This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Dominant two-dimensional electron-phonon interactions in the bulk Dirac semimetal Na3Bi

Dhruv C. Desai Department of Applied Physics and Materials Science, California Institute of Technology, Pasadena, California 91125, USA.    Jinsoo Park Department of Applied Physics and Materials Science, California Institute of Technology, Pasadena, California 91125, USA.    Jin-Jian Zhou School of Physics, Beijing Institute of Technology, Beijing 100081, China.    Marco Bernardi [email protected] Department of Applied Physics and Materials Science, California Institute of Technology, Pasadena, California 91125, USA.
Abstract

Bulk Dirac semimetals (DSMs) exhibit unconventional transport properties and phase transitions due to their peculiar low-energy band structure. Yet the electronic interactions governing nonequilibrium phenomena in DSMs are not fully understood. Here we show that electron-phonon (ee-ph) interactions in a prototypical bulk DSM, Na3Bi, are predominantly two-dimensional (2D). Our first-principles calculations discover a 2D optical phonon with strong ee-ph interactions associated with in-plane vibrations of Na atoms. We show that this 2D mode governs ee-ph scattering and charge transport in Na3Bi, and induces a dynamical phase transition to a Weyl semimetal. Our work advances quantitative analysis of electron interactions in topological semimetals and reveals dominant low-dimensional interactions in bulk quantum materials.

\altaffiliation

D.D. and J.P. contributed equally to this work \altaffiliationD.D. and J.P. contributed equally to this work \alsoaffiliationDepartment of Physics, California Institute of Technology, Pasadena, California 91125, USA

1

Topological semimetals are characterized by electronic band crossings near the Fermi energy, which result in linear band dispersions and topologically nontrivial band structures 1. There is a vast literature on their unusual properties, including high mobility and magnetoresistance 2, 3, 4, 5, 6, 7, 8, anomalous transport regimes 8, 9, 10, surface Fermi arcs 11, 12, 13, 14, and topological phase transitions 15, 16. The discovery of graphene - a two-dimensional Dirac semimetal (DSM) - has enabled studies of new physics in a carbon atom sheet 17. In contrast with graphene, three-dimensional (bulk) DSMs are materials with rich structural and chemical complexity. They present a wide range of possible crystal structures and arrangements of Dirac cones, whose degeneracy is protected by crystal symmetry 1, which makes bulk DSMs interesting for device applications 18, 19.
Although many properties of DSMs can be explained using model low-energy Hamiltonians, the interactions between electrons and other degrees of freedom - such as phonons, photons, and spin - are not simple to quantify and give rise to rich physics in DSMs. Examples include phonon nonlinearities, unconventional nonequilibrium dynamics, and topological phase transitions, 20, 21, 22, 23, 24 among others. Electron-phonon (ee-ph) interactions play a central role in this physics, but their understanding in bulk DSMs - and more generally in topological semimetals - is rather limited and relies mainly on phenomenological models 25, 26. First-principles calculations of ee-ph interactions, which have now been applied to many classes of materials 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, have been hindered in bulk DSMs by their complex atomic and electronic structures.
Sodium bismuthate (Na3Bi\mathrm{Na_{3}Bi}) is a prototypical bulk DSM  11, 39 whose Dirac cones have been observed by scanning tunneling spectroscopy 40, 41, 16, 42, angle-resolved photoemission (ARPES) 39, 12, and transport measurements 8. In Na3Bi, first-principles calculations have examined impurity-limited transport 43, nonequilibrium dynamics 44, and spin-orbit coupling 45. However, a quantitative analysis of ee-ph interactions is still missing. The interplay between crystal symmetry and electron spin, orbital, and momentum degrees of freedom suggests that Na3Bi\mathrm{Na_{3}Bi} and other bulk DSMs may host unconventional ee-ph interactions yet to be discovered. We explore this direction by carrying out a detailed first-principles study of ee-ph interactions in Na3Bi. We use density functional theory (DFT) 46, 47 to obtain the electronic structure, lattice vibrations, and their interactions; our calculations take into account spin-orbit coupling (SOC) and many-body corrections to the electronic band structure (with the GW method 48), and employ an improved treatment of acoustic phonons (see Methods).
Leveraging these accurate tools, we discover a dominant two-dimensional (2D) ee-ph interaction in Na3Bi associated with a 2D optical phonon with ee-ph coupling strength far greater than that of any other mode. Our analysis shows that this 2D ee-ph interaction governs the scattering and transport of Dirac electrons, and reveals its microscopic origin. Similar “killer” phonon modes with dominant ee-ph coupling controlling charge transport have been found in organic crystals 49 but not in topological materials. We also find that the strongly-coupled 2D mode breaks inversion symmetry in Na3Bi and induces a dynamical phase transition to a Weyl semimetal (WSM). This finding points to new opportunities for ultrafast control of topological materials 44, 20, 21, 22, 23, 24.
The unit cell of Na3Bi, shown in Figure 1a, belongs to the hexagonal P63/mmcP6_{3}/mmc space group. Its crystal structure alternates a layer of Bi plus Na atoms, labeled Na(1), and a layer made up only by Na atoms, labeled Na(2). Inversion plus C3C_{3} rotational symmetry result in a four-fold band degeneracy near the Fermi energy, with contributions from Na 3s3s and Bi 6p6p orbitals 11, 50, 51, 52, 42. The Dirac cone is made up by two electronic bands, one with Na 3s3s +\!+\! Bi 6pz6p_{z} and the other with Bi 6px6p_{x} +\!+\! 6py6p_{y} orbital character (the latter is denoted below as Bi-pxyp_{xy} band). To obtain an accurate band structure, we start from DFT and then apply a one-shot GW correction (see Methods), which increases the velocity of the Na 3s3s +\!+\! Bi 6pz6p_{z} band by a factor of 1.8 and reduces the velocity of the Bi pxyp_{xy}-band relative to DFT (Figure 1b,c). The Fermi velocity computed with GW about 300 meV above the Dirac node is 7.0 ×\!\times\! 10510^{5} ms-1, in excellent agreement with the experimental value of 8.1 ×\!\times\! 10510^{5} ms-1 9. Our computed GW band structure agrees well with ARPES measurements by Liang et al. 12 (See Supplementary information).

Refer to caption
Figure 1: (a) Crystal structure of Na3Bi with P63/mmc6_{3}/mmc space-group symmetry. The Bi (Na) atoms are shown with black (yellow) spheres. (b) Band structure of Na3Bi comparing DFT (black) and GW (red) results. (c) Zoom-in of the band structure in (b) near the Dirac point, with states color-coded according to their orbital character.

