This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Double Hopf bifurcation in nonlocal reaction-diffusion systems with spatial average kernel111This research is supported by National Natural Science Foundation of China (No 11771109).

Zuolin Shen222Email: [email protected], Shanshan Chen333Email: [email protected]., and Junjie Wei444Corresponding author, Email: [email protected].
Department of Mathematics, Harbin Institute of Technology,  
Harbin, Heilongjiang, 150001, P.R.China  
Abstract

In this paper, we consider a general reaction-diffusion system with nonlocal effects and Neumann boundary conditions, where a spatial average kernel is chosen to be the nonlocal kernel. By virtue of the center manifold reduction technique and normal form theory, we present a new algorithm for computing normal forms associated with the codimension-two double Hopf bifurcation of nonlocal reaction-diffusion equations. The theoretical results are applied to a predator-prey model, and complex dynamic behaviors such as spatially nonhomogeneous periodic oscillations and spatially nonhomogeneous quasi-periodic oscillations could occur.

Keywords : reaction-diffusion system; double Hopf bifurcation; nonlocal effect; normal forms.

1 Introduction

Reaction-diffusion equations have been proposed to model the complex phenomenon in cell biology, neural network, virus dynamics, biochemical reaction, etc., see [35, 52] and references therein. However, individuals of a species at different locations may compete for common resource or communicate by chemical means [7, 16, 21], and nonlocal interactions should be considered. In 1989, Britton [7] proposed a single population model with nonlocal effect, where the nonlocal term takes the following form:

gu=Ωg(x,y)u(y,t)dy.g*u=\int_{\Omega}g(x,y)u(y,t)\mathrm{d}y. (1.1)

Here Ω\Omega is the region where the population lives, u(x,t)u(x,t) represents the density of the species at location xx and time tt. The model is based on the following two assumptions:

  1. (i)

    individuals in grouping together can reduce the risk of predation, which is referred to as the aggregation mechanism;

  2. (ii)

    the intraspecific competition at a certain point depends on not only the density at this point but also a weighted average in the neighborhood of this point.

For unbounded one spatial dimension domain Ω=(,)\Omega=(-\infty,\infty), Britton [7] also considered the nonlocal effects on two species competition model, and it was shown that the aggregation may lead to the coexistence of the two species. For bounded domain Ω\Omega, a typical scenario of nonlocal dispersal is the “spatial average kernel”, that is,

g(x,y)1volΩ.g(x,y)\equiv\dfrac{1}{\mathrm{vol}\,\Omega}. (1.2)

Furter and Grinfeld [21] obtained that this average kernel can induce spatial nonhomogeneous patterns even for single population model, see [51] for more general models.

There have been extensive results on the nonlocal effects, including existence and stability of solutions, traveling wave solutions, pattern formation, bifurcation analysis, etc., see [5, 6, 22, 24, 17, 38, 16, 20, 23, 43, 10, 12, 13, 11] and references therein. For unbounded one spatial dimension domain Ω=(,)\Omega=(-\infty,\infty), Merchant and Nagata [43] chose different types of kernel g(x,y)g(x,y), and showed that the nonlocal competition could induce complex spatiotemporal patterns, see also [3, 49]. Motivated by [43], Chen et al. [13, 11] considered the case that the spatial domain Ω=(0,L)\Omega=(0,L), and chose the spatial average kernel, i.e., g(x,y)1/Lg(x,y)\equiv 1/L. They found that, for the nonlocal Rosenzweig-MacArthur (RM) and Holling-Tanner predator-prey models, the constant positive steady state could lose the stability when the given parameter passes through some Hopf bifurcation values, and the bifurcating periodic solutions near such values can be spatially nonhomogeneous. It is well known that Hopf bifurcation has been used to illustrate the periodic phenomena in the natural world, such as regular changes in population size, the periodic outbreak of infectious diseases, and chemical oscillations of some autocatalytic reactions [32, 44, 31]. However, for reaction-diffusion system without nonlocal effect, the bifurcating periodic solutions near the threshold are always spatially homogeneous, while nonhomogeneous periodic solutions can also occur through Hopf bifurcation, but they are always unstable, and consequently hard to simulate. Note that, nonlocal effect could also induced spatially nonhomogeneous steady states through steady state bifurcation[21, 51]. Therefore, nonlocal effect could be used as a new mechanism for pattern formation.

We point out that, for reaction-diffusion equations with nonlocal delay effect, the Hopf bifurcation has also been studied by many researchers, see [10, 12, 29, 30, 28, 55, 56, 25, 26] and references therein. For the homogeneous Neumann boundary condition, Gourley and So [25] showed the existence of Hopf bifurcation for a food-limited population model, see also [38] for the model with age structure. For the homogeneous Dirichlet boundary condition, Chen and Shi [10] developed the method proposed by Busenberg and Huang [9], and studied the existence of Hopf bifurcation near the positive spatially nonhomogeneous steady state. Different from [9, 10], Guo [29] proposed the method of Lyapunov-Schmidt reduction to show the existence and even the multiplicity of the spatially nonhomogeneous steady state, and the associated Hopf bifurcation. There are also other results on Hopf bifurcation for reaction-diffusion models with nonlocal delay, see e.g. [26, 33, 55].

The above mentioned steady state and Hopf bifurcations are both codimension-one bifucation. A natural question is that whether nonlocal effect could induce codimension-two bifurcation for reaction-diffusion equations. For the reaction-diffusion equation, the interaction of a Turing instability (leading to spatially nonhomogeneous steady states) with a Hopf bifurcation (giving rise to temporal oscillations) has been observed and studied in chemical, biological and physical systems, see [42, 41, 57, 48] and references therein. For example, Rovinsky and Menzinger [48] studied this Turing-Hopf interaction for three models of chemically active media by using Poincaré-Birkhoff method and shown the bistability of spatially nonhomogeneous steady states and homogeneous oscillations. In the framework of amplitude equation formalism, De Wit et al. [57] investigated the bifurcation scenarios near the Turing-Hopf singularity. Recently, to show an accurate dynamic classification at this singularity, Song et al.[54] applied the normal form theory proposed by Faria [18] to a general reaction-diffusion equation, and obtained a series of explicit formulas for calculating the normal forms associated with the Turing-Hopf bifurcation. This spatiotemporal dynamics induced by the Turing-Hopf bifurcation were observed in several reaction-diffusion models [53, 59, 4], see also [1, 50] for the reaction-diffusion system with delay. Another typical codimension-two bifurcation is the double Hopf bifurcation. As in the Turing-Hopf bifurcation, when the parameters vary near the threshold value, the system may exhibit rich dynamics such as periodic orbit, invariant two torus, invariant three-torus, and even chaos, see e.g. [27, 45, 15, 34, 37, 60]. Recently, for a general delayed reaction-diffusion system with time delay, Du et al. [15] also obtained an algorithm for deriving the normal form near a codimension-two double Hopf bifurcation by virtue of the the normal form method proposed by Faria [19, 18].

To our knowledge, compared to the classical reaction-diffusion system, few studies have considered the high codimensional bifurcations in nonlocal reaction-diffusion systems. Recently, Wu and Song [58] studied the dynamical classification of a nonlocal diffusive Rosenzweig-MacArthur model near the Turing-Hopf singularity. A numerical simulation [13] revealed that two Hopf bifurcation curves could intersect in a two-parameter plane. However, there exist no results on double Hopf bifurcation for nonlocal reaction-diffusion systems. In this paper, we aim to consider this problem, and consider the following general reaction-diffusion system

{Ut=D(μ)ΔU+f(μ,U,U^),x(0,π),t>0,Ux(0,t)=Ux(π,t)=0,t>0,\begin{cases}\cfrac{\partial U}{\partial t}=D(\mu)\Delta U+f(\mu,U,\widehat{U}),&x\in(0,\ell\pi),\;t>0,\\ \cfrac{\partial U}{\partial x}(0,t)=\cfrac{\partial U}{\partial x}(\ell\pi,t)=0,&t>0,\\ \end{cases} (1.3)

where D(μ)=diag(d1(μ),d2(μ),,dn(μ))D(\mu)=\text{diag}(d_{1}(\mu),d_{2}(\mu),\cdots,d_{n}(\mu)) with di(μ)>0d_{i}(\mu)>0 and μ2\mu\in\mathbb{R}^{2}, U=(u1,u2,,un)TXU=(u_{1},u_{2},\cdots,u_{n})^{T}\in X, U^=(u^1,u^2,,u^n)T\widehat{U}=(\widehat{u}_{1},\widehat{u}_{2},\cdots,\widehat{u}_{n})^{T} with u^i=1π0πui(y,t)𝑑y\widehat{u}_{i}=\frac{1}{\ell\pi}\int_{0}^{\ell\pi}u_{i}(y,t)dy, i=1,2,,ni=1,2,\cdots,n, f=(f1,f2,,fn)Tf=(f_{1},f_{2},\cdots,f_{n})^{T} with fif_{i} is Ck(k3)C^{k}(k\geq 3) smooth, and fi(μ,𝟎,𝟎)=0f_{i}(\mu,\mathbf{0},\mathbf{0})=0. We point out that if n=1n=1, then system (1.3) is reduced to a general form in [21]. If n=2n=2, then (1.3) becomes a two-component interaction system, which could model the nonlocal intraspecific and interspecific competition for population models, see [43, 2, 3, 49]. The purpose of this paper is to develop an explicit algorithm for computing normal forms on the center manifold near a codimension-two double-Hopf singularity for model (1.3). We should remark that when the ratio of two angular frequencies is some particular value, e.g. 1:2, the corresponding double-Hopf bifurcation may be codimension-three, referred to as the strong resonance case. In this article, we will not consider this case and focus only the codimension-two double Hopf bifurcation. We find that, compared with the traditional reaction-diffusion system, (1.3) is more likely to induce spatial nonhomogeneous patterns, and consequently exhibit rich dynamical behaviors at the corresponding singularity, such as spatially nonhomogeneous periodic solutions, spatially nonhomogeneous quasi-periodic solutions, coexistence of homogeneous/nonhomogeneous oscillations, and so on.

We also adopt the framework of [18] to compute the normal forms on the center manifold of system (1.3) at the codimension-two double Hopf singularity. In summary, we first rewrite system (1.3) into an abstract form, and by decomposing the phase space into center subspace and its complementary space, we obtain the equivalent system on the center manifold. Then a recursive transformation of variables is used to derive the four-dimensional normal forms. During this process, we construct a Boolean function to deal with the impact of nonlocal terms on the computation, which is the innovation. Particularly, for the case of n=2n=2, we list some additional formulas in Appendix A which could help to obtain all the coefficient vectors that appear in the process of computing normal forms.

The rest of the paper is organized as follows. The decomposition of phase space and some preliminaries are given in Section 2. The computation of normal forms associated with the codimension-two double Hopf bifurcation is presented in Section 3. In Section 4, we apply our theoretical results in Section 3 to a diffusive Holling-Tanner system with spatial average kernel in prey and obtain the normal forms near the duoble-Hopf singularity. Some periodic oscillations and quasi-periodic quasi-periodic oscillations are also derived numerically in this section. Finally, we give some discussion and conclusion for this paper, and in the Appendix, we collect the details of the coefficient vectors that appear in Section 3 when n=2n=2. Throughout the paper, we denote by \mathbb{N} the set of positive integers, and 0={0}\mathbb{N}_{0}=\mathbb{N}\cup\{0\} the set of non-negative integers.

2 Decomposition of the phase space

In this section, we adopt the framework of [18] to compute the normal forms of the double Hopf bifurcation. To use the center manifold theory for reduction[39, 27, 32], we need rewrite system (1.3) into an abstract form and decompose the phase space.

We first define the following real-value Sobolev space

X:={(u1,u2,,un)T[H2(0,π)]n|xui(0,t)=xui(π,t)=0,i=1,2,,n},X:=\Big{\{}(u_{1},u_{2},\cdots,u_{n})^{{}^{T}}\in\big{[}H^{2}(0,\ell\pi)\big{]}^{n}|~{}{\partial_{x}}u_{i}(0,t)=\partial_{x}u_{i}(\ell\pi,t)=0,i=1,2,\cdots,n\Big{\}},

and then the linear map u1π0πu(y,t)𝑑yu\rightarrow\frac{1}{\ell\pi}\int_{0}^{\ell\pi}u(y,t)dy is smooth from H2(0,π)H^{2}(0,\ell\pi) to H2(0,π)H^{2}(0,\ell\pi). Denote

i:(μ,U)fi(μ,U,U^),i=1,2,,n.\mathcal{F}_{i}:(\mu,U)\rightarrow f_{i}(\mu,U,\widehat{U}),~{}i=1,2,\cdots,n.\\

It follows from Appendix C of [32] that i\mathcal{F}_{i} is also smooth from 2×[H2(0,π)]n\mathbb{R}^{2}\times\left[H^{2}(0,\ell\pi)\right]^{n} to H2(0,π)H^{2}(0,\ell\pi). Hence, system (1.3) can be written as the following abstract form

dU(t)dt=D(μ)ΔU+(μ,U),\dfrac{dU(t)}{dt}=D(\mu)\Delta U+\mathcal{F}(\mu,U), (2.1)

where

(μ,U)=(1(μ,U)2(μ,U)n(μ,U))=(f1(μ,U,U^)f2(μ,U,U^)fn(μ,U,U^)).\mathcal{F}(\mu,U)=\left(\begin{array}[]{cc}\mathcal{F}_{1}(\mu,U)\\ \mathcal{F}_{2}(\mu,U)\\ ~{}~{}\vdots\\ \mathcal{F}_{n}(\mu,U)\end{array}\right)=\left(\begin{array}[]{cc}f_{1}(\mu,U,\widehat{U})\\ f_{2}(\mu,U,\widehat{U})\\ ~{}~{}\vdots\\ f_{n}(\mu,U,\widehat{U})\end{array}\right).

Let

(μ)=D(μ)Δ+DU(μ,0),\mathscr{L}(\mu)=D(\mu)\Delta+D_{U}\mathcal{F}(\mu,0), (2.2)

where DU(μ,0)D_{U}\mathcal{F}(\mu,0) stands for the Fréchet derivative of (μ,U)\mathcal{F}(\mu,U) with respect to UU at U=𝟎U=\mathbf{0}. To figure out the double Hopf bifurcation with two pairs of purely imaginary eigenvalues, we define the following complexification space of XX:

X:=XiX={x1+ix2|x1,x2X},X_{\mathbb{C}}:=X\oplus iX=\{x_{1}+ix_{2}|~{}x_{1},x_{2}\in X\},

with the complex-valued L2L^{2} inner product ,\langle\cdot,\cdot\rangle, defined by

U,V=0π(u¯1v1+u¯2v2++u¯nvn)𝑑x,\langle U,V\rangle=\int_{0}^{\ell\pi}(\bar{u}_{1}v_{1}+\bar{u}_{2}v_{2}+\cdots+\bar{u}_{n}v_{n})dx,

where U=(u1,u2,,un)TXU=(u_{1},u_{2},\cdots,u_{n})^{T}\in X_{\mathbb{C}}, V=(v1,v2,,vn)TXV=(v_{1},v_{2},\cdots,v_{n})^{T}\in X_{\mathbb{C}}.

Considering the perturbation caused by the nonlocal terms, we rewrite system (2.1) in a intuitive form

dU(t)dt=D(μ)ΔU+L(μ)U+L^(μ)U^+F(U,U^,μ),\dfrac{dU(t)}{dt}=D(\mu)\Delta U+L(\mu)U+\widehat{L}(\mu)\widehat{U}+F(U,\widehat{U},\mu), (2.3)

where LL and L^\widehat{L} are bounded linear operators from 2×X\mathbb{R}^{2}\times X_{\mathbb{C}} to XX_{\mathbb{C}}, and F:X×X×2XF:X_{\mathbb{C}}\times X_{\mathbb{C}}\times\mathbb{R}^{2}\rightarrow X_{\mathbb{C}} is a Ck(k3)C^{k}(k\geq 3) function such that F(0,0,μ)=0F(0,0,\mu)=0 and DUF(0,0,μ)=DU^F(0,0,μ)=0D_{U}F(0,0,\mu)=D_{\widehat{U}}F(0,0,\mu)=0.

Then the linearization of system (2.3) at 𝟎\mathbf{0} takes the following form

dU(t)dt=D(μ)ΔU+L(μ)U+L^(μ)U^.\dfrac{dU(t)}{dt}=D(\mu)\Delta U+L(\mu)U+\widehat{L}(\mu)\widehat{U}. (2.4)

It is well known that the eigenvalue problem

Δξ=σξ,x(0,π),ξ(0)=ξ(π)=0-\Delta\xi=\sigma\xi,~{}x\in(0,\ell\pi),~{}\xi^{\prime}(0)=\xi^{\prime}(\ell\pi)=0

has eigenvalues σn=n22\sigma_{n}=\frac{n^{2}}{\ell^{2}} (n0n\in\mathbb{N}_{0}), and the corresponding normalized eigenfunctions

ξn(x)=cosnxcosnx={1π,n=0,2πcosnx,n.\xi_{n}(x)=\cfrac{\cos{\frac{n}{\ell}x}}{\parallel\cos{\frac{n}{\ell}x}\parallel}=\begin{cases}\sqrt{\frac{1}{\ell\pi}},&n=0,\\ \sqrt{\frac{2}{\ell\pi}}\cos{\frac{n}{\ell}x},&n\in\mathbb{N}.\end{cases} (2.5)

Letting βni(x)=ξn(x)ei\beta_{n}^{i}(x)=\xi_{n}(x)e_{i}, i=1,2,,ni=1,2,\cdots,n, where eie_{i} is the iith unit coordinate vector of n\mathbb{R}^{n}, we see that {βni}n0\{\beta_{n}^{i}\}_{n\in\mathbb{N}_{0}} are eigenfunctions of D(μ)Δ-D(\mu)\Delta with corresponding eigenvalues di(μ)n22d_{i}(\mu)\frac{n^{2}}{\ell^{2}}, and {βni}n0\{\beta_{n}^{i}\}_{n\in\mathbb{N}_{0}} form an orthonormal basis of XX_{\mathbb{C}}.

For UXU\in X_{\mathbb{C}} and βk=(βk1,βk2,,βkn)\beta_{k}=(\beta_{k}^{1},\beta_{k}^{2},\cdots,\beta_{k}^{n}), we define βk,U=(βk1,U,βk2,U,,βkn,U)T\langle\beta_{k},U\rangle=\left(\langle\beta_{k}^{1},U\rangle,\langle\beta_{k}^{2},U\rangle,\cdots,\langle\beta_{k}^{n},U\rangle\right)^{{}^{T}}, and denote

k:=span{βkj,Uβkj|UX,j=1,2,,n}.\mathcal{B}_{k}:=\text{span}\left\{~{}\langle\beta_{k}^{j},U\rangle\beta_{k}^{j}~{}|~{}U\in X_{\mathbb{C}},j=1,2,\cdots,n~{}\right\}.

Let

φ=k=0ξk(x)(ak1ak2akn)\varphi=\sum^{\infty}_{k=0}\xi_{k}(x)\left(\begin{array}[]{c}a_{k}^{1}\\ a_{k}^{2}\\ ~{}\vdots\\ a_{k}^{n}\end{array}\right)

be the eigenfunction with respect to eigenvalue λ(μ)\lambda(\mu). Then

λ(μ)φD(μ)ΔφL(μ)φL^(μ)φ^=0,\lambda(\mu)\varphi-D(\mu)\Delta\varphi-L(\mu)\varphi-\widehat{L}(\mu)\widehat{\varphi}=0, (2.6)

where φ^=1π0πφ𝑑x\widehat{\varphi}=\frac{1}{\ell\pi}\int_{0}^{\ell\pi}\varphi dx. Note that

1π0πξn(x)𝑑x={1π,n=0,0,n.\dfrac{1}{\ell\pi}\int_{0}^{\ell\pi}\xi_{n}(x)dx=\begin{cases}\dfrac{1}{\sqrt{\ell\pi}},~{}&n=0,\\ ~{}~{}0,~{}&n\in\mathbb{N}.\end{cases} (2.7)

Then (2.6) is equivalent to a sequence of characteristic equations:

{det(λ(μ)IL(μ)L^(μ))=0,n=0,det(λ(μ)I+n22D(μ)L(μ))=0,n.\begin{cases}\text{det}\Big{(}\lambda(\mu)I-L(\mu)-\widehat{L}(\mu)\Big{)}=0,&n=0,\\ \text{det}\Big{(}\lambda(\mu)I+\dfrac{n^{2}}{\ell^{2}}D(\mu)-L(\mu)\Big{)}=0,&n\in\mathbb{N}.\\ \end{cases} (2.8)

To consider the double Hopf bifurcation, we assume that there exists μ02\mu_{0}\in\mathbb{R}^{2} such that the following conditions hold:

  • (𝐇𝟏)\mathbf{(H_{1})}

    There exist a neighborhood 𝒩\mathscr{N} of μ0\mu_{0} and n1,n20n_{1},n_{2}\in\mathbb{N}_{0} such that, for μ𝒩\mu\in\mathscr{N}, the linear system (2.4) has two pairs of complex simple eigenvalues α1(μ)±ω1(μ)\alpha_{1}(\mu)\pm\omega_{1}(\mu) and α2(μ)±ω2(μ)\alpha_{2}(\mu)\pm\omega_{2}(\mu), which are both continuously differentiable in μ\mu with α1(μ0)=0\alpha_{1}(\mu_{0})=0, ω1(μ0)=ω1>0\omega_{1}(\mu_{0})=\omega_{1}>0, α2(μ0)=0\alpha_{2}(\mu_{0})=0, ω2(μ0)=ω2>0\omega_{2}(\mu_{0})=\omega_{2}>0, and all other eigenvalues of (2.4) have non-zero real parts for μ𝒩\mu\in\mathscr{N}.

  • (𝐇𝟐)\mathbf{(H_{2})}

    Assume that ω1:ω2i:j\omega_{1}:\omega_{2}\neq i:j for i,ji,j\in\mathbb{N} and 1ij41\leq i\leq j\leq 4, i.e., we only consider the codimension-two double Hopf bifurcation of non-resonance and weak resonance instead of the codimension-three of strongly resonant case.

  • (𝐇𝟑)\mathbf{(H_{3})}

    The conjugate eigenvalues αk(μ)±ωk(μ)\alpha_{k}(\mu)\pm\omega_{k}(\mu) are obtained by (2.8)nk{}_{n_{k}}, and the corresponding eigenvalues belong to nk\mathcal{B}_{n_{k}} for k=1,2k=1,2. Without lose of generality, we assume n1n2n_{1}\leq n_{2}.

Let μ=μ0+α\mu=\mu_{0}+\alpha, where α=(α1,α2)2\alpha=(\alpha_{1},\alpha_{2})\in\mathbb{R}^{2}, and then (2.3) can be transformed as

dU(t)dt=D0ΔU+L0U+L^0U^+F~(U,U^,α),\dfrac{dU(t)}{dt}=D_{0}\Delta U+L_{0}U+\widehat{L}_{0}\widehat{U}+\widetilde{F}(U,\widehat{U},\alpha), (2.9)

where D0=D(μ0)D_{0}=D(\mu_{0}), L0=L(μ0)L_{0}=L(\mu_{0}), L^0=L^(μ0)\widehat{L}_{0}=\widehat{L}(\mu_{0}), and F~(U,U^,α)=[D(α+μ0)D0]ΔU+[L(α+μ0)L0]U+[L^(α+μ0)L^0]U^+F(U,U^,α+μ0)\widetilde{F}(U,\widehat{U},\alpha)=[D(\alpha+\mu_{0})-D_{0}]\Delta U+[L(\alpha+\mu_{0})-L_{0}]U+[\widehat{L}(\alpha+\mu_{0})-\widehat{L}_{0}]\widehat{U}+F(U,\widehat{U},\alpha+\mu_{0}). Then the linear system of (2.9) on nk\mathcal{B}_{n_{k}} is equivalent to the following ODEs on n\mathbb{C}^{n}:

z˙(t)=Ankz(t),\dot{z}(t)=A_{n_{k}}z(t), (2.10)

where AnkA_{n_{k}} is an n×nn\times n matrix, and

Anky(t)={L0y(t)+L^0y(t),nk=0,nk22D0y(t)+L0y(t),nk.A_{n_{k}}y(t)=\begin{cases}~{}L_{0}y(t)+\widehat{L}_{0}y(t),&n_{k}=0,\\ -\dfrac{n_{k}^{2}}{\ell^{2}}D_{0}y(t)+L_{0}y(t),&n_{k}\in\mathbb{N}.\end{cases}

Denote by AnkA_{n_{k}}^{*} the formal adjoint of AnkA_{n_{k}} under the scalar product on n\mathbb{C}^{n}:

(ψ,ϕ)n=ψ¯ϕ,forψT,ϕn.(\psi,\phi)_{{}_{\mathbb{C}^{n}}}=\overline{\psi}\,\phi,~{}\text{for}~{}\psi^{{}^{T}},\phi\in\mathbb{C}^{n}.

Let Λ={±iω1,±iω2}\Lambda=\{\pm i\omega_{1},\pm i\omega_{2}\} and let

Φ1=(ϕ1,ϕ2),Φ2=(ϕ3,ϕ4),Ψ1=(ψ1ψ2),Ψ2=(ψ3ψ4),\begin{array}[]{ll}\Phi_{1}=(\phi_{1},\phi_{2}),~{}\Phi_{2}=(\phi_{3},\phi_{4}),~{}\Psi_{1}=\left(\begin{array}[]{cc}\psi_{1}\\ \psi_{2}\end{array}\right),~{}\Psi_{2}=\left(\begin{array}[]{cc}\psi_{3}\\ \psi_{4}\end{array}\right),\end{array}

be the basis of the generalized eigenspace of AnkA_{n_{k}} and AnkA_{n_{k}}^{*} corresponding to the eigenvalues Λ\Lambda, respectively. Then

AnkΦk=ΦkBk,AnkΨk=B¯kΨk,(Ψk,Φk)n=I2,k=1,2,A_{n_{k}}\Phi_{k}=\Phi_{k}B_{k},~{}A_{n_{k}}^{*}\Psi_{k}=\bar{B}_{k}\Psi_{k},~{}(\Psi_{k},\Phi_{k})_{{}_{\mathbb{C}^{n}}}=I_{2},~{}k=1,2, (2.11)

where B1=diag(iω1,iω1)B_{1}=\text{diag}(i\omega_{1},-i\omega_{1}), B2=diag(iω2,iω2)B_{2}=\text{diag}(i\omega_{2},-i\omega_{2}), and I2I_{2} is an 2×22\times 2 identity matrix. Then we can decompose the phase space XX_{\mathbb{C}}:

X=PKerπ,X_{\mathbb{C}}=P\oplus\text{Ker}\pi, (2.12)

where P=ImπP=\text{Im}\pi, and π:XP\pi:X_{\mathbb{C}}\rightarrow P is the projection, defined by

π(U)=k=12Φk(Ψk,βnk,U)nξnk.\pi(U)=\sum_{k=1}^{2}\Phi_{k}\left(\Psi_{k},\langle\beta_{n_{k}},U\rangle\right)_{{}_{\mathbb{C}^{n}}}\xi_{n_{k}}.

Therefore, UXU\in X_{\mathbb{C}} can be rewritten in the following form:

U=k=12(Φkz~k(t))ξnk+w=Φzx+w,\begin{array}[]{ll}U&=\sum_{k=1}^{2}(\Phi_{k}\tilde{z}_{k}(t))\xi_{n_{k}}+w\\ &=\Phi z^{x}+w,\end{array} (2.13)

where z~k(t)=(Ψk,βnk,U)n2\tilde{z}_{k}(t)=\left(\Psi_{k},\langle\beta_{n_{k}},U\rangle\right)_{{}_{\mathbb{C}^{n}}}\in\mathbb{C}^{2}, Φ=(Φ1,Φ2)\Phi=(\Phi_{1},\Phi_{2}), zx=(z1ξn1,z2ξn1,z3ξn2,z4ξn2)Tz^{x}=(z_{1}\xi_{n_{1}},z_{2}\xi_{n_{1}},z_{3}\xi_{n_{2}},z_{4}\xi_{n_{2}})^{T}, and wKerπw\in\text{Ker}\pi. For simplification of notations, we denote z(t)=col(z~1(t),z~2(t))=(z1(t),z2(t),z3(t),z4(t))T4z(t)=\text{col}(\tilde{z}_{1}(t),\tilde{z}_{2}(t))=(z_{1}(t),z_{2}(t),z_{3}(t),z_{4}(t))^{{}^{T}}\in\mathbb{C}^{4} and

F~(z,w,w^,α)=F~(k=12(Φkz~k(t))ξnk+w,1π0π(k=12(Φkz~k(t))ξnk+w)𝑑x,α).\widetilde{F}(z,w,\widehat{w},\alpha)=\widetilde{F}\left(\sum_{k=1}^{2}(\Phi_{k}\tilde{z}_{k}(t))\xi_{n_{k}}+w,\frac{1}{\ell\pi}\int_{0}^{\ell\pi}\left(\sum_{k=1}^{2}(\Phi_{k}\tilde{z}_{k}(t))\xi_{n_{k}}+w\right)dx,\alpha\right). (2.14)

In the following, we will also use the symbol (z,w,w^,α)(z,w,\widehat{w},\alpha) instead of (U,U^,α)(U,\widehat{U},\alpha). Now system (2.9) is equivalent to the following abstract ODEs in 4×Kerπ\mathbb{C}^{4}\times\mathrm{Ker}\pi

{z˙=Bz+Ψ¯(βn1,F~(z,w,w^,α)βn2,F~(z,w,w^,α)),ddtw=1w+(Iπ)F~(z,w,w^,α),\begin{cases}~{}\dot{z}~{}=~{}Bz+\bar{\Psi}\left(\begin{array}[]{cc}\big{\langle}\beta_{n_{1}},\widetilde{F}(z,w,\widehat{w},\alpha)\big{\rangle}\\ \big{\langle}\beta_{n_{2}},\widetilde{F}(z,w,\widehat{w},\alpha)\big{\rangle}\end{array}\right),\\ \dfrac{d}{dt}w=\mathscr{L}_{1}w+(I-\pi)\widetilde{F}(z,w,\widehat{w},\alpha),\end{cases} (2.15)

where B=diag(B1,B2)B=\text{diag}(B_{1},B_{2}), Ψ=diag(Ψ1,Ψ2)\Psi=\text{diag}(\Psi_{1},\Psi_{2}), and 1\mathscr{L}_{1} is the restriction of (μ0)\mathscr{L}(\mu_{0}) on Kerπ\text{Ker}\pi.

