This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Dissociation cross sections of ψ(3770)\psi(3770), ψ(4040)\psi(4040), ψ(4160)\psi(4160), and ψ(4415)\psi(4415) mesons with nucleons

Ruo-Qing Ding1, Xiao-Ming Xu1, and H. J. Weber2
Abstract

We study the dissociation of ψ(3770)\psi(3770), ψ(4040)\psi(4040), ψ(4160)\psi(4160), and ψ(4415)\psi(4415) mesons in collisions with nucleons, which takes place in high-energy proton-nucleus collisions. Quark interchange between a nucleon and a cc¯c\bar{c} meson leads to the dissociation of the cc¯c\bar{c} meson. We consider the reactions: pRΛc+D¯0pR\to\Lambda_{c}^{+}\bar{D}^{0}, pRΛc+D¯0pR\to\Lambda_{c}^{+}\bar{D}^{*0}, pRΣc++DpR\to\Sigma_{c}^{++}D^{-}, pRΣc++DpR\to\Sigma_{c}^{++}D^{*-}, pRΣc+D¯0pR\to\Sigma_{c}^{+}\bar{D}^{0}, pRΣc+D¯0pR\to\Sigma_{c}^{+}\bar{D}^{*0}, pRΣc++DpR\to\Sigma_{c}^{*++}D^{-}, pRΣc++DpR\to\Sigma_{c}^{*++}D^{*-}, pRΣc+D¯0pR\to\Sigma_{c}^{*+}\bar{D}^{0}, and pRΣc+D¯0pR\to\Sigma_{c}^{*+}\bar{D}^{*0}, where RR stands for ψ(3770)\psi(3770), ψ(4040)\psi(4040), ψ(4160)\psi(4160), or ψ(4415)\psi(4415). A reaction of a neutron and a cc¯c\bar{c} meson corresponds to a reaction of a proton and the cc¯c\bar{c} meson by replacing the up quark with the down quark and vice versa. Transition-amplitude formulas are derived from the SS-matrix element. Unpolarized cross sections are calculated with the transition amplitudes for scattering in the prior form and in the post form. The cross sections relate to nodes in the radial wave functions of ψ(3770)\psi(3770), ψ(4040)\psi(4040), ψ(4160)\psi(4160), and ψ(4415)\psi(4415) mesons.

1Department of Physics, Shanghai University, Baoshan, Shanghai 200444, China

2Department of Physics, University of Virginia, Charlottesville, VA 22904, USA

Keywords: Inelastic nucleon-charmonium scattering, quark interchange, relativistic constituent quark potential model.

PACS: 13.75.Lb; 12.39.Jh; 12.39.Pn

I. INTRODUCTION

It is shown in Refs. [1, 2, 3] that ψ(3770)\psi(3770), ψ(4040)\psi(4040), ψ(4160)\psi(4160), and ψ(4415)\psi(4415) mesons are the 13D11^{3}D_{1}, 33S13^{3}S_{1}, 23D12^{3}D_{1}, and 43S14^{3}S_{1} states of a charm quark and a charm antiquark. The four cc¯c\bar{c} mesons have been widely studied in e+ee^{+}e^{-} annihilation that produce hadrons [4, 5, 6, 7], ππJ/ψ\pi\pi J/\psi [8, 9, 10], ηJ/ψ\eta J/\psi [9, 10, 11, 12], K+KJ/ψK^{+}K^{-}J/\psi [10], γχcJ\gamma\chi_{cJ} (J=1,2)(J=1,2) [10, 13], two charmed mesons [14, 15], D0Dπ+D^{0}D^{*-}\pi^{+} [16], two charmed strange mesons [18, 17], ππhc\pi\pi h_{c} [19], ωχc2\omega\chi_{c2} [20], μ+μ\mu^{+}\mu^{-} [21], and ΛΛ¯\Lambda\bar{\Lambda} [22]. Electron-positron annihilation produces a virtual photon which splits into a charm quark and a charm antiquark, and this quark-antiquark pair becomes a cc¯c\bar{c} meson nonperturbatively. Production of the ψ(3770)\psi(3770) meson in e+ee^{+}e^{-} annihilation was studied in the nonrelativistic quantum chromodynamics (NRQCD) factorization formalism that includes color-singlet and color-octet contributions [23]. In Refs. [24, 25] the conversion of the photon to the ψ(4040)\psi(4040) or ψ(4160)\psi(4160) meson is indicated by a constant factor.

Au-Au collisions at the Relativistic Heavy Ion Collider (RHIC) and Pb-Pb collisions at the Large Hadron Collider (LHC) produce quark-gluon plasmas. At the critical temperature TcT_{\rm c} the quark-gluon plasma becomes hadronic matter. Since ψ(4040)\psi(4040), ψ(4160)\psi(4160), and ψ(4415)\psi(4415) mesons are dissolved in hadronic matter when the temperature is larger than 0.97Tc0.97T_{\rm c}, 0.95Tc0.95T_{\rm c}, and 0.87Tc0.87T_{\rm c}, respectively [26], they can only be produced in hadronic matter. Therefore, the production of ψ(4040)\psi(4040), ψ(4160)\psi(4160), and ψ(4415)\psi(4415) can be taken as probes of hadronic matter that results from the quark-gluon plasma created in ultrarelativistic heavy-ion collisions. In hadronic matter they are produced in the following reactions: DD¯ρRD\bar{D}\to\rho R, DD¯πRD\bar{D}^{*}\to\pi R, DD¯ρRD\bar{D}^{*}\to\rho R, DD¯πRD^{*}\bar{D}^{*}\to\pi R, DD¯ρRD^{*}\bar{D}^{*}\to\rho R and so on, where RR stands for ψ(4040)\psi(4040), ψ(4160)\psi(4160), or ψ(4415)\psi(4415). Charmed mesons have been well measured in Pb-Pb collisions at the LHC. It is shown in Ref. [27] that numbers of ψ(4040)\psi(4040), ψ(4160)\psi(4160), and ψ(4415)\psi(4415) produced in a central Pb-Pb collision at the center-of-mass energy per nucleon-nucleon pair sNN=5.02\sqrt{s_{NN}}=5.02 TeV are 0.25, 0.1, and 0.18, respectively. Therefore, it is interesting to measure ψ(4040)\psi(4040), ψ(4160)\psi(4160), and ψ(4415)\psi(4415) mesons produced in Pb-Pb collisions at the LHC.

Production of DD-wave charmonia in nucleon-nucleon collisions was studied in NRQCD in Ref. [28]. Production cross sections depend on parton distribution functions, short-distance processes, and nonperturbative matrix elements of four-fermion operators. In proton-nucleus reactions a charmonium produced in a proton-nucleon collision further interacts with other nucleons. The nucleon-charmonium collisions may break the charmonium, and thus reduce the charmonium number. Therefore, in the present work we study the dissociation of ψ(3770)\psi(3770), ψ(4040)\psi(4040), ψ(4160)\psi(4160), and ψ(4415)\psi(4415) mesons in collisions with nucleons. Since many experiments on pApA reactions have been carried out at the RHIC and the LHC, it is interesting to study the dissociation processes.

ψ(3770)\psi(3770), ψ(4040)\psi(4040), ψ(4160)\psi(4160), and ψ(4415)\psi(4415) mesons are of special interest because they are easily produced at electron-positron colliders. The mechanism of producing them in proton-nucleus reactions is different from the mechanism of producing them in electron-positron collisions. The mesons are influenced by cold nuclear matter due to the dissociation processes and nuclear modification of parton distribution functions. Therefore, it will be interesting to compare the production of the mesons in proton-nucleus reactions with the production in electron-positron collisions in both experiment and theory in future.

This paper is organized as follows. In Sect. II we derive formulas of transition amplitudes which are used to calculate unpolarized cross sections for dissociation of cc¯c\bar{c} mesons in collisions with nucleons. In Sect. III we present numerical cross sections along with relevant discussions. In Sect. IV we summarize the present work.

II. FORMALISM

We consider the reaction A+BC+DA+B\to C+D where AA and CC represent baryons and BB and DD are mesons. Denote by EiE_{\rm i} and Pi\vec{P}_{\rm i} (EfE_{\rm f} and Pf\vec{P}_{\rm f}) the total energy and the total momentum of the initial (final) baryon and the initial (final) meson, respectively. If EAE_{A} (EBE_{B}, ECE_{C}, EDE_{D}) stands for the energy of hadron AA (BB, CC, DD), Ei=EA+EBE_{\rm i}=E_{A}+E_{B} and Ef=EC+EDE_{\rm f}=E_{C}+E_{D}. Let HIH_{I} be the interaction potential between two constituents of hadrons in the reaction A(q1q2q3)+B(cc¯)C(q1q2c)+D(q3c¯)A(q_{1}q_{2}q_{3})+B(c\bar{c})\to C(q_{1}q_{2}c)+D(q_{3}\bar{c}), where q1q_{1}, q2q_{2}, and q3q_{3} represent light quarks. Since the quark flavors inside baryon AA differ from the charm flavor inside meson BB, quark interchange (for example, q3q_{3} and cc) between baryon AA and meson BB gives rise to the reaction. The SS-matrix element for A+BC+DA+B\to C+D is

Sfi=δfi2πiδ(EfEi)<C,DHIA,B>.S_{\rm fi}=\delta_{\rm fi}-2\pi{\textrm{i}}\delta(E_{\rm f}-E_{\rm i})<C,D\mid H_{\rm I}\mid A,B>. (1)

Let Pq1q2q3\vec{P}_{q_{1}q_{2}q_{3}} (Pq1q2c\vec{P}_{q_{1}q_{2}c}^{~{}\prime}) and Rq1q2q3\vec{R}_{q_{1}q_{2}q_{3}} (Rq1q2c\vec{R}_{q_{1}q_{2}c}) be the total momentum and the center-of-mass coordinate of q1q_{1}, q2q_{2}, and q3q_{3} (q1q_{1}, q2q_{2}, and cc) in baryon AA (CC), respectively. Let Pcc¯\vec{P}_{c\bar{c}} (Pq3c¯\vec{P}_{q_{3}\bar{c}}^{\prime}), Rcc¯\vec{R}_{c\bar{c}} (Rq3c¯\vec{R}_{q_{3}\bar{c}}), and rcc¯\vec{r}_{c\bar{c}} (rq3c¯\vec{r}_{q_{3}\bar{c}}) be the total momentum, the center-of-mass coordinate, and the relative coordinate of cc and c¯\bar{c} (q3q_{3} and c¯\bar{c}) of meson BB (DD), respectively. In case that quarks q1q_{1} and q2q_{2} have the same mass, we define

ρ=12(rq1rq2),\vec{\rho}=\frac{1}{\sqrt{2}}(\vec{r}_{q_{1}}-\vec{r}_{q_{2}}), (2)

and

λi=16(rq1+rq22rq3),\vec{\lambda}_{\rm i}=\frac{1}{\sqrt{6}}(\vec{r}_{q_{1}}+\vec{r}_{q_{2}}-2\vec{r}_{q_{3}}), (3)

for baryon A, and

λf=16(rq1+rq22rc),\vec{\lambda}_{\rm f}=\frac{1}{\sqrt{6}}(\vec{r}_{q_{1}}+\vec{r}_{q_{2}}-2\vec{r}_{c}), (4)

for baryon CC, where rq1\vec{r}_{q_{1}}, rq2\vec{r}_{q_{2}}, rq3\vec{r}_{q_{3}}, and rc\vec{r}_{c} are the position vectors of quarks q1q_{1}, q2q_{2}, q3q_{3}, and cc, respectively. The wave function A,B>\mid A,B> of baryon AA and meson BB is

ψAB=eiPq1q2q3Rq1q2q3Vψq1q2q3(ρ,λi)eiPcc¯Rcc¯Vψcc¯(rcc¯),\psi_{AB}=\frac{\textrm{e}^{\textrm{i}\vec{P}_{q_{1}q_{2}q_{3}}\cdot\vec{R}_{q_{1}q_{2}q_{3}}}}{\sqrt{V}}\psi_{q_{1}q_{2}q_{3}}(\vec{\rho},\vec{\lambda}_{\rm i})\frac{\textrm{e}^{\textrm{i}\vec{P}_{c\bar{c}}\cdot\vec{R}_{c\bar{c}}}}{\sqrt{V}}\psi_{c\bar{c}}(\vec{r}_{c\bar{c}}), (5)

and the wave function C,D>\mid C,D> of baryon CC and meson DD is

ψCD=eiPq1q2cRq1q2cVψq1q2c(ρ,λf)eiPq3c¯Rq3c¯Vψq3c¯(rq3c¯),\psi_{CD}=\frac{\textrm{e}^{\textrm{i}\vec{P}_{q_{1}q_{2}c}^{\prime}\cdot\vec{R}_{q_{1}q_{2}c}}}{\sqrt{V}}\psi_{q_{1}q_{2}c}(\vec{\rho},\vec{\lambda}_{\rm f})\frac{\textrm{e}^{\textrm{i}\vec{P}_{q_{3}\bar{c}}^{\prime}\cdot\vec{R}_{q_{3}\bar{c}}}}{\sqrt{V}}\psi_{q_{3}\bar{c}}(\vec{r}_{q_{3}\bar{c}}), (6)

in which VV is the volume where every hadron wave function is normalized. ψq1q2q3(ρ,λi)\psi_{q_{1}q_{2}q_{3}}(\vec{\rho},\vec{\lambda}_{\rm i}) (ψq1q2c(ρ,λf)\psi_{q_{1}q_{2}c}(\vec{\rho},\vec{\lambda}_{\rm f})) is the product of the color wave function, the flavor wave function, the spin wave function, and the space wave function of the three quarks. ψcc¯(rcc¯)\psi_{c\bar{c}}(\vec{r}_{c\bar{c}}) (ψq3c¯(rq3c¯)\psi_{q_{3}\bar{c}}(\vec{r}_{q_{3}\bar{c}})) is the product of the color wave function, the flavor wave function, the spin wave function, and the quark-antiquark relative-motion wave function.