The computed phonon dispersion in Na3Bi is shown in Figure 2a. The phonon frequencies are positive for all modes (color-coded curves in Figure 2a), indicating a dynamically stable P63/mmcP6_{3}/mmc crystal structure with no soft modes or imaginary frequencies. Fine-tuning the acoustic sum rule is crucial to obtaining this well-behaved phonon dispersion. Our results employ an advanced acoustic sum rule which minimally affects the inter-atomic force constants from DFPT 53; conversely, a widely-used - so-called “simple” - acoustic sum rule 54, which modifies the inter-atomic force constants to enforce translational symmetry, leads to spurious soft phonons near the K-point of the Brillouin zone 55 (gray curves in Figure 2a).
Our settings, which combine a stable crystal structure, well-defined phonon dispersions, and electronic states with an accurate Fermi velocity allow us to carry out reliable first-principles calculations of ee-ph interactions in Na3Bi 31.

Refer to caption
Figure 2: (a) Na3Bi phonon dispersion overlaid with a color map of the ee-ph coupling strength, |gν(𝒒)|\absolutevalue{g_{\nu}(\bm{q})}, for wave-vector 𝒒\bm{q} along high-symmetry lines. The marker size is proportional to |gν(𝒒)|\absolutevalue{g_{\nu}(\bm{q})} and the arrows indicate the strongly-coupled 2D phonon mode. The phonon dispersion obtained with the simple acoustic sum rule is shown for comparison using gray lines, with imaginary frequencies shown as negative values. (b) Brillouin zone of Na3Bi, shown to aid the interpretation of panel (a). The ΓM\Gamma-M and ΓK\Gamma-K directions are in the xyxy-plane, and ΓA\Gamma-A corresponds to the zz-direction.

We compute the ee-ph matrix elements gmnν(𝒌,𝒒)g_{mn\nu}(\bm{k},\bm{q}), which encode the ee-ph coupling between pairs of electronic states (initial state |n𝒌\ket{n\bm{k}} and final state |m𝒌+𝒒\ket{m\bm{k}+\bm{q}}, where nn and mm are band indices and 𝒌\bm{k} the electron crystal momentum) due to a phonon with mode index ν\nu and wave-vector 𝒒\bm{q}. These calculations are carried out with the Perturbo code 56 as described in Methods.
Figure 2 shows the phonon dispersion in Na3Bi overlaid with a color map of the ee-ph coupling strength, defined as |gν(𝒒)|\absolutevalue{g_{\nu}(\bm{q})} \equiv (mn|gmnν(𝒌=0,𝒒)|2/Nb)1/2(\sum_{mn}\absolutevalue{g_{mn\nu}(\bm{k}=0,\bm{q})}^{2}/N_{b})^{1/2} (here we sum over Nb=2N_{b}=2 lowest conduction bands) 56. We find that the ee-ph interactions are overall relatively weak in Na3Bi, with an average value |gν(𝒒)|\absolutevalue{g_{\nu}(\bm{q})}\approx 5 meV. Yet one particular phonon mode, with \sim12 meV energy and wave-vector 𝒒\bm{q} in the Γ\Gamma-M and Γ\Gamma-K directions (which correspond to the crystal xyxy-plane; see Figure 2b) exhibits a much stronger ee-ph coupling than any other mode, with value |g|35meV\absolutevalue{g}\approx 35~{}\text{meV}. This strongly-coupled 2D mode is a longitudinal optical (LO) phonon that is infrared-active and has E1uE_{1u} character at the zone center 57. Its associated atomic vibrations, shown in Figure 3a, have primary contributions from Na(2) atoms, which oscillate with large amplitudes in the Na-only layers of Na3Bi, and have negligible contributions from the Na(1) and Bi atoms in the neighboring layers. Because the wave-vector and atomic displacements of this strongly-coupled 2D mode are both in the xyxy-plane, the dominant ee-ph interactions in Na3Bi are inherently two-dimensional.
To understand the microscopic origin these strong 2D ee-ph interactions, we analyze their perturbation potential, whose local lattice-periodic part can be written as 47, 56

ΔVν𝒒(𝐫)κ1Mκ𝐞ν𝒒(κ)κ,𝒒V(𝐫),\Delta V_{\nu\bm{q}}(\mathbf{r})\equiv\sum_{\kappa}\frac{1}{\sqrt{M_{\kappa}}}\,\mathbf{e}^{(\kappa)}_{\nu\bm{q}}\cdot\partial_{\kappa,\bm{q}}V(\mathbf{r})\,\,,\vspace{-6pt} (1)

where MκM_{\kappa} is the mass and 𝐞ν𝒒(κ)\mathbf{e}^{(\kappa)}_{\nu\bm{q}} the displacement eigenvector of atom κ\kappa due to phonon mode (ν,𝒒)(\nu,\bm{q}), and κ,𝒒V(𝐫)\partial_{\kappa,\bm{q}}V(\mathbf{r}) is the derivative of the local Kohn-Sham potential with respect to the position of atom κ\kappa 56. We focus on the effect of the dominant Na(2) atomic vibrations on the Bi-pxyp_{xy} Dirac-cone electronic states near Γ\Gamma. Figure 3 shows the ee-ph perturbation potential ΔVν𝒒(𝐫)\Delta V_{\nu\bm{q}}(\mathbf{r}) generated by Na(2) atomic vibrations and plotted in the xyxy-plane containing Bi atoms.

Refer to caption
Figure 3: Side view (left) and top view (right) of atomic motions and ee-ph perturbation potentials ΔVν𝒒(𝐫)\Delta V_{\nu\bm{q}}(\mathbf{r}) for two phonon modes: (a) Strongly-coupled 2D longitudinal optical phonon with wave-vector 𝒒\bm{q}=(1/6,0,0) in the xyxy-plane, associated with a large perturbation at the Bi site leading to strong ee-ph interactions; (b) transverse optical mode with 𝒒\bm{q} = (0,0,1/8) along the zz-axis, resulting in a negligible ee-ph coupling due to the weak perturbation at the Bi site. In both cases, we compute ΔVν𝒒(𝐫)\Delta V_{\nu\bm{q}}(\mathbf{r}) from Na(2) atomic vibrations and plot it in the xyxy-plane containing Bi and Na(1) atoms. Red and blue colors correspond to positive and negative values of ΔVν𝒒(𝐫)\Delta V_{\nu\bm{q}}(\mathbf{r}), respectively.

