This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Double-Phase-Shifter Based Hybrid Beamforming for mmWave DFRC in the Presence of Extended Target and Clutters

Ziyang Cheng,  Linlong Wu,  Bowen Wang,  Bhavani Shankar M. R.,  and Björn Ottersten,  The work of Ziyang Cheng and Bowen Wang was supported in part by the National Natural Science Foundation of China under Grants 62001084 and 62031007, and in part by the National Defense Science and Technology Foundation under Grant 2022–JCJQ–JJ–0202. The work of Linlong Wu, Bhavani Shankar and Björn Ottersten was supported in part by ERC AGNOSTIC under Grant EC/H2020/ERC2016ADG/742648, and in part by FNR CORE SPRINGER under Grant C18/IS/12734677. (Corresponding author: Linlong Wu) Ziyang Cheng and Bowen Wang are with the School of Information & Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China. Email: [email protected], [email protected]. Linlong Wu, Bhavani Shankar and Björn Ottersten are with the Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg, Luxembourg City L-1855, Luxembourg. Email: {linlong.wu, bhavani.shankar, bjorn.ottersten}@uni.lu.The conference precursor of this work was presented in the 2022 European Signal Processing Conference (EUSIPCO) [1].
Abstract

In millimeter-wave (mmWave) dual-function radar-communication (DFRC) systems, hybrid beamforming (HBF) is recognized as a promising technique utilizing a limited number of radio frequency chains. In this work, in the presence of extended target and clutters, a HBF design based on the subarray connection architecture is proposed for a multiple-input multiple-output (MIMO) DFRC system. In this HBF, the double-phase-shifter (DPS) structure is embedded to further increase the design flexibility. We derive the communication spectral efficiency (SE) and radar signal-to-interference-plus-noise-ratio (SINR) with respect to the transmit HBF and radar receiver, and formulate the HBF design problem as the SE maximization subjecting to the radar SINR and power constraints. To solve the formulated nonconvex problem, the joinT Hybrid bEamforming and Radar rEceiver OptimizatioN (THEREON) is proposed, in which the radar receiver is optimized via the generalized eigenvalue decomposition, and the transmit HBF is updated with low complexity in a parallel manner using the consensus alternating direction method of multipliers (consensus-ADMM). Furthermore, we extend the proposed method to the multi-user multiple-input single-output (MU-MISO) scenario. Numerical simulations demonstrate the efficacy of the proposed algorithm and show that the solution provides a good trade-off between number of phase shifters and performance gain of the DPS HBF.

Index Terms:
Dual-function radar-communication (DFRC), hybrid beamforming (HBF), double-phase-shifter (DPS), extended target, consensus-ADMM.

I Introduction

Future 6th Generation (6G) mobile communication systems are expected to possess a sensing capability to enable various connected service applications[2], such as unmanned aerial vehicles (UAVs) and intelligent automobiles [3]. Such applications require larger amounts of spectrum, which makes it unaffordable to assign independent bands to the radio-frequency (RF) systems. Therefore, integrated sensing and communications (ISAC), as a technology with improved spectrum efficiency, lower power consumption and reduced cost, will play a crucial role in 6G and beyond [4].

The approaches to ISAC so far can be roughly categorized into two groups, namely, co-existence and dual function of radar and communication. For the group of the co-existence of radar and communication [5, 6], the two systems operate with independent transmitters sharing the same frequency band. Although this approach also improves the spectral efficiency, it could suffer from the inevitable mutual interference between radar and communication, which is in fact the key research issue in the related literature. The straightforward way is to design a spectrally compatible waveform (SCW) [7, 8, 9, 10, 11, 12]. Such approaches require to sense the spectrum occupied by the communication, and design radar waveforms with desired spectrum nulls to avoid imposing interference produced by radar on the communication. Although the SCW can be implemented to guarantee the co-existence, it does not really achieve the communication and radar spectrum sharing (CRSS) in a true sense given that the radars only operate at the frequency bands which are unoccupied by communications. Therefore, many co-design methods [13, 14, 15, 16, 17, 18, 19] were proposed to overcome the limitations of the SCW methods. The pioneering work on the co-design for the co-existence of radar and communication was proposed in [14], where a co-design of communication covariance matrix and radar sub-sampling matrix is proposed to minimize the interference caused to radar keeping the constraints of power and capacity for achieving the co-existence of matrix completion multiple-input multiple-output (MC-MIMO) radar and MIMO communication system. Moreover, the authors considered the joint design of radar waveform and communication precoding matrix for the co-existence scenario under the signal-dependent clutter environment in [15]. In addition, the co-existence of a communication system and pulsed radar and in the presence of signal-dependent interference was considered in [18], where the radar pulse codes and communication precoding matrix are jointly optimized to maximize the compound rate while guaranteeing the constraints of power and radar signal-to-interference-plus-noise-ratio (SINR).

In contrast to the studies on the co-existence, the second group aims to build a dual-function radar-communication (DFRC) system [20], where the communication and radar sensing functions are integrated into one platform and thereby allows a dual-function waveform to achieve both sensing and communication simultaneously. Such DFRC systems transmit dual-function waveforms by considering both radar and communication performance metrics jointly, and have gained a growing attention recently [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31]. For example, as a simple way to achieve DFRC, the beampattern of a MIMO radar is optimized to implement traditional communication modulations, such as phase shift keying (PSK) and amplitude shift keying (ASK), by controlling sidelobe level of MIMO radar beampattern [24, 26]. In addition to these single-carrier methods, the orthogonal frequency division multiplexing (OFDM) signal is regarded as a promising candidate for the DFRC waveform [32]. In [33], the OFDM-based method employs the fast Fourier transform (FFT) and the inverse FFT (IFFT) to obtain the Doppler and range parameters, respectively. Besides, [34] designed a time-frequency waveform for an OFDM DFRC system which communicates with an OFDM receiver while estimating target parameters simultaneously. Apart from these, in [30], the authors proposed several beamforming designs to implement a joint MIMO radar transmission and MU-MIMO communication by shaping a desired radar beampattern while keeping the downlink SINR and power requirements.

However, the existing methods developed for the DFRC system implicitly assume a fully-digital architecture, in which an independent radio frequency (RF) chain is associated with each antenna including a mixer and a digital-to-analog converter (DAC) or analog-to-digital converter (ADC). This architecture might lead to extremely high hardware costs and power consumption, especially for large-scale millimeter-wave (mmWave) systems. As a result, the hybrid beamforming (HBF) architecture is viewed as a practical solution to the DFRC system. Specifically, in the HBF structure, a small number of RF chains are needed to ensure the satisfactory performance and large number of RF phase shifters (PSs) are adopted to reduce the cost. For communication-only systems, the HBF has been fully developed for both single-user (SU) and multi-user (MU) scenarios [35, 36, 37, 38, 39, 40, 41, 42], but it has been less studied for DFRC systems. In fact, HBF has been proposed for DFRC systems for the first time in [43], where the HBF is optimized to approach the the performance of ideal digital beamformer by considering the weighted summation of the radar and communication beamforming errors. However, the work in [43] is based on the ”two-stage” approach, i.e., the ideal digital radar and communication beamformers are firstly obtained, the HBF is then optimized according to the ideal digital beamformers. This indirect design procedure may not guarantee a satisfactory performance or exploit the systems full potential. Towards that end, the DFRC HBF with subarray-connection structure is considered in [44], where the HBF is designed to maximize the sum-rate subject to power and HBF constraints.

In terms of system model, the above two works do not consider the signal-dependent interference (such as clutters) environment, which is usually considered as the main challenge for sensing the target in radar applications [10, 45]. Moreover, for large-size target and clutter, their echoes become extended over range cells [46, 47, 48]. Different from the point-like target scenario, in the presence of extended target and clutters, the design requires some prior knowledge of the target and clutters, such as their impulse response or their statistics. Consequently, the model of the extended target and clutters is more complicated. To the best of our knowledge, the HBF design has not been investigated for the DFRC system in environments with extended target and clutters in the literature. In addition, the conventional single-phase-shifter (SPS) structure reduces the hardware cost of a mmWave system while bearing a performance loss. The DPS structure [49, 50, 51], where each antenna is connected to two in-parallel phase shifters, has been widely investigated in the communication field. For example, the authors in [49] propose zero-forcing (ZF) based heuristic algorithms to select antennas and optimize DPSs jointly. As a further step, a two-stage algorithm for designing DPS-based HBF is investigated in [51]. The corresponding results show that exploiting DPS can achieve a balanced trade-off between performance and cost. However, the above works focus on the communication-only systems, and the methods are difficult to extend to DFRC systems. Motivated by these facts, in this paper, we investigate the HBF design problem based on the DPS structure for the mmWave DFRC system in the presence of extended target and clutters. The main contributions of this work are summarized as follows:

  • We propose a novel hardware architecture for the analog beamforming component of the HBF based DFRC system, which adopts a DPS structure associated with each antenna. Compared with the conventional SPS structure, the DPS provides an extra degree of freedom (DoF) (i.e. amplitude control) of design. To adapt to the proposed HBF architecture, we derive the corresponding communication spectral efficiency (SE) and radar SINR as performance metrics and then formulate the DPS-based HBF design problem.

  • An algorithm termed joinT Hybrid bEamforming and Radar rEceiver OptimizatioN (THEREON) is proposed to solve the formulated nonconvex problem. For the radar receive filter, it is updated via the generalized eigenvalue decomposition. For the HBF design, the weighted minimum mean-square error (WMMSE) reformulation [52] is adopted first, and then we solve the corresponding problem based on the consensus alternating direction method of multipliers (consensus-ADMM) [53], in which the closed form solutions of the primal variables are derived via the Karush-Kuhn-Tucker (KKT) conditions. In addition, the proposed algorithm is adapted to the multi-user multiple-input single-output (MU-MISO) scenario.

  • Representative simulations are conducted to illustrate the efficacy of the proposed algorithm and the performance improvement enabled by the proposed DPS architecture. For different initialization, the algorithm consistently converges to a point with improved SE. We also demonstrate that the DPS structure can substantially improve the performance comparing to the conventional SPS structure at the cost of only an extra phase shifter for each transmit antenna.

The remainder of the paper is organized as follows. In Section II, the signal model and problem formulation are presented. The proposed algorithm is developed in Section III, and then extended to the MU-MISO scenario in Section IV. Section V presents various numerical simulations. Conclusions are drawn in Section VI.

Notation: Lower case and upper case bold face letters denote vectors and matrices, respectively. ()(\cdot)^{*}, ()H(\cdot)^{H} and ()T(\cdot)^{T} represent the conjugate, conjugate transpose and transpose operators, respectively. n\mathbb{C}^{n} and N×N\mathbb{C}^{N\times N} denote the sets of nn-dimensional complex-valued vectors and N×NN\times N complex-valued matrices, respectively. The real part of a complex-valued number and expectation operator are noted by {}\Re\left\{\cdot\right\} and 𝔼{}{\mathbb{E}}\left\{\cdot\right\}. Tr(𝐀){\rm Tr}({\bf A}) is reserved for the trace of 𝐀\bf A. 𝐈N\mathbf{I}_{N} denotes the N×N{N\times N} identity matrix. F\|\cdot\|_{F} and ȷ=1\jmath=\sqrt{-1} denote the Frobenius norm and the imaginary unit, respectively. Finally, Bdiag(){\rm Bdiag}(\cdot) and diag(){\rm diag}(\cdot) stand for the block diagonal matrix and the vector composed by the diagonal entries of a matrix, respectively.

II Signal Model and Problem Formulation

In this section, we formulate the system model and optimization problem for the proposed HBF DFRC system. We consider a scenario as shown in Fig. 1(a), where a DFRC vehicle sends communication symbols to a recipient vehicle receiver while detecting a target vehicle of interest in the presence of stationary clutters (such as trees, ground, buildings, etc.) simultaneously. The system architecture is depicted in Fig. 1(b), where we assume a time-division duplex (TDD) DFRC system with NTxN_{\rm Tx} antennas and NRFN_{\rm RF} RF chains adopting a non-overlapping subarray architecture. Each subarray has M=NTx/NRFM=N_{\rm Tx}/N_{\rm RF} antennas connected to a RF chain. The recipient vehicle receiver with NRxN_{\rm Rx} antennas employs the fully-digital beamforming structure.

Refer to caption
Refer to caption
Figure 1: (a) Illustration of our considered scenario for the DFRC system. (b) Overview of the DPS-based HBF DFRC system.

II-A Transmit Model

At the transmitter, the symbol block 𝐬l{\bf s}_{l} in ll-th subpulse111 We use the term subpluse and slot exchangeably in this paper, where the former is commonly used in radar and the later is used in communications. is precoded, at first, by a digital precoding matrix 𝐅D,lNRF×Ns{\bf F}_{{\rm D},l}\in{\mathbb{C}}^{N_{\rm RF}\times N_{s}}, where NsN_{s} is the number of data streams. Subsequently, the baseband signal is up-converted to the RF domain via NRFN_{\rm RF} RF chains and processed by analog PSs. Different from the conventional subarray architecture where each antenna is connected to a single PS, we consider exploiting double PSs to provide additional amplitude control for the HBF, the diagram of which is sketched in Fig. 1(b).

Without loss of generality, each PS has a constant magnitude 1NTx\frac{1}{\sqrt{N_{\rm Tx}}}, and the synthesized value of each DPS module meets AeȷφAe^{\jmath\varphi} with A[0,2/NTx]A\in[0,{2}/{\sqrt{N_{\rm Tx}}}] and φ[0,2π]\varphi\in[0,2\pi]. Thus, the proposed analog precoder can be expressed as

𝐅RF=𝐅set𝐏,{\bf F}_{\rm RF}={\bf F}_{\rm set}{\bf P}, (1)

where 𝐅set=diag{f1,,fNTx}{\bf F}_{\rm set}={\rm diag}\{{f}_{1},\cdots,{f}_{N_{\rm Tx}}\} with fm=Ameȷφm{f}_{m}=A_{m}e^{\jmath\varphi_{m}}, Am[0,2/NTx]A_{m}\in[0,{2}/{\sqrt{N_{\rm Tx}}}],φm[0,2π]\varphi_{m}\in[0,2\pi], m=1,,NTx\forall m=1,\cdots,N_{\rm Tx}, 𝐏=Bdiag{𝟏M,,𝟏M}NTx×NRF{\bf P}={\rm Bdiag}\left\{{\bf 1}_{M},\cdots,{\bf 1}_{M}\right\}\in{\mathbb{C}}^{N_{\rm Tx}\times N_{\rm RF}} is a binary matrix indicating the antenna selection in a subarray.

Thus, the complex baseband discrete-time signal at the transmitter can be written as

𝐱[l]=𝐅RF𝐅D,l𝐬l,{\bf x}[l]={\bf F}_{\rm RF}{\bf F}_{{\rm D},l}{\bf s}_{l}, (2)

where 𝐬l{\bf s}_{l} is the normalized symbol sequence corresponding to the ll-th subpulse with 𝔼{𝐬l𝐬lH}=𝐈Ns{\mathbb{E}}\{{\bf s}_{l}{\bf s}_{l}^{H}\}={\bf I}_{N_{s}}.

Assuming LL subpulses are contained in one pulse duration, and collecting all LL transmit vectors into a matrix 𝐗NTx×L{\bf X}\in{\mathbb{C}}^{N_{\rm Tx}\times L}, we have

𝐗=𝐅RF[𝐅D,1𝐬1,,𝐅D,L𝐬L].{\bf X}={\bf F}_{\rm RF}[{\bf F}_{{\rm D},1}{\bf s}_{1},\cdots,{\bf F}_{{\rm D},L}{\bf s}_{L}]. (3)

II-B Communication Model

At the recipient vehicle receiver, the signal corresponding to the ll-th subpulse is modeled as

𝐜[l]=𝐇𝐅RF𝐅D,l𝐬l+𝐳c[l],{\bf c}[l]={\bf H}{\bf F}_{\rm RF}{\bf F}_{{\rm D},l}{\bf s}_{l}+{\bf z}_{c}[l], (4)

where 𝐇NRx×NTx{\bf H}\in{\mathbb{C}}^{N_{\rm Rx}\times N_{\rm Tx}} is the channel state information (CSI) from the transmitter to the recipient vehicle and assumed to be known through some channel estimation techniques [14, 54, 55] such as pilot method. 𝐳c[l]{\bf z}_{c}[l] is additive Gaussian noise vector with zero mean and variance σc2\sigma_{c}^{2}. It is assumed that the CSI between the transmitter and the recipient vehicle is modeled as a geometric channel with NpathN_{path} paths [38, 56]. Specifically, the channel matrix 𝐇\bf H is written as

𝐇=1Npathl=1Npathϰl𝐚r(ϕlr)𝐚tH(ϕlt),{{\mathbf{H}}=\sqrt{\frac{1}{N_{path}}}\sum\limits_{l=1}^{N_{path}}{\varkappa}_{l}{{\mathbf{a}}_{r}}\left({\phi_{l}^{r}}\right){{\mathbf{a}}_{t}^{H}}{\left({\phi_{l}^{t}}\right)}}, (5)

where ϰl𝒞𝒩(0,1){\varkappa}_{l}\sim{\cal CN}(0,1) is the complex factor of the ll-th path, and the angles of arrival and departure (AoAs/AoDs), ϕlr,ϕlt{\phi_{l}^{r}},{\phi_{l}^{t}} are assumed to be uniformly distributed in [0,2π)[0,2\pi). Besides, 𝐚r(){{\mathbf{a}}_{r}}\left(\cdot\right) and 𝐚t(){{\mathbf{a}}_{t}}\left(\cdot\right) are the array steering vectors and for uniform linear arrays (ULAs), they are defined by

𝐚r(ϕ)=1NRx[1,eȷ2πdrsinϕ/λ,,eȷ2πdr(NRx1)sinϕ/λ]T,{\bf a}_{r}(\phi)=\frac{1}{\sqrt{N_{\rm Rx}}}\left[1,e^{\jmath 2\pi d_{r}\sin\phi/\lambda},\cdots,e^{\jmath 2\pi d_{r}(N_{\rm Rx}-1)\sin\phi/\lambda}\right]^{T}, (6)
𝐚t(ϕ)=1NTx[1,eȷ2πdtsinϕ/λ,,eȷ2πdt(NTx1)sinϕ/λ]T,{\bf a}_{t}(\phi)=\frac{1}{\sqrt{N_{\rm Tx}}}\left[1,e^{\jmath 2\pi d_{t}\sin\phi/\lambda},\cdots,e^{\jmath 2\pi d_{t}(N_{\rm Tx}-1)\sin\phi/\lambda}\right]^{T}, (7)

where λ\lambda represents the carrier wavelength, drd_{r} and dtd_{t} denote the antenna spacings at the receiver and transmitter, respectively.

