This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Double Circulant Self-dual Codes on Sextic Cyclotomy

Tongjiang Yana, Tao Wanga, Wenpeng Gaoa, Xvbo Zhaoa
a College of Science, China University of Petroleum,
Qingdao 266555, Shandong, China
Corresponding author: Tongjiang Yan
Email: [email protected]; [email protected];
[email protected]; zhaoxubo_\_[email protected]
Abstract

This paper contributes to construct double circulant self-dual codes by sextic cyclotomy. Generator matrixes of a family of pure double circulant codes and a family of double circulant codes with boundary are formed from sextic cyclotomic classes. These codes are proved to be self-dual on certain conditions. Moreover, experiments show that some of them are optimal self-dual codes or best than ever codes over GF(2)\mathrm{GF}(2) and GF(4)\mathrm{GF}(4).

Index Terms. Self-dual code, double circulant code, sextic cyclotomy.

1 Introduction

An [n,k,d][n,k,d] linear code CC over the Galois field GF(q)\mathrm{GF}(q) is a kk-dimensional subspace of GF(q)n\mathrm{GF}(q)^{n} with the minimum Hamming weight dd, where qq is a prime power. Its generator matrix GG is a k×nk\times n matrix over GF(q)\mathrm{GF}(q) whose rows span the code. Every element of CC is called a codeword. The Euclidean inner product between two codewords x=(x0,x1,,xn1)x=(x_{0},x_{1},\dots,x_{n-1}) and y=(y0,y1,,yn1)y=(y_{0},y_{1},\dots,y_{n-1}) is defined by

(x,y)=i=0n1xiyi.(x,y)=\sum\limits_{i=0}^{n-1}x_{i}y_{i}.

The orthogonal subspace of CC in the linear space GF(q)n\mathrm{GF}(q)^{n} denoted by

C={xGF(q)n|(x,c)=0,for all cC}C^{\perp}=\{x\in\mathrm{GF}(q)^{n}|(x,c)=0,\textrm{for all }c\in C\}

is defined as an Euclidean dual code of CC. Moreover, the code CC is Euclidean self-dual if C=CC=C^{\perp}, hereinafter referred to as a self-dual code.

Self-dual codes play an important role in classical linear error correcting codes and constructing quantum error correcting codes [6, 8]. But it is difficult to construct them with larger minimum Hamming distances. Although the existence of progressive self-dual code groups has been proved, we are still unable to find out exactly in most cases. A double circulant self-dual code employs one generator matrix consists of two circulant matrices and possesses many good algebraic properties [5, 3]. With more new double circulant self-dual codes were presented, these provide a remarkable way to construct self-dual codes [3, 13, 4, 12, 9, 10, 11]. Recently, by constructting double circulant generator matrixes using cyclotomy of order four modulo an odd prime pp, Zhang and Ge presented some double circulant self-dual codes with optimal minimum distances [13]. Next, we will construct several double circulant self-dual codes with optimal minimum distances by sextic cyclotomy modulo pp. All computations have been done by MAGMA [2].

The Hamming weight of a codeword, denoted by wt(x)wt(x), is defined as the number of nonzero coordinates of xx. The minimum nonzero Hamming weight of all codewords in a linear code CC is equal to its minimum Hamming distance d(C)d(C).

Lemma 1

[6] Let CC be a self-dual code.

(1) For the case q=2q=2,

d(C){4n24+4,n22mod24,4n24+6,n22mod24.d(C)\leq\begin{cases}4\left\lfloor\displaystyle\frac{n}{24}\right\rfloor+4,&\textrm{$n\not\equiv 22\bmod{24}$,}\vspace{3mm}\\ 4\left\lfloor\displaystyle\frac{n}{24}\right\rfloor+6,&\textrm{$n\equiv 22\bmod{24}$.}\end{cases}

(2) For the case q=4q=4,

d(C)4n12+3.d(C)\leq 4\left\lfloor\displaystyle\frac{n}{12}\right\rfloor+3.

The self-dual code CC is called optimal if and only if it can get the highest possible minimum distance. If the minimum Hamming distance of the self-dual code exceeds those of all the codes previously constructed, we call it best than ever. All the known optimal and best than ever self-dual codes can be found in [7].

This paper is organized as follows. We firstly present some definitions and preliminaries in Section 22. In Section 33, several families of double circulant self-dual codes are obtained. Section 44 concludes the paper finally.

2 Primaries

2.1 cyclotomy

Suppose p=6f+1p=6f+1 is an odd prime and ff is a positive integer. Let γ\gamma be a fixed primitive element on the Galois field GF(p)\mathrm{GF}(p). We define a sextic cyclotomic classes CiC_{i} as

Ci={γ6j+i:0jp161},C_{i}=\{\gamma^{6j+i}:0\leq j\leq\displaystyle\frac{p-1}{6}-1\},

where 0i50\leq i\leq 5. That means Ci=γiC0C_{i}=\gamma^{i}C_{0}. For arbitrary integers m,nm,n satisfying 0m,n50\leq m,n\leq 5, a sextic cyclotomic number is define as [13] :

(m,n)=|Cm+1Cn|.(m,n)=\left|C_{m}+1\cap C_{n}\right|.

The following lemma summarizes some basic properties of the cyclotomic number.

Lemma 2

[1] Let p=6f+1p=6f+1 be some odd prime. Then

(a)(i,j)=(i,j),wheniimod6,jjmod6;(b)(i,j)=(6i,ji)={(j,i),fiseven;(j+3,i+3),fisodd;(c)i=05=fδj,whereδj={1,ifj=0mod6;0,otherwise.\begin{split}&(a)\qquad(i,j)=(i^{\prime},j^{\prime}),\;when\;i\equiv i^{\prime}\bmod{6},\;j\equiv j^{\prime}\bmod{6};\\ &(b)\qquad(i,j)=(6-i,j-i)=\left\{\begin{aligned} (j,i),\qquad\quad f\;is\;even;\\ (j+3,i+3),\;f\;is\;odd;\\ \end{aligned}\right.\\ &(c)\qquad\sum\limits_{i=0}^{5}=f-\delta_{j},\;where\;\delta_{j}=\left\{\begin{aligned} 1,&\;if\;j=0\bmod{6};\\ 0,&\;otherwise.\end{aligned}\right.\end{split}
Lemma 3

Suppose p=12l+7p=12l+7 is a prime. Then

(0,0)=\displaystyle(0,0)= (3,0)=(3,3),(0,1)=(2,5)=(4,3),(0,2)=(1,4)=(5,3)(0,4)=(1,3)=(5,2)\displaystyle(3,0)=(3,3),\,\,(0,1)=(2,5)=(4,3),\,\,(0,2)=(1,4)=(5,3)\,\,\,(0,4)=(1,3)=(5,2)
(0,5)=\displaystyle(0,5)= (2,3)=(4,1),(1,0)=(2,2)=(3,4)=(4,0)=(3,1)=(5,5),(2,1)=(4,5)\displaystyle(2,3)=(4,1),\,\,(1,0)=(2,2)=(3,4)=(4,0)=(3,1)=(5,5),\,\,\,(2,1)=(4,5)
(1,1)=\displaystyle(1,1)= (2,0)=(3,2)=(3,5)=(4,4)=(5,0),(1,2)=(1,5)=(2,4)=(4,2)=(5,1)=(5,4).\displaystyle(2,0)=(3,2)=(3,5)=(4,4)=(5,0),\,\,(1,2)=(1,5)=(2,4)=(4,2)=(5,1)=(5,4).