For the dominant 2D LO mode (Figure 3a), which has wave-vector 𝒒\bm{q} in the xyxy-plane, the Na(2) atoms move out-of-phase within each layer, causing large perturbations at the Bi atoms. As a result electronic states in the Bi pxyp_{xy}-band couple strongly with this phonon mode. Increasing |𝒒|\absolutevalue{\bm{q}} in the xyxy-plane leads to an even greater perturbation at the Bi site and thus stronger ee-ph coupling. In contrast, for a 2D transverse optical mode propagating in the zz-direction the Na(2) atoms move uniformly in-phase in the xyxy-plane (Figure 3b). In this case, ΔVν𝒒(𝐫)\Delta V_{\nu\bm{q}}(\mathbf{r}) has a symmetric pattern with nodes at Bi atoms, which suppresses ee-ph coupling for the Bi-pxyp_{xy} band. Accordingly, we find a very weak ee-ph coupling for such transverse optical modes, as shown by the dark blue color in the Γ\Gamma-A direction in Figure 2a.
We analyze two important consequences of the strong 2D ee-ph coupling in Na3Bi. First, we find that charge transport is governed by scattering of Dirac electrons with the strongly-coupled 2D mode, which contributes nearly half of the total ee-ph scattering rate (Figure 4a) and resistivity (see below). Other individual phonon modes contribute significantly less, up to 15% of the ee-ph scattering rate for the mode with the second strongest coupling. Therefore, this strongly-coupled 2D LO mode is analogous to the “killer” phonons controlling charge transport recently discovered in organic crystals 49.

Because of the strong 2D ee-ph coupling, Dirac-cone electronic states with in-plane momentum 𝒌\bm{k}, which couple to each other via phonons with in-plane momenta, exhibit large ee-ph scattering rates (Figure 4b). In contrast, electrons with momentum 𝒌\bm{k} in the zz-direction scatter mostly via phonons with out-of-plane 𝒒\bm{q}, and are associated with smaller scattering rates. This anisotropic scattering due to 2D ee-ph coupling is evident in the entire temperature range we analyzed (77-300 K). We have verified that the ee-ph matrix elements g(𝒌,𝒒)g(\bm{k},\bm{q}) possess a similar anisotropy, such that the ee-ph coupling strength |g(𝒌,𝒒)||g(\bm{k},\bm{q})| is much greater for in-plane than for out-of-plane electron momenta.
We compute the phonon-limited mobility and resistivity using these first-principles ee-ph scattering rates in the Boltzmann transport equation 56 (see Methods). Our results show that the in-plane mobility for temperatures between 150-400 K is very large (Figure 4c) - up to \sim30,000 cm2/Vs\text{cm}^{2}/\text{Vs} at room temperature and high electron concentration, mainly as a result of the high Fermi velocity of the Bi pxyp_{xy}-band and the overall weak ee-ph coupling. This mobility limit, which applies to an ideally pure crystal of Na3Bi where charge transport is impeded only by phonons, is exceptionally high and has the same order of magnitude as the mobility in graphene 17. To our knowledge, such large electron mobilities have not yet been measured in Na3Bi near room temperature; one possible reason is that Na3Bi samples typically contain large concentrations of defects, particularly Na vacancies, which may make the intrinsic phonon-limited mobility difficult to observe 40, 41. Improvements in growth techniques may bring the experimental mobility of Na3Bi closer to our predicted theoretical limit. Note that in Cd3As2, a widely studied DSM, mobility values as high as \sim40,000 cm2/Vs\text{cm}^{2}/\text{Vs} at 130 K have been reported 58, which are comparable to the \sim100,000 cm2/Vs\text{cm}^{2}/\text{Vs} we predict in Na3Bi for the same temperature and carrier concentration.
To complete our discussion on transport, Figure 4d shows the computed in-plane resistivity as a function of temperature for Fermi energies between 100-300 meV. In this regime, the transport behavior is metallic, and the resistivity increases with temperature following a power law. Comparison with experiments is important despite the variability in Na3Bi sample quality noted above. We compare our calculations with the measurements by Xiong et al9, which achieve the lowest resistivity among available experimental data 9, 40 indicating higher sample quality. Our computed resistivity is lower than their measured values 9 by about an order of magnitude at 50 K and a factor of 3-5 at 250 K. The lower discrepancy at higher temperature indicates an improved agreement between theory and experiment in the intrinsic, phonon-limited transport regime studied in this work.

Refer to caption
Figure 4: Calculations of transport and ee-ph scattering in Na3Bi. (a) E-ph scattering rates as a function of carrier energy at 300 K and EFE_{\rm F}=200 meV. We show the total scattering rate (black) and the contributions from the strongly-coupled 2D mode (red) and the longitudinal acoustic (LA) mode with second strongest coupling (blue). For each curve, we plot the average scattering rate with a solid line, and show the standard deviation as a shaded region. (b) Fermi surface at EFE_{\rm F}=200 meV color-coded according to the total ee-ph scattering rates. (c) Electron mobility as a function of carrier concentration for temperatures between 150-400 K. (d) Temperature dependent resistivity for Fermi energies between 100-300 meV above the Dirac point, shown together with the strongly-coupled 2D-mode contribution. Experimental results by Xiong et al. 9 are shown for comparison.

It is interesting to compare these findings with graphene, a 2D DSM. In both Na3Bi and graphene, a 2D optical phonon has the strongest ee-ph coupling 59, 60. However, heavier atoms and weaker bonding in Na3Bi result in softer phonons - the energy of the strongly-coupled 2D phonon in Na3Bi is only \sim12 meV, and thus much smaller than the \sim200 meV energy of strongly-coupled 2D optical phonons in graphene 60. At room temperature, where kBT26k_{\rm B}T\!\approx\!26 meV, the strongly-coupled 2D phonons are thermally excited in Na3Bi, while in graphene only acoustic phonons are present. As a result, optical modes contribute less than 15% to the resistivity in graphene at 300 K 61, versus a dominant 50% resistivity contribution from the strongly-coupled 2D phonon in Na3Bi (Figure 4d). Note that while graphene is a 2D material, Na3Bi is a bulk crystal where a dominant 2D ee-ph interaction is unexpected.