The recipient vehicle adopts an NRx×NsN_{\rm Rx}\times N_{s} digital combiner 𝐔l=[𝐮1,l,,𝐮Ns,l]{\bf U}_{l}=\left[{{{\bf{u}}_{1,l}},\cdots,{{\bf{u}}_{N_{s},l}}}\right], to estimate the symbol block of the ll-th subpulse, then the estimated 𝐬^l\hat{\bf s}_{l} can be modeled as

𝐬^l\displaystyle\hat{\bf s}_{l} =𝐔lH𝐜[l]=𝐔lH𝐇𝐅RF𝐅D,l𝐬l+𝐔lH𝐳c[l],\displaystyle={\bf U}_{l}^{H}{\bf c}[l]={\bf U}_{l}^{H}{\bf H}{\bf F}_{\rm RF}{\bf F}_{{\rm D},l}{\bf s}_{l}+{\bf U}_{l}^{H}{\bf z}_{c}[l], (8)

For the communication function, we focus on the hybrid precoder design to maximize the SE, which is used to describe the bandwidth efficiency of communication systems. Concretely, the SE Rl(𝐅D,l,𝐅RF,𝐔l)R_{l}({\bf F}_{{\rm D},l},{\bf F}_{\rm RF},{\bf U}_{l}) for the ll-th subpulse is defined as [38]

Rl\displaystyle R_{l} (𝐅D,l,𝐅RF,𝐔l)[bits/s/Hz]\displaystyle({\bf F}_{{\rm D},l},{\bf F}_{{\rm RF}},{\bf U}_{l})~{}{\color[rgb]{0,0,0}[{\rm bits/s/Hz}]} (9)
=log|𝐈NRx+𝐔l𝐂l1𝐔lH𝐇𝐅RF𝐅D,l𝐅D,lH𝐅RFH𝐇H|,\displaystyle=\log\Big{|}{\bf I}_{N_{{\rm Rx}}}+{\bf U}_{l}{\bf C}_{l}^{-1}{\bf U}_{l}^{H}{\bf H}{\bf F}_{{\rm RF}}{\bf F}_{{\rm D},l}{\bf F}_{{\rm D},l}^{H}{\bf F}_{{\rm RF}}^{H}{\bf H}^{H}\Big{|},

where 𝐂l=σc2𝐔lH𝐔l{\bf C}_{l}={\sigma_{c}^{2}}{\bf U}_{l}^{H}{\bf U}_{l}.

II-C Radar Model

For the radar function, we assume that the radar receive array with NRadN_{\rm Rad} elements adopts full-digital beamforming structure, and consider a scenario where the radar receiver needs to detect the target vehicle of interest in the presence of clutter. In mmWave band, the scattering of target is extended in distance due to the high range resolution. To be more specific, let θt\theta_{t} be the angle of a generic extended target and t(k),k=0,,Ltar1t(k),k=0,\cdots,L_{\rm tar}-1 be the finite impulse response (FIR) of the extended target with LtarL_{\rm tar} being the support length of the FIR [47, 48]. Then, the received vector is modeled as

𝐫[n]=𝐇t(θt)eȷ2πnfd/fsl=1Lt(nl)𝐱[l]+𝐣[n]+𝐳r[n],{\bf r}[n]={\bf H}_{t}(\theta_{t})e^{\jmath 2\pi nf_{d}/f_{s}}\sum\limits_{l=1}^{L}t(n-l){\bf x}[l]+{\bf j}[n]+{\bf{z}}_{r}[n], (10)

where 𝐇t(θt)=𝐚Rr(θt)𝐚tH(θt){\bf H}_{t}(\theta_{t})={\bf a}_{Rr}(\theta_{t}){\bf a}_{t}^{H}(\theta_{t}) is the spatial steering matrix with 𝐚Rr(θt){\bf a}_{Rr}(\theta_{t}) being the radar receive response vector similar to (6), fd=2vrλf_{d}=\frac{2v_{r}}{\lambda} is the Doppler shifts of the target with vrv_{r} being the radial velocity of the target, fsf_{s} is the sampling frequency, 𝐳r[n]{\bf z}_{r}[n] is a zero-mean Gaussian noise vector with variance σr2\sigma_{r}^{2}, and 𝐣[n]{\bf j}[n] is interference term from the stationary clutters. Assuming that the clutter is divided into KK clutter bins located at θi,i=1,,K\theta_{i},\forall i=1,\cdots,K, then 𝐣[n]{\bf j}[n] is expressed as

𝐣[n]=i=1K𝐇i(θi)l=1Lji(nl)𝐱[l],{\bf j}[n]=\sum\limits_{i=1}^{K}{\bf H}_{i}(\theta_{i})\sum\limits_{l=1}^{L}j_{i}(n-l){\bf x}[l], (11)

where 𝐇i(θi)=𝐚Rr(θi)𝐚tH(θi){\bf H}_{i}(\theta_{i})={\bf a}_{Rr}(\theta_{i}){\bf a}_{t}^{H}(\theta_{i}) is the spatial steering matrix of the ii-th clutter bin and ji[k],k=0,,Lc,i1j_{i}[k],k=0,\cdots,L_{c,i}-1 denotes the FIR of the ii-th clutter bin with Lc,iL_{c,i} being the support length.

We define 𝐭=[t(0),,t(Ltar1)]T{\bf t}=[t(0),\cdots,t(L_{\rm tar}-1)]^{T} and 𝐣i=[ji(0),,ji(Lc,i1)]T{\bf j}_{i}=[j_{i}(0),\cdots,j_{i}(L_{c,i}-1)]^{T} and assume that both 𝐭\bf t and {𝐣i}\{{\bf j}_{i}\} are zero mean random vectors with covariance matrix being 𝚺t=𝔼{𝐭𝐭H}{\bf\Sigma}_{t}={\mathbb{E}}\{{\bf t}{\bf t}^{H}\} and 𝚺c,i=𝔼{𝐣i𝐣iH}{\bf\Sigma}_{c,i}={\mathbb{E}}\{{\bf j}_{i}{\bf j}_{i}^{H}\}, respectively222Here, we assume the covariance matrices of target and clutter are known. The assumption of the availability of this prior information can be obtained via a knowledge-based approach [57, 58].. Let Lobs=L+max{Ltar,{Lc,i}}1L_{\rm obs}=L+\max\{L_{\rm tar},\{L_{c,i}\}\}-1 being the receiver observation length. After defining 𝐑=[𝐫[1],,𝐫[Lobs]]NRx×Lobs{\bf R}=[{\bf r}[1],\cdots,{\bf r}[L_{\rm obs}]]\in{\mathbb{C}}^{N_{\rm Rx}\times L_{\rm obs}} and 𝐙r=[𝐳r[1],,𝐫r[Lobs]]NRx×Lobs{\bf Z}_{r}=[{\bf z}_{r}[1],\cdots,{\bf r}_{r}[L_{\rm obs}]]\in{\mathbb{C}}^{N_{\rm Rx}\times L_{\rm obs}}, the model can be written in the matrix form as follows:

𝐑=𝐇t(θt)𝐗𝐓d+i=1K𝐇i(θi)𝐗𝐉i+𝐙r,{\bf R}={\bf H}_{t}(\theta_{t}){\bf X}{\bf T}{{\cal F}}_{d}+\sum\limits_{i=1}^{K}{\bf H}_{i}(\theta_{i}){\bf X}{\bf J}_{i}+{\bf{Z}}_{r}, (12)

where

𝐓=[t(0)t(Ltar1)00t(0)t(Ltar1)]L×Lobs,{{\bf{T}}=\left[{\begin{array}[]{*{20}{c}}{t(0)}&\cdots&{t({L_{{\rm{tar}}}}-1)}&{}\hfil&0\\ {}\hfil&\ddots&{}\hfil&\ddots&{}\hfil\\ 0&{}\hfil&{t(0)}&\cdots&{t({L_{{\rm{tar}}}}-1)}\end{array}}\right]\in{{\mathbb{C}}^{L\times{L_{{\rm{obs}}}}}},}
𝐉i=[ji(0)ji(Lc,i1)00ji(0)ji(Lc,i1)]L×Lobs.{{{\bf{J}}_{i}}=\left[{\begin{array}[]{*{20}{c}}{{j_{i}}(0)}&\cdots&{{j_{i}}({L_{c,i}}-1)}&{}\hfil&0\\ {}\hfil&\ddots&&\ddots&{}\hfil\\ 0&{}\hfil&{{j_{i}}(0)}&\cdots&{{j_{i}}({L_{c,i}}-1)}\end{array}}\right]\in{{\mathbb{C}}^{L\times{L_{{\rm{obs}}}}}}.}

and d=diag{eȷ2πfd/fs,,eȷ2πLobsfd/fs}{{{\cal F}}_{d}={\rm diag}\{e^{\jmath 2\pi f_{d}/f_{s}},\cdots,e^{\jmath 2\pi L_{\rm obs}f_{d}/f_{s}}\}}.

The received signal 𝐑{\bf R} is filtered via the receive beamformer 𝐕NRad×Lobs{\bf V}\in{\mathbb{C}}^{N_{\rm Rad}\times L_{\rm obs}}, then the output SINR333For target detection applications, the detection probability (PdP_{d}) of the target can be evaluated as Pd=Q(2SINR,2lnPfa)P_{d}={Q}(\sqrt{2{\rm SINR}},\sqrt{-2\ln P_{fa}})[59], where Q(,)Q(\cdot,\cdot) is the Marcum Q function of order 1 and PfaP_{fa} is the false alarm probability. Thereby, for a specified value PfaP_{fa}, the maximization of PdP_{d} is equivalent to the maximization of SINR. can be written as

SINR(𝐅RF,𝐅D,𝐕)\displaystyle{\rm SINR}({\bf F}_{\rm RF},{\bf F}_{\rm D},{\bf V}) (13)
=𝔼{|Tr{𝐕H𝐇t(θt)𝐗𝐓d}|2}i=1K𝔼{|Tr{𝐕H𝐇i(θi)𝐗𝐉i}|2}+𝔼{|Tr{𝐕H𝐙r}|2},\displaystyle=\frac{{{\mathbb{E}}\left\{{{{\left|{{\rm{Tr}}\left\{{{{\bf{V}}^{H}}{{\bf{H}}_{t}}({\theta_{t}}){\bf{XT}}}{{\cal F}}_{d}\right\}}\right|}^{2}}}\right\}}}{{\mathop{\sum}\limits_{i=1}^{K}{\mathbb{E}}\left\{{{{\left|{{\rm{Tr}}\left\{{{{\bf{V}}^{H}}{{\bf{H}}_{i}}({\theta_{i}}){\bf{X}}{{\bf{J}}_{i}}}\right\}}\right|}^{2}}}\right\}+{\mathbb{E}}\left\{{{{\left|{{\rm{Tr}}\left\{{{{\bf{V}}^{H}}{{\bf{Z}}_{r}}}\right\}}\right|}^{2}}}\right\}}},

where 𝐅D=[𝐅D,1,,𝐅D,L]{\bf F}_{\rm D}=[{\bf F}_{{\rm D},1},\cdots,{\bf F}_{{\rm D},L}]. The following proposition will be used when designing the HBF and radar receive filter.

Proposition 1: The SINR in (13) can be equivalently expressed as

SINR(𝐅RF,𝐅D,𝐕\displaystyle{\rm SINR}({\bf F}_{{\rm RF}},{\bf F}_{{\rm D}},{\bf V} )=𝐯H𝚯t(𝐅RF,𝐅D)𝐯𝐯H𝚯c(𝐅RF,𝐅D)𝐯+σr2𝐯H𝐯\displaystyle)=\dfrac{{\bf v}^{H}{{\bf{\Theta}}_{t}}({{\bf{F}}_{{\rm{RF}}}},{{\bf{F}}_{{\rm{D}}}}){\bf v}}{{\bf v}^{H}{{\bf{\Theta}}_{c}}({{\bf{F}}_{{\rm{RF}}}},{{\bf{F}}_{{\rm{D}}}}){\bf v}+\sigma_{r}^{2}{\bf v}^{H}{\bf v}} (14a)
=l=1LTr{𝐅l𝐅lH𝚽t[l,l]}l=1LTr{𝐅l𝐅lH𝚽c[l,l]}+σr2𝐯H𝐯,\displaystyle=\dfrac{\sum\limits_{l=1}^{L}{{\rm{Tr}}\left\{{{{\bf{F}}_{l}}{\bf{F}}_{l}^{H}{{\bf{\Phi}}_{t}}[l,l]}\right\}}}{\sum\limits_{l=1}^{L}{{\rm{Tr}}\left\{{{{\bf{F}}_{l}}{\bf{F}}_{l}^{H}{{\bf{\Phi}}_{c}}[l,l]}\right\}}+\sigma_{r}^{2}{\bf v}^{H}{\bf v}}, (14b)

where 𝚯t(𝐅RF,𝐅D){{\bf{\Theta}}_{t}}({{\bf{F}}_{{\rm{RF}}}},{{\bf{F}}_{\rm{D}}}), 𝚯c(𝐅RF,𝐅D){{\bf{\Theta}}_{c}}({{\bf{F}}_{{\rm{RF}}}},{{\bf{F}}_{\rm{D}}}), 𝚽t[l,l]{{\bf{\Phi}}_{t}}[l,l], 𝚽c[l,l]{{\bf{\Phi}}_{c}}[l,l] are defined in Appendix A, 𝐅l=𝐅RF𝐅D,l{\bf F}_{l}={\bf F}_{\rm RF}{\bf F}_{{\rm D},l} and 𝐯=vec(𝐕){\bf v}={\rm vec}({\bf V}).

Proof:

See Appendix A. ∎

Predictably, equation (14a) will be useful in optimizing radar receive filter 𝐕\bf V with the fixed hybrid beamformer (𝐅RF,𝐅D)({\bf F}_{{\rm RF}},{\bf F}_{{\rm D}}). While the alternative equation (14b) is benefit to designing the (𝐅RF,𝐅D)({\bf F}_{{\rm RF}},{\bf F}_{{\rm D}}) with a given 𝐕\bf V.

II-D Problem Formulation

In this paper, we assume that the primary function of the DFRC system is to communicate with the recipient vehicle while providing the detection of the target vehicle as the secondary function. According to above models, a meaningful criterion of jointly optimizing the hybrid digital/analog precoder (𝐅D,𝐅set)\left({\bf F}_{\rm D},{\bf F}_{\rm set}\right), communication combiner {𝐔l}{\{{\bf U}_{l}\}} and radar receive filter 𝐕\bf V is to maximize the communication SE while keeping the SINR requirement for radar target. Mathematically, our problem of interest can be formulated as

max𝐅D,𝐅set,{𝐔l},𝐕l=1LRl(𝐅D,l,𝐅RF,𝐔l)\displaystyle\mathop{\max}\limits_{{{\bf F}_{\rm D},{\bf F}_{\rm set}},{\{{\bf U}_{l}\}},{\bf{V}}}\;\;\sum\limits_{l=1}^{L}R_{l}({\bf F}_{{\rm D},l},{\bf F}_{\rm RF},{\bf U}_{l}) (15a)
s.t.SINR(𝐅RF,𝐅D,𝐕)γ,\displaystyle{\rm{s}}.{\rm{t}}.\quad{\rm SINR}({\bf F}_{\rm RF},{\bf F}_{{\rm D}},{\bf V})\geq\gamma, (15b)
𝐅set=diag{f1,,fNTx},fm=Ameȷφm,m\displaystyle~{}~{}~{}~{}\quad{\bf F}_{\rm set}={\rm diag}\{{f}_{1},\cdots,{f}_{N_{\rm Tx}}\},{f}_{m}=A_{m}e^{\jmath\varphi_{m}},\forall m (15c)
0Am2/NTx,φm[0,2π],m,\displaystyle~{}~{}~{}~{}\quad 0\leq A_{m}\leq{2}/{\sqrt{N_{\rm Tx}}},~{}\varphi_{m}\in[0,2\pi],\forall m, (15d)
Tr(𝐅RF𝐅D𝐅DH𝐅RFH),\displaystyle\;\;\;\;\quad{\rm{Tr}}\left({{{\bf{F}}_{{\rm{RF}}}}{{\bf{F}}_{\rm D}}{\bf{F}}_{\rm D}^{H}{\bf{F}}_{{\rm{RF}}}^{H}}\right)\leq{\cal E}, (15e)

where the constraint (15b) is the SINR requirement for the radar target with γ\gamma being the SINR threshold, the constraints (15c) and (15c) are feasible conditions for the DPS, and the constraint (15e) is total energy requirement for the DFRC system with \cal E being the total energy budget.

Note that this optimization problem involves a nonconvex objective function and nonconvex constraints (15b)-(15e), and hence, it is NP-hard [60] and challenging to solve.

III Hybrid Beamforming Design With Double Phase shifters Architecture

In this section, we will solve the HBF design problem in the alternating optimization manner. Concretely, the radar receiver 𝐕\bf V is optimized for a given (𝐅D,𝐅set,{𝐔l})({{\bf F}_{\rm D},{\bf F}_{\rm set}},{\{{\bf U}_{l}\}}), and in turn, (𝐅D,𝐅set,{𝐔l})({{\bf F}_{\rm D},{\bf F}_{\rm set}},{\{{\bf U}_{l}\}}) are jointly optimized for a given 𝐕\bf V. Since the subproblem with respect to (𝐅D,𝐅set,{𝐔l})({{\bf F}_{\rm D},{\bf F}_{\rm set}},{\{{\bf U}_{l}\}}) has a consensus form, we propose an efficient algorithm by utilizing the consensus-ADMM [53].

III-A Optimization of radar receiver

Note that the objective function in (15) is independent to 𝐕\bf V, and thus, we only need to find a feasible solution 𝐕\bf V to meet the SINR requirement (15b). To this end, the radar filter 𝐕\bf V can be determined by maximizing the SINR value as

max𝐕SINR(𝐅RF,𝐅D,l,𝐕)=𝐯H𝚯t(𝐅RF,𝐅D)𝐯𝐯H𝚯c(𝐅RF,𝐅D)𝐯+σr2𝐯H𝐯,\max\limits_{\bf V}~{}{\rm SINR}({\bf F}_{\rm RF},{\bf F}_{D,l},{\bf V})=\dfrac{{\bf v}^{H}{{\bf{\Theta}}_{t}}({{\bf{F}}_{{\rm{RF}}}},{{\bf{F}}_{\rm{D}}}){\bf v}}{{\bf v}^{H}{{\bf{\Theta}}_{c}}({{\bf{F}}_{{\rm{RF}}}},{{\bf{F}}_{\rm{D}}}){\bf v}+\sigma_{r}^{2}{\bf v}^{H}{\bf v}}, (16)

of which the optimal solution 𝐯{\bf v}^{\star} can be achieved by taking the generalized eigenvalue decomposition (EVD) of (𝚯t(𝐅RF,𝐅D),𝚯c(𝐅RF,𝐅D)+σr2𝐈NRadNs)\left({\bf{\Theta}}_{t}({{\bf{F}}_{{\rm{RF}}}},{{\bf{F}}_{\rm{D}}}),{\bf{\Theta}}_{c}({{\bf{F}}_{{\rm{RF}}}},{{\bf{F}}_{\rm{D}}})+\sigma_{r}^{2}{\bf I}_{{N}_{\rm Rad}N_{s}}\right), i.e.,

𝐯=𝒫(𝚯t1(𝐅RF,𝐅D)(𝚯c(𝐅RF,𝐅D)+σr2𝐈NRadNs)),{\bf v}^{\star}={\cal P}\left({\bf{\Theta}}_{t}^{-1}({{\bf{F}}_{{\rm{RF}}}},{{\bf{F}}_{\rm{D}}})\left({\bf{\Theta}}_{c}({{\bf{F}}_{{\rm{RF}}}},{{\bf{F}}_{\rm{D}}})+\sigma_{r}^{2}{\bf I}_{{N}_{\rm Rad}N_{s}}\right)\right), (17)

where the operator 𝒫(){\cal P}(\cdot) denotes the principal eigenvector.