𝐏𝐫𝐨𝐨𝐟.\mathbf{Proof.} The proof is straightforward from the Lemma 2. \blacksquare

For simplicity, in the following we define

A:=\displaystyle A:= (0,0),B:=(0,1),C:=(0,2),D:=(0,3),E:=(0,4),\displaystyle(0,0),\qquad B:=(0,1),\qquad C:=(0,2),\qquad D:=(0,3),\qquad E:=(0,4),
F:=\displaystyle F:= (0,5),G:=(1,0),H:=(1,1),I:=(1,2),J:=(2,1).\displaystyle(0,5),\qquad G:=(1,0),\qquad H:=(1,1),\qquad I:=(1,2),\qquad J:=(2,1).
Lemma 4

[1] Suppose p=12l+7p=12l+7 is a prime. Let gg be a primitive root of pp, satisfying gt2modpg^{t}\equiv 2\bmod{p}, where tt is a positive integer. Then there are positive integers xx, yy, such that p=x2+3y2p=x^{2}+3y^{2}, and x1mod3x\equiv 1\bmod{3}, ytmod3y\equiv-t\bmod{3}. Thus the sextic cyclotomic numbers are
(a) when t0mod3t\equiv 0\bmod 3,

A\displaystyle A =p118x36,B=p+12x+12y36,C=p+12x+12y36,\displaystyle=\frac{p-11-8x}{36},\,\,\,\,\,\qquad B=\frac{p+1-2x+12y}{36},\qquad C=\frac{p+1-2x+12y}{36},
D\displaystyle D =p+1+16x36,E=p+12x12y36,F=p+12x12y36,\displaystyle=\frac{p+1+16x}{36},\,\,\,\,\,\qquad E=\frac{p+1-2x-12y}{36},\,\,\,\,\,\,\quad F=\frac{p+1-2x-12y}{36},
G\displaystyle G =p5+4x+6y36,H=p5+4x6y36,I=p+12x36,\displaystyle=\frac{p-5+4x+6y}{36},\quad\ H=\frac{p-5+4x-6y}{36},\,\,\qquad I=\frac{p+1-2x}{36},
J\displaystyle J =p+12x36;\displaystyle=\frac{p+1-2x}{36};

(b) when t1mod3t\equiv 1\bmod 3,

A=\displaystyle A= p112x36,B=p+1+4x36,C=p+12x+12y36,\displaystyle\frac{p-11-2x}{36},\,\,\,\,\qquad\qquad B=\frac{p+1+4x}{36},\qquad\,\,\,\,\qquad C=\frac{p+1-2x+12y}{36},
D=\displaystyle D= p+1+10x12y36,E=p+18x12y36,F=p+12x+12y36,\displaystyle\frac{p+1+10x-12y}{36},\qquad E=\frac{p+1-8x-12y}{36},\qquad F=\frac{p+1-2x+12y}{36},
G=\displaystyle G= p52x+6y36,H=p5+4x6y36,I=p+1+4x36,\displaystyle\frac{p-5-2x+6y}{36},\,\,\,\,\,\qquad H=\frac{p-5+4x-6y}{36},\,\,\,\,\,\qquad I=\frac{p+1+4x}{36},
J=\displaystyle J= p+18x+12y36;\displaystyle\frac{p+1-8x+12y}{36};

(c) when t2mod3t\equiv 2\bmod 3,

A=\displaystyle A= p112x36,B=p+12x12y36,C=p+18x+12y36,\displaystyle\frac{p-11-2x}{36},\,\,\,\qquad\qquad B=\frac{p+1-2x-12y}{36},\,\qquad C=\frac{p+1-8x+12y}{36},
D=\displaystyle D= p+1+10x+12y36,E=p+12x12y36,F=p+1+4x36,\displaystyle\frac{p+1+10x+12y}{36},\qquad E=\frac{p+1-2x-12y}{36},\qquad F=\frac{p+1+4x}{36},
G=\displaystyle G= p5+4x+6y36,H=p52x6y36,I=p+1+4x36,\displaystyle\frac{p-5+4x+6y}{36},\,\,\,\,\,\qquad H=\frac{p-5-2x-6y}{36},\,\,\,\,\qquad I=\frac{p+1+4x}{36},
J=\displaystyle J= p+18x+12y36.\displaystyle\frac{p+1-8x+12y}{36}.

2.2 Sextic residue double circulant codes

Let p=6f+1p=6f+1 be an odd prime, where ff is a positive integer. Let m:=(m0,m1,m2,m3,m4,m5,m6)GF(q)7\vec{m}:=(m_{0},m_{1},m_{2},m_{3},m_{4},m_{5},m_{6})\in\mathrm{GF}(q)^{7}, where qq is a prime power. Now we define Cp(m)C_{p}(\vec{m}) as a matrix R=(rij)p×pR=(r_{ij})_{p\times p} on GF(q)\mathrm{GF}(q), where 1i,jp1\leq i,j\leq p, and

rij={m0,ifj=i,ms+1,ifjiCs,r_{ij}=\left\{\begin{aligned} m_{0},&\quad\mathrm{if}\quad j=i,\\ m_{s+1},&\quad\mathrm{if}\quad j-i\in C_{s},\end{aligned}\right. (1)

where s+1s+1 means s+1mod6s+1\bmod{6}, and s=0,1,,5s=0,1,\cdots,5.

Definition 1

Let Pp(R)P_{p}(R) and Bp(α,R)B_{p}(\alpha,R) be two linear codes with the following generator matrixes

(Ip,R),(α111Ip+1R1)\left(\begin{array}[]{cc}I_{p},R\end{array}\right),\,\,\,\,\,\,\,\,\left(\begin{array}[]{cccccc}&\alpha&1&\cdots&1\\ &-1&&&\\ I_{p+1}&\vdots&&R&\\ &-1&&&\end{array}\right)

respectively, where αGF(q)\alpha\in\mathrm{GF}(q) and RR is the cyclic matrix defined in Equation (1). We call Pp(R)P_{p}(R) a sextic residue pure double circulant code and Bp(α,R)B_{p}(\alpha,R) a sextic residue double circulant code with boundary. In general, we call them sextic residue double circulant codes.

Define A0A_{0} and JpJ_{p} as the p×pp\times p identity matrix and all-one matrix, respectively. Then Cp(1,0,0,0,0,0,0)=A0C_{p}(1,0,0,0,0,0,0)=A_{0}, Cp(1,1,1,1,1,1,1)=JpC_{p}(1,1,1,1,1,1,1)=J_{p}. Define

A1:=\displaystyle A_{1}:= Cp(0,1,0,0,0,0,0)A2:=Cp(0,0,1,0,0,0,0)\displaystyle C_{p}(0,1,0,0,0,0,0)\qquad A_{2}:=C_{p}(0,0,1,0,0,0,0) (2)
A3:=\displaystyle A_{3}:= Cp(0,0,0,1,0,0,0)A4:=Cp(0,0,0,0,1,0,0)\displaystyle C_{p}(0,0,0,1,0,0,0)\qquad A_{4}:=C_{p}(0,0,0,0,1,0,0)
A5:=\displaystyle A_{5}:= Cp(0,0,0,0,0,1,0)A6:=Cp(0,0,0,0,0,0,1)\displaystyle C_{p}(0,0,0,0,0,1,0)\qquad A_{6}:=C_{p}(0,0,0,0,0,0,1)

Then we can get the following results.