3 Center manifold reduction and normal forms for double Hopf bifurcation

3.1 Center manifold reduction

Consider the formal Taylor expansions

F~(U,U^,α)=j21j!F~j(U,U^,α),α2,UX,\widetilde{F}(U,\widehat{U},\alpha)=\sum_{j\geq 2}\dfrac{1}{j!}\widetilde{F}_{j}(U,\widehat{U},\alpha),~{}\alpha\in\mathbb{R}^{2},U\in X_{\mathbb{C}},

where F~j\widetilde{F}_{j} is the jjth Fréchet derivation of F~\widetilde{F}. Then system (2.15) can be rewritten as

{z˙=Bz+j21j!fj1(z,w,w^,α),ddtw=1w+j21j!fj2(z,w,w^,α),\begin{cases}~{}\dot{z}~{}=~{}Bz+\displaystyle\sum_{j\geq 2}\dfrac{1}{j!}f_{j}^{1}(z,w,\widehat{w},\alpha),\\ \dfrac{d}{dt}w=\mathscr{L}_{1}w+\displaystyle\sum_{j\geq 2}\dfrac{1}{j!}f_{j}^{2}(z,w,\widehat{w},\alpha),\end{cases} (3.1)

where w^=1π0πwdxKerπ\widehat{w}=\frac{1}{\ell\pi}\int_{0}^{\ell\pi}w\mathrm{d}x\in\mathrm{Ker}\pi, and fj=(fj1,fj2)f_{j}=(f_{j}^{1},f_{j}^{2}) is defined by

fj1(z,w,w^,α)=Ψ¯(βn1,F~j(z,w,w^,α)βn2,F~j(z,w,w^,α)),fj2(z,w,w^,α)=(Iπ)F~j(z,w,w^,α),\begin{array}[]{ll}f_{j}^{1}(z,w,\widehat{w},\alpha)=\bar{\Psi}\left(\begin{array}[]{cc}\big{\langle}\beta_{n_{1}},\widetilde{F}_{j}(z,w,\widehat{w},\alpha)\big{\rangle}\\ \big{\langle}\beta_{n_{2}},\widetilde{F}_{j}(z,w,\widehat{w},\alpha)\big{\rangle}\end{array}\right),\vspace{0.3cm}\\ f_{j}^{2}(z,w,\widehat{w},\alpha)=(I-\pi)\widetilde{F}_{j}(z,w,\widehat{w},\alpha),\end{array} (3.2)

with F~j(z,w,w^,α)=F~j(U,U^,α)\widetilde{F}_{j}(z,w,\widehat{w},\alpha)=\widetilde{F}_{j}(U,\widehat{U},\alpha).

It follows from [18] (see also [14]) that the normal forms of (3.1) can be obtained by a recursive transformation of variables

(z,w,α)=(z~,w~,α)+1j!(Uj1(z~,α),Uj2(z~,α)),j2,(z,w,\alpha)=(\widetilde{z},\widetilde{w},\alpha)+\dfrac{1}{j!}(U_{j}^{1}(\widetilde{z},\alpha),U_{j}^{2}(\widetilde{z},\alpha)),j\geq 2,

with Uj=(Uj1,Uj2)Vj4+2(4)×Vj4+2(Kerπ)U_{j}=(U_{j}^{1},U_{j}^{2})\in V_{j}^{4+2}(\mathbb{C}^{4})\times V_{j}^{4+2}(\text{Ker}\pi). Here, for a normed space YY, we denote Vj4+2(Y)V_{j}^{4+2}(Y) be the space of homogeneous polynomials of degree jj in 4+24+2 variables z=(z1,z2,z3,z4)z=(z_{1},z_{2},z_{3},z_{4}) , α=(α1,α2)\alpha=(\alpha_{1},\alpha_{2}) with coefficients in YY, that is,

Vj4+2={|(p,l)|=jc(p,l)zpαl:(p,l)04+2,c(p,l)Y},V_{j}^{4+2}=\left\{\sum_{|(p,l)|=j}c_{(p,l)}z^{p}\alpha^{l}:(p,l)\in\mathbb{N}^{4+2}_{0},c_{(p,l)}\in Y\right\}, (3.3)

where p=(p1,p2,p3,p4)04p=(p_{1},p_{2},p_{3},p_{4})\in\mathbb{N}_{0}^{4}, l=(l1,l2)02l=(l_{1},l_{2})\in\mathbb{N}_{0}^{2}, i=14pi+i=12li=j\sum_{i=1}^{4}p_{i}+\sum_{i=1}^{2}l_{i}=j, zp=z1p1z2p2z3p3z4p4z^{p}=z_{1}^{p_{1}}z_{2}^{p_{2}}z_{3}^{p_{3}}z_{4}^{p_{4}}, αl=α1l1α2l2\alpha^{l}=\alpha_{1}^{l_{1}}\alpha_{2}^{l_{2}}, and the norm is defined as the sum of the norms of the coefficients ||(q,l)|=jc(q,l)zqαl|=|(q,l)|=j|c(q,l)|Y|\sum_{|(q,l)|=j}c_{(q,l)}z^{q}\alpha^{l}|=\sum_{|(q,l)|=j}|c_{(q,l)}|_{Y}.

We denote by f¯j=(f¯j1,f¯j2)\bar{f}_{j}=(\bar{f}_{j}^{1},\bar{f}_{j}^{2}) the terms of order jj obtained after the computation of normal forms in the preceding steps, and define the operators Mj=(Mj1,Mj2),j2M_{j}=(M_{j}^{1},M_{j}^{2}),j\geq 2 by

Mj1:Vj4+2(4)Vj4+2(4),(Mj1p)(z,α)=Dzp(z,α)BzBp(z,α),Mj2:Vj4+2(Kerπ)Vj4+2(Kerπ),(Mj2h)(z,α)=Dzh(z,α)Bz1p(z,α).\begin{array}[]{ll}M_{j}^{1}:~{}V_{j}^{4+2}(\mathbb{C}^{4})~{}\rightarrow~{}V_{j}^{4+2}(\mathbb{C}^{4}),\\ (M_{j}^{1}p)(z,\alpha)=D_{z}p(z,\alpha)Bz-Bp(z,\alpha),\\ M_{j}^{2}:~{}V_{j}^{4+2}(\text{Ker}\pi)~{}\rightarrow~{}V_{j}^{4+2}(\text{Ker}\pi),\\ (M_{j}^{2}h)(z,\alpha)=D_{z}h(z,\alpha)Bz-\mathscr{L}_{1}p(z,\alpha).\\ \end{array} (3.4)

With the recursive procedure and dropping the tilde for simplicity of notations, (3.1) becomes

{z˙=Bz+j21j!gj1(z,w,w^,α),ddtw=1w+j21j!gj2(z,w,w^,α),\begin{cases}~{}\dot{z}~{}=~{}Bz+\displaystyle\sum_{j\geq 2}\dfrac{1}{j!}g_{j}^{1}(z,w,\widehat{w},\alpha),\\ \dfrac{d}{dt}w=\mathscr{L}_{1}w+\displaystyle\sum_{j\geq 2}\dfrac{1}{j!}g_{j}^{2}(z,w,\widehat{w},\alpha),\end{cases} (3.5)

where gj=(gj1,gj2),j2g_{j}=(g_{j}^{1},g_{j}^{2}),j\geq 2, are the new terms of order jj and given by

gj(z,w,w^,α)=f¯j(z,w,w^,α)MjUj(z,α).g_{j}(z,w,\widehat{w},\alpha)=\bar{f}_{j}(z,w,\widehat{w},\alpha)-M_{j}U_{j}(z,\alpha).

Here, UjVj4+2(4)×Vj4+2(Kerπ)U_{j}\in V_{j}^{4+2}(\mathbb{C}^{4})\times V_{j}^{4+2}(\text{Ker}\pi) can be computed by

Uj(z,α)=(Mj)1𝐏Im,jf¯j(z,0,0,α),U_{j}(z,\alpha)=(M_{j})^{-1}\mathbf{P}_{\mathrm{Im},j}\bar{f}_{j}(z,0,0,\alpha), (3.6)

where Mj1M_{j}^{-1} is the inverse of MjM_{j} with range defined on Ker(Mj1)c×Ker(Mj2)c\text{Ker}(M_{j}^{1})^{c}\times\text{Ker}(M_{j}^{2})^{c}, 𝐏Im,j=(𝐏Im,j1,𝐏Im,j2)\mathbf{P}_{\mathrm{Im},j}=(\mathbf{P}^{1}_{\mathrm{Im},j},\mathbf{P}^{2}_{\mathrm{Im},j}) is the projection operator associated with the preceding decomposition of Vj4+2(4)×Vj4+2(Kerπ)V_{j}^{4+2}(\mathbb{C}^{4})\times V_{j}^{4+2}(\text{Ker}\pi) over Im(Mj1)×Im(Mj2)\mathrm{Im}(M_{j}^{1})\times\mathrm{Im}(M_{j}^{2}).

3.2 Normal forms up to second order

By (3.4) and assumption (𝐇𝟐)\mathbf{(H_{2})}, it is easy to verify that

Mj1(zpαlek)=Dz(zpαlek)BzBzpαlek={(iω1(p1p2)+iω2(p3p4)+(1)kiω1)zpαlek,k=1,2,(iω1(p1p2)+iω2(p3p4)+(1)kiω2)zpαlek,k=3,4.\begin{array}[]{ll}M_{j}^{1}(z^{p}\alpha^{l}e_{k})=D_{z}(z^{p}\alpha^{l}e_{k})Bz-Bz^{p}\alpha^{l}e_{k}\\ =\begin{cases}\left(i\omega_{1}(p_{1}-p_{2})+i\omega_{2}(p_{3}-p_{4})+(-1)^{k}i\omega_{1}\right)z^{p}\alpha^{l}e_{k},k=1,2,\\ \left(i\omega_{1}(p_{1}-p_{2})+i\omega_{2}(p_{3}-p_{4})+(-1)^{k}i\omega_{2}\right)z^{p}\alpha^{l}e_{k},k=3,4.\end{cases}\end{array} (3.7)

Here eke_{k} is the kkth unit coordinate vector of 4\mathbb{R}^{4}, and zp,αlz^{p},\alpha^{l} are defined as in (3.3). Therefore,

Ker(M21)=span{αiz1e1,αiz2e2,αiz3e3,αiz4e4},i=1,2.\mathrm{Ker}(M_{2}^{1})=\text{span}\{\alpha_{i}z_{1}e_{1},\alpha_{i}z_{2}e_{2},\alpha_{i}z_{3}e_{3},\alpha_{i}z_{4}e_{4}\},~{}i=1,2. (3.8)

Hence, the normal forms up to second order of (2.1) on the center manifold of the origin near μ=μ0\mu=\mu_{0} has the form

z˙=Bz+12!g21(z,0,0,α)+h.o.t.,\dot{z}=Bz+\dfrac{1}{2!}g_{2}^{1}(z,0,0,\alpha)+h.o.t., (3.9)

with g21(z,0,0,α)=ProjKer(M21)f21(z,0,0,α)g_{2}^{1}(z,0,0,\alpha)=\mathrm{Proj}_{\mathrm{Ker}(M_{2}^{1})}f_{2}^{1}(z,0,0,\alpha).

To show the specific expressions of g21(z,0,0,α)g_{2}^{1}(z,0,0,\alpha), we consider the Taylor expansions of D(μ)D(\mu), L(μ)L(\mu) and L^(μ)\widehat{L}(\mu):

D(μ)=D0+α1D1(1,0)+α2D1(0,1)+12!(α12D2(2,0)+2α1α2D2(1,1)+α22D2(0,2))+,L(μ)=L0+α1L1(1,0)+α2L1(0,1)+12!(α12L2(2,0)+2α1α2L2(1,1)+α22L2(0,2))+,L^(μ)=L^0+α1L^1(1,0)+α2L^1(0,1)+12!(α12L^2(2,0)+2α1α2L^2(1,1)+α22L^2(0,2))+.\begin{array}[]{ll}D(\mu)=&D_{0}+\alpha_{1}D_{1}^{(1,0)}+\alpha_{2}D_{1}^{(0,1)}+\dfrac{1}{2!}\left(\alpha_{1}^{2}D_{2}^{(2,0)}+2\alpha_{1}\alpha_{2}D_{2}^{(1,1)}+\alpha_{2}^{2}D_{2}^{(0,2)}\right)+\cdots,\vspace{0.2cm}\\ L(\mu)=&L_{0}+\alpha_{1}L_{1}^{(1,0)}+\alpha_{2}L_{1}^{(0,1)}+\dfrac{1}{2!}\left(\alpha_{1}^{2}L_{2}^{(2,0)}+2\alpha_{1}\alpha_{2}L_{2}^{(1,1)}+\alpha_{2}^{2}L_{2}^{(0,2)}\right)+\cdots,\vspace{0.2cm}\\ \widehat{L}(\mu)=&\widehat{L}_{0}+\alpha_{1}\widehat{L}_{1}^{(1,0)}+\alpha_{2}\widehat{L}_{1}^{(0,1)}+\dfrac{1}{2!}\left(\alpha_{1}^{2}\widehat{L}_{2}^{(2,0)}+2\alpha_{1}\alpha_{2}\widehat{L}_{2}^{(1,1)}+\alpha_{2}^{2}\widehat{L}_{2}^{(0,2)}\right)+\cdots.\\ \end{array}

Therefore, the second order term of F~\widetilde{F} is

F~2(U,U^,α)=2(α1D1(1,0)+α2D1(0,1))ΔU+2(α1L1(1,0)+α2L1(0,1))U+2(α1L^1(1,0)+α2L^1(0,1))U^+F2(U,U^,α).\begin{array}[]{ll}\widetilde{F}_{2}(U,\widehat{U},\alpha)&=2\left(\alpha_{1}D_{1}^{(1,0)}+\alpha_{2}D_{1}^{(0,1)}\right)\Delta U+2\left(\alpha_{1}L_{1}^{(1,0)}+\alpha_{2}L_{1}^{(0,1)}\right)U\\ &~{}~{}+2\left(\alpha_{1}\widehat{L}_{1}^{(1,0)}+\alpha_{2}\widehat{L}_{1}^{(0,1)}\right)\widehat{U}+F_{2}(U,\widehat{U},\alpha).\end{array} (3.10)

Recalling that F(0,0,μ)=0F(0,0,\mu)=0, DUF(0,0,μ)=0D_{U}F(0,0,\mu)=0 and DU^F(0,0,μ)=0D_{\widehat{U}}F(0,0,\mu)=0, we have F2(U,U^,α)=F2(U,U^,0)F_{2}(U,\widehat{U},\alpha)=F_{2}(U,\widehat{U},0). Plug (2.13) into (3.10) at w=0w=0, and then F~2(U,U^,α)\widetilde{F}_{2}(U,\widehat{U},\alpha) becomes

F~2(z,0,0,α)=F~2(Φzx,Φz^x,α)=2(α1D1(1,0)+α2D1(0,1))Δ(Φzx)+2(α1L1(1,0)+α2L1(0,1))Φzx+2(α1L^1(1,0)+α2L^1(0,1))Φz^x+F2(Φzx,Φz^x,0),\begin{array}[]{ll}\widetilde{F}_{2}(z,0,0,\alpha)&=\widetilde{F}_{2}(\Phi z^{x},\Phi\widehat{z}^{x},\alpha)\\ &=2\left(\alpha_{1}D_{1}^{(1,0)}+\alpha_{2}D_{1}^{(0,1)}\right)\Delta(\Phi z^{x})+2\left(\alpha_{1}L_{1}^{(1,0)}+\alpha_{2}L_{1}^{(0,1)}\right)\Phi z^{x}\\ &~{}~{}+2\left(\alpha_{1}\widehat{L}_{1}^{(1,0)}+\alpha_{2}\widehat{L}_{1}^{(0,1)}\right)\Phi\widehat{z}^{x}+F_{2}(\Phi z^{x},\Phi\widehat{z}^{x},0),\end{array}

where z^x=1π0πzxdx\widehat{z}^{x}=\frac{1}{\ell\pi}\int_{0}^{\ell\pi}z^{x}\mathrm{d}x with zxz^{x} is defined as in (2.13). By (3.2), we have

12!f21(z,0,0,α)=12!Ψ¯(βn1,F~2(z,0,0,α)βn2,F~2(z,0,0,α)).\frac{1}{2!}f_{2}^{1}(z,0,0,\alpha)=\frac{1}{2!}\bar{\Psi}\left(\begin{array}[]{l}\big{\langle}\beta_{n_{1}},\widetilde{F}_{2}(z,0,0,\alpha)\big{\rangle}\\ \big{\langle}\beta_{n_{2}},\widetilde{F}_{2}(z,0,0,\alpha)\big{\rangle}\end{array}\right). (3.11)

To write (3.11) explicitly, we define the following Boolean function

δ(k)=ξ^k,ξk={1,k=0,0,k0.\delta(k)=\langle\widehat{\xi}_{k},\xi_{k}\rangle=\begin{cases}1,&k=0,\\ 0,&k\neq 0.\end{cases} (3.12)

It follows from (3.7) and the fact

0πξn12𝑑x=0πξn22𝑑x=1\int_{0}^{\ell\pi}\xi_{n_{1}}^{2}dx=\int_{0}^{\ell\pi}\xi_{n_{2}}^{2}dx=1

that

12!g21(z,0,0,α)=12!ProjKer(M21)f21(z,0,0,α)=(B11α1z1+B21α2z1B11¯α1z2+B21¯α2z2B13α1z3+B23α2z3B13¯α1z4+B23¯α2z4),\dfrac{1}{2!}g_{2}^{1}(z,0,0,\alpha)=\dfrac{1}{2!}\mathrm{Proj}_{\mathrm{Ker}(M_{2}^{1})}f_{2}^{1}(z,0,0,\alpha)=\left(\begin{array}[]{cc}B_{11}\alpha_{1}z_{1}+B_{21}\alpha_{2}z_{1}\\ \overline{B_{11}}\alpha_{1}z_{2}+\overline{B_{21}}\alpha_{2}z_{2}\\ B_{13}\alpha_{1}z_{3}+B_{23}\alpha_{2}z_{3}\\ \overline{B_{13}}\alpha_{1}z_{4}+\overline{B_{23}}\alpha_{2}z_{4}\\ \end{array}\right), (3.13)

where

B11=ψ¯1(n122D1(1,0)ϕ1+L1(1,0)ϕ1+L^1(1,0)ϕ1δ(n1)),B21=ψ¯1(n122D1(0,1)ϕ1+L1(0,1)ϕ1+L^1(0,1)ϕ1δ(n1)),B13=ψ¯3(n222D1(1,0)ϕ3+L1(1,0)ϕ3+L^1(1,0)ϕ3δ(n2)),B23=ψ¯3(n222D1(0,1)ϕ3+L1(0,1)ϕ1+L^1(0,1)ϕ1δ(n2)).\begin{array}[]{ll}B_{11}=\bar{\psi}_{1}\left(-\dfrac{n_{1}^{2}}{\ell^{2}}D_{1}^{(1,0)}\phi_{1}+L_{1}^{(1,0)}\phi_{1}+\widehat{L}_{1}^{(1,0)}\phi_{1}\delta(n_{1})\right),\\ B_{21}=\bar{\psi}_{1}\left(-\dfrac{n_{1}^{2}}{\ell^{2}}D_{1}^{(0,1)}\phi_{1}+L_{1}^{(0,1)}\phi_{1}+\widehat{L}_{1}^{(0,1)}\phi_{1}\delta(n_{1})\right),\\ B_{13}=\bar{\psi}_{3}\left(-\dfrac{n_{2}^{2}}{\ell^{2}}D_{1}^{(1,0)}\phi_{3}+L_{1}^{(1,0)}\phi_{3}+\widehat{L}_{1}^{(1,0)}\phi_{3}\delta(n_{2})\right),\\ B_{23}=\bar{\psi}_{3}\left(-\dfrac{n_{2}^{2}}{\ell^{2}}D_{1}^{(0,1)}\phi_{3}+L_{1}^{(0,1)}\phi_{1}+\widehat{L}_{1}^{(0,1)}\phi_{1}\delta(n_{2})\right).\\ \end{array} (3.14)

3.3 Normal forms up to third order

From (3.7), we have

Ker(M31)=span{z12z2e1,z1z3z4e1,z1z22e2,z2z3z4e2,z32z4e3,z1z2z3e3,z3z42e4,z1z2z4e4}.\mathrm{Ker}(M_{3}^{1})=\mathrm{span}\left\{z_{1}^{2}z_{2}e_{1},z_{1}z_{3}z_{4}e_{1},z_{1}z_{2}^{2}e_{2},z_{2}z_{3}z_{4}e_{2},z_{3}^{2}z_{4}e_{3},z_{1}z_{2}z_{3}e_{3},z_{3}z_{4}^{2}e_{4},z_{1}z_{2}z_{4}e_{4}\right\}. (3.15)

According to (3.5), the normal forms up to third order has the form

z˙=Bz+12!g21(z,0,0,α)+13!g31(z,0,0,0)+,\dot{z}=Bz+\dfrac{1}{2!}g_{2}^{1}(z,0,0,\alpha)+\dfrac{1}{3!}g_{3}^{1}(z,0,0,0)+\cdots,

where g31(z,0,0,0)=ProjKer(M31)f¯31(z,0,0,0)g_{3}^{1}(z,0,0,0)=\mathrm{Proj}_{\mathrm{Ker}(M_{3}^{1})}\bar{f}^{1}_{3}(z,0,0,0). The new third order f¯31(z,0,0,0)\bar{f}^{1}_{3}(z,0,0,0) can be calculated by

f¯31(z,0,0,0)=f31(z,0,0,0)+32(Dzf21(z,0,0,0)U21(z,0)+Dwf21(z,0,0,0)U22(z,0)+Dw^f21(z,0,0,0)U^22(z,0)DzU21(z,0)g21(z,0,0,0)),\begin{array}[]{lr}\bar{f}^{1}_{3}(z,0,0,0)=f_{3}^{1}(z,0,0,0)&+\dfrac{3}{2}\Big{(}D_{z}f_{2}^{1}(z,0,0,0)U_{2}^{1}(z,0)+D_{w}f_{2}^{1}(z,0,0,0)U_{2}^{2}(z,0)\\ &+D_{\widehat{w}}f_{2}^{1}(z,0,0,0)\widehat{U}_{2}^{2}(z,0)-D_{z}U_{2}^{1}(z,0)g_{2}^{1}(z,0,0,0)\Big{)},\end{array} (3.16)

where U21,U22U_{2}^{1},U_{2}^{2} are given as in (3.6), and U^22=1π0πU22dx\widehat{U}_{2}^{2}=\frac{1}{\ell\pi}\int_{0}^{\ell\pi}U_{2}^{2}~{}\text{d}x. It follows from (3.13) that g21(z,0,0,0)=0g_{2}^{1}(z,0,0,0)=0, and we still have to calculate the following four parts:

ProjKer(M31)f31(z,0,0,0),ProjKer(M31)(Dzf21(z,0,0,0)U21(z,0)),ProjKer(M31)(Dwf21(z,0,0,0)U22(z,0)),ProjKer(M31)(Dw^f21(z,0,0,0)U^22(z,0)),\begin{array}[]{ll}\text{Proj}_{\mathrm{Ker}(M_{3}^{1})}f_{3}^{1}(z,0,0,0),~{}~{}\text{Proj}_{\mathrm{Ker}(M_{3}^{1})}(D_{z}f_{2}^{1}(z,0,0,0)U_{2}^{1}(z,0)),{}{}\\ \text{Proj}_{\mathrm{Ker}(M_{3}^{1})}(D_{w}f_{2}^{1}(z,0,0,0)U_{2}^{2}(z,0)),~{}~{}\text{Proj}_{\mathrm{Ker}(M_{3}^{1})}(D_{\widehat{w}}f_{2}^{1}(z,0,0,0)\widehat{U}_{2}^{2}(z,0)),\end{array}

which will be shown in the following.

(a) The computation of ProjKer(M31)f31(z,0,0,0)\mathrm{Proj}_{\mathrm{Ker}(M_{3}^{1})}f_{3}^{1}(z,0,0,0)

.

The third order Fréchet derivative of F~(U,U^,α)\widetilde{F}(U,\widehat{U},\alpha) at (Φzx,Φz^x,0)(\Phi z^{x},\Phi\widehat{z}^{x},0) is

F~3(z,0,0,0)=|ι|=3Fι1ι2ι3ι4ξn1ι1+ι2(x)ξn2ι3+ι4(x)z1ι1z2ι2z3ι3z4ι4,\begin{array}[]{ll}\widetilde{F}_{3}(z,0,0,0)=\sum_{|\iota|=3}F_{\iota_{1}\iota_{2}\iota_{3}\iota_{4}}\xi_{n_{1}}^{\iota_{1}+\iota_{2}}(x)\xi_{n_{2}}^{\iota_{3}+\iota_{4}}(x)z_{1}^{\iota_{1}}{z}_{2}^{\iota_{2}}z_{3}^{\iota_{3}}{z}_{4}^{\iota_{4}},\end{array}

where ι=(ι1,ι2,ι3,ι4)04\iota=(\iota_{1},\iota_{2},\iota_{3},\iota_{4})\in\mathbb{N}_{0}^{4}, |ι|=j=14ιj|\iota|=\sum_{j=1}^{4}\iota_{j}, Fι1ι2ι3ι4F_{\iota_{1}\iota_{2}\iota_{3}\iota_{4}} is the coefficient vector of z1ι1z2ι2z3ι3z4ι4z_{1}^{\iota_{1}}{z}_{2}^{\iota_{2}}z_{3}^{\iota_{3}}{z}_{4}^{\iota_{4}}. Then we have

f31(z,0,0,0)=Φ¯(βn1,F~3(z,0,0,0)βn2,F~3(z,0,0,0))=Φ¯(|ι|=3Fι1ι2ι3ι40πξn1ι1+ι2+1ξn2ι3+ι4dxz1ι1z2ι2z3ι3z4ι4|ι|=3Fι1ι2ι3ι40πξn1ι1+ι2ξn2ι3+ι4+1dxz1ι1z2ι2z3ι3z4ι4).\begin{array}[]{ll}f_{3}^{1}(z,0,0,0)&=\bar{\Phi}\left(\begin{array}[]{l}\big{\langle}\beta_{n_{1}},\widetilde{F}_{3}(z,0,0,0)\big{\rangle}\\ \big{\langle}\beta_{n_{2}},\widetilde{F}_{3}(z,0,0,0)\big{\rangle}\end{array}\right)\\ &=\bar{\Phi}\left(\begin{array}[]{l}\sum_{|\iota|=3}F_{\iota_{1}\iota_{2}\iota_{3}\iota_{4}}\int_{0}^{\ell\pi}\xi_{n_{1}}^{\iota_{1}+\iota_{2}+1}\xi_{n_{2}}^{\iota_{3}+\iota_{4}}\mathrm{d}xz_{1}^{\iota_{1}}{z}_{2}^{\iota_{2}}z_{3}^{\iota_{3}}{z}_{4}^{\iota_{4}}\\ \sum_{|\iota|=3}F_{\iota_{1}\iota_{2}\iota_{3}\iota_{4}}\int_{0}^{\ell\pi}\xi_{n_{1}}^{\iota_{1}+\iota_{2}}\xi_{n_{2}}^{\iota_{3}+\iota_{4}+1}\mathrm{d}xz_{1}^{\iota_{1}}{z}_{2}^{\iota_{2}}z_{3}^{\iota_{3}}{z}_{4}^{\iota_{4}}\end{array}\right).\end{array}

Thus,

13!ProjKer(M31)f31(z,0,0,0)=(C2100z12z2+C1011z1z3z4C2100¯z1z22+C1011¯z2z3z4C0021z32z4+C1110z1z2z3C0021¯z3z42+C1110¯z1z2z4),\frac{1}{3!}\text{Proj}_{\mathrm{Ker}(M_{3}^{1})}f_{3}^{1}(z,0,0,0)=\left(\begin{array}[]{ll}C_{2100}z_{1}^{2}z_{2}+C_{1011}z_{1}z_{3}z_{4}\\ \overline{C_{2100}}z_{1}z_{2}^{2}+\overline{C_{1011}}z_{2}z_{3}z_{4}\\ C_{0021}z_{3}^{2}z_{4}+C_{1110}z_{1}z_{2}z_{3}\\ \overline{C_{0021}}z_{3}z_{4}^{2}+\overline{C_{1110}}z_{1}z_{2}z4\\ \end{array}\right), (3.17)

where

C2100=16ψ¯1F2100γ40,C1011=16ψ¯1F1011γ22,C0021=16ψ¯3F0021γ04,C1110=16ψ¯3F1110γ22,\begin{array}[]{ll}C_{2100}=\frac{1}{6}\bar{\psi}_{1}F_{2100}\gamma_{40},~{}C_{1011}=\frac{1}{6}\bar{\psi}_{1}F_{1011}\gamma_{22},~{}C_{0021}=\frac{1}{6}\bar{\psi}_{3}F_{0021}\gamma_{04},~{}C_{1110}=\frac{1}{6}\bar{\psi}_{3}F_{1110}\gamma_{22},{}\\ \end{array}

with γij=0πξn1i(x)ξn2j(x)dx\gamma_{ij}=\int_{0}^{\ell\pi}\xi_{n_{1}}^{i}(x)\xi_{n_{2}}^{j}(x)\text{d}x, and

0πξnk4(x)dx={1π,nk=0,32π,nk0,0πξn12(x)ξn22(x)dx={32π,n1=n20,1π,otherwise.\begin{array}[]{ll}\displaystyle~{}\qquad\int_{0}^{\ell\pi}\xi_{n_{k}}^{4}(x)\mathrm{d}x=\begin{cases}\cfrac{1}{\ell\pi},&n_{k}=0,\vspace{0.1cm}\\ \cfrac{3}{2\ell\pi},&n_{k}\neq 0,\\ \end{cases}~{}~{}~{}~{}\displaystyle\int_{0}^{\ell\pi}\xi_{n_{1}}^{2}(x)\xi_{n_{2}}^{2}(x)\mathrm{d}x=\displaystyle\begin{cases}\cfrac{3}{2\ell\pi},&n_{1}=n_{2}\neq 0,\vspace{0.1cm}\\ \cfrac{1}{\ell\pi},&otherwise.\\ \end{cases}\end{array}

(b) The computation of ProjKer(M31)Dzf21(z,0,0,0)U21(z,0)\mathrm{Proj}_{\mathrm{Ker}(M_{3}^{1})}D_{z}f_{2}^{1}(z,0,0,0)U_{2}^{1}(z,0)

.