With the wave functions we have

<C,DHIA,B>\displaystyle<C,D\mid H_{\rm I}\mid A,B> (7)
=\displaystyle= d3Rq1q2q3d3ρd3λid3Rcc¯d3rcc¯ψCD+HIψAB\displaystyle\int d^{3}R_{q_{1}q_{2}q_{3}}d^{3}\rho d^{3}\lambda_{\rm i}d^{3}R_{c\bar{c}}d^{3}r_{c\bar{c}}\psi_{CD}^{+}H_{\rm I}\psi_{AB}
=\displaystyle= d3ρd3λid3rcc¯d3rq1q2q3,cc¯d3Rtotal\displaystyle\int d^{3}\rho d^{3}\lambda_{\rm i}d^{3}r_{c\bar{c}}d^{3}r_{q_{1}q_{2}q_{3},c\bar{c}}d^{3}R_{\rm total}
ψq1q2c+(ρ,λf)Vψq3c¯+(rq3c¯)Vexp(iPfRtotalipq1q2c,q3c¯rq1q2c,q3c¯)\displaystyle\frac{\psi_{q_{1}q_{2}c}^{+}(\vec{\rho},\vec{\lambda}_{\rm f})}{\sqrt{V}}\frac{\psi_{q_{3}\bar{c}}^{+}(\vec{r}_{q_{3}\bar{c}})}{\sqrt{V}}\exp(-\textrm{i}\vec{P}_{\rm f}\cdot\vec{R}_{\rm total}-\textrm{i}\vec{p}_{q_{1}q_{2}c,q_{3}\bar{c}}^{~{}\prime}\cdot\vec{r}_{q_{1}q_{2}c,q_{3}\bar{c}})
HIψq1q2q3(ρ,λi)Vψcc¯(rcc¯)Vexp(iPiRtotal+ipq1q2q3,cc¯rq1q2q3,cc¯)\displaystyle H_{\rm I}\frac{\psi_{q_{1}q_{2}q_{3}}(\vec{\rho},\vec{\lambda}_{\rm i})}{\sqrt{V}}\frac{\psi_{c\bar{c}}(\vec{r}_{c\bar{c}})}{\sqrt{V}}\exp(\textrm{i}\vec{P}_{\rm i}\cdot\vec{R}_{\rm total}+\textrm{i}\vec{p}_{q_{1}q_{2}q_{3},c\bar{c}}\cdot\vec{r}_{q_{1}q_{2}q_{3},c\bar{c}})
=\displaystyle= (2π)3δ3(PfPi)d3ρd3λid3rcc¯d3rq1q2q3,cc¯ψq1q2c+(ρ,λf)Vψq3c¯+(rq3c¯)VHI\displaystyle(2\pi)^{3}\delta^{3}(\vec{P}_{\rm f}-\vec{P}_{\rm i})\int d^{3}\rho d^{3}\lambda_{\rm i}d^{3}r_{c\bar{c}}d^{3}r_{q_{1}q_{2}q_{3},c\bar{c}}\frac{\psi_{q_{1}q_{2}c}^{+}(\vec{\rho},\vec{\lambda}_{\rm f})}{\sqrt{V}}\frac{\psi_{q_{3}\bar{c}}^{+}(\vec{r}_{q_{3}\bar{c}})}{\sqrt{V}}H_{\rm I}
ψq1q2q3(ρ,λi)Vψcc¯(rcc¯)Vexp(ipq1q2c,q3c¯rq1q2c,q3c¯+ipq1q2q3,cc¯rq1q2q3,cc¯)\displaystyle\frac{\psi_{q_{1}q_{2}q_{3}}(\vec{\rho},\vec{\lambda}_{\rm i})}{\sqrt{V}}\frac{\psi_{c\bar{c}}(\vec{r}_{c\bar{c}})}{\sqrt{V}}\exp(-\textrm{i}\vec{p}_{q_{1}q_{2}c,q_{3}\bar{c}}^{~{}\prime}\cdot\vec{r}_{q_{1}q_{2}c,q_{3}\bar{c}}+\textrm{i}\vec{p}_{q_{1}q_{2}q_{3},c\bar{c}}\cdot\vec{r}_{q_{1}q_{2}q_{3},c\bar{c}})
=\displaystyle= (2π)3δ3(PfPi)fiV22EA2EB2EC2ED,\displaystyle(2\pi)^{3}\delta^{3}(\vec{P}_{\rm f}-\vec{P}_{\rm i})\frac{{\cal M}_{\rm fi}}{V^{2}\sqrt{2E_{A}2E_{B}2E_{C}2E_{D}}},

where rq1q2q3,cc¯\vec{r}_{q_{1}q_{2}q_{3},c\bar{c}} (rq1q2c,q3c¯\vec{r}_{q_{1}q_{2}c,q_{3}\bar{c}}) and pq1q2q3,cc¯\vec{p}_{q_{1}q_{2}q_{3},c\bar{c}} (pq1q2c,q3c¯\vec{p}_{q_{1}q_{2}c,q_{3}\bar{c}}^{~{}\prime}) are the relative coordinate and the relative momentum of q1q2q3q_{1}q_{2}q_{3} and cc¯c\bar{c} (q1q2cq_{1}q_{2}c and q3c¯q_{3}\bar{c}), respectively; Rtotal\vec{R}_{\rm total} is the center-of-mass coordinate of the two initial hadrons, i.e., of the two final hadrons; ψCD+\psi_{CD}^{+} is the Hermitean conjugate of ψCD\psi_{CD}; fi{\cal M}_{\rm fi} is the transition amplitude given by

fi\displaystyle{\cal M}_{\rm fi} =\displaystyle= 2EA2EB2EC2EDd3ρd3λid3rcc¯d3rq1q2q3,cc¯ψq1q2c+(ρ,λf)ψq3c¯+(rq3c¯)HI\displaystyle\sqrt{2E_{A}2E_{B}2E_{C}2E_{D}}\int d^{3}\rho d^{3}\lambda_{\rm i}d^{3}r_{c\bar{c}}d^{3}r_{q_{1}q_{2}q_{3},c\bar{c}}\psi_{q_{1}q_{2}c}^{+}(\vec{\rho},\vec{\lambda}_{\rm f})\psi_{q_{3}\bar{c}}^{+}(\vec{r}_{q_{3}\bar{c}})H_{\rm I} (8)
ψq1q2q3(ρ,λi)ψcc¯(rcc¯)exp(ipq1q2c,q3c¯rq1q2c,q3c¯+ipq1q2q3,cc¯rq1q2q3,cc¯).\displaystyle\psi_{q_{1}q_{2}q_{3}}(\vec{\rho},\vec{\lambda}_{\rm i})\psi_{c\bar{c}}(\vec{r}_{c\bar{c}})\exp(-\textrm{i}\vec{p}_{q_{1}q_{2}c,q_{3}\bar{c}}^{~{}\prime}\cdot\vec{r}_{q_{1}q_{2}c,q_{3}\bar{c}}+\textrm{i}\vec{p}_{q_{1}q_{2}q_{3},c\bar{c}}\cdot\vec{r}_{q_{1}q_{2}q_{3},c\bar{c}}).

The wave function of baryon AA and meson BB is

ψAB=ϕAcolorϕBcolorϕAflavorϕBflavorϕAspaceχSASAzϕBJBJBz,\psi_{AB}=\phi_{A\rm color}\phi_{B\rm color}\phi_{A\rm flavor}\phi_{B\rm flavor}\phi_{A\rm space}\chi_{S_{A}S_{Az}}\phi_{BJ_{B}J_{Bz}}, (9)

and the wave function of baryon CC and meson DD is

ψCD=ϕCcolorϕDcolorϕCflavorϕDflavorϕCspaceϕDrelχSCSCzχSDSDz,\psi_{CD}=\phi_{C\rm color}\phi_{D\rm color}\phi_{C\rm flavor}\phi_{D\rm flavor}\phi_{C\rm space}\phi_{D\rm rel}\chi_{S_{C}S_{Cz}}\chi_{S_{D}S_{Dz}}, (10)

where SAS_{A} (SCS_{C}, SDS_{D}) is the spin of hadron AA (CC, DD) with its magnetic projection quantum number SAzS_{Az} (SCzS_{Cz}, SDzS_{Dz}); ϕAcolor\phi_{A\rm color} (ϕCcolor\phi_{C\rm color}, ϕDcolor\phi_{D\rm color}), ϕAflavor\phi_{A\rm flavor} (ϕCflavor\phi_{C\rm flavor}, ϕDflavor\phi_{D\rm flavor}), and χSASAz\chi_{S_{A}S_{Az}} (χSCSCz\chi_{S_{C}S_{Cz}}, χSDSDz\chi_{S_{D}S_{Dz}}) are the color wave function, the flavor wave function, and the spin wave function of hadron AA (CC, DD), respectively; ϕAspace\phi_{A\rm space} (ϕCspace\phi_{C\rm space}) is the space wave function of baryon AA (CC); ϕDrel\phi_{D\rm rel} is the quark-antiquark relative-motion wave function of meson DD; ϕBcolor\phi_{B\rm color}, ϕBflavor\phi_{B\rm flavor}, and ϕBJBJBz\phi_{BJ_{B}J_{Bz}} are the color wave function, the flavor wave function, and the space-spin wave function of meson BB with the total angular momentum JBJ_{B} and its zz component JBzJ_{Bz}, respectively. Denote by LBL_{B} and SBS_{B} the orbital angular momentum and the spin of meson BB, respectively, and by MBM_{B} and SBzS_{Bz} the magnetic projection quantum numbers of LBL_{B} and SBS_{B}. In Eq. (9) ϕBJBJBz=RLB(rcc¯)\phi_{BJ_{B}J_{Bz}}=R_{L_{B}}(r_{c\bar{c}}) MB=LBLBSBz=SBSB(LBMBSBSBzJBJBz)YLBMBχSBSBz\sum^{L_{B}}_{M_{B}=-L_{B}}\sum^{S_{B}}_{S_{Bz}=-S_{B}}(L_{B}M_{B}S_{B}S_{Bz}\mid J_{B}J_{Bz})Y_{L_{B}M_{B}}\chi_{S_{B}S_{Bz}} where RLB(rcc¯)R_{L_{B}}(r_{c\bar{c}}) is the radial wave function of the relative motion of cc and c¯\bar{c}, (LBMBSBSBzJBJBz)(L_{B}M_{B}S_{B}S_{Bz}\mid J_{B}J_{Bz}) are the Clebsch-Gordan coefficients, YLBMBY_{L_{B}M_{B}} are the spherical harmonics, and χSBSBz\chi_{S_{B}S_{Bz}} are the spin wave functions.

The interaction that governs scattering in the prior form shown in Fig. 1 is

HI=Vq1c¯+Vq2c¯+Vq3c¯+Vq1c+Vq2c+Vq3c,H_{\rm I}=V_{q_{1}\bar{c}}+V_{q_{2}\bar{c}}+V_{q_{3}\bar{c}}+V_{q_{1}c}+V_{q_{2}c}+V_{q_{3}c}, (11)

and the interaction that governs scattering in the post form shown in Fig. 2 is

HI=Vq1c¯+Vq2c¯+Vcc¯+Vq1q3+Vq2q3+Vq3c,H_{\rm I}=V_{q_{1}\bar{c}}+V_{q_{2}\bar{c}}+V_{c\bar{c}}+V_{q_{1}q_{3}}+V_{q_{2}q_{3}}+V_{q_{3}c}, (12)

where VabV_{ab} is the potential between constituents aa and bb. Let rc¯\vec{r}_{\bar{c}} be the position vector of antiquark c¯\bar{c}. We take the Fourier transform of the potentials and wave functions:

Vq1c¯(rq1rc¯)=d3Q(2π)3Vq1c¯(Q)eiQ(rq1rc¯),V_{q_{1}\bar{c}}(\vec{r}_{q_{1}}-\vec{r}_{\bar{c}})=\int\frac{d^{3}Q}{(2\pi)^{3}}V_{q_{1}\bar{c}}(\vec{Q})\textrm{e}^{\textrm{i}\vec{Q}\cdot(\vec{r}_{q_{1}}-\vec{r}_{\bar{c}})}, (13)
Vq2c¯(rq2rc¯)=d3Q(2π)3Vq2c¯(Q)eiQ(rq2rc¯),V_{q_{2}\bar{c}}(\vec{r}_{q_{2}}-\vec{r}_{\bar{c}})=\int\frac{d^{3}Q}{(2\pi)^{3}}V_{q_{2}\bar{c}}(\vec{Q})\textrm{e}^{\textrm{i}\vec{Q}\cdot(\vec{r}_{q_{2}}-\vec{r}_{\bar{c}})}, (14)
Vq3c¯(rq3rc¯)=d3Q(2π)3Vq3c¯(Q)eiQ(rq3rc¯),V_{q_{3}\bar{c}}(\vec{r}_{q_{3}}-\vec{r}_{\bar{c}})=\int\frac{d^{3}Q}{(2\pi)^{3}}V_{q_{3}\bar{c}}(\vec{Q})\textrm{e}^{\textrm{i}\vec{Q}\cdot(\vec{r}_{q_{3}}-\vec{r}_{\bar{c}})}, (15)
Vq1c(rq1rc)=d3Q(2π)3Vq1c(Q)eiQ(rq1rc),V_{q_{1}c}(\vec{r}_{q_{1}}-\vec{r}_{c})=\int\frac{d^{3}Q}{(2\pi)^{3}}V_{q_{1}c}(\vec{Q})\textrm{e}^{\textrm{i}\vec{Q}\cdot(\vec{r}_{q_{1}}-\vec{r}_{c})}, (16)
Vq2c(rq2rc)=d3Q(2π)3Vq2c(Q)eiQ(rq2rc),V_{q_{2}c}(\vec{r}_{q_{2}}-\vec{r}_{c})=\int\frac{d^{3}Q}{(2\pi)^{3}}V_{q_{2}c}(\vec{Q})\textrm{e}^{\textrm{i}\vec{Q}\cdot(\vec{r}_{q_{2}}-\vec{r}_{c})}, (17)
Vq3c(rq3rc)=d3Q(2π)3Vq3c(Q)eiQ(rq3rc),V_{q_{3}c}(\vec{r}_{q_{3}}-\vec{r}_{c})=\int\frac{d^{3}Q}{(2\pi)^{3}}V_{q_{3}c}(\vec{Q})\textrm{e}^{\textrm{i}\vec{Q}\cdot(\vec{r}_{q_{3}}-\vec{r}_{c})}, (18)
Vcc¯(rcrc¯)=d3Q(2π)3Vcc¯(Q)eiQ(rcrc¯),V_{c\bar{c}}(\vec{r}_{c}-\vec{r}_{\bar{c}})=\int\frac{d^{3}Q}{(2\pi)^{3}}V_{c\bar{c}}(\vec{Q})\textrm{e}^{\textrm{i}\vec{Q}\cdot(\vec{r}_{c}-\vec{r}_{\bar{c}})}, (19)
Vq1q3(rq1rq3)=d3Q(2π)3Vq1q3(Q)eiQ(rq1rq3),V_{q_{1}q_{3}}(\vec{r}_{q_{1}}-\vec{r}_{q_{3}})=\int\frac{d^{3}Q}{(2\pi)^{3}}V_{q_{1}q_{3}}(\vec{Q})\textrm{e}^{\textrm{i}\vec{Q}\cdot(\vec{r}_{q_{1}}-\vec{r}_{q_{3}})}, (20)
Vq2q3(rq2rq3)=d3Q(2π)3Vq2q3(Q)eiQ(rq2rq3),V_{q_{2}q_{3}}(\vec{r}_{q_{2}}-\vec{r}_{q_{3}})=\int\frac{d^{3}Q}{(2\pi)^{3}}V_{q_{2}q_{3}}(\vec{Q})\textrm{e}^{\textrm{i}\vec{Q}\cdot(\vec{r}_{q_{2}}-\vec{r}_{q_{3}})}, (21)
ϕAspace(ρ,λi)=d3pρ(2π)3d3pλ(2π)3ϕAspace(pρ,pλ)eipρρ+ipλλi,\phi_{A\rm space}(\vec{\rho},\vec{\lambda_{\rm i}})=\int\frac{d^{3}p_{\rho}}{(2\pi)^{3}}\frac{d^{3}p_{\lambda}}{(2\pi)^{3}}\phi_{A\rm space}(\vec{p}_{\rho},\vec{p}_{\lambda})\textrm{e}^{\textrm{i}\vec{p}_{\rho}\cdot\vec{\rho}+\textrm{i}\vec{p}_{\lambda}\cdot\vec{\lambda}_{\rm i}}, (22)
ϕBJBJBz(rcc¯)=d3pcc¯(2π)3ϕBJBJBz(pcc¯)eipcc¯rcc¯,\phi_{BJ_{B}J_{Bz}}(\vec{r}_{c\bar{c}})=\int\frac{d^{3}p_{c\bar{c}}}{(2\pi)^{3}}\phi_{BJ_{B}J_{Bz}}(\vec{p}_{c\bar{c}})\textrm{e}^{\textrm{i}\vec{p}_{c\bar{c}}\cdot\vec{r}_{c\bar{c}}}, (23)
ϕCspace(ρ,λf)=d3pρ(2π)3d3pλ(2π)3ϕCspace(pρ,pλ)eipρρ+ipλλf,\phi_{C\rm space}(\vec{\rho},\vec{\lambda_{\rm f}})=\int\frac{d^{3}p_{\rho}^{\prime}}{(2\pi)^{3}}\frac{d^{3}p_{\lambda}^{\prime}}{(2\pi)^{3}}\phi_{C\rm space}(\vec{p}_{\rho}^{~{}\prime},\vec{p}_{\lambda}^{~{}\prime})\textrm{e}^{\textrm{i}\vec{p}_{\rho}^{~{}\prime}\cdot\vec{\rho}+\textrm{i}\vec{p}_{\lambda}^{~{}\prime}\cdot\vec{\lambda}_{\rm f}}, (24)
ϕDrel(rq3c¯)=d3pq3c¯(2π)3ϕDrel(pq3c¯)eipq3c¯rq3c¯,\phi_{D\rm rel}(\vec{r}_{q_{3}\bar{c}})=\int\frac{d^{3}p_{q_{3}\bar{c}}^{\prime}}{(2\pi)^{3}}\phi_{D\rm rel}(\vec{p}_{q_{3}\bar{c}}^{~{}\prime})\textrm{e}^{\textrm{i}\vec{p}_{q_{3}\bar{c}}^{~{}\prime}\cdot\vec{r}_{q_{3}\bar{c}}}, (25)