III-B Optimization of hybrid beamformer and combiner

For a fixed 𝐕\bf V, the subproblem with respect to (𝐅D,𝐅set,{𝐔l})({{\bf F}_{\rm D},{\bf F}_{\rm set}},{\{{\bf U}_{l}\}}) is

max𝐅D,𝐅set,{𝐔l}l=1LRl(𝐅D,l,𝐅RF,𝐔l)\displaystyle\mathop{\max}\limits_{{{\bf F}_{\rm D},{\bf F}_{\rm set}},{\{{\bf U}_{l}\}}}\;\;\sum\limits_{l=1}^{L}R_{l}({\bf F}_{{\rm D},l},{\bf F}_{\rm RF},{\bf U}_{l}) (18)
s.t.(15b),(15c),(15d),and(15e)\displaystyle{\rm{s}}.{\rm{t}}.\quad\eqref{16b},~{}\eqref{16c},~{}\eqref{16d},~{}{\rm and}~{}\eqref{16e}

Since 𝐅set{\bf F}_{\rm set} and 𝐅D{\bf F}_{\rm D} are coupled in constraints (15b) and (15e), this subproblem is difficult to solve. By introducing auxiliary variables 𝐗l,𝐙lNTx×Ns,l{\bf X}_{l},{\bf Z}_{l}\in{\mathbb{C}}^{N_{\rm Tx}\times{N_{s}}},\forall l, we decouple 𝐅set{\bf F}_{\rm set} and 𝐅D{\bf F}_{\rm D} and recast problem (18) into

max𝐅D,𝐅set,{𝐔l},{𝐗l},{𝐙l}l=1LRl(𝐗l,𝐔l),\displaystyle\mathop{\max}\limits_{{{\bf F}_{\rm D},{\bf F}_{\rm set}},{\{{\bf U}_{l}\}},{\{{\bf X}_{l}\}},{\{{\bf Z}_{l}\}}}\;\;\sum\limits_{l=1}^{L}R_{l}({\bf X}_{l},{\bf U}_{l}), (19a)
s.t.l=1LTr{𝐙l𝐙lH𝚽t[l,l]}l=1LTr{𝐙l𝐙lH𝚽c[l,l]}+σr2𝐯H𝐯γ,\displaystyle{\rm{s}}.{\rm{t}}.\quad\dfrac{\sum\limits_{l=1}^{L}{{\rm{Tr}}\left\{{{{\bf{Z}}_{l}}{\bf{Z}}_{l}^{H}{{\bf{\Phi}}_{t}}[l,l]}\right\}}}{\sum\limits_{l=1}^{L}{{\rm{Tr}}\left\{{{{\bf{Z}}_{l}}{\bf{Z}}_{l}^{H}{{\bf{\Phi}}_{c}}[l,l]}\right\}}+\sigma_{r}^{2}{\bf v}^{H}{\bf v}}\geq\gamma, (19b)
𝐗l=𝐙l=𝐅set𝐏𝐅D,l,l\displaystyle\quad~{}\quad{\bf X}_{l}={\bf Z}_{l}={\bf F}_{\rm set}{\bf P}{\bf F}_{{\rm D},l},\forall l (19c)
l=1LTr(𝐗l𝐗lH),\displaystyle\quad~{}\quad\sum\limits_{l=1}^{L}{\rm{Tr}}\left({\bf X}_{l}{\bf{X}}_{l}^{H}\right)\leq{\cal E}, (19d)
(15c),(15d),\displaystyle\quad~{}\quad~{}\eqref{16c},\eqref{16d}, (19e)

where Rl(𝐗l,𝐔l)=log|𝐈NRx+𝐔l𝐂l1𝐔lH𝐇𝐗l𝐗lH𝐇H|R_{l}({\bf X}_{l},{\bf U}_{l})=\log\Big{|}{\bf I}_{N_{\rm Rx}}+{\bf U}_{l}{\bf C}^{-1}_{l}{\bf U}_{l}^{H}{\bf H}{\bf X}_{l}{\bf X}_{l}^{H}{\bf H}^{H}\Big{|}.

It is observed that the introduction of auxiliary variables 𝐗l,𝐙l,l{\bf X}_{l},{\bf Z}_{l},\forall l results in decoupling 𝐅set{\bf F}_{\rm set}, 𝐏{\bf P} and 𝐅D,l{\bf F}_{{\rm D},l} in original objective function and imposing constraints (19b) and (19d) on 𝐙l,l{\bf Z}_{l},\forall l and 𝐗l,l{\bf X}_{l},\forall l respectively. This will enable us to construct the ADMM subproblems with respect to problem (19), each of which can be solved with a closed form solution. Concretely, placing the equality constraints 𝐗l=𝐙l=𝐅set𝐏𝐅D,l{\bf X}_{l}={\bf Z}_{l}={\bf F}_{\rm set}{\bf P}{\bf F}_{{\rm D},l} into the augmented Lagrangian function of (19) yields

=l=1L~l(𝐖l,𝐗l,𝐔l,𝐙l,𝐅set,𝐅D,l,𝐃1,l,𝐃2,l),\displaystyle{\cal L}=\sum_{l=1}^{L}\tilde{\cal L}_{l}({\bf W}_{l},{\bf X}_{l},{\bf U}_{l},{\bf Z}_{l},{\bf F}_{\rm set},{\bf F}_{{\rm D},l},{\bf D}_{1,l},{\bf D}_{2,l}), (20)

where ~i\tilde{\cal L}_{i} is defined as

~l(𝐖l,𝐗l,𝐔l,𝐙l,𝐅set,𝐅D,l,𝐃1,l,𝐃2,l)=Rl(𝐗l,𝐔l)\displaystyle\tilde{{\cal L}}_{l}({\bf W}_{l},{\bf X}_{l},{\bf U}_{l},{\bf Z}_{l},{\bf F}_{{\rm set}},{\bf F}_{{\rm D},l},{\bf D}_{1,l},{\bf D}_{2,l})=R_{l}({\bf X}_{l},{\bf U}_{l}) (21)
+(Tr{𝐃1,lH(𝐗l𝐅set𝐏𝐅D,l)})+ρ12𝐗l𝐅set𝐏𝐅D,lF2\displaystyle+\Re\left({\rm Tr}\left\{{\bf D}_{1,l}^{H}\left({\bf X}_{l}-{\bf F}_{{\rm set}}{\bf P}{\bf F}_{{\rm D},l}\right)\right\}\right)+\frac{\rho_{1}}{2}\left\|{\bf X}_{l}-{\bf F}_{{\rm set}}{\bf P}{\bf F}_{{\rm D},l}\right\|_{F}^{2}
+(Tr{𝐃2,lH(𝐗l𝐙l)})+ρ22𝐗l𝐙lF2,\displaystyle+\Re\left({\rm Tr}\left\{{\bf D}_{2,l}^{H}\left({\bf X}_{l}-{\bf Z}_{l}\right)\right\}\right)+\frac{\rho_{2}}{2}\left\|{\bf X}_{l}-{\bf Z}_{l}\right\|_{F}^{2},

where 𝐃1,l,𝐃2,lNTx×Ns{\bf D}_{1,l},{\bf D}_{2,l}\in{\mathbb{C}}^{N_{\rm Tx}\times N_{s}} are dual variables corresponding to the equalities 𝐗l=𝐅set𝐏𝐅D,l{\bf X}_{l}={\bf F}_{\rm set}{\bf P}{\bf F}_{{\rm D},l} and 𝐗l=𝐙l{\bf X}_{l}={\bf Z}_{l}, respectively, and ρ1,ρ2>0{\rho_{1}},\rho_{2}>0 are the penalty parameters.

To fulfill the convergence requirements of the consensus- ADMM, we split the optimized primal variables into two blocks (𝐖l,𝐗l,𝐔l)\left({\bf W}_{l},{\bf X}_{l},{\bf U}_{l}\right) and (𝐙l,𝐅set,𝐅D,l)\left({\bf Z}_{l},{\bf F}_{\rm set},{\bf F}_{{\rm D},l}\right). In what follows, we shall present the update procedures of the two primal blocks and dual block (𝐃1,l,𝐃2,l)\left({\bf D}_{1,l},{\bf D}_{2,l}\right).

III-B1 Optimization of (𝐖l,𝐗l,𝐔l)\left({\bf W}_{l},{\bf X}_{l},{\bf U}_{l}\right)

For fixed (𝐙l,𝐅set,𝐅D,l)\left({\bf Z}_{l},{\bf F}_{\rm set},{\bf F}_{{\rm D},l}\right) and (𝐃1,l,𝐃2,l)\left({\bf D}_{1,l},{\bf D}_{2,l}\right), (𝐖l,𝐗l,𝐔l)\left({\bf W}_{l},{\bf X}_{l},{\bf U}_{l}\right) is updated by solving

min{𝐖l},{𝐗l},{𝐔l}\displaystyle\mathop{\min}\limits_{\{{\bf W}_{l}\},\{{\bf X}_{l}\},\{{\bf U}_{l}\}} l=1L~l(𝐖l,𝐗l,𝐔l,𝐙l,𝐅set,𝐅D,l,𝐃1,l,𝐃2,l)\displaystyle\sum_{l=1}^{L}\tilde{{\cal L}}_{l}({\bf W}_{l},{\bf X}_{l},{\bf U}_{l},{\bf Z}_{l},{\bf F}_{{\rm set}},{\bf F}_{{\rm D},l},{\bf D}_{1,l},{\bf D}_{2,l}) (22)
s.t..\displaystyle\quad\quad\;{\text{s.t.}}. l=1LTr(𝐗l𝐗lH).\displaystyle\sum\limits_{l=1}^{L}{\rm{Tr}}\left({\bf X}_{l}{\bf{X}}_{l}^{H}\right)\leq{\cal E}.

Nevertheless, It is still difficult to find the solution of (22) due to the nonconvex function Rl(𝐗l,𝐔l)R_{l}({\bf X}_{l},{\bf U}_{l}). To solve problem (22), the following theorem is useful.

Theorem 1: Based on the WMMSE method[52], maximizing l=1LRl(𝐗l,𝐔l)\sum\limits_{l=1}^{L}R_{l}({\bf X}_{l},{\bf U}_{l}) can be equivalently replaced by,

minf(𝐖l,𝐗l,𝐔l)=l=1LTr{𝐄l(𝐗l,𝐔l)𝐖l}log|𝐖l|,\min f({\bf W}_{l},{\bf X}_{l},{\bf U}_{l})=\sum\limits_{l=1}^{L}{\rm Tr}\left\{{\bf E}_{l}({\bf X}_{l},{\bf U}_{l}){\bf W}_{l}\right\}-\log\Big{|}{\bf W}_{l}\Big{|}, (23)

where 𝐖l{\bf W}_{l} is the weight matrix, and 𝐄l(𝐗l,𝐔l){\bf E}_{l}({\bf X}_{l},{\bf U}_{l}) is the MSE matrix, given by

𝐄l(𝐗l,𝐔l)\displaystyle{\bf E}_{l}({\bf X}_{l},{\bf U}_{l}) (24)
=(𝐈Ns𝐔lH𝐇𝐗l)(𝐈Ns𝐔lH𝐇𝐗l)H+σc2𝐔lH𝐔l.\displaystyle=\left({\bf I}_{N_{s}}-{\bf U}_{l}^{H}{\bf H}{\bf X}_{l}\right)\left({\bf I}_{N_{s}}-{\bf U}_{l}^{H}{\bf H}{\bf X}_{l}\right)^{H}+\sigma_{c}^{2}{\bf U}_{l}^{H}{\bf U}_{l}.
Proof:

See Appendix B.

By doing so, a coordinate descent (CD)-type algorithm is utilized to update the variables iteratively. Specifically, the update of 𝐔l{\bf U}_{l} is obtained by solving

min𝐔lTr{𝐄l(𝐗l,𝐔l)𝐖l}.\displaystyle\mathop{\min}\limits_{{\bf U}_{l}}\;\;{\rm Tr}\left\{{\bf E}_{l}({\bf X}_{l},{\bf U}_{l}){\bf W}_{l}\right\}. (25)

According to (24), its optimal solution of 𝐔l{\bf U}_{l} can be attained via the first-order optimality condition given by

𝐔l=(𝐇𝐗l𝐗lH𝐇H+σc2𝐈Rx)1𝐇𝐗l.\displaystyle{\bf U}_{l}=\left({\bf H}{\bf X}_{l}{\bf X}_{l}^{H}{\bf H}^{H}+\sigma_{c}^{2}{\bf I}_{\rm Rx}\right)^{-1}{\bf H}{\bf X}_{l}. (26)

The update of 𝐖l{\bf W}_{l} is obtained by solving

min𝐖lTr{𝐄l(𝐗l,𝐔l)𝐖l}log|𝐖l|,\displaystyle\mathop{\min}\limits_{{\bf W}_{l}}\;\;{\rm Tr}\left\{{\bf E}_{l}({\bf X}_{l},{\bf U}_{l}){\bf W}_{l}\right\}-\log\Big{|}{\bf W}_{l}\Big{|}, (27)

which has the optimal solution given by

𝐖l=𝐄l1(𝐗l,𝐔l)=(𝐈Ns𝐗lH𝐇H𝐔l)1.\displaystyle{\bf W}_{l}={\bf E}_{l}^{-1}({\bf X}_{l},{\bf U}_{l})=\left({\bf I}_{N_{s}}-{\bf X}_{l}^{H}{\bf H}^{H}{\bf U}_{l}\right)^{-1}. (28)

To proceed, the update of 𝐗l{\bf X}_{l} is obtained by solving

min𝐗lTr{𝐄l(𝐗l,𝐔l)𝐖l}+(Tr{𝐃1,lH(𝐗l𝐅set𝐏𝐅D,l)})\displaystyle\mathop{\min}\limits_{{\bf X}_{l}}{\rm Tr}\left\{{\bf E}_{l}({\bf X}_{l},{\bf U}_{l}){\bf W}_{l}\right\}+\Re\left({\rm Tr}\left\{{\bf D}_{1,l}^{H}\left({\bf X}_{l}-{\bf F}_{\rm set}{\bf P}{\bf F}_{{\rm D},l}\right)\right\}\right) (29)
+ρ12𝐗l𝐅set𝐏𝐅D,lF2+(Tr{𝐃2,lH(𝐗l𝐙l)})\displaystyle\qquad+\frac{\rho_{1}}{2}\left\|{\bf X}_{l}-{\bf F}_{\rm set}{\bf P}{\bf F}_{{\rm D},l}\right\|_{F}^{2}+\Re\left({\rm Tr}\left\{{\bf D}_{2,l}^{H}\left({\bf X}_{l}-{\bf Z}_{l}\right)\right\}\right)
+ρ22𝐗l𝐙lF2\displaystyle\qquad+\frac{\rho_{2}}{2}\left\|{\bf X}_{l}-{\bf Z}_{l}\right\|_{F}^{2}
s.t.l=1LTr(𝐗l𝐗lH).\displaystyle{\rm{s}}.{\rm{t}}.\quad\sum\limits_{l=1}^{L}{\rm{Tr}}\left({\bf X}_{l}{\bf{X}}_{l}^{H}\right)\leq{\cal E}.

The following theorem provides the solution to problem (29).

Theorem 2: The optimal solution to problem (29) can be found via the Karush-Kuhn-Tucker (KKT) conditions.

Proof:

See Appendix C. ∎

III-B2 Optimization of (𝐙l,𝐅set,𝐅D,l)\left({\bf Z}_{l},{\bf F}_{\rm set},{\bf F}_{{\rm D},l}\right)

For fixed (𝐖l,𝐗l,𝐔l)\left({\bf W}_{l},{\bf X}_{l},{\bf U}_{l}\right) and (𝐃1,l,𝐃2,l)\left({\bf D}_{1,l},{\bf D}_{2,l}\right), (𝐙l,𝐅set,𝐅D,l)\left({\bf Z}_{l},{\bf F}_{\rm set},{\bf F}_{{\rm D},l}\right) is updated by solving

min𝐙l,𝐅set,𝐅D,ll=1L~l(𝐖l,𝐗l,𝐔l,𝐙l,𝐅set,𝐅D,l,𝐃1,l,𝐃2,l)s. t. l=1LTr(𝐙l𝐙lH𝐌[l,l])α,(15c),(15d),\begin{array}[]{cl}\mathop{\min}\limits_{{\bf Z}_{l},{\bf F}_{{\rm set}},{\bf F}_{{\rm D},l}}&\sum_{l=1}^{L}\tilde{{\cal L}}_{l}\left({\bf W}_{l},{\bf X}_{l},{\bf U}_{l},{\bf Z}_{l},{\bf F}_{{\rm set}},{\bf F}_{{\rm D},l},{\bf D}_{1,l},{\bf D}_{2,l}\right)\\ \text{s. t. }&\sum\limits_{l=1}^{L}{\rm Tr}\left({\bf Z}_{l}{\bf Z}_{l}^{H}{\bf M}[l,l]\right)\geq\alpha,\eqref{16c},\eqref{16d},\end{array} (30)

where 𝐌[l,l]=𝚽t[l,l]γ𝚽c[l,l]{\bf M}[l,l]={{\bf{\Phi}}_{t}}[l,l]-\gamma{{\bf{\Phi}}_{c}}[l,l], and α=γσr2𝐯2\alpha=\gamma\sigma_{r}^{2}\|{\bf v}\|^{2} . We note that the CD method is able to solve the problem (30). Specifically, the update of 𝐙l{\bf Z}_{l} needs solving

min𝐙ll=1L(Tr{𝐃2,lH(𝐗l𝐙l)})+ρ22𝐗l𝐙lF2\displaystyle\mathop{\min}\limits_{{\bf Z}_{l}}\;\;\sum_{l=1}^{L}\Re\left({\rm Tr}\left\{{\bf D}_{2,l}^{H}\left({\bf X}_{l}-{\bf Z}_{l}\right)\right\}\right)+\frac{\rho_{2}}{2}\left\|{\bf X}_{l}-{\bf Z}_{l}\right\|_{F}^{2} (31)
s.t.l=1LTr(𝐙l𝐙lH𝐌[l,l])α.\displaystyle{\rm{s}}.{\rm{t}}.\quad\sum\limits_{l=1}^{L}{\rm{Tr}}\left({\bf Z}_{l}{\bf{Z}}_{l}^{H}{\bf M}[l,l]\right)\geq\alpha.

Similar to the solution to problem (29), the following theorem is useful to give the solution to problem (31).

Theorem 3: The optimal solution to problem (31) is obtain by analyzing the KKT conditions.

Proof:

See Appendix D. ∎

The variables 𝐅D,l,l{\bf F}_{{\rm D},l},\forall l are updated in parallel by solving

min𝐅D,l\displaystyle\mathop{\min}\limits_{{\bf F}_{{\rm D},l}} l=1L(Tr{𝐃1,lH(𝐗l𝐅set𝐏𝐅D,l)})\displaystyle\quad\sum_{l=1}^{L}\Re\left({\rm Tr}\left\{{\bf D}_{1,l}^{H}\left({\bf X}_{l}-{\bf F}_{{\rm set}}{\bf P}{\bf F}_{{\rm D},l}\right)\right\}\right) (32)
+ρ12𝐗l𝐅set𝐏𝐅D,l2,\displaystyle\quad+\frac{\rho_{1}}{2}\left\|{\bf X}_{l}-{\bf F}_{{\rm set}}{\bf P}{\bf F}_{{\rm D},l}\right\|^{2},

whose closed-form solution is

𝐅D,l=\displaystyle{\bf F}_{{\rm D},l}= (𝐏H𝐅setH𝐅set𝐏)1𝐏H𝐅setH(1ρ1𝐃1,l+𝐗1,l)\displaystyle\left({\bf P}^{H}{\bf F}_{\rm set}^{H}{\bf F}_{\rm set}{\bf P}\right)^{-1}{\bf P}^{H}{\bf F}_{\rm set}^{H}\left(\dfrac{1}{\rho_{1}}{\bf D}_{1,l}+{\bf X}_{1,l}\right) (33)
=\displaystyle= diag1(i=1NTxAi2pi,1,,i=1NTxAi2pi,NRF)\displaystyle{\rm diag}^{-1}\Big{(}\sum\limits_{i=1}^{{N_{{\rm{Tx}}}}}{A_{i}^{2}p_{i,1}},\cdots,\sum\limits_{i=1}^{{N_{{\rm{Tx}}}}}{A_{i}^{2}p_{i,{N_{{\rm{RF}}}}}}\Big{)}
×𝐏H𝐅setH(1ρ1𝐃1,l+𝐗1,l).\displaystyle\qquad\times{\bf P}^{H}{\bf F}_{\rm set}^{H}\left(\dfrac{1}{\rho_{1}}{\bf D}_{1,l}+{\bf X}_{1,l}\right).