From section 3.2, we know that F2(U,U^,α)=F2(U,U^,0)F_{2}(U,\widehat{U},\alpha)=F_{2}(U,\widehat{U},0). Moreover, by (2.13), we have

F2(z,w,w^,0)=F2(U,U^,0)=|ι|=2Fι1ι2ι3ι4ξn1ι1+ι2ξn2ι3+ι4z1ι1z2ι2z3ι3z4ι4+S2(w)+S2(w^)+o(|w|2,|ww^|,w^2),\begin{array}[]{ll}F_{2}(z,w,\widehat{w},0)&=F_{2}(U,\widehat{U},0)\\ &=\displaystyle\sum_{|\iota|=2}F_{\iota_{1}\iota_{2}\iota_{3}\iota_{4}}\xi_{n_{1}}^{\iota_{1}+\iota_{2}}\xi_{n_{2}}^{\iota_{3}+\iota_{4}}z_{1}^{\iota_{1}}{z}_{2}^{\iota_{2}}z_{3}^{\iota_{3}}{z}_{4}^{\iota_{4}}+S_{2}(w)+S_{2}(\widehat{w})+o(|w|^{2},|w\widehat{w}|,\widehat{w}^{2}),\end{array} (3.18)

where S2(w),S2(w^)S_{2}(w),S_{2}(\widehat{w}) represent the linear terms of ww and w^\widehat{w}, respectively.

From (3.11) and (3.18), we have

f21(z,0,0,0)=Ψ¯(βn1,F2(z,0,0,0)βn2,F2(z,0,0,0))=Ψ¯(|ι|=2Fι1ι2ι3ι40πξn1ι1+ι2+1ξn2ι3+ι4dxz1ι1z2ι2z3ι3z4ι4|ι|=2Fι1ι2ι3ι40πξn1ι1+ι2+1ξn2ι3+ι4dxz1ι1z2ι2z3ι3z4ι4).\begin{array}[]{ll}f_{2}^{1}(z,0,0,0)&=\bar{\Psi}\left(\begin{array}[]{l}\big{\langle}\beta_{n_{1}},F_{2}(z,0,0,0)\big{\rangle}\\ \big{\langle}\beta_{n_{2}},F_{2}(z,0,0,0)\big{\rangle}\end{array}\right)\\ &=\bar{\Psi}\left(\begin{array}[]{l}\sum_{|\iota|=2}F_{\iota_{1}\iota_{2}\iota_{3}\iota_{4}}\int_{0}^{\ell\pi}\xi_{n_{1}}^{\iota_{1}+\iota_{2}+1}\xi_{n_{2}}^{\iota_{3}+\iota_{4}}\mathrm{d}xz_{1}^{\iota_{1}}{z}_{2}^{\iota_{2}}z_{3}^{\iota_{3}}{z}_{4}^{\iota_{4}}\\ \sum_{|\iota|=2}F_{\iota_{1}\iota_{2}\iota_{3}\iota_{4}}\int_{0}^{\ell\pi}\xi_{n_{1}}^{\iota_{1}+\iota_{2}+1}\xi_{n_{2}}^{\iota_{3}+\iota_{4}}\mathrm{d}xz_{1}^{\iota_{1}}{z}_{2}^{\iota_{2}}z_{3}^{\iota_{3}}{z}_{4}^{\iota_{4}}\end{array}\right).\end{array} (3.19)

Denote f21(z,0,0,0)=(f21(1),f21(2),f21(3),f21(4))f_{2}^{1}(z,0,0,0)=(f_{2}^{1(1)},f_{2}^{1(2)},f_{2}^{1(3)},f_{2}^{1(4)}), and we have

f21(1)=f20001(1)z12+f11001(1)z2z2+f10101(1)z1z3+f10011(1)z1z4+f02001(1)z22+f01101(1)z2z3+f01011(1)z2z4+f00201(1)z32+f00111(1)z3z4+f00021(1)z42,f21(2)=f20001(2)z12+f11001(2)z2z2+f10101(2)z1z3+f10011(2)z1z4+f02001(2)z22+f01101(2)z2z3+f01011(2)z2z4+f00201(2)z32+f00111(2)z3z4+f00021(2)z42,f21(3)=f20001(3)z12+f11001(3)z2z2+f10101(3)z1z3+f10011(3)z1z4+f02001(3)z22+f01101(3)z2z3+f01011(3)z2z4+f00201(3)z32+f00111(3)z3z4+f00021(3)z42,f21(4)=f20001(4)z12+f11001(4)z2z2+f10101(4)z1z3+f10011(4)z1z4+f02001(4)z22+f01101(4)z2z3+f01011(4)z2z4+f00201(4)z32+f00111(4)z3z4+f00021(4)z42,\begin{array}[]{ll}f_{2}^{1}(1)=f_{2000}^{1(1)}z_{1}^{2}&+f_{1100}^{1(1)}z_{2}z_{2}+f_{1010}^{1(1)}z_{1}z_{3}+f_{1001}^{1(1)}z_{1}z_{4}+f_{0200}^{1(1)}z_{2}^{2}\vspace{0.2cm}\\ &+f_{0110}^{1(1)}z_{2}z_{3}+f_{0101}^{1(1)}z_{2}z_{4}+f_{0020}^{1(1)}z_{3}^{2}+f_{0011}^{1(1)}z_{3}z_{4}+f_{0002}^{1(1)}z_{4}^{2},\vspace{0.2cm}\\ f_{2}^{1}(2)=f_{2000}^{1(2)}z_{1}^{2}&+f_{1100}^{1(2)}z_{2}z_{2}+f_{1010}^{1(2)}z_{1}z_{3}+f_{1001}^{1(2)}z_{1}z_{4}+f_{0200}^{1(2)}z_{2}^{2}\vspace{0.2cm}\\ &+f_{0110}^{1(2)}z_{2}z_{3}+f_{0101}^{1(2)}z_{2}z_{4}+f_{0020}^{1(2)}z_{3}^{2}+f_{0011}^{1(2)}z_{3}z_{4}+f_{0002}^{1(2)}z_{4}^{2},\vspace{0.2cm}\\ f_{2}^{1}(3)=f_{2000}^{1(3)}z_{1}^{2}&+f_{1100}^{1(3)}z_{2}z_{2}+f_{1010}^{1(3)}z_{1}z_{3}+f_{1001}^{1(3)}z_{1}z_{4}+f_{0200}^{1(3)}z_{2}^{2}\vspace{0.2cm}\\ &+f_{0110}^{1(3)}z_{2}z_{3}+f_{0101}^{1(3)}z_{2}z_{4}+f_{0020}^{1(3)}z_{3}^{2}+f_{0011}^{1(3)}z_{3}z_{4}+f_{0002}^{1(3)}z_{4}^{2},\vspace{0.2cm}\\ f_{2}^{1}(4)=f_{2000}^{1(4)}z_{1}^{2}&+f_{1100}^{1(4)}z_{2}z_{2}+f_{1010}^{1(4)}z_{1}z_{3}+f_{1001}^{1(4)}z_{1}z_{4}+f_{0200}^{1(4)}z_{2}^{2}\vspace{0.2cm}\\ &+f_{0110}^{1(4)}z_{2}z_{3}+f_{0101}^{1(4)}z_{2}z_{4}+f_{0020}^{1(4)}z_{3}^{2}+f_{0011}^{1(4)}z_{3}z_{4}+f_{0002}^{1(4)}z_{4}^{2},\vspace{0.2cm}\\ \end{array} (3.20)

where

f20001(1)=ψ¯1F2000γ30,f20001(2)=ψ¯2F2000γ30,f20001(3)=ψ¯3F2000γ21,f20001(4)=ψ¯4F2000γ21,f11001(1)=ψ¯1F1100γ30,f11001(2)=ψ¯2F1100γ30,f11001(3)=ψ¯3F1100γ21,f11001(4)=ψ¯4F1100γ21,f10101(1)=ψ¯1F1010γ21,f10101(2)=ψ¯2F1010γ21,f10101(3)=ψ¯3F1010γ12,f10101(4)=ψ¯4F1010γ12,f10011(1)=ψ¯1F1001γ21,f10011(2)=ψ¯2F1001γ21,f10011(3)=ψ¯3F1001γ12,f10011(4)=ψ¯4F1001γ12,f02001(1)=ψ¯1F0200γ30,f02001(2)=ψ¯2F0200γ30,f02001(3)=ψ¯3F0200γ21,f02001(4)=ψ¯4F0200γ21,f01101(1)=ψ¯1F0110γ21,f01101(2)=ψ¯2F0110γ21,f01101(3)=ψ¯3F0110γ12,f01101(4)=ψ¯4F0110γ12,f01011(1)=ψ¯1F0101γ21,f01011(2)=ψ¯2F0101γ21,f01011(3)=ψ¯3F0101γ12,f01011(4)=ψ¯4F0101γ12,f00201(1)=ψ¯1F0020γ12,f00201(2)=ψ¯2F0020γ12,f00201(3)=ψ¯3F0020γ03,f00201(4)=ψ¯4F0020γ03,f00111(1)=ψ¯1F0011γ12,f00111(2)=ψ¯2F0011γ12,f00111(3)=ψ¯3F0011γ03,f00111(4)=ψ¯4F0011γ03,f00021(1)=ψ¯1F0002γ12,f00021(2)=ψ¯2F0002γ12,f00021(3)=ψ¯3F0002γ03,f00021(4)=ψ¯4F0002γ03,\begin{array}[]{ll}f_{2000}^{1(1)}=\bar{\psi}_{1}F_{2000}\gamma_{30},~{}f_{2000}^{1(2)}=\bar{\psi}_{2}F_{2000}\gamma_{30},~{}f_{2000}^{1(3)}=\bar{\psi}_{3}F_{2000}\gamma_{21},~{}f_{2000}^{1(4)}=\bar{\psi}_{4}F_{2000}\gamma_{21},\vspace{0.1cm}{}\\ f_{1100}^{1(1)}=\bar{\psi}_{1}F_{1100}\gamma_{30},~{}f_{1100}^{1(2)}=\bar{\psi}_{2}F_{1100}\gamma_{30},~{}f_{1100}^{1(3)}=\bar{\psi}_{3}F_{1100}\gamma_{21},~{}f_{1100}^{1(4)}=\bar{\psi}_{4}F_{1100}\gamma_{21},\vspace{0.1cm}{}\\ f_{1010}^{1(1)}=\bar{\psi}_{1}F_{1010}\gamma_{21},~{}f_{1010}^{1(2)}=\bar{\psi}_{2}F_{1010}\gamma_{21},~{}f_{1010}^{1(3)}=\bar{\psi}_{3}F_{1010}\gamma_{12},~{}f_{1010}^{1(4)}=\bar{\psi}_{4}F_{1010}\gamma_{12},\vspace{0.2cm}{}\\ f_{1001}^{1(1)}=\bar{\psi}_{1}F_{1001}\gamma_{21},~{}f_{1001}^{1(2)}=\bar{\psi}_{2}F_{1001}\gamma_{21},~{}f_{1001}^{1(3)}=\bar{\psi}_{3}F_{1001}\gamma_{12},~{}f_{1001}^{1(4)}=\bar{\psi}_{4}F_{1001}\gamma_{12},\vspace{0.2cm}{}\\ f_{0200}^{1(1)}=\bar{\psi}_{1}F_{0200}\gamma_{30},~{}f_{0200}^{1(2)}=\bar{\psi}_{2}F_{0200}\gamma_{30},~{}f_{0200}^{1(3)}=\bar{\psi}_{3}F_{0200}\gamma_{21},~{}f_{0200}^{1(4)}=\bar{\psi}_{4}F_{0200}\gamma_{21},\vspace{0.2cm}{}\\ f_{0110}^{1(1)}=\bar{\psi}_{1}F_{0110}\gamma_{21},~{}f_{0110}^{1(2)}=\bar{\psi}_{2}F_{0110}\gamma_{21},~{}f_{0110}^{1(3)}=\bar{\psi}_{3}F_{0110}\gamma_{12},~{}f_{0110}^{1(4)}=\bar{\psi}_{4}F_{0110}\gamma_{12},\vspace{0.2cm}{}\\ f_{0101}^{1(1)}=\bar{\psi}_{1}F_{0101}\gamma_{21},~{}f_{0101}^{1(2)}=\bar{\psi}_{2}F_{0101}\gamma_{21},~{}f_{0101}^{1(3)}=\bar{\psi}_{3}F_{0101}\gamma_{12},~{}f_{0101}^{1(4)}=\bar{\psi}_{4}F_{0101}\gamma_{12},\vspace{0.2cm}{}\\ f_{0020}^{1(1)}=\bar{\psi}_{1}F_{0020}\gamma_{12},~{}f_{0020}^{1(2)}=\bar{\psi}_{2}F_{0020}\gamma_{12},~{}f_{0020}^{1(3)}=\bar{\psi}_{3}F_{0020}\gamma_{03},~{}f_{0020}^{1(4)}=\bar{\psi}_{4}F_{0020}\gamma_{03},\vspace{0.2cm}{}\\ f_{0011}^{1(1)}=\bar{\psi}_{1}F_{0011}\gamma_{12},~{}f_{0011}^{1(2)}=\bar{\psi}_{2}F_{0011}\gamma_{12},~{}f_{0011}^{1(3)}=\bar{\psi}_{3}F_{0011}\gamma_{03},~{}f_{0011}^{1(4)}=\bar{\psi}_{4}F_{0011}\gamma_{03},\vspace{0.2cm}{}\\ f_{0002}^{1(1)}=\bar{\psi}_{1}F_{0002}\gamma_{12},~{}f_{0002}^{1(2)}=\bar{\psi}_{2}F_{0002}\gamma_{12},~{}f_{0002}^{1(3)}=\bar{\psi}_{3}F_{0002}\gamma_{03},~{}f_{0002}^{1(4)}=\bar{\psi}_{4}F_{0002}\gamma_{03},\vspace{0.2cm}{}\\ \end{array}

with γij=0πξn1i(x)ξn2j(x)dx\gamma_{ij}=\int_{0}^{\ell\pi}\xi_{n_{1}}^{i}(x)\xi_{n_{2}}^{j}(x)\text{d}x, and

0πξn1(x)ξn22(x)dx={1π,n1=0,0,otherwise,0πξn12(x)ξn2(x)dx={1π,n2=n1=0,12π,n2=2n10,0,otherwise.\begin{array}[]{ll}\displaystyle\int_{0}^{\ell\pi}\xi_{n_{1}}(x)\xi_{n_{2}}^{2}(x)\mathrm{d}x&=\displaystyle\begin{cases}\cfrac{1}{\sqrt{\ell\pi}},&n_{1}=0,\vspace{0.1cm}\\ ~{}~{}~{}0,&otherwise,\\ \end{cases}\\ \displaystyle\int_{0}^{\ell\pi}\xi_{n_{1}}^{2}(x)\xi_{n_{2}}(x)\mathrm{d}x&=\begin{cases}\cfrac{1}{\sqrt{\ell\pi}},&n_{2}=n_{1}=0,\vspace{0.1cm}\\ \cfrac{1}{\sqrt{2\ell\pi}},&n_{2}=2n_{1}\neq 0,\vspace{0.1cm}\\ ~{}~{}~{}0,&otherwise.\\ \end{cases}\\ \end{array}

Let U21(z,0)=(U21(1),U21(2),U21(3),U21(4))U_{2}^{1}(z,0)=(U_{2}^{1(1)},U_{2}^{1(2)},U_{2}^{1(3)},U_{2}^{1(4)}), and then by (3.6), (3.7), (3.20) and (3.19), we have

U21(1)=1iω1f20001(1)z121iω1f11001(1)z2z2+1iω2f10101(1)z1z31iω2f10011(1)z1z413iω1f02001(1)z2212iω1iω2f01101(1)z2z312iω1+iω2f01011(1)z2z41iω12iω2f00201(1)z321iω1f00111(1)z3z41iω1+2iω2f00021(1)z42,U21(2)=13iω1f20001(2)z12+1iω1f11001(2)z1z2+12iω1+iω2f10101(2)z1z3+12iω1iω2f10011(2)z1z41iω1f02001(2)z22+1iω2f01101(2)z2z31iω2f01011(2)z2z4+1iω1+2iω2f00201(2)z32+1iω1f00111(2)z3z4+1iω12iω2f00021(2)z42,U21(3)=12iω1iω2f20001(3)z121iω2f11001(3)z1z2+1iω1f10101(3)z1z3+1iω12iω2f10011(3)z1z412iω1+iω2f02001(3)z221iω1f01101(3)z2z31iω1+2iω2f01011(3)z2z4+1iω2f00201(3)z321iω2f00111(3)z3z413iω2f00021(3)z42,U21(4)=12iω1+iω2f20001(4)z12+1iω2f11001(4)z1z2+1iω1+2iω2f10101(4)z1z3+1iω1f10011(4)z1z412iω1iω2f02001(4)z221iω12iω2f01101(4)z2z31iω1f01011(4)z2z4+13iω2f00201(4)z32+1iω2f00111(4)z3z41iω2f00021(4)z42.\begin{array}[]{ll}U_{2}^{1(1)}=&\cfrac{1}{i\omega_{1}}f_{2000}^{1(1)}z_{1}^{2}-\cfrac{1}{i\omega_{1}}f_{1100}^{1(1)}z_{2}z_{2}+\cfrac{1}{i\omega_{2}}f_{1010}^{1(1)}z_{1}z_{3}-\cfrac{1}{i\omega_{2}}f_{1001}^{1(1)}z_{1}z_{4}-\cfrac{1}{3i\omega_{1}}f_{0200}^{1(1)}z_{2}^{2}-\cfrac{1}{2i\omega_{1}-i\omega_{2}}f_{0110}^{1(1)}z_{2}z_{3}\\ &-\cfrac{1}{2i\omega_{1}+i\omega_{2}}f_{0101}^{1(1)}z_{2}z_{4}-\cfrac{1}{i\omega_{1}-2i\omega_{2}}f_{0020}^{1(1)}z_{3}^{2}-\cfrac{1}{i\omega_{1}}f_{0011}^{1(1)}z_{3}z_{4}-\cfrac{1}{i\omega_{1}+2i\omega_{2}}f_{0002}^{1(1)}z_{4}^{2},\\ U_{2}^{1(2)}=&\cfrac{1}{3i\omega_{1}}f_{2000}^{1(2)}z_{1}^{2}+\cfrac{1}{i\omega_{1}}f_{1100}^{1(2)}z_{1}z_{2}+\cfrac{1}{2i\omega_{1}+i\omega_{2}}f_{1010}^{1(2)}z_{1}z_{3}+\cfrac{1}{2i\omega_{1}-i\omega_{2}}f_{1001}^{1(2)}z_{1}z_{4}-\cfrac{1}{i\omega_{1}}f_{0200}^{1(2)}z_{2}^{2}\\ &+\cfrac{1}{i\omega_{2}}f_{0110}^{1(2)}z_{2}z_{3}-\cfrac{1}{i\omega_{2}}f_{0101}^{1(2)}z_{2}z_{4}+\cfrac{1}{i\omega_{1}+2i\omega_{2}}f_{0020}^{1(2)}z_{3}^{2}+\cfrac{1}{i\omega_{1}}f_{0011}^{1(2)}z_{3}z_{4}+\cfrac{1}{i\omega_{1}-2i\omega_{2}}f_{0002}^{1(2)}z_{4}^{2},\\ U_{2}^{1(3)}=&\cfrac{1}{2i\omega_{1}-i\omega_{2}}f_{2000}^{1(3)}z_{1}^{2}-\cfrac{1}{i\omega_{2}}f_{1100}^{1(3)}z_{1}z_{2}+\cfrac{1}{i\omega_{1}}f_{1010}^{1(3)}z_{1}z_{3}+\cfrac{1}{i\omega_{1}-2i\omega_{2}}f_{1001}^{1(3)}z_{1}z_{4}-\cfrac{1}{2i\omega_{1}+i\omega_{2}}f_{0200}^{1(3)}z_{2}^{2}\\ &-\cfrac{1}{i\omega_{1}}f_{0110}^{1(3)}z_{2}z_{3}-\cfrac{1}{i\omega_{1}+2i\omega_{2}}f_{0101}^{1(3)}z_{2}z_{4}+\cfrac{1}{i\omega_{2}}f_{0020}^{1(3)}z_{3}^{2}-\cfrac{1}{i\omega_{2}}f_{0011}^{1(3)}z_{3}z_{4}-\cfrac{1}{3i\omega_{2}}f_{0002}^{1(3)}z_{4}^{2},\\ U_{2}^{1(4)}=&\cfrac{1}{2i\omega_{1}+i\omega_{2}}f_{2000}^{1(4)}z_{1}^{2}+\cfrac{1}{i\omega_{2}}f_{1100}^{1(4)}z_{1}z_{2}+\cfrac{1}{i\omega_{1}+2i\omega_{2}}f_{1010}^{1(4)}z_{1}z_{3}+\cfrac{1}{i\omega_{1}}f_{1001}^{1(4)}z_{1}z_{4}-\cfrac{1}{2i\omega_{1}-i\omega_{2}}f_{0200}^{1(4)}z_{2}^{2}\\ &-\cfrac{1}{i\omega_{1}-2i\omega_{2}}f_{0110}^{1(4)}z_{2}z_{3}-\cfrac{1}{i\omega_{1}}f_{0101}^{1(4)}z_{2}z_{4}+\cfrac{1}{3i\omega_{2}}f_{0020}^{1(4)}z_{3}^{2}+\cfrac{1}{i\omega_{2}}f_{0011}^{1(4)}z_{3}z_{4}-\cfrac{1}{i\omega_{2}}f_{0002}^{1(4)}z_{4}^{2}.\\ \end{array}

Therefore,

13!ProjKer(M31)(Dzf21(z,0,0,0)U21(z,0))=(D2100z12z2+D1011z1z3z4D2100¯z1z22+D1011¯z2z3z4D0021z32z4+D1110z1z2z3D0021¯z3z42+D1110¯z1z2z4),\dfrac{1}{3!}\mathrm{Proj}_{\mathrm{Ker}(M_{3}^{1})}(D_{z}f_{2}^{1}(z,0,0,0)U_{2}^{1}(z,0))=\left(\begin{array}[]{cc}D_{2100}z_{1}^{2}z_{2}+D_{1011}z_{1}z_{3}z_{4}\\ \overline{D_{2100}}z_{1}z_{2}^{2}+\overline{D_{1011}}z_{2}z_{3}z_{4}\\ D_{0021}z_{3}^{2}z_{4}+D_{1110}z_{1}z_{2}z_{3}\\ \overline{D_{0021}}z_{3}z_{4}^{2}+\overline{D_{1110}}z_{1}z_{2}z4\\ \end{array}\right), (3.21)

where

D2100=16(1iω1f20001(1)f11001(1)+1iω1f11001(1)f11001(2)+23iω1f02001(1)f20001(2)1iω2f10101(1)f11001(3)+12iω1iω2f01101(1)f20001(3)+1iω2f10011(1)f11001(4)+12iω1+iω2f01011(1)f20001(4)),D1011=16(2iω1f20001(1)f00111(1)+1iω1f11001(1)f00111(2)+12iω1iω2f01101(1)f10011(2)+12iω1+iω2f01011(1)f10101(2)1iω2f10101(1)f00111(3)+2iω12iω2f00201(1)f10011(3)+1iω1f00111(1)f10101(3)+1iω2f10011(1)f00111(4)+1iω1f00111(1)f10011(4)+2iω1+2iω2f00021(1)f10101(4)),D0021=16(1iω1f10101(3)f00111(1)1iω12iω2f10011(3)f00201(1)+1iω1f01101(3)f00111(2)+1iω1+2iω2f01011(3)f00201(2)1iω2f00201(3)f00111(3)+1iω2f00111(3)f00111(4)+23iω2f00021(3)f00201(4)),D1110=16(22iω1iω2f20001(3)f01101(1)+1iω2f11001(3)f10101(1)1iω1f10101(3)f11001(1)+1iω2f11001(3)f01101(2)+22iω1+iω2f02001(3)f10101(2)+1iω1f01101(3)f11001(2)2iω2f00201(3)f11001(3)1iω12iω2f10011(3)f01101(4)+1iω1+2iω2f01011(3)f10101(4)+1iω2f00111(3)f11001(4)).\begin{array}[]{ll}D_{2100}=&\dfrac{1}{6}\Big{(}-\cfrac{1}{i\omega_{1}}f_{2000}^{1(1)}f_{1100}^{1(1)}+\cfrac{1}{i\omega_{1}}f_{1100}^{1(1)}f_{1100}^{1(2)}+\cfrac{2}{3i\omega_{1}}f_{0200}^{1(1)}f_{2000}^{1(2)}-\cfrac{1}{i\omega_{2}}f_{1010}^{1(1)}f_{1100}^{1(3)}\\ &+\cfrac{1}{2i\omega_{1}-i\omega_{2}}f_{0110}^{1(1)}f_{2000}^{1(3)}+\cfrac{1}{i\omega_{2}}f_{1001}^{1(1)}f_{1100}^{1(4)}+\cfrac{1}{2i\omega_{1}+i\omega_{2}}f_{0101}^{1(1)}f_{2000}^{1(4)}\Big{)},\\ D_{1011}=&\dfrac{1}{6}\Big{(}-\cfrac{2}{i\omega_{1}}f_{2000}^{1(1)}f_{0011}^{1(1)}+\cfrac{1}{i\omega_{1}}f_{1100}^{1(1)}f_{0011}^{1(2)}+\cfrac{1}{2i\omega_{1}-i\omega_{2}}f_{0110}^{1(1)}f_{1001}^{1(2)}+\cfrac{1}{2i\omega_{1}+i\omega_{2}}f_{0101}^{1(1)}f_{1010}^{1(2)}-\cfrac{1}{i\omega_{2}}f_{1010}^{1(1)}f_{0011}^{1(3)}\\ &+\cfrac{2}{i\omega_{1}-2i\omega_{2}}f_{0020}^{1(1)}f_{1001}^{1(3)}+\cfrac{1}{i\omega_{1}}f_{0011}^{1(1)}f_{1010}^{1(3)}+\cfrac{1}{i\omega_{2}}f_{1001}^{1(1)}f_{0011}^{1(4)}+\cfrac{1}{i\omega_{1}}f_{0011}^{1(1)}f_{1001}^{1(4)}+\cfrac{2}{i\omega_{1}+2i\omega_{2}}f_{0002}^{1(1)}f_{1010}^{1(4)}\Big{)},\\ D_{0021}=&\dfrac{1}{6}\Big{(}-\cfrac{1}{i\omega_{1}}f_{1010}^{1(3)}f_{0011}^{1(1)}-\cfrac{1}{i\omega_{1}-2i\omega_{2}}f_{1001}^{1(3)}f_{0020}^{1(1)}+\cfrac{1}{i\omega_{1}}f_{0110}^{1(3)}f_{0011}^{1(2)}+\cfrac{1}{i\omega_{1}+2i\omega_{2}}f_{0101}^{1(3)}f_{0020}^{1(2)}\\ &-\cfrac{1}{i\omega_{2}}f_{0020}^{1(3)}f_{0011}^{1(3)}+\cfrac{1}{i\omega_{2}}f_{0011}^{1(3)}f_{0011}^{1(4)}+\cfrac{2}{3i\omega_{2}}f_{0002}^{1(3)}f_{0020}^{1(4)}\Big{)},\\ D_{1110}=&\dfrac{1}{6}\Big{(}-\cfrac{2}{2i\omega_{1}-i\omega_{2}}f_{2000}^{1(3)}f_{0110}^{1(1)}+\cfrac{1}{i\omega_{2}}f_{1100}^{1(3)}f_{1010}^{1(1)}-\cfrac{1}{i\omega_{1}}f_{1010}^{1(3)}f_{1100}^{1(1)}+\cfrac{1}{i\omega_{2}}f_{1100}^{1(3)}f_{0110}^{1(2)}+\cfrac{2}{2i\omega_{1}+i\omega_{2}}f_{0200}^{1(3)}f_{1010}^{1(2)}\\ &+\cfrac{1}{i\omega_{1}}f_{0110}^{1(3)}f_{1100}^{1(2)}-\cfrac{2}{i\omega_{2}}f_{0020}^{1(3)}f_{1100}^{1(3)}-\cfrac{1}{i\omega_{1}-2i\omega_{2}}f_{1001}^{1(3)}f_{0110}^{1(4)}+\cfrac{1}{i\omega_{1}+2i\omega_{2}}f_{0101}^{1(3)}f_{1010}^{1(4)}+\cfrac{1}{i\omega_{2}}f_{0011}^{1(3)}f_{1100}^{1(4)}\Big{)}.\\ \end{array}

(c) The computation of ProjKer(M31)Dwf21(z,0,0,0)U22(z,0)\mathrm{Proj}_{\mathrm{Ker}(M_{3}^{1})}D_{w}f_{2}^{1}(z,0,0,0)U_{2}^{2}(z,0) and ProjKer(M31)Dw^f21(z,0,0,0)U^22(z,0)\mathrm{Proj}_{\mathrm{Ker}(M_{3}^{1})}D_{\widehat{w}}f_{2}^{1}(z,0,0,0)\widehat{U}_{2}^{2}(z,0)

.