where Q\vec{Q} is the momentum attached to the dot-dashed lines in Figs. 1 and 2, pcc¯\vec{p}_{c\bar{c}} is the relative momentum of cc and c¯\bar{c} in meson BB, and pq3c¯\vec{p}_{q_{3}\bar{c}}^{~{}\prime} is the relative momentum of q3q_{3} and c¯\bar{c} in meson DD. In momentum space the normalizations are

d3pρ(2π)3d3pλ(2π)3ϕAspace+(pρ,pλ)ϕAspace(pρ,pλ)=1,\int\frac{d^{3}p_{\rho}}{(2\pi)^{3}}\int\frac{d^{3}p_{\lambda}}{(2\pi)^{3}}\phi_{A\rm space}^{+}(\vec{p}_{\rho},\vec{p}_{\lambda})\phi_{A\rm space}(\vec{p}_{\rho},\vec{p}_{\lambda})=1, (26)
d3pcc¯(2π)3ϕBJBJBz+(pcc¯)ϕBJBJBz(pcc¯)=1,\int\frac{d^{3}p_{c\bar{c}}}{(2\pi)^{3}}\phi_{BJ_{B}J_{Bz}}^{+}(\vec{p}_{c\bar{c}})\phi_{BJ_{B}J_{Bz}}(\vec{p}_{c\bar{c}})=1, (27)
d3pρ(2π)3d3pλ(2π)3ϕCspace+(pρ,pλ)ϕCspace(pρ,pλ)=1,\int\frac{d^{3}p_{\rho}^{\prime}}{(2\pi)^{3}}\int\frac{d^{3}p_{\lambda}^{\prime}}{(2\pi)^{3}}\phi_{C\rm space}^{+}(\vec{p}_{\rho}^{~{}\prime},\vec{p}_{\lambda}^{~{}\prime})\phi_{C\rm space}(\vec{p}_{\rho}^{~{}\prime},\vec{p}_{\lambda}^{~{}\prime})=1, (28)
d3pq3c¯(2π)3ϕDrel+(pq3c¯)ϕDrel(pq3c¯)=1.\int\frac{d^{3}p_{q_{3}\bar{c}}^{\prime}}{(2\pi)^{3}}\phi_{D\rm rel}^{+}(\vec{p}_{q_{3}\bar{c}}^{~{}\prime})\phi_{D\rm rel}(\vec{p}_{q_{3}\bar{c}}^{~{}\prime})=1. (29)

When quarks q1q_{1} and q2q_{2} have equal masses, their masses are indicated by mm. Let mq3m_{q_{3}}, mcm_{c}, and mc¯m_{\bar{c}} stand for the q3q_{3}, cc, and c¯\bar{c} masses, respectively. From Eqs. (8)-(29) we obtain the transition amplitude for scattering in the prior form,

fiprior\displaystyle{\cal{M}}_{\rm fi}^{\rm prior} =\displaystyle= 2EA2EB2EC2EDϕCcolor+ϕDcolor+ϕCflavor+ϕDflavor+χSCSCz+χSDSDz+\displaystyle\sqrt{2E_{A}2E_{B}2E_{C}2E_{D}}\phi^{+}_{C\rm{color}}\phi^{+}_{D\rm{color}}\phi^{+}_{C\rm{flavor}}\phi^{+}_{D\rm{flavor}}\chi_{S_{C}S_{Cz}}^{+}\chi_{S_{D}S_{Dz}}^{+} (30)
d3pρ(2π)3d3pλ(2π)3d3pq3c¯(2π)3ϕCspace+(pρ,pλ)ϕDrel+(pq3c¯)\displaystyle\int\frac{d^{3}p_{\rho}^{\prime}}{(2\pi)^{3}}\frac{d^{3}p_{\lambda}^{\prime}}{(2\pi)^{3}}\frac{d^{3}p_{q_{3}\bar{c}}^{\prime}}{(2\pi)^{3}}\phi^{+}_{C\rm space}(\vec{p}_{\rho}^{~{}\prime},\vec{p}_{\lambda}^{~{}\prime})\phi^{+}_{D\rm{rel}}(\vec{p}_{q_{3}\bar{c}}^{~{}\prime})
{Vq1c¯(26pλ+pq3c¯pq1q2q3,cc¯+orpq1q2c,q3c¯)\displaystyle\left\{V_{q_{1}\bar{c}}\left(\frac{2}{\sqrt{6}}\vec{p}_{\lambda}^{~{}\prime}+\vec{p}_{q_{3}\bar{c}}^{~{}\prime}-\vec{p}_{q_{1}q_{2}q_{3},c\bar{c}}+o_{\rm r}\vec{p}_{q_{1}q_{2}c,q_{3}\bar{c}}^{~{}\prime}\right)\right.
ϕAspace(pρ13pλ22pq3c¯+22pq1q2q3,cc¯2or2pq1q2c,q3c¯,\displaystyle\phi_{A\rm space}\left(\vec{p}_{\rho}^{~{}\prime}-\frac{1}{\sqrt{3}}\vec{p}_{\lambda}^{~{}\prime}-\frac{\sqrt{2}}{2}\vec{p}_{q_{3}\bar{c}}^{~{}\prime}+\frac{\sqrt{2}}{2}\vec{p}_{q_{1}q_{2}q_{3},c\bar{c}}-\frac{\sqrt{2}o_{\rm r}}{2}\vec{p}_{q_{1}q_{2}c,q_{3}\bar{c}}^{~{}\prime},\right.
62pq3c¯+6mq32(2m+mq3)pq1q2q3,cc¯+6mq32(mq3+mc¯)pq1q2c,q3c¯)\displaystyle\left.-\frac{\sqrt{6}}{2}\vec{p}_{q_{3}\bar{c}}^{~{}\prime}+\frac{\sqrt{6}m_{q_{3}}}{2(2m+m_{q_{3}})}\vec{p}_{q_{1}q_{2}q_{3},c\bar{c}}+\frac{\sqrt{6}m_{q_{3}}}{2(m_{q_{3}}+m_{\bar{c}})}\vec{p}_{q_{1}q_{2}c,q_{3}\bar{c}}^{~{}\prime}\right)
ϕBJBJBz(26pλ+mcmc+mc¯pq1q2q3,cc¯+mc2m+mcpq1q2c,q3c¯)\displaystyle\phi_{BJ_{B}J_{Bz}}\left(-\frac{2}{\sqrt{6}}\vec{p}_{\lambda}^{~{}\prime}+\frac{m_{c}}{m_{c}+m_{\bar{c}}}\vec{p}_{q_{1}q_{2}q_{3},c\bar{c}}+\frac{m_{c}}{2m+m_{c}}\vec{p}_{q_{1}q_{2}c,q_{3}\bar{c}}^{~{}\prime}\right)
+Vq2c¯(26pλ+pq3c¯pq1q2q3,cc¯+orpq1q2c,q3c¯)\displaystyle+V_{q_{2}\bar{c}}\left(\frac{2}{\sqrt{6}}\vec{p}_{\lambda}^{~{}\prime}+\vec{p}_{q_{3}\bar{c}}^{~{}\prime}-\vec{p}_{q_{1}q_{2}q_{3},c\bar{c}}+o_{\rm r}\vec{p}_{q_{1}q_{2}c,q_{3}\bar{c}}^{~{}\prime}\right)
ϕAspace(pρ+13pλ+22pq3c¯22pq1q2q3,cc¯+2or2pq1q2c,q3c¯,\displaystyle\phi_{A\rm space}\left(\vec{p}_{\rho}^{~{}\prime}+\frac{1}{\sqrt{3}}\vec{p}_{\lambda}^{~{}\prime}+\frac{\sqrt{2}}{2}\vec{p}_{q_{3}\bar{c}}^{~{}\prime}-\frac{\sqrt{2}}{2}\vec{p}_{q_{1}q_{2}q_{3},c\bar{c}}+\frac{\sqrt{2}o_{\rm r}}{2}\vec{p}_{q_{1}q_{2}c,q_{3}\bar{c}}^{~{}\prime},\right.
62pq3c¯+6mq32(2m+mq3)pq1q2q3,cc¯+6mq32(mq3+mc¯)pq1q2c,q3c¯)\displaystyle\left.-\frac{\sqrt{6}}{2}\vec{p}_{q_{3}\bar{c}}^{~{}\prime}+\frac{\sqrt{6}m_{q_{3}}}{2(2m+m_{q_{3}})}\vec{p}_{q_{1}q_{2}q_{3},c\bar{c}}+\frac{\sqrt{6}m_{q_{3}}}{2(m_{q_{3}}+m_{\bar{c}})}\vec{p}_{q_{1}q_{2}c,q_{3}\bar{c}}^{~{}\prime}\right)
ϕBJBJBz(26pλ+mcmc+mc¯pq1q2q3,cc¯+mc2m+mcpq1q2c,q3c¯)\displaystyle\phi_{BJ_{B}J_{Bz}}\left(-\frac{2}{\sqrt{6}}\vec{p}_{\lambda}^{~{}\prime}+\frac{m_{c}}{m_{c}+m_{\bar{c}}}\vec{p}_{q_{1}q_{2}q_{3},c\bar{c}}+\frac{m_{c}}{2m+m_{c}}\vec{p}_{q_{1}q_{2}c,q_{3}\bar{c}}^{~{}\prime}\right)
+Vq3c¯(26pλ+pq3c¯pq1q2q3,cc¯+orpq1q2c,q3c¯)\displaystyle+V_{q_{3}\bar{c}}\left(\frac{2}{\sqrt{6}}\vec{p}_{\lambda}^{~{}\prime}+\vec{p}_{q_{3}\bar{c}}^{~{}\prime}-\vec{p}_{q_{1}q_{2}q_{3},c\bar{c}}+o_{\rm r}\vec{p}_{q_{1}q_{2}c,q_{3}\bar{c}}^{~{}\prime}\right)
ϕAspace(pρ,pλ6m2m+mq3pq1q2q3,cc¯+6m2m+mcpq1q2c,q3c¯)\displaystyle\phi_{A\rm space}\left(\vec{p}_{\rho}^{~{}\prime},\vec{p}_{\lambda}^{~{}\prime}-\frac{\sqrt{6}m}{2m+m_{q_{3}}}\vec{p}_{q_{1}q_{2}q_{3},c\bar{c}}+\frac{\sqrt{6}m}{2m+m_{c}}\vec{p}_{q_{1}q_{2}c,q_{3}\bar{c}}^{~{}\prime}\right)
ϕBJBJBz(26pλ+mcmc+mc¯pq1q2q3,cc¯+mc2m+mcpq1q2c,q3c¯)\displaystyle\phi_{BJ_{B}J_{Bz}}\left(-\frac{2}{\sqrt{6}}\vec{p}_{\lambda}^{~{}\prime}+\frac{m_{c}}{m_{c}+m_{\bar{c}}}\vec{p}_{q_{1}q_{2}q_{3},c\bar{c}}+\frac{m_{c}}{2m+m_{c}}\vec{p}_{q_{1}q_{2}c,q_{3}\bar{c}}^{~{}\prime}\right)
+Vq1c(26pλ+pq3c¯pq1q2q3,cc¯+orpq1q2c,q3c¯)\displaystyle+V_{q_{1}c}\left(\frac{2}{\sqrt{6}}\vec{p}_{\lambda}^{~{}\prime}+\vec{p}_{q_{3}\bar{c}}^{~{}\prime}-\vec{p}_{q_{1}q_{2}q_{3},c\bar{c}}+o_{\rm r}\vec{p}_{q_{1}q_{2}c,q_{3}\bar{c}}^{~{}\prime}\right)
ϕAspace(pρ13pλ22pq3c¯+22pq1q2q3,cc¯2or2pq1q2c,q3c¯,\displaystyle\phi_{A\rm space}\left(\vec{p}_{\rho}^{~{}\prime}-\frac{1}{\sqrt{3}}\vec{p}_{\lambda}^{~{}\prime}-\frac{\sqrt{2}}{2}\vec{p}_{q_{3}\bar{c}}^{~{}\prime}+\frac{\sqrt{2}}{2}\vec{p}_{q_{1}q_{2}q_{3},c\bar{c}}-\frac{\sqrt{2}o_{\rm r}}{2}\vec{p}_{q_{1}q_{2}c,q_{3}\bar{c}}^{~{}\prime},\right.
62pq3c¯+6mq32(2m+mq3)pq1q2q3,cc¯+6mq32(mq3+mc¯)pq1q2c,q3c¯)\displaystyle\left.-\frac{\sqrt{6}}{2}\vec{p}_{q_{3}\bar{c}}^{~{}\prime}+\frac{\sqrt{6}m_{q_{3}}}{2(2m+m_{q_{3}})}\vec{p}_{q_{1}q_{2}q_{3},c\bar{c}}+\frac{\sqrt{6}m_{q_{3}}}{2(m_{q_{3}}+m_{\bar{c}})}\vec{p}_{q_{1}q_{2}c,q_{3}\bar{c}}^{~{}\prime}\right)
ϕBJBJBz(pq3c¯mc¯mc+mc¯pq1q2q3,cc¯+mc¯mq3+mc¯pq1q2c,q3c¯)\displaystyle\phi_{BJ_{B}J_{Bz}}\left(\vec{p}_{q_{3}\bar{c}}^{~{}\prime}-\frac{m_{\bar{c}}}{m_{c}+m_{\bar{c}}}\vec{p}_{q_{1}q_{2}q_{3},c\bar{c}}+\frac{m_{\bar{c}}}{m_{q_{3}}+m_{\bar{c}}}\vec{p}_{q_{1}q_{2}c,q_{3}\bar{c}}^{~{}\prime}\right)
+Vq2c(26pλ+pq3c¯pq1q2q3,cc¯+orpq1q2c,q3c¯)\displaystyle+V_{q_{2}c}\left(\frac{2}{\sqrt{6}}\vec{p}_{\lambda}^{~{}\prime}+\vec{p}_{q_{3}\bar{c}}^{~{}\prime}-\vec{p}_{q_{1}q_{2}q_{3},c\bar{c}}+o_{\rm r}\vec{p}_{q_{1}q_{2}c,q_{3}\bar{c}}^{~{}\prime}\right)
ϕAspace(pρ+13pλ+22pq3c¯22pq1q2q3,cc¯+2or2pq1q2c,q3c¯,\displaystyle\phi_{A\rm space}\left(\vec{p}_{\rho}^{~{}\prime}+\frac{1}{\sqrt{3}}\vec{p}_{\lambda}^{~{}\prime}+\frac{\sqrt{2}}{2}\vec{p}_{q_{3}\bar{c}}^{~{}\prime}-\frac{\sqrt{2}}{2}\vec{p}_{q_{1}q_{2}q_{3},c\bar{c}}+\frac{\sqrt{2}o_{\rm r}}{2}\vec{p}_{q_{1}q_{2}c,q_{3}\bar{c}}^{~{}\prime},\right.
62pq3c¯+6mq32(2m+mq3)pq1q2q3,cc¯+6mq32(mq3+mc¯)pq1q2c,q3c¯)\displaystyle\left.-\frac{\sqrt{6}}{2}\vec{p}_{q_{3}\bar{c}}^{~{}\prime}+\frac{\sqrt{6}m_{q_{3}}}{2(2m+m_{q_{3}})}\vec{p}_{q_{1}q_{2}q_{3},c\bar{c}}+\frac{\sqrt{6}m_{q_{3}}}{2(m_{q_{3}}+m_{\bar{c}})}\vec{p}_{q_{1}q_{2}c,q_{3}\bar{c}}^{~{}\prime}\right)
ϕBJBJBz(pq3c¯mc¯mc+mc¯pq1q2q3,cc¯+mc¯mq3+mc¯pq1q2c,q3c¯)\displaystyle\phi_{BJ_{B}J_{Bz}}\left(\vec{p}_{q_{3}\bar{c}}^{~{}\prime}-\frac{m_{\bar{c}}}{m_{c}+m_{\bar{c}}}\vec{p}_{q_{1}q_{2}q_{3},c\bar{c}}+\frac{m_{\bar{c}}}{m_{q_{3}}+m_{\bar{c}}}\vec{p}_{q_{1}q_{2}c,q_{3}\bar{c}}^{~{}\prime}\right)
+Vq3c(26pλ+pq3c¯pq1q2q3,cc¯+orpq1q2c,q3c¯)\displaystyle+V_{q_{3}c}\left(\frac{2}{\sqrt{6}}\vec{p}_{\lambda}^{~{}\prime}+\vec{p}_{q_{3}\bar{c}}^{~{}\prime}-\vec{p}_{q_{1}q_{2}q_{3},c\bar{c}}+o_{\rm r}\vec{p}_{q_{1}q_{2}c,q_{3}\bar{c}}^{~{}\prime}\right)
ϕAspace(pρ,pλ6m2m+mq3pq1q2q3,cc¯+6m2m+mcpq1q2c,q3c¯)\displaystyle\phi_{A\rm space}\left(\vec{p}_{\rho}^{~{}\prime},\vec{p}_{\lambda}^{~{}\prime}-\frac{\sqrt{6}m}{2m+m_{q_{3}}}\vec{p}_{q_{1}q_{2}q_{3},c\bar{c}}+\frac{\sqrt{6}m}{2m+m_{c}}\vec{p}_{q_{1}q_{2}c,q_{3}\bar{c}}^{~{}\prime}\right)
ϕBJBJBz(pq3c¯mc¯mc+mc¯pq1q2q3,cc¯+mc¯mq3+mc¯pq1q2c,q3c¯)}\displaystyle\phi_{BJ_{B}J_{Bz}}\left.\left(\vec{p}_{q_{3}\bar{c}}^{~{}\prime}-\frac{m_{\bar{c}}}{m_{c}+m_{\bar{c}}}\vec{p}_{q_{1}q_{2}q_{3},c\bar{c}}+\frac{m_{\bar{c}}}{m_{q_{3}}+m_{\bar{c}}}\vec{p}_{q_{1}q_{2}c,q_{3}\bar{c}}^{~{}\prime}\right)\right\}
ϕAcolorϕBcolorϕAflavorϕBflavorχSASAz,\displaystyle\phi_{A\rm{color}}\phi_{B\rm{color}}\phi_{A\rm{flavor}}\phi_{B\rm{flavor}}\chi_{S_{A}S_{Az}},