Lemma 5

Suppose pp is a prime and p=12l+7p=12l+7. Then the matrices in Equation (2) has the following properties

A1=\displaystyle A_{1}= A4T,A2=A5T,A3=A6T,\displaystyle A_{4}^{T},\qquad A_{2}=A_{5}^{T},\qquad A_{3}=A_{6}^{T},
A12=\displaystyle A_{1}^{2}= AA1+BA2+CA3+DA4+EA5+FA6,\displaystyle AA_{1}+BA_{2}+CA_{3}+DA_{4}+EA_{5}+FA_{6},
A22=\displaystyle A_{2}^{2}= FA1+AA2+BA3+CA4+DA5+EA6,\displaystyle FA_{1}+AA_{2}+BA_{3}+CA_{4}+DA_{5}+EA_{6},
A32=\displaystyle A_{3}^{2}= EA1+FA2+AA3+BA4+CA5+DA6,\displaystyle EA_{1}+FA_{2}+AA_{3}+BA_{4}+CA_{5}+DA_{6},
A42=\displaystyle A_{4}^{2}= DA1+EA2+FA3+AA4+BA5+CA6,\displaystyle DA_{1}+EA_{2}+FA_{3}+AA_{4}+BA_{5}+CA_{6},
A52=\displaystyle A_{5}^{2}= CA1+DA2+EA3+FA4+AA5+BA6,\displaystyle CA_{1}+DA_{2}+EA_{3}+FA_{4}+AA_{5}+BA_{6},
A62=\displaystyle A_{6}^{2}= BA1+CA2+DA3+EA4+FA5+AA6,\displaystyle BA_{1}+CA_{2}+DA_{3}+EA_{4}+FA_{5}+AA_{6},
A1A2=\displaystyle A_{1}A_{2}= A2A1=GA1+HA2+IA3+EA4+CA5+IA6,\displaystyle A_{2}A_{1}=GA_{1}+HA_{2}+IA_{3}+EA_{4}+CA_{5}+IA_{6},
A1A3=\displaystyle A_{1}A_{3}= A3A1=HA1+JA2+GA3+FA4+IA5+BA6,\displaystyle A_{3}A_{1}=HA_{1}+JA_{2}+GA_{3}+FA_{4}+IA_{5}+BA_{6},
A1A4=\displaystyle A_{1}A_{4}= A4A1=(2l+1)A0+AA1+GA2+HA3+AA4+GA6+HA6,\displaystyle A_{4}A_{1}=(2l+1)A_{0}+AA_{1}+GA_{2}+HA_{3}+AA_{4}+GA_{6}+HA_{6},
A1A5=\displaystyle A_{1}A_{5}= A5A1=GA1+FA2+IA3+BA4+HA6+JA6,\displaystyle A_{5}A_{1}=GA_{1}+FA_{2}+IA_{3}+BA_{4}+HA_{6}+JA_{6},
A1A6=\displaystyle A_{1}A_{6}= A6A1=HA1+IA2+EA3+CA4+IA6+GA6,\displaystyle A_{6}A_{1}=HA_{1}+IA_{2}+EA_{3}+CA_{4}+IA_{6}+GA_{6},
A2A3=\displaystyle A_{2}A_{3}= A3A2=IA1+GA2+HA3+IA4+EA5+CA6,\displaystyle A_{3}A_{2}=IA_{1}+GA_{2}+HA_{3}+IA_{4}+EA_{5}+CA_{6},
A2A4=\displaystyle A_{2}A_{4}= A4A2=BA1+HA2+JA3+GA4+FA5+IA6,\displaystyle A_{4}A_{2}=BA_{1}+HA_{2}+JA_{3}+GA_{4}+FA_{5}+IA_{6},
A2A5=\displaystyle A_{2}A_{5}= A5A12=(2l+1)A0+HA1+AA2+GA3+HA4+AA5+GA6,\displaystyle A_{5}A_{1}2=(2l+1)A_{0}+HA_{1}+AA_{2}+GA_{3}+HA_{4}+AA_{5}+GA_{6},
A2A6=\displaystyle A_{2}A_{6}= A6A2=JA1+GA2+FA3+IA4+BA5+HA6,\displaystyle A_{6}A_{2}=JA_{1}+GA_{2}+FA_{3}+IA_{4}+BA_{5}+HA_{6},
A3A4=\displaystyle A_{3}A_{4}= A4A3=CA1+IA2+GA3+HA4+IA5+EA6,\displaystyle A_{4}A_{3}=CA_{1}+IA_{2}+GA_{3}+HA_{4}+IA_{5}+EA_{6},
A3A5=\displaystyle A_{3}A_{5}= A5A3=IA1+BA2+HA3+JA4+GA5+FA6,\displaystyle A_{5}A_{3}=IA_{1}+BA_{2}+HA_{3}+JA_{4}+GA_{5}+FA_{6},
A3A6=\displaystyle A_{3}A_{6}= A6A3=(2l+1)A0+GA1+HA2+AA3+GA4+HA5+AA6,\displaystyle A_{6}A_{3}=(2l+1)A_{0}+GA_{1}+HA_{2}+AA_{3}+GA_{4}+HA_{5}+AA_{6},
A4A5=\displaystyle A_{4}A_{5}= A5A4=EA1+CA2+IA3+GA4+HA5+IA6,\displaystyle A_{5}A_{4}=EA_{1}+CA_{2}+IA_{3}+GA_{4}+HA_{5}+IA_{6},
A4A6=\displaystyle A_{4}A_{6}= A6A4=FA1+IA2+BA3+HA4+JA5+GA6,\displaystyle A_{6}A_{4}=FA_{1}+IA_{2}+BA_{3}+HA_{4}+JA_{5}+GA_{6},
A5A6=\displaystyle A_{5}A_{6}= A6A5=IA1+EA2+CA3+IA4+GA5+HA6,\displaystyle A_{6}A_{5}=IA_{1}+EA_{2}+CA_{3}+IA_{4}+GA_{5}+HA_{6},

where AiTA_{i}^{T} means the transpose of the matrix AiA_{i}, i=0,1,,6.i=0,1,\cdots,6.