The variable 𝐅set{\bf F}_{{\rm set}} is updated by the following problem:

min𝐅setl=1L𝐗l𝐅set𝐏𝐅D,l+1ρ1𝐃1,l2s.t.𝐅set=diag(f1,,fNTx),fm=Ameȷφm,m0Am2/NTx,φm[0,2π],m.\begin{array}[]{cl}\mathop{\min}\limits_{{\bf F}_{{\rm set}}}&\sum_{l=1}^{L}\left\|{\bf X}_{l}-{\bf F}_{{\rm set}}{\bf P}{\bf F}_{{\rm D},l}+\frac{1}{\rho_{1}}{\bf D}_{1,l}\right\|^{2}\\ \text{s.t.}&{\bf F}_{{\rm set}}={\rm diag}\left(f_{1},\cdots,f_{N_{{\rm Tx}}}\right),f_{m}=A_{m}e^{\jmath\varphi_{m}},\forall m\\ &0\leq A_{m}\leq{2}/{\sqrt{N_{\rm Tx}}},\varphi_{m}\in[0,2\pi],\forall m.\end{array} (34)

Let 𝚷l=𝐗l+1ρ1𝐃1,l{\bf\Pi}_{l}={\bf X}_{l}+\frac{1}{\rho_{1}}{\bf D}_{1,l} and 𝐘l=𝐏𝐅D,l{\bf Y}_{l}={\bf P}{\bf F}_{{\rm D},l}, problem (34) can be decomposed into

min{fm}\displaystyle\mathop{\min}\limits_{\{f_{m}\}} l=1L𝚷l[m,:]fm𝐘l[m,:]22\displaystyle\sum_{l=1}^{L}\left\|{\bf\Pi}_{l}[m,:]-f_{m}{\bf Y}_{l}[m,:]\right\|^{2}_{2} (35)
s.t.\displaystyle{\rm{s}}.{\rm{t}}.{} fm=Ameȷφm,0Am2/NTx,m,\displaystyle{f}_{m}=A_{m}e^{\jmath\varphi_{m}},~{}0\leq A_{m}\leq{2}/{\sqrt{N_{\rm Tx}}},\forall m,

whose closed-form solution is

Am={|l=1L𝚷l[m,:]𝐘lH[m,:]|l=1L𝐘l[m,:]22,|l=1L𝚷l[m,:]𝐘lH[m,:]|l=1L𝐘l[m,:]222NTx2NTx,|l=1L𝚷l[m,:]𝐘lH[m,:]|l=1L𝐘l[m,:]22>2NTx{A_{m}}=\left\{\begin{array}[]{ll}\frac{{\left|{\sum\limits_{l=1}^{L}{{{\bf{\Pi}}_{l}}[m,:]{\bf{Y}}_{l}^{H}[m,:]}}\right|}}{{\sum\limits_{l=1}^{L}{\left\|{{{\bf{Y}}_{l}}[m,:]}\right\|_{2}^{2}}}},&\frac{{\left|{\sum\limits_{l=1}^{L}{{{\bf{\Pi}}_{l}}[m,:]{\bf{Y}}_{l}^{H}[m,:]}}\right|}}{{\sum\limits_{l=1}^{L}{\left\|{{{\bf{Y}}_{l}}[m,:]}\right\|_{2}^{2}}}}\leq\frac{2}{{\sqrt{{N_{{\rm{Tx}}}}}}}\\ \frac{2}{{\sqrt{{N_{{\rm{Tx}}}}}}},&\frac{{\left|{\sum\limits_{l=1}^{L}{{{\bf{\Pi}}_{l}}[m,:]{\bf{Y}}_{l}^{H}[m,:]}}\right|}}{{\sum\limits_{l=1}^{L}{\left\|{{{\bf{Y}}_{l}}[m,:]}\right\|_{2}^{2}}}}>\frac{2}{{\sqrt{{N_{{\rm{Tx}}}}}}}\end{array}\right. (36)

and

φm=(l=1L𝚷l[m,:]𝐘lH[m,:]).{\varphi_{m}}=\angle\left({\sum\limits_{l=1}^{L}{{{\bf{\Pi}}_{l}}[m,:]{\bf{Y}}_{l}^{H}[m,:]}}\right). (37)

After obtaining Am{A_{m}} and φm{\varphi_{m}}, the phase values of phase shifters #1 and #2 in the DPS element are

ψ1,m\displaystyle{\psi_{1,m}} =φm+arccos(Am/2),\displaystyle={\varphi_{m}}+\arccos\left({{A_{m}}/2}\right), (38a)
ψ2,m\displaystyle{\psi_{2,m}} =φmarccos(Am/2).\displaystyle={\varphi_{m}}-\arccos\left({{A_{m}}/2}\right). (38b)

III-B3 Optimization of (𝐃1,l,𝐃2,l)\left({\bf D}_{1,l},{\bf D}_{2,l}\right)

For fixed (𝐖l,𝐗l,𝐔l)\left({\bf W}_{l},{\bf X}_{l},{\bf U}_{l}\right) and (𝐙l,𝐅set,𝐅D,l)\left({\bf Z}_{l},{\bf F}_{\rm set},{\bf F}_{{\rm D},l}\right), (𝐃1,l,𝐃2,l)\left({\bf D}_{1,l},{\bf D}_{2,l}\right) are updated by [53]:

𝐃1,l\displaystyle{\bf D}_{1,l} =𝐃1,l+ρ1(𝐗l𝐅set𝐏𝐅D,l),\displaystyle={\bf D}_{1,l}+\rho_{1}\left({\bf X}_{l}-{\bf F}_{\rm set}{\bf P}{\bf F}_{{\rm D},l}\right), (39)
𝐃2,l\displaystyle{\bf D}_{2,l} =𝐃2,l+ρ1(𝐗l𝐙l).\displaystyle={\bf D}_{2,l}+\rho_{1}\left({\bf X}_{l}-{\bf Z}_{l}\right).

The consensus-ADMM for solving problem (18) is sumerized in Algorithm 1.

Algorithm 1 Consensus-ADMM for solving problem (18)
1:  Input:Initial variables 𝐅set(0),𝐅D,l(0){\bf F}_{\rm set}(0),{{\bf{F}}_{D,l}}(0), 𝐗l(0){{\bf{X}}_{l}}(0), 𝐙l(0){{\bf{Z}}_{l}}(0), 𝐃1,l(0){{\bf{D}}_{1,l}}(0), 𝐃2,l(0){{\bf{D}}_{2,l}}(0) and ρ1,ρ2>0{\rho}_{1},\rho_{2}>0
2:  Set k=0k=0
3:  repeat
4:     Update 𝐔l(k+1){\bf U}_{l}(k+1) according to (26)
5:     Update 𝐖l(k+1){\bf W}_{l}(k+1) in parallel by (28)
6:     Compute μopt\mu^{\rm opt} via the bisection method, and update 𝐗l(k+1),l{\bf X}_{l}(k+1),\forall l in parallel by (81)
7:     Compute νopt\nu^{\rm opt} via the Newton method, and update 𝐙l(k+1),l{\bf Z}_{l}(k+1),\forall l in parallel by (84)
8:     Update 𝐅D,l(k+1),l{\bf F}_{{\rm D},l}(k+1),\forall l according to (33)
9:     Update 𝐅set(k+1){\bf F}_{{\rm set}}(k+1) according to (36)
10:     Update 𝐃1,l(k+1){\bf D}_{{\rm 1},l}(k+1) and 𝐃2,l(k+1){\bf D}_{{\rm 2},l}(k+1) according to (39)
11:     k=k+1k=k+1
12:  until k=NADMMmaxk=N_{\rm ADMM}^{\max}.
13:  Output: 𝐅set=𝐅set(k),𝐅D,l=𝐅D,l(k){\bf F}_{\rm set}^{\star}={\bf F}_{\rm set}(k),{{\bf{F}}_{D,l}^{\star}}={\bf{F}}_{D,l}(k)

Finally, the proposed THEREON algorithm, which jointly optimize radar reciever and hybrid beamformer, is summarized in Algorithm 2.

Algorithm 2 joinT Hybrid bEamforming and Radar rEceiver OptimizatioN (THEREON)
1:  Input:Initial variables 𝐅set(0),𝐅D,l(0){\bf F}_{\rm set}(0),{{\bf{F}}_{D,l}}(0) and iteration number NTHERmaxN_{\rm THER}^{\max}
2:  Set t=0t=0
3:  repeat
4:     Update 𝐕(t+1){\bf V}(t+1) according to (17)
5:     Update 𝐅set(t+1),𝐅D,l(t+1){\bf F}_{\rm set}(t+1),{{\bf{F}}_{D,l}}(t+1) by using Algorithm 1
6:     t=t+1t=t+1
7:  until t=NTHERmaxt=N_{\rm THER}^{\max}
8:  Output: 𝐕=𝐕(t),𝐅set=𝐅set(t),𝐅D,l=𝐅D,l(t){\bf V}^{\star}={\bf V}(t),{\bf F}_{\rm set}^{\star}={\bf F}_{\rm set}(t),{{\bf{F}}_{D,l}^{\star}}={\bf{F}}_{D,l}(t)

III-C Complexity Analysis

We first analyze the computational complexity of the consensus-ADMM method for updating the hybrid beamformer 𝐅set{\bf F}_{\rm set} and 𝐅D{{\bf{F}}_{\rm D}}. Note that in each iteration of the proposed consensus-ADMM, the main computational complexity is caused by updating six variables, i.e. 𝐔l{\bf U}_{l}, 𝐖l{\bf W}_{l}, 𝐗l{\bf X}_{l}, 𝐙l{\bf Z}_{l}, 𝐅set{\bf F}_{\rm set} and 𝐅D,l{\bf F}_{{\rm D},l}. Updating 𝐔l{\bf U}_{l} and 𝐖l{\bf W}_{l} based on (26) and (28) need complexities of 𝒪(Ns2NTx+NRx3){\cal O}\left(N_{s}^{2}N_{\rm Tx}+N_{\rm Rx}^{3}\right) and 𝒪(Ns2NTx+Ns3){\cal O}\left(N_{s}^{2}N_{\rm Tx}+N_{s}^{3}\right), respectively. Updating 𝐗l{\bf X}_{l} needs computing 𝚲{\bf\Lambda} using the bisection method with complexities of 𝒪(NTxLlog2(n)){\cal O}\left(N_{\rm Tx}L\log_{2}(n)\right). Updating 𝐙l{\bf Z}_{l} needs computing ν{\bf\nu} using the Newton method with complexities of 𝒪(NTxLlog2(n)){\cal O}\left(N_{\rm Tx}L\log_{2}(n)\right), updating 𝐅D,l{\bf F}_{{\rm D},l} based on (33) needs a complexity of 𝒪(NTx){\cal O}\left(N_{\rm Tx}\right) and updating 𝐅set{\bf F}_{\rm set} based on (36) needs a complexity of 𝒪(LNsNTx){\cal O}\left(LN_{s}N_{\rm Tx}\right). To summarize, the overall complexity of the consensus-ADMM is 𝒪(NADMMmax(Ns2NTx+NRx3+NTxLlog2(n)+LNsNTx)){\cal O}\Big{(}N_{\rm ADMM}^{\max}(N_{s}^{2}N_{\rm Tx}+N_{\rm Rx}^{3}+N_{\rm Tx}L\log_{2}(n)+LN_{s}N_{\rm Tx})\Big{)}. While the complexity of the update of radar recceiver 𝐯\bf v is 𝒪(Ns3NRad3){\cal O}\Big{(}N_{s}^{3}N_{\rm Rad}^{3}\Big{)}. Overall, the complexity of the THEREON algorithm is 𝒪(NTHERmax(Ns3NRad3+NADMMmax(Ns2NTx+NRx3+NTxLlog2(n)+LNsNTx))){\cal O}\Bigg{(}N_{\rm THER}^{\max}\Big{(}N_{s}^{3}N_{\rm Rad}^{3}+N_{\rm ADMM}^{\max}(N_{s}^{2}N_{\rm Tx}+N_{\rm Rx}^{3}+N_{\rm Tx}L\log_{2}(n)+LN_{s}N_{\rm Tx})\Big{)}\Bigg{)}.

IV Extension to Hybrid Beamforming Design for MU-MISO

In this section, we extend the proposed method in Sec. III to the hybrid beamforming design for a MU-MISO system in which a transmitter with NTxN_{\rm Tx} antennas and NRFN_{\rm RF} RF chains serves NUN_{U} non-cooperative single-antenna users.

In such a system, the transmitted signal at the ll-th subpulse is given by

𝐱[l]=𝐅RF𝐅D,l𝐬l,{\bf x}[l]={\bf F}_{\rm RF}{\bf F}_{{\rm D},l}{\bf s}_{l}, (40)

where 𝐬l=[sl[1],,sl[NU]]T{\bf s}_{l}=[s_{l}[1],\cdots,s_{l}[N_{U}]]^{T} with sl[u]s_{l}[u] being the intended data symbol for user uu at the subpulse ll. with 𝔼{𝐬l𝐬lH}=𝐈NU{\mathbb{E}}\{{\bf s}_{l}{\bf s}_{l}^{H}\}={\bf I}_{N_{U}}. The received signal of the user nn at the ll-th subpulse is

cn[l]=𝐡nH𝐅RF𝐅D,l𝐬l+zn[l].{c}_{n}[l]={\bf h}_{n}^{H}{\bf F}_{\rm RF}{\bf F}_{{\rm D},l}{\bf s}_{l}+{z}_{n}[l]. (41)

where zn[l]{z}_{n}[l] is the additive white Gaussian noise with variance of σn2\sigma_{n}^{2}.

The SE for user uu in ll-th subpulse is defined as

Rl[n]=log(1+|𝐡nH𝐅RF𝐅D,l[n]|2σn2+in|𝐡nH𝐅RF𝐅D,l[i]|2),\displaystyle{R_{l}}[n]=\log\left({1+\frac{{{{\left|{{\bf{h}}_{n}^{H}{{\bf{F}}_{{\rm{RF}}}}{{\bf{F}}_{{\rm{D}},l}}[n]}\right|}^{2}}}}{{\sigma_{n}^{2}+\sum\nolimits_{i\neq n}{{{\left|{{\bf{h}}_{n}^{H}{{\bf{F}}_{{\rm{RF}}}}{{\bf{F}}_{{\rm{D}},l}}[i]}\right|}^{2}}}}}}\right), (42)

where 𝐅D,l[n]{{{\bf{F}}_{{\rm{D}},l}}[n]} is the nn-th column of the matrix 𝐅D,l{\bf F}_{{\rm D},l}. Thus, the hybrid beamforming design problem is formulated as

max𝐅D,𝐅set,𝐕l=1Ln=1NUβnRl[n]\displaystyle\mathop{\max}\limits_{{{\bf F}_{\rm D},{\bf F}_{\rm set}},{\bf{V}}}\;\;\sum\limits_{l=1}^{L}\sum\limits_{n=1}^{N_{U}}\beta_{n}{R_{l}}[n] (43a)
s.t.SINR(𝐅RF,𝐅D,𝐕)γ,\displaystyle{\rm{s}}.{\rm{t}}.\quad{\rm SINR}({\bf F}_{\rm RF},{\bf F}_{\rm D},{\bf V})\geq\gamma, (43b)
𝐅set=diag{f1,,fNTx},fm=Ameȷφm,m\displaystyle~{}~{}~{}~{}\quad{\bf F}_{\rm set}={\rm diag}\{{f}_{1},\cdots,{f}_{N_{\rm Tx}}\},{f}_{m}=A_{m}e^{\jmath\varphi_{m}},\forall m (43c)
Am[0,2/NTx],φm[0,2π],m,\displaystyle~{}~{}~{}~{}\quad A_{m}\in[0,{2}/{\sqrt{N_{\rm Tx}}}],~{}\varphi_{m}\in[0,2\pi],\forall m, (43d)
Tr(𝐅RF𝐅D𝐅DH𝐅RFH),\displaystyle\;\;\;\;\quad{\rm{Tr}}\left({{{\bf{F}}_{{\rm{RF}}}}{{\bf{F}}_{\rm D}}{\bf{F}}_{\rm D}^{H}{\bf{F}}_{{\rm{RF}}}^{H}}\right)\leq{\cal E}, (43e)

where the parameter βn\beta_{n} represents the priority of the user nn.

Relative to (15), the problem of hybrid beamforming design for MU-MISO system has a major difference: For the MU-MISO scenario, there is multi-user interference (MUI) term in the spectral efficiency expression.

We note that the difference between problem (43) and (15) lies in the objective function while the constraint set is unchanged. Since the consensus-ADMM was used to avoid the coupling in the constraints, it can be used herein as well. Here we briefly describe the corresponding solving procedure. We first introduce 𝐗l=𝐙l=𝐅set𝐏𝐅D,l,l{\bf X}_{l}={\bf Z}_{l}={\bf F}_{\rm set}{\bf P}{\bf F}_{{\rm D},l},\forall l to decouple 𝐅set{\bf F}_{\rm set} and 𝐅D{\bf F}_{\rm D} in problem (43). Based on the WMMSE framework, the objective function in (43) can be expressed as,

f(wl,n,𝐗l,ul,n)=l=1Ln=1NUβn(wl,nel,nlog(wl,n)),f({w}_{l,n},{\bf X}_{l},{u}_{l,n})=\sum\limits_{l=1}^{L}\sum\limits_{n=1}^{N_{U}}\beta_{n}\left({w}_{l,n}{e}_{l,n}-\log({w}_{l,n})\right), (44)

where wl,n{w}_{l,n} is the positive weight for user nn at the subpulse ll, el,n{e}_{l,n} is the MSE error, given by

el,n=|ul,n𝐡nH𝐗l[n]1|2+in|ul,n𝐡nH𝐗l[i]|2+σn2|ul,n|2{e}_{l,n}={\left|{{u_{l,n}}{\bf{h}}_{n}^{H}{{\bf{X}}_{l}}[n]-1}\right|^{2}}+{\sum\nolimits_{i\neq n}{{{\left|{{u_{l,n}}{\bf{h}}_{n}^{H}{{\bf{X}}_{l}}[i]}\right|}^{2}}}}+\sigma_{n}^{2}{\left|{{u_{l,n}}}\right|^{2}} (45)

Similar to the solution procedure demonstrated in Section III, we provide the update solutions of ul,n{u}_{l,n} wl,n{w}_{l,n} and 𝐗l{\bf X}_{l} directly omitting the derivation details.