Refer to caption
Figure 5: Electronic band structure computed with DFT for (a) pristine and (b) 2D-mode distorted Na3Bi. The displacement in (b) is 3% of the in-plane lattice constant.

Finally, we find that the atomic vibrations from the strongly-coupled 2D mode dynamically induce a phase transition to a Weyl semimetal (WSM) in Na3Bi. Due to its E1uE_{1u} character 57, this 2D mode dynamically breaks inversion symmetry and removes the four-fold degeneracy at the Dirac point, splitting each Dirac cone into a pair of Weyl cones. Figure 5 shows the DFT band structure in the kxk_{x}-kyk_{y} plane containing the Dirac node, comparing results for the pristine structure (Figure 5a) and for the lattice distorted from the strongly-coupled 2D mode (Figure 5b), which is computed with frozen-in atomic displacements along the 2D-mode eigenvector (see Methods). The atomic displacements split each Dirac node into a pair of Weyl nodes separated along kyk_{y} by about 0.01 Å1\text{\AA}^{-1}; the system remains metallic throughout this phase transition. Inversion symmetry breaking from the strongly-coupled E1uE_{1u} mode is crucial to obtaining the WSM phase: phonon distortions that preserve inversion symmetry but break the threefold rotational symmetry - for example, E2gE_{2g} modes, which are however weakly coupled - are not robust against a gap opening, and instead cause a phase transition to a topological insulator.
These results imply that 2D phonons with strong ee-ph coupling can provide a versatile knob for ultrafast control in Na3Bi. In particular, because the strongly-coupled 2D LO mode is infrared active 62 (but not Raman active), one could induce a topological phase transition in Na3Bi by coherently driving this 2D mode using a THz pulse 63 or through carrier optical excitation followed by strong ee-ph coupling 63. Interestingly, Hübener et al. 44 have shown that a similar phase transition from a DSM to a WSM can be achieved in Na3Bi with a different mechanism - strong light-matter coupling, which dresses the electronic states inducing Floquet-Weyl nodes. These predictions contribute to the thriving area of driven nonequilibrium dynamics in topological materials, where recent experiments on bulk DSMs 22 and WSMs 20, 21 have demonstrated nonequilibium topological phase transition using electric fields or optical pulses.
In conclusion, we have shown that the dominant ee-ph interactions in a prototypical bulk DSM, Na3Bi, are inherently two-dimensional and govern the scattering and transport of Dirac electrons. Our first-principles analysis reveals the microscopic origin of this strong 2D ee-ph coupling; it also shows that the strongly-coupled 2D mode can induce a dynamical phase transition to a WSM, suggesting new routes for ultrafast control of Dirac electrons in bulk DSMs. These results seed the question of whether other bulk materials may host dominant low-dimensional ee-ph interactions governing their physical properties. For example, MgB2, a superconductor with a relatively high critical temperature of \sim40 K, has a crystal structure similar to Na3Bi and has been hypothesized to host a 2D phonon with strong ee-ph coupling 64, 65. First-principles calculations such as those shown in this work can contribute to address these questions and advance future discoveries of electronic interactions and nonequilibrium dynamics in topological materials.

Methods

1.1 DFT, DFPT and GW calculations

We perform DFT calculations in a plane-wave basis set using the Quantum ESPRESSO 54 code. We employ the PBEsol 66 exchange-correlation functional and fully-relativistic norm-conserving pseudopotentials from Pseudo Dojo 67. These calculations use a coarse 12×12×812\times 12\times 8 𝒌\bm{k}-point grid, a kinetic energy cutoff of 90 Ry, and relaxed lattice constants (a=5.42Åa=5.42~{}\text{\AA} and c=9.67Åc=9.67~{}\text{\AA}) which are in excellent agreement with the experimental values (a=5.45Åa=5.45~{}\text{\AA} and c=9.66Åc=9.66~{}\text{\AA}11. The phonon dispersions and perturbation potentials are computed using coarse grids with 6×6×86\times 6\times 8 𝒒\bm{q}-points using DFPT 47. We employ the crystal acoustic sum rule from Ref. 53 to compute phonon dispersions. The GW correction to the electronic band structure is computed using the yambo code. 68 We employ 120 unoccupied bands and a 10 Ry energy cutoff for the dielectric screening combined with the Bruneval-Gonze terminator 69; we have verified that increasing the number of unoccupied bands to 600 and the energy cutoff to 30 Ry has a negligible effect.

1.2 Electron-phonon matrix elements and perturbation potentials

We use the Perturbo code 56 to obtain the ee-ph coupling matrix elements on the coarse 𝒌\bm{k}- and 𝒒\bm{q}-point grids given above. The ee-ph matrix elements gmnν(𝒌,𝒒)g_{mn\nu}(\bm{k},\bm{q}) are defined as

gmnν(𝒌,𝒒)=2ων𝒒ψm𝒌+𝒒|ΔVν𝒒|ψn𝒌,g_{mn\nu}(\bm{k},\bm{q})=\sqrt{\frac{\hbar}{2\omega_{\nu\bm{q}}}}\bra{\psi_{m\bm{k+q}}}\Delta V_{\nu\bm{q}}\ket{\psi_{n\bm{k}}}, (2)

where |ψn𝒌\ket{\psi_{n\bm{k}}} and |ψm𝒌+𝒒\ket{\psi_{m\bm{k+q}}} are Bloch states with momenta 𝒌\bm{k} and 𝒌+𝒒\bm{k+q}, and ΔVν𝒒\Delta\mathrm{V}_{\nu\bm{q}} is the lattice-periodic part of the phonon perturbation potential 56. Since the dominant contribution to g(𝒌,𝒒)g(\bm{k},\bm{q}) for the 2D mode comes from Na(2) atomic vibrations, we analyze the effect of Na(2) motions on the Bi pxyp_{xy} band, which is achieved by setting 𝐞ν𝒒(κ)\mathbf{e}^{(\kappa)}_{\nu\bm{q}} to 0 in eq 1 for Na(1) and Bi atoms. A similar analysis can be performed for Na(1) and Bi atomic motions, or using the Na ss + Bi pzp_{z} band, but their contributions to g(𝒌,𝒒)g(\bm{k},\bm{q}) are significantly smaller and do not affect our conclusions.

