and (239).

  2. 2.

    There exists Δ=[Δ1Δ2]{\Delta}=[{\Delta}_{1}~{}{\Delta}_{2}], Δ1n,n{\Delta}_{1}\in{\mathbb{C}}^{n,n}, Δ2n,m{\Delta}_{2}\in{\mathbb{C}}^{n,m} such that Δ1+Δ10{\Delta}_{1}+{\Delta}_{1}^{*}\preceq 0, Δx=y{\Delta}x=y, and Δz=w{\Delta}^{*}z=w.

  3. 3.

    u3=0u_{3}=0.

Moreover, we have

inf{[ΔJΔRΔB]F2:ΔJSHerm(n),ΔRHerm(n),ΔR0,ΔBn,m,\displaystyle\inf\Big{\{}{\left\|\big{[}{\Delta}_{J}~{}{\Delta}_{R}~{}{\Delta}_{B}\big{]}\right\|}_{F}^{2}:~{}{\Delta}_{J}\in{\rm SHerm}(n),{\Delta}_{R}\in{\rm Herm}(n),{\Delta}_{R}\succeq 0,\,{\Delta}_{B}\in{\mathbb{C}}^{n,m},
satisfying(235)and(239)}\displaystyle\text{satisfying}~{}\eqref{dsmequiJRB1}~{}\text{and}~{}\eqref{dsmequiJRB2}\Big{\}}
=inf{Δ1F2+Δ2F2:Δ=[Δ1Δ2],Δ1n,n,Δ2n,m,Δ1+Δ10,\displaystyle=\inf\Big{\{}{\|{\Delta}_{1}\|}_{F}^{2}+{\|{\Delta}_{2}\|}_{F}^{2}:~{}{\Delta}=\big{[}{\Delta}_{1}~{}{\Delta}_{2}\big{]},~{}{\Delta}_{1}\in{\mathbb{C}}^{n,n},{\Delta}_{2}\in{\mathbb{C}}^{n,m},~{}{\Delta}_{1}+{\Delta}_{1}^{*}\preceq 0,
Δx=y,Δz=w}.\displaystyle~{}{\Delta}x=y,{\Delta}^{*}z=w\Big{\}}.
Theorem 28.

Let L(z)L(z) be a pencil as in (2), let λi{0}{\lambda}\in i{\mathbb{R}}\setminus\{0\} and u2n+m{0}u\in{\mathbb{C}}^{2n+m}\setminus\{0\}. Partition u=[u1Tu2Tu3T]Tu=[u_{1}^{T}~{}u_{2}^{T}~{}u_{3}^{T}]^{T} such that u1,u2nu_{1},u_{2}\in{\mathbb{C}}^{n}, and u3mu_{3}\in{\mathbb{C}}^{m}. Set y~=(JR+λE)u2\tilde{y}=(J-R+{\lambda}E)u_{2} and w1=(J+R+λE)u1w_{1}=-(J+R+{\lambda}E)u_{1}. Then η𝒮d(J,R,B,λ,u)\eta^{\mathcal{S}_{d}}(J,R,B,{\lambda},u) is finite if and only if u3=0u_{3}=0. If the later condition holds and if u2u_{2} satisfies that Ru20Ru_{2}\neq 0 and u2=αu1u_{2}=\alpha u_{1} for some nonzero α\alpha\in{\mathbb{C}}, then

η𝒮d(J,R,B,λ,u)=H1F2+H2F2,\eta^{\mathcal{S}_{d}}(J,R,B,{\lambda},u)=\sqrt{{\|H_{1}\|}_{F}^{2}+{\|H_{2}\|}_{F}^{2}}, (240)

where

H1=y~u2+(w1u1)𝒫u2+𝒫u2J𝒫u2withJ=14Re(u2y~)(y~+α|α|2w1)(y~+α|α|2w1),H_{1}=\tilde{y}u_{2}^{\dagger}+(w_{1}u_{1}^{\dagger})^{*}\mathcal{P}_{u_{2}}+\mathcal{P}_{u_{2}}J\mathcal{P}_{u_{2}}\quad\text{with}\quad J=\frac{1}{4\mathop{\mathrm{Re}}{(u_{2}^{*}{\tilde{y}}})}\big{(}\tilde{y}+\frac{\alpha}{|\alpha|^{2}}w_{1}\big{)}\big{(}\tilde{y}+\frac{\alpha}{|\alpha|^{2}}w_{1}\big{)}^{*}, (241)

and H2=u1u1BH_{2}=u_{1}u_{1}^{\dagger}B.

Proof.

In view of Remark 4 and Lemma 15, the proof is analogous to the proof of Theorem 18 using Type-1 doubly structured dissipative mapping from Theorem 16 .