Recalling from (3.10) that F~2(z,w,w^,0)=F2(z,w,w^,0)\widetilde{F}_{2}(z,w,\widehat{w},0)=F_{2}(z,w,\widehat{w},0) and by virtue of (3.18), we have

F~2(z,w,w^,0)=|ι|=2Fι1ι2ι3ι4ξn1ι1+ι2ξn2ι3+ι4z1ι1z2ι2z3ι3z4ι4+S2(w)+S2(w^)+o(|w|2,|ww^|,w^2)=S2(w)+S2(w^)+o(|w|2,|ww^|,w^2,z2)=Swz(w)zx+Sw^z(w^)zx+o(|w|2,|ww^|,w^2,z2),\begin{array}[]{ll}\widetilde{F}_{2}(z,w,\widehat{w},0)&=\displaystyle\sum_{|\iota|=2}F_{\iota_{1}\iota_{2}\iota_{3}\iota_{4}}\xi_{n_{1}}^{\iota_{1}+\iota_{2}}\xi_{n_{2}}^{\iota_{3}+\iota_{4}}z_{1}^{\iota_{1}}{z}_{2}^{\iota_{2}}z_{3}^{\iota_{3}}{z}_{4}^{\iota_{4}}+S_{2}(w)+S_{2}(\widehat{w})+o(|w|^{2},|w\widehat{w}|,\widehat{w}^{2})\\ &=S_{2}(w)+S_{2}(\widehat{w})+o(|w|^{2},|w\widehat{w}|,\widehat{w}^{2},z^{2})\\ &=S_{wz}(w)z^{x}+S_{\widehat{w}z}(\widehat{w})z^{x}+o(|w|^{2},|w\widehat{w}|,\widehat{w}^{2},z^{2}),\\ \end{array} (3.22)

where zx=(z1ξn1,z2ξn1,z3ξn2,z4ξn2)Tz^{x}=(z_{1}\xi_{n_{1}},z_{2}\xi_{n_{1}},z_{3}\xi_{n_{2}},z_{4}\xi_{n_{2}})^{T}, and

Swz(w)=(Swz1(w),Swz2(w),Swz3(w),Swz4(w)),Sw^z(w^)=(Sw^z1(w^),Sw^z2(w^),Sw^z3(w^),Sw^z4(w^)),\begin{array}[]{cc}S_{wz}(w)=(S_{wz_{1}}(w),S_{wz_{2}}(w),S_{wz_{3}}(w),S_{wz_{4}}(w)),\\ S_{\widehat{w}z}(\widehat{w})=(S_{\widehat{w}z_{1}}(\widehat{w}),S_{\widehat{w}z_{2}}(\widehat{w}),S_{\widehat{w}z_{3}}(\widehat{w}),S_{\widehat{w}z_{4}}(\widehat{w})),\end{array} (3.23)

with SwziS_{wz_{i}} and Sw^ziS_{\widehat{w}z_{i}} are linear operators from Kerπ\mathrm{Ker}\pi to XX_{\mathbb{C}}, defined by

Swzi(y1)=Fw1ziy1(1)+Fw2ziy1(2),i=1,2,3,4,Sw^zi(y2)=Fw^1ziy2(1)+Fw^2ziy2(2),i=1,2,3,4.\begin{array}[]{cc}S_{wz_{i}}(y_{1})=F_{w_{1}z_{i}}y_{1}^{(1)}+F_{w_{2}z_{i}}y_{1}^{(2)},~{}i=1,2,3,4,\\ S_{\widehat{w}z_{i}}(y_{2})=F_{\widehat{w}_{1}z_{i}}y_{2}^{(1)}+F_{\widehat{w}_{2}z_{i}}y_{2}^{(2)},~{}i=1,2,3,4.\\ \end{array} (3.24)

Here, Fw1zi,Fw2ziF_{w_{1}z_{i}},F_{w_{2}z_{i}}, Fw^1zi,Fw^2ziF_{\widehat{w}_{1}z_{i}},F_{\widehat{w}_{2}z_{i}} are coefficient vectors. By (3.22), we can easily obtain

DwF~(z,0,0,0)(y1)=Swz1(y1)z1ξn1+Swz2(y1)z2ξn1+Swz3(y1)z3ξn2+Swz4(y1)z4ξn2,Dw^F~(z,0,0,0)(y2)=Sw^z1(y2)z1ξn1+Sw^z2(y2)z2ξn1+Sw^z3(y2)z3ξn2+Sw^z4(y2)z4ξn2.\begin{array}[]{ll}D_{w}\widetilde{F}(z,0,0,0)(y_{1})=S_{wz_{1}}(y_{1})z_{1}\xi_{n_{1}}+S_{wz_{2}}(y_{1})z_{2}\xi_{n_{1}}+S_{wz_{3}}(y_{1})z_{3}\xi_{n_{2}}+S_{wz_{4}}(y_{1})z_{4}\xi_{n_{2}},\\ D_{\widehat{w}}\widetilde{F}(z,0,0,0)(y_{2})=S_{\widehat{w}z_{1}}(y_{2})z_{1}\xi_{n_{1}}+S_{\widehat{w}z_{2}}(y_{2})z_{2}\xi_{n_{1}}+S_{\widehat{w}z_{3}}(y_{2})z_{3}\xi_{n_{2}}+S_{\widehat{w}z_{4}}(y_{2})z_{4}\xi_{n_{2}}.\\ \end{array}

Let U22(z,0)=j0hj(z)ξj(x)U_{2}^{2}(z,0)=\sum_{j\geq 0}h_{j}(z)\xi_{j}(x) with

hj(z)=(hj(1)(z)hj(2)(z)hj(n)(z))=|ι|=2(hj,ι1ι2ι3ι4(1)hj,ι1ι2ι3ι4(2)hj,ι1ι2ι3ι4(n))z1ι1z2ι2z3ι3z4ι4.h_{j}(z)=\left(\begin{array}[]{cc}h_{j}^{(1)}(z)\\ h_{j}^{(2)}(z)\\ \vdots\\ h_{j}^{(n)}(z)\end{array}\right)=\sum_{|\iota|=2}\left(\begin{array}[]{cc}h_{j,\iota_{1}\iota_{2}\iota_{3}\iota_{4}}^{(1)}\\ h_{j,\iota_{1}\iota_{2}\iota_{3}\iota_{4}}^{(2)}\\ \vdots\\ h_{j,\iota_{1}\iota_{2}\iota_{3}\iota_{4}}^{(n)}\end{array}\right)z_{1}^{\iota_{1}}z_{2}^{\iota_{2}}z_{3}^{\iota_{3}}z_{4}^{\iota_{4}}.

Then we have

Dwf21(z,0,0,0)U22(z,0)=Ψ¯(βn1,DwF~2(z,0,0,0)U22(z,0)βn2,DwF~2(z,0,0,0)U22(z,0))=Ψ¯(j0Swz1(hj)γjn1n1z1+j0Swz2(hj)γjn1n1z2+j0Swz3(hj)γjn1n2z3+j0Swz4(hj)γjn1n2z4j0Swz1(hj)γjn1n2z1+j0Swz2(hj)γjn1n2z2+j0Swz3(hj)γjn2n2z3+j0Swz4(hj)γjn2n2z4),\begin{array}[]{ll}&D_{w}f_{2}^{1}(z,0,0,0)U_{2}^{2}(z,0)=\bar{\Psi}\left(\begin{array}[]{ll}\big{\langle}\beta_{n_{1}},~{}D_{w}\widetilde{F}_{2}(z,0,0,0)U_{2}^{2}(z,0)\big{\rangle}\\ \big{\langle}\beta_{n_{2}},~{}D_{w}\widetilde{F}_{2}(z,0,0,0)U_{2}^{2}(z,0)\big{\rangle}\end{array}\right)\\ &=\bar{\Psi}\left(\begin{array}[]{ll}\sum_{j\geq 0}S_{wz_{1}}(h_{j})\gamma_{jn_{1}n_{1}}z_{1}+\sum_{j\geq 0}S_{wz_{2}}(h_{j})\gamma_{jn_{1}n_{1}}z_{2}&+\sum_{j\geq 0}S_{wz_{3}}(h_{j})\gamma_{jn_{1}n_{2}}z_{3}\\ &+\sum_{j\geq 0}S_{wz_{4}}(h_{j})\gamma_{jn_{1}n_{2}}z_{4}\\ \sum_{j\geq 0}S_{wz_{1}}(h_{j})\gamma_{jn_{1}n_{2}}z_{1}+\sum_{j\geq 0}S_{wz_{2}}(h_{j})\gamma_{jn_{1}n_{2}}z_{2}&+\sum_{j\geq 0}S_{wz_{3}}(h_{j})\gamma_{jn_{2}n_{2}}z_{3}\\ &+\sum_{j\geq 0}S_{wz_{4}}(h_{j})\gamma_{jn_{2}n_{2}}z_{4}\end{array}\right),\end{array}

and

Dw^f21(z,0,0,0)U^22(z,0)=Ψ¯(βn1,Dw^F~2(z,0,0,0)U^22(z,0)βn2,Dw^F~2(z,0,0,0)U^22(z,0))=Ψ¯(Sw^z1(h0)γ0n1n1z1+Sw^z2(h0)γ0n1n1z2+Sw^z3(h0)γ0n1n2z3+Sw^z4(h0)γ0n1n2z4Sw^z1(h0)γ0n1n2z1+Sw^z2(h0)γ0n1n2z2+Sw^z3(h0)γ0n2n2z3+Sw^z4(h0)γ0n2n2z4),\begin{array}[]{ll}&D_{\widehat{w}}f_{2}^{1}(z,0,0,0)\widehat{U}_{2}^{2}(z,0)=\bar{\Psi}\left(\begin{array}[]{ll}\big{\langle}\beta_{n_{1}},~{}D_{\widehat{w}}\widetilde{F}_{2}(z,0,0,0)\widehat{U}_{2}^{2}(z,0)\big{\rangle}\\ \big{\langle}\beta_{n_{2}},~{}D_{\widehat{w}}\widetilde{F}_{2}(z,0,0,0)\widehat{U}_{2}^{2}(z,0)\big{\rangle}\end{array}\right)\\ &=\bar{\Psi}\left(\begin{array}[]{ll}S_{\widehat{w}z_{1}}(h_{0})\gamma_{0n_{1}n_{1}}z_{1}+S_{\widehat{w}z_{2}}(h_{0})\gamma_{0n_{1}n_{1}}z_{2}+S_{\widehat{w}z_{3}}(h_{0})\gamma_{0n_{1}n_{2}}z_{3}+S_{\widehat{w}z_{4}}(h_{0})\gamma_{0n_{1}n_{2}}z_{4}\\ S_{\widehat{w}z_{1}}(h_{0})\gamma_{0n_{1}n_{2}}z_{1}+S_{\widehat{w}z_{2}}(h_{0})\gamma_{0n_{1}n_{2}}z_{2}+S_{\widehat{w}z_{3}}(h_{0})\gamma_{0n_{2}n_{2}}z_{3}+S_{\widehat{w}z_{4}}(h_{0})\gamma_{0n_{2}n_{2}}z_{4}\end{array}\right),\\ \end{array}

where γijk=0πξi(x)ξj(x)ξk(x)dx\gamma_{ijk}=\int_{0}^{\ell\pi}\xi_{i}(x)\xi_{j}(x)\xi_{k}(x)\mathrm{d}x. According to (3.15), we only need to calculate the following types of hjh_{j} for some j0j\in\mathbb{N}_{0}:

hj,2000,hj,1100,hj,0011,hj,1010,hj,1001,hj,0020,hj,0110,h_{j,2000},~{}h_{j,1100},~{}h_{j,0011},~{}h_{j,1010},~{}h_{j,1001},~{}h_{j,0020},~{}h_{j,0110},

and the following discussion is divided into three cases:

I:n1=n2=0,II:n1=0,n20,III:n10,n20.\mathrm{I}:n_{1}=n_{2}=0,~{}~{}~{}\mathrm{II}:n_{1}=0,n_{2}\neq 0,~{}~{}~{}\mathrm{III}:n_{1}\neq 0,n_{2}\neq 0.

𝐂𝐚𝐬𝐞𝐈:n1=n2=0.\mathbf{Case~{}I:}~{}n_{1}=n_{2}=0.

Clearly,

γjn1n2={1π,j=0,0,j0,\gamma_{jn_{1}n_{2}}=\begin{cases}\cfrac{1}{\sqrt{\ell\pi}},&j=0,\\ ~{}~{}~{}0,&j\neq 0,\\ \end{cases}

Then

Dwf21(z,0,0,0)U22(z,0)=1πΨ¯(Swz1(h0)z1+Swz2(h0)z2+Swz3(h0)z3+Swz4(h0)z4Swz1(h0)z1+Swz2(h0)z2+Swz3(h0)z3+Swz4(h0)z4),\begin{array}[]{ll}&D_{w}f_{2}^{1}(z,0,0,0)U_{2}^{2}(z,0)\\ &=\dfrac{1}{\sqrt{\ell\pi}}\bar{\Psi}\left(\begin{array}[]{cc}S_{wz_{1}}(h_{0})z_{1}+S_{wz_{2}}(h_{0})z_{2}+S_{wz_{3}}(h_{0})z_{3}+S_{wz_{4}}(h_{0})z_{4}\\ S_{wz_{1}}(h_{0})z_{1}+S_{wz_{2}}(h_{0})z_{2}+S_{wz_{3}}(h_{0})z_{3}+S_{wz_{4}}(h_{0})z_{4}\end{array}\right),\\ \end{array}

and

Dw^f21(z,0,0,0)U^22(z,0)=1πΨ¯(Sw^z1(h0)z1+Sw^z2(h0)z2+Sw^z3(h0)z3+Sw^z4(h0)z4Sw^z1(h0)z1+Sw^z2(h0)z2+Sw^z3(h0)z3+Sw^z4(h0)z4).\begin{array}[]{ll}D{\widehat{w}}f_{2}^{1}(z,0,0,0)\widehat{U}_{2}^{2}(z,0)=\cfrac{1}{\sqrt{\ell\pi}}\bar{\Psi}\left(\begin{array}[]{ll}S_{\widehat{w}z_{1}}(h_{0})z_{1}+S_{\widehat{w}z_{2}}(h_{0})z_{2}+S_{\widehat{w}z_{3}}(h_{0})z_{3}+S_{\widehat{w}z_{4}}(h_{0})z_{4}\\ S_{\widehat{w}z_{1}}(h_{0})z_{1}+S_{\widehat{w}z_{2}}(h_{0})z_{2}+S_{\widehat{w}z_{3}}(h_{0})z_{3}+S_{\widehat{w}z_{4}}(h_{0})z_{4}\end{array}\right).\\ \end{array}

Therefore, we have

13!ProjKer(M31)(Dwf21(z,0,0,0)U22(z,0)+Dw^f21(z,0,0,0)U^22(z,0))=((E2100+E^2100)z12z2+(E1011+E^1011)z1z3z4(E1200+E^1200)z1z22+(E0111+E^0111)z2z3z4(E0021+E^0021)z32z4+(E1110+E^1110)z1z2z3(E0012+E^0012)z3z42+(E1101+E^1101)z1z2z4),\begin{array}[]{ll}&\dfrac{1}{3!}\mathrm{Proj}_{\mathrm{Ker}(M_{3}^{1})}\left(D_{w}f_{2}^{1}(z,0,0,0)U_{2}^{2}(z,0)+D_{\widehat{w}}f_{2}^{1}(z,0,0,0)\widehat{U}_{2}^{2}(z,0)\right)\\ &\quad=\left(\begin{array}[]{ll}\big{(}E_{2100}+\widehat{E}_{2100}\big{)}z_{1}^{2}z_{2}+\big{(}E_{1011}+\widehat{E}_{1011}\big{)}z_{1}z_{3}z_{4}\\ \big{(}E_{1200}+\widehat{E}_{1200}\big{)}z_{1}z_{2}^{2}+\big{(}E_{0111}+\widehat{E}_{0111}\big{)}z_{2}z_{3}z_{4}\\ \big{(}E_{0021}+\widehat{E}_{0021}\big{)}z_{3}^{2}z_{4}+\big{(}E_{1110}+\widehat{E}_{1110}\big{)}z_{1}z_{2}z_{3}\\ \big{(}E_{0012}+\widehat{E}_{0012}\big{)}z_{3}z_{4}^{2}+\big{(}E_{1101}+\widehat{E}_{1101}\big{)}z_{1}z_{2}z_{4}\\ \end{array}\right),\end{array}

where

E2100=16πψ¯1(Swz1(h0,1100)+Swz2(h0,2000)),E1011=16πψ¯1(Swz1(h0,0011)+Swz3(h0,1001)+Swz4(h0,1010)),E0021=16πψ¯3(Swz3(h0,0011)+Swz4(h0,0020)),E1110=16πψ¯3(Swz1(h0,0110)+Swz2(h0,1010)+Swz3(h0,1100)),E^2100=16πψ¯1(Sw^z1(h0,1100)+Sw^z2(h0,2000)),E^1011=16πψ¯1(Sw^z1(h0,0011)+Sw^z3(h0,1001)+Sw^z4(h0,1010)),E^0021=16πψ¯3(Sw^z3(h0,0011)+Sw^z4(h0,0020)),E^1110=16πψ¯3(Sw^z1(h0,0110)+Sw^z2(h0,1010)+Sw^z3(h0,1100)),E1200=E2100¯,E0111=E1011¯,E0012=E0021¯,E1101=E1110¯,E^1200=E^2100¯,E^0111=E^1011¯,E^0012=E^0021¯,E^1101=E^1110¯.\begin{array}[]{ll}E_{2100}=\cfrac{1}{6\sqrt{\ell\pi}}\bar{\psi}_{1}\Big{(}S_{wz_{1}}(h_{0,1100})+S_{wz_{2}}(h_{0,2000})\Big{)},\\ E_{1011}=\cfrac{1}{6\sqrt{\ell\pi}}\bar{\psi}_{1}\Big{(}S_{wz_{1}}(h_{0,0011})+S_{wz_{3}}(h_{0,1001})+S_{wz_{4}}(h_{0,1010})\Big{)},\\ E_{0021}=\cfrac{1}{6\sqrt{\ell\pi}}\bar{\psi}_{3}\Big{(}S_{wz_{3}}(h_{0,0011})+S_{wz_{4}}(h_{0,0020}\big{)}\Big{)},\\ E_{1110}=\cfrac{1}{6\sqrt{\ell\pi}}\bar{\psi}_{3}\Big{(}S_{wz_{1}}(h_{0,0110})+S_{wz_{2}}(h_{0,1010})+S_{wz_{3}}(h_{0,1100})\Big{)},\\ \widehat{E}_{2100}=\cfrac{1}{6\sqrt{\ell\pi}}\bar{\psi}_{1}\Big{(}S_{\widehat{w}z_{1}}(h_{0,1100})+S_{\widehat{w}z_{2}}(h_{0,2000})\Big{)},{}{}\\ \widehat{E}_{1011}=\cfrac{1}{6\sqrt{\ell\pi}}\bar{\psi}_{1}\Big{(}S_{\widehat{w}z_{1}}(h_{0,0011})+S_{\widehat{w}z_{3}}(h_{0,1001})+S_{\widehat{w}z_{4}}(h_{0,1010})\Big{)},\\ \widehat{E}_{0021}=\cfrac{1}{6\sqrt{\ell\pi}}\bar{\psi}_{3}\Big{(}S_{\widehat{w}z_{3}}(h_{0,0011})+S_{\widehat{w}z_{4}}(h_{0,0020})\Big{)},{}{}\\ \widehat{E}_{1110}=\cfrac{1}{6\sqrt{\ell\pi}}\bar{\psi}_{3}\Big{(}S_{\widehat{w}z_{1}}(h_{0,0110})+S_{\widehat{w}z_{2}}(h_{0,1010})+S_{\widehat{w}z_{3}}(h_{0,1100})\Big{)},\\ E_{1200}=\overline{E_{2100}},~{}E_{0111}=\overline{E_{1011}},~{}E_{0012}=\overline{E_{0021}},~{}E_{1101}=\overline{E_{1110}},{}\\ \widehat{E}_{1200}=\overline{\widehat{E}_{2100}},~{}\widehat{E}_{0111}=\overline{\widehat{E}_{1011}},~{}\widehat{E}_{0012}=\overline{\widehat{E}_{0021}},~{}\widehat{E}_{1101}=\overline{\widehat{E}_{1110}}.{}\end{array}

Now, we compute the hj,ι1ι2ι3ι4h_{j,\iota_{1}\iota_{2}\iota_{3}\iota_{4}}. From (3.4), we have

M22U22(z,0)=Dz(j0hj(z)ξj(x))Bz1(j0hj(z)ξj(x)),\begin{array}[]{ll}M_{2}^{2}U_{2}^{2}(z,0)=D_{z}\left(\sum_{j\geq 0}h_{j}(z)\xi_{j}(x)\right)Bz-\mathscr{L}_{1}\left(\sum_{j\geq 0}h_{j}(z)\xi_{j}(x)\right),\end{array}

which leads to

βk,M22(j0hj(z)ξj(x))=βk,M22(hk(z)ξk(x))=βk,M22(|ι|=2hk,ι1ι2ι3ι4z1ι1z2ι2z3ι3z4ι4ξk(x))=βk,Dz(|ι|=2hk,ι1ι2ι3ι4z1ι1z2ι2z3ι3z4ι4ξk(x))Bz1hk(z)ξk(x)=|ι|=2Dz(hk,ι1ι2ι3ι4z1ι1z2ι2z3ι3z4ι4)Bz+k22D0hkL0(hk)L^0(hk)δ(k)=2iω1hk,2000z122iω1hk,0200z22+2iω2hk,0020z322iω2hk,0002z42+(iω1+iω2)hk,1010z1z3+(iω1iω2)hk,1001z1z4+(iω1+iω2)hk,0110z2z3+(iω1iω2)hk,0101z2z4+k22D0hkL0(hk)L^0(hk)δ(k),\begin{array}[]{ll}&~{}~{}~{}\left\langle\beta_{k},~{}M_{2}^{2}\left(\sum_{j\geq 0}h_{j}(z)\xi_{j}(x)\right)\right\rangle\\ &=\left\langle\beta_{k},~{}M_{2}^{2}\Big{(}h_{k}(z)\xi_{k}(x)\Big{)}\right\rangle\\ &=\left\langle\beta_{k},~{}M_{2}^{2}\left(\sum_{|\iota|=2}h_{k,\iota_{1}\iota_{2}\iota_{3}\iota_{4}}z_{1}^{\iota_{1}}z_{2}^{\iota_{2}}z_{3}^{\iota_{3}}z_{4}^{\iota_{4}}\xi_{k}(x)\right)\right\rangle\\ &=\left\langle\beta_{k},~{}D_{z}\left(\sum_{|\iota|=2}h_{k,\iota_{1}\iota_{2}\iota_{3}\iota_{4}}z_{1}^{\iota_{1}}z_{2}^{\iota_{2}}z_{3}^{\iota_{3}}z_{4}^{\iota_{4}}\xi_{k}(x)\right)Bz-\mathscr{L}_{1}h_{k}(z)\xi_{k}(x)\right\rangle\\ &=\sum_{|\iota|=2}D_{z}\left(h_{k,\iota_{1}\iota_{2}\iota_{3}\iota_{4}}z_{1}^{\iota_{1}}z_{2}^{\iota_{2}}z_{3}^{\iota_{3}}z_{4}^{\iota_{4}}\right)Bz+\dfrac{k^{2}}{\ell^{2}}D_{0}h_{k}-L_{0}(h_{k})-\widehat{L}_{0}(h_{k})\delta(k)\\ &=2i\omega_{1}h_{k,2000}z_{1}^{2}-2i\omega_{1}h_{k,0200}z_{2}^{2}+2i\omega_{2}h_{k,0020}z_{3}^{2}-2i\omega_{2}h_{k,0002}z_{4}^{2}+(i\omega_{1}+i\omega_{2})h_{k,1010}z_{1}z_{3}\\ &~{}~{}+(i\omega_{1}-i\omega_{2})h_{k,1001}z_{1}z_{4}+(-i\omega_{1}+i\omega_{2})h_{k,0110}z_{2}z_{3}+(-i\omega_{1}-i\omega_{2})h_{k,0101}z_{2}z_{4}\\ &~{}~{}+\dfrac{k^{2}}{\ell^{2}}D_{0}h_{k}-L_{0}(h_{k})-\widehat{L}_{0}(h_{k})\delta(k),\end{array} (3.25)

where δ()\delta(\cdot) is the Booean function defined as in (3.12).

In addition, by (3.2), we have

f22(z,0,0,0)=(Iπ)F~2(z,0,0,0)=F~2(z,0,0,0)ΦΨ¯(βn1,F~2(z,0,0,0)ξn1βn2,F~2(z,0,0,0)ξn2)=|ι|=2Fι1ι2ι3ι4ξn1ι1+ι2ξn2ι3+ι4z1ι1z2ι2z3ι3z4ι4ϕ1f21(1)ξn1ϕ2f21(2)ξn1ϕ3f21(3)ξn2ϕ4f21(4)ξn2.\begin{array}[]{ll}f_{2}^{2}(z,0,0,0)&=(I-\pi)\widetilde{F}_{2}(z,0,0,0)\\ &=\widetilde{F}_{2}(z,0,0,0)-\Phi~{}\bar{\Psi}\left(\begin{array}[]{ll}\big{\langle}\beta_{n_{1}},~{}\widetilde{F}_{2}(z,0,0,0)\big{\rangle}\xi_{n_{1}}\\ \big{\langle}\beta_{n_{2}},~{}\widetilde{F}_{2}(z,0,0,0)\big{\rangle}\xi_{n_{2}}\\ \end{array}\right)\\ &=\sum_{|\iota|=2}F_{\iota_{1}\iota_{2}\iota_{3}\iota_{4}}\xi_{n_{1}}^{\iota_{1}+\iota_{2}}\xi_{n_{2}}^{\iota_{3}+\iota_{4}}z_{1}^{\iota_{1}}{z}_{2}^{\iota_{2}}z_{3}^{\iota_{3}}{z}_{4}^{\iota_{4}}-\phi_{1}f_{2}^{1(1)}\xi_{n_{1}}\\ &~{}~{}~{}-\phi_{2}f_{2}^{1(2)}\xi_{n_{1}}-\phi_{3}f_{2}^{1(3)}\xi_{n_{2}}-\phi_{4}f_{2}^{1(4)}\xi_{n_{2}}.\end{array} (3.26)

which, together with the fact

M22U22(z,0)=f22(z,0,0,0),M_{2}^{2}U_{2}^{2}(z,0)=f_{2}^{2}(z,0,0,0), (3.27)

yields

βk,M22(j0hj(z)ξj(x))=βk,f22(z,0,0,0).\Big{\langle}\beta_{k},~{}M_{2}^{2}\Big{(}\sum\nolimits_{j\geq 0}h_{j}(z)\xi_{j}(x)\Big{)}\Big{\rangle}=\Big{\langle}\beta_{k},~{}f_{2}^{2}(z,0,0,0)\Big{\rangle}. (3.28)

Substituting (3.25) and (3.26) into (3.28) and balancing power of coefficients for z1ι1z2ι2z3ι3z4ι4z_{1}^{\iota_{1}}{z}_{2}^{\iota_{2}}z_{3}^{\iota_{3}}{z}_{4}^{\iota_{4}} in (3.28) gives

h0,2000=(2iω1IL0L^0)1(1πF2000ϕ1f20001(1)ϕ2f20001(2)ϕ3f20001(3)ϕ4f20001(4)),\displaystyle h_{0,2000}=\Big{(}2i\omega_{1}I-L_{0}-\widehat{L}_{0}\Big{)}^{-1}\Big{(}\cfrac{1}{\sqrt{\ell\pi}}F_{2000}-\phi_{1}f_{2000}^{1(1)}-\phi_{2}f_{2000}^{1(2)}-\phi_{3}f_{2000}^{1(3)}-\phi_{4}f_{2000}^{1(4)}\Big{)},
h0,1100=(L0L^0)1(1πF1100ϕ1f11001(1)ϕ2f11001(2)ϕ3f11001(3)ϕ4f11001(4)),\displaystyle h_{0,1100}=\Big{(}-L_{0}-\widehat{L}_{0}\Big{)}^{-1}\Big{(}\cfrac{1}{\sqrt{\ell\pi}}F_{1100}-\phi_{1}f_{1100}^{1(1)}-\phi_{2}f_{1100}^{1(2)}-\phi_{3}f_{1100}^{1(3)}-\phi_{4}f_{1100}^{1(4)}\Big{)},
h0,1010=(i(ω1+ω2)IL0L^0)1(1πF1010ϕ1f10101(1)ϕ2f10101(2)ϕ3f10101(3)ϕ4f10101(4)),\displaystyle h_{0,1010}=\Big{(}i(\omega_{1}+\omega_{2})I-L_{0}-\widehat{L}_{0}\Big{)}^{-1}\Big{(}\cfrac{1}{\sqrt{\ell\pi}}F_{1010}-\phi_{1}f_{1010}^{1(1)}-\phi_{2}f_{1010}^{1(2)}-\phi_{3}f_{1010}^{1(3)}-\phi_{4}f_{1010}^{1(4)}\Big{)},
h0,1001=(i(ω1ω2)IL0L^0)1(1πF1001ϕ1f10011(1)ϕ2f10011(2)ϕ3f10011(3)ϕ4f10011(4)),\displaystyle h_{0,1001}=\Big{(}i(\omega_{1}-\omega_{2})I-L_{0}-\widehat{L}_{0}\Big{)}^{-1}\Big{(}\cfrac{1}{\sqrt{\ell\pi}}F_{1001}-\phi_{1}f_{1001}^{1(1)}-\phi_{2}f_{1001}^{1(2)}-\phi_{3}f_{1001}^{1(3)}-\phi_{4}f_{1001}^{1(4)}\Big{)},
h0,0110=(i(ω1ω2)IL0L^0)1(1πF0110ϕ1f01101(1)ϕ2f01101(2)ϕ3f01101(3)ϕ4f01101(4)),\displaystyle h_{0,0110}=\Big{(}-i(\omega_{1}-\omega_{2})I-L_{0}\widehat{L}_{0}\Big{)}^{-1}\Big{(}\cfrac{1}{\sqrt{\ell\pi}}F_{0110}-\phi_{1}f_{0110}^{1(1)}-\phi_{2}f_{0110}^{1(2)}-\phi_{3}f_{0110}^{1(3)}-\phi_{4}f_{0110}^{1(4)}\Big{)},
h0,0011=(L0L^0)1(1πF0011ϕ1f00111(1)ϕ2f00111(2)ϕ3f00111(3)ϕ4f00111(4)),\displaystyle h_{0,0011}=\Big{(}-L_{0}-\widehat{L}_{0}\Big{)}^{-1}\Big{(}\cfrac{1}{\sqrt{\ell\pi}}F_{0011}-\phi_{1}f_{0011}^{1(1)}-\phi_{2}f_{0011}^{1(2)}-\phi_{3}f_{0011}^{1(3)}-\phi_{4}f_{0011}^{1(4)}\Big{)},
h0,0020=(2iω2IL0L^0)1(1πF0020ϕ1f00201(1)ϕ2f00201(2)ϕ3f00201(3)ϕ4f00201(4)).\displaystyle h_{0,0020}=\Big{(}2i\omega_{2}I-L_{0}-\widehat{L}_{0}\Big{)}^{-1}\Big{(}\cfrac{1}{\sqrt{\ell\pi}}F_{0020}-\phi_{1}f_{0020}^{1(1)}-\phi_{2}f_{0020}^{1(2)}-\phi_{3}f_{0020}^{1(3)}-\phi_{4}f_{0020}^{1(4)}\Big{)}.

𝐂𝐚𝐬𝐞𝐈𝐈:n1=0,n20.\mathbf{Case~{}II:}~{}n_{1}=0,~{}n_{2}\neq 0.