𝐏𝐫𝐨𝐨𝐟.\mathbf{Proof.} The proof can be drawn directly from the definitions of AiA_{i} and Lemma 3. \blacksquare

Theorem 1

Suppose p=12l+7=6f+1p=12l+7=6f+1 is an odd prime. Then

i=06miAi(i=06miAi)T=i=06Di(m)Ai,\displaystyle\sum_{i=0}^{6}m_{i}A_{i}(\sum_{i=0}^{6}m_{i}A_{i})^{T}=\sum_{i=0}^{6}D_{i}(\vec{m})A_{i},

where

D0(m)=\displaystyle D_{0}(\vec{m})= m02+f(m12+m22+m32+m42+m52+m62),\displaystyle m_{0}^{2}+f(m_{1}^{2}+m_{2}^{2}+m_{3}^{2}+m_{4}^{2}+m_{5}^{2}+m_{6}^{2}),
D1(m)=D4(m)=\displaystyle D_{1}(\vec{m})=D_{4}(\vec{m})= (m0m4+m0m1)+(m12+m1m4+m42)A+(m1m2+m4m5+m3m6)B\displaystyle(m_{0}m_{4}+m_{0}m_{1})+(m_{1}^{2}+m_{1}m_{4}+m_{4}^{2})A+(m_{1}m_{2}+m_{4}m_{5}+m_{3}m_{6})B
+(m1m3+m4m6+m2m5)C+m1m4D+(m3m6+m2m4+m1m5)E\displaystyle+(m_{1}m_{3}+m_{4}m_{6}+m_{2}m_{5})C+m_{1}m_{4}D+(m_{3}m_{6}+m_{2}m_{4}+m_{1}m_{5})E
+(m2m5+m3m4+m1m6)F+(m1m2+m1m5+m2m4+m32+m4m5+m62)G\displaystyle+(m_{2}m_{5}+m_{3}m_{4}+m_{1}m_{6})F+(m_{1}m_{2}+m_{1}m_{5}+m_{2}m_{4}+m_{3}^{2}+m_{4}m_{5}+m_{6}^{2})G
+(m1m3+m1m6+m22+m3m4+m52+m4m6)H+(m2m6+m2m3\displaystyle+(m_{1}m_{3}+m_{1}m_{6}+m_{2}^{2}+m_{3}m_{4}+m_{5}^{2}+m_{4}m_{6})H+(m_{2}m_{6}+m_{2}m_{3}
+m3m5+m3m5+m5m6+m2m6)I+(m2m3+m5m6)J,\displaystyle+m_{3}m_{5}+m_{3}m_{5}+m_{5}m_{6}+m_{2}m_{6})I+(m_{2}m_{3}+m_{5}m_{6})J,
D2(m)=D5(m)=\displaystyle D_{2}(\vec{m})=D_{5}(\vec{m})= m0m5+m0m2+(m22+m52+m2m5)A+(m1m4+m2m3+m5m6)B\displaystyle m_{0}m_{5}+m_{0}m_{2}+(m_{2}^{2}+m_{5}^{2}+m_{2}m_{5})A+(m_{1}m_{4}+m_{2}m_{3}+m_{5}m_{6})B
+(m2m4+m1m5+m3m6)C+m2m5D+(m1m4+m3m5+m2m6)E\displaystyle+(m_{2}m_{4}+m_{1}m_{5}+m_{3}m_{6})C+m_{2}m_{5}D+(m_{1}m_{4}+m_{3}m_{5}+m_{2}m_{6})E
+(m1m2+m3m6+m4m5)F+(m12+m2m3+m2m6+m42+m3m5+m5m6)G\displaystyle+(m_{1}m_{2}+m_{3}m_{6}+m_{4}m_{5})F+(m_{1}^{2}+m_{2}m_{3}+m_{2}m_{6}+m_{4}^{2}+m_{3}m_{5}+m_{5}m_{6})G
+(m1m5+m1m2+m32+m2m4+m62+m4m5)H\displaystyle+(m_{1}m_{5}+m_{1}m_{2}+m_{3}^{2}+m_{2}m_{4}+m_{6}^{2}+m_{4}m_{5})H
+(m1m3+m1m3+m3m4+m4m6+m1m6+m4m6)I+(m1m6+m3m4)J,\displaystyle+(m_{1}m_{3}+m_{1}m_{3}+m_{3}m_{4}+m_{4}m_{6}+m_{1}m_{6}+m_{4}m_{6})I+(m_{1}m_{6}+m_{3}m_{4})J,
D3(m)=D6(m)=\displaystyle D_{3}(\vec{m})=D_{6}(\vec{m})= m0m6+m0m3+(m32+m3m6+m62)A+(m2m5+m3m4+m1m6)B\displaystyle m_{0}m_{6}+m_{0}m_{3}+(m_{3}^{2}+m_{3}m_{6}+m_{6}^{2})A+(m_{2}m_{5}+m_{3}m_{4}+m_{1}m_{6})B
+(m1m4+m3m5+m2m6)C+m3m6D+(m1m3+m2m5+m4m6)E\displaystyle+(m_{1}m_{4}+m_{3}m_{5}+m_{2}m_{6})C+m_{3}m_{6}D+(m_{1}m_{3}+m_{2}m_{5}+m_{4}m_{6})E
+(m2m3+m1m4+m5m6)F+(m1m6+m22+m1m3+m3m4+m4m6+m52)G\displaystyle+(m_{2}m_{3}+m_{1}m_{4}+m_{5}m_{6})F+(m_{1}m_{6}+m_{2}^{2}+m_{1}m_{3}+m_{3}m_{4}+m_{4}m_{6}+m_{5}^{2})G
+(m12+m2m6+m2m3+m3m5+m42+m5m6)H\displaystyle+(m_{1}^{2}+m_{2}m_{6}+m_{2}m_{3}+m_{3}m_{5}+m_{4}^{2}+m_{5}m_{6})H
+(m1m2+m1m5+m2m4+m2m4+m1m5+m4m5)I+(m1m2+m4m5)J.\displaystyle+(m_{1}m_{2}+m_{1}m_{5}+m_{2}m_{4}+m_{2}m_{4}+m_{1}m_{5}+m_{4}m_{5})I+(m_{1}m_{2}+m_{4}m_{5})J.

𝐏𝐫𝐨𝐨𝐟.\mathbf{Proof.} The result can be obtained directly from Lemma 5. \blacksquare

3 Sextic residue double circulant self-dual codes

3.1 General sextic residue double circulant self-dual codes

Theorem 2

Suppose p=12l+7p=12l+7 is an odd prime. Let αGF(q)\alpha\in\mathrm{GF}(q), and mGF(q)7\vec{m}\in\mathrm{GF}(q)^{7}. Then

(a) the code with the generator matrix Pp(m)P_{p}(\vec{m}) is a self-dual code on GF(q)\mathrm{GF}(q) if and only if the following holds

D0(m)=1,D1(m)=D2(m)=D3(m)=0.D_{0}(\vec{m})=-1,D_{1}(\vec{m})=D_{2}(\vec{m})=D_{3}(\vec{m})=0.

(b) the code with the generator matrix Bp(α,m)B_{p}(\alpha,\vec{m}) is a self-dual code on GF(q)\mathrm{GF}(q) if and only if the following holds

α2+p=1,\displaystyle\alpha^{2}+p=-1, α+m0+f(m1+m2+m3+m4+m5+m6)=0,\displaystyle-\alpha+m_{0}+f(m_{1}+m_{2}+m_{3}+m_{4}+m_{5}+m_{6})=0,
D0(m)=2,\displaystyle D_{0}(\vec{m})=-2, D1(m)=D2(m)=D3(m)=1.\displaystyle D_{1}(\vec{m})=D_{2}(\vec{m})=D_{3}(\vec{m})=-1.

𝐏𝐫𝐨𝐨𝐟.\mathbf{Proof.} According Theorem 1, we have

Pp(m)Pp(m)T=\displaystyle P_{p}(\vec{m})P_{p}(\vec{m})^{T}= A0+i=06Di(m)Ai.\displaystyle A_{0}+\sum_{i=0}^{6}D_{i}(\vec{m})A_{i}.