with or=(2mmc¯mq3mc)/[(2m+mc)(mq3+mc¯)]o_{\rm r}=(2mm_{\bar{c}}-m_{q_{3}}m_{c})/[(2m+m_{c})(m_{q_{3}}+m_{\bar{c}})], and the transition amplitude for scattering in the post form,

fipost\displaystyle{\cal{M}}_{\rm fi}^{\rm post} =\displaystyle= 2EA2EB2EC2EDϕCcolor+ϕDcolor+ϕCflavor+ϕDflavor+χSCSCz+χSDSDz+\displaystyle\sqrt{2E_{A}2E_{B}2E_{C}2E_{D}}\phi^{+}_{C\rm{color}}\phi^{+}_{D\rm{color}}\phi^{+}_{C\rm{flavor}}\phi^{+}_{D\rm{flavor}}\chi_{S_{C}S_{Cz}}^{+}\chi_{S_{D}S_{Dz}}^{+} (31)
d3pρ(2π)3d3pλ(2π)3d3pq3c¯(2π)3ϕCspace+(pρ,pλ)ϕDrel+(pq3c¯)\displaystyle\int\frac{d^{3}p_{\rho}^{\prime}}{(2\pi)^{3}}\frac{d^{3}p_{\lambda}^{\prime}}{(2\pi)^{3}}\frac{d^{3}p_{q_{3}\bar{c}}^{\prime}}{(2\pi)^{3}}\phi^{+}_{C\rm space}(\vec{p}_{\rho}^{~{}\prime},\vec{p}_{\lambda}^{~{}\prime})\phi^{+}_{D\rm{rel}}(\vec{p}_{q_{3}\bar{c}}^{~{}\prime})
{Vq1c¯(26pλ+pq3c¯pq1q2q3,cc¯+orpq1q2c,q3c¯)\displaystyle\left\{V_{q_{1}\bar{c}}\left(\frac{2}{\sqrt{6}}\vec{p}_{\lambda}^{~{}\prime}+\vec{p}_{q_{3}\bar{c}}^{~{}\prime}-\vec{p}_{q_{1}q_{2}q_{3},c\bar{c}}+o_{\rm r}\vec{p}_{q_{1}q_{2}c,q_{3}\bar{c}}^{~{}\prime}\right)\right.
ϕAspace(pρ13pλ22pq3c¯+22pq1q2q3,cc¯2or2pq1q2c,q3c¯,\displaystyle\phi_{A\rm space}\left(\vec{p}_{\rho}^{~{}\prime}-\frac{1}{\sqrt{3}}\vec{p}_{\lambda}^{~{}\prime}-\frac{\sqrt{2}}{2}\vec{p}_{q_{3}\bar{c}}^{~{}\prime}+\frac{\sqrt{2}}{2}\vec{p}_{q_{1}q_{2}q_{3},c\bar{c}}-\frac{\sqrt{2}o_{\rm r}}{2}\vec{p}_{q_{1}q_{2}c,q_{3}\bar{c}}^{~{}\prime},\right.
62pq3c¯+6mq32(2m+mq3)pq1q2q3,cc¯+6mq32(mq3+mc¯)pq1q2c,q3c¯)\displaystyle\left.-\frac{\sqrt{6}}{2}\vec{p}_{q_{3}\bar{c}}^{~{}\prime}+\frac{\sqrt{6}m_{q_{3}}}{2(2m+m_{q_{3}})}\vec{p}_{q_{1}q_{2}q_{3},c\bar{c}}+\frac{\sqrt{6}m_{q_{3}}}{2(m_{q_{3}}+m_{\bar{c}})}\vec{p}_{q_{1}q_{2}c,q_{3}\bar{c}}^{~{}\prime}\right)
ϕBJBJBz(26pλ+mcmc+mc¯pq1q2q3,cc¯+mc2m+mcpq1q2c,q3c¯)\displaystyle\phi_{BJ_{B}J_{Bz}}\left(-\frac{2}{\sqrt{6}}\vec{p}_{\lambda}^{~{}\prime}+\frac{m_{c}}{m_{c}+m_{\bar{c}}}\vec{p}_{q_{1}q_{2}q_{3},c\bar{c}}+\frac{m_{c}}{2m+m_{c}}\vec{p}_{q_{1}q_{2}c,q_{3}\bar{c}}^{~{}\prime}\right)
+Vq2c¯(26pλ+pq3c¯pq1q2q3,cc¯+orpq1q2c,q3c¯)\displaystyle+V_{q_{2}\bar{c}}\left(\frac{2}{\sqrt{6}}\vec{p}_{\lambda}^{~{}\prime}+\vec{p}_{q_{3}\bar{c}}^{~{}\prime}-\vec{p}_{q_{1}q_{2}q_{3},c\bar{c}}+o_{\rm r}\vec{p}_{q_{1}q_{2}c,q_{3}\bar{c}}^{~{}\prime}\right)
ϕAspace(pρ+13pλ+22pq3c¯22pq1q2q3,cc¯+2or2pq1q2c,q3c¯,\displaystyle\phi_{A\rm space}\left(\vec{p}_{\rho}^{~{}\prime}+\frac{1}{\sqrt{3}}\vec{p}_{\lambda}^{~{}\prime}+\frac{\sqrt{2}}{2}\vec{p}_{q_{3}\bar{c}}^{~{}\prime}-\frac{\sqrt{2}}{2}\vec{p}_{q_{1}q_{2}q_{3},c\bar{c}}+\frac{\sqrt{2}o_{\rm r}}{2}\vec{p}_{q_{1}q_{2}c,q_{3}\bar{c}}^{~{}\prime},\right.
62pq3c¯+6mq32(2m+mq3)pq1q2q3,cc¯+6mq32(mq3+mc¯)pq1q2c,q3c¯)\displaystyle\left.-\frac{\sqrt{6}}{2}\vec{p}_{q_{3}\bar{c}}^{~{}\prime}+\frac{\sqrt{6}m_{q_{3}}}{2(2m+m_{q_{3}})}\vec{p}_{q_{1}q_{2}q_{3},c\bar{c}}+\frac{\sqrt{6}m_{q_{3}}}{2(m_{q_{3}}+m_{\bar{c}})}\vec{p}_{q_{1}q_{2}c,q_{3}\bar{c}}^{~{}\prime}\right)
ϕBJBJBz(26pλ+mcmc+mc¯pq1q2q3,cc¯+mc2m+mcpq1q2c,q3c¯)\displaystyle\phi_{BJ_{B}J_{Bz}}\left(-\frac{2}{\sqrt{6}}\vec{p}_{\lambda}^{~{}\prime}+\frac{m_{c}}{m_{c}+m_{\bar{c}}}\vec{p}_{q_{1}q_{2}q_{3},c\bar{c}}+\frac{m_{c}}{2m+m_{c}}\vec{p}_{q_{1}q_{2}c,q_{3}\bar{c}}^{~{}\prime}\right)
+Vq3c(26pλ+pq3c¯pq1q2q3,cc¯+orpq1q2c,q3c¯)\displaystyle+V_{q_{3}c}\left(\frac{2}{\sqrt{6}}\vec{p}_{\lambda}^{~{}\prime}+\vec{p}_{q_{3}\bar{c}}^{~{}\prime}-\vec{p}_{q_{1}q_{2}q_{3},c\bar{c}}+o_{\rm r}\vec{p}_{q_{1}q_{2}c,q_{3}\bar{c}}^{~{}\prime}\right)
ϕAspace(pρ,pλ6m2m+mq3pq1q2q3,cc¯+6m2m+mcpq1q2c,q3c¯)\displaystyle\phi_{A\rm space}\left(\vec{p}_{\rho}^{~{}\prime},\vec{p}_{\lambda}^{~{}\prime}-\frac{\sqrt{6}m}{2m+m_{q_{3}}}\vec{p}_{q_{1}q_{2}q_{3},c\bar{c}}+\frac{\sqrt{6}m}{2m+m_{c}}\vec{p}_{q_{1}q_{2}c,q_{3}\bar{c}}^{~{}\prime}\right)
ϕBJBJBz(pq3c¯mc¯mc+mc¯pq1q2q3,cc¯+mc¯mq3+mc¯pq1q2c,q3c¯)}\displaystyle\phi_{BJ_{B}J_{Bz}}\left.\left(\vec{p}_{q_{3}\bar{c}}^{~{}\prime}-\frac{m_{\bar{c}}}{m_{c}+m_{\bar{c}}}\vec{p}_{q_{1}q_{2}q_{3},c\bar{c}}+\frac{m_{\bar{c}}}{m_{q_{3}}+m_{\bar{c}}}\vec{p}_{q_{1}q_{2}c,q_{3}\bar{c}}^{~{}\prime}\right)\right\}
ϕAcolorϕBcolorϕAflavorϕBflavorχSASAz\displaystyle\phi_{A\rm{color}}\phi_{B\rm{color}}\phi_{A\rm{flavor}}\phi_{B\rm{flavor}}\chi_{S_{A}S_{Az}}
+2EA2EB2EC2EDϕCcolor+ϕDcolor+ϕCflavor+ϕDflavor+χSCSCz+χSDSDz+\displaystyle+\sqrt{2E_{A}2E_{B}2E_{C}2E_{D}}\phi^{+}_{C\rm{color}}\phi^{+}_{D\rm{color}}\phi^{+}_{C\rm{flavor}}\phi^{+}_{D\rm{flavor}}\chi_{S_{C}S_{Cz}}^{+}\chi_{S_{D}S_{Dz}}^{+}
d3pρ(2π)3d3pλ(2π)3d3pcc¯(2π)3\displaystyle\int\frac{d^{3}p_{\rho}}{(2\pi)^{3}}\frac{d^{3}p_{\lambda}}{(2\pi)^{3}}\frac{d^{3}p_{c\bar{c}}}{(2\pi)^{3}}
{ϕCspace+(pρ,pλ+6m2m+mq3pq1q2q3,cc¯6m2m+mcpq1q2c,q3c¯)\displaystyle\left\{\phi^{+}_{C\rm space}\left(\vec{p}_{\rho},\vec{p}_{\lambda}+\frac{\sqrt{6}m}{2m+m_{q_{3}}}\vec{p}_{q_{1}q_{2}q_{3},c\bar{c}}-\frac{\sqrt{6}m}{2m+m_{c}}\vec{p}_{q_{1}q_{2}c,q_{3}\bar{c}}^{~{}\prime}\right)\right.
ϕDrel+(26pλ+mq32m+mq3pq1q2q3,cc¯+mq3mq3+mc¯pq1q2c,q3c¯)\displaystyle\phi^{+}_{D\rm{rel}}\left(-\frac{2}{\sqrt{6}}\vec{p}_{\lambda}+\frac{m_{q_{3}}}{2m+m_{q_{3}}}\vec{p}_{q_{1}q_{2}q_{3},c\bar{c}}+\frac{m_{q_{3}}}{m_{q_{3}}+m_{\bar{c}}}\vec{p}_{q_{1}q_{2}c,q_{3}\bar{c}}^{~{}\prime}\right)
Vcc¯(26pλpcc¯otpq1q2q3,cc¯+pq1q2c,q3c¯)\displaystyle V_{c\bar{c}}\left(-\frac{2}{\sqrt{6}}\vec{p}_{\lambda}-\vec{p}_{c\bar{c}}-o_{\rm t}\vec{p}_{q_{1}q_{2}q_{3},c\bar{c}}+\vec{p}_{q_{1}q_{2}c,q_{3}\bar{c}}^{~{}\prime}\right)
+ϕCspace+(pρ13pλ22pcc¯2ot2pq1q2q3,cc¯+22pq1q2c,q3c¯,\displaystyle+\phi^{+}_{C\rm space}\left(\vec{p}_{\rho}-\frac{1}{\sqrt{3}}\vec{p}_{\lambda}-\frac{\sqrt{2}}{2}\vec{p}_{c\bar{c}}-\frac{\sqrt{2}o_{\rm t}}{2}\vec{p}_{q_{1}q_{2}q_{3},c\bar{c}}+\frac{\sqrt{2}}{2}\vec{p}_{q_{1}q_{2}c,q_{3}\bar{c}}^{~{}\prime},\right.
62pcc¯+6mc2(mc+mc¯)pq1q2q3,cc¯+6mc2(2m+mc)pq1q2c,q3c¯)\displaystyle\left.-\frac{\sqrt{6}}{2}\vec{p}_{c\bar{c}}+\frac{\sqrt{6}m_{c}}{2(m_{c}+m_{\bar{c}})}\vec{p}_{q_{1}q_{2}q_{3},c\bar{c}}+\frac{\sqrt{6}m_{c}}{2(2m+m_{c})}\vec{p}_{q_{1}q_{2}c,q_{3}\bar{c}}^{~{}\prime}\right)
ϕDrel+(pcc¯+mc¯mc+mc¯pq1q2q3,cc¯mc¯mq3+mc¯pq1q2c,q3c¯)\displaystyle\phi^{+}_{D\rm{rel}}\left(\vec{p}_{c\bar{c}}+\frac{m_{\bar{c}}}{m_{c}+m_{\bar{c}}}\vec{p}_{q_{1}q_{2}q_{3},c\bar{c}}-\frac{m_{\bar{c}}}{m_{q_{3}}+m_{\bar{c}}}\vec{p}_{q_{1}q_{2}c,q_{3}\bar{c}}^{~{}\prime}\right)
Vq1q3(26pλpcc¯otpq1q2q3,cc¯+pq1q2c,q3c¯)\displaystyle V_{q_{1}q_{3}}\left(-\frac{2}{\sqrt{6}}\vec{p}_{\lambda}-\vec{p}_{c\bar{c}}-o_{\rm t}\vec{p}_{q_{1}q_{2}q_{3},c\bar{c}}+\vec{p}_{q_{1}q_{2}c,q_{3}\bar{c}}^{~{}\prime}\right)
+ϕCspace+(pρ+13pλ+22pcc¯+2ot2pq1q2q3,cc¯22pq1q2c,q3c¯,\displaystyle+\phi^{+}_{C\rm space}\left(\vec{p}_{\rho}+\frac{1}{\sqrt{3}}\vec{p}_{\lambda}+\frac{\sqrt{2}}{2}\vec{p}_{c\bar{c}}+\frac{\sqrt{2}o_{\rm t}}{2}\vec{p}_{q_{1}q_{2}q_{3},c\bar{c}}-\frac{\sqrt{2}}{2}\vec{p}_{q_{1}q_{2}c,q_{3}\bar{c}}^{~{}\prime},\right.
62pcc¯+6mc2(mc+mc¯)pq1q2q3,cc¯+6mc2(2m+mc)pq1q2c,q3c¯)\displaystyle\left.-\frac{\sqrt{6}}{2}\vec{p}_{c\bar{c}}+\frac{\sqrt{6}m_{c}}{2(m_{c}+m_{\bar{c}})}\vec{p}_{q_{1}q_{2}q_{3},c\bar{c}}+\frac{\sqrt{6}m_{c}}{2(2m+m_{c})}\vec{p}_{q_{1}q_{2}c,q_{3}\bar{c}}^{~{}\prime}\right)
ϕDrel+(pcc¯+mc¯mc+mc¯pq1q2q3,cc¯mc¯mq3+mc¯pq1q2c,q3c¯)\displaystyle\phi^{+}_{D\rm{rel}}\left(\vec{p}_{c\bar{c}}+\frac{m_{\bar{c}}}{m_{c}+m_{\bar{c}}}\vec{p}_{q_{1}q_{2}q_{3},c\bar{c}}-\frac{m_{\bar{c}}}{m_{q_{3}}+m_{\bar{c}}}\vec{p}_{q_{1}q_{2}c,q_{3}\bar{c}}^{~{}\prime}\right)
Vq2q3(26pλpcc¯otpq1q2q3,cc¯+pq1q2c,q3c¯)}\displaystyle V_{q_{2}q_{3}}\left.\left(-\frac{2}{\sqrt{6}}\vec{p}_{\lambda}-\vec{p}_{c\bar{c}}-o_{\rm t}\vec{p}_{q_{1}q_{2}q_{3},c\bar{c}}+\vec{p}_{q_{1}q_{2}c,q_{3}\bar{c}}^{~{}\prime}\right)\right\}
ϕAspace(pρ,pλ)ϕBJBJBz(pcc¯)ϕAcolorϕBcolorϕAflavorϕBflavorχSASAz.\displaystyle\phi_{A\rm space}(\vec{p}_{\rho},\vec{p}_{\lambda})\phi_{BJ_{B}J_{Bz}}(\vec{p}_{c\bar{c}})\phi_{A\rm{color}}\phi_{B\rm{color}}\phi_{A\rm{flavor}}\phi_{B\rm{flavor}}\chi_{S_{A}S_{Az}}.