1) Calculate the receiver combining filter as

ul,n=𝐗lH[n]𝐡ni=1NU|𝐡nH𝐗l[i]|2+σn2.{u_{l,n}}=\frac{{{{\bf{X}}_{l}^{H}}[n]{\bf{h}}_{n}}}{{\sum\limits_{i=1}^{{N_{U}}}{{{\left|{{\bf{h}}_{n}^{H}{{\bf{X}}_{l}}[i]}\right|}^{2}}+\sigma_{n}^{2}}}}. (46)

2) Calculate the weight as

wl,n=1/el,n=1|𝐡nH𝐗l[n]|2in|𝐡nH𝐗l[i]|2+σn2.{w_{l,n}}=1/{e}_{l,n}=1-\frac{{{{\left|{{\bf{h}}_{n}^{H}{{\bf{X}}_{l}}[n]}\right|}^{2}}}}{{\sum\nolimits_{i\neq n}{{{\left|{{\bf{h}}_{n}^{H}{{\bf{X}}_{l}}[i]}\right|}^{2}}}+\sigma_{n}^{2}}}. (47)

3) Using (47) in (46), calculate the update of 𝐗l{\bf X}_{l} by solving

min𝐗ln=1NUβnwl,nel,n+(Tr{𝐃1,lH(𝐗l𝐅set𝐏𝐅D,l)})\displaystyle\mathop{\min}\limits_{{\bf X}_{l}}~{}\sum\limits_{n=1}^{N_{U}}\beta_{n}{w}_{l,n}{e}_{l,n}+\Re\left({\rm Tr}\left\{{\bf D}_{1,l}^{H}\left({\bf X}_{l}-{\bf F}_{\rm set}{\bf P}{\bf F}_{{\rm D},l}\right)\right\}\right) (48)
+ρ12𝐗l𝐅set𝐏𝐅D,lF2+(Tr{𝐃2,lH(𝐗l𝐙l)})\displaystyle\qquad+\frac{\rho_{1}}{2}\left\|{\bf X}_{l}-{\bf F}_{\rm set}{\bf P}{\bf F}_{{\rm D},l}\right\|_{F}^{2}+\Re\left({\rm Tr}\left\{{\bf D}_{2,l}^{H}\left({\bf X}_{l}-{\bf Z}_{l}\right)\right\}\right)
+ρ22𝐗l𝐙lF2\displaystyle\qquad+\frac{\rho_{2}}{2}\left\|{\bf X}_{l}-{\bf Z}_{l}\right\|_{F}^{2}
s.t.l=1LTr(𝐗l𝐗lH),\displaystyle{\rm{s}}.{\rm{t}}.\quad\sum\limits_{l=1}^{L}{\rm{Tr}}\left({\bf X}_{l}{\bf{X}}_{l}^{H}\right)\leq{\cal E},

whose closed form solution can be obtained similar to problem (29). By introducing a Lagrange multiplier μ\mu, the first-order optimality condition of 𝐗l{\bf X}_{l} is

𝐗lopt(μ)=(𝚵l+μ𝐈NTx)1𝚿l,\displaystyle{\bf X}_{l}^{\rm opt}(\mu)=\left({\bf\Xi}_{l}+\mu{\bf{I}}_{N_{\rm{Tx}}}\right)^{-1}{\bf\Psi}_{l}, (49)

where 𝚵l{\bf\Xi}_{l} and 𝚿l{\bf\Psi}_{l} are defined as

𝚵l=n=1NUβnwl,n|ul,n|2𝐡n𝐡nH+(ρ12+ρ22)𝐈NTx\displaystyle{\bf\Xi}_{l}=\sum\limits_{n=1}^{{N_{U}}}{{\beta_{n}}{w_{l,n}}{{\left|{{u_{l,n}}}\right|}^{2}}{{\bf{h}}_{n}}{\bf{h}}_{n}^{H}}+\left({\frac{{{\rho_{1}}}}{2}+\frac{{{\rho_{2}}}}{2}}\right){\bf{I}}_{N_{\rm{Tx}}} (50)

and

𝚿l=\displaystyle{\bf\Psi}_{l}= n=1NUβnwl,nul,n𝐡n𝐞nH12(𝐃1,l+𝐃2,l)\displaystyle\sum\limits_{n=1}^{{N_{U}}}{{\beta_{n}}{w_{l,n}}u_{l,n}^{*}{{\bf{h}}_{n}}{\bf{e}}_{n}^{H}}-\frac{1}{2}\left({{{\bf{D}}_{1,l}}+{{\bf{D}}_{2,l}}}\right) (51)
+ρ12𝐅set𝐏𝐅D,l+ρ22𝐙l\displaystyle+\frac{{{\rho_{1}}}}{2}{{\bf{F}}_{{\rm{set}}}}{\bf{P}}{{\bf{F}}_{{\rm{D}},l}}+\frac{{{\rho_{2}}}}{2}{{\bf{Z}}_{l}}

with 𝐞n{\bf e}_{n} is an NTxN_{\rm T_{x}} dimensional vector whose nn-th entry is 1 and 0 otherwise. Then, the remaining procedure of the update of 𝐗l{\bf X}_{l} is the same as Equations (81) and (82).

V Numerical Simulations

This section provides various numerical simulations to examine the performance of the proposed hybrid beamforming design for the DFRC system. We first assess the performance of the hybrid beamforming design with the THEREON algorithm for SU-MIMO scenario. Then, the hybrid beamforming design for MU-MISO scenario is examined.

Refer to caption
Figure 2: Range-azimuth cells of the illuminated area around the DFRC vehicle system.
Refer to caption
Figure 3: The convergence performance of the THEREON method for different initial points when considering the intended SINR requirement γ=12\gamma=12, NTx=32{N_{\rm Tx}}=32 and NRF=4N_{\rm RF}=4.

Unless otherwise mentioned, in all simulations, we assume a DFRC system with NTx=32N_{\rm Tx}=32 transmit antennas. The radar receive array with NRad=4N_{\rm Rad}=4 is considered. In simulations for the SU-MIMO case, the transmitter sends Ns=4N_{s}=4 data symbols per subpulse to a user equipped with 22 antennas. We assume an communication environment with Npath=16N_{path}=16 clusters, and the noises at users are modelled as additive White Gaussian with with the covariances of σc2=0.1\sigma_{c}^{2}=0.1.

For radar scenario, we assume that the Tx/Rx arrays boresight directions are used as the reference for the azimuth θ\theta, and that an extended target located at θt=0\theta_{t}=0^{\circ} (as illustrated in Fig. 2). The number of subpulses in each pulse is L=16L=16, which is the case for μ=4\mu=4 in the recently published 5G NR standard [61]. In this case, each subframe contains 1616 slots, and the length of each slot is 62.562.5 us. For modelling the impulse response of the extended target, we use the exponentially shaped covariance to model the target second-order statistic matrix 𝚺t=𝔼{𝐭𝐭H}{\bf\Sigma}_{t}={\mathbb{E}}\{{\bf t}{\bf t}^{H}\}, that is, 𝚺t(m,n)=σα2ηα|mn|,1m,nLtar{\bf\Sigma}_{t}(m,n)=\sigma_{\alpha}^{2}\eta_{\alpha}^{-|m-n|},1\leq m,n\leq L_{\rm tar} with Ltar=6L_{\rm tar}=6, σα2=10\sigma_{\alpha}^{2}=10 and ηα=15\eta_{\alpha}=15. For the signal-dependent interference (i.e., clutters), we consider a homogeneous clutter environment composed of K=31K=31 azimuth cells, the azimuth angle of the ii-th cell is θi=2π(i1)/K\theta_{i}=2\pi(i-1)/K. All clutter second order statistic matrices 𝚺c,i=𝔼{𝐣i𝐣iH}{\bf\Sigma}_{c,i}={\mathbb{E}}\{{\bf j}_{i}{\bf j}_{i}^{H}\} are identically modeled as 𝚺t{\bf\Sigma}_{t} with 𝚺c,i(m,n)=σβ2ηβ|mn|,i,1m,nLc,i{\bf\Sigma}_{c,i}(m,n)=\sigma_{\beta}^{2}\eta_{\beta}^{-|m-n|},\forall i,1\leq m,n\leq L_{c,i} with Lc,i=8L_{c,i}=8, σβ2=1\sigma_{\beta}^{2}=1 and ηβ=1.2\eta_{\beta}=1.2. As for the radar receive noise, we assume corruption by a white noise with the variance σr2=0.1\sigma_{r}^{2}=0.1. Note that all numerical examples are analyzed using Matlab 2018b version and performed in a standard PC (with CPU Core i7 3.1 GHz and 16 GB RAM).

V-A Hybrid Beamforming Design for SU-MIMO Scenario

In the first example, we examine the convergence performance of the proposed algorithm THEREON for solving problem (15). We consider the DFRC system with NRF=4N_{\rm RF}=4 RF chains and the total energy of the system is =10{\cal E}=10. The intended SINR requirement for the target is γ=12\gamma=12 dB. We set the penalty parameters as ρ1=ρ2=20\rho_{1}=\rho_{2}=20. Fig. 3 analyzes the effect of 10 different initial points on the convergence performance of the proposed THEREON framework for solving problem (15). For each initial point, we assume the entries of initial 𝐅RF{\bf F}_{\rm RF} are eȷΦe^{\jmath\Phi}, where Φ\Phi obeys the uniform distribution over (0,2π](0,2\pi] and entries of initial 𝐅D{\bf F}_{\rm D} obey 𝒞𝒩(0,1){\cal CN}(0,1). As shown in the figure, the converged objective values are the same for different initial points can converge to the same value as the outer iteration (i.e. firstly update the radar filter 𝐕\bf V for given (𝐅D,𝐅set,{𝐔l})({{\bf F}_{\rm D},{\bf F}_{\rm set}},{\{{\bf U}_{l}\}}), and then update (𝐅D,𝐅set,{𝐔l})({{\bf F}_{\rm D},{\bf F}_{\rm set}},{\{{\bf U}_{l}\}}) with aid of the consensus-ADMM for given 𝐕\bf V) goes on. In addition, for an instance of the THEREON framework, we also plot the convergence of the objective values of problem (19) versus the inner iteration number by using the consensus-ADMM algorithm. The result shows that the objective value obtained by the consensus-ADMM is able to converge to a sub-optimal value with the increasing iteration number.

The performance of the consensus-ADMM with respect to maximum, minimum and average computation times until the termination condition are reached for different numbers of RF chains is analyzed in Table I, where 100 Monto-Carlo trails are conducted. The results show that the proposed consensus-ADMM has a good computational efficiency.

TABLE I: Maximum, minimum and average computation times (seconds) of the consensus-ADMM method
NRFN_{\rm RF} maximum time minimum time average time
2 1.14 1.35 1.28
4 1.89 2.25 2.03
8 2.83 3.46 3.11
12 3.14 3.67 3.34

Next, we evaluate the performance of the proposed DPS hybrid beamforming design presented in Section IV for the SU-MIMO system. Fig. 4 plots the SE value under the proposed DPS (denoted by “Prop. DPS”) architecture versus the intended radar SINR requirement γ\gamma. For comparison purpose, the fully-digital beamformer (denoted by “fully-digital”) which provides the upper-bound SE, the two-stage method (denoted by “two-stage”) in [51, 36] and the conventional single phase shifter (SPS) architecture (denoted by “Conv. SPS”) are also considered. The results show that the obtained SE values decrease along with the γ\gamma, this is because when the intended γ\gamma is higher, the less degrees of freedom (DoFs) can be used to maximize the communication SE. Thus there is a trade-off between the radar SINR behavior and communication performance. In addition, Fig. 4 also shows that both the proposed DPS and conventional SPS structures with the consensus-ADMM achieve better SE values than the two-stage method in [51, 36] which seeks to minimize the distance of the optimal fully-digital beamformers. Moreover, the proposed DPS achieves a better performance consistently over different radar SINR requirements with the SE gap of about 3 bps/Hz in comparison with the conventional SPS.

Fig. 5 displays the SE value versus the intended SINR requirement γ\gamma for different numbers of RF chains NRF=2,4,8,16N_{\rm RF}=2,4,8,16 when considering NTx=32{N_{\rm Tx}}=32 and the total energy =10{\cal E}=10. For the case NRF=2N_{\rm RF}=2, the number of streams is considered to be 2. As expected, the larger the number of RF chains, the higher the achieved communication SE. Besides, we also note that as the NRFN_{\rm RF} increases, the gap between the proposed DPS and conventional SPS becomes smaller and smaller, and that the degradation trend of the SE becomes larger and larger as the γ\gamma increases. Furthermore, Fig. 5 shows that when the NRFN_{\rm RF} increases, achieving the radar SINR tends to be easier. This is because if the NRFN_{\rm RF} is larger, the larger the degrees of freedom (DoFs) in the optimization design can be used to suppress clutter, resulting the better radar SINR. This phenomenon agrees with our expectation.

Refer to caption
Figure 4: The achieved SE values of different methods versus the intended radar SINR requirement γ\gamma when considering NTx=32{N_{\rm Tx}}=32, NRF=4N_{\rm RF}=4 and =10{\cal E}=10.
Refer to caption
Figure 5: The achieved SE value versus the intended radar SINR requirement γ\gamma for for different numbers of RF chains when considering NTx=32{N_{\rm Tx}}=32 and =10{\cal E}=10.

Finally, we investigate the influence of adding more phase shifters into each DPS structure when the total HBF power budget is fixed. As shown in Fig. 6, there are two points we can see clearly: (1) Comparing to the single PS case, the other cases have the extra performance gain around 44 dB constantly at different radar SINR level. (2) For all the PS structures with 2, 3, and 4 PS’s, the corresponding curves are close to each other, where the differences are probably caused by the numerical accuracy. This indicates that, for a fixed power budget, the DPS structure is already capable to fully exploit the amplitude controlling in terms of improving the system performance.

Refer to caption
Figure 6: The achieved SE values based on different PS structures for different radar SINR requirements with a fixed HBF power budget.

V-B Hybrid Beamforming Design for MU-MISO Scenario

In this subsection, we assess the proposed DPS hybrid beamforming design presented in Section IV for the SU-MIMO system, in which a DFRC vehicle with 3232 antennas single-antenna users and detects the target from stationary clutters environment simultaneously. We assume that the priority weights of all users are set to be the same. Fig. 7 shows SE obtained by different methods versus the radar SINR requirement with NRF=4N_{\rm RF}=4 RF chains serves NU=4N_{U}=4. It can be seen that the proposed DPS hybrid beamforming method achieves much higher SE than the conventional SPS and the two-stage method in [43, 36]. This implies that the DPS structure is beneficial to improving the spectral efficiency. Finally, Fig. 8 analyzes the effect of number of users on the communication SE when considering γ=12\gamma=12 dB. Specifically, we use the averaged SE (i.e., S/US/U) to describe system performance in left figure. As expected, the proposed DPS scheme outperforms the conventional SPS. In addition, it is interesting to note that as the number of users UU increases, the averaged SE becomes lower and lower. This is because the larger UU means the MUI received by each use is stronger, which leads to the worse averaged SE. Besides, the sum SE is also shown in the right figure. From the figure, we find that the sum SE increases with the number of users.

Refer to caption
Figure 7: The sum spectral efficiency obtained by different methods versus the radar SINR requirement γ\gamma.
Refer to caption
Figure 8: The effect of number of users on the communication SE when considering γ=12\gamma=12 dB.

VI Conclusion

This paper considers the problem of the DPS-based HBF design for the mmWave DFRC system in the presence of the extended target and clutters. By designing the HBF, we maximize the communication spectral efficiency while guarantee the predefined radar SINR level and the HBF power budget. To solve the formulated nonconvex problem, a low complexity method based on the consensus-ADMM approach is proposed to optimize the DPS-based HBF. In addition, we have extended the proposed method from the single-user scenario to the MU-MISO one. The simulation results demonstrate that the DPS structure improves the system performance with a moderate increase of phase shifters. Accordingly, the proposed HBF system achieves an superior trade-off between the radar and communication properties comparing to the conventional SPS architecture.

Furthermore, we would like to emphasize that the accurate information of the FIRs of target and clutters is assumed known in this work. This assumption can be practically relaxed by considering the uncertainty range of the information, and consequently, the robust design problem could be formulated in the form of the max-min. In addition, the partial connection architecture of the phase shifter network can be extended to the dynamic one, for which the DPS can still be applied so that the system performance is expected to be further enhanced.

Appendix A Proof of Proposition 1

Based on the fact that 𝐬l{\bf s}_{l} and 𝐭\bf t are statistically independent, we have

𝔼{|Tr{𝐕H𝐇t(θt)𝐗𝐓d}|2}\displaystyle{\mathbb{E}}\left\{{{{\left|{{\rm{Tr}}\left\{{{{\bf{V}}^{H}}{{\bf{H}}_{t}}({\theta_{t}}){\bf{XT}}}{\cal F}_{d}\right\}}\right|}^{2}}}\right\} (52)
=𝔼{|Tr{𝐕H𝐇t(θt)𝐗𝐓}|2}\displaystyle={\mathbb{E}}\left\{{{{\left|{{\rm{Tr}}\left\{{{{\bf{V}}^{H}}{{\bf{H}}_{t}}({\theta_{t}}){\bf{XT}}}\right\}}\right|}^{2}}}\right\}
=𝐯H(𝐈Lobs𝐇t(θt))𝔼{vec(𝐗𝐓)vecH(𝐗𝐓)}\displaystyle={\bf v}^{H}\Big{(}{\bf I}_{L_{\rm obs}}\otimes{{\bf{H}}_{t}}({\theta_{t}})\Big{)}{\mathbb{E}}\left\{{\rm vec}\big{(}{\bf XT}\big{)}{\rm vec}^{H}\big{(}{\bf XT}\big{)}\right\}
×(𝐈Lobs𝐇t(θt))H𝐯,\displaystyle\qquad\qquad\times\Big{(}{\bf I}_{L_{\rm obs}}\otimes{{\bf{H}}_{t}}({\theta_{t}})\Big{)}^{H}{\bf v},

where 𝐯=vec(𝐕){\bf v}={\rm vec}({\bf V}). Given that vec(𝐗𝐓)=𝐗~𝐭{\rm vec}({\bf X}{\bf T})=\widetilde{\bf X}{\bf t} with

𝐗~=[𝐱[1]𝟎𝐱[L]𝐱[1]𝟎𝐱[L]]NTxLobs×Ltar,\small{\widetilde{\bf X}=\left[{\begin{array}[]{*{20}{c}}{{\bf{x}}[1]}&{}\hfil&{\bf{0}}\\ \vdots&\ddots&{}\hfil\\ {{\bf{x}}[L]}&\ddots&{{\bf{x}}[1]}\\ {}\hfil&\ddots&{}\hfil\\ {\bf{0}}&{}\hfil&{{\bf{x}}[L]}\end{array}}\right]\in{\mathbb{C}}^{N_{\rm Tx}L_{\rm obs}\times L_{\rm tar}},}

where 𝐱[l]{\bf x}[l] is the ll-th column of 𝐗\bf X, (52) can be written as

𝔼{|Tr{𝐕H𝐇t(θt)𝐗𝐓}|2}\displaystyle\mathbb{E}\left\{\left|{\rm Tr}\left\{{\bf V}^{H}{\bf H}_{t}(\theta_{t}){\bf XT}\right\}\right|^{2}\right\} (53)
=𝐯H(𝐈Lobs𝐇t(θt))𝔼𝐬{𝐗~𝚺t𝐗~H}(𝐈Lobs𝐇t(θt))H𝐯.\displaystyle={\bf v}^{H}\Big{(}{\bf I}_{L_{{\rm obs}}}\otimes{\bf H}_{t}(\theta_{t})\Big{)}\mathbb{E}_{{\bf s}}\left\{\widetilde{{\bf X}}{\bf\Sigma}_{t}\widetilde{{\bf X}}^{H}\right\}\Big{(}{\bf I}_{L_{{\rm obs}}}\otimes{\bf H}_{t}(\theta_{t})\Big{)}^{H}{\bf v}.