The following can be obtained according to the definitions of self-dual codes.

Bp(α,m)Bp(α,m)T=(Ip+1K)(Ip+1KT)=Ip+1+KKT,B_{p}(\alpha,\vec{m})B_{p}(\alpha,\vec{m})^{T}=\begin{pmatrix}I_{p+1}&K\end{pmatrix}\begin{pmatrix}I_{p+1}\\ K^{T}\end{pmatrix}=I_{p+1}+KK^{T},

where

KKT\displaystyle KK^{T} =(α111R1)(α111RT1)\displaystyle=\left(\begin{array}[]{cccccc}\alpha&1&\cdots&1\\ -1&&&\\ \vdots&&R&\\ -1&&&\end{array}\right)\left(\begin{array}[]{cccccc}\alpha&-1&\cdots&-1\\ 1&&&\\ \vdots&&R^{T}&\\ 1&&&\end{array}\right)
=(α2+pSSSXS),\displaystyle=\left(\begin{array}[]{cccccc}\alpha^{2}+p&S&\cdots&S\\ S&&&\\ \vdots&&X&\\ S&&&\end{array}\right),
X=Jp+i=06Di(m)Ai,S=α+m0+p16(m1+m2+m3+m4+m5+m6).\displaystyle X=J_{p}+\sum_{i=0}^{6}D_{i}(\vec{m})A_{i},S=-\alpha+m_{0}+\frac{p-1}{6}(m_{1}+m_{2}+m_{3}+m_{4}+m_{5}+m_{6}).

The result can be obtained from the definition of self-dual codes. \blacksquare

We now construct an infinite family of sextic residue double circulant self-dual codes on GF(q)\mathrm{GF}(q). In preparation, we have the following theorem.

Theorem 3

Let p is an odd prime and p=24k+19p=24k+19, kk is a nonnegative integer. Suppose gg is the primitive root of pp ,and satisfies gm2modpg^{m}\equiv 2\bmod p. If p=x2+3y2p=x^{2}+3y^{2}, x1mod3x\equiv 1\bmod 3, ymmodpy\equiv-m\bmod p. Especially, we can reach one of the following equations

(a)ABCEF0mod2,D1mod2,IJ1mod2,G+H1mod2,\displaystyle(a)\qquad A\equiv B\equiv C\equiv E\equiv F\equiv 0\bmod 2,D\equiv 1\bmod 2,I\equiv J\equiv 1\bmod 2,G+H\equiv 1\bmod 2,
(b)ACDEFJ0mod2,BI1mod2,G+H1mod2,\displaystyle(b)\qquad A\equiv C\equiv D\equiv E\equiv F\equiv J\equiv 0\bmod 2,B\equiv I\equiv 1\bmod 2,G+H\equiv 1\bmod 2,
(c)ABCDEJ0mod2,FI1mod2,G+H1mod2.\displaystyle(c)\qquad A\equiv B\equiv C\equiv D\equiv E\equiv J\equiv 0\bmod 2,F\equiv I\equiv 1\bmod 2,G+H\equiv 1\bmod 2.

𝐏𝐫𝐨𝐨𝐟.\mathbf{Proof.} According Theorem 4, when y=1mod3y=1\bmod 3, let x=3a+1x=3a+1, y=3b+1y=3b+1. Then

p=12l+7=x2+3y2=9a2+1+6a+3(b2+1+6b)p=12l+7=x^{2}+3y^{2}=9a^{2}+1+6a+3(b^{2}+1+6b) (3)

From Lemma 4, we know BEB\equiv E. Then

3(B+E)=48k+38+24(3a+1)24(3b+1)12=4k+1a6b0mod2.3(B+E)=\frac{48k+38+2-4(3a+1)-24(3b+1)}{12}=4k+1-a-6b\equiv 0\bmod 2. (4)

From Equation (4), we have a+10mod2a+1\equiv 0\bmod 2. And from Equation (3), we have a2+b21mod2a^{2}+b^{2}\equiv 1\bmod 2. Thus aa is odd, while bb is even. Let a=2c+1a=2c+1, b=2db=2d. So x=6c+4x=6c+4, y=6d+1y=6d+1. Then

12l+7=(6c+4)2+3(6d+1)2.12l+7=(6c+4)^{2}+3(6d+1)^{2}.

Namely, l(c+1)mod2l\equiv(c+1)\bmod 2.

Bring it into the cyclotomic numbers

{3A=12l+7112(6c+4)12=lc10mod2,3B=12l+7+12(6c+4)12(6d+1)12=l1c6d0mod2,3C=12l+7+18(6c+4)+12(6d+1)12=l14c+6d0mod2,3D=12l+7+1+10(6c+4)+12(6d+1)12=l+5+5c+6d0mod2,3F=12l+7+1+4(6c+4)12=l+2c+21mod2.\left\{\begin{aligned} &3A=\frac{12l+7-11-2(6c+4)}{12}=l-c-1\equiv 0\bmod 2,\\ &3B=\frac{12l+7+1-2(6c+4)-12(6d+1)}{12}=l-1-c-6d\equiv 0\bmod 2,\\ &3C=\frac{12l+7+1-8(6c+4)+12(6d+1)}{12}=l-1-4c+6d\equiv 0\bmod 2,\\ &3D=\frac{12l+7+1+10(6c+4)+12(6d+1)}{12}=l+5+5c+6d\equiv 0\bmod 2,\\ &3F=\frac{12l+7+1+4(6c+4)}{12}=l+2c+2\equiv 1\bmod 2.\\ \end{aligned}\right.

From Lemma 4, we know I=FI=F, J=CJ=C, B=EB=E.

When y=2mod3y=2\bmod 3, let x=3a+1x=3a+1, y=3b+2y=3b+2, we have

p=12l+7=x2+3y2=9a2+1+6a+3(b2+1+6b).p=12l+7=x^{2}+3y^{2}=9a^{2}+1+6a+3(b^{2}+1+6b). (5)

From Lemma 4, we know CFC\equiv F. Then

3(C+F)=48k+8412a+72b12=4k+7a+6b0mod2.3(C+F)=\frac{48k+84-12a+72b}{12}=4k+7-a+6b\equiv 0\bmod 2. (6)

From Equation (6), we have a+10mod2a+1\equiv 0\bmod 2. And from Equation (5), we have a2+b20mod2a^{2}+b^{2}\equiv 0\bmod 2. Thus aa, bb are odd. Let a=2c+1a=2c+1, b=2d+1b=2d+1. So x=6c+4x=6c+4, y=6d+5y=6d+5. Then

12l+7=9(2c+1)2+1+6(2c+1)+3[9(2d+1)2+1+6(2d+1)].12l+7=9(2c+1)^{2}+1+6(2c+1)+3[9(2d+1)^{2}+1+6(2d+1)].

Namely, l(c+1)mod2l\equiv(c+1)\bmod 2.