with ot=(2mmc¯mq3mc)/[(mc+mc¯)(2m+mq3)]o_{\rm t}=(2mm_{\bar{c}}-m_{q_{3}}m_{c})/[(m_{c}+m_{\bar{c}})(2m+m_{q_{3}})]. The variables pρ\vec{p}_{\rho} and pλ\vec{p}_{\lambda} in ϕAspace(pρ,\phi_{A\rm space}(\vec{p}_{\rho}, pλ)\vec{p}_{\lambda}), pcc¯\vec{p}_{c\bar{c}} in ϕBJBJBz(pcc¯)\phi_{BJ_{B}J_{Bz}}(\vec{p}_{c\bar{c}}), pρ\vec{p}_{\rho}^{~{}\prime} and pλ\vec{p}_{\lambda}^{~{}\prime} in ϕCspace(pρ,pλ)\phi_{C\rm space}(\vec{p}_{\rho}^{~{}\prime},\vec{p}_{\lambda}^{~{}\prime}), and pq3c¯\vec{p}_{q_{3}\bar{c}}^{~{}\prime} in ϕDrel(pq3c¯)\phi_{D\rm rel}(\vec{p}_{q_{3}\bar{c}}^{~{}\prime}) equal the expressions enclosed by the parentheses that follow ϕAspace\phi_{A\rm space}, ϕBJBJBz\phi_{BJ_{B}J_{Bz}}, ϕCspace\phi_{C\rm space}, and ϕDrel\phi_{D\rm rel}.

With the transition amplitudes the unpolarized cross section for A+BC+DA+B\to C+D is

σunpol(s)\displaystyle\sigma^{\rm unpol}(\sqrt{s}) =\displaystyle= 1(2JA+1)(2JB+1)164πs|P(s)||P(s)|\displaystyle\frac{1}{(2J_{A}+1)(2J_{B}+1)}\frac{1}{64\pi s}\frac{|\vec{P}^{\prime}(\sqrt{s})|}{|\vec{P}(\sqrt{s})|} (32)
0π𝑑θJAzJBzJCzJDz(fiprior2+fipost2)sinθ,\displaystyle\int_{0}^{\pi}d\theta\sum\limits_{J_{Az}J_{Bz}J_{Cz}J_{Dz}}(\mid{\cal M}_{\rm fi}^{\rm prior}\mid^{2}+\mid{\cal M}_{\rm fi}^{\rm post}\mid^{2})\sin\theta,

where ss is the Mandelstam variable obtained from the four-momenta PAP_{A} and PBP_{B} of hadrons AA and BB by s=(PA+PB)2s=(P_{A}+P_{B})^{2}; JAJ_{A} (JBJ_{B}, JCJ_{C}, JDJ_{D}) and JAzJ_{Az} (JBzJ_{Bz}, JCzJ_{Cz}, JDzJ_{Dz}) of hadron AA (BB, CC, DD) are the total angular momentum and its zz component, respectively; θ\theta is the angle between P\vec{P} and P\vec{P}^{\prime} which are the three-dimensional momentum components of baryons AA and CC in the center-of-momentum frame of the initial baryon and the initial meson, respectively. We calculate the cross section in the center-of-momentum frame.

III. NUMERICAL CROSS SECTIONS AND DISCUSSIONS

We use the notation D=(D+D0)D=\left(\begin{array}[]{c}D^{+}\\ D^{0}\end{array}\right), D¯=(D¯0D)\bar{D}=\left(\begin{array}[]{c}\bar{D}^{0}\\ D^{-}\end{array}\right), D=(D+D0)D^{*}=\left(\begin{array}[]{c}D^{*+}\\ D^{*0}\end{array}\right), and D¯=(D¯0D)\bar{D}^{*}=\left(\begin{array}[]{c}\bar{D}^{*0}\\ D^{*-}\end{array}\right). We consider the following reactions:

pRΛc+D¯0,pRΛc+D¯0,pR\to\Lambda_{c}^{+}\bar{D}^{0},~{}~{}~{}~{}~{}~{}pR\to\Lambda_{c}^{+}\bar{D}^{*0},
pRΣc++D,pRΣc++D,pR\to\Sigma_{c}^{++}D^{-},~{}~{}~{}~{}~{}~{}pR\to\Sigma_{c}^{++}D^{*-},
pRΣc+D¯0,pRΣc+D¯0,pR\to\Sigma_{c}^{+}\bar{D}^{0},~{}~{}~{}~{}~{}~{}pR\to\Sigma_{c}^{+}\bar{D}^{*0},
pRΣc++D,pRΣc++D,pR\to\Sigma_{c}^{*++}D^{-},~{}~{}~{}~{}~{}~{}pR\to\Sigma_{c}^{*++}D^{*-},
pRΣc+D¯0,pRΣc+D¯0,pR\to\Sigma_{c}^{*+}\bar{D}^{0},~{}~{}~{}~{}~{}~{}pR\to\Sigma_{c}^{*+}\bar{D}^{*0},

where RR stands for ψ(3770)\psi(3770), ψ(4040)\psi(4040), ψ(4160)\psi(4160), or ψ(4415)\psi(4415). By replacing the up quark with the down quark and vice versa in these ten reactions, they give ten reactions of a neutron and a cc¯c\bar{c} meson. Since the cross section for nRΛc+DnR\to\Lambda_{c}^{+}D^{-} (nRΛc+DnR\to\Lambda_{c}^{+}D^{*-}, nRΣc0D¯0nR\to\Sigma_{c}^{0}\bar{D}^{0}, nRΣc0D¯0nR\to\Sigma_{c}^{0}\bar{D}^{*0}, nRΣc+DnR\to\Sigma_{c}^{+}D^{-}, nRΣc+DnR\to\Sigma_{c}^{+}D^{*-}, nRΣc0D¯0nR\to\Sigma_{c}^{*0}\bar{D}^{0}, nRΣc0D¯0nR\to\Sigma_{c}^{*0}\bar{D}^{*0}, nRΣc+DnR\to\Sigma_{c}^{*+}D^{-}, nRΣc+DnR\to\Sigma_{c}^{*+}D^{*-}) equals the one for pRΛc+D¯0pR\to\Lambda_{c}^{+}\bar{D}^{0} (pRΛc+D¯0pR\to\Lambda_{c}^{+}\bar{D}^{*0}, pRΣc++DpR\to\Sigma_{c}^{++}D^{-}, pRΣc++DpR\to\Sigma_{c}^{++}D^{*-}, pRΣc+D¯0pR\to\Sigma_{c}^{+}\bar{D}^{0}, pRΣc+D¯0pR\to\Sigma_{c}^{+}\bar{D}^{*0}, pRΣc++DpR\to\Sigma_{c}^{*++}D^{-}, pRΣc++DpR\to\Sigma_{c}^{*++}D^{*-}, pRΣc+D¯0pR\to\Sigma_{c}^{*+}\bar{D}^{0}, pRΣc+D¯0pR\to\Sigma_{c}^{*+}\bar{D}^{*0}), it is enough to only discuss reactions of the proton and the cc¯c\bar{c} meson in this section. We calculate unpolarized cross sections for these reactions with Eq. (32). As seen in Eqs. (30) and (31), fiprior{\cal{M}}_{\rm fi}^{\rm prior} and fipost{\cal{M}}_{\rm fi}^{\rm post} used in Eq. (32) involve ϕBJBJBz\phi_{BJ_{B}J_{Bz}} and ϕDrel\phi_{D\rm rel}. The two wave functions are obtained from solutions of the Schrödinger equation with the potential between constituents aa and bb in coordinate space,

Vab(rab)\displaystyle V_{ab}(\vec{r}_{ab}) =\displaystyle= λa2λb234krab+λa2λb26π25v(λrab)rab\displaystyle-\frac{\vec{\lambda}_{a}}{2}\cdot\frac{\vec{\lambda}_{b}}{2}\frac{3}{4}kr_{ab}+\frac{\vec{\lambda}_{a}}{2}\cdot\frac{\vec{\lambda}_{b}}{2}\frac{6\pi}{25}\frac{v(\lambda r_{ab})}{r_{ab}} (33)
λa2λb216π225d3π3/2exp(d2rab2)sasbmamb+λa2λb24π251rabd2v(λrab)drab2sasbmamb\displaystyle-\frac{\vec{\lambda}_{a}}{2}\cdot\frac{\vec{\lambda}_{b}}{2}\frac{16\pi^{2}}{25}\frac{d^{3}}{\pi^{3/2}}\exp(-d^{2}r^{2}_{ab})\frac{\vec{s}_{a}\cdot\vec{s}_{b}}{m_{a}m_{b}}+\frac{\vec{\lambda}_{a}}{2}\cdot\frac{\vec{\lambda}_{b}}{2}\frac{4\pi}{25}\frac{1}{r_{ab}}\frac{d^{2}v(\lambda r_{ab})}{dr_{ab}^{2}}\frac{\vec{s}_{a}\cdot\vec{s}_{b}}{m_{a}m_{b}}
λa2λb26π25mamb[v(λrab)rabdv(λrab)drab+rab23d2v(λrab)drab2]\displaystyle-\frac{\vec{\lambda}_{a}}{2}\cdot\frac{\vec{\lambda}_{b}}{2}\frac{6\pi}{25m_{a}m_{b}}\left[v(\lambda r_{ab})-r_{ab}\frac{dv(\lambda r_{ab})}{dr_{ab}}+\frac{r_{ab}^{2}}{3}\frac{d^{2}v(\lambda r_{ab})}{dr_{ab}^{2}}\right]
(3sarabsbrabrab5sasbrab3),\displaystyle\left(\frac{3\vec{s}_{a}\cdot\vec{r}_{ab}\vec{s}_{b}\cdot\vec{r}_{ab}}{r_{ab}^{5}}-\frac{\vec{s}_{a}\cdot\vec{s}_{b}}{r_{ab}^{3}}\right),

where rab\vec{r}_{ab} is the relative coordinate of constituents aa and bb; k=0.153k=0.153 GeV2 and λ=0.39\lambda=0.39 GeV; mam_{a}, sa\vec{s}_{a}, and λa\vec{\lambda}_{a} are individually the mass, the spin, and the Gell-Mann matrices for the color generators of constituent aa; the function vv is given by Buchmüller and Tye in Ref. [29]; the quantity dd is

d2=dα2[12+12(4mamb(ma+mb)2)4]+dβ2(2mambma+mb)2,\displaystyle d^{2}=d_{\alpha}^{2}\left[\frac{1}{2}+\frac{1}{2}\left(\frac{4m_{a}m_{b}}{(m_{a}+m_{b})^{2}}\right)^{4}\right]+d_{\beta}^{2}\left(\frac{2m_{a}m_{b}}{m_{a}+m_{b}}\right)^{2}, (34)

where dα=0.34d_{\alpha}=0.34 GeV and dβ=0.45d_{\beta}=0.45. The potential originates from quantum chromodynamics (QCD) [29]. The first two terms are the Buchmüller-Tye potential, and the other terms come from one-gluon exchange plus perturbative one- and two-loop corrections [30].