1.3 Electron-phonon scattering rates and charge transport

We interpolate the ee-ph matrix elements on fine BZ grids with up to 130×130×90130\times 130\times 90 𝒌\bm{k}- and 𝒒\bm{q}-points using maximally localized Wannier functions 70 generated with the Wannier90 code. 71 We then compute the ee-ph scattering rates at temperature TT using 56

Γn𝒌(T)=2πmν𝒒|gmnν(𝒌,𝒒)|2[(Nν𝒒+1fm𝒌+𝒒)δ(εn𝒌εm𝒌+𝒒ων𝒒)+(Nν𝒒+fm𝒌+𝒒)δ(εn𝒌εm𝒌+𝒒+ων𝒒)],\begin{split}\Gamma_{n\bm{k}}(T)=&\frac{2\pi}{\hbar}\sum_{m\nu\bm{q}}\absolutevalue{g_{mn\nu}(\bm{k},\bm{q})}^{2}\\ &[(N_{\nu\bm{q}}+1-f_{m\bm{k+q}})\delta(\varepsilon_{n\bm{k}}-\varepsilon_{m\bm{k+q}}-\hbar\omega_{\nu\bm{q}})\\ &~{}+(N_{\nu\bm{q}}+f_{m\bm{k+q}})\delta(\varepsilon_{n\bm{k}}-\varepsilon_{m\bm{k+q}}+\hbar\omega_{\nu\bm{q}})],\end{split} (3)

where εn𝒌\varepsilon_{n\bm{k}} and fm𝒌+𝒒f_{m\bm{k+q}} are electron band energies and occupations, respectively, while ων𝒒\hbar\omega_{\nu\bm{q}} and Nν𝒒N_{\nu\bm{q}} denote phonon energies and occupations. The electron and phonon occupations govern the temperature dependence of the ee-ph scattering rates.

Using Perturbo 56, we obtain the carrier mobility as a function of temperature and doping concentration by solving the linearized Boltzmann transport equation: 56

𝑭n𝒌=𝒗n𝒌τn𝒌+τn𝒌𝒩𝒒m,ν𝒒Wn𝒌,m𝒌+𝒒ν𝒒𝑭m𝒌+𝒒\bm{F}_{n\bm{k}}=\bm{v}_{n\bm{k}}\tau_{n\bm{k}}+\frac{\tau_{n\bm{k}}}{\mathcal{N}_{\bm{q}}}\sum_{m,\nu\bm{q}}W_{n\bm{k},m\bm{k+q}}^{\nu\bm{q}}\bm{F}_{m\bm{k+q}} (4)

where Wn𝒌,m𝒌+𝒒ν𝒒W_{n\bm{k},m\bm{k+q}}^{\nu\bm{q}} are phonon mode-dependent ee-ph scattering rates from electronic state |n𝒌\ket{n\bm{k}} to |m𝒌+𝒒\ket{m\bm{k+q}} due to phonon mode (ν,𝒒)(\nu,\bm{q}); 𝒗n𝒌\bm{v}_{n\bm{k}} are band velocities, τn𝒌\tau_{n\bm{k}} are relaxation times, and 𝒩𝒒\mathcal{N}_{\bm{q}} is the number of 𝒒\bm{q}-points used in the Brillouin zone summation. Above, 𝑭n𝒌(T)\bm{F}_{n\bm{k}}(T) is a term proportional to the first-order deviation of the electron occupations fn𝒌f_{n\bm{k}} from their equilibrium values fn𝒌0f_{n\bm{k}}^{0} due to the electric field 𝑬\bm{E}, and is defined through

fn𝒌0(1fn𝒌0)e𝑬kBT𝑭n𝒌=fn𝒌fn𝒌0.-f_{n\bm{k}}^{0}(1-f_{n\bm{k}}^{0})\frac{e\bm{E}}{k_{B}T}\cdot\bm{F}_{n\bm{k}}=f_{n\bm{k}}-f_{n\bm{k}}^{0}\vspace{-10pt}. (5)

The conductivity tensor σαβ\sigma_{\alpha\beta} is computed using

σαβ=e2𝑑E(f0/E)Σαβ(E,T),\sigma_{\alpha\beta}=e^{2}\int{dE\,(-\partial f^{0}/\partial E)\,\Sigma_{\alpha\beta}(E,T)}, (6)

where α\alpha and β\beta are Cartesian directions, and Σαβ(E,T)\Sigma_{\alpha\beta}(E,T) is the transport distribution function at energy EE and temperature TT30

Σαβ(E,T)=1𝒩𝒌Ωn𝒌vn𝒌α𝑭n𝒌β(T)δ(Eεn𝒌).\Sigma_{\alpha\beta}(E,T)=\frac{1}{\mathcal{N}_{\bm{k}}\Omega}\sum_{n\bm{k}}\mathrm{v}_{n\bm{k}}^{\alpha}\bm{F}_{n\bm{k}}^{\beta}(T)\delta(E-\varepsilon_{n\bm{k}}). (7)

Here, 𝒩𝒌\mathcal{N}_{\bm{k}} is the number of 𝒌\bm{k}-points in the Brillouin zone and Ω\Omega is the unit cell volume.

1.4 Acknowledgments

D.D. and J.P. thank Ivan Maliyov for fruitful discussions. This work was supported by the National Science Foundation under Grant No. DMR-1750613, which provided for method development, and Grant No. OAC-2209262, which provided for code development. M. B. was partially supported by the AFOSR and Clarkson Aerospace under Grant No. FA95502110460. This research used resources of the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility located at Lawrence Berkeley National Laboratory, operated under Contract No. DE-AC02-05CH11231.