By the fact

γjn1n1={1π,j=0,0,j0,,γjn1n2={1π,j=n2,0,jn2,γjn2n2={1π,j=0,12π,j=2n2,0,otherwise,\begin{array}[]{ll}\gamma_{jn_{1}n_{1}}=\begin{cases}\cfrac{1}{\sqrt{\ell\pi}},&j=0,\\ ~{}~{}~{}0,&j\neq 0,\\ \end{cases},~{}~{}\gamma_{jn_{1}n_{2}}=\begin{cases}\cfrac{1}{\sqrt{\ell\pi}},&j=n_{2},\\ ~{}~{}~{}0,&j\neq n_{2},\\ \end{cases}\\ \gamma_{jn_{2}n_{2}}=\begin{cases}\cfrac{1}{\sqrt{\ell\pi}},&j=0,\\ \cfrac{1}{\sqrt{2\ell\pi}},&j=2n_{2},\\ ~{}~{}~{}0,&otherwise,\\ \end{cases}\end{array}

we have

Dwf21(z,0,0,0)U22(z,0)=1πΨ¯(Swz1(h0)z1+Swz2(h0)z2+Swz3(hn2)z3+Swz4(hn2)z4Swz1(hn2)z1+Swz2(hn2)z2+Swz3(h0)z3+Swz4(h0)z4+12(Swz3(h2n2)z3+Swz4(h2n2)z4)),\begin{array}[]{ll}&D_{w}f_{2}^{1}(z,0,0,0)U_{2}^{2}(z,0)\\ &=\dfrac{1}{\sqrt{\ell\pi}}\bar{\Psi}\left(\begin{array}[]{cl}S_{wz_{1}}(h_{0})z_{1}+S_{wz_{2}}(h_{0})z_{2}+S_{wz_{3}}(h_{n_{2}})z_{3}+S_{wz_{4}}(h_{n_{2}})z_{4}\\ S_{wz_{1}}(h_{n_{2}})z_{1}+S_{wz_{2}}(h_{n_{2}})z_{2}+S_{wz_{3}}(h_{0})z_{3}+S_{wz_{4}}(h_{0})z_{4}+\frac{1}{\sqrt{2}}\left(S_{wz_{3}}(h_{2n_{2}})z_{3}+S_{wz_{4}}(h_{2n_{2}})z_{4}\right)\end{array}\right),\\ \end{array}

and

Dw^f21(z,0,0,0)U^22(z,0)=1πΨ¯(Sw^z1(h0)z1+Sw^z2(h0)z2Sw^z3(h0)z3+Sw^z4(h0)z4).\begin{array}[]{ll}D{\widehat{w}}f_{2}^{1}(z,0,0,0)\widehat{U}_{2}^{2}(z,0)=\cfrac{1}{\sqrt{\ell\pi}}\bar{\Psi}\left(\begin{array}[]{ll}S_{\widehat{w}z_{1}}(h_{0})z_{1}+S_{\widehat{w}z_{2}}(h_{0})z_{2}\\ S_{\widehat{w}z_{3}}(h_{0})z_{3}+S_{\widehat{w}z_{4}}(h_{0})z_{4}\end{array}\right).\\ \end{array}

Therefore, we obtain

13!ProjKer(M31)(Dwf21(z,0,0,0)U22(z,0)+Dw^f21(z,0,0,0)U^22(z,0))=((E2100+E^2100)z12z2+(E1011+E^1011)z1z3z4(E1200+E^1200)z1z22+(E0111+E^0111)z2z3z4(E0021+E^0021)z32z4+(E1110+E^1110)z1z2z3(E0012+E^0012)z3z42+(E1101+E^1101)z1z2z4).\begin{array}[]{ll}&\dfrac{1}{3!}\mathrm{Proj}_{\mathrm{Ker}(M_{3}^{1})}\left(D_{w}f_{2}^{1}(z,0,0,0)U_{2}^{2}(z,0)+D_{\widehat{w}}f_{2}^{1}(z,0,0,0)\widehat{U}_{2}^{2}(z,0)\right)\\ &\quad=\left(\begin{array}[]{ll}\big{(}E_{2100}+\widehat{E}_{2100}\big{)}z_{1}^{2}z_{2}+\big{(}E_{1011}+\widehat{E}_{1011}\big{)}z_{1}z_{3}z_{4}\\ \big{(}E_{1200}+\widehat{E}_{1200}\big{)}z_{1}z_{2}^{2}+\big{(}E_{0111}+\widehat{E}_{0111}\big{)}z_{2}z_{3}z_{4}\\ \big{(}E_{0021}+\widehat{E}_{0021}\big{)}z_{3}^{2}z_{4}+\big{(}E_{1110}+\widehat{E}_{1110}\big{)}z_{1}z_{2}z_{3}\\ \big{(}E_{0012}+\widehat{E}_{0012}\big{)}z_{3}z_{4}^{2}+\big{(}E_{1101}+\widehat{E}_{1101}\big{)}z_{1}z_{2}z_{4}\\ \end{array}\right).\end{array}

where

E2100=16πψ¯1(Swz1(h0,1100)+Swz2(h0,2000)),\displaystyle E_{2100}=\cfrac{1}{6\sqrt{\ell\pi}}\bar{\psi}_{1}\Big{(}S_{wz_{1}}(h_{0,1100})+S_{wz_{2}}(h_{0,2000})\Big{)},
E1011=16πψ¯1(Swz1(h0,0011)+Swz3(hn2,1001)+Swz4(hn2,1010)),\displaystyle E_{1011}=\cfrac{1}{6\sqrt{\ell\pi}}\bar{\psi}_{1}\Big{(}S_{wz_{1}}(h_{0,0011})+S_{wz_{3}}(h_{n_{2},1001})+S_{wz_{4}}(h_{n_{2},1010})\Big{)},
E0021=16πψ¯3(Swz3(h0,0011)+Swz4(h0,0020)+12(Swz3(h2n2,0011)+Swz4(h2n2,0020))),\displaystyle E_{0021}=\cfrac{1}{6\sqrt{\ell\pi}}\bar{\psi}_{3}\Big{(}S_{wz_{3}}(h_{0,0011})+S_{wz_{4}}(h_{0,0020})+\cfrac{1}{\sqrt{2}}\big{(}S_{wz_{3}}(h_{2n_{2},0011})+S_{wz_{4}}(h_{2n_{2},0020})\big{)}\Big{)},
E1110=16πψ¯3(Swz1(hn2,0110)+Swz2(hn2,1010)+Swz3(h0,1100)+12Swz3(h2n2,1100)),\displaystyle E_{1110}=\cfrac{1}{6\sqrt{\ell\pi}}\bar{\psi}_{3}\Big{(}S_{wz_{1}}(h_{n_{2},0110})+S_{wz_{2}}(h_{n_{2},1010})+S_{wz_{3}}(h_{0,1100})+\cfrac{1}{\sqrt{2}}S_{wz_{3}}(h_{2n_{2},1100})\Big{)},
E^2100=16πψ¯1(Sw^z1(h0,1100)+Sw^z2(h0,2000)),\displaystyle\widehat{E}_{2100}=\cfrac{1}{6\sqrt{\ell\pi}}\bar{\psi}_{1}\Big{(}S_{\widehat{w}z_{1}}(h_{0,1100})+S_{\widehat{w}z_{2}}(h_{0,2000})\Big{)},~{}~{}
E^1011=16πψ¯1Sw^z1(h0,0011),\displaystyle\widehat{E}_{1011}=\cfrac{1}{6\sqrt{\ell\pi}}\bar{\psi}_{1}S_{\widehat{w}z_{1}}(h_{0,0011}),
E^0021=16πψ¯3(Sw^z3(h0,0011)+Sw^z4(h0,0020)),\displaystyle\widehat{E}_{0021}=\cfrac{1}{6\sqrt{\ell\pi}}\bar{\psi}_{3}\Big{(}S_{\widehat{w}z_{3}}(h_{0,0011})+S_{\widehat{w}z_{4}}(h_{0,0020})\Big{)},~{}~{}
E^1110=16πψ¯3Sw^z3(h0,1100),\displaystyle\widehat{E}_{1110}=\cfrac{1}{6\sqrt{\ell\pi}}\bar{\psi}_{3}S_{\widehat{w}z_{3}}(h_{0,1100}),
E1200=E2100¯,E0111=E1011¯,E0012=E0021¯,E1101=E1110¯,\displaystyle E_{1200}=\overline{E_{2100}},~{}E_{0111}=\overline{E_{1011}},~{}E_{0012}=\overline{E_{0021}},~{}E_{1101}=\overline{E_{1110}},~{}
E^1200=E^2100¯,E^0111=E^1011¯,E^0012=E^0021¯,E^1101=E^1110¯.\displaystyle\widehat{E}_{1200}=\overline{\widehat{E}_{2100}},~{}\widehat{E}_{0111}=\overline{\widehat{E}_{1011}},~{}\widehat{E}_{0012}=\overline{\widehat{E}_{0021}},~{}\widehat{E}_{1101}=\overline{\widehat{E}_{1110}}.~{}

Using the same method as the one in 𝐂𝐚𝐬𝐞𝐈\mathbf{Case~{}I}, we can obtain

h0,2000=(2iω1IL0L^0)1(1πF2000ϕ1f20001(1)ϕ2f20001(2)),\displaystyle h_{0,2000}=\Big{(}2i\omega_{1}I-L_{0}-\widehat{L}_{0}\Big{)}^{-1}\Big{(}\cfrac{1}{\sqrt{\ell\pi}}F_{2000}-\phi_{1}f_{2000}^{1(1)}-\phi_{2}f_{2000}^{1(2)}\Big{)},
h0,1100=(L0L^0)1(1πF1100ϕ1f11001(1)ϕ2f11001(2)),\displaystyle h_{0,1100}=\Big{(}-L_{0}-\widehat{L}_{0}\Big{)}^{-1}\Big{(}\cfrac{1}{\sqrt{\ell\pi}}F_{1100}-\phi_{1}f_{1100}^{1(1)}-\phi_{2}f_{1100}^{1(2)}\Big{)},
h0,0011=(L0L^0)1(1πF0011ϕ1f00111(1)ϕ2f00111(2)),\displaystyle h_{0,0011}=\Big{(}-L_{0}-\widehat{L}_{0}\Big{)}^{-1}\Big{(}\cfrac{1}{\sqrt{\ell\pi}}F_{0011}-\phi_{1}f_{0011}^{1(1)}-\phi_{2}f_{0011}^{1(2)}\Big{)},
h0,0020=(2iω2IL0L^0)1(1πF0020ϕ1f00201(1)ϕ2f00201(2)),\displaystyle h_{0,0020}=\Big{(}2i\omega_{2}I-L_{0}-\widehat{L}_{0}\Big{)}^{-1}\Big{(}\cfrac{1}{\sqrt{\ell\pi}}F_{0020}-\phi_{1}f_{0020}^{1(1)}-\phi_{2}f_{0020}^{1(2)}\Big{)},
hn2,1001=(i(ω1ω2)I+n222D0L0)1(1πF1001ϕ3f10011(3)ϕ4f10011(4)),\displaystyle h_{n_{2},1001}=\Big{(}i(\omega_{1}-\omega_{2})I+\cfrac{n_{2}^{2}}{\ell^{2}}D_{0}-L_{0}\Big{)}^{-1}\Big{(}\cfrac{1}{\sqrt{\ell\pi}}F_{1001}-\phi_{3}f_{1001}^{1(3)}-\phi_{4}f_{1001}^{1(4)}\Big{)},
hn2,1010=(i(ω1+ω2)I+n222D0L0)1(1πF1010ϕ3f10101(3)ϕ4f10101(4)),\displaystyle h_{n_{2},1010}=\Big{(}i(\omega_{1}+\omega_{2})I+\cfrac{n_{2}^{2}}{\ell^{2}}D_{0}-L_{0}\Big{)}^{-1}\Big{(}\cfrac{1}{\sqrt{\ell\pi}}F_{1010}-\phi_{3}f_{1010}^{1(3)}-\phi_{4}f_{1010}^{1(4)}\Big{)},
hn2,0110=(i(ω1ω2)I+n222D0L0)1(1πF0110ϕ3f01101(3)ϕ4f01101(4)),\displaystyle h_{n_{2},0110}=\Big{(}-i(\omega_{1}-\omega_{2})I+\cfrac{n_{2}^{2}}{\ell^{2}}D_{0}-L_{0}\Big{)}^{-1}\Big{(}\cfrac{1}{\sqrt{\ell\pi}}F_{0110}-\phi_{3}f_{0110}^{1(3)}-\phi_{4}f_{0110}^{1(4)}\Big{)},
h2n2,0011=((2n2)22D0L0)112πF0011,\displaystyle h_{2n_{2},0011}=\Big{(}\cfrac{(2n_{2})^{2}}{\ell^{2}}D_{0}-L_{0}\Big{)}^{-1}\cfrac{1}{\sqrt{2\ell\pi}}F_{0011},
h2n2,0020=(2iω2I+(2n2)22D0L0)112πF0020,\displaystyle h_{2n_{2},0020}=\Big{(}2i\omega_{2}I+\cfrac{(2n_{2})^{2}}{\ell^{2}}D_{0}-L_{0}\Big{)}^{-1}\cfrac{1}{\sqrt{2\ell\pi}}F_{0020},
h2n2,1100=0.\displaystyle h_{2n_{2},1100}=0.

𝐂𝐚𝐬𝐞𝐈𝐈𝐈:n10,n20\mathbf{Case~{}III:}~{}n_{1}\neq 0,~{}n_{2}\neq 0.

In fact, we have

γjnknk={1π,j=0,12π,j=2nk,0,otherwise,γjn1n2={1π,j=n2n1=0,12π,j=n1+n2orj=n2n10,0,otherwise.\begin{array}[]{ll}\gamma_{jn_{k}n_{k}}=\begin{cases}\cfrac{1}{\sqrt{\ell\pi}},&j=0,\\ \cfrac{1}{\sqrt{2\ell\pi}},&j=2n_{k},\\ ~{}~{}~{}0,&otherwise,\\ \end{cases}\qquad\gamma_{jn_{1}n_{2}}=\begin{cases}\cfrac{1}{\sqrt{\ell\pi}},&j=n_{2}-n_{1}=0,\\ \cfrac{1}{\sqrt{2\ell\pi}},&j=n_{1}+n_{2}~{}\mathrm{or}~{}j=n_{2}-n_{1}\neq 0,\\ ~{}~{}~{}0,&otherwise.\\ \end{cases}\end{array}

Then

Dwf21(z,0,0,0)U22(z,0)=Ψ¯(1π(Swz1(h0)z1+Swz2(h0)z2)+12π(Swz1(h2n1)z1+Swz2(h2n1)z2+Swz3(hn1+n2)z3+Swz4(hn1+n2)z4)+γ(n2n1)n1n2(Swz3(hn2n1)z3+Swz4(hn2n1)z4)1π(Swz3(h0)z3+Swz4(h0)z4)+12π(Swz3(h2n2)z3+Swz4(h2n2)z4+Swz1(hn1+n2)z1+Swz2(hn1+n2)z2)+γ(n2n1)n1n2(Swz1(hn2n1)z1+Swz2(hn2n1)z2)),\begin{array}[]{ll}&D_{w}f_{2}^{1}(z,0,0,0)U_{2}^{2}(z,0)\\ &=\bar{\Psi}\left(\begin{array}[]{lr}&\cfrac{1}{\sqrt{\ell\pi}}\Big{(}S_{wz_{1}}(h_{0})z_{1}+S_{wz_{2}}(h_{0})z_{2}\Big{)}+\cfrac{1}{\sqrt{2\ell\pi}}\Big{(}S_{wz_{1}}(h_{2n_{1}})z_{1}+S_{wz_{2}}(h_{2n_{1}})z_{2}+S_{wz_{3}}(h_{n_{1}+n_{2}})z_{3}\\ &+S_{wz_{4}}(h_{n_{1}+n_{2}})z_{4}\Big{)}+\gamma_{(n_{2}-n_{1})n_{1}n_{2}}\Big{(}S_{wz_{3}}(h_{n_{2}-n_{1}})z_{3}+S_{wz_{4}}(h_{n_{2}-n_{1}})z_{4}\Big{)}\\ &\cfrac{1}{\sqrt{\ell\pi}}\Big{(}S_{wz_{3}}(h_{0})z_{3}+S_{wz_{4}}(h_{0})z_{4}\Big{)}+\cfrac{1}{\sqrt{2\ell\pi}}\Big{(}S_{wz_{3}}(h_{2n_{2}})z_{3}+S_{wz_{4}}(h_{2n_{2}})z_{4}+S_{wz_{1}}(h_{n_{1}+n_{2}})z_{1}\\ &+S_{wz_{2}}(h_{n_{1}+n_{2}})z_{2}\Big{)}+\gamma_{(n_{2}-n_{1})n_{1}n_{2}}\Big{(}S_{wz_{1}}(h_{n_{2}-n_{1}})z_{1}+S_{wz_{2}}(h_{n_{2}-n_{1}})z_{2}\Big{)}\\ \end{array}\right),\\ \end{array}

and

Dw^f21(z,0,0,0)U^22(z,0)=1πΨ¯(Sw^z1(h0)z1+Sw^z2(h0)z2+Sw^z3(h0)δ(n2n1)z3+Sw^z4(h0)δ(n2n1)z4Sw^z1(h0)δ(n2n1)z1+Sw^z2(h0)δ(n2n1)z2+Sw^z3(h0)z3+Sw^z4(h0)z4).\begin{array}[]{ll}D{\widehat{w}}f_{2}^{1}(z,0,0,0)\widehat{U}_{2}^{2}(z,0)=\cfrac{1}{\sqrt{\ell\pi}}\bar{\Psi}\left(\begin{array}[]{ll}S_{\widehat{w}z_{1}}(h_{0})z_{1}+S_{\widehat{w}z_{2}}(h_{0})z_{2}+S_{\widehat{w}z_{3}}(h_{0})\delta(n_{2}-n_{1})z_{3}+S_{\widehat{w}z_{4}}(h_{0})\delta(n_{2}-n_{1})z_{4}\\ S_{\widehat{w}z_{1}}(h_{0})\delta(n_{2}-n_{1})z_{1}+S_{\widehat{w}z_{2}}(h_{0})\delta(n_{2}-n_{1})z_{2}+S_{\widehat{w}z_{3}}(h_{0})z_{3}+S_{\widehat{w}z_{4}}(h_{0})z_{4}\end{array}\right).\\ \end{array}

Hence, we obtain

13!ProjKer(M31)(Dwf21(z,0,0,0)U22(z,0)+Dw^f21(z,0,0,0)U^22(z,0))=((E2100+E^2100)z12z2+(E1011+E^1011)z1z3z4(E1200+E^1200)z1z22+(E0111+E^0111)z2z3z4(E0021+E^0021)z32z4+(E1110+E^1110)z1z2z3(E0012+E^0012)z3z42+(E1101+E^1101)z1z2z4),\begin{array}[]{ll}&\dfrac{1}{3!}\mathrm{Proj}_{\mathrm{Ker}(M_{3}^{1})}\left(D_{w}f_{2}^{1}(z,0,0,0)U_{2}^{2}(z,0)+D_{\widehat{w}}f_{2}^{1}(z,0,0,0)\widehat{U}_{2}^{2}(z,0)\right)\\ &\quad=\left(\begin{array}[]{ll}\big{(}E_{2100}+\widehat{E}_{2100}\big{)}z_{1}^{2}z_{2}+\big{(}E_{1011}+\widehat{E}_{1011}\big{)}z_{1}z_{3}z_{4}\\ \big{(}E_{1200}+\widehat{E}_{1200}\big{)}z_{1}z_{2}^{2}+\big{(}E_{0111}+\widehat{E}_{0111}\big{)}z_{2}z_{3}z_{4}\\ \big{(}E_{0021}+\widehat{E}_{0021}\big{)}z_{3}^{2}z_{4}+\big{(}E_{1110}+\widehat{E}_{1110}\big{)}z_{1}z_{2}z_{3}\\ \big{(}E_{0012}+\widehat{E}_{0012}\big{)}z_{3}z_{4}^{2}+\big{(}E_{1101}+\widehat{E}_{1101}\big{)}z_{1}z_{2}z_{4}\\ \end{array}\right),\end{array}

where

E2100=16πψ¯1(Swz1(h0,1100)+Swz2(h0,2000)+12(Swz1(h2n1,1100)+Swz2(h2n1,2000))),E1011=16ψ¯1(1πSwz1(h0,0011)+12π(Swz1(h2n1,0011)+Swz3(hn1+n2,1001)+Swz4(hn1+n2,1010))+γ(n2n1)n1n2(Swz3(hn2n1,1001)+Swz4(hn2n1,1010))),E0021=16πψ¯3(Swz3(h0,0011)+Swz4(h0,0020)+12(Swz3(h2n2,0011)+Swz4(h2n2,0020))),E1110=16ψ¯3(1πSwz3(h0,1100)+12π(Swz3(h2n2,1100)+Swz1(hn1+n2,0110)+Swz2(hn1+n2,1010))+γ(n2n1)n1n2(Swz1(hn2n1,0110)+Swz2(hn2n1,1010))),E^2100=16πψ¯1(Sw^z1(h0,1100)+Sw^z2(h0,2000)),E^1011=16πψ¯1(Sw^z1(h0,0011)+δ(n2n1)(Sw^z3(h0,1001)+Sw^z4(h0,1010))),E^0021=16πψ¯3(Sw^z3(h0,0011)+Sw^z4(h0,0020)),E^1110=16πψ¯3(Sw^z3(h0,1100)+δ(n2n1)(Sw^z1(h0,0110)+Sw^z2(h0,1010))),E1200=E2100¯,E0111=E1011¯,E0012=E0021¯,E1101=E1110¯,E^1200=E^2100¯,E^0111=E^1011¯,E^0012=E^0021¯,E^1101=E^1110¯.\begin{array}[]{lr}E_{2100}=\cfrac{1}{6\sqrt{\ell\pi}}\bar{\psi}_{1}\Big{(}S_{wz_{1}}(h_{0,1100})+S_{wz_{2}}(h_{0,2000})+\cfrac{1}{\sqrt{2}}\big{(}S_{wz_{1}}(h_{2n_{1},1100})+S_{wz_{2}}(h_{2n_{1},2000})\big{)}\Big{)},\\ E_{1011}=\cfrac{1}{6}\bar{\psi}_{1}\Big{(}\cfrac{1}{\sqrt{\ell\pi}}S_{wz_{1}}(h_{0,0011})+\cfrac{1}{\sqrt{2\ell\pi}}\big{(}S_{wz_{1}}(h_{2n_{1},0011})+S_{wz_{3}}(h_{n_{1}+n_{2},1001})+S_{wz_{4}}(h_{n_{1}+n_{2},1010})\big{)}\\ \qquad\qquad+\gamma_{(n_{2}-n_{1})n_{1}n_{2}}\big{(}S_{wz_{3}}(h_{n_{2}-n_{1},1001})+S_{wz_{4}}(h_{n_{2}-n_{1},1010})\big{)}\Big{)},\\ E_{0021}=\cfrac{1}{6\sqrt{\ell\pi}}\bar{\psi}_{3}\Big{(}S_{wz_{3}}(h_{0,0011})+S_{wz_{4}}(h_{0,0020})+\cfrac{1}{\sqrt{2}}\big{(}S_{wz_{3}}(h_{2n_{2},0011})+S_{wz_{4}}(h_{2n_{2},0020})\big{)}\Big{)},\\ E_{1110}=\cfrac{1}{6}\bar{\psi}_{3}\Big{(}\cfrac{1}{\sqrt{\ell\pi}}S_{wz_{3}}(h_{0,1100})+\cfrac{1}{\sqrt{2\ell\pi}}\big{(}S_{wz_{3}}(h_{2n_{2},1100})+S_{wz_{1}}(h_{n_{1}+n_{2},0110})+S_{wz_{2}}(h_{n_{1}+n_{2},1010})\big{)}\\ \qquad\qquad+\gamma_{(n_{2}-n_{1})n_{1}n_{2}}\big{(}S_{wz_{1}}(h_{n_{2}-n_{1},0110})+S_{wz_{2}}(h_{n_{2}-n_{1},1010})\big{)}\Big{)},\\ \widehat{E}_{2100}=\cfrac{1}{6\sqrt{\ell\pi}}\bar{\psi}_{1}\Big{(}S_{\widehat{w}z_{1}}(h_{0,1100})+S_{\widehat{w}z_{2}}(h_{0,2000})\Big{)},{}{}\\ \widehat{E}_{1011}=\cfrac{1}{6\sqrt{\ell\pi}}\bar{\psi}_{1}\Big{(}S_{\widehat{w}z_{1}}(h_{0,0011})+\delta(n_{2}-n_{1})\big{(}S_{\widehat{w}z_{3}}(h_{0,1001})+S_{\widehat{w}z_{4}}(h_{0,1010})\big{)}\Big{)},\\ \widehat{E}_{0021}=\cfrac{1}{6\sqrt{\ell\pi}}\bar{\psi}_{3}\Big{(}S_{\widehat{w}z_{3}}(h_{0,0011})+S_{\widehat{w}z_{4}}(h_{0,0020})\Big{)},{}{}\\ \widehat{E}_{1110}=\cfrac{1}{6\sqrt{\ell\pi}}\bar{\psi}_{3}\Big{(}S_{\widehat{w}z_{3}}(h_{0,1100})+\delta(n_{2}-n_{1})\big{(}S_{\widehat{w}z_{1}}(h_{0,0110})+S_{\widehat{w}z_{2}}(h_{0,1010})\big{)}\Big{)},\\ E_{1200}=\overline{E_{2100}},~{}E_{0111}=\overline{E_{1011}},~{}E_{0012}=\overline{E_{0021}},~{}E_{1101}=\overline{E_{1110}},{}\\ \widehat{E}_{1200}=\overline{\widehat{E}_{2100}},~{}\widehat{E}_{0111}=\overline{\widehat{E}_{1011}},~{}\widehat{E}_{0012}=\overline{\widehat{E}_{0021}},~{}\widehat{E}_{1101}=\overline{\widehat{E}_{1110}}.\end{array}

With the same method mentioned in 𝐂𝐚𝐬𝐞𝐈\mathbf{Case~{}I}, we have

h0,2000=(2iω1IL0L^0)11πF2000,\displaystyle h_{0,2000}=\Big{(}2i\omega_{1}I-L_{0}-\widehat{L}_{0}\Big{)}^{-1}\cfrac{1}{\sqrt{\ell\pi}}F_{2000},
h0,1100=(L0L^0)11πF1100,\displaystyle h_{0,1100}=\Big{(}-L_{0}-\widehat{L}_{0}\Big{)}^{-1}\cfrac{1}{\sqrt{\ell\pi}}F_{1100},
h0,0011=(L0L^0)11πF0011,\displaystyle h_{0,0011}=\Big{(}-L_{0}-\widehat{L}_{0}\Big{)}^{-1}\cfrac{1}{\sqrt{\ell\pi}}F_{0011},
h0,0020=(2iω2IL0L^0)11πF0020,\displaystyle h_{0,0020}=\Big{(}2i\omega_{2}I-L_{0}-\widehat{L}_{0}\Big{)}^{-1}\cfrac{1}{\sqrt{\ell\pi}}F_{0020},
h2n1,2000={(2iω1I+(2n1)22D0L0)1(12πF2000ϕ3f20001(3)ϕ4f20001(4)),n2=2n1,(2iω1I+(2n1)22D0L0)112πF2000,n22n1,\displaystyle h_{2n_{1},2000}=\begin{cases}\Big{(}2i\omega_{1}I+\cfrac{(2n_{1})^{2}}{\ell^{2}}D_{0}-L_{0}\Big{)}^{-1}\Big{(}\cfrac{1}{\sqrt{2\ell\pi}}F_{2000}-\phi_{3}f_{2000}^{1(3)}-\phi_{4}f_{2000}^{1(4)}\Big{)},&n_{2}=2n_{1},\\ \Big{(}2i\omega_{1}I+\cfrac{(2n_{1})^{2}}{\ell^{2}}D_{0}-L_{0}\Big{)}^{-1}\cfrac{1}{\sqrt{2\ell\pi}}F_{2000},&n_{2}\neq 2n_{1},\end{cases}
h2n1,1100={((2n1)22D0L0)1(12πF1100ϕ3f11001(3)ϕ4f11001(4)),n2=2n1,((2n1)22D0L0)112πF1100,n22n1,\displaystyle h_{2n_{1},1100}=\begin{cases}\Big{(}\cfrac{(2n_{1})^{2}}{\ell^{2}}D_{0}-L_{0}\Big{)}^{-1}\Big{(}\cfrac{1}{\sqrt{2\ell\pi}}F_{1100}-\phi_{3}f_{1100}^{1(3)}-\phi_{4}f_{1100}^{1(4)}\Big{)},&n_{2}=2n_{1},\\ \Big{(}\cfrac{(2n_{1})^{2}}{\ell^{2}}D_{0}-L_{0}\Big{)}^{-1}\cfrac{1}{\sqrt{2\ell\pi}}F_{1100},&n_{2}\neq 2n_{1},\end{cases}
h2n1,0011={((2n1)22D0L0)112πF0011,n2=n1,((2n1)22D0L0)1(ϕ3f00111(3)ϕ4f00111(4)),n2=2n1,0,otherwise,\displaystyle h_{2n_{1},0011}=\begin{cases}\Big{(}\cfrac{(2n_{1})^{2}}{\ell^{2}}D_{0}-L_{0}\Big{)}^{-1}\cfrac{1}{\sqrt{2\ell\pi}}F_{0011},&n_{2}=n_{1},\\ \Big{(}\cfrac{(2n_{1})^{2}}{\ell^{2}}D_{0}-L_{0}\Big{)}^{-1}\Big{(}-\phi_{3}f_{0011}^{1(3)}-\phi_{4}f_{0011}^{1(4)}\Big{)},&n_{2}=2n_{1},\\ ~{}~{}~{}~{}0,&otherwise,\end{cases}
h2n2,0020=(2iω2I+(2n2)22D0L0)112πF0020,\displaystyle h_{2n_{2},0020}=\Big{(}2i\omega_{2}I+\cfrac{(2n_{2})^{2}}{\ell^{2}}D_{0}-L_{0}\Big{)}^{-1}\cfrac{1}{\sqrt{2\ell\pi}}F_{0020},
h2n2,0011=((2n2)22D0L0)112πF0011,\displaystyle h_{2n_{2},0011}=\Big{(}\cfrac{(2n_{2})^{2}}{\ell^{2}}D_{0}-L_{0}\Big{)}^{-1}\cfrac{1}{\sqrt{2\ell\pi}}F_{0011},
h2n2,1100={((2n2)22D0L0)112πF1100,n2=n1,0,otherwise,\displaystyle h_{2n_{2},1100}=\begin{cases}\Big{(}\cfrac{(2n_{2})^{2}}{\ell^{2}}D_{0}-L_{0}\Big{)}^{-1}\cfrac{1}{\sqrt{2\ell\pi}}F_{1100},&n_{2}=n_{1},\\ ~{}~{}~{}~{}0,&otherwise,\end{cases}
hn1+n2,1001=((iω1iω2)I+(n1+n2)22D0L0)112πF1001,\displaystyle h_{n_{1}+n_{2},1001}=\Big{(}(i\omega_{1}-i\omega_{2})I+\cfrac{(n_{1}+n_{2})^{2}}{\ell^{2}}D_{0}-L_{0}\Big{)}^{-1}\cfrac{1}{\sqrt{2\ell\pi}}F_{1001},
hn1+n2,1010=((iω1+iω2)I+(n1+n2)22D0L0)112πF1010,\displaystyle h_{n_{1}+n_{2},1010}=\Big{(}(i\omega_{1}+i\omega_{2})I+\cfrac{(n_{1}+n_{2})^{2}}{\ell^{2}}D_{0}-L_{0}\Big{)}^{-1}\cfrac{1}{\sqrt{2\ell\pi}}F_{1010},
hn1+n2,0110=((iω1+iω2)I+(n1+n2)22D0L0)112πF0110,\displaystyle h_{n_{1}+n_{2},0110}=\Big{(}(-i\omega_{1}+i\omega_{2})I+\cfrac{(n_{1}+n_{2})^{2}}{\ell^{2}}D_{0}-L_{0}\Big{)}^{-1}\cfrac{1}{\sqrt{2\ell\pi}}F_{0110},
hn2n1,1001={((iω1iω2)IL0L^0)11πF1001,n2=n1,((iω1iω2)I+(n2n1)22D0L0)1(12πF1001ϕ1f10011(1)ϕ2f10011(2)),n2=2n1,((iω1iω2)I+(n2n1)22D0L0)112πF1001,otherwise,\displaystyle h_{n_{2}-n_{1},1001}=\begin{cases}\Big{(}(i\omega_{1}-i\omega_{2})I-L_{0}-\widehat{L}_{0}\Big{)}^{-1}\cfrac{1}{\sqrt{\ell\pi}}F_{1001},&n_{2}=n_{1},\\ \Big{(}(i\omega_{1}-i\omega_{2})I+\cfrac{(n_{2}-n_{1})^{2}}{\ell^{2}}D_{0}-L_{0}\Big{)}^{-1}\Big{(}\cfrac{1}{\sqrt{2\ell\pi}}F_{1001}-\phi_{1}f_{1001}^{1(1)}-\phi_{2}f_{1001}^{1(2)}\Big{)},&n_{2}=2n_{1},\\ \Big{(}(i\omega_{1}-i\omega_{2})I+\cfrac{(n_{2}-n_{1})^{2}}{\ell^{2}}D_{0}-L_{0}\Big{)}^{-1}\cfrac{1}{\sqrt{2\ell\pi}}F_{1001},&otherwise,\end{cases}
hn2n1,1010={((iω1+iω2)IL0L^0)11πF1010,n2=n1,((iω1+iω2)I+(n2n1)22D0L0)1(12πF1010ϕ1f10101(1)ϕ2f10101(2)),n2=2n1,((iω1+iω2)I+(n2n1)22D0L0)112πF1010,otherwise,\displaystyle h_{n_{2}-n_{1},1010}=\begin{cases}\Big{(}(i\omega_{1}+i\omega_{2})I-L_{0}-\widehat{L}_{0}\Big{)}^{-1}\cfrac{1}{\sqrt{\ell\pi}}F_{1010},&n_{2}=n_{1},\\ \Big{(}(i\omega_{1}+i\omega_{2})I+\cfrac{(n_{2}-n_{1})^{2}}{\ell^{2}}D_{0}-L_{0}\Big{)}^{-1}\Big{(}\cfrac{1}{\sqrt{2\ell\pi}}F_{1010}-\phi_{1}f_{1010}^{1(1)}-\phi_{2}f_{1010}^{1(2)}\Big{)},&n_{2}=2n_{1},\\ \Big{(}(i\omega_{1}+i\omega_{2})I+\cfrac{(n_{2}-n_{1})^{2}}{\ell^{2}}D_{0}-L_{0}\Big{)}^{-1}\cfrac{1}{\sqrt{2\ell\pi}}F_{1010},&otherwise,\end{cases}
hn2n1,0110={((iω1+iω2)IL0L^0)11πF0110,n2=n1,((iω1+iω2)I+(n2n1)22D0L0)1(12πF0110ϕ1f01101(1)ϕ2f01101(2)),n2=2n1,((iω1+iω2)I+(n2n1)22D0L0)112πF0110,otherwise.\displaystyle h_{n_{2}-n_{1},0110}=\begin{cases}\Big{(}(-i\omega_{1}+i\omega_{2})I-L_{0}-\widehat{L}_{0}\Big{)}^{-1}\cfrac{1}{\sqrt{\ell\pi}}F_{0110},&n_{2}=n_{1},\\ \Big{(}(-i\omega_{1}+i\omega_{2})I+\cfrac{(n_{2}-n_{1})^{2}}{\ell^{2}}D_{0}-L_{0}\Big{)}^{-1}\Big{(}\cfrac{1}{\sqrt{2\ell\pi}}F_{0110}-\phi_{1}f_{0110}^{1(1)}-\phi_{2}f_{0110}^{1(2)}\Big{)},&n_{2}=2n_{1},\\ \Big{(}(-i\omega_{1}+i\omega_{2})I+\cfrac{(n_{2}-n_{1})^{2}}{\ell^{2}}D_{0}-L_{0}\Big{)}^{-1}\cfrac{1}{\sqrt{2\ell\pi}}F_{0110},&otherwise.\end{cases}