The function v(x)v(x) manifests one-gluon exchange plus perturbative one- and two-loop corrections between constituents aa and bb. It increases from 0 to 1 when xx increases from 0 to the positive infinity. Consequently, the second term is not a color Coulomb potential.

One-gluon exchange between two constituents gives rise to the Fermi contact term λa2λb216π225δ3(rab)sasbmamb-\frac{\vec{\lambda}_{a}}{2}\cdot\frac{\vec{\lambda}_{b}}{2}\frac{16\pi^{2}}{25}\delta^{3}(\vec{r}_{ab})\frac{\vec{s}_{a}\cdot\vec{s}_{b}}{m_{a}m_{b}}. The δ3(rab)\delta^{3}(\vec{r}_{ab}) function fixes the positions of the two constituents to rab=0\vec{r}_{ab}=0. However, the constituent positions fluctuate in the presence of one- and two-loop corrections. To allow the position fluctuation, δ3(rab)\delta^{3}(\vec{r}_{ab}) is replaced with d3π3/2exp(d2rab2)\frac{d^{3}}{\pi^{3/2}}\exp(-d^{2}r^{2}_{ab}) so as to arrive at the third term on the right-hand side of Eq. (33), which is the smearing of the Fermi contact term [1]. The Gaussian has a width of 2ln2/d2\sqrt{\ln 2}/d, and d1d^{-1} indicates the fluctuation size. The larger is dd, the smaller is the fluctuation size. dd depends on constituent masses. When ma=mbm_{a}=m_{b}, d2=dα2+dβ2mb2d^{2}=d_{\alpha}^{2}+d_{\beta}^{2}m_{b}^{2}. When mambm_{a}\gg m_{b}, d2dα2/2+4dβ2mb2d^{2}\approx d_{\alpha}^{2}/2+4d_{\beta}^{2}m_{b}^{2}. In the two cases the dαd_{\alpha} term gives a constant value to dd, and the dβd_{\beta} term is proportional to mb2m_{b}^{2}. The two terms provide different mass dependence. Since d2>dα2/2d^{2}>d_{\alpha}^{2}/2, the parameter dαd_{\alpha} reflects the fact that in a confined system the smearing must be limited.

The masses of the up quark, the down quark, the strange quark, and the charm quark are 0.32 GeV, 0.32 GeV, 0.5 GeV, and 1.51 GeV, respectively. Solving the Schrödinger equation with VabV_{ab}, we obtain meson masses that are close to the experimental masses of π\pi, ρ\rho, KK, KK^{*}, DD, DD^{*}, DsD_{s}, DsD^{*}_{s}, J/ψJ/\psi, χc\chi_{c}, ψ\psi^{\prime}, ψ(3770)\psi(3770), ψ(4040)\psi(4040), ψ(4160)\psi(4160), and ψ(4415)\psi(4415) mesons listed in Ref. [31]. The experimental data of SS-wave I=2I=2 elastic phase shifts for ππ\pi\pi scattering [32] are reproduced in the Born approximation.

fiprior{\cal{M}}_{\rm fi}^{\rm prior} and fipost{\cal{M}}_{\rm fi}^{\rm post} involve the space wave functions ϕAspace\phi_{A\rm space} and ϕCspace\phi_{C\rm space}. The space wave functions of ground-state baryons are usually assumed to be harmonic-oscillator wave functions [33, 34]:

ϕAspace(ρ,λi)=(αραλiπ)1.5exp(αρ2ρ2+αλi2λi22),\phi_{A\rm space}(\vec{\rho},\vec{\lambda}_{\rm i})=\left(\frac{\alpha_{\rho}\alpha_{\lambda_{\rm i}}}{\pi}\right)^{1.5}\exp\left(-\frac{\alpha_{\rho}^{2}\vec{\rho}^{~{}2}+\alpha_{\lambda_{\rm i}}^{2}{\vec{\lambda}_{\rm i}}^{2}}{2}\right), (35)

and ϕCspace(ρ,λf)\phi_{C\rm space}(\vec{\rho},\vec{\lambda}_{\rm f}) is obtained from ϕAspace(ρ,λi)\phi_{A\rm space}(\vec{\rho},\vec{\lambda}_{\rm i}) by replacing λi\lambda_{\rm i} with λf\lambda_{\rm f}. The wave function ψq1q2q3(ρ,λi)\psi_{q_{1}q_{2}q_{3}}(\vec{\rho},\vec{\lambda}_{\rm i}) in Eq. (5) is

ψq1q2q3(ρ,λi)=ϕAcolorϕAflavorϕAspace(ρ,λi)χSASAz,\psi_{q_{1}q_{2}q_{3}}(\vec{\rho},\vec{\lambda}_{\rm i})=\phi_{A\rm color}\phi_{A\rm flavor}\phi_{A\rm space}(\vec{\rho},\vec{\lambda}_{\rm i})\chi_{S_{A}S_{Az}}, (36)

and ψq1q2c\psi_{q_{1}q_{2}c} in Eq. (6) is given from ψq1q2q3\psi_{q_{1}q_{2}q_{3}} by replacing q3q_{3} (λi\vec{\lambda}_{\rm i}, AA) with cc (λf\vec{\lambda}_{\rm f}, CC). Masses of baryons in the baryon octet and the baryon decuplet are given by

mB\displaystyle m_{\rm B} =\displaystyle= 2m+mq3+d3ρd3λiψq1q2q3+(ρ,λi)[ρ22m+λi22mλi\displaystyle 2m+m_{q_{3}}+\int d^{3}\rho d^{3}\lambda_{\rm i}\psi_{q_{1}q_{2}q_{3}}^{+}(\vec{\rho},\vec{\lambda}_{\rm i})\left[\frac{\vec{\nabla}^{2}_{\vec{\rho}}}{2m}+\frac{\vec{\nabla}^{2}_{\vec{\lambda}_{\rm i}}}{2m_{\lambda_{\rm i}}}\right. (37)
+Vq1q2(rq1q2)+Vq2q3(rq2q3)+Vq3q1(rq3q1)]ψq1q2q3(ρ,λi),\displaystyle\left.+V_{q_{1}q_{2}}(\vec{r}_{q_{1}q_{2}})+V_{q_{2}q_{3}}(\vec{r}_{q_{2}q_{3}})+V_{q_{3}q_{1}}(\vec{r}_{q_{3}q_{1}})\right]\psi_{q_{1}q_{2}q_{3}}(\vec{\rho},\vec{\lambda}_{\rm i}),

with mλi=3mmq32m+mq3m_{\lambda_{\rm i}}=\frac{3mm_{q_{3}}}{2m+m_{q_{3}}}. Replacing q3q_{3} (λi\vec{\lambda}_{\rm i}) with cc (λf\vec{\lambda}_{\rm f}), Eq. (37) is used to calculate masses of ground-state charmed baryons. Let mpm_{p}, mΛc+m_{\Lambda_{c}^{+}}, mΣc++m_{\Sigma_{c}^{++}}, mΣc+m_{\Sigma_{c}^{+}}, mΣc++m_{\Sigma_{c}^{*++}}, and mΣc+m_{\Sigma_{c}^{*+}} represent the experimental masses of pp, Λc+\Lambda_{c}^{+}, Σc++\Sigma_{c}^{++}, Σc+\Sigma_{c}^{+}, Σc++\Sigma_{c}^{*++}, and Σc+\Sigma_{c}^{*+} baryons, respectively. Fits to the experimental masses of the six baryons give

αρ=0.3GeV,αλi=0.3GeV,mp=0.938272GeV;\alpha_{\rho}=0.3~{}{\rm GeV},~{}~{}~{}~{}~{}~{}\alpha_{\lambda_{\rm i}}=0.3~{}{\rm GeV},~{}~{}~{}~{}~{}~{}{m_{p}=0.938272~{}{\rm GeV};}
αρ=0.222594GeV,αλf=0.43GeV,mΛc+=2.28646GeV;\alpha_{\rho}=0.222594~{}{\rm GeV},~{}~{}~{}~{}~{}~{}\alpha_{\lambda_{\rm f}}=0.43~{}{\rm GeV},~{}~{}~{}~{}~{}~{}{m_{\Lambda_{c}^{+}}=2.28646~{}{\rm GeV};}
αρ=0.196273GeV,αλf=0.43GeV,mΣc++=2.45397GeV;\alpha_{\rho}=0.196273~{}{\rm GeV},~{}~{}~{}~{}~{}~{}\alpha_{\lambda_{\rm f}}=0.43~{}{\rm GeV},~{}~{}~{}~{}~{}~{}{m_{\Sigma_{c}^{++}}=2.45397~{}{\rm GeV};}
αρ=0.19642GeV,αλf=0.43GeV,mΣc+=2.4529GeV;\alpha_{\rho}=0.19642~{}{\rm GeV},~{}~{}~{}~{}~{}~{}\alpha_{\lambda_{\rm f}}=0.43~{}{\rm GeV},~{}~{}~{}~{}~{}~{}{m_{\Sigma_{c}^{+}}=2.4529~{}{\rm GeV};}
αρ=0.19092GeV,αλf=0.43GeV,mΣc++=2.51841GeV;\alpha_{\rho}=0.19092~{}{\rm GeV},~{}~{}~{}~{}~{}~{}\alpha_{\lambda_{\rm f}}=0.43~{}{\rm GeV},~{}~{}~{}~{}~{}~{}{m_{\Sigma_{c}^{*++}}=2.51841~{}{\rm GeV};}
αρ=0.19105GeV,αλf=0.43GeV,mΣc+=2.5175GeV.\alpha_{\rho}=0.19105~{}{\rm GeV},~{}~{}~{}~{}~{}~{}\alpha_{\lambda_{\rm f}}=0.43~{}{\rm GeV},~{}~{}~{}~{}~{}~{}{m_{\Sigma_{c}^{*+}}=2.5175~{}{\rm GeV}.}

Using the mesonic quark-antiquark relative-motion wave functions and the space wave functions of baryons, we obtain unpolarized cross sections for dissociation of ψ(3770)\psi(3770), ψ(4040)\psi(4040), ψ(4160)\psi(4160), and ψ(4415)\psi(4415) mesons in collisions with protons. The cross sections are plotted in Figs. 3-12, and are parametrized as

σunpol(s)\displaystyle\sigma^{\rm unpol}(\sqrt{s}) =\displaystyle= P2P2{a1(ss0b1)c1exp[c1(1ss0b1)]\displaystyle\frac{\vec{P}^{\prime 2}}{\vec{P}^{2}}\left\{a_{1}\left(\frac{\sqrt{s}-\sqrt{s_{0}}}{b_{1}}\right)^{c_{1}}\exp\left[c_{1}\left(1-\frac{\sqrt{s}-\sqrt{s_{0}}}{b_{1}}\right)\right]\right. (38)
+a2(ss0b2)c2exp[c2(1ss0b2)]},\displaystyle+\left.a_{2}\left(\frac{\sqrt{s}-\sqrt{s_{0}}}{b_{2}}\right)^{c_{2}}\exp\left[c_{2}\left(1-\frac{\sqrt{s}-\sqrt{s_{0}}}{b_{2}}\right)\right]\right\},

where s0\sqrt{s_{0}} is the threshold energy, and a1a_{1}, b1b_{1}, c1c_{1}, a2a_{2}, b2b_{2}, and c2c_{2} are parameters. The parameter values are listed in Tables 1-2. The threshold energy of inelastic p+ψ(3770)p+\psi(3770) (p+ψ(4040)p+\psi(4040), p+ψ(4160)p+\psi(4160), p+ψ(4415)p+\psi(4415)) scattering is the sum of the proton and ψ(3770)\psi(3770) (ψ(4040)\psi(4040), ψ(4160)\psi(4160), ψ(4415)\psi(4415)) masses. At the threshold energy P\mid\vec{P}\mid in Eq. (32) equals zero, but P\mid\vec{P}^{~{}\prime}\mid does not. The cross section is thus infinite at the threshold energy. The cross sections in Figs. 3-12 are plotted as functions of s\sqrt{s} which equals or is larger than the threshold energy plus 5×1045\times 10^{-4} GeV.

The reactions considered in the present work are all exothermic. When s\sqrt{s} increases from threshold, the cross sections decrease rapidly, and then change slowly. In the slowly-changing region the cross sections may be tens of millibarns. For example, the cross sections for pψ(3770)Σc++Dp\psi(3770)\to\Sigma_{c}^{++}D^{*-}, pψ(4040)Λc+D¯0p\psi(4040)\to\Lambda_{c}^{+}\bar{D}^{*0}, pψ(4160)Σc++Dp\psi(4160)\to\Sigma_{c}^{++}D^{*-}, and pψ(4415)Λc+D¯0p\psi(4415)\to\Lambda_{c}^{+}\bar{D}^{*0} can reach 20 mb, 30 mb, 21 mb, and 15 mb, respectively. According to the quantum numbers of ψ(3770)\psi(3770), ψ(4040)\psi(4040), ψ(4160)\psi(4160), and ψ(4415)\psi(4415) mesons, the numbers of their radial nodes are 0, 2, 1, and 3, respectively. If there is a node in the radial wave function RLB(rcc¯)R_{L_{B}}(r_{c\bar{c}}), cancellation between the wave functions on both sides of the node occurs in the integration involved in the transition amplitudes, thus cross sections are reduced. The ψ(4040)\psi(4040) mass is near the ψ(4160)\psi(4160) mass. Since the ψ(4040)\psi(4040) meson has one node more than the ψ(4160)\psi(4160) meson, the integration related to ψ(4040)\psi(4040) should have more cancellation than that related to ψ(4160)\psi(4160). However, the wave function of ψ(4160)\psi(4160) contains the spherical harmonics Y2MBY_{2M_{B}} (MB=2,1,0,1,2M_{B}=-2,-1,0,1,2), and the wave function of ψ(4040)\psi(4040) contains the constant spherical harmonics Y00Y_{00}. Then, the integration related to ψ(4160)\psi(4160) may have more cancellation than that related to ψ(4040)\psi(4040). Therefore, at the threshold energy plus 5×1045\times 10^{-4} GeV, the cross sections for p+ψ(4040)p+\psi(4040) reactions are larger in Fig. 3 and Fig. 7 or smaller in Figs. 4-6 and Figs. 8-12 than the ones for p+ψ(4160)p+\psi(4160) reactions.