References

  • Armitage et al. 2018 Armitage, N. P.; Mele, E. J.; Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 2018, 90, 015001
  • He et al. 2014 He, L. P.; Hong, X. C.; Dong, J. K.; Pan, J.; Zhang, Z.; Zhang, J.; Li, S. Y. Quantum Transport Evidence for the Three-Dimensional Dirac Semimetal Phase in Cd3As2\mathrm{Cd}_{3}\mathrm{As}_{2}. Phys. Rev. Lett. 2014, 113, 246402
  • Liang et al. 2015 Liang, T.; Gibson, Q.; Ali, M. N.; Liu, M.; Cava, R. J.; Ong, N. P. Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2\mathrm{Cd}_{3}\mathrm{As}_{2}. Nat. Mater. 2015, 14, 280–284
  • Cao et al. 2015 Cao, J. et al. Landau level splitting in Cd3As2\mathrm{Cd}_{3}\mathrm{As}_{2} under high magnetic fields. Nat. Commun. 2015, 6, 7779
  • Feng et al. 2015 Feng, J.; Pang, Y.; Wu, D.; Wang, Z.; Weng, H.; Li, J.; Dai, X.; Fang, Z.; Shi, Y.; Lu, L. Large linear magnetoresistance in Dirac semimetal Cd3As2\mathrm{Cd}_{3}\mathrm{As}_{2} with Fermi surfaces close to the Dirac points. Phys. Rev. B 2015, 92, 081306
  • Narayanan et al. 2015 Narayanan, A.; Watson, M. D.; Blake, S. F.; Bruyant, N.; Drigo, L.; Chen, Y. L.; Prabhakaran, D.; Yan, B.; Felser, C.; Kong, T.; Canfield, P. C.; Coldea, A. I. Linear Magnetoresistance Caused by Mobility Fluctuations in nn-Doped Cd3As2\mathrm{Cd}_{3}\mathrm{As}_{2}. Phys. Rev. Lett. 2015, 114, 117201
  • Amarnath et al. 2019 Amarnath, R.; Bhargavi, K. S.; Kubakaddi, S. S. Phonon limited mobility in 3D Dirac semimetal Cd3As2\mathrm{Cd}_{3}\mathrm{As}_{2}. IOP Conf. Ser.: Mater. Sci. Eng. 2019, 561, 012030
  • Xiong et al. 2015 Xiong, J.; Kushwaha, S. K.; Liang, T.; Krizan, J. W.; Hirschberger, M.; Wang, W.; Cava, R. J.; Ong, N. P. Evidence for the chiral anomaly in the Dirac semimetal Na3Bi. Science 2015, 350, 413–416
  • Xiong et al. 2016 Xiong, J.; Kushwaha, S.; Krizan, J.; Liang, T.; Cava, R. J.; Ong, N. P. Anomalous Conductivity Tensor in the Dirac Semimetal Na3Bi\mathrm{Na}_{3}\mathrm{Bi}. Europhys. Lett. 2016, 114, 27002
  • Li et al. 2015 Li, C.-Z.; Wang, L.-X.; Liu, H.; Wang, J.; Liao, Z.-M.; Yu, D.-P. Giant negative magnetoresistance induced by the chiral anomaly in individual Cd3As2\mathrm{Cd}_{3}\mathrm{As}_{2} nanowires. Nat. Commun. 2015, 6, 10137
  • Wang et al. 2012 Wang, Z.; Sun, Y.; Chen, X.-Q.; Franchini, C.; Xu, G.; Weng, H.; Dai, X.; Fang, Z. Dirac semimetal and topological phase transitions in A3Bi (A=Na, K, Rb). Phys. Rev. B 2012, 85, 195320
  • Liang et al. 2016 Liang, A. et al. Electronic structure, Dirac points and Fermi arc surface states in three-dimensional Dirac semimetal Na3Bi\mathrm{Na}_{3}\mathrm{Bi} from angle-resolved photoemission spectroscopy. Chin. Phys. B 2016, 25, 077101
  • Xu et al. 2015 Xu, S.-Y. et al. Observation of Fermi arc surface states in a topological metal. Science 2015, 347, 294–298
  • Moll et al. 2016 Moll, P. J. W.; Nair, N. L.; Helm, T.; Potter, A. C.; Kimchi, I.; Vishwanath, A.; Analytis, J. G. Transport evidence for Fermi-arc-mediated chirality transfer in the Dirac semimetal Cd3As2\mathrm{Cd}_{3}\mathrm{As}_{2}. Nature 2016, 535, 266–270
  • Collins et al. 2018 Collins, J. L.; Tadich, A.; Wu, W.; Gomes, L. C.; Rodrigues, J. N. B.; Liu, C.; Hellerstedt, J.; Ryu, H.; Tang, S.; Mo, S.-K.; Adam, S.; Yang, S. A.; Fuhrer, M. S.; Edmonds, M. T. Electric-field-tuned topological phase transition in ultrathin Na3Bi. Nature 2018, 564, 390–394
  • Xia et al. 2019 Xia, H.; Li, Y.; Cai, M.; Qin, L.; Zou, N.; Peng, L.; Duan, W.; Xu, Y.; Zhang, W.; Fu, Y.-S. Dimensional Crossover and Topological Phase Transition in Dirac Semimetal Na3Bi Films. ACS Nano 2019, 13, 9647–9654
  • Geim and Novoselov 2007 Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183
  • Hills et al. 2017 Hills, R. D. Y.; Kusmartseva, A.; Kusmartsev, F. V. Current-voltage characteristics of Weyl semimetal semiconducting devices, Veselago lenses, and hyperbolic Dirac phase. Phys. Rev. B 2017, 95, 214103
  • Yanez et al. 2021 Yanez, W. et al. Spin and Charge Interconversion in Dirac-Semimetal Thin Films. Phys. Rev. Appl. 2021, 16, 054031
  • Sie et al. 2019 Sie, E. J. et al. An ultrafast symmetry switch in a Weyl semimetal. Nature 2019, 565, 61–66
  • Zhang et al. 2019 Zhang, M. Y.; Wang, Z. X.; Li, Y. N.; Shi, L. Y.; Wu, D.; Lin, T.; Zhang, S. J.; Liu, Y. Q.; Liu, Q. M.; Wang, J.; Dong, T.; Wang, N. L. Light-Induced Subpicosecond Lattice Symmetry Switch in MoTe2{\mathrm{MoTe}}_{2}. Phys. Rev. X 2019, 9, 021036
  • Vaswani et al. 2020 Vaswani, C. et al. Light-Driven Raman Coherence as a Nonthermal Route to Ultrafast Topology Switching in a Dirac Semimetal. Phys. Rev. X 2020, 10, 021013
  • Xiao et al. 2020 Xiao, J.; Wang, Y.; Wang, H.; Pemmaraju, C. D.; Wang, S.; Muscher, P.; Sie, E. J.; Nyby, C. M.; Devereaux, T. P.; Qian, X.; Zhang, X.; Lindenberg, A. M. Berry curvature memory through electrically driven stacking transitions. Nat. Phys. 2020, 16, 1028