Now, we obtain the full expression of g31(z,0,0,0)g_{3}^{1}(z,0,0,0):

13!g31(z,0,0)=13!ProjKer(M21)f31(z,0,0,0)=(B2100z12z2+B1011z1z3z4B1200z1z22+B0111z2z3z4B0021z32z4+B1110z1z2z3B0012z3z42+B1011z1z2z4),\frac{1}{3!}g_{3}^{1}(z,0,0)=\frac{1}{3!}\text{Proj}_{\mathrm{Ker}(M_{2}^{1})}f_{3}^{1}(z,0,0,0)=\left(\begin{array}[]{ll}B_{2100}z_{1}^{2}z_{2}+B_{1011}z_{1}z_{3}z_{4}\\ B_{1200}z_{1}z_{2}^{2}+B_{0111}z_{2}z_{3}z_{4}\\ B_{0021}z_{3}^{2}z_{4}+B_{1110}z_{1}z_{2}z_{3}\\ B_{0012}z_{3}z_{4}^{2}+B_{1011}z_{1}z_{2}z_{4}\\ \end{array}\right), (3.29)

where

B2100=C2100+32(D2100+E2100+E^2100),B1011=C1011+32(D1011+E1011+E^1011),B0021=C0021+32(D0021+E0021+E^0021),B1110=C1110+32(D1110+E1110+E^1110),B1200=B2100¯,B0111=B1011¯,B0012=B0021¯,B1101=B1110¯.\begin{array}[]{ll}B_{2100}=C_{2100}+\frac{3}{2}(D_{2100}+E_{2100}+\widehat{E}_{2100}),~{}B_{1011}=C_{1011}+\frac{3}{2}(D_{1011}+E_{1011}+\widehat{E}_{1011}),{}\\ B_{0021}=C_{0021}+\frac{3}{2}(D_{0021}+E_{0021}+\widehat{E}_{0021}),~{}B_{1110}=C_{1110}+\frac{3}{2}(D_{1110}+E_{1110}+\widehat{E}_{1110}),{}\\ B_{1200}=\overline{B_{2100}},~{}B_{0111}=\overline{B_{1011}},~{}B_{0012}=\overline{B_{0021}},~{}B_{1101}=\overline{B_{1110}}.\end{array}

Then, by (3.14) and (3.29), the normal forms for double Hopf bifurcation up to the third order take:

z˙1=iω1z1+B11α1z1+B21α2z1+B2100z12z2+B1011z1z3z4+h.o.t.,z˙2=iω1z2+B11¯α1z2+B21¯α2z2+B2100¯z1z22+B1011¯z2z3z4+h.o.t.,z˙3=iω2z3+B13α1z3+B23α2z3+B0021z32z4+B1110z1z2z3+h.o.t.,z˙2=iω2z4+B13¯α1z4+B23¯α2z4+B0021¯z3z42+B1110¯z1z2z4+h.o.t.,\begin{array}[]{lr}\dot{z}_{1}=~{}~{}\,i\omega_{1}z_{1}+B_{11}\alpha_{1}z_{1}+B_{21}\alpha_{2}z_{1}+B_{2100}z^{2}_{1}z_{2}+B_{1011}z_{1}z_{3}z_{4}+h.o.t.,\\ \dot{z}_{2}=-i\omega_{1}z_{2}+\overline{B_{11}}\alpha_{1}z_{2}+\overline{B_{21}}\alpha_{2}z_{2}+\overline{B_{2100}}z_{1}z^{2}_{2}+\overline{B_{1011}}z_{2}z_{3}z_{4}+h.o.t.,\\ \dot{z}_{3}=~{}~{}\,i\omega_{2}z_{3}+B_{13}\alpha_{1}z_{3}+B_{23}\alpha_{2}z_{3}+B_{0021}z_{3}^{2}z_{4}+B_{1110}z_{1}z_{2}z_{3}+h.o.t.,\\ \dot{z}_{2}=-i\omega_{2}z_{4}+\overline{B_{13}}\alpha_{1}z_{4}+\overline{B_{23}}\alpha_{2}z_{4}+\overline{B_{0021}}z_{3}z_{4}^{2}+\overline{B_{1110}}z_{1}z_{2}z_{4}+h.o.t.,\end{array} (3.30)

and by virtue of the polar coordinate transformation z1=ρ~1eiθ1,z2=ρ~2eiθ2z_{1}=\tilde{\rho}_{1}e^{i\theta_{1}},z_{2}=\tilde{\rho}_{2}e^{i\theta_{2}} and variable substitution:

ϵ1=Sign(Re(B2100)),ϵ2=Sign(Re(B0021)),ρ1=ρ~1|B2100|,ρ2=ρ~2|B0021|,t~=tϵ1,\epsilon_{1}=\text{Sign}\big{(}\text{Re}(B_{2100})\big{)},~{}\epsilon_{2}=\text{Sign}\big{(}\text{Re}(B_{0021})\big{)},~{}\rho_{1}=\tilde{\rho}_{1}\sqrt{|B_{2100}|},~{}\rho_{2}=\tilde{\rho}_{2}\sqrt{|B_{0021}|},~{}\tilde{t}=t\epsilon_{1},

the system (3.30), truncated at the third order, becomes

ρ˙1=ρ1(κ1(α)+ρ12+b0ρ22),ρ˙2=ρ2(κ2(α)+c0ρ12+d0ρ22),\begin{array}[]{ll}\dot{\rho}_{1}=\rho_{1}\big{(}\kappa_{1}(\alpha)+\rho_{1}^{2}+b_{0}\rho_{2}^{2}\big{)},\\ \dot{\rho}_{2}=\rho_{2}\big{(}\kappa_{2}(\alpha)+{c}_{0}\rho_{1}^{2}+d_{0}\rho_{2}^{2}\big{)},\end{array} (3.31)

where

κ1(α)=ϵ1(Re(B11)α1+Re(B21)α2),κ2(α)=ϵ1(Re(B13)α1+Re(B23)α2),b0=ϵ1ϵ2Re(B1011)Re(B0021),c0=Re(B1110)Re(B2100),d0=ϵ1ϵ2.\begin{array}[]{ll}\kappa_{1}(\alpha)=\epsilon_{1}\left(\text{Re}(B_{11})\alpha_{1}+\text{Re}(B_{21})\alpha_{2}\right),\\ \kappa_{2}(\alpha)=\epsilon_{1}\left(\text{Re}(B_{13})\alpha_{1}+\text{Re}(B_{23})\alpha_{2}\right),\\ b_{0}=\cfrac{\epsilon_{1}\epsilon_{2}\text{Re}(B_{1011})}{\text{Re}(B_{0021})},~{}{c}_{0}=\cfrac{\text{Re}(B_{1110})}{\text{Re}(B_{2100})},~{}d_{0}=\epsilon_{1}\epsilon_{2}.\end{array}

Clearly, E1=(0,0)E_{1}=(0,0) is always an equilibrium and that up to three other non-negative equilibria solutions can appear:

E2=(κ1(α),0),forκ1(α)<0,E3=(0,κ2(α)d0),ford0κ2(α)<0,E4=(b0κ2(α)d0κ1(α)d0b0c0,c0κ1(α)κ2(α)d0b0c0),forb0κ2(α)d0κ1(α)d0b0c0>0,c0κ1(α)κ2(α)d0b0c0>0.\begin{array}[]{ll}&E_{2}=\big{(}\sqrt{-\kappa_{1}(\alpha)},0\big{)},~{}~{}~{}\qquad\qquad\qquad\qquad\mathrm{for}~{}\kappa_{1}(\alpha)<0,\\ &E_{3}=\big{(}0,\sqrt{-\frac{\kappa_{2}(\alpha)}{d_{0}}}\big{)},~{}~{}~{}~{}\qquad\qquad\qquad\quad\quad\mathrm{for}~{}d_{0}\kappa_{2}(\alpha)<0,\\ &E_{4}=\big{(}\sqrt{\frac{b_{0}\kappa_{2}(\alpha)-d_{0}\kappa_{1}(\alpha)}{d_{0}-b_{0}c_{0}}},\sqrt{\frac{c_{0}\kappa_{1}(\alpha)-\kappa_{2}(\alpha)}{d_{0}-b_{0}c_{0}}}\big{)},~{}\mathrm{for}~{}\frac{b_{0}\kappa_{2}(\alpha)-d_{0}\kappa_{1}(\alpha)}{d_{0}-b_{0}c_{0}}>0,\frac{c_{0}\kappa_{1}(\alpha)-\kappa_{2}(\alpha)}{d_{0}-b_{0}c_{0}}>0.\end{array}

The dynamics of system (1.3) near the double Hopf bifurcation point μ0\mu_{0} is topologically equivalent to that of (3.31) near (α1,α2)=(0,0)(\alpha_{1},\alpha_{2})=(0,0). Here E1E_{1} is associated with the positive constant steady state, E2E_{2} is associated with the spatially homogeneous periodic solution, E3E_{3} is associated with the spatially nonhomogeneous periodic solution, and E4E_{4} is associated with the spatially nonhomogeneous quasi-periodic solution. Moreover, according to [27] there are twelve distinct types of unfoldings according to the signs of coefficients b0b_{0}, c0{c}_{0}, d0d_{0} and d0b0c0d_{0}-b_{0}c_{0} (see Table 1).

Table 1: The twelve unfoldings.
Case Ia Ib II III IVa IVb V VIa VIb VIIa VIIb VIII
d0d_{0} +1 +1 +1 +1 +1 +1 –1 –1 –1 –1 –1 –1
b0b_{0} + + + + + +
c0c_{0} + + + + + +
d0b0c0d_{0}-b_{0}c_{0} + + + + + +
Remark 3.1.

The expressions presented to calculate the normal forms seem complicated and tedious, and some very important coefficient vectors are not explicitly shown, for example, Fι1ι2ι3ι4F_{\iota_{1}\iota_{2}\iota_{3}\iota_{4}}, Fw1ziF_{w_{1}z_{i}}, Fw2ziF_{w_{2}z_{i}}, i=1,2,3,4i=1,2,3,4. For an abstract equation with a large number of variables, it may take a lot of work to express all these coefficient vectors, but if the system is only of two variables, i.e., n=2n=2, this complexity can be reduced. We could give the explicit representation of these coefficient vectors by partial derivatives of FF and the basis of center subspace, and we put this in Appendix.

4 Applicaton to a predator-prey model

In this section, we consider the following reaction-diffusion Holling-Tanner system with nonlocal prey competition:

{ut=d1Δu+u(1βu^)buv1+u,xΩ,t>0,vt=d2Δv+cv(1vu),xΩ,t>0,νu=νv=0,xΩ,t>0,u(x,0)=u0(x)>0,v(x,0)=v0(x)>0,xΩ,\begin{cases}\cfrac{\partial u}{\partial t}=d_{1}\Delta u+u\Big{(}1-\beta\widehat{u}\Big{)}-\cfrac{buv}{1+u},&x\in\Omega,t>0,\\ \cfrac{\partial v}{\partial t}=d_{2}\Delta v+cv\Big{(}1-\cfrac{v}{u}\Big{)},&x\in\Omega,t>0,\\ \partial_{\nu}u=\partial_{\nu}v=0,&x\in\partial\Omega,t>0,\\ u(x,0)=u_{0}(x)>0,~{}~{}v(x,0)=v_{0}(x)>0,&x\in\Omega,\end{cases} (4.1)

where Ω=(0,π)\Omega=(0,\ell\pi), u(x,t)u(x,t) and v(x,t)v(x,t) represent the prey and predator densities at location xx and time tt respectively, u^=1π0πu(y,t)𝑑y\widehat{u}=\frac{1}{\ell\pi}\int_{0}^{\ell\pi}u(y,t)dy stands for the nonlocal prey competition, and β,b,c,d1,d2\beta,b,c,d_{1},d_{2} are parameters and all positive. Particularly, cc is the intrinsic growth rate of predator, d1d_{1} and d2d_{2} are the diffusive rates, and bb and β\beta measure the strength of interspecific and intraspecific interaction.

The model (4.1) was first proposed and discussed by Merchant and Nagata [43] when Ω=(,+)\Omega=(-\infty,+\infty) and their results indicate that the nonlocal competition may be an important mechanism for pattern formation. When Ω=(0,π)\Omega=(0,\ell\pi), Chen et al.[11] studied the existence of spatially nonhomogeneous periodic solutions induced by nonlocal competition. When u^=u\widehat{u}=u, the model (4.1) is reduced to the classical Holling -Tanner predator-prey model, of which the dynamics have been extensively studied (see e.g. [10, 40, 47, 46, 36] and references therein). It’s worth mentioning that (4.1) is more likely to undergoes a Hopf bifurcation than the classical Holling-Tanner system [11, 36], which increases the possibility for double Hopf bifurcation.

The system (4.1) has a unique constant positive equilibrium E=(λ,λ)E_{*}=(\lambda,\lambda) with λ\lambda satisfying (1βλ)(1+λ)=bλ(1-\beta\lambda)(1+\lambda)=b\lambda, and λ\lambda is strictly decreasing with respect to bb. Therefore, we could choose λ\lambda as one parameter instead of bb and apply the method obtained in previous sections to compute the normal forms of system (4.1) near the double Hopf singularity.

4.1 Linear analysis and existence of double Hopf bifurcation

Let U=(u,v)TU=(u,v)^{{}^{T}}, and then the linearized system of model (4.1) at the positive equilibrium (λ,λ)(\lambda,\lambda) has the form

U˙=DΔU+L(λ,c)U+L^(λ,c)U^,\dot{U}=D\Delta U+L(\lambda,c)U+\widehat{L}(\lambda,c)\widehat{U},

where D=diag(d1,d2)D=\mathrm{diag}(d_{1},d_{2}), and

L(λ,c)=(λ(1βλ)1+λ(1βλ)cc),L^(λ,c)=(βλ000).L(\lambda,c)=\Bigg{(}\begin{array}[]{cc}\frac{\lambda(1-\beta\lambda)}{1+\lambda}{}&~{}-(1-\beta\lambda)\\ c{}&~{}-c\end{array}\Bigg{)},\widehat{L}(\lambda,c)=\displaystyle\Bigg{(}\begin{array}[]{cc}-\beta\lambda{}&~{}0\\ 0{}&~{}0\end{array}\Bigg{)}.

The sequence of characteristic equations are as follows

η2Tn(λ,c)η+Dn(λ,c)=0,n0,\eta^{2}-T_{n}(\lambda,c)\eta+D_{n}(\lambda,c)=0,~{}n\in\mathbb{N}_{0}, (4.2)

where

T0(λ,c)=c+λ(1β2βλ)1+λ,D0(λ,c)=βcλ+c(1βλ)1+λ,T_{0}(\lambda,c)=-c+\cfrac{\lambda(1-\beta-2\beta\lambda)}{1+\lambda},~{}~{}D_{0}(\lambda,c)=\beta c\lambda+\cfrac{c(1-\beta\lambda)}{1+\lambda}, (4.3)

and for nn\in\mathbb{N},

Tn(λ,c)=c+λ(1βλ)1+λ(d1+d2)n22,Dn(λ,c)=c(1βλ)1+λ+(d1cd2λ(1βλ)1+λ)n22+d1d2n44.\begin{array}[]{l}T_{n}(\lambda,c)=-c+\cfrac{\lambda(1-\beta\lambda)}{1+\lambda}-(d_{1}+d_{2})\cfrac{n^{2}}{\ell^{2}},\\ D_{n}(\lambda,c)=\cfrac{c(1-\beta\lambda)}{1+\lambda}+\left(d_{1}c-\cfrac{d_{2}\lambda(1-\beta\lambda)}{1+\lambda}\right)\cfrac{n^{2}}{\ell^{2}}+d_{1}d_{2}\cfrac{n^{4}}{\ell^{4}}.\end{array} (4.4)

For simplicity of notations, we denote

p(λ)=λ(1βλ)1+λ,cd(λ)=d2d1(1βλ)(111+λ)2,c0(λ)=p(λ)βλ,cn(λ)=p(λ)d1+d22n2.\begin{array}[]{ll}p(\lambda)=\cfrac{\lambda(1-\beta\lambda)}{1+\lambda},{}{}&c_{d}(\lambda)=\cfrac{d_{2}}{d_{1}}(1-\beta\lambda)\Big{(}1-\sqrt{\cfrac{1}{1+\lambda}}\Big{)}^{2},\\ c_{0}(\lambda)=p(\lambda)-\beta\lambda,&c_{n}(\lambda)=p(\lambda)-\cfrac{d_{1}+d_{2}}{\ell^{2}}n^{2}.\end{array} (4.5)

The following lemma is a summary of the properties on (4.5), and the proof is trivial and we omit it.

Lemma 4.1.

Suppose that d1,d2>0d_{1},d_{2}>0, β>0\beta>0, and p(λ),cd(λ),c0(λ),cn(λ)p(\lambda),c_{d}(\lambda),c_{0}(\lambda),c_{n}(\lambda) are defined in (4.5).

  1. 1.

    If c>cd(λ)c>c_{d}(\lambda), then Dn(λ,c)>0D_{n}(\lambda,c)>0 for all n0n\in\mathbb{N}_{0}. Moreover, there exists λd(0,1/β)\lambda_{d}\in(0,1/\beta) such that cd(λd)=0c^{\prime}_{d}(\lambda_{d})=0, cd(λ)>0c^{\prime}_{d}(\lambda)>0 for λ(0,λd)\lambda\in(0,\lambda_{d}), and cd(λ)<0c^{\prime}_{d}(\lambda)<0 for λ(λd,1/β)\lambda\in(\lambda_{d},1/\beta).

  2. 2.

    Let λp=1+ββ1\lambda_{p}=\sqrt{\frac{1+\beta}{\beta}}-1. Then p(λp)=0p^{\prime}(\lambda_{p})=0, p(λ)>0p^{\prime}(\lambda)>0 for λ(0,λp)\lambda\in(0,\lambda_{p}), and p(λ)<0p^{\prime}(\lambda)<0. for λ(λp,1/β)\lambda\in(\lambda_{p},1/\beta).

  3. 3.

    If β1\beta\leq 1, then there exists λ0=1+β2β1(0,1β2β)\lambda_{0}=\sqrt{\frac{1+\beta}{2\beta}}-1\in(0,\frac{1-\beta}{2\beta}) such that c0(λ0)=0c^{\prime}_{0}(\lambda_{0})=0, c0(λ)>0c^{\prime}_{0}(\lambda)>0 for λ(0,λ0)\lambda\in(0,\lambda_{0}), and c0(λ)<0c^{\prime}_{0}(\lambda)<0 for λ(λ0,1/β)\lambda\in(\lambda_{0},1/\beta). Moreover, c0(λ)>0c_{0}(\lambda)>0 for λ(0,1β2β)\lambda\in(0,\frac{1-\beta}{2\beta}), and c0(λ)<0c_{0}(\lambda)<0 for λ(1β2β,1β)\lambda\in(\frac{1-\beta}{2\beta},\frac{1}{\beta}).

The existence of spatially nonhomogeneous Hopf bifurcation was studied by Chen et al. in [11], here we state the main results below without proof.

Theorem 4.2.

[Theorem 2, [11]] Suppose that c>cd(λd)c>c_{d}(\lambda_{d}), β1\beta\geq 1, and define

n=nd1+d2p(λp)c,ifp(λp)>c,\ell_{n}=n\sqrt{\cfrac{d_{1}+d_{2}}{p(\lambda_{p})-c}},~{}~{}if~{}p(\lambda_{p})>c, (4.6)

where p(λ)p(\lambda), λp\lambda_{p} are defined as Eq.(4.5) and Lemma 4.1. Then the following two statements are true.

  1. (i)(i)

    If cp(λp)c\geq p(\lambda_{p}), or c<p(λp)c<p(\lambda_{p}) but (0,1)\ell\in(0,\ell_{1}), then (λ,λ)(\lambda,\lambda) is locally asymptotically stable for λ(0,1/β)\lambda\in(0,1/\beta).

  2. (ii)(ii)

    If c<p(λp)c<p(\lambda_{p}) and (n,n+1]\ell\in(\ell_{n},\ell_{n+1}], then there exist two sequences {λj,H}\{\lambda_{j,-}^{H}\} and {λj,+H}\{\lambda_{j,+}^{H}\}, 1jn1\leq j\leq n, such that

    Tj(λj,H)=Tj(λj,+H)=0andTi(λj,±H)0forij,T_{j}(\lambda_{j,-}^{H})=T_{j}(\lambda_{j,+}^{H})=0~{}and~{}T_{i}(\lambda_{j,\pm}^{H})\neq 0~{}for~{}i\neq j, (4.7)

    and these points satisfy

    0<λ1,H<λ2,H<<λn,H<λp<λn,+H<<λ2,+H<λ1,+H<1/β,0<\lambda_{1,-}^{H}<\lambda_{2,-}^{H}<\cdots<\lambda_{n,-}^{H}<\lambda_{p}<\lambda_{n,+}^{H}<\cdots<\lambda_{2,+}^{H}<\lambda_{1,+}^{H}<1/\beta, (4.8)

    where Tj(λ)T_{j}(\lambda) is defined as in Eq.(4.4), such that (λ,λ)(\lambda,\lambda) is locally asymptotically stable for λ(0,λ1,H)(λ1,+H,1/β)\lambda\in(0,\lambda_{1,-}^{H})\cup(\lambda_{1,+}^{H},1/\beta) and unstable for λ(λ1,H,λ1,+H)\lambda\in(\lambda_{1,-}^{H},\lambda_{1,+}^{H}). Moreover, system (4.1) undergoes Hopf bifurcation at (λ,λ)(\lambda,\lambda) when λ=λj,±H\lambda=\lambda_{j,\pm}^{H}, 1jn1\leq j\leq n, and the bifurcation periodic solutions near λj,±H\lambda_{j,\pm}^{H} are spatially nonhomogeneous.

Theorem 4.3.

[Theorem 3, [11]] Suppose that β<1\beta<1, c>max{cd(λd),c0(λ0)}c>\max\big{\{}c_{d}(\lambda_{d}),c_{0}(\lambda_{0})\big{\}} with cd,c0,λd,λ0c_{d},c_{0},\lambda_{d},\lambda_{0} are defined as in Eq.(4.5) and Lemma 4.1 respectively, and n\ell_{n} is defined as in Eq.(4.6). Then the following two statements are true.

  1. (i)(i)

    If cp(λp)c\geq p(\lambda_{p}), or c0(λ0)<c<p(λp)c_{0}(\lambda_{0})<c<p(\lambda_{p}) but (0,1)\ell\in(0,\ell_{1}), then (λ,λ)(\lambda,\lambda) is locally asymptotically stable for λ(0,1/β)\lambda\in(0,1/\beta).

  2. (ii)(ii)

    If c<p(λp)c<p(\lambda_{p}) and (n,n+1]\ell\in(\ell_{n},\ell_{n+1}], then (λ,λ)(\lambda,\lambda) is locally asymptotically stable for λ(0,λ1,H)(λ1,+H,1/β)\lambda\in(0,\lambda_{1,-}^{H})\cup(\lambda_{1,+}^{H},1/\beta) and unstable for λ(λ1,H,λ1,+H)\lambda\in(\lambda_{1,-}^{H},\lambda_{1,+}^{H}). Moreover, system (4.1) undergoes Hopf bifurcation at (λ,λ)(\lambda,\lambda) when λ=λj,±H\lambda=\lambda_{j,\pm}^{H}, 1jn1\leq j\leq n, and the bifurcation periodic solutions near λj,±H\lambda_{j,\pm}^{H} are spatially nonhomogeneous, where λj,±H\lambda_{j,\pm}^{H} are defined as in Eq.(4.7) and Eq.(4.8).

Note that, if c<p(λp)c<p(\lambda_{p}), the large scale \ell is always accompanied by nonhomogeneous Hopf bifurcation, but the corresponding branch curve will not intersect in the parameter plane. Therefore, the double Hopf point can only be the interaction of spatially homogeneous and nonhomogeneous Hopf branches. Hence we consider the case

(H)0<β<1,cd(λd)<c<c0(λ0).\textsc{(H)}~{}~{}~{}\qquad~{}~{}~{}0<\beta<1,~{}~{}c_{d}(\lambda_{d})<c<c_{0}(\lambda_{0}).

In this premise, we can restrict the parameter space to a rectangular region, namely,

Rtg={(λ,c):0<λ<1/β,cd(λd)<c<c0(λ0)with0<β<1},R_{tg}=\Big{\{}(\lambda,c):0<\lambda<1/\beta,c_{d}(\lambda_{d})<c<c_{0}(\lambda_{0})~{}\text{with}~{}0<\beta<1\Big{\}}, (4.9)

and for fixed cd(λd)<c<c0(λ0)c_{d}(\lambda_{d})<c<c_{0}(\lambda_{0}), there exist two points λ0,H\lambda_{0,-}^{H}, λ0,+H(0,1/β)\lambda_{0,+}^{H}\in(0,1/\beta) such that

T0(λ0,±H)=0andλ0,H<λ0<λ0,+H.T_{0}(\lambda_{0,\pm}^{H})=0~{}\text{and}~{}~{}\lambda_{0,-}^{H}<\lambda_{0}<\lambda_{0,+}^{H}. (4.10)

Then we have the following result.

Theorem 4.4.

Let 2=2(d1+d2)1β\ell_{*}^{2}=\frac{2(d_{1}+d_{2})}{1-\beta} with d1>0,d2>0d_{1}>0,d_{2}>0, 0<β<10<\beta<1. Then the following statements hold.