Let 𝐗~=[𝐱~1,,𝐱~Ltar]\widetilde{\bf X}=[\tilde{\bf x}_{1},\cdots,\tilde{\bf x}_{L_{\rm tar}}], we have

𝔼𝐬{𝐗~𝚺t𝐗~H}=i=1Ltarj=1Ltar𝚺t[i,j]𝔼𝐬{𝐱~i𝐱~jH}.\displaystyle{\mathbb{E}}_{\bf s}\left\{\widetilde{\bf X}{\bf\Sigma}_{t}\widetilde{\bf X}^{H}\right\}=\sum\limits_{i=1}^{{L_{{\rm{tar}}}}}{\sum\limits_{j=1}^{{L_{{\rm{tar}}}}}{{{\bf{\Sigma}}_{t}}[i,j]}{\mathbb{E}}_{\bf s}\left\{{{{\tilde{\bf{x}}}_{i}}\tilde{\bf{x}}_{j}^{H}}\right\}}. (54)

Due to 𝔼{𝐬l𝐬lH}=𝐈Ns{\mathbb{E}}\{{\bf s}_{l}{\bf s}_{l}^{H}\}={\bf I}_{N_{s}}, one further gets

𝔼𝐬{𝐱~i𝐱~jH}=𝚪ij,1i,jLtar,\displaystyle{\mathbb{E}}_{\bf s}\left\{{{{\tilde{\bf{x}}}_{i}}\tilde{\bf{x}}_{j}^{H}}\right\}={\bf{\Gamma}}_{ij},1\leq i,j\leq L_{\rm tar}, (55)

where 𝚪ijNTxLobs×NTxLobs{\bf{\Gamma}}_{ij}\in{\mathbb{C}}^{N_{\rm Tx}L_{\rm obs}\times N_{\rm Tx}L_{\rm obs}} and its (n,m)(n,m)-th block is defined as

𝚪ij(n,m)={𝐅l𝐅lHn=i+l1,m=j+l1,l,𝟎NTx×NTxotherwise{\bf\Gamma}_{ij}(n,m)=\begin{cases}{\bf F}_{l}{\bf F}_{l}^{H}&n=i+l-1,m=j+l-1,\forall l,\\ {\bf 0}_{N_{{\rm Tx}}\times N_{{\rm Tx}}}&\text{otherwise}\end{cases} (56)

with 𝐅l=𝐅RF𝐅D,l{\bf F}_{l}={\bf F}_{\rm RF}{\bf F}_{{\rm D},l}.

By defining

𝚯t(𝐅RF,𝐅D)=Δ\displaystyle{{\bf{\Theta}}_{t}}({{\bf{F}}_{{\rm{RF}}}},{{\bf{F}}_{\rm{D}}})\buildrel\Delta\over{=} (57)
(𝐈Lobs𝐇t(θt))(i=1Ltarj=1Ltar𝚺t[i,j]𝚪ij)(𝐈Lobs𝐇t(θt))H,\displaystyle({{\bf{I}}_{{L_{{\rm{obs}}}}}}\otimes{{\bf{H}}_{t}}({\theta_{t}}))\left({\sum\limits_{i=1}^{{L_{{\rm{tar}}}}}{\sum\limits_{j=1}^{{L_{{\rm{tar}}}}}{{{\bf{\Sigma}}_{t}}[i,j]}{{\bf{\Gamma}}_{ij}}}}\right){({{\bf{I}}_{{L_{{\rm{obs}}}}}}\otimes{{\bf{H}}_{t}}({\theta_{t}}))^{H}},

we obtain

𝔼{|Tr{𝐕H𝐇t(θt)𝐗𝐓}|2}=𝐯H𝚯t(𝐅RF,𝐅D)𝐯.\displaystyle{\mathbb{E}}\left\{{{{\left|{{\rm{Tr}}\left\{{{{\bf{V}}^{H}}{{\bf{H}}_{t}}({\theta_{t}}){\bf{XT}}}\right\}}\right|}^{2}}}\right\}={\bf v}^{H}{{\bf{\Theta}}_{t}}({{\bf{F}}_{{\rm{RF}}}},{{\bf{F}}_{\rm{D}}}){\bf v}. (58)

On the other hand, exploiting the derivation similar to (52), we have

𝔼{|Tr{𝐕H𝐇i(θi)𝐗𝐉i}|2}\displaystyle{\mathbb{E}}\left\{{{{\left|{{\rm{Tr}}\left\{{{{\bf{V}}^{H}}{{\bf{H}}_{i}}({\theta_{i}}){\bf{X}}{{\bf{J}}_{i}}}\right\}}\right|}^{2}}}\right\} (59)
=𝐯H(𝐈Lobs𝐇i(θi))𝔼{vec(𝐗𝐉i)vecH(𝐗𝐉i)}\displaystyle={\bf v}^{H}\Big{(}{\bf I}_{L_{\rm obs}}\otimes{{\bf{H}}_{i}}({\theta_{i}})\Big{)}{\mathbb{E}}\left\{{\rm vec}\big{(}{{\bf X}{\bf J}_{i}}\big{)}{\rm vec}^{H}\big{(}{{\bf X}{\bf J}_{i}}\big{)}\right\}
×(𝐈Lobs𝐇i(θi))H𝐯.\displaystyle\qquad\qquad\times\Big{(}{\bf I}_{L_{\rm obs}}\otimes{{\bf{H}}_{i}}({\theta_{i}})\Big{)}^{H}{\bf v}.

According to the equality that vec(𝐗𝐉i)=𝐗^i𝐣i{\rm vec}({\bf X}{\bf J}_{i})=\widehat{\bf X}_{i}{\bf j}_{i} with

𝐗^i=[𝐱[1]𝟎𝐱[L]𝐱[1]𝟎𝐱[L]]NTxLobs×Lc,i,{\widehat{\bf X}_{i}=\left[{\begin{array}[]{*{20}{c}}{{\bf{x}}[1]}&{}\hfil&{\bf{0}}\\ \vdots&\ddots&{}\hfil\\ {{\bf{x}}[L]}&\ddots&{{\bf{x}}[1]}\\ {}\hfil&\ddots&{}\hfil\\ {\bf{0}}&{}\hfil&{{\bf{x}}[L]}\end{array}}\right]\in{\mathbb{C}}^{N_{\rm Tx}L_{\rm obs}\times L_{c,i}},}

and letting 𝐗^=[𝐱^1,,𝐱^Lc,i]\widehat{\bf X}=[\hat{\bf x}_{1},\cdots,\hat{\bf x}_{L_{c,i}}], we have

𝔼𝐬{𝐗^𝚺c,i𝐗^H}=k=1Lc,ip=1Lc,i𝚺c,i[p,k]𝔼𝐬{𝐱~p𝐱~kH},\displaystyle{\mathbb{E}}_{\bf s}\left\{\widehat{\bf X}{\bf\Sigma}_{c,i}\widehat{\bf X}^{H}\right\}=\sum\limits_{k=1}^{{L_{c,i}}}{\sum\limits_{p=1}^{{L_{c,i}}}{{{\bf{\Sigma}}_{c,i}}[p,k]}{\mathbb{E}}_{\bf s}\left\{{{{\tilde{\bf{x}}}_{p}}\tilde{\bf{x}}_{k}^{H}}\right\}}, (60)

where

𝔼𝐬{𝐱^p𝐱^kH}=𝚪pkc,iNTxLobs×NTxLobs\displaystyle{\mathbb{E}}_{\bf s}\left\{{{{\hat{\bf{x}}}_{p}}\hat{\bf{x}}_{k}^{H}}\right\}={{{\bf{\Gamma}}_{pk}^{c,i}}}\in{\mathbb{C}}^{N_{\rm Tx}L_{\rm obs}\times N_{\rm Tx}L_{\rm obs}} (61)

with the (n,m)(n,m)-th block of the matrix 𝚪pkc,i{\bf{\Gamma}}_{pk}^{c,i} defined as

𝚪pkc,i(n,m)={𝐅l𝐅lH,n=p+l1,m=k+l1,l𝟎NTx×NTx,otherwise\displaystyle{\bf{\Gamma}}_{pk}^{c,i}(n,m)=\left\{\begin{array}[]{l}{{\bf{F}}_{l}}{\bf{F}}_{l}^{H},\;\;~{}~{}n=p+l-1,m=k+l-1,\forall l\\ {{\bf{0}}_{{N_{{\rm{Tx}}}}\times{N_{{\rm{Tx}}}}}},\;\;\;\;{\rm{otherwise}}\end{array}\right. (62)

Define

𝚯c,i(𝐅RF,𝐅D)\displaystyle{\bf\Theta}_{c,i}({\bf F}_{{\rm RF}},{\bf F}_{{\rm D}})\triangleq (63)
𝐈Lobs𝐇i(θi))(k=1Lc,il=1Lc,i𝚺c,i[l,k]𝚪lkc,i)(𝐈Lobs𝐇i(θi))H\displaystyle{\bf I}_{L_{{\rm obs}}}\otimes{\bf H}_{i}(\theta_{i}))\left(\sum\limits_{k=1}^{L_{c,i}}\sum\limits_{l=1}^{L_{c,i}}{\bf\bm{\Sigma}}_{c,i}[l,k]\bm{{\bf\Gamma}}_{lk}^{c,i}\right)({\bf I}_{L_{{\rm obs}}}\otimes{\bf H}_{i}(\theta_{i}))^{H}

we obtain

𝔼{|Tr{𝐕H𝐇i(θi)𝐗𝐉i}|2}=𝐯H𝚯c,i(𝐅RF,𝐅D)𝐯\displaystyle{\mathbb{E}}\left\{{{{\left|{{\rm{Tr}}\left\{{{{\bf{V}}^{H}}{{\bf{H}}_{i}}({\theta_{i}}){\bf{X}}{{\bf{J}}_{i}}}\right\}}\right|}^{2}}}\right\}={\bf v}^{H}{{\bf{\Theta}}_{c,i}}({{\bf{F}}_{{\rm{RF}}}},{{\bf{F}}_{\rm{D}}}){\bf v} (64)

Additionally, let 𝐳r=vec(𝐙r){\bf z}_{r}={\rm vec}({\bf Z}_{r}), one gets

𝔼{|Tr{𝐕H𝐙r}|2}=𝐯H𝔼{𝐳r𝐳rH}𝐯=σr2𝐯H𝐯{\mathbb{E}}\left\{{{{\left|{{\rm{Tr}}\left\{{{{\bf{V}}^{H}}{{\bf{Z}}_{r}}}\right\}}\right|}^{2}}}\right\}={\bf v}^{H}{\mathbb{E}}\left\{{\bf z}_{r}{\bf z}_{r}^{H}\right\}{\bf v}=\sigma_{r}^{2}{\bf v}^{H}{\bf v} (65)

Based on (58), (64) and (65), we can attain that

SINR(𝐅RF,𝐅D,𝐕)=𝐯H𝚯t(𝐅RF,𝐅D)𝐯𝐯H𝚯c(𝐅RF,𝐅D)𝐯+σr2𝐯H𝐯{\rm SINR}({\bf F}_{\rm RF},{\bf F}_{D},{\bf V})=\dfrac{{\bf v}^{H}{{\bf{\Theta}}_{t}}({{\bf{F}}_{{\rm{RF}}}},{{\bf{F}}_{\rm{D}}}){\bf v}}{{\bf v}^{H}{{\bf{\Theta}}_{c}}({{\bf{F}}_{{\rm{RF}}}},{{\bf{F}}_{\rm{D}}}){\bf v}+\sigma_{r}^{2}{\bf v}^{H}{\bf v}} (66)

where 𝚯c(𝐅RF,𝐅D)=i=1K𝚯c,i(𝐅RF,𝐅D){{\bf{\Theta}}_{c}}({{\bf{F}}_{{\rm{RF}}}},{{\bf{F}}_{\rm{D}}})=\sum\limits_{i=1}^{K}{{\bf{\Theta}}_{c,i}}({{\bf{F}}_{{\rm{RF}}}},{{\bf{F}}_{\rm{D}}}).

Next, let us derive (14b), since

𝔼{|Tr{𝐕H𝐇t(θt)𝐗𝐓}|2}=𝔼{|Tr{𝐗H𝐇tH(θt)𝐕𝐓H}|2}\displaystyle{\mathbb{E}}\left\{{{\left|{{\rm{Tr}}\left\{{{{\bf{V}}^{H}}{{\bf{H}}_{t}}({\theta_{t}}){\bf{XT}}}\right\}}\right|}^{2}}\right\}={\mathbb{E}}\left\{{{\left|{{\rm{Tr}}\left\{{{{\bf{X}}^{H}}{{\bf{H}}_{t}^{H}}({\theta_{t}}){\bf V}{\bf{T}}^{H}}\right\}}\right|}^{2}}\right\} (67)
=Tr{(𝐈L𝐇tH(θt))𝔼{vec(𝐕𝐓H)vecH(𝐕𝐓H)}\displaystyle={\rm{Tr}}\Big{\{}\Big{(}{\bf I}_{L}\otimes{{\bf{H}}_{t}^{H}}({\theta_{t}})\Big{)}{\mathbb{E}}\left\{{\rm vec}\big{(}{\bf V}{\bf T}^{H}\big{)}{\rm vec}^{H}\big{(}{\bf V}{\bf T}^{H}\big{)}\right\}
×(𝐈L𝐇t(θt))𝔼𝐬{𝐱𝐱H}}.\displaystyle\qquad\qquad\times\Big{(}{\bf I}_{L}\otimes{{\bf{H}}_{t}}({\theta_{t}})\Big{)}{\mathbb{E}}_{{\bf s}}\left\{{\bf x}{\bf x}^{H}\right\}\Big{\}}.

Utilizing the equality that vec(𝐕𝐓H)=𝐕~𝐭{\rm vec}({\bf V}{\bf T}^{H})=\widetilde{\bf V}{\bf t}^{*} with

𝐕~=[𝐯[1]𝐯[2]𝐯[Ltar]𝐯[2]𝐯[3]𝐯[Ltar+1]𝐯[L]𝐯[L+1]𝐯[Lobs]]NRadL×Ltar,\widetilde{\bf V}=\left[{\begin{array}[]{*{20}{c}}{{\bf{v}}[1]}&{{\bf{v}}[2]}&\cdots&{{\bf{v}}[{L_{{\rm{tar}}}}]}\\ {{\bf{v}}[2]}&{{\bf{v}}[3]}&\cdots&{{\bf{v}}[{L_{{\rm{tar}}}}+1]}\\ \vdots&\vdots&\vdots&\vdots\\ {{\bf{v}}[L]}&{{\bf{v}}[L+1]}&\cdots&{{\bf{v}}[{L_{{\rm{obs}}}}]}\end{array}}\right]\in{\mathbb{C}}^{N_{\rm Rad}L\times L_{\rm tar}},

we have

𝔼{vec(𝐕𝐓H)vecH(𝐕𝐓H)}=𝐕~𝚺t𝐕~H.{\mathbb{E}}\left\{{\rm vec}\big{(}{\bf V}{\bf T}^{H}\big{)}{\rm vec}^{H}\big{(}{\bf V}{\bf T}^{H}\big{)}\right\}=\widetilde{\bf V}{\bf\Sigma}_{t}\widetilde{\bf V}^{H}. (68)

Besides, since 𝔼{𝐬l𝐬lH}=𝐈Ns{\mathbb{E}}\{{\bf s}_{l}{\bf s}_{l}^{H}\}={\bf I}_{N_{s}}, one obtains

𝔼𝐬{𝐱𝐱H}=Bdiag(𝐅1𝐅1H,,𝐅L𝐅LH)=Δ𝐅~.{\mathbb{E}}_{\bf s}\left\{{\bf x}{\bf x}^{H}\right\}={\rm Bdiag}\left({\bf F}_{1}{\bf F}^{H}_{1},\cdots,{\bf F}_{L}{\bf F}^{H}_{L}\right)\buildrel\Delta\over{=}\widetilde{\bf F}. (69)

Plugging (68) and (69) into (67) yields

𝔼{|Tr{𝐕H𝐇t(θt)𝐗𝐓}|2}=Tr{𝐅~𝚽t(𝐕)}\displaystyle{\mathbb{E}}\left\{{{\left|{{\rm{Tr}}\left\{{{{\bf{V}}^{H}}{{\bf{H}}_{t}}({\theta_{t}}){\bf{XT}}}\right\}}\right|}^{2}}\right\}={\rm{Tr}}\Big{\{}\widetilde{{\bf F}}{\bf\Phi}_{t}({\bf V})\Big{\}} (70)
=l=1LTr{𝐅l𝐅lH𝚽t[l,l]},\displaystyle=\sum\limits_{l=1}^{L}{{\rm{Tr}}\left\{{{{\bf{F}}_{l}}{\bf{F}}_{l}^{H}{{\bf{\Phi}}_{t}}[l,l]}\right\}},

where 𝚽t(𝐕){\bf\Phi}_{t}({\bf V}) is defined as

𝚽t(𝐕)\displaystyle{\bf\Phi}_{t}({\bf V}) =(𝐈L𝐇tH(θt))𝐕~𝚺t𝐕~H(𝐈L𝐇t(θt))\displaystyle=\Big{(}{\bf I}_{L}\otimes{{\bf{H}}_{t}^{H}}({\theta_{t}})\Big{)}\widetilde{\bf V}{\bf\Sigma}_{t}\widetilde{\bf V}^{H}\Big{(}{\bf I}_{L}\otimes{{\bf{H}}_{t}}({\theta_{t}})\Big{)} (71)
=Δ[𝚽t[1,1]𝚽t[1,L]𝚽t[L,1]𝚽t[L,L]].\displaystyle\buildrel\Delta\over{=}\left[{\begin{array}[]{*{20}{c}}{{{\bf{\Phi}}_{t}}[1,1]}&\cdots&{{{\bf{\Phi}}_{t}}[1,L]}\\ \vdots&\ddots&\vdots\\ {{{\bf{\Phi}}_{t}}[L,1]}&\cdots&{{{\bf{\Phi}}_{t}}[L,L]}\end{array}}\right].