Bring it into the cyclotomic numbers

{3A=12l+7112(6c+4)12=lc10mod2,3B=12l+7+1+4(6c+4)12=l+2c+21mod2,3C=12l+7+12(6c+4)+12(6d+5)12=l+5c+6d0mod2,3D=12l+7+1+10(6c+4)12(6d+5)12=l1+5c6d0mod2,3E=12l+7+18(6c+4)12(6d+5)12=l74c6d0mod2,3J=12l+7+18(6c+4)+12(6d+5)12=l4c+6d+30mod2.\left\{\begin{aligned} &3A=\frac{12l+7-11-2(6c+4)}{12}=l-c-1\equiv 0\bmod 2,\\ &3B=\frac{12l+7+1+4(6c+4)}{12}=l+2c+2\equiv 1\bmod 2,\\ &3C=\frac{12l+7+1-2(6c+4)+12(6d+5)}{12}=l+5-c+6d\equiv 0\bmod 2,\\ &3D=\frac{12l+7+1+10(6c+4)-12(6d+5)}{12}=l-1+5c-6d\equiv 0\bmod 2,\\ &3E=\frac{12l+7+1-8(6c+4)-12(6d+5)}{12}=l-7-4c-6d\equiv 0\bmod 2,\\ &3J=\frac{12l+7+1-8(6c+4)+12(6d+5)}{12}=l-4c+6d+3\equiv 0\bmod 2.\\ \end{aligned}\right.

From Lemma 4, we know I=BI=B, F=CF=C, G+H1mod2G+H\equiv 1\bmod 2.
When y=0mod3y=0\bmod 3, let x=3a+1x=3a+1, y=3by=3b. We have

p=12l+7=x2+3y2=9a2+1+6a+9b2.p=12l+7=x^{2}+3y^{2}=9a^{2}+1+6a+9b^{2}. (7)

From Lemma 4, we know IJI\equiv J. Then

3(I+J)=48k12a+36b12=4ka+30mod2.3(I+J)=\frac{48k-12a+36b}{12}=4k-a+3\equiv 0\bmod 2. (8)

From Equation (8), we have a+10mod2a+1\equiv 0\bmod 2. And from Equation (7), a2+b20mod2a^{2}+b^{2}\equiv 0\bmod 2. Thus aa, bb are odd. Let a=2c+1a=2c+1, b=2d+1b=2d+1. So x=6c+4x=6c+4, y=6d+3y=6d+3. Then

12l+7=9(2c+1)2+1+6(2c+1)+3[9(2d+1)2].12l+7=9(2c+1)^{2}+1+6(2c+1)+3[9(2d+1)^{2}].

Namely, l(c+1)mod2l\equiv(c+1)\bmod 2.

Bring it into the cyclotomic numbers

{3A=12l+7118(6c+4)12=l4c30mod2,3B=12l+7+12(6c+4)+12(6d+3)12=l+3c+6d0mod2,3D=12l+7+1+16(6c+4)12=l+6+8c1mod2,3E=12l+7+12(6c+4)12(6d+5)12=l5c6d0mod2,3I=12l+7+12(6c+4)12=lc1mod2.\left\{\begin{aligned} &3A=\frac{12l+7-11-8(6c+4)}{12}=l-4c-3\equiv 0\bmod 2,\\ &3B=\frac{12l+7+1-2(6c+4)+12(6d+3)}{12}=l+3-c+6d\equiv 0\bmod 2,\\ &3D=\frac{12l+7+1+16(6c+4)}{12}=l+6+8c\equiv 1\bmod 2,\\ &3E=\frac{12l+7+1-2(6c+4)-12(6d+5)}{12}=l-5-c-6d\equiv 0\bmod 2,\\ &3I=\frac{12l+7+1-2(6c+4)}{12}=l-c\equiv 1\bmod 2.\end{aligned}\right.

From Lemma 4, we know B=CB=C, E=FE=F, I=J1mod2I=J\equiv 1\bmod 2, and G+H1mod2G+H\equiv 1\bmod 2.                                                                                                                                             \blacksquare

3.2 Sextic residue double circulant self-dual codes on GF(2)\mathrm{GF}(2)

Theorem 4

Suppose pp is an odd prime and p=24k+19p=24k+19. Then we can get a sextic residue pure double circulant self-dual code on GF(2)\mathrm{GF(2)} with the generation matrix Pp(m)P_{p}(\vec{m}). And in certain conditions, it can be optimal.

𝐏𝐫𝐨𝐨𝐟.\mathbf{Proof.} If p=24k+19p=24k+19, from Theorem 3, let the first parameters as an example. We have

{D0(0,0,0,0,1,1,1)1mod2,D1(0,0,0,0,1,1,1)=A+B+C+2G+2H+I+J0mod2,D2(0,0,0,0,1,1,1)=A+B+F+2G+2H+2I+2J0mod2,D3(0,0,0,0,1,1,1)=A+E+F+2G+2H+I+J0mod2.\left\{\begin{aligned} D_{0}(0,0,0,0,1,1,1)&\equiv 1\bmod 2,\\ D_{1}(0,0,0,0,1,1,1)&=A+B+C+2G+2H+I+J\equiv 0\bmod 2,\\ D_{2}(0,0,0,0,1,1,1)&=A+B+F+2G+2H+2I+2J\equiv 0\bmod 2,\\ D_{3}(0,0,0,0,1,1,1)&=A+E+F+2G+2H+I+J\equiv 0\bmod 2.\\ \end{aligned}\right.

From Theorem 2, we know the generation matrix Pp(m)P_{p}(\vec{m}) on GF(2)\mathrm{GF(2)} is a self-dual code with length of 2p2p. And the experimental results shows that the minimum Hamming distance is 8. So the codes whose parameters in Table 5 are optimal codes according the list in [7].\blacksquare

Theorem 5

Suppose pp is an odd prime and p=24k+19p=24k+19. Then we can get a a sextic residue double circulant self-dual code with boundary on GF(2)\mathrm{GF(2)} which length is 2p+22p+2 with generation matrix Bp(α,m0,m1,m2,m3,m4,m5,m6)B_{p}(\alpha,m_{0},m_{1},m_{2},m_{3},m_{4},m_{5},m_{6}). And in certain conditions, it can be optimal.
Table 1: Parameters of the code with P41P_{41} m0m_{0} m1m_{1} m2m_{2} m3m_{3} m4m_{4} m5m_{5} m6m_{6} MHDMHD 0 0 0 0 1 1 1 8 0 0 1 0 0 1 1 8 0 0 1 0 1 0 1 8 0 0 1 0 1 1 0 8 0 0 1 1 0 1 0 8 0 1 1 0 0 1 0 8 0 1 1 1 0 0 0 8 0 0 1 0 1 0 1 8 0 0 1 1 1 0 0 8 1 0 0 0 1 0 1 8 0 1 0 0 0 1 1 8 0 1 0 1 0 1 0 8 0 1 1 0 0 0 1 8 0 1 1 1 0 0 0 8 1 0 1 1 1 1 0 8 1 1 0 1 0 0 0 8 0 0 1 0 1 0 1 8 Table 2: Parameters of the code with B41B_{41} m0m_{0} m1m_{1} m2m_{2} m3m_{3} m4m_{4} m5m_{5} m6m_{6} MHDMHD 0 0 0 1 1 1 1 8 0 0 1 0 1 1 1 8 0 0 1 1 1 0 1 8 0 1 0 0 1 1 1 8 0 1 0 1 0 1 1 8 0 1 0 1 1 1 0 8 0 1 1 0 1 0 1 8 0 1 1 1 0 0 1 8 0 1 1 1 0 1 0 8 0 1 1 1 1 0 0 8 1 0 0 0 1 1 1 8 1 0 1 0 1 0 1 8 1 1 0 1 0 1 0 8 1 1 1 1 0 0 0 8