  1. (i)(i)

    If 2<2\ell^{2}<\ell_{*}^{2}, then the positive steady state (λ,λ)(\lambda,\lambda) is locally asymptotically stable when (λ,c)R0(\lambda,c)\in R_{0} and unstable when (λ,c)RtgR0(\lambda,c)\in R_{tg}\setminus R_{0}, where RtgR_{tg} is defined as in (4.9), and R0R_{0} is defined by

    R0={(λ,c):0<λ<1/β,c~0(λ)<c<c0(λ0)with0<β<1},R_{0}=\Big{\{}(\lambda,c):0<\lambda<1/\beta,\tilde{c}_{0}(\lambda)<c<c_{0}(\lambda_{0})~{}\text{with}~{}0<\beta<1\Big{\}}, (4.11)

    where c~n(λ)=max{cn(λ),cd(λd)}\tilde{c}_{n}(\lambda)=\max\big{\{}c_{n}(\lambda),c_{d}(\lambda_{d})\big{\}}, n0n\in\mathbb{N}_{0}.

  2. (ii)(ii)

    If 2>2\ell^{2}>\ell_{*}^{2}, then there exist a positive integer NN^{*} and a sequence {λ0,nHH}1nN\{\lambda_{0,n}^{{}^{HH}}\}_{1\leq n\leq N^{*}}, where λ0,nHH=d1+d2β2n2(0,1β2β)\lambda_{0,n}^{{}^{HH}}=\frac{d_{1}+d_{2}}{\beta\ell^{2}}n^{2}\in(0,\frac{1-\beta}{2\beta}) satisfies

    T0(λ0,nHH,c)=Tn(λ0,nHH,c),T_{0}(\lambda_{0,n}^{{}^{HH}},c)=T_{n}(\lambda_{0,n}^{{}^{HH}},c),

    and

    T0(λ,c)>Tn(λ,c)forλ(0,λ0,nHH),T0(λ,c)<Tn(λ,c)forλ(λ0,nHH,1β2β).T_{0}(\lambda,c)>T_{n}(\lambda,c)~{}\text{for}~{}\lambda\in(0,\lambda_{0,n}^{{}^{HH}}),~{}~{}T_{0}(\lambda,c)<T_{n}(\lambda,c)~{}\text{for}~{}\lambda\in(\lambda_{0,n}^{{}^{HH}},\frac{1-\beta}{2\beta}).

    Moreover, the positive steady state (λ,λ)(\lambda,\lambda) is locally asymptotically stable when (λ,c)R0R1(\lambda,c)\in R_{0}\bigcap R_{1} and unstable when (λ,c)Rtg(R0R1)(\lambda,c)\in R_{tg}\setminus\big{(}R_{0}\bigcap R_{1}\big{)}, where RtgR_{tg}, R0R_{0} are defined as in (4.9) and (4.11) respectively, and R1R_{1} is defined by

    R1={(λ,c):0<λ<1/β,c~1(λ)<c<c0(λ0)with0<β<1}.R_{1}=\Big{\{}(\lambda,c):0<\lambda<1/\beta,\tilde{c}_{1}(\lambda)<c<c_{0}(\lambda_{0})~{}\text{with}~{}0<\beta<1\Big{\}}. (4.12)
Proof.

Denote S(λ,n)=c0(λ)cn(λ)S(\lambda,n)=c_{0}(\lambda)-c_{n}(\lambda), namely,

S(λ,n)=λβ+d1+d22n2,forλ(0,1β2β),n.S(\lambda,n)=-\lambda\beta+\cfrac{d_{1}+d_{2}}{\ell^{2}}n^{2},~{}\text{for}~{}\lambda\in(0,\cfrac{1-\beta}{2\beta}),~{}n\in\mathbb{N}. (4.13)

Clearly, S(0,n)>0S(0,n)>0, and if minS>0\min S>0, then S(λ,n)>0S(\lambda,n)>0 for any λ(0,1β2β)\lambda\in(0,\frac{1-\beta}{2\beta}) and nn\in\mathbb{N}. Note that Sλ(λ,n)<0S^{\prime}_{\lambda}(\lambda,n)<0, and Sn(λ,n)>0S^{\prime}_{n}(\lambda,n)>0, hence we have

minS=S(1β2β,1)=β12+d1+d22.\min S=S\left(\frac{1-\beta}{2\beta},1\right)=\cfrac{\beta-1}{2}+\cfrac{d_{1}+d_{2}}{\ell^{2}}.

It is easy to verify that minS=0\min S=0 when 2=2\ell^{2}=\ell_{*}^{2}.

If 2<2\ell^{2}<\ell_{*}^{2}, then S(λ,n)>minS>0S(\lambda,n)>\min S>0 for any λ(0,1β2β)\lambda\in(0,\frac{1-\beta}{2\beta}) and nn\in\mathbb{N}, which means that c0(λ)>cn(λ)c_{0}(\lambda)>c_{n}(\lambda). Thus, we have that the stable region is exactly R0R_{0}, which proves (i)(i).

If 2>2\ell^{2}>\ell_{*}^{2}, then S(1β2β,1)<0S\left(\frac{1-\beta}{2\beta},1\right)<0, and consequently, there exists a positive integer

N={/1,if/is a integer,/,if/is not a integer,N^{*}=\begin{cases}\ell/\ell_{*}-1,~{}~{}&\text{if}~{}~{}\ell/\ell_{*}~{}\text{is a integer},\\ \left\lfloor\ell/\ell_{*}\right\rfloor,~{}~{}&\text{if}~{}~{}\ell/\ell_{*}~{}\text{is not a integer},\end{cases} (4.14)

such that S(1β2β,N)S(\frac{1-\beta}{2\beta},N^{*}) maximally equals to zero. Consequently for 1nN1\leq n\leq N^{*}, we have S(1β2β,n)<0S(\frac{1-\beta}{2\beta},n)<0, which together with the fact S(0,n)>0S(0,n)>0 yields that there exists a λ0,nHH(0,1β2β)\lambda_{0,n}^{{}^{HH}}\in(0,\frac{1-\beta}{2\beta}) such that S(λ0,nHH,n)=0S(\lambda_{0,n}^{{}^{HH}},n)=0. The critical point λ0,nHH\lambda_{0,n}^{{}^{HH}} can be represented explicitly by

λ0,nHH=d1+d2β2n2(0,1β2β).\lambda_{0,n}^{{}^{HH}}=\cfrac{d_{1}+d_{2}}{\beta\ell^{2}}n^{2}\in(0,\cfrac{1-\beta}{2\beta}). (4.15)

Since c0(λ)>cn(λ)c_{0}(\lambda)>c_{n}(\lambda) when 0<λ<λ0,1HH0<\lambda<\lambda_{0,1}^{{}^{HH}} and c1(λ)>cj(λ)c_{1}(\lambda)>c_{j}(\lambda), jN0{1}j\in N_{0}\setminus\{1\} when λ0,1HH<λ<1/β\lambda_{0,1}^{{}^{HH}}<\lambda<1/\beta, we can give the representation of the stable region in the λc\lambda-c plane as follows

{(λ,c):0<λ<λ0,1HH,c~0(λ)<c<c0(λ0)andλ0,1HH<λ<1/β,c~1(λ)<c<c0(λ0)},\Big{\{}(\lambda,c):0<\lambda<\lambda_{0,1}^{{}^{HH}},\tilde{c}_{0}(\lambda)<c<c_{0}(\lambda_{0})~{}\text{and}~{}\lambda_{0,1}^{{}^{HH}}<\lambda<1/\beta,\tilde{c}_{1}(\lambda)<c<c_{0}(\lambda_{0})\Big{\}},

which is equivalent to R0R1R_{0}\bigcap R_{1}. ∎

Remark 4.5.

When 2>2\ell^{2}>\ell_{*}^{2}, we illustrate Theorem 4.4 geometrically in Fig.1. The intersection point P=(λ0,1HH,c(λ0,1HH))P=(\lambda_{0,1}^{{}^{HH}},c(\lambda_{0,1}^{{}^{HH}})) of c0(λ)c_{0}(\lambda) and c1(λ)c_{1}(\lambda) is a possible double Hopf bifurcation point. In our analyses to follow we shall be employing (λ,c)(\lambda,c) as our bifurcation parameters and considering the dynamics of system (4.1) near this point.

Remark 4.6.

If 0<c<cd(λd)0<c<c_{d}(\lambda_{d}), then Turing bifurcation or even Turing-Hopf bifurcation may occur under some conditions, the boundary of stable region will become more complex and the system may exhibit rich dynamics near the Turing-Hopf bifurcation point. If the parameters are chosen properly, the coexistence of the spatially nonhomogeneous periodic solutions and spatially nonhomogeneous steady states can be observed [1, 50, 53].

Refer to caption
Figure 1: Stability region and bifurcation curves in λc\lambda-c plane. The blue lines are Hopf bifurcation curves c=c0(λ)c=c_{0}(\lambda), while the red, c=c1(λ)c=c_{1}(\lambda). The values of parameters are chosen as follows: d1=0.6d_{1}=0.6, d2=0.2d_{2}=0.2, β=0.1\beta=0.1, 2=8>1.7778=2\ell^{2}=8>1.7778=\ell^{2}_{*}.

4.2 Normal forms for double Hopf bifurcation

It follows from Theorem 4.4 that if 0<β<10<\beta<1 and 2>2\ell^{2}>\ell^{2}_{*}, then the spatially homogeneous Hopf bifurcation and spatially nonhomogeneous Hopf bifurcation may occur simultaneously. In this section, we shall calculate the normal forms on the center manifold to investigate the dynamics of system (4.1) near the possible double-Hopf bifurcation singularity (λ0,c0)=(λ0,1HH,c0(λ0,1HH))(\lambda_{0},c_{0})=(\lambda_{0,1}^{{}^{HH}},c_{0}(\lambda_{0,1}^{{}^{HH}})).

Let (u1(x,t),u2(x,t))T=(u(x,t)λ,v(x,t)λ)T(u_{1}(x,t),u_{2}(x,t))^{{}^{T}}=(u(x,t)-\lambda,v(x,t)-\lambda)^{{}^{T}}, and μ=(μ1,μ2)\mu=(\mu_{1},\mu_{2}) with μ1=λλ0\mu_{1}=\lambda-\lambda_{0}, μ2=cc0\mu_{2}=c-c_{0}, then system (4.1) becomes

dU(t)dt=D(μ)ΔU+L(μ)U+L^(μ)U^+F(U,U^,μ).\cfrac{dU(t)}{dt}=D(\mu)\Delta U+L(\mu)U+\widehat{L}(\mu)\widehat{U}+F(U,\widehat{U},\mu). (4.16)

Consider the Taylor expansion

D(μ)=D0+μ1D1(1,0)+μ2D1(0,1)+L(μ)=L0+μ1L1(1,0)+μ2L1(0,1)+L^(μ)=L^0+μ1L^1(1,0)+μ2L^1(0,1)+\begin{array}[]{ll}&D(\mu)=D_{0}+\mu_{1}D_{1}^{(1,0)}+\mu_{2}D_{1}^{(0,1)}+\cdots\\ &L(\mu)=L_{0}+\mu_{1}L_{1}^{(1,0)}+\mu_{2}L_{1}^{(0,1)}+\cdots\\ &\widehat{L}(\mu)=\widehat{L}_{0}+\mu_{1}\widehat{L}_{1}^{(1,0)}+\mu_{2}\widehat{L}_{1}^{(0,1)}+\cdots\end{array}

where D0=diag(d1,d2)D_{0}=\mathrm{diag}(d_{1},d_{2}), D1(1,0)=D1(0,1)=0D_{1}^{(1,0)}=D_{1}^{(0,1)}=\textbf{0}, L^1(0,1)=0\widehat{L}_{1}^{(0,1)}=\textbf{0} and

L0=(λ0(1βλ0)1+λ0(1βλ0)c0c0),L1(1,0)=(12βλ0βλ02(1+λ0)2β00),L1(0,1)=(0011),L^0=(βλ0000),L^1(1,0)=(β000).\begin{array}[]{ll}L_{0}=\Bigg{(}\begin{array}[]{cc}\cfrac{\lambda_{0}(1-\beta\lambda_{0})}{1+\lambda_{0}}{}&-(1-\beta\lambda_{0})\\ c_{0}{}&-c_{0}\end{array}\Bigg{)},~{}L_{1}^{(1,0)}=\Bigg{(}\begin{array}[]{cc}\cfrac{1-2\beta\lambda_{0}-\beta\lambda_{0}^{2}}{(1+\lambda_{0})^{2}}{}&~{}\beta\\ 0{}&~{}0\end{array}\Bigg{)},\\ L_{1}^{(0,1)}=\Bigg{(}\begin{array}[]{cc}0&0\\ 1&-1\end{array}\Bigg{)},~{}~{}~{}\widehat{L}_{0}=\Bigg{(}\begin{array}[]{cc}-\beta\lambda_{0}&0\\ 0&0\end{array}\Bigg{)},~{}~{}~{}\widehat{L}_{1}^{(1,0)}=\Bigg{(}\begin{array}[]{cc}-\beta&0\\ 0&0\end{array}\Bigg{)}.\\ \end{array} (4.17)

Then Eq.(4.16) can be rewritten as

dU(t)dt=U+F~(U,U^,μ).\cfrac{dU(t)}{dt}=\mathscr{L}U+\widetilde{F}(U,\widehat{U},\mu). (4.18)

where

U=D0ΔU+L0U+L^0U^,F~(U,U^,μ)=(L(μ)L0)U+(L^(μ)L^0)U+F(U,U^,μ).\begin{array}[]{ll}\mathscr{L}U=D_{0}\Delta U+L_{0}U+\widehat{L}_{0}\widehat{U},\\ \widetilde{F}(U,\widehat{U},\mu)=(L(\mu)-L_{0})U+(\widehat{L}(\mu)-\widehat{L}_{0})U+F(U,\widehat{U},\mu).\end{array} (4.19)

It follows from Section 2 that \mathscr{L} and its adjoint \mathscr{L}^{*} have two pairs of purely imaginary roots ±iω1\pm i\omega_{1} and ±iω2\pm i\omega_{2} with

ω1=D0(λ0,c0)andω2=D1(λ0,c0)\omega_{1}=\sqrt{D_{0}(\lambda_{0},c_{0})}~{}~{}\text{and}~{}~{}\omega_{2}=\sqrt{D_{1}(\lambda_{0},c_{0})} (4.20)

and other eigenvalues have negative real parts.

Denote {ϕ1ξn1,ϕ¯1ξn1,ϕ2ξn2,ϕ¯2ξn2}\{\phi_{1}\xi_{n_{1}},\bar{\phi}_{1}\xi_{n_{1}},\phi_{2}\xi_{n_{2}},\bar{\phi}_{2}\xi_{n_{2}}\} and {ψ1ξn1,ψ¯1ξn1,ψ2ξn2,ψ¯2ξn2}\{\psi_{1}\xi_{n_{1}},\bar{\psi}_{1}\xi_{n_{1}},\psi_{2}\xi_{n_{2}},\bar{\psi}_{2}\xi_{n_{2}}\} the eigenfunctions of \mathscr{L} and its dual \mathscr{L}^{*} relative to Λ={±iω1,±iω2}\Lambda=\{\pm i\omega_{1},\pm i\omega_{2}\} with n1=0n_{1}=0, n2=1n_{2}=1 such that

ϕjξnj=iωjϕjξnj,ψjξnj=iωjψjξnj,and<ψj,ϕj>=1,j=1,2,\begin{array}[]{ll}\mathscr{L}\phi_{j}\xi_{n_{j}}=i\omega_{j}\phi_{j}\xi_{n_{j}},~{}~{}\mathscr{L}^{*}\psi_{j}\xi_{n_{j}}=-i\omega_{j}\psi_{j}\xi_{n_{j}},~{}\text{and}~{}~{}<\psi_{j},\phi_{j}>=1,~{}~{}j=1,2,\end{array}

where ξnj\xi_{n_{j}} is defined as in (2.5). Specifically, we let ϕj=(1,qj)T,ψj=Mj(1,pj)\phi_{j}=(1,q_{j})^{{}^{T}},\psi_{j}=M_{j}(1,p_{j}), and after a direct calculation, we have

q1=c0iω1+c0,q2=c0iω2+d22+c0,p1=1βλ0iω1c0,p2=1βλ0iω2d22c0,M1=(iω1c0)2(iω1c0)2c0(1βλ0),M2=(iω2d22c0)2(iω2d22c0)2c0(1βλ0).\begin{array}[]{ll}q_{1}=\cfrac{c_{0}}{i\omega_{1}+c_{0}},~{}~{}q_{2}=\cfrac{c_{0}}{i\omega_{2}+\frac{d_{2}}{\ell^{2}}+c_{0}},~{}~{}p_{1}=\cfrac{1-\beta\lambda_{0}}{i\omega_{1}-c_{0}},~{}~{}p_{2}=\cfrac{1-\beta\lambda_{0}}{i\omega_{2}-\frac{d_{2}}{\ell^{2}}-c_{0}},\\ M_{1}=\cfrac{(i\omega_{1}-c_{0})^{2}}{(i\omega_{1}-c_{0})^{2}-c_{0}(1-\beta\lambda_{0})},~{}~{}M_{2}=\cfrac{(i\omega_{2}-\frac{d_{2}}{\ell^{2}}-c_{0})^{2}}{(i\omega_{2}-\frac{d_{2}}{\ell^{2}}-c_{0})^{2}-c_{0}(1-\beta\lambda_{0})}.\end{array} (4.21)

Noticing that δ(n1)=1\delta(n_{1})=1 and δ(n2)=0\delta(n_{2})=0, then from (3.13) and (3.14), we have

B11=ψ¯1(L1(1,0)+L^1(1,0))ϕ1=(iω1+c0)2(iω1+c0)2c0(1βλ0)(12βλ0βλ02(1+λ0)2iω1βiω1+c0),B21=ψ¯1L1(0,1)ϕ1=iω1(1βλ0)(iω1+c0)2c0(1βλ0),B13=ψ¯2L1(1,0)ϕ2=(iω2+d22+c0)2(iω2+d22+c0)2c0(1βλ0)(12βλ0βλ02(1+λ0)2+c0βiω2+d22+c0),B23=ψ¯2L1(0,1)ϕ2=(iω2+d22)(1βλ0)(iω2+d22+c0)2c0(1βλ0).\begin{array}[]{ll}B_{11}=\bar{\psi}_{1}(L_{1}^{(1,0)}+\widehat{L}_{1}^{(1,0)})\phi_{1}=\cfrac{(i\omega_{1}+c_{0})^{2}}{(i\omega_{1}+c_{0})^{2}-c_{0}(1-\beta\lambda_{0})}\Big{(}\dfrac{1-2\beta\lambda_{0}-\beta\lambda_{0}^{2}}{(1+\lambda_{0})^{2}}-\dfrac{i\omega_{1}\beta}{i\omega_{1}+c_{0}}\Big{)},\\ B_{21}=\bar{\psi}_{1}L_{1}^{(0,1)}\phi_{1}=\dfrac{-i\omega_{1}(1-\beta\lambda_{0})}{(i\omega_{1}+c_{0})^{2}-c_{0}(1-\beta\lambda_{0})},\\ B_{13}=\bar{\psi}_{2}L_{1}^{(1,0)}\phi_{2}=\cfrac{(i\omega_{2}+\frac{d_{2}}{\ell^{2}}+c_{0})^{2}}{(i\omega_{2}+\frac{d_{2}}{\ell^{2}}+c_{0})^{2}-c_{0}(1-\beta\lambda_{0})}\Big{(}\dfrac{1-2\beta\lambda_{0}-\beta\lambda_{0}^{2}}{(1+\lambda_{0})^{2}}+\dfrac{c_{0}\beta}{i\omega_{2}+\frac{d_{2}}{\ell^{2}}+c_{0}}\Big{)},\\ B_{23}=\bar{\psi}_{2}L_{1}^{(0,1)}\phi_{2}=\dfrac{-(i\omega_{2}+\frac{d_{2}}{\ell^{2}})(1-\beta\lambda_{0})}{(i\omega_{2}+\frac{d_{2}}{\ell^{2}}+c_{0})^{2}-c_{0}(1-\beta\lambda_{0})}.\\ \end{array} (4.22)

Applying the method given in Appendix, we obtain

Fw1z1=2(Fuu+Fuvq1+Fuu^),Fw2z1=2(Fuv+Fvvq1),Fw1z3=2(Fuu+Fuvq3),Fw2z3=2(Fuv+Fvvq3),Fw^1z1=Fw^1z3=2Fuu^,Fw^2z1=Fw^2z3=0.\begin{array}[]{ll}F_{w_{1}z_{1}}=2(F_{uu}+F_{uv}q_{1}+F_{u\widehat{u}}),{}&F_{w_{2}z_{1}}=2(F_{uv}+F_{vv}q_{1}),\\ F_{w_{1}z_{3}}=2(F_{uu}+F_{uv}q_{3}),{}&F_{w_{2}z_{3}}=2(F_{uv}+F_{vv}q_{3}),\\ F_{\widehat{w}_{1}z_{1}}=F_{\widehat{w}_{1}z_{3}}=2F_{u\widehat{u}},{}&F_{\widehat{w}_{2}z_{1}}=F_{\widehat{w}_{2}z_{3}}=0.\\ \end{array} (4.23)

and

F2000=Fuu+q12Fvv+2q1Fuv+2Fuu^,F1100=2[Fuu+Fvvq1q¯1+Fuv(q1+q¯1)+2Fuu^],F1010=2[Fuu+Fvvq1q2+Fuv(q1+q2)+Fuu^],F1001=2[Fuu+Fvvq1q¯2+Fuv(q1+q¯2)+Fuu^],F0020=Fuu+q22Fvv+2q2Fuv,F0011=2[Fuu+Fvvq2q¯2+Fuv(q2+q¯2)],F0200=F2000¯,F0101=F1010¯,F0002=F0020¯,F0110=F1001¯.\begin{array}[]{ll}F_{2000}=F_{uu}+q_{1}^{2}F_{vv}+2q_{1}F_{uv}+2F_{u\widehat{u}},{}&F_{1100}=2\big{[}F_{uu}+F_{vv}q_{1}\bar{q}_{1}+F_{uv}(q_{1}+\bar{q}_{1})+2F_{u\widehat{u}}\big{]},\\ F_{1010}=2\big{[}F_{uu}+F_{vv}q_{1}q_{2}+F_{uv}(q_{1}+q_{2})+F_{u\widehat{u}}\big{]},{}&F_{1001}=2\big{[}F_{uu}+F_{vv}q_{1}\bar{q}_{2}+F_{uv}(q_{1}+\bar{q}_{2})+F_{u\widehat{u}}\big{]},\\ F_{0020}=F_{uu}+q_{2}^{2}F_{vv}+2q_{2}F_{uv},&F_{0011}=2\big{[}F_{uu}+F_{vv}q_{2}\bar{q}_{2}+F_{uv}(q_{2}+\bar{q}_{2})\big{]},\\ F_{0200}=\overline{F_{2000}},~{}F_{0101}=\overline{F_{1010}},&F_{0002}=\overline{F_{0020}},~{}F_{0110}=\overline{F_{1001}}.\\ \end{array} (4.24)

where Fuu=2u2F(0,0,μ0)=2u2F~(0,0,0)F_{uu}=\frac{\partial^{2}}{\partial u^{2}}F(0,0,\mu_{0})=\frac{\partial^{2}}{\partial u^{2}}\widetilde{F}(0,0,0). The coefficient vectors required in F~3\widetilde{F}_{3} are given by

F2100=3[Fuuu+Fuuv(2q1+q¯1)+Fuvvq1(2q¯1+q1)+Fvvvq12q¯1],F0021=3[Fuuu+Fuuv(2q2+q¯2)+Fuvvq2(2q¯2+q2)+Fvvvq22q¯2],F1110=6[Fuuu+Fuuv(q1+q¯1+q2)+Fuvv(q1q¯1+q1q2+q2q¯1)+Fvvvq1q¯1q2],F1011=6[Fuuu+Fuuv(q1+q2+q¯2)+Fuvv(q2q¯2+q1q2+q1q¯2)+Fvvvq2q¯2q1].\begin{array}[]{ll}F_{2100}=3\big{[}F_{uuu}+F_{uuv}(2q_{1}+\bar{q}_{1})+F_{uvv}q_{1}(2\bar{q}_{1}+q_{1})+F_{vvv}q_{1}^{2}\bar{q}_{1}\big{]},\\ F_{0021}=3\big{[}F_{uuu}+F_{uuv}(2q_{2}+\bar{q}_{2})+F_{uvv}q_{2}(2\bar{q}_{2}+q_{2})+F_{vvv}q_{2}^{2}\bar{q}_{2}\big{]},\\ F_{1110}=6\big{[}F_{uuu}+F_{uuv}(q_{1}+\bar{q}_{1}+q_{2})+F_{uvv}(q_{1}\bar{q}_{1}+q_{1}q_{2}+q_{2}\bar{q}_{1})+F_{vvv}q_{1}\bar{q}_{1}q_{2}\big{]},\\ F_{1011}=6\big{[}F_{uuu}+F_{uuv}(q_{1}+q_{2}+\bar{q}_{2})+F_{uvv}(q_{2}\bar{q}_{2}+q_{1}q_{2}+q_{1}\bar{q}_{2})+F_{vvv}q_{2}\bar{q}_{2}q_{1}\big{]}.\\ \end{array} (4.25)

Other formulas appearing in the process of computing normal forms can be obtained from the above formulas.

4.3 Numerical simulations

In this section, we give some simulations to support our theoretical results. The dynamic classification near the double Hopf bifurcation point is presented by applying the normal form method, and a particular bifurcation diagram and corresponding phase portraits are shown in Fig. 2.

Take

d1=0.6,d2=0.2,β=0.1,2=8.d_{1}=0.6,~{}~{}d_{2}=0.2,~{}~{}\beta=0.1,~{}~{}\ell^{2}=8.

It follows from Theorem 4.4 and Eq.(4.5), the double Hopf bifurcation point (λ0,c0)=(1,0.35)(\lambda_{0},c_{0})=(1,0.35). Note that b=(1βλ)(1+λ)λb=\frac{(1-\beta\lambda)(1+\lambda)}{\lambda}, then using the formulas (3.30), (3.31) and algorithm (4.22)\sim(4.25), we have

κ1(μ)=0.0375μ1+0.5μ2,κ2(μ)=0.0875μ1+0.5μ2.\begin{array}[]{ll}\kappa_{1}(\mu)=-0.0375\mu_{1}+0.5\mu_{2},\\ \kappa_{2}(\mu)=-0.0875\mu_{1}+0.5\mu_{2}.\end{array} (4.26)

and

ϵ1=1,ϵ2=1,d0=1,b0=0.5363,c^0=0.6230,d0b0c^0=0.6659.\epsilon_{1}=-1,~{}~{}\epsilon_{2}=-1,~{}~{}d_{0}=1,~{}~{}b_{0}=-0.5363,~{}~{}\hat{c}_{0}=-0.6230,~{}~{}d_{0}-b_{0}\hat{c}_{0}=0.6659.

Then system (3.31) becomes

ρ˙1=ρ1(0.0375μ1+0.5μ2+ρ120.5363ρ22),ρ˙2=ρ2(0.0875μ1+0.5μ20.6230ρ12+ρ22).\begin{array}[]{ll}\dot{\rho}_{1}=\rho_{1}\big{(}-0.0375\mu_{1}+0.5\mu_{2}+\rho_{1}^{2}-0.5363\rho_{2}^{2}\big{)},\\ \dot{\rho}_{2}=\rho_{2}\big{(}-0.0875\mu_{1}+0.5\mu_{2}-0.6230\rho_{1}^{2}+\rho_{2}^{2}\big{)}.\end{array} (4.27)

According to the classification for planar vector field in [27], Case (IVa)(IVa) occurs, and we can divide the μ1μ2\mu_{1}-\mu_{2} plane into six dynamic regions with

L1:μ2=0.075μ1,L2:μ2=0.175μ1,T1:μ2=0.1099μ1,T2:μ2=0.1366μ1.\begin{array}[]{ll}L_{1}:\mu_{2}=0.075\mu_{1},&L_{2}:\mu_{2}=0.175\mu_{1},\\ T_{1}:\mu_{2}=0.1099\mu_{1},&T_{2}:\mu_{2}=0.1366\mu_{1}.\end{array}

There are four possible attractors in Fig. 2: spatially homogeneous steady state, spatially homogeneous periodic solution, spatially nonhomogeneous periodic solution and spatially nonhomogeneous quasi-periodic solution. In the following, we give a detailed numerical simulation for these attractors, see Fig. 3\sim Fig. 6.

We remark that when (μ1,μ2)D3D4D5(\mu_{1},\mu_{2})\in D_{3}\bigcup D_{4}\bigcup D_{5}, there exists a stable spatially nonhomogeneous quasi-periodic solution, and this quasi-periodicity is not easily seen in Fig. 5. Then we present it on a Poincaré section. Fix x=πx=\pi, we choose the solution curve (u(π,t),v(π,t))(u(\pi,t),v(\pi,t)) and Poincaré section v(π,t)=λ0v(\pi,t)=\lambda_{0}, and the results are shown in Fig. 7 in which we can see that system has a quasi-periodic solution on a 2-torus. Here we only present the case in region D4D_{4}, since D3D_{3} and D5D_{5} are similar. We mention that the spatially nonhomogeneous periodic solution and quasi-periodic solution are new spatiotemporal dynamic behaviors compared to the original system without nonlocal terms. This shows that nonlocal terms can enrich the dynamic behaviors of the system.

Refer to caption
Figure 2: Bifurcation diagram and the corresponding phase portraits of system (4.27) in the μ1μ2\mu_{1}-\mu_{2} plane.
Refer to caption
Refer to caption
Refer to caption
Figure 3: Stable positive constant steady state with (μ1,μ2)=(0.2,0.00925)D1(\mu_{1},\mu_{2})=(-0.2,0.00925)\in D_{1}. The initial function are chosen as (λ0+0.5sinx,λ0+0.5cosx)(\lambda_{0}+0.5\sin x,\lambda_{0}+0.5\cos x).
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 4: Stable spatially homogeneous periodic solution with (μ1,μ2)=(0.2,0.02)D2(\mu_{1},\mu_{2})=(-0.2,-0.02)\in D_{2}, and the initial function are (λ0+0.5sinx,λ0+0.5cosx)(\lambda_{0}+0.5\sin x,\lambda_{0}+0.5\cos x). (a) and (c): the dynamics of uu; (b) and (d): the dynamics of vv; (e) and (f): the trajectories and corresponding periodic orbits at x=1x=1.
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 5: Stable spatially nonhomogeneous quasi-periodic solution with (μ1,μ2)=(0.06,0.03)D4(\mu_{1},\mu_{2})=(0.06,-0.03)\in D_{4}, and the initial function are (λ0+0.1cosx,λ0+0.1cosx)(\lambda_{0}+0.1\cos x,\lambda_{0}+0.1\cos x). (a) and (c): the dynamics of uu; (b) and (d): the dynamics of vv; (e): the trajectories at x=1x=1; (f): the spatial distribution at t=4800t=4800.
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 6: Stable spatially nonhomogeneous periodic solution with (μ1,μ2)=(0.06,0.00925)D6(\mu_{1},\mu_{2})=(0.06,0.00925)\in D_{6}, and the initial function are (λ0+0.1cosx,λ0+0.1cosx)(\lambda_{0}+0.1\cos x,\lambda_{0}+0.1\cos x).(a) and (c): the dynamics of uu; (b) and (d): the dynamics of vv; (e): the trajectories at x=1x=1; (f): the spatial distribution at t=4800t=4800.
Refer to caption
Refer to caption
Figure 7: The phase portraits in u(π,t)v(π,t)u(π,t2πω1)u(\pi,t)-v(\pi,t)-u(\pi,t-\frac{2\pi}{\omega_{1}}) coordinate and the corresponding Poincaré map on v(π,t)=λ0v(\pi,t)=\lambda_{0} when (μ1,μ2)=(0.06,0.03)D4(\mu_{1},\mu_{2})=(0.06,-0.03)\in D_{4}.