  • Disa et al. 2021 Disa, A. S.; Nova, T. F.; Cavalleri, A. Engineering crystal structures with light. Nat. Phys. 2021, 17, 1087–1092
  • Sklyadneva et al. 2021 Sklyadneva, I.; Heid, R.; Echenique, P. M.; Chulkov, E. V. Electron-phonon coupling in the magnetic Weyl semimetal ZrCo2Sn\mathrm{Zr}{\mathrm{Co}}_{2}\mathrm{Sn}. Phys. Rev. B 2021, 103, 024303
  • Liu et al. 2021 Liu, P.-F.; Li, J.; Zhang, C.; Tu, X.-H.; Zhang, J.; Zhang, P.; Wang, B.-T.; Singh, D. J. Type-II Dirac cones and electron-phonon interaction in monolayer biphenylene from first-principles calculations. Phys. Rev. B 2021, 104, 235422
  • Bernardi 2016 Bernardi, M. First-principles dynamics of electrons and phonons. Eur. Phys. J. B 2016, 89, 239
  • Agapito and Bernardi 2018 Agapito, L. A.; Bernardi, M. Ab initio electron-phonon interactions using atomic orbital wave functions. Phys. Rev. B 2018, 97, 235146
  • Bernardi et al. 2014 Bernardi, M.; Vigil-Fowler, D.; Lischner, J.; Neaton, J. B.; Louie, S. G. Ab Initio Study of Hot Carriers in the First Picosecond after Sunlight Absorption in Silicon. Phys. Rev. Lett. 2014, 112, 257402
  • Zhou and Bernardi 2016 Zhou, J.-J.; Bernardi, M. Ab initio electron mobility and polar phonon scattering in GaAs. Phys. Rev. B 2016, 94, 201201(R)
  • Zhou et al. 2018 Zhou, J.-J.; Hellman, O.; Bernardi, M. Electron-Phonon Scattering in the Presence of Soft Modes and Electron Mobility in SrTiO3{\mathrm{SrTiO}}_{3} Perovskite from First Principles. Phys. Rev. Lett. 2018, 121, 226603
  • Zhou and Bernardi 2019 Zhou, J.-J.; Bernardi, M. Predicting charge transport in the presence of polarons: The beyond-quasiparticle regime in SrTiO3{\mathrm{SrTiO}}_{3}. Phys. Rev. Res. 2019, 1, 033138
  • Park et al. 2007 Park, C.-H.; Giustino, F.; Cohen, M. L.; Louie, S. G. Velocity Renormalization and Carrier Lifetime in Graphene from the Electron-Phonon Interaction. Phys. Rev. Lett. 2007, 99, 086804
  • Floris et al. 2007 Floris, A.; Sanna, A.; Massidda, S.; Gross, E. K. U. Two-band superconductivity in Pb from ab initio calculations. Phys. Rev. B 2007, 75, 054508
  • Li 2015 Li, W. Electrical transport limited by electron-phonon coupling from Boltzmann transport equation: An ab initio study of Si, Al, and MoS2. Phys. Rev. B 2015, 92, 075405
  • Liu et al. 2017 Liu, T.-H.; Zhou, J.; Liao, B.; Singh, D. J.; Chen, G. First-principles mode-by-mode analysis for electron-phonon scattering channels and mean free path spectra in GaAs. Phys. Rev. B 2017, 95, 075206
  • Ma et al. 2018 Ma, J.; Nissimagoudar, A. S.; Li, W. First-principles study of electron and hole mobilities of Si and GaAs. Phys. Rev. B 2018, 97, 045201
  • Poncé et al. 2018 Poncé, S.; Margine, E. R.; Giustino, F. Towards predictive many-body calculations of phonon-limited carrier mobilities in semiconductors. Phys. Rev. B 2018, 97, 121201
  • Liu et al. 2014 Liu, Z. K.; Zhou, B.; Zhang, Y.; Wang, Z. J.; Weng, H. M.; Prabhakaran, D.; Mo, S.-K.; Shen, Z. X.; Fang, Z.; Dai, X.; Hussain, Z.; Chen, Y. L. Discovery of a Three-Dimensional Topological Dirac Semimetal, Na3Bi. Science 2014, 343, 864–867
  • Kushwaha et al. 2015 Kushwaha, S. K.; Krizan, J. W.; Feldman, B. E.; Gyenis, A.; Randeria, M. T.; Xiong, J.; Xu, S.-Y.; Alidoust, N.; Belopolski, I.; Liang, T.; Zahid Hasan, M.; Ong, N. P.; Yazdani, A.; Cava, R. J. Bulk Crystal Growth and Electronic Characterization of the 3D Dirac Semimetal Na3Bi. APL Mater. 2015, 3, 041504
  • Edmonds et al. 2017 Edmonds, M. T.; Collins, J. L.; Hellerstedt, J.; Yudhistira, I.; Gomes, L. C.; Rodrigues, J. N. B.; Adam, S.; Fuhrer, M. S. Spatial charge inhomogeneity and defect states in topological Dirac semimetal thin films of Na3Bi. Sci. Adv. 2017, 3, eaao6661
  • Di Bernardo et al. 2020 Di Bernardo, I.; Collins, J.; Wu, W.; Zhou, J.; Yang, S. A.; Ju, S.; Edmonds, M. T.; Fuhrer, M. S. Importance of Interactions for the Band Structure of the Topological Dirac Semimetal Na3Bi. Phys. Rev. B 2020, 102, 045124
  • Yuan et al. 2019 Yuan, H. F.; Xu, W.; Zhao, X. N.; Song, D.; Zhang, G. R.; Xiao, Y. M.; Ding, L.; Peeters, F. M. Quantum and transport mobilities of a Na3Bi\mathrm{Na}_{3}\mathrm{Bi}-based three-dimensional Dirac system. Phys. Rev. B 2019, 99, 235303
  • Hübener et al. 2017 Hübener, H.; Sentef, M. A.; De Giovannini, U.; Kemper, A. F.; Rubio, A. Creating stable Floquet–Weyl semimetals by laser-driving of 3D Dirac materials. Nat. Commun. 2017, 8, 13940
  • Tancogne-Dejean et al. 2022 Tancogne-Dejean, N.; Eich, F. G.; Rubio, A. Effect of spin-orbit coupling on the high harmonics from the topological Dirac semimetal Na3Bi. npj Comput. Mater. 2022, 8, 145
  • Martin 2004 Martin, R. M. Electronic Structure: Basic Theory and Practical Methods; Cambridge University Press, 2004
  • Baroni et al. 2001 Baroni, S.; de Gironcoli, S.; Dal Corso, A.; Giannozzi, P. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 2001, 73, 515–562