𝐏𝐫𝐨𝐨𝐟.\mathbf{Proof.} If p=24k+19p=24k+19, from Theorem 3, let the first parameters as an example. We have

{D0(0,0,0,1,1,1,1)0mod2,D1(0,0,0,1,1,1,1)=A+2B+C+E+F+3G+3H+3I+J1mod2,D2(0,0,0,1,1,1,1)=A+B+C+E+2F+G+H+I+J1mod2,D3(0,0,0,1,1,1,1)=A+B+C+D+E+F+G+H+I+J1mod2,α2+p=1mod2,α+m0+p16(m1+m2+m3+m4+m5+m6)=0mod2.\left\{\begin{aligned} D_{0}(0,0,0,1,1,1,1)&\equiv 0\bmod 2,\\ D_{1}(0,0,0,1,1,1,1)&=A+2B+C+E+F+3G+3H+3I+J\equiv 1\bmod 2,\\ D_{2}(0,0,0,1,1,1,1)&=A+B+C+E+2F+G+H+I+J\equiv 1\bmod 2,\\ D_{3}(0,0,0,1,1,1,1)&=A+B+C+D+E+F+G+H+I+J\equiv 1\bmod 2,\\ \alpha^{2}+p=1\bmod 2,&\\ -\alpha+m_{0}+\frac{p-1}{6}(&m_{1}+m_{2}+m_{3}+m_{4}+m_{5}+m_{6})=0\bmod 2.\\ \end{aligned}\right.

From Theorem 2, we know the code with the generation matrix Bp(α,m0,m1,m2,m3,m4,m5,m6)B_{p}(\alpha,m_{0},m_{1},m_{2},m_{3},m_{4},m_{5},m_{6}) on GF(2)\mathrm{GF(2)} is a self-dual code with length of 2p+22p+2. And the experimental results show that the minimum Hamming distance is 8. So the codes whose parameters are in Table 5 are optimal codes from the list in [7]. \blacksquare

3.3 Sextic residue double circulant self-dual codes on GF(4)\mathrm{GF}(4)

Let ε\varepsilon satisfy ε2+ε+1=0\varepsilon^{2}+\varepsilon+1=0 and be a fixed primitive element of GF(4)\mathrm{GF(4)}. Then we have

Theorem 6

Suppose p=24k+19p=24k+19 is an odd prime. Then we can get a a sextic residue pure double circulant self-dual code on GF(4)\mathrm{GF(4)} with generation matrix Pp(ε,ε2,1,ε2,0,0,ε)P_{p}(\varepsilon,\varepsilon^{2},1,\varepsilon^{2},0,0,\varepsilon). And in certain conditions, it can be optimal or best than ever.

𝐏𝐫𝐨𝐨𝐟.\mathbf{Proof.} Suppose p=24k+19p=24k+19 is an odd prime. From Theorem 3, we have

D0(ε,ε2,1,ε2,0,0,ε)=\displaystyle D_{0}(\varepsilon,\varepsilon^{2},1,\varepsilon^{2},0,0,\varepsilon)= (4k+3)(1+ε+1+ε2)1mod2,\displaystyle(4k+3)(1+\varepsilon+1+\varepsilon^{2})\equiv 1\bmod 2,
D1(ε,ε2,1,ε2,0,0,ε)=\displaystyle D_{1}(\varepsilon,\varepsilon^{2},1,\varepsilon^{2},0,0,\varepsilon)= (A+B+C+3G+H+3I+J)ε\displaystyle(A+B+C+3G+H+3I+J)\varepsilon
+(2B+E+F+2G+2H+I+J+1)0mod2,\displaystyle+(2B+E+F+2G+2H+I+J+1)\equiv 0\bmod 2,
D2(ε,ε2,1,ε2,0,0,ε)=\displaystyle D_{2}(\varepsilon,\varepsilon^{2},1,\varepsilon^{2},0,0,\varepsilon)= (A+C+J)+ε2B+Eε+(1+ε2)F\displaystyle(A+C+J)+\varepsilon^{2}B+E\varepsilon+(1+\varepsilon^{2})F
+(2ε+ε2)(G+H)+(ε2+ε)I+ε0mod2,\displaystyle+(2\varepsilon+\varepsilon^{2})(G+H)+(\varepsilon^{2}+\varepsilon)I+\varepsilon\equiv 0\bmod 2,
D3(ε,ε2,1,ε2,0,0,ε)=\displaystyle D_{3}(\varepsilon,\varepsilon^{2},1,\varepsilon^{2},0,0,\varepsilon)= (2A+C+E+F+G+3H+I+J+1)ε\displaystyle(2A+C+E+F+G+3H+I+J+1)\varepsilon
+(2A+B+D+F+2G+H+I+J)0mod2.\displaystyle+(2A+B+D+F+2G+H+I+J)\equiv 0\bmod 2.

From Theorem 2, we know the code generate by matrix Pp(ε,ε2,1,ε2,0,0,ε)P_{p}(\varepsilon,\varepsilon^{2},1,\varepsilon^{2},0,0,\varepsilon) on GF(4)\mathrm{GF(4)} is a self-dual code with length of 2p2p.                                                                                                                      \blacksquare

As an example, Table 3.3 gives some [38,19,11]4[38,19,11]_{4} linear codes by Theorem 6 which can reach the lower bound in Lemma 1 or possess the best than ever bound [7].
Table 3: Parameters of codes with P19P_{19} constructionconstruction RemarkRemark P19(ε2,ε2,ε,1,ε,0,0)P_{19}(\varepsilon^{2},\varepsilon^{2},\varepsilon,1,\varepsilon,0,0) Best than ever P19(ε,ε2,0,0,ε,ε2,1)P_{19}(\varepsilon,\varepsilon^{2},0,0,\varepsilon,\varepsilon^{2},1) Best than ever P19(ε,ε2,1,ε2,0,0,ε)P_{19}(\varepsilon,\varepsilon^{2},1,\varepsilon^{2},0,0,\varepsilon) Best than ever P19(ε,ε2,ε,1,ε2,1,1)P_{19}(\varepsilon,\varepsilon^{2},\varepsilon,1,\varepsilon^{2},1,1) Optimal code P19(ε2,ε2,1,ε,ε2,ε,ε2)P_{19}(\varepsilon^{2},\varepsilon^{2},1,\varepsilon,\varepsilon^{2},\varepsilon,\varepsilon^{2}) Optimal code Table 4: Parameters of codes with B19B_{19} constructionconstruction RemarkRemark B19(0,0,1,1,ε,ε2,ε2,ε)B_{19}(0,0,1,1,\varepsilon,\varepsilon^{2},\varepsilon^{2},\varepsilon) Optimal code B19(0,ε,ε,ε2,ε,ε2,0)B_{19}(0,\varepsilon,\varepsilon,\varepsilon^{2},\varepsilon,\varepsilon^{2},0) Optimal code B19(0,0,ε,ε,ε,ε2,ε,0)B_{19}(0,0,\varepsilon,\varepsilon,\varepsilon,\varepsilon^{2},\varepsilon,0) Optimal code B19(0,0,ε,ε2,ε2,ε,1,1)B_{19}(0,0,\varepsilon,\varepsilon^{2},\varepsilon^{2},\varepsilon,1,1) Optimal code B19(0,ε,ε2,ε,ε,ε,1,ε)B_{19}(0,\varepsilon,\varepsilon^{2},\varepsilon,\varepsilon,\varepsilon,1,\varepsilon) Optimal code B19(0,0,ε2,ε2,ε,1,1,ε)B_{19}(0,0,\varepsilon^{2},\varepsilon^{2},\varepsilon,1,1,\varepsilon) Optimal code