5 Discussion and conclusion

In this paper, we develop an algorithm for computing normal forms associated with the codimension-two double Hopf bifurcation for a general reaction-diffusion system with spatial average nonlocal kernel and Neumann boundary conditions. The algorithm looks complicated, but it is actually easy for computer implementation, especially when the system consists of only two variables. We introduce a Boolean function to handle the effects of nonlocal terms on the computation of normal forms. The system can exhibit rich dynamics near the double Hopf bifurcation singularity, and the possible attractors near this degenerated point mainly include spatially homogeneous/nonhomogeneous periodic solutions, spatially nonhomogeneous quasi-periodic solutions.

We apply our result to a reaction-diffusion Holling-Tanner system with nonlocal prey competition. The qualitative analysis reveals that the dynamic behaviors of the system with nonlocal terms is more complex than that of the original system. The unfolding of (IVa)(IVa) (see Table.1) occurs in our numerical simulations, and the spatially homogeneous and nonhomogeneous periodic solutions are observed from numerical simulations. Furthermore, The existence of the spatially nonhomogeneous quasi-periodic solution is verified in Poincaré section.

Appendix A Appendix

This appendix is an extension of the case that n=2n=2, and we shall show the details of the coefficient vectors that appear in Section 3. Without loss of generality, we denote

ϕ1=(1q1),ϕ2=(1q2),ϕ3=(1q3),ϕ4=(1q4),\phi_{1}=\left(\begin{array}[]{c}1\\ q_{1}\end{array}\right),~{}\phi_{2}=\left(\begin{array}[]{c}1\\ q_{2}\end{array}\right),~{}\phi_{3}=\left(\begin{array}[]{c}1\\ q_{3}\end{array}\right),~{}\phi_{4}=\left(\begin{array}[]{c}1\\ q_{4}\end{array}\right),~{}

with q1=q¯2q_{1}=\bar{q}_{2}, q3=q¯4q_{3}=\bar{q}_{4}. Note that n2>n10n_{2}>n_{1}\geq 0, i.e., δ(n2)=0\delta(n_{2})=0, then for U=(u,v)TXU=(u,v)^{{}^{T}}\in X_{\mathbb{C}}, we have

U=(uv)=(1q1)z1ξn1+(1q2)z2ξn1+(1q3)z3ξn2+(1q4)z4ξn2+w,U^=(u^v^)=(1q1)z1ξ^n1+(1q2)z2ξ^n1+w^.\begin{array}[]{ll}U&=\left(\begin{array}[]{c}u\\ v\end{array}\right)=\left(\begin{array}[]{c}1\\ q_{1}\end{array}\right)z_{1}\xi_{n_{1}}+\left(\begin{array}[]{c}1\\ q_{2}\end{array}\right)z_{2}\xi_{n_{1}}+\left(\begin{array}[]{c}1\\ q_{3}\end{array}\right)z_{3}\xi_{n_{2}}+\left(\begin{array}[]{c}1\\ q_{4}\end{array}\right)z_{4}\xi_{n_{2}}+w,\\ \widehat{U}&=\left(\begin{array}[]{c}\widehat{u}\\ \widehat{v}\end{array}\right)=\left(\begin{array}[]{c}1\\ q_{1}\end{array}\right)z_{1}\widehat{\xi}_{n_{1}}+\left(\begin{array}[]{c}1\\ q_{2}\end{array}\right)z_{2}\widehat{\xi}_{n_{1}}+\widehat{w}.\end{array}

Then the coefficient vectors Fι1ι2ι3ι4F_{\iota_{1}\iota_{2}\iota_{3}\iota_{4}}, FwziF_{wz_{i}}, Fw^ziF_{\widehat{w}z_{i}} shown in section 3 can be obtained by computing the following partial derivatives, where Fuu=2u2F(0,0,μ0)F_{uu}=\frac{\partial^{2}}{\partial u^{2}}F(0,0,\mu_{0}), and other symbols are similarly defined:

Fw1z1=2(Fuu+Fuvq1+Fuu^δ(n1)+Fuv^q1δ(n1)),Fw^1z1=2(Fuu^+Fvu^q1+Fu^u^δ(n1)+Fu^v^q1δ(n1)),Fw2z1=2(Fuv+Fvvq1+Fvu^δ(n1)+Fvv^q1δ(n1)),Fw^2z1=2(Fuv^+Fvv^q1+Fu^v^δ(n1)+Fv^v^q1δ(n1)),Fw1z3=2(Fuu+Fuvq3),Fw^1z3=2(Fuu^+Fvu^q3),Fw2z3=2(Fuv+Fvvq3),Fw^2z3=2(Fuv^+Fvv^q3),\begin{array}[]{ll}F_{w_{1}z_{1}}=2\big{(}F_{uu}+F_{uv}q_{1}+F_{u\widehat{u}}\delta(n_{1})+F_{u\widehat{v}}q_{1}\delta(n_{1})\big{)},{}&F_{\widehat{w}_{1}z_{1}}=2\big{(}F_{u\widehat{u}}+F_{v\widehat{u}}q_{1}+F_{\widehat{u}\widehat{u}}\delta(n_{1})+F_{\widehat{u}\widehat{v}}q_{1}\delta(n_{1})\big{)},\\ F_{w_{2}z_{1}}=2\big{(}F_{uv}+F_{vv}q_{1}+F_{v\widehat{u}}\delta(n_{1})+F_{v\widehat{v}}q_{1}\delta(n_{1})\big{)},{}&F_{\widehat{w}_{2}z_{1}}=2\big{(}F_{u\widehat{v}}+F_{v\widehat{v}}q_{1}+F_{\widehat{u}\widehat{v}}\delta(n_{1})+F_{\widehat{v}\widehat{v}}q_{1}\delta(n_{1})\big{)},\\ F_{w_{1}z_{3}}=2\big{(}F_{uu}+F_{uv}q_{3}\big{)},{}&F_{\widehat{w}_{1}z_{3}}=2\big{(}F_{u\widehat{u}}+F_{v\widehat{u}}q_{3}\big{)},\\ F_{w_{2}z_{3}}=2\big{(}F_{uv}+F_{vv}q_{3}\big{)},{}&F_{\widehat{w}_{2}z_{3}}=2\big{(}F_{u\widehat{v}}+F_{v\widehat{v}}q_{3}\big{)},\\ \end{array}

and

Fw1z2=Fw1z1¯,Fw2z2=Fw2z1¯,Fw1z4=Fw1z3¯,Fw2z4=Fw2z3¯,Fw^1z2=Fw^1z1¯,Fw^2z2=Fw^2z1¯,Fw^1z4=Fw^1z3¯,Fw^2z4=Fw^2z3¯.\begin{array}[]{ll}F_{w_{1}z_{2}}=\overline{F_{w_{1}z_{1}}},~{}F_{w_{2}z_{2}}=\overline{F_{w_{2}z_{1}}},~{}F_{w_{1}z_{4}}=\overline{F_{w_{1}z_{3}}},~{}F_{w_{2}z_{4}}=\overline{F_{w_{2}z_{3}}},\\ F_{\widehat{w}_{1}z_{2}}=\overline{F_{\widehat{w}_{1}z_{1}}},~{}F_{\widehat{w}_{2}z_{2}}=\overline{F_{\widehat{w}_{2}z_{1}}},~{}F_{\widehat{w}_{1}z_{4}}=\overline{F_{\widehat{w}_{1}z_{3}}},~{}F_{\widehat{w}_{2}z_{4}}=\overline{F_{\widehat{w}_{2}z_{3}}}.\end{array}

The coefficient vectors required in F~2(z,0,0,0)\widetilde{F}_{2}(z,0,0,0) are given by

F2000=Fuu+Fvvq12+Fu^u^δ(n1)+Fv^v^q12δ(n1)+2[Fuvq1+Fuu^δ(n1)+Fuv^q1δ(n1)+Fvu^q1δ(n1)+Fvv^q12δ(n1)+Fu^v^q1δ(n1)],F1100=2[Fuu+Fuv(q1+q2)+2Fuu^δ(n1)+Fuv^(q1+q2)δ(n1)+Fvvq1q2+Fvu^(q1+q2)δ(n1)+2Fvv^q1q2δ(n1)+Fu^u^δ(n1)+Fu^v^(q1+q2)δ(n1)+Fv^v^q1q2δ(n1)],F1010=2[Fuu+Fuv(q1+q3)+Fuu^δ(n1)+Fuv^q1δ(n1)+Fvvq1q3+Fvu^q3δ(n1)+Fvv^q1q3δ(n1)],F1001=2[Fuu+Fuv(q1+q4)+Fuu^δ(n1)+Fuv^q1δ(n1)+Fvvq1q4+Fvu^q4δ(n1)+Fvv^q1q4δ(n1)],F0020=Fuu+Fvvq32+2Fuvq3,F0011=2[Fuu+Fuv(q3+q4)+Fvvq3q4],F0200=F2000¯,F0101=F1010¯,F0002=F0020¯,F0110=F1001¯,\begin{array}[]{ll}F_{2000}=&F_{uu}+F_{vv}q_{1}^{2}+F_{\widehat{u}\widehat{u}}\delta(n_{1})+F_{\widehat{v}\widehat{v}}q_{1}^{2}\delta(n_{1})+2\big{[}F_{uv}q_{1}+F_{u\widehat{u}}\delta(n_{1})+F_{u\widehat{v}}q_{1}\delta(n_{1})\\ &+F_{v\widehat{u}}q_{1}\delta(n_{1})+F_{v\widehat{v}}q_{1}^{2}\delta(n_{1})+F_{\widehat{u}\widehat{v}}q_{1}\delta(n_{1})\big{]},\\ F_{1100}=&2\big{[}F_{uu}+F_{uv}(q_{1}+q_{2})+2F_{u\widehat{u}}\delta(n_{1})+F_{u\widehat{v}}(q_{1}+q_{2})\delta(n_{1})+F_{vv}q_{1}q_{2}+F_{v\widehat{u}}(q_{1}+q_{2})\delta(n_{1})\\ &+2F_{v\widehat{v}}q_{1}q_{2}\delta(n_{1})+F_{\widehat{u}\widehat{u}}\delta(n_{1})+F_{\widehat{u}\widehat{v}}(q1+q2)\delta(n_{1})+F_{\widehat{v}\widehat{v}}q_{1}q_{2}\delta(n_{1})\big{]},\\ F_{1010}=&2\big{[}F_{uu}+F_{uv}(q_{1}+q_{3})+F_{u\widehat{u}}\delta(n_{1})+F_{u\widehat{v}}q_{1}\delta(n_{1})+F_{vv}q_{1}q_{3}+F_{v\widehat{u}}q_{3}\delta(n_{1})+F_{v\widehat{v}}q_{1}q_{3}\delta(n_{1})\big{]},\\ F_{1001}=&2\big{[}F_{uu}+F_{uv}(q_{1}+q_{4})+F_{u\widehat{u}}\delta(n_{1})+F_{u\widehat{v}}q_{1}\delta(n_{1})+F_{vv}q_{1}q_{4}+F_{v\widehat{u}}q_{4}\delta(n_{1})+F_{v\widehat{v}}q_{1}q_{4}\delta(n_{1})\big{]},\\ F_{0020}=&F_{uu}+F_{vv}q_{3}^{2}+2F_{uv}q_{3},\\ F_{0011}=&2\big{[}F_{uu}+F_{uv}(q_{3}+q_{4})+F_{vv}q_{3}q_{4}\big{]},\\ F_{0200}=&\overline{F_{2000}},~{}F_{0101}=\overline{F_{1010}},F_{0002}=\overline{F_{0020}},~{}F_{0110}=\overline{F_{1001}},\\ \end{array}

and those in F~3(z,0,0,0)\widetilde{F}_{3}(z,0,0,0) are as follows:

F2100=3[Fuuu+Fuuv(2q1+q2)+3Fuuu^δ(n1)+Fuuv^(2q1+q2)δ(n1)+Fuvvq1(2q2+q1)+2Fuvu^(2q1+q2)δ(n1)+2Fuvv^q1(2q2+q1)δ(n1)+3Fuu^u^δ(n1)+2Fuu^v^δ(n1)(2q1+q2)+Fuv^v^q1(2q2+q1)δ(n1)+Fvvvq12q2+Fvvu^q1(2q2+q1)δ(n1)+3Fvvv^q12q2δ(n1)+Fvu^u^(2q1+q2)δ(n1)+2Fvu^v^δ(n1)(q12+2q1q2)+3Fvv^v^q12q2δ(n1)+Fu^u^u^δ(n1)+Fu^u^v^δ(n1)(q2+2q1)+Fu^v^v^δ(n1)(q12+2q1q2)+Fv^v^v^q12q2δ(n1)],F1011=6[Fuuu+Fuuv(q1+q3+q4)+Fuuu^δ(n1)+Fuuv^q1δ(n1)+Fuvv(q3q4+q1q3+q1q4)+Fuvu^(q3+q4)δ(n1)+Fuvv^(q1q4+q1q3)δ(n1)+Fvvvq1q3q4+Fvvu^q3q4δ(n1)+Fvvv^q1q3q4δ(n1)].F0021=3[Fuuu+Fuuv(2q3+q4)+Fuvvq3(2q4+q3)+Fvvvq32q4],F1110=6[Fuuu+Fuuv(q3+q1+q2)+2Fuuu^δ(n1)+Fuuv^δ(n1)(q1+q2)+Fuvv(q1q2+q3q1+q3q2)+Fuvu^(2q3+q1+q2)δ(n1)+Fuvv^(2q1q2+q3q2+q3q1)δ(n1)+Fuu^u^δ(n1)+Fuu^v^δ(n1)(q1+q2)+Fuv^v^δ(n1)q1q2+Fvvvq3q1q2+Fvvu^(q3q2+q3q1)δ(n1)+2Fvvv^q1q2q3δ(n1)+Fvu^u^δ(n1)q3+Fvu^v^δ(n1)(q3q1+q3q2)+Fvv^v^q3q1q2δ(n1)].\begin{array}[]{ll}F_{2100}=&3\big{[}F_{uuu}+F_{uuv}(2q_{1}+q_{2})+3F_{uu\widehat{u}}\delta(n_{1})+F_{uu\widehat{v}}(2q_{1}+q_{2})\delta(n_{1})+F_{uvv}q_{1}(2q_{2}+q_{1})\\ &+2F_{uv\widehat{u}}(2q_{1}+q_{2})\delta(n_{1})+2F_{uv\widehat{v}}q_{1}(2q_{2}+q_{1})\delta(n_{1})+3F_{u\widehat{u}\widehat{u}}\delta(n_{1})+2F_{u\widehat{u}\widehat{v}}\delta(n_{1})(2q_{1}+q_{2})\\ &+F_{u\widehat{v}\widehat{v}}q_{1}(2q_{2}+q_{1})\delta(n_{1})+F_{vvv}q_{1}^{2}q_{2}+F_{vv\widehat{u}}q_{1}(2q_{2}+q_{1})\delta(n_{1})+3F_{vv\widehat{v}}q_{1}^{2}q_{2}\delta(n_{1})\\ &+F_{v\widehat{u}\widehat{u}}(2q_{1}+q_{2})\delta(n_{1})+2F_{v\widehat{u}\widehat{v}}\delta(n_{1})(q_{1}^{2}+2q_{1}q_{2})+3F_{v\widehat{v}\widehat{v}}q_{1}^{2}q_{2}\delta(n_{1})+F_{\widehat{u}\widehat{u}\widehat{u}}\delta(n_{1})\\ &+F_{\widehat{u}\widehat{u}\widehat{v}}\delta(n_{1})(q_{2}+2q_{1})+F_{\widehat{u}\widehat{v}\widehat{v}}\delta(n_{1})(q_{1}^{2}+2q_{1}q_{2})+F_{\widehat{v}\widehat{v}\widehat{v}}q_{1}^{2}q_{2}\delta(n_{1})\big{]},\\ F_{1011}=&6\big{[}F_{uuu}+F_{uuv}(q_{1}+q_{3}+q_{4})+F_{uu\widehat{u}}\delta(n_{1})+F_{uu\widehat{v}}q_{1}\delta(n_{1})+F_{uvv}(q_{3}q_{4}+q_{1}q_{3}+q_{1}q_{4})\\ &+F_{uv\widehat{u}}(q_{3}+q_{4})\delta(n_{1})+F_{uv\widehat{v}}(q_{1}q_{4}+q_{1}q_{3})\delta(n_{1})+F_{vvv}q_{1}q_{3}q_{4}+F_{vv\widehat{u}}q_{3}q_{4}\delta(n_{1})+F_{vv\widehat{v}}q_{1}q_{3}q_{4}\delta(n_{1})\big{]}.\\ F_{0021}=&3\big{[}F_{uuu}+F_{uuv}(2q_{3}+q_{4})+F_{uvv}q_{3}(2q_{4}+q_{3})+F_{vvv}q_{3}^{2}q_{4}\big{]},\\ F_{1110}=&6\big{[}F_{uuu}+F_{uuv}(q_{3}+q_{1}+q_{2})+2F_{uu\widehat{u}}\delta(n_{1})+F_{uu\widehat{v}}\delta(n_{1})(q_{1}+q_{2})+F_{uvv}(q_{1}q_{2}+q_{3}q_{1}+q_{3}q_{2})\\ &+F_{uv\widehat{u}}(2q_{3}+q_{1}+q_{2})\delta(n_{1})+F_{uv\widehat{v}}(2q_{1}q_{2}+q_{3}q_{2}+q_{3}q_{1})\delta(n_{1})+F_{u\widehat{u}\widehat{u}}\delta(n_{1})+F_{u\widehat{u}\widehat{v}}\delta(n_{1})(q_{1}+q_{2})\\ &+F_{u\widehat{v}\widehat{v}}\delta(n_{1})q_{1}q_{2}+F_{vvv}q_{3}q_{1}q_{2}+F_{vv\widehat{u}}(q_{3}q_{2}+q_{3}q_{1})\delta(n_{1})+2F_{vv\widehat{v}}q_{1}q_{2}q_{3}\delta(n_{1})\\ &+F_{v\widehat{u}\widehat{u}}\delta(n_{1})q_{3}+F_{v\widehat{u}\widehat{v}}\delta(n_{1})(q_{3}q_{1}+q_{3}q_{2})+F_{v\widehat{v}\widehat{v}}q_{3}q_{1}q_{2}\delta(n_{1})\big{]}.\\ \end{array}

References

  • [1] An, Q. & Jiang, W. [2018] “Spatiotemporal attractors generated by the Turing-Hopf bifurcation in a time-delayed reaction-diffusion system”, Discrete Contin. Dyn. Syst. Ser. B, https://doi.org/10.3934/dcdsb.2018183 (2018)
  • [2] Banerjee, M. & Volpert, V. [2016] “Prey-predator model with a nonlocal consumption of prey”, Chaos, 26, 083120.
  • [3] Banerjee, M. & Volpert, V. [2017] “Spatio-temporal pattern formation in Rosenzweig–MacArthur model: Effect of nonlocal interactions”, Ecological complexity, 30, 2-10.
  • [4] Baurmann, M., Gross, T. & Feudel, U. [2007] “Instabilities in spatially extended predator-prey systems: Spatio-temporal patterns in the neighborhood of Turing-Hopf bifurcations”, J. Math. Biol., 245, 220-229.
  • [5] Berestycki, H., Nadin, G., Perthame, B. & Ryzhik, L. [2009] “ The non-local Fisher-KPP equation: travelling waves and steady states”, Nonlinearity, 22, 2813–2844.
  • [6] Billingham, J. [2003] “ Dynamics of a strongly nonlocal reaction-diffusion population model”, Nonlinearity, 17, 313–346.
  • [7] Britton, N. F. [1989] “ Aggregation and the competitive exclusion principle”, J. Theor. Biol., 136, 57–66.
  • [8] Britton, N. F. [1990] “ Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model”, SIAM J. Appl. Math., 50, 1663–1688.
  • [9] Busenberg, S. & Huang, W. [1996] “ Stability and Hopf bifurcation for a population delay model with diffusion effects”, J. Differential Equations, 124, 64–618.
  • [10] Chen, S. & Shi, J. [2012] “Global stability in a diffusive Holling–Tanner predator –prey model”, Applied Mathematics Letters, 25, 64–618.
  • [11] Chen, S., Wei, J. & Yang, K. [2018] “Spatial nonhomogeneous periodic solutions induced by nonlocal prey competition in a diffusive predator-prey model”, to appear in Internat. J. Bifur. Chaos Appl. Sci. Engrg.
  • [12] Chen, S. & Yu, J. [2016] “Stability and bifurcations in a nonlocal delayed reaction-diffusion population model”, J. Differential Equations, 260, 218–240.
  • [13] Chen, S. & Yu, J. [2018] “Stability and bifurcation on predator-prey systems with nonlocal prey competition”, Discrete Contin. Dyn. Syst., 38, 43–62.
  • [14] Chow, S. N. & Hale, J. K. [1982] Methods of bifurcation theory. Springer-Verlag, NewYork.
  • [15] Du, Y., Niu, B., Guo, Y. & Wei, J. [2019] “Double Hopf bifurcation in delayed reaction-diffusion systems”, J. Dyn. Diff. Equat. https://doi.org/10.1007/s10884-018-9725-4.
  • [16] Du, Y. H., & Hsu, S.-B. [2010] “On a nonlocal reaction-diffusion problem arising from the modeling of phytoplankton growth”, SIAM J. Math. Anal., 42, 1305–1333.
  • [17] Fang, J. & Zhao, X. [2011] “Monotone wavefronts of the nonlocal Fisher-KPP equation”, Nonlinearity, 24, 3043-3054.
  • [18] Faria, T. [2000] “Normal forms and Hopf bifurcation for partial differential equations with delays”, Trans. Amer. Math. Soc., 352, 2217–2238.
  • [19] Faria, T. & Magalhães, L. T. [1995] “Normal forms for retarded functional differential equations with parameters and applications to Hopf bifurcation”, J. Differential Equations, 122, 181–200.
  • [20] Faye, G. & Holzer, M. [2015] “Modulated traveling fronts for a nonlocal Fisher-KPP equation: A dynamical systems approach”, J. Differential Equations, 258, 2257–2289.
  • [21] Furter, J. & Grinfeld, M. [1989] “Local vs. non-local interactions in population dynamics”, J. Math. Biol., 27, 65–80.
  • [22] Gourley, S. A. [2000] “Travelling front solutions of a nonlocal Fisher equation”, J. Math. Biol., 41, 272–284.
  • [23] Gourley, S. A. & Britton, N. F. [1993] ‘Instability of travelling wave solutions of a population model with nonlocal effects”, IMA J. Appl. Math., 51, 299–310
  • [24] Gourley, S. A. & Britton, N. F. [1996] ‘A predator-prey reaction-diffusion system with nonlocal effects”, J. Math. Biol., 34, 297–333
  • [25] Gourley, S. A. & So, J. W. [2002] “Dynamics of a food-limited population model incorporating nonlocal delays on a finite domain”, J. Math. Biol., 44, 49–78.
  • [26] Gourley, S. A., So, J. W. & Wu. J. [2004] “Nonlocality of reaction–diffusion equations induced by delay: Biological modeling and nonlinear dynamics”, J. Math. Sci., 124, 5119–5153.
  • [27] Guckenheimer, J. & Holmes, P. [1983] Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer Verlag, New York.
  • [28] Guo, L. & Li, W. [2008] “Bistable wavefronts in a diffusive and competitive Lotka–Volterra type system with nonlocal delays”, J. Differential Equations, 244, 487–513.
  • [29] Guo, S. [2015] “ Stability and bifurcation in a reaction-diffusion model with nonlocal delay effect”, J. Differential Equations, 259, 1409–1448.
  • [30] Guo, S. & Yan, S. [2016] “Hopf bifurcation in a diffusive Lotka–Volterra type system with nonlocal delay effect”, J. Differential Equations, 260, 781–817.
  • [31] Hale, J. K. [1977] Theory of functional differential equations. Springer-Verlag, New York.
  • [32] Hassard, B. D., Kazarinoff, N. D. & Wan, Y. [1981] Theory and Applications of Hopf Bifurcation. Cambridge University Press, Cambridge.
  • [33] Hu, R. & Yuan, Y. [2012] “Stability and Hopf bifurcation analysis for Nicholson’s blow ies equation with non-local delay”, European J. Appl. Math., 23, 777–796.
  • [34] Jiang, H. & Song, Y. [2015] “Normal forms of non-resonance and weak resonance double Hopf bifurcation in the retarded functional differential equations and applications”, Appl. Math. Comput., 266, 1102–1126.
  • [35] Keller, E. F. & Segel, L. A. [1970] “Initiation of slime mold aggregation viewed as an instability”, J. Theor. Biol., 26, 399–415.
  • [36] Li, X., Jiang, W., & Shi, J. [2013] “Hopf bifurcation and Turing instability in the reaction-diffusion Holling-Tanner predator-prey model”, IMA J. Appl. Math., 78, 287–306.
  • [37] Li, Y., Jiang, W., & Wang, H. [2012] “ Double Hopf bifurcation and quasi-periodic attractors in delay-coupled limit cycle oscillators”, J. Math. Anal. Appl., 387, 1114–1126.
  • [38] Liang, D., So, J. W. H., Zhang, F. & Zou, X. [2003] “Population dynamic models with nonlocal delay on bounded domains and their numerical computations”, Differ. Equ. Dyn. Syst., 11, 117–139.
  • [39] Lin, X., So, J. W. H. & Wu, J. [1992] “Centre manifolds for partial differential equations with delays”, Proc. Roy. Soc. Edinburgh Sect. A, 122, 237–254.
  • [40] Ma, Z. & Li, W. [2013] “ Bifurcation analysis on a diffusive Holling–Tanner predator–prey model”, Appl. Math. Model., 37, 4371–4384.
  • [41] Maini, P. K., Painter, K. J. & Chau, H. N. P.[1997] “ Spatial pattern formation in chemical and biological systems”, J. Chem. Soc. Faraday Trans., 93, 3601–3610.
  • [42] Meixner, M., Wit, A. D., Bose, S. & Scholl, E. [1997] “ Generic spatiotemporal dynamics near codimension-two Turing–Hopf bifurcations”, Phys. Rev. E, 55, 6690–6697.
  • [43] Merchant, S. M. & Nagata, W. [2011] “Instabilities and spatiotemporal patterns behind predator invasions with nonlocal prey competition”, Theor. Popul. Biol., 80, 289–297.
  • [44] Murray, J. D. [1993] Mathematical Biology (Second, Corrected Ed.). Springer-Verlag Berlin Heidelberg.
  • [45] B. Niu & W. Jiang [2013] “Non-resonant Hopf-Hopf bifurcation and a chaotic attractor in neutral functional differential equations”, J. Math. Anal. Appl., 398, 362–371.
  • [46] Peng, R. & Wang, M. [2007] “Global stability of the equilibrium of a diffusive Holling-Tanner prey-predator model”, Appl. Math. Lett., 20, 664–670.
  • [47] Peng, R. & Wang, M. [2005] “Positive steady states of the Holling–Tanner prey –predator model with diffusion”, Proc. Roy. Soc. Edinburgh Sect. A, 135, 149–164.
  • [48] Rovinsky, A. & Menzinger, M. [1992] “ Interaction of Turing and Hopf bifurcations in chemical systems”, Phys. Rev. A, 46, 6315–6322.
  • [49] Segal, B. L., Volpert, V. A., & Bayliss, A. [2013] “ Pattern formation in a model of competing populations with nonlocal interactions”, Phys. D, 253, 12–22.
  • [50] Shen, Z. & Wei, J. [2019] “Spatiotemporal patterns in a delayed reaction–diffusion mussel–algae model”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 29, 1950164
  • [51] Shi, Q., Shi, J. & Song, Y. [2019] “Effect of spatial average on the spatiotemporal pattern formation of reaction-diffusion systems”, arXiv:2001.11960.
  • [52] Shigesada, N., Kawasaki, K., & Teramoto, E. [1979] “ Spatial segregation of interacting species”, J. Theor. Biol., 79, 83–99.
  • [53] Song, Y., Jiang, H., Liu, Q. & Yuan, Y. [2017] “Spatiotemporal dynamics of the diffusive mussel-algae model near Turing-Hopf bifurcation”, SIAM J. Appl. Dyn. Syst., 16, 2030–2062.
  • [54] Song, Y., Zhang, T. & Peng, Y. [2016] “Turing–Hopf bifurcation in the reaction–diffusion equations and its applications”, Commun. Nonlinear Sci. Numer. Simul., 33, 229–258.
  • [55] Su, Y. & Zou, X. [2014] “Transient oscillatory patterns in the diffusive non-local blowfly equation with delay under the zero-flux boundary condition”, Nonlinearity, 27, 87–104.
  • [56] Wang, Z., Li, W. & Ruan, S. [2006] “Travelling wave fronts in reaction-diffusion systems with spatio-temporal delays”, J. Differential Equations, 222, 185–232.
  • [57] De Wit, A., Lima, D., Dewel, G. & Borckmans, P. [1996] “Spatiotemporal dynamics near a codimension-two point”. Phys. Rev. E, 54, 261–271.
  • [58] Wu, S. & Song, Y. [2019] “Stability and spatiotemporal dynamics in a diffusive predator-prey model with nonlocal prey competition”, preprint
  • [59] Xu, X. & Wei, J. [2018] “Turing–Hopf bifurcation of a class of modified Leslie–Gower model with diffusion”, Discrete Continuous Dyn. Syst. Ser. B, 23, 765–783.
  • [60] Xu, J., Chung, K. W. & Chan, C. [2007] “An efficient method for studying weak resonant double hopf bifurcation in nonlinear systems with delayed feedbacks”, SIAM J. Appl. Dyn. Syst., 6, 29–60.