The mesonic quark-antiquark relative-motion wave functions are decreasing functions of the quark-antiquark relative momentum. ϕAspace(pρ,pλ)\phi_{A\rm space}(\vec{p}_{\rho},\vec{p}_{\lambda}) (ϕCspace(pρ,pλ)\phi_{C\rm space}(\vec{p}_{\rho}^{~{}\prime},\vec{p}_{\lambda}^{~{}\prime})) in the transition amplitudes is an exponentially decreasing function of pρ\vec{p}_{\rho} and pλ\vec{p}_{\lambda} (pρ\vec{p}_{\rho}^{~{}\prime} and pλ\vec{p}_{\lambda}^{~{}\prime}). The quark-antiquark relative momenta, pρ\vec{p}_{\rho}, pλ\vec{p}_{\lambda}, pρ\vec{p}_{\rho}^{~{}\prime}, and pλ\vec{p}_{\lambda}^{~{}\prime}, are given by the expressions enclosed by the parentheses that follow ϕBJBJBz\phi_{BJ_{B}J_{Bz}}, ϕDrel\phi_{D\rm rel}, ϕAspace\phi_{A\rm space}, and ϕCspace\phi_{C\rm space} in Eqs. (30) and (31). These expressions may have pq1q2q3,cc¯\vec{p}_{q_{1}q_{2}q_{3},c\bar{c}} and pq1q2c,q3c¯\vec{p}_{q_{1}q_{2}c,q_{3}\bar{c}}^{~{}\prime}. In the center-of-momentum frame of the proton and the charmonium, pq1q2q3,cc¯\vec{p}_{q_{1}q_{2}q_{3},c\bar{c}} and pq1q2c,q3c¯\vec{p}_{q_{1}q_{2}c,q_{3}\bar{c}}^{~{}\prime} equal P\vec{P} and P\vec{P}^{\prime}, respectively. Therefore, the quark-antiquark relative momenta, pρ\vec{p}_{\rho}, pλ\vec{p}_{\lambda}, pρ\vec{p}_{\rho}^{~{}\prime}, and pλ\vec{p}_{\lambda}^{~{}\prime}, bear linear relation to P\vec{P} and P\vec{P}^{\prime}. At the threshold energy plus 5×1045\times 10^{-4} GeV, P\mid\vec{P}\mid almost equals zero, and P\mid\vec{P}^{\prime}\mid of any p+ψ(3770)p+\psi(3770) reaction is smaller than P\mid\vec{P}^{\prime}\mid of p+ψ(4040)p+\psi(4040), p+ψ(4160)p+\psi(4160), and p+ψ(4415)p+\psi(4415) reactions with the same final charmed baryon and the same final charmed meson in any of Figs. 3-12. The transition amplitudes for the p+ψ(3770)p+\psi(3770) reaction are larger than those for the p+ψ(4040)p+\psi(4040), p+ψ(4160)p+\psi(4160), and p+ψ(4415)p+\psi(4415) reactions. Therefore, at the threshold energy plus 5×1045\times 10^{-4} GeV, the cross section for pψ(3770)Λc+D¯0p\psi(3770)\to\Lambda_{c}^{+}\bar{D}^{0} in Fig. 3 is larger than those for pψ(4040)Λc+D¯0p\psi(4040)\to\Lambda_{c}^{+}\bar{D}^{0}, pψ(4160)Λc+D¯0p\psi(4160)\to\Lambda_{c}^{+}\bar{D}^{0}, and pψ(4415)Λc+D¯0p\psi(4415)\to\Lambda_{c}^{+}\bar{D}^{0}; similar results are displayed in Figs. 4-12. From the ten figures we can also understand that the cross sections for p+ψ(4160)p+\psi(4160) reactions at the threshold energy plus 5×1045\times 10^{-4} GeV are larger than the ones for p+ψ(4415)p+\psi(4415) reactions.

The measured proton mass has a very small uncertainty, and the uncertainty is neglected here. The measured masses of charmed baryons have uncertainties [31], for example, the Λc+\Lambda_{c}^{+} mass has an error of 0.14 MeV. The measured mass of every charmed baryon has a maximum and a minimum, for example, the Λc+\Lambda_{c}^{+} mass has the maximum mass 2286.60 MeV and the minimum mass 2286.32 MeV. Fits to the maximum experimental masses of Λc+\Lambda_{c}^{+}, Σc++\Sigma_{c}^{++}, Σc+\Sigma_{c}^{+}, Σc++\Sigma_{c}^{*++}, and Σc+\Sigma_{c}^{*+} baryons give αλf=0.43\alpha_{\lambda_{\rm f}}=0.43 GeV and

αρ=0.222571GeV,mΛc+=2.28660GeV;\alpha_{\rho}=0.222571~{}{\rm GeV},~{}~{}~{}~{}~{}~{}{m_{\Lambda_{c}^{+}}=2.28660~{}{\rm GeV};}
αρ=0.196254GeV,mΣc++=2.45411GeV;\alpha_{\rho}=0.196254~{}{\rm GeV},~{}~{}~{}~{}~{}~{}{m_{\Sigma_{c}^{++}}=2.45411~{}{\rm GeV};}
αρ=0.196365GeV,mΣc+=2.4533GeV;\alpha_{\rho}=0.196365~{}{\rm GeV},~{}~{}~{}~{}~{}~{}{m_{\Sigma_{c}^{+}}=2.4533~{}{\rm GeV};}
αρ=0.190894GeV,mΣc++=2.51862GeV;\alpha_{\rho}=0.190894~{}{\rm GeV},~{}~{}~{}~{}~{}~{}{m_{\Sigma_{c}^{*++}}=2.51862~{}{\rm GeV};}
αρ=0.19076GeV,mΣc+=2.5198GeV.\alpha_{\rho}=0.19076~{}{\rm GeV},~{}~{}~{}~{}~{}~{}{m_{\Sigma_{c}^{*+}}=2.5198~{}{\rm GeV}.}

Using these values of αρ\alpha_{\rho} and αλf\alpha_{\lambda_{\rm f}}, we obtain unpolarized cross sections which are denoted as σlmunpol\sigma_{\rm lm}^{\rm unpol}. The differences between σlmunpol\sigma_{\rm lm}^{\rm unpol} and σunpol\sigma^{\rm unpol} shown in Figs. 3-12 are plotted as the lower solid, dashed, dotted, and dot-dashed curves in Figs. 13-22. Fits to the minimum experimental masses of Λc+\Lambda_{c}^{+}, Σc++\Sigma_{c}^{++}, Σc+\Sigma_{c}^{+}, Σc++\Sigma_{c}^{*++}, and Σc+\Sigma_{c}^{*+} baryons give αλf=0.43\alpha_{\lambda_{\rm f}}=0.43 GeV and

αρ=0.222617GeV,mΛc+=2.28632GeV;\alpha_{\rho}=0.222617~{}{\rm GeV},~{}~{}~{}~{}~{}~{}{m_{\Lambda_{c}^{+}}=2.28632~{}{\rm GeV};}
αρ=0.196292GeV,mΣc++=2.45383GeV;\alpha_{\rho}=0.196292~{}{\rm GeV},~{}~{}~{}~{}~{}~{}{m_{\Sigma_{c}^{++}}=2.45383~{}{\rm GeV};}
αρ=0.196475GeV,mΣc+=2.4525GeV;\alpha_{\rho}=0.196475~{}{\rm GeV},~{}~{}~{}~{}~{}~{}{m_{\Sigma_{c}^{+}}=2.4525~{}{\rm GeV};}
αρ=0.190946GeV,mΣc++=2.51822GeV;\alpha_{\rho}=0.190946~{}{\rm GeV},~{}~{}~{}~{}~{}~{}{m_{\Sigma_{c}^{*++}}=2.51822~{}{\rm GeV};}
αρ=0.19136GeV,mΣc+=2.5152GeV.\alpha_{\rho}=0.19136~{}{\rm GeV},~{}~{}~{}~{}~{}~{}{m_{\Sigma_{c}^{*+}}=2.5152~{}{\rm GeV}.}

Using these values of αρ\alpha_{\rho} and αλf\alpha_{\lambda_{\rm f}}, we obtain unpolarized cross sections which are denoted as σsmunpol\sigma_{\rm sm}^{\rm unpol}. The differences between σsmunpol\sigma_{\rm sm}^{\rm unpol} and σunpol\sigma^{\rm unpol} are plotted as the upper solid, dashed, dotted, and dot-dashed curves in Figs. 13-22. In every figure the orange (green, red, blue) band between the lower and upper solid (dashed, dotted, dot-dashed) curves show uncertainties of the unpolarized cross sections, which are labeled as σuncer\sigma_{\rm uncer} and are caused by the uncertainties of the αρ\alpha_{\rho} value. However, the cross-section uncertainties are too small to be shown if the bands are attached to those curves in Figs. 3-12. The cross-section uncertainties are small because of the small uncertainties of the αρ\alpha_{\rho} values, which correspond to errors of measurement of the baryon masses.

In Refs. [1, 2, 3] ψ(3770)\psi(3770), ψ(4040)\psi(4040), ψ(4160)\psi(4160), and ψ(4415)\psi(4415) mesons are identified with the 13D11^{3}D_{1}, 33S13^{3}S_{1}, 23D12^{3}D_{1}, and 43S14^{3}S_{1} states of a charm quark and a charm antiquark. This identification is also true with the potential given in Eq. (33), and we then study inelastic scattering of a nucleon by the four cc¯c\bar{c} mesons in the present work. However, we note that the quantum states of ψ(3770)\psi(3770) and ψ(4415)\psi(4415) mesons are open to debate. The 13D11^{3}D_{1} cc¯c\bar{c} state of the ψ(3770)\psi(3770) meson is suggested to be mixed with the 23S12^{3}S_{1} cc¯c\bar{c} state in Ref. [35], and may contain a four-quark component with the up- and down-quarks and antiquarks in Ref. [36]. The ψ(4415)\psi(4415) meson may be a 53S15^{3}S_{1} cc¯c\bar{c} state given in the screened potential model [37], a 33D13^{3}D_{1} cc¯c\bar{c} state obtained with a quark potential derivd from a Lagrangian with chiral symmetry breaking in Ref. [38], or a cc¯c\bar{c} hybrid recognized in lattice calculations of meson masses [39], from the nonrelativistic reduction of the QCD Hamiltonian in the Coulomb gauge [40], and in the flux-tube model [41].

IV. SUMMARY

Flavor interchange between a nucleon and a cc¯c\bar{c} meson breaks the meson. According to the quark interchange mechanism, we have derived formulas of the transition amplitudes that include wave functions and constituent-constituent potentials. The transition amplitudes are used to calculate unpolarized cross sections for the reactions: pRΛc+D¯0pR\to\Lambda_{c}^{+}\bar{D}^{0}, pRΛc+D¯0pR\to\Lambda_{c}^{+}\bar{D}^{*0}, pRΣc++DpR\to\Sigma_{c}^{++}D^{-}, pRΣc++DpR\to\Sigma_{c}^{++}D^{*-}, pRΣc+D¯0pR\to\Sigma_{c}^{+}\bar{D}^{0}, pRΣc+D¯0pR\to\Sigma_{c}^{+}\bar{D}^{*0}, pRΣc++DpR\to\Sigma_{c}^{*++}D^{-}, pRΣc++DpR\to\Sigma_{c}^{*++}D^{*-}, pRΣc+D¯0pR\to\Sigma_{c}^{*+}\bar{D}^{0}, and pRΣc+D¯0pR\to\Sigma_{c}^{*+}\bar{D}^{*0}, where RR represents ψ(3770)\psi(3770), ψ(4040)\psi(4040), ψ(4160)\psi(4160), or ψ(4415)\psi(4415). These reactions are exothermic, and the s\sqrt{s} dependence of their cross sections is so that the cross sections decrease rapidly near threshold and change slowly when the center-of-mass energy of the nucleon and the cc¯c\bar{c} meson is not close to threshold. In the slowly-changing region the cross sections may be tens of millibarns. The cross sections also depend on nodes in the radial wave functions of the cc¯c\bar{c} mesons. Numerical cross sections are parametrized. Cross sections for reactions of a neutron and a cc¯c\bar{c} meson are obtained from those of a proton and the cc¯c\bar{c} meson.

ACKNOWLEDGEMENTS

This work was supported by the project STRONG-2020 of European Center for Theoretical Studies in Nuclear Physics and Related Areas.