Theorem 7

Suppose p=24k+19p=24k+19 is an odd prime. Then we can get a a sextic residue double circulant self-dual code with boundary on GF(4)\mathrm{GF(4)} with generation matrix Bp(0,0,1,1,ε,ε2,ε2,ε)B_{p}(0,0,1,1,\varepsilon,\varepsilon^{2},\varepsilon^{2},\varepsilon). And in certain conditions, it can be optimal.

𝐏𝐫𝐨𝐨𝐟.\mathbf{Proof.} Let p=24k+19p=24k+19 is an odd prime, then from Theorem 3,

{D0(0,0,1,1,ε,ε2,ε2,ε)=(4k+3)(1+ε+ε2)0mod2,D1(0,0,1,1,ε,ε2,ε2,ε)=(D+E+G+H+I+J)ε+(D+E+G+H+I+J)1mod2,D2(0,0,1,1,ε,ε2,ε2,ε)=(C+D+G+H+I+J)ε+(C+D+G+H+I+J)1mod2,D3(0,0,1,1,ε,ε2,ε2,ε)=(A+D+G+H+I+J)ε+(A+D+G+H+I+J)1mod2,α2+p=1mod2,α+m0+p16(m1+m2+m3+m4+m5+m6)=0mod2.\left\{\begin{aligned} D_{0}(0,0,1,1,\varepsilon,\varepsilon^{2},\varepsilon^{2},\varepsilon)&=(4k+3)(1+\varepsilon+\varepsilon^{2})\equiv 0\bmod 2,\\ D_{1}(0,0,1,1,\varepsilon,\varepsilon^{2},\varepsilon^{2},\varepsilon)&=(D+E+G+H+I+J)\varepsilon+(D+E+G+H+I+J)\equiv 1\bmod 2,\\ D_{2}(0,0,1,1,\varepsilon,\varepsilon^{2},\varepsilon^{2},\varepsilon)&=(C+D+G+H+I+J)\varepsilon+(C+D+G+H+I+J)\equiv 1\bmod 2,\\ D_{3}(0,0,1,1,\varepsilon,\varepsilon^{2},\varepsilon^{2},\varepsilon)&=(A+D+G+H+I+J)\varepsilon+(A+D+G+H+I+J)\equiv 1\bmod 2,\\ \alpha^{2}+p=1\bmod 2,\,\,\,\,\,\,\,&\\ -\alpha+m_{0}+\frac{p-1}{6}(m_{1}&+m_{2}+m_{3}+m_{4}+m_{5}+m_{6})=0\bmod 2.\\ \end{aligned}\right.

From Theorem 2, we know that the code with the generation matrix Bp(α,m0,m1,m2,m3,m4,m5,m6)B_{p}(\alpha,m_{0},m_{1},m_{2},m_{3},m_{4},m_{5},m_{6}) on GF(4)\mathrm{GF(4)} is a self-dual code with length of 2p+22p+2. \blacksquare

As an example, Table 3.3 gives some [40,20,12]4[40,20,12]_{4} linear codes constructed by Theorem 7 which can reach the lower bound in Lemma 1.

4 Summary

In this paper, we construct sextic residue pure double circulant codes and sextic residue double circulant codes with boundary from sextic cyclotomy, and give the necessary and sufficient conditions for them to be self-dual. Numerical experiments show that these self-dual codes contain some optimal ones and best than ever ones on GF(2)\mathrm{GF}(2) and GF(4)\mathrm{GF}(4). We believe that the construction method on residues of higher degrees and the ones on the generalized cyclotomy of rings are rich sources of self-dual codes with good parameters.

5 Acknowledgement

This work was supported by Fundamental Research Funds for the Central Universities (No. ZD2019-183-008), the Major Scientific and Technological Projects of CNPC under Grant ZD2019-18 (No. ZD2019-183-001), and Shandong Provincial Natural Science Foundation of China (ZR2019MF070).

References

  • [1] R. J. E. B. C. Berndt and K. S. Williams. Gauss and jacobi sums. Canadian Mathematical Society Series of Monographs and Advanced Texts, 1998.
  • [2] W. Bosma, J. Cannon, and C. Playoust. The magma algebra system i: The user language. J Symbolic Comput, 24(3-4):235–265, 1997.
  • [3] P. Gaborit. Quadratic double circulant codes over fields. Journal of Combinatorial Theory, 97(1):85–107, 2002.
  • [4] T. A. Gulliver and M. Harada. On extremal double circulant self-dual codes of lengths 90-96. Applicable Algebra in Engineering Communication and Computing, 2019.
  • [5] M. Karlin. New binary coding results by circulants. IEEE Transactions on Information Theory, 15(1):81–92, 1969.
  • [6] G. Nebe, E. M. Rains, and N. J. A. Sloane. Self-dual codes and invariant theory (algorithms and computation in mathematics). Math Nachrichten, 2006.
  • [7] P.Gaborit and A.Otmani. Tables of self-dual codes. vol.https: //www. unilim. fr/ pages perso/ philippe. gaborit/ SD/ index. html, 2020.
  • [8] V. Pless and N. J. A. Sloane. On the classification and enumeration of self-dual codes. Journal of Combinatorial Theory, 18(3):313–335, 1975.
  • [9] L. Qian, M. Shi, and P. Sole´\acute{e}. On self-dual and LCD\mathrm{LCD} quasi-twisted codes of index two over a special chain ring. Cryptography and Communications, Discrete Structures, Boolean Functions and Sequences, 11:717–734, 2019.
  • [10] M. Shi, D. Huang, L. Sok, and P. Sole´\acute{e}. Double circulant self-dual and LCD\mathrm{LCD} codes over G\mathrm{G}alois rings. Advances in Mathematics of Communications, 13(1):171–183, 2019.
  • [11] M. Shi, L. Qian, L. Sok, and P. Sole´\acute{e}. On self-dual negacirculant codes of index two and four. Designs, Codes and Cryptography, 11:2485–2494, 2018.
  • [12] M. Shi, H. Zhu, L. Qian, L. Sok, and P. Sole´\acute{e}. On self-dual and LCD\mathrm{LCD} double circulant and double negacirculant codes over Fq+uFq\mathrm{F}_{q}+u\mathrm{F}_{q}. Cryptography and Communications, Discrete Structures, Boolean Functions and Sequences, https://doi.org/10.1007/s12095-019-00363-9, 2019.
  • [13] T. Zhang and G. Ge. Fourth power residue double circulant self-dual codes. IEEE Transactions on Information Theory, 61(8):4243–4252, 2015.