Finally, for 𝔼{|Tr{𝐕H𝐇i(θi)𝐗𝐉i}|2}{\mathbb{E}}\left\{{{{\left|{{\rm{Tr}}\left\{{{{\bf{V}}^{H}}{{\bf{H}}_{i}}({\theta_{i}}){\bf{X}\bf J}_{i}}\right\}}\right|}^{2}}}\right\}, we have

𝔼{|Tr{𝐕H𝐇i(θi)𝐗𝐉i}|2}\displaystyle{\mathbb{E}}\left\{{{\left|{{\rm{Tr}}\left\{{{{\bf{V}}^{H}}{{\bf{H}}_{i}}({\theta_{i}}){\bf{X}{\bf J}}_{i}}\right\}}\right|}^{2}}\right\} (72)
=Tr{𝐅~𝚽c,i(𝐕)}=l=1LTr{𝐅l𝐅lH𝚽c,i[l,l]}\displaystyle={\rm{Tr}}\Big{\{}\widetilde{{\bf F}}{\bf\Phi}_{c,i}({\bf V})\Big{\}}=\sum\limits_{l=1}^{L}{{\rm{Tr}}\left\{{{{\bf{F}}_{l}}{\bf{F}}_{l}^{H}{{\bf{\Phi}}_{c,i}}[l,l]}\right\}}

where 𝚽c,i(𝐕){\bf\Phi}_{c,i}({\bf V}) is defined as

𝚽c,i(𝐕)\displaystyle{\bf\Phi}_{c,i}({\bf V}) =(𝐈L𝐇iH(θi))𝐕^i𝚺c,i𝐕^iH(𝐈L𝐇i(θi))\displaystyle=\Big{(}{\bf I}_{L}\otimes{{\bf{H}}_{i}^{H}}({\theta_{i}})\Big{)}\widehat{\bf V}_{i}{\bf\Sigma}_{c,i}\widehat{\bf V}_{i}^{H}\Big{(}{\bf I}_{L}\otimes{{\bf{H}}_{i}}({\theta_{i}})\Big{)} (73)
=Δ[𝚽c,i[1,1]𝚽c,i[1,L]𝚽c,i[L,1]𝚽c,i[L,L]]\displaystyle\buildrel\Delta\over{=}\left[{\begin{array}[]{*{20}{c}}{{{\bf{\Phi}}_{c,i}}[1,1]}&\cdots&{{{\bf{\Phi}}_{c,i}}[1,L]}\\ \vdots&\ddots&\vdots\\ {{{\bf{\Phi}}_{c,i}}[L,1]}&\cdots&{{{\bf{\Phi}}_{c,i}}[L,L]}\end{array}}\right]

with 𝐕^i\widehat{\bf V}_{i} being given by

𝐕^i=[𝐯[1]𝐯[2]𝐯[Lc,i]𝐯[2]𝐯[3]𝐯[Lc,i+1]𝐯[L]𝐯[L+1]𝐯[Lobs]]NRadL×Lc,i,\widehat{\bf V}_{i}=\left[{\begin{array}[]{*{20}{c}}{{\bf{v}}[1]}&{{\bf{v}}[2]}&\cdots&{{\bf{v}}[{L_{c,i}}]}\\ {{\bf{v}}[2]}&{{\bf{v}}[3]}&\cdots&{{\bf{v}}[{L_{{{c,i}}}}+1]}\\ \vdots&\vdots&\vdots&\vdots\\ {{\bf{v}}[L]}&{{\bf{v}}[L+1]}&\cdots&{{\bf{v}}[{L_{{\rm{obs}}}}]}\end{array}}\right]\in{\mathbb{C}}^{N_{\rm Rad}L\times L_{{c,i}}}, (74)

Based on (70) and (72), we can obtain

SINR(𝐅RF,𝐅D,𝐕)=l=1LTr{𝐅l𝐅lH𝚽t[l,l]}l=1LTr{𝐅l𝐅lH𝚽c[l,l]}+σr2𝐯H𝐯{\rm SINR}({\bf F}_{\rm RF},{\bf F}_{D},{\bf V})=\dfrac{\sum\limits_{l=1}^{L}{{\rm{Tr}}\left\{{{{\bf{F}}_{l}}{\bf{F}}_{l}^{H}{{\bf{\Phi}}_{t}}[l,l]}\right\}}}{\sum\limits_{l=1}^{L}{{\rm{Tr}}\left\{{{{\bf{F}}_{l}}{\bf{F}}_{l}^{H}{{\bf{\Phi}}_{c}}[l,l]}\right\}}+\sigma_{r}^{2}{\bf v}^{H}{\bf v}} (75)

with 𝚽c(𝐕)=i=1K𝚽c,i(𝐕){\bf\Phi}_{c}({\bf V})=\sum\limits_{i=1}^{K}{\bf\Phi}_{c,i}({\bf V}). Thereby, this proof is completed.

Appendix B Proof of Theorem 1

The proof mainly includes two steps.

i) For fixed 𝐗l{\bf X}_{l}, the function f(𝐖l,𝐗l,𝐔l)f({\bf W}_{l},{\bf X}_{l},{\bf U}_{l}) is convex with respect to 𝐔l{\bf U}_{l} and 𝐖l{\bf W}_{l}. Then the closed-form solutions of 𝐔l{\bf U}_{l} and 𝐖l{\bf W}_{l} can be obtained by taking their first-order optimality conditions, which are given by 𝐔l=(𝐇𝐗l𝐗lH𝐇H+σc2𝐈Rx)1𝐇𝐗l,{\bf U}_{l}^{\star}=\left({\bf H}{\bf X}_{l}{\bf X}_{l}^{H}{\bf H}^{H}+\sigma_{c}^{2}{\bf I}_{\rm Rx}\right)^{-1}{\bf H}{\bf X}_{l}, and 𝐖l=𝐄l1(𝐗l,𝐔l)=(𝐈Ns𝐗lH𝐇H𝐔l)1.{\bf W}_{l}^{\star}={\bf E}_{l}^{-1}({\bf X}_{l},{\bf U}_{l}^{\star})=\left({\bf I}_{N_{s}}-{\bf X}_{l}^{H}{\bf H}^{H}{\bf U}_{l}^{\star}\right)^{-1}.

ii) Substituting 𝐔l{\bf U}_{l}^{\star} and 𝐖l{\bf W}_{l}^{\star} into minf(𝐖l,𝐗l,𝐔l)\min f({\bf W}_{l},{\bf X}_{l},{\bf U}_{l}) , we have

minf(𝐖l,𝐗l,𝐔l)=maxl=1Llog|𝐖l|\displaystyle\min f({\bf W}_{l}^{\star},{\bf X}_{l},{\bf U}_{l}^{\star})=\max\sum\limits_{l=1}^{L}\log\Big{|}{\bf W}_{l}^{\star}\Big{|} (76)
=maxl=1Llog|(𝐈Ns𝐗lH𝐇H𝐔l)1|\displaystyle=\max\sum\limits_{l=1}^{L}\log\Big{|}\left({\bf I}_{N_{s}}-{\bf X}_{l}^{H}{\bf H}^{H}{\bf U}_{l}^{\star}\right)^{-1}\Big{|}
=maxl=1Llog|(𝐈Ns𝐗lH𝐇H(𝐇𝐗l𝐗lH𝐇H+σc2𝐈Rx)1𝐇𝐗l)1|.\displaystyle=\max\sum\limits_{l=1}^{L}\log\Big{|}\Big{(}{\bf I}_{N_{s}}-{\bf X}_{l}^{H}{\bf H}^{H}\left({\bf H}{\bf X}_{l}{\bf X}_{l}^{H}{\bf H}^{H}+\sigma_{c}^{2}{\bf I}_{\rm Rx}\right)^{-1}{\bf H}{\bf X}_{l}\Big{)}^{-1}\Big{|}.

Let 𝐐1(𝚺T,𝟎T)T𝐐2H{\bf Q}_{1}\left(\begin{array}[]{ll}{\bf{\Sigma}}^{T},&{\bf{0}}^{T}\end{array}\right)^{T}{\bf Q}_{2}^{H} be the eigen-decomposition of 𝐇𝐗l{\bf H}{\bf X}_{l}, one gets

|(𝐈Ns𝐗lH𝐇H(𝐇𝐗l𝐗lH𝐇H+σc2𝐈Rx)1𝐇𝐗l)1|\displaystyle\Big{|}\Big{(}{\bf I}_{N_{s}}-{\bf X}_{l}^{H}{\bf H}^{H}\left({\bf H}{\bf X}_{l}{\bf X}_{l}^{H}{\bf H}^{H}+\sigma_{c}^{2}{\bf I}_{\rm Rx}\right)^{-1}{\bf H}{\bf X}_{l}\Big{)}^{-1}\Big{|} (77)
=|(𝐈Ns𝐐2𝚺T(𝚺𝚺T+σc2𝐈)1𝚺𝐐2H)1|=|𝐈RX+𝚺𝚺T/σc2|\displaystyle=\Big{|}\left({\bf I}_{N_{s}}-{\bf Q}_{2}{{{\bf{\Sigma}}^{T}}{{\left({{\bf{\Sigma}}{{\bf{\Sigma}}^{T}}+\sigma_{c}^{2}{\bf{I}}}\right)}^{-1}}{\bf{\Sigma}}}{\bf Q}_{2}^{H}\right)^{-1}\Big{|}=\Big{|}{\bf I}_{\rm RX}+{\bf\Sigma}{\bf\Sigma}^{T}/\sigma_{c}^{2}\Big{|}

On the other hand, substituting 𝐔l{\bf U}_{l}^{\star} into Rl(𝐗l,𝐔l)R_{l}({\bf X}_{l},{\bf U}_{l}) yields

Rl(𝐗l,𝐔l)=log|𝐈NRx+𝐔l𝐂l1𝐔lH𝐇𝐗l𝐗lH𝐇H|\displaystyle R_{l}({\bf X}_{l},{\bf U}_{l})=\log\Big{|}{\bf I}_{N_{{\rm Rx}}}+{\bf U}_{l}{\bf C}_{l}^{-1}{\bf U}_{l}^{H}{\bf H}{\bf X}_{l}{\bf X}_{l}^{H}{\bf H}^{H}\Big{|} (78)
=log|𝐂l1(𝐂+𝐔lH𝐇𝐗l𝐗lH𝐇H𝐔l)|\displaystyle=\log\Big{|}{\bf C}_{l}^{-1}\Big{(}{\bf C}+{\bf U}_{l}^{H}{\bf H}{\bf X}_{l}{\bf X}_{l}^{H}{\bf H}^{H}{\bf U}_{l}\Big{)}\Big{|}
=log|𝐂l1𝐔lH(σc2𝐈Rx+𝐇𝐗l𝐗lH𝐇H)𝐔l|\displaystyle=\log\Big{|}{\bf C}_{l}^{-1}{\bf U}_{l}^{H}\big{(}\sigma_{c}^{2}{\bf I}_{\rm Rx}+{\bf H}{\bf X}_{l}{\bf X}_{l}^{H}{\bf H}^{H}\big{)}{\bf U}_{l}\Big{|}
=log|𝐂l1𝐗lH𝐇H(σc2𝐈Rx+𝐇𝐗l𝐗lH𝐇H)1𝐇𝐗l|\displaystyle=\log\Big{|}{\bf C}_{l}^{-1}{\bf X}_{l}^{H}{\bf H}^{H}\big{(}\sigma_{c}^{2}{\bf I}_{\rm Rx}+{\bf H}{\bf X}_{l}{\bf X}_{l}^{H}{\bf H}^{H}\big{)}^{-1}{\bf H}{\bf X}_{l}\Big{|}
=log|(σc2𝐐2𝚺T(σc2𝐈NRx+𝚺𝚺T)2𝚺𝐐2H)1\displaystyle=\log\Big{|}\big{(}\sigma_{c}^{2}{\bf Q}_{2}{\bf{\Sigma}}^{T}(\sigma_{c}^{2}{\bf I}_{N_{{\rm Rx}}}+{\bf{\Sigma}}{\bf{\Sigma}}^{T})^{-2}{\bf{\Sigma}}{\bf Q}_{2}^{H}\big{)}^{-1}
×𝐐2𝚺T(σc2𝐈Rx+𝚺𝚺T)1𝚺𝐐2H|\displaystyle\qquad\qquad\times{\bf Q}_{2}{\bf\Sigma}^{T}\left(\sigma_{c}^{2}{\bf I}_{\rm Rx}+{\bf\Sigma}{\bf\Sigma}^{T}\right)^{-1}{\bf\Sigma}{\bf Q}_{2}^{H}\Big{|}
=|𝐈Rx+𝚺𝚺T/σc2|.\displaystyle=\left|{\bf I}_{\rm Rx}+{\bf\Sigma}{\bf\Sigma}^{T}/\sigma_{c}^{2}\right|.

According to (77) and (78), this proof is completed.

Appendix C Proof of Theorem 2

Specifically, introducing a Lagrange multiplier μ\mu on the energy constraint in problem (29), we obtain the following Lagrangian function:

x=\displaystyle{\cal L}_{x}= Tr{𝐄l(𝐗l,𝐔l)𝐖l}+(Tr{𝐃1,lH(𝐗l𝐅set𝐏𝐅D,l)})\displaystyle{\rm Tr}\left\{{\bf E}_{l}({\bf X}_{l},{\bf U}_{l}){\bf W}_{l}\right\}+\Re\left({\rm Tr}\left\{{\bf D}_{1,l}^{H}\left({\bf X}_{l}-{\bf F}_{\rm set}{\bf P}{\bf F}_{{\rm D},l}\right)\right\}\right) (79)
+ρ12𝐗l𝐅set𝐏𝐅D,lF2+(Tr{𝐃2,lH(𝐗l𝐙l)})\displaystyle+\frac{\rho_{1}}{2}\left\|{\bf X}_{l}-{\bf F}_{\rm set}{\bf P}{\bf F}_{{\rm D},l}\right\|_{F}^{2}+\Re\left({\rm Tr}\left\{{\bf D}_{2,l}^{H}\left({\bf X}_{l}-{\bf Z}_{l}\right)\right\}\right)
+ρ22𝐗l𝐙lF2+μ(l=1LTr(𝐗l𝐗lH)).\displaystyle+\frac{\rho_{2}}{2}\left\|{\bf X}_{l}-{\bf Z}_{l}\right\|_{F}^{2}+\mu\Big{(}\sum\limits_{l=1}^{L}{\rm{Tr}}\left({\bf X}_{l}{\bf{X}}_{l}^{H}\right)-{\cal E}\Big{)}.

whose first-order optimality condition is given by

𝐗lopt(μ)=(𝚵l+μ𝐈NTx)1𝚿l,\displaystyle{\bf X}_{l}^{\rm opt}(\mu)=\left({\bf\Xi}_{l}+\mu{\bf{I}}_{N_{\rm{Tx}}}\right)^{-1}{\bf\Psi}_{l}, (80)

where 𝚵l{\bf\Xi}_{l} and 𝚿l{\bf\Psi}_{l} are defined as 𝚵l=𝐇H𝐔l𝐖l𝐔lH𝐇+(ρ12+ρ22)𝐈NTx,{\bf\Xi}_{l}={{\bf{H}}^{H}}{{\bf{U}}_{l}}{{\bf{W}}_{l}}{\bf{U}}_{l}^{H}{\bf{H}}+\left({\frac{{{\rho_{1}}}}{2}+\frac{{{\rho_{2}}}}{2}}\right){\bf{I}}_{N_{\rm{Tx}}}, and 𝚿l=𝐇H𝐔l𝐖l{\bf\Psi}_{l}={{{\bf{H}}^{H}}{{\bf{U}}_{l}}{{\bf{W}}_{l}}} 12(𝐃1,l+𝐃2,l)+ρ12𝐅set𝐏𝐅D,l+ρ22𝐙l,-\frac{1}{2}\left({{{\bf{D}}_{1,l}}+{{\bf{D}}_{2,l}}}\right){+\frac{{{\rho_{1}}}}{2}{{\bf{F}}_{{\rm{set}}}}{\bf{P}}{{\bf{F}}_{{\rm{D}},l}}+\frac{{{\rho_{2}}}}{2}{{\bf{Z}}_{l}}},

Based on the complementary slackness of the KKT, i.e., μ(l=1LTr(𝐗l𝐗lH))=0\mu\Big{(}\sum\limits_{l=1}^{L}{\rm{Tr}}\left({\bf X}_{l}{\bf{X}}_{l}^{H}\right)-{\cal E}\Big{)}=0, we have the following two cases:

i) If μ=0\mu=0, we attain the optimal 𝐗l{\bf X}_{l} as 𝐗lopt(0)=𝚵l1𝚿l{\bf X}_{l}^{\rm opt}(0)={\bf\Xi}_{l}^{-1}{\bf\Psi}_{l}, which must satisfy the condition l=1LTr(𝐗l𝐗lH)\sum\limits_{l=1}^{L}{\rm{Tr}}\left({\bf X}_{l}{\bf{X}}_{l}^{H}\right)\leq{\cal E}.

ii) Otherwise, we must have l=1LTr(𝐗l𝐗lH)=\sum\limits_{l=1}^{L}{\rm{Tr}}\left({\bf X}_{l}{\bf{X}}_{l}^{H}\right)={\cal E}. For this case, we define 𝚵l=𝐐l𝚲l𝐐lH{\bf\Xi}_{l}={\bf Q}_{l}{\bf\Lambda}_{l}{\bf Q}_{l}^{H} be the EVD of 𝚵l{\bf\Xi}_{l} and 𝚿~l=𝐐lH𝚿l\tilde{\bf\Psi}_{l}={\bf Q}_{l}^{H}{\bf\Psi}_{l}, we have

𝐗lopt(μ)=𝐐l(𝚲l+μ𝐈NTx)1𝚿~l.\displaystyle{\bf X}_{l}^{\rm opt}(\mu)={\bf Q}_{l}\left({\bf\Lambda}_{l}+\mu{\bf{I}}_{N_{\rm{Tx}}}\right)^{-1}\tilde{\bf\Psi}_{l}. (81)

Substituting (81) into the total power constraint in (29), we have

l=1LTr((𝚲l+μ𝐈NTx)1𝚿~l𝚿~lH(𝚲l+μ𝐈NTx)1)\displaystyle\sum\limits_{l=1}^{L}{\rm{Tr}}\left(\left({\bf\Lambda}_{l}+\mu{\bf{I}}_{N_{\rm{Tx}}}\right)^{-1}\tilde{\bf\Psi}_{l}\tilde{\bf\Psi}_{l}^{H}\left({\bf\Lambda}_{l}+\mu{\bf{I}}_{N_{\rm{Tx}}}\right)^{-1}\right) (82)
=l=1Ln=1NTx(𝚿~l𝚿~lH)[n,n](𝚲l[n,n]+μ)2=,\displaystyle\qquad=\sum\limits_{l=1}^{L}\sum\limits_{n=1}^{N_{\rm Tx}}\dfrac{\left(\tilde{\bf\Psi}_{l}\tilde{\bf\Psi}_{l}^{H}\right)[n,n]}{\left({\bf\Lambda}_{l}[n,n]+\mu\right)^{2}}={\cal E},

where (𝚿~l𝚿~lH)[n,n]\left(\tilde{\bf\Psi}_{l}\tilde{\bf\Psi}_{l}^{H}\right)[n,n] and 𝚲l[n,n]{\bf\Lambda}_{l}[n,n] denote the (n,n)(n,n)-th element of 𝚿~l𝚿~lH\tilde{\bf\Psi}_{l}\tilde{\bf\Psi}_{l}^{H} and 𝚲l{\bf\Lambda}_{l}, respectively. Since the left-hand side (LHS) of (82) is a decreasing function of μ\mu, and the unique solution μ\mu^{\star} can be found by the bisection method [60].