References

  • [1] S. Godfrey and N. Isgur, Mesons in a relativized quark model with chromodynamics, Phys. Rev. D 32, 189 (1985).
  • [2] T. Barnes, S. Godfrey, and E. S. Swanson, Higher charmonia, Phys. Rev. D 72, 054026 (2005).
  • [3] J. Vijande, F. Ferna´\acute{\rm a}ndez, and A. Valcarce, Constituent quark model study of the meson spectra, J. Phys. G 31, 481 (2005); P. G. Ortega, J. Segovia, D. R. Entem, and F. Ferna´\acute{\rm a}ndez, Charmonium resonances in the 3.9 GeV/c2\rm{GeV}/c^{2} energy region and the  X(3915)/X(3930)X(3915)/X(3930)  puzzle, Phys. Lett. B 778, 1 (2018).
  • [4] J. Siegrist et al., Observation of a resonance at 4.4 GeV and additional structure near 4.1 GeV in  e+ee^{+}e^{-}  annihilation, Phys. Rev. Lett. 36, 700 (1976); P. A. Rapidis et al., Observation of a resonance in  e+ee^{+}e^{-}  annihilation just above charm threshold, Phys. Rev. Lett. 39, 526 (1977).
  • [5] R. H. Schindler et al., Measurement of the parameters of the ψ(3770)\psi(3770) resonance, Phys. Rev. D 21, 2716 (1980).
  • [6] R. Brandelik et al., Total cross section for hadron production by  e+ee^{+}e^{-}  annihilation at center of mass energies between 3.6 and 5.2 GeV, Phys. Lett. B 76, 361 (1978); R. Brandelik et al., Results from DASP on  e+ee^{+}e^{-} annihilation between 3.1 and 5.2 GeV, Z. Phys. C 1, 233 (1979).
  • [7] M. Ablikim et al., Determination of the ψ(3770)\psi(3770), ψ(4040)\psi(4040), ψ(4160)\psi(4160) and ψ(4415)\psi(4415) resonance parameters, Phys. Lett. B 660, 315 (2008).
  • [8] J. Z. Bai et al., Evidence of ψ(3770)\psi(3770) non-DD¯D\bar{D} decay to J/ψπ+πJ/\psi\pi^{+}\pi^{-}, Phys. Lett. B 605, 63 (2005).
  • [9] N. E. Adam et al., Observation of ψ(3770)ππJ/ψ\psi(3770)\to\pi\pi J/\psi and measurement of Γee[ψ(2S)]\varGamma_{ee}[\psi(2S)], Phys. Rev. Lett. 96, 082004 (2006).
  • [10] T. E. Coan et al., Charmonium decays of Y(4260)Y(4260), ψ(4160)\psi(4160), and ψ(4040)\psi(4040), Phys. Rev. Lett. 96, 162003 (2006).
  • [11] M. Ablikim et al., Observation of e+eηJ/ψe^{+}e^{-}\to\eta J/\psi at center-of-mass energy s=4.009GeV\sqrt{s}=4.009~{}\rm{GeV}, Phys. Rev. D 86, 071101 (2012).
  • [12] X. L. Wang et al., Observation of ψ(4040)\psi(4040) and ψ(4160)\psi(4160) decay into ηJ/ψ\eta J/\psi, Phys. Rev. D 87, 051101 (2013).
  • [13] Y. L. Han et al., Measurement of e+eγχcJe^{+}e^{-}\to\gamma\chi_{cJ} via initial state radiation at Belle, Phys. Rev. D 92, 012011 (2015).
  • [14] G. Pakhlova et al., Observation of the ψ(4415)DD¯2(2460)\psi(4415)\to D\bar{D}^{*}_{2}(2460) decay using initial-state radiation, Phys. Rev. Lett. 100, 062001 (2008).
  • [15] B. Aubert et al., Exclusive initial-state-radiation production of the DD¯D\bar{D}, DD¯D^{*}\bar{D}, and DD¯D^{*}\bar{D}^{*} systems, Phys. Rev. D 79, 092001 (2009).
  • [16] G. Pakhlova et al., Measurement of the e+eD0Dπ+e^{+}e^{-}\to D^{0}D^{*-}\pi^{+} cross section using initial-state radiation, Phys. Rev. D 80, 091101 (2009).
  • [17] P. del Amo Sanchez et al., Exclusive production of Ds+DsD_{s}^{+}D_{s}^{-}, Ds+DsD_{s}^{*+}D_{s}^{-}, and Ds+DsD_{s}^{*+}D_{s}^{*-} via e+ee^{+}e^{-} annihilation with initial-state radiation, Phys. Rev. D 82, 052004 (2010).
  • [18] G. Pakhlova et al., Measurement of e+eDs()+Ds()e^{+}e^{-}\to D_{s}^{(*)+}D_{s}^{(*)-} cross sections near threshold using initial-state radiation, Phys. Rev. D 83, 011101 (2011).
  • [19] T. K. Pedlar et al., Observation of the hc(1P)h_{c}(1P) using e+ee^{+}e^{-} collisions above the DD¯D\bar{D} threshold, Phys. Rev. Lett. 107, 041803 (2011).
  • [20] M. Ablikim et al., Observation of e+eωχc1,2e^{+}e^{-}\to\omega\chi_{c1,2} near s\sqrt{s} = 4.42 and 4.6 GeV, Phys. Rev. D 93, 011102 (2016).
  • [21] M. Ablikim et al., Measurement of cross sections for e+eμ+μe^{+}e^{-}\to\mu^{+}\mu^{-} at center-of-mass energies from 3.80 to 4.60 GeV, Phys. Rev. D 102, 112009 (2020).
  • [22] M. Ablikim et al., Measurement of the cross section for e+eΛΛ¯e^{+}e^{-}\to\Lambda\bar{\Lambda} and evidence of the decay ψ(3770)ΛΛ¯\psi(3770)\to\Lambda\bar{\Lambda}, Phys. Rev. D 104, L091104 (2021).
  • [23] L.-K. Hao, K.-Y. Liu, and K.-T. Chao, DD-wave charmonium production in e+ee^{+}e^{-} annihilation at s\sqrt{s} = 10.6 GeV, Phys. Lett. B 546, 216 (2002).
  • [24] M. Piotrowska, F. Giacosa, and P. Kovacs, Can the ψ(4040)\psi(4040) explain the peak associated with Y(4008)Y(4008), Eur. Phys. J. C 79, 98 (2019).
  • [25] M. Bayar, N. Ikeno, and E. Oset, Analysis of the ψ(4040)\psi(4040) and ψ(4160)\psi(4160) decay into D()D¯()D^{(*)}\bar{D}^{(*)}, Ds()D¯s()D^{(*)}_{s}\bar{D}^{(*)}_{s} , Eur. Phys. J. C 80, 222 (2020).
  • [26] W.-X. Li, X.-M. Xu, and H. J. Weber, Cross sections for 2-to-1 meson-meson scattering, Eur. Phys. J. C 81, 225 (2021).
  • [27] L.-Y. Li, X.-M. Xu, and H. J. Weber, Production of ψ(4040)\psi(4040), ψ(4160)\psi(4160), and ψ(4415)\psi(4415) mesons in hadronic matter, Phys. Rev. D 105, 114025 (2022).
  • [28] F. Yuan, C.-F. Qiao, and K.-T. Chao, DD-wave heavy quarkonium production in fixed target experiments, Phys. Rev. D 59, 014009 (1998).
  • [29] W. Buchmüller and S.-H. H. Tye, Quarkonia and quantum chromodynamics, Phys. Rev. D 24, 132 (1981).
  • [30] X.-M. Xu, J/ψJ/\psi productions in nucleus-nucleus collisions at RHIC and LHC energies, Nucl. Phys. A 697, 825 (2002).
  • [31] M. Tanabashi et al. (Particle Data Group), Review of particle physics: particle data groups, Phys. Rev. D 98, 030001 (2018) and 2019 update.
  • [32] E. Colton, E. Malamud, P. E. Schlein, A. D. Johnson, V. J. Stenger, and P. G. Wohlmut, Measurement of TT = 2 elastic ππ\pi\pi cross sections, Phys. Rev. D 3, 2028 (1971); N. B. Durusoy, M. Baubillier, R. George, M. Goldberg, A. M. Touchard, N. Armenise, M. T. Fogli-Muciaccia, and A. Silvestri, Study of the II = 2 ππ\pi\pi scattering from the reaction πdππpsp\pi^{-}d\to\pi^{-}\pi^{-}p_{s}p at 9.0 GeV/c, Phys. Lett. 45 B, 517 (1973); M. J. Losty, V. Chaloupka, A. Ferrando, L. Montanet, E. Paul, D. Yaffe, A. Zieminski, J. Alitti, B. Gandois, and J. Louie, A study of ππ\pi^{-}\pi^{-} scattering from πp\pi^{-}p interactions at 3.93 GeV/c, Nucl. Phys. B 69, 185 (1974); W. Hoogland et al., Measurement and analysis of the π+π+\pi^{+}\pi^{+} system produced at small momentum transfer in the reaction π+pπ+π+n\pi^{+}p\to\pi^{+}\pi^{+}n at 12.5 GeV, Nucl. Phys. B 126, 109 (1977).
  • [33] S. Capstick and N. Isgur, Baryons in a relativized quark model with chromodynamics, Phys. Rev. D 34, 2809 (1986).
  • [34] J. P. Hilbert, N. Black, T. Barnes, and E. S. Swanson, Charmonium-nucleon dissociation cross sections in the quark model, Phys. Rev. C 75, 064907 (2007).
  • [35] J. L. Rosner, Status of ψ′′\psi^{\prime\prime} decays to charmless final states, hep-ph/0405196; J. L. Rosner, ψ′′\psi^{\prime\prime} decays to charmless final states, Ann. Phys. (N.Y.) 319, 1 (2005).
  • [36] M. B. Voloshin, c¯c\bar{c}c purity of ψ(3770)\psi(3770) and ψ\psi^{\prime} challenged, Phys. Rev. D 71, 114003 (2005).
  • [37] B.-Q. Li and K.-T. Chao, Higher charmonia and XX, YY, ZZ states with screened potential, Phys. Rev. D 79, 094004 (2009).
  • [38] J. Segovia, A. M. Yasser, D. R. Entem, and F. Fernández, JPC=1J^{PC}=1^{--} hidden charm resonances, Phys. Rev. D 78, 114033 (2008).
  • [39] C. W. Bernard, J. E. Hetrick, T. A. DeGrand, M. Wingate, C. DeTar, C. McNeile, S. Gottlieb, U. M. Heller, K. Rummukainen, B. Sugar, and D. Toussaint, Exotic mesons in quenched lattice QCD, Phys. Rev. D 56, 7039 (1997); Z. H. Mei and X. Q. Luo, Exotic mesons from quantum chromodynamics with improved gluon and quark actions on the anisotropic lattice, Int. J. Mod. Phys. A 18, 5713 (2003).
  • [40] P. Guo, A. P. Szczepaniak, G. Galata`\grave{\rm a}, A. Vassallo, and E. Santopinto, Heavy quarkonium hybrids from Coulomb gauge QCD, Phys. Rev. D 78, 056003 (2008).
  • [41] N. Isgur, R. Kokoski, and J. Paton, Gluonic excitations of mesons: why they are missing and where to find them, Phys. Rev. Lett. 54, 869 (1985).
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 1: Scattering in the prior form. Solid lines with triangles right (left) represent quarks (antiquarks). Dot-dashed lines indicate interactions.
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 2: Scattering in the post form. Solid lines with triangles right (left) represent quarks (antiquarks). Dot-dashed lines indicate interactions.
Refer to caption
Figure 3: Solid, dashed, dotted, and dot-dashed curves stand for cross sections for pψ(3770)Λc+D¯0p\psi(3770)\to\Lambda_{c}^{+}\bar{D}^{0}, pψ(4040)Λc+D¯0p\psi(4040)\to\Lambda_{c}^{+}\bar{D}^{0}, pψ(4160)Λc+D¯0p\psi(4160)\to\Lambda_{c}^{+}\bar{D}^{0}, and pψ(4415)Λc+D¯0p\psi(4415)\to\Lambda_{c}^{+}\bar{D}^{0}, respectively.
Refer to caption
Figure 4: Solid, dashed, dotted, and dot-dashed curves stand for cross sections for pψ(3770)Λc+D¯0p\psi(3770)\to\Lambda_{c}^{+}\bar{D}^{*0}, pψ(4040)Λc+D¯0p\psi(4040)\to\Lambda_{c}^{+}\bar{D}^{*0}, pψ(4160)Λc+D¯0p\psi(4160)\to\Lambda_{c}^{+}\bar{D}^{*0}, and pψ(4415)Λc+D¯0p\psi(4415)\to\Lambda_{c}^{+}\bar{D}^{*0}, respectively.
Refer to caption
Figure 5: Solid, dashed, dotted, and dot-dashed curves stand for cross sections for pψ(3770)Σc++Dp\psi(3770)\to\Sigma_{c}^{++}D^{-}, pψ(4040)Σc++Dp\psi(4040)\to\Sigma_{c}^{++}D^{-}, pψ(4160)Σc++Dp\psi(4160)\to\Sigma_{c}^{++}D^{-}, and pψ(4415)Σc++Dp\psi(4415)\to\Sigma_{c}^{++}D^{-}, respectively.
Refer to caption
Figure 6: Solid, dashed, dotted, and dot-dashed curves stand for cross sections for pψ(3770)Σc++Dp\psi(3770)\to\Sigma_{c}^{++}D^{*-}, pψ(4040)Σc++Dp\psi(4040)\to\Sigma_{c}^{++}D^{*-}, pψ(4160)Σc++Dp\psi(4160)\to\Sigma_{c}^{++}D^{*-}, and pψ(4415)Σc++Dp\psi(4415)\to\Sigma_{c}^{++}D^{*-}, respectively.
Refer to caption
Figure 7: Solid, dashed, dotted, and dot-dashed curves stand for cross sections for pψ(3770)Σc+D¯0p\psi(3770)\to\Sigma_{c}^{+}\bar{D}^{0}, pψ(4040)Σc+D¯0p\psi(4040)\to\Sigma_{c}^{+}\bar{D}^{0}, pψ(4160)Σc+D¯0p\psi(4160)\to\Sigma_{c}^{+}\bar{D}^{0}, and pψ(4415)Σc+D¯0p\psi(4415)\to\Sigma_{c}^{+}\bar{D}^{0}, respectively.
Refer to caption
Figure 8: Solid, dashed, dotted, and dot-dashed curves stand for cross sections for pψ(3770)Σc+D¯0p\psi(3770)\to\Sigma_{c}^{+}\bar{D}^{*0}, pψ(4040)Σc+D¯0p\psi(4040)\to\Sigma_{c}^{+}\bar{D}^{*0}, pψ(4160)Σc+D¯0p\psi(4160)\to\Sigma_{c}^{+}\bar{D}^{*0}, and pψ(4415)Σc+D¯0p\psi(4415)\to\Sigma_{c}^{+}\bar{D}^{*0}, respectively.
Refer to caption
Figure 9: Solid, dashed, dotted, and dot-dashed curves stand for cross sections for pψ(3770)Σc++Dp\psi(3770)\to\Sigma_{c}^{*++}D^{-}, pψ(4040)Σc++Dp\psi(4040)\to\Sigma_{c}^{*++}D^{-}, pψ(4160)Σc++Dp\psi(4160)\to\Sigma_{c}^{*++}D^{-}, and pψ(4415)Σc++Dp\psi(4415)\to\Sigma_{c}^{*++}D^{-}, respectively.
Refer to caption
Figure 10: Solid, dashed, dotted, and dot-dashed curves stand for cross sections for pψ(3770)Σc++Dp\psi(3770)\to\Sigma_{c}^{*++}D^{*-}, pψ(4040)Σc++Dp\psi(4040)\to\Sigma_{c}^{*++}D^{*-}, pψ(4160)Σc++Dp\psi(4160)\to\Sigma_{c}^{*++}D^{*-}, and pψ(4415)Σc++Dp\psi(4415)\to\Sigma_{c}^{*++}D^{*-}, respectively.
Refer to caption
Figure 11: Solid, dashed, dotted, and dot-dashed curves stand for cross sections for pψ(3770)Σc+D¯0p\psi(3770)\to\Sigma_{c}^{*+}\bar{D}^{0}, pψ(4040)Σc+D¯0p\psi(4040)\to\Sigma_{c}^{*+}\bar{D}^{0}, pψ(4160)Σc+D¯0p\psi(4160)\to\Sigma_{c}^{*+}\bar{D}^{0}, and pψ(4415)Σc+D¯0p\psi(4415)\to\Sigma_{c}^{*+}\bar{D}^{0}, respectively.
Refer to caption
Figure 12: Solid, dashed, dotted, and dot-dashed curves stand for cross sections for pψ(3770)Σc+D¯0p\psi(3770)\to\Sigma_{c}^{*+}\bar{D}^{*0}, pψ(4040)Σc+D¯0p\psi(4040)\to\Sigma_{c}^{*+}\bar{D}^{*0}, pψ(4160)Σc+D¯0p\psi(4160)\to\Sigma_{c}^{*+}\bar{D}^{*0}, and pψ(4415)Σc+D¯0p\psi(4415)\to\Sigma_{c}^{*+}\bar{D}^{*0}, respectively.
Refer to caption
Figure 13: The error band between the two solid (dashed, dotted, and dot-dashed) curves indicates uncertainties of the unpolarized cross sections for pψ(3770)Λc+D¯0p\psi(3770)\to\Lambda_{c}^{+}\bar{D}^{0} (pψ(4040)Λc+D¯0p\psi(4040)\to\Lambda_{c}^{+}\bar{D}^{0}, pψ(4160)Λc+D¯0p\psi(4160)\to\Lambda_{c}^{+}\bar{D}^{0}, and pψ(4415)Λc+D¯0p\psi(4415)\to\Lambda_{c}^{+}\bar{D}^{0}).
Refer to caption
Figure 14: The error band between the two solid (dashed, dotted, and dot-dashed) curves indicates uncertainties of the unpolarized cross sections for pψ(3770)Λc+D¯0p\psi(3770)\to\Lambda_{c}^{+}\bar{D}^{*0} (pψ(4040)Λc+D¯0p\psi(4040)\to\Lambda_{c}^{+}\bar{D}^{*0}, pψ(4160)Λc+D¯0p\psi(4160)\to\Lambda_{c}^{+}\bar{D}^{*0}, and pψ(4415)Λc+D¯0p\psi(4415)\to\Lambda_{c}^{+}\bar{D}^{*0}).
Refer to caption
Figure 15: The error band between the two solid (dashed, dotted, and dot-dashed) curves indicates uncertainties of the unpolarized cross sections for pψ(3770)Σc++Dp\psi(3770)\to\Sigma_{c}^{++}D^{-} (pψ(4040)Σc++Dp\psi(4040)\to\Sigma_{c}^{++}D^{-}, pψ(4160)Σc++Dp\psi(4160)\to\Sigma_{c}^{++}D^{-}, and pψ(4415)Σc++Dp\psi(4415)\to\Sigma_{c}^{++}D^{-}).
Refer to caption
Figure 16: The error band between the two solid (dashed, dotted, and dot-dashed) curves indicates uncertainties of the unpolarized cross sections for pψ(3770)Σc++Dp\psi(3770)\to\Sigma_{c}^{++}D^{*-} (pψ(4040)Σc++Dp\psi(4040)\to\Sigma_{c}^{++}D^{*-}, pψ(4160)Σc++Dp\psi