  • Hybertsen and Louie 1986 Hybertsen, M. S.; Louie, S. G. Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies. Phys. Rev. B 1986, 34, 5390–5413
  • Schweicher et al. 2019 Schweicher, G. et al. Chasing the “Killer” Phonon Mode for the Rational Design of Low-Disorder, High-Mobility Molecular Semiconductors. Adv. Mater. 2019, 31, 1902407
  • Jenkins et al. 2016 Jenkins, G. S.; Lane, C.; Barbiellini, B.; Sushkov, A. B.; Carey, R. L.; Liu, F.; Krizan, J. W.; Kushwaha, S. K.; Gibson, Q.; Chang, T.-R.; Jeng, H.-T.; Lin, H.; Cava, R. J.; Bansil, A.; Drew, H. D. Three-dimensional Dirac cone carrier dynamics in Na3Bi\mathrm{Na}_{3}\mathrm{Bi} and Cd3As2\mathrm{Cd}_{3}\mathrm{As}_{2}. Phys. Rev. B 2016, 94, 085121
  • Shao et al. 2017 Shao, D.; Ruan, J.; Wu, J.; Chen, T.; Guo, Z.; Zhang, H.; Sun, J.; Sheng, L.; Xing, D. Strain-induced quantum topological phase transitions in Na3Bi\mathrm{Na}_{3}\mathrm{Bi}. Phys. Rev. B 2017, 96, 075112
  • Chiu et al. 2020 Chiu, W.-C.; Singh, B.; Mardanya, S.; Nokelainen, J.; Agarwal, A.; Lin, H.; Lane, C.; Pussi, K.; Barbiellini, B.; Bansil, A. Topological Dirac Semimetal Phase in Bismuth Based Anode Materials for Sodium-Ion Batteries. Condens. Matter 2020, 5, 39
  • Mounet 2005 Mounet, N. Structural, vibrational and thermodynamic properties of carbon allotropes from first-principles: diamond, graphite, and nanotubes. Masters thesis 2005,
  • Giannozzi et al. 2009 Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 2009, 21, 395502
  • Cheng et al. 2014 Cheng, X.; Li, R.; Sun, Y.; Chen, X.-Q.; Li, D.; Li, Y. Ground-State Phase in the Three-Dimensional Topological Dirac Semimetal Na3Bi. Phys. Rev. B 2014, 89, 245201
  • Zhou et al. 2021 Zhou, J.-J.; Park, J.; Lu, I.-T.; Maliyov, I.; Tong, X.; Bernardi, M. Perturbo: A software package for ab initio electron–phonon interactions, charge transport and ultrafast dynamics. Comput. Phys. Commun. 2021, 264, 107970
  • Pizzi et al. 2021 Pizzi, G.; Milana, S.; Ferrari, A. C.; Marzari, N.; Gibertini, M. Shear and Breathing Modes of Layered Materials. ACS Nano 2021, 15, 12509–12534
  • Neupane et al. 2014 Neupane, M.; Xu, S.-Y.; Sankar, R.; Alidoust, N.; Bian, G.; Liu, C.; Belopolski, I.; Chang, T.-R.; Jeng, H.-T.; Lin, H.; Bansil, A.; Chou, F.; Hasan, M. Z. Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2. Nature Communications 2014, 5, 3786
  • Park et al. 2014 Park, C.-H.; Bonini, N.; Sohier, T.; Samsonidze, G.; Kozinsky, B.; Calandra, M.; Mauri, F.; Marzari, N. Electron–Phonon Interactions and the Intrinsic Electrical Resistivity of Graphene. Nano Lett. 2014, 14, 1113–1119
  • Tong and Bernardi 2021 Tong, X.; Bernardi, M. Toward precise simulations of the coupled ultrafast dynamics of electrons and atomic vibrations in materials. Phys. Rev. Res. 2021, 3, 023072
  • Desai et al. 2021 Desai, D. C.; Zviazhynski, B.; Zhou, J.-J.; Bernardi, M. Magnetotransport in semiconductors and two-dimensional materials from first principles. Phys. Rev. B 2021, 103, L161103
  • Dong et al. 2019 Dong, X.-X.; Chen, J.-X.; Wang, Y.; Lv, Z.-L.; Wang, H.-Y. Electronic, elastic and lattice dynamic properties of the topological Dirac semimetal Na3Bi. Mater. Res. Express 2019, 6, 076308
  • Merlin 1997 Merlin, R. Generating coherent THz phonons with light pulses. Solid State Commun. 1997, 102, 207
  • Bohnen et al. 2001 Bohnen, K.-P.; Heid, R.; Renker, B. Phonon Dispersion and Electron-Phonon Coupling in MgB2{\mathrm{MgB}}_{2} and AlB2{\mathrm{AlB}}_{2}. Phys. Rev. Lett. 2001, 86, 5771–5774
  • An and Pickett 2001 An, J. M.; Pickett, W. E. Superconductivity of MgB2{\mathrm{MgB}}_{2}: Covalent Bonds Driven Metallic. Phys. Rev. Lett. 2001, 86, 4366–4369
  • Perdew et al. 2008 Perdew, J. P.; Ruzsinszky, A.; Csonka, G. I.; Vydrov, O. A.; Scuseria, G. E.; Constantin, L. A.; Zhou, X.; Burke, K. Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Phys. Rev. Lett. 2008, 100, 136406
  • van Setten et al. 2018 van Setten, M.; Giantomassi, M.; Bousquet, E.; Verstraete, M.; Hamann, D.; Gonze, X.; Rignanese, G.-M. The PseudoDojo: Training and grading a 85 element optimized norm-conserving pseudopotential table. Comput. Phys. Commun. 2018, 226, 39–54
  • Sangalli et al. 2019 Sangalli, D. et al. Many-Body Perturbation Theory Calculations Using the Yambo Code. J. Phys. Condens. Matter 2019, 31, 325902
  • Bruneval and Gonze 2008 Bruneval, F.; Gonze, X. Accurate GWGW self-energies in a plane-wave basis using only a few empty states: Towards large systems. Phys. Rev. B 2008, 78, 085125
  • Marzari et al. 2012 Marzari, N.; Mostofi, A. A.; Yates, J. R.; Souza, I.; Vanderbilt, D. Maximally localized Wannier functions: Theory and applications. Rev. Mod. Phys. 2012, 84, 1419–1475
  • Mostofi et al. 2014 Mostofi, A. A.; Yates, J. R.; Pizzi, G.; Lee, Y.-S.; Souza, I.; Vanderbilt, D.; Marzari, N. An updated version of WANNIER90: A tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 2014, 185, 2309 – 2310