Appendix D Proof of Theorem 3

More concretely, we introduce a dual variable ν0\nu\geq 0 for the constraint in problem (31). Based on the complementary slackness of the KKT, i.e. ν(l=1LTr(𝐙l𝐙lH𝐌[l,l])α)=0\nu\left(\sum\limits_{l=1}^{L}{\rm{Tr}}\left({\bf Z}_{l}{\bf{Z}}_{l}^{H}{\bf M}[l,l]\right)-\alpha\right)=0, we have the following two cases:

i) For ν=0\nu=0, we can attain the optimal 𝐙l{\bf Z}_{l} as 𝐙l=𝐗l+1ρ2𝐃2,l{\bf Z}_{l}={\bf X}_{l}+\frac{1}{\rho_{2}}{\bf D}_{2,l}, which must satisfy l=1LTr(𝐙l𝐙lH𝐌[l,l])α\sum\limits_{l=1}^{L}{\rm{Tr}}\left({\bf Z}_{l}{\bf{Z}}_{l}^{H}{\bf M}[l,l]\right)\geq\alpha.

ii) For ν>0\nu>0, we have

l=1LTr(𝐙l𝐙lH𝐌[l,l])α=0,\displaystyle\sum\limits_{l=1}^{L}{\rm{Tr}}\left({\bf Z}_{l}{\bf{Z}}_{l}^{H}{\bf M}[l,l]\right)-\alpha=0, (83)

and the optimal 𝐙l{\bf Z}_{l}, which is related with ν\nu, as

𝐙l(ν)=(ρ22𝐈NTxν𝐌[l,l])1(12𝐃2,l+ρ22𝐗l)\displaystyle{\bf Z}_{l}(\nu)=\left(\frac{\rho_{2}}{2}{\bf I}_{N_{\rm Tx}}-\nu{\bf M}[l,l]\right)^{-1}\left(\frac{1}{2}{\bf D}_{2,l}+\frac{\rho_{2}}{2}{\bf X}_{l}\right) (84)

Let 𝐌[l,l]=𝐐~l𝚲~l𝐐~lH{\bf M}[l,l]=\tilde{\bf Q}_{l}\tilde{\bf\Lambda}_{l}\tilde{\bf Q}_{l}^{H} be the eigen-decomposition of 𝐌[l,l]{\bf M}[l,l] and 𝚪~l=𝐐~lH(12𝐃2,l+ρ22𝐗l)\tilde{\bf\Gamma}_{l}=\tilde{\bf Q}_{l}^{H}\left(\frac{1}{2}{\bf D}_{2,l}+\frac{\rho_{2}}{2}{\bf X}_{l}\right). Thus, 𝐙l(ν){\bf Z}_{l}(\nu) can be reexpressed as

𝐙l(ν)=𝐐~l(ρ22𝐈NTxν𝚲~l)1𝚪~l\displaystyle{\bf Z}_{l}(\nu)=\tilde{\bf Q}_{l}\left(\frac{\rho_{2}}{2}{\bf I}_{N_{\rm Tx}}-\nu\tilde{\bf\Lambda}_{l}\right)^{-1}\tilde{\bf\Gamma}_{l} (85)

Plugging (85) into (83) yields

l=1LTr((ρ22𝐈NTxν𝚲~l)1𝚪~l𝚪~lH(ρ22𝐈NTxν𝚲~l)1𝚲~l)\displaystyle\sum\limits_{l=1}^{L}{\rm{Tr}}\left(\left(\frac{\rho_{2}}{2}{\bf I}_{N_{\rm Tx}}-\nu\tilde{\bf\Lambda}_{l}\right)^{-1}\tilde{\bf\Gamma}_{l}\tilde{\bf\Gamma}_{l}^{H}\left(\frac{\rho_{2}}{2}{\bf I}_{N_{\rm Tx}}-\nu\tilde{\bf\Lambda}_{l}\right)^{-1}\tilde{\bf\Lambda}_{l}\right) (86)
=l=1Ln=1NTx𝚲~l[n,n](𝚪~l𝚪~lH)[n,n](ρ22ν𝚲~l[n,n])2=α\displaystyle=\sum\limits_{l=1}^{L}{\sum\limits_{n=1}^{{N_{{\rm{Tx}}}}}{\frac{{{{{\bf{\tilde{\Lambda}}}}_{l}}[n,n]\left({{{\widetilde{\bf{\Gamma}}}_{l}}\widetilde{\bf{\Gamma}}_{l}^{H}}\right)[n,n]}}{{{{\left({\frac{{{\rho_{2}}}}{2}-\nu{{{\bf{\tilde{\Lambda}}}}_{l}}[n,n]}\right)}^{2}}}}}}=\alpha

where (𝚪~l𝚪~lH)[n,n]\left(\tilde{\bf\Gamma}_{l}\tilde{\bf\Gamma}_{l}^{H}\right)[n,n] and 𝚲~l[n,n]\tilde{\bf\Lambda}_{l}[n,n] denote the (n,n)(n,n)-th element of the matrices 𝚪~l𝚪~lH\tilde{\bf\Gamma}_{l}\tilde{\bf\Gamma}_{l}^{H} and 𝚲~l\tilde{\bf\Lambda}_{l}, respectively. Similar to the solution to (82), we can obtain the optimal solution ν\nu^{\star} by utilizing the Newton method [62].

References

  • [1] B. Wang, Z. Cheng, L. Wu, and Z. He, “Hybrid beamforming design for OFDM dual-function radar-communication system with double-phase-shifter structure,” in 2022 30th European Signal Processing Conference (EUSIPCO), 2022, pp. 1067–1071.
  • [2] W. Saad, M. Bennis, and M. Chen, “A vision of 6G wireless systems: Applications, trends, technologies, and open research problems,” IEEE Network, vol. 34, no. 3, pp. 134–142, 2020.
  • [3] J. Choi, V. Va, N. Gonzalez-Prelcic, R. Daniels, C. R. Bhat, and R. W. Heath, “Millimeter-wave vehicular communication to support massive automotive sensing,” IEEE Communications Magazine, vol. 54, no. 12, pp. 160–167, 2016.
  • [4] F. Liu, C. Masouros, A. P. Petropulu, H. Griffiths, and L. Hanzo, “Joint radar and communication design: Applications, state-of-the-art, and the road ahead,” IEEE Transactions on Communications, vol. 68, no. 6, pp. 3834–3862, 2020.
  • [5] L. Zheng, M. Lops, Y. C. Eldar, and X. Wang, “Radar and communication coexistence: An overview: A review of recent methods,” IEEE Signal Processing Magazine, vol. 36, no. 5, pp. 85–99, 2019.
  • [6] K. V. Mishra, M. B. Shankar, V. Koivunen, B. Ottersten, and S. A. Vorobyov, “Toward millimeter-wave joint radar communications: A signal processing perspective,” IEEE Signal Processing Magazine, vol. 36, no. 5, pp. 100–114, 2019.
  • [7] C. Nunn and L. R. Moyer, “Spectrally-compliant waveforms for wideband radar,” IEEE Aerospace and Electronic Systems Magazine, vol. 27, no. 8, pp. 11–15, 2012.
  • [8] A. Aubry, A. De Maio, M. Piezzo, and A. Farina, “Radar waveform design in a spectrally crowded environment via nonconvex quadratic optimization,” IEEE Transactions on Aerospace and Electronic Systems, vol. 50, no. 2, pp. 1138–1152, 2014.
  • [9] A. Aubry, V. Carotenuto, and A. De Maio, “Forcing multiple spectral compatibility constraints in radar waveforms,” IEEE Signal Processing Letters, vol. 23, no. 4, pp. 483–487, 2016.
  • [10] L. Wu, P. Babu, and D. P. Palomar, “Transmit waveform/receive filter design for MIMO radar with multiple waveform constraints,” IEEE Transactions on Signal Processing, vol. 66, no. 6, pp. 1526–1540, 2017.
  • [11] Z. Cheng, B. Liao, Z. He, Y. Li, and J. Li, “Spectrally compatible waveform design for MIMO radar in the presence of multiple targets,” IEEE Transactions on Signal Processing, vol. 66, no. 13, pp. 3543–3555, 2018.
  • [12] L. Wu and D. P. Palomar, “Sequence design for spectral shaping via minimization of regularized spectral level ratio,” IEEE Transactions on Signal Processing, vol. 67, no. 18, pp. 4683–4695, 2019.
  • [13] S. Sodagari, A. Khawar, T. C. Clancy, and R. McGwier, “A projection based approach for radar and telecommunication systems coexistence,” in 2012 IEEE Global Communications Conference (GLOBECOM).   IEEE, 2012, pp. 5010–5014.
  • [14] B. Li, A. P. Petropulu, and W. Trappe, “Optimum co-design for spectrum sharing between matrix completion based MIMO radars and a MIMO communication system,” IEEE Transactions on Signal Processing, vol. 64, no. 17, pp. 4562–4575, 2016.
  • [15] B. Li and A. P. Petropulu, “Joint transmit designs for coexistence of MIMO wireless communications and sparse sensing radars in clutter,” IEEE Transactions on Aerospace and Electronic Systems, vol. 53, no. 6, pp. 2846–2864, 2017.
  • [16] F. Liu, C. Masouros, A. Li, H. Sun, and L. Hanzo, “Mu-MIMO communications with MIMO radar: From co-existence to joint transmission,” IEEE Transactions on Wireless Communications, vol. 17, no. 4, pp. 2755–2770, 2018.
  • [17] J. A. Mahal, A. Khawar, A. Abdelhadi, and T. C. Clancy, “Spectral coexistence of MIMO radar and MIMO cellular system,” IEEE Transactions on Aerospace and Electronic Systems, vol. 53, no. 2, pp. 655–668, 2017.
  • [18] L. Zheng, M. Lops, X. Wang, and E. Grossi, “Joint design of overlaid communication systems and pulsed radars,” IEEE Transactions on Signal Processing, vol. 66, no. 1, pp. 139–154, 2017.
  • [19] Z. Cheng, B. Liao, S. Shi, Z. He, and J. Li, “Co-design for overlaid MIMO radar and downlink miso communication systems via cramér-rao bound minimization,” IEEE Transactions on Signal Processing, vol. 67, no. 24, pp. 6227–6240, 2019.
  • [20] A. R. Chiriyath, B. Paul, G. M. Jacyna, and D. W. Bliss, “Inner bounds on performance of radar and communications co-existence,” IEEE Transactions on Signal Processing, vol. 64, no. 2, pp. 464–474, 2015.
  • [21] S. D. Blunt, M. R. Cook, and J. Stiles, “Embedding information into radar emissions via waveform implementation,” in 2010 International waveform diversity and design conference.   IEEE, 2010, pp. 000 195–000 199.
  • [22] S. D. Blunt, J. G. Metcalf, C. R. Biggs, and E. Perrins, “Performance characteristics and metrics for intra-pulse radar-embedded communication,” IEEE Journal on Selected Areas in Communications, vol. 29, no. 10, pp. 2057–2066, 2011.
  • [23] S. D. Blunt, P. Yatham, and J. Stiles, “Intrapulse radar-embedded communications,” IEEE Transactions on Aerospace and Electronic Systems, vol. 46, no. 3, pp. 1185–1200, 2010.
  • [24] A. Hassanien, M. G. Amin, Y. D. Zhang, and F. Ahmad, “Dual-function radar-communications: Information embedding using sidelobe control and waveform diversity,” IEEE Transactions on Signal Processing, vol. 64, no. 8, pp. 2168–2181, 2015.
  • [25] ——, “Phase-modulation based dual-function radar-communications,” IET Radar, Sonar & Navigation, vol. 10, no. 8, pp. 1411–1421, 2016.
  • [26] A. Hassanien, B. Himed, and B. D. Rigling, “A dual-function MIMO radar-communications system using frequency-hopping waveforms,” in 2017 IEEE Radar Conference.   IEEE, 2017, pp. 1721–1725.
  • [27] S. H. Dokhanchi, B. S. Mysore, K. V. Mishra, and B. Ottersten, “A mmwave automotive joint radar-communications system,” IEEE Transactions on Aerospace and Electronic Systems, vol. 55, no. 3, pp. 1241–1260, 2019.
  • [28] Z. Cheng, S. Shi, Z. He, and B. Liao, “Transmit sequence design for dual-function radar-communication system with one-bit DACs,” IEEE Transactions on Wireless Communications, vol. 1, no. 1, pp. 1–15, 2021.
  • [29] S. H. Dokhanchi, M. B. Shankar, M. Alaee-Kerahroodi, and B. Ottersten, “Adaptive waveform design for automotive joint radar-communication systems,” IEEE Transactions on Vehicular Technology, vol. 70, no. 5, pp. 4273–4290, 2021.
  • [30] F. Liu, L. Zhou, C. Masouros, A. Li, W. Luo, and A. Petropulu, “Toward dual-functional radar-communication systems: Optimal waveform design,” IEEE Transactions on Signal Processing, vol. 66, no. 16, pp. 4264–4279, 2018.
  • [31] S. Hossein Dokhanchi, M. B. Shankar, T. Stifter, and B. Ottersten, “Multicarrier phase modulated continuous waveform for automotive joint radar-communication system,” in 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 2018, pp. 1–5.
  • [32] D. Garmatyuk, J. Schuerger, and K. Kauffman, “Multifunctional software-defined radar sensor and data communication system,” IEEE Sensors Journal, vol. 11, no. 1, pp. 99–106, 2011.
  • [33] C. Sturm and W. Wiesbeck, “Waveform design and signal processing aspects for fusion of wireless communications and radar sensing,” Proceedings of the IEEE, vol. 99, no. 7, pp. 1236–1259, 2011.
  • [34] M. F. Keskin, V. Koivunen, and H. Wymeersch, “Limited feedforward waveform design for ofdm dual-functional radar-communications,” IEEE Transactions on Signal Processing, vol. 69, pp. 2955–2970, 2021.
  • [35] E. Zhang and C. Huang, “On achieving optimal rate of digital precoder by RF-baseband codesign for MIMO systems,” in 2014 IEEE 80th Vehicular Technology Conference (VTC2014-Fall).   IEEE, 2014, pp. 1–5.
  • [36] X. Yu, J.-C. Shen, J. Zhang, and K. B. Letaief, “Alternating minimization algorithms for hybrid precoding in millimeter wave MIMO systems,” IEEE Journal of Selected Topics in Signal Processing, vol. 10, no. 3, pp. 485–500, 2016.
  • [37] S. Han, I. Chih-Lin, Z. Xu, and C. Rowell, “Large-scale antenna systems with hybrid analog and digital beamforming for millimeter wave 5G,” IEEE Communications Magazine, vol. 53, no. 1, pp. 186–194, 2015.
  • [38] F. Sohrabi and W. Yu, “Hybrid digital and analog beamforming design for large-scale antenna arrays,” IEEE Journal of Selected Topics in Signal Processing, vol. 10, no. 3, pp. 501–513, 2016.
  • [39] Z. Wang, M. Li, Q. Liu, and A. L. Swindlehurst, “Hybrid precoder and combiner design with low-resolution phase shifters in mmwave MIMO systems,” IEEE Journal of Selected Topics in Signal Processing, vol. 12, no. 2, pp. 256–269, 2018.
  • [40] O. E. Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, and R. W. Heath, “Spatially sparse precoding in millimeter wave MIMO systems,” IEEE Transactions on Wireless Communications, vol. 13, no. 3, pp. 1499–1513, 2014.
  • [41] A. Alkhateeb and R. W. Heath, “Frequency selective hybrid precoding for limited feedback millimeter wave systems,” IEEE Transactions on Communications, vol. 64, no. 5, pp. 1801–1818, 2016.
  • [42] J. Mo, A. Alkhateeb, S. Abu-Surra, and R. W. Heath, “Hybrid architectures with few-bit ADC receivers: Achievable rates and energy-rate tradeoffs,” IEEE Transactions on Wireless Communications, vol. 16, no. 4, pp. 2274–2287, 2017.
  • [43] F. Liu and C. Masouros, “Hybrid beamforming with sub-arrayed MIMO radar: Enabling joint sensing and communication at mmWave band,” in ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019, pp. 7770–7774.
  • [44] Z. Cheng, Z. He, and B. Liao, “Hybrid beamforming for multi-carrier dual-function radar-communication system,” IEEE Transactions on Cognitive Communications and Networking, pp. 1–1, 2021.
  • [45] L. Wu, P. Babu, and D. P. Palomar, “Cognitive radar-based sequence design via SINR maximization,” IEEE Transactions on Signal Processing, vol. 65, no. 3, pp. 779–793, 2016.
  • [46] B. Yazici and G. Xie, “Wideband extended range-doppler imaging and waveform design in the presence of clutter and noise,” IEEE Transactions on Information Theory, vol. 52, no. 10, pp. 4563–4580, 2006.
  • [47] C.-Y. Chen and P. P. Vaidyanathan, “MIMO radar waveform optimization with prior information of the extended target and clutter,” IEEE Transactions on Signal Processing, vol. 57, no. 9, pp. 3533–3544, 2009.
  • [48] A. Leshem, O. Naparstek, and A. Nehorai, “Information theoretic adaptive radar waveform design for multiple extended targets,” IEEE Journal of Selected Topics in Signal Processing, vol. 1, no. 1, pp. 42–55, 2007.
  • [49] T. E. Bogale, L. B. Le, A. Haghighat, and L. Vandendorpe, “On the number of RF chains and phase shifters, and scheduling design with hybrid analog–digital beamforming,” IEEE Transactions on Wireless Communications, vol. 15, no. 5, pp. 3311–3326, 2016.
  • [50] Y.-P. Lin, “On the quantization of phase shifters for hybrid precoding systems,” IEEE Transactions on Signal Processing, vol. 65, no. 9, pp. 2237–2246, 2016.
  • [51] X. Yu, J. Zhang, and K. B. Letaief, “Doubling phase shifters for efficient hybrid precoder design in millimeter-wave communication systems,” Journal of Communications and Information Networks, vol. 4, no. 2, pp. 51–67, 2019.
  • [52] Q. Shi, M. Razaviyayn, Z.-Q. Luo, and C. He, “An iteratively weighted mmse approach to distributed sum-utility maximization for a MIMO interfering broadcast channel,” IEEE Transactions on Signal Processing, vol. 59, no. 9, pp. 4331–4340, 2011.
  • [53] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein et al., “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Foundations and Trends® in Machine learning, vol. 3, no. 1, pp. 1–122, 2011.
  • [54] Yin, Haifan, Gesbert, David, Filippou, Miltiades, Liu, and Yingzhuang, “A coordinated approach to channel estimation in large-scale multiple-antenna systems,” IEEE Journal on Selected Areas in Communications, vol. 31, no. 2, pp. 264–273, 2013.
  • [55] O. Simeone, Y. Bar-Ness, and U. Spagnolini, “Pilot-based channel estimation for ofdm systems by tracking the delay-subspace,” Wireless Communications IEEE Transactions on, vol. 3, no. 1, pp. 315–325, 2004.
  • [56] L. Liang, W. Xu, and X. Dong, “Low-complexity hybrid precoding in massive multiuser MIMO systems,” IEEE Wireless Communications Letters, vol. 3, no. 6, pp. 653–656, 2014.
  • [57] J. R. Guerci, “Cognitive radar: A knowledge-aided fully adaptive approach,” in 2010 IEEE Radar Conference.   IEEE, 2010, pp. 1365–1370.
  • [58] C.-Y. Chen and P. Vaidyanathan, “MIMO radar waveform optimization with prior information of the extended target and clutter,” IEEE Transactions on Signal Processing, vol. 57, no. 9, pp. 3533–3544, 2009.
  • [59] A. De Maio, S. De Nicola, Y. Huang, D. P. Palomar, S. Zhang, and A. Farina, “Code design for radar stap via optimization theory,” IEEE Transactions on Signal Processing, vol. 58, no. 2, pp. 679–694, 2010.
  • [60] S. Boyd and L. Vandenberghe, Convex optimization.   Cambridge university press, 2004.
  • [61] E. Dahlman, S. Parkvall, and J. Skold, 5G NR: The next generation wireless access technology.   Academic Press, 2020.
  • [62] J. Nocedal and S. Wright, Numerical optimization.   Springer Science & Business Media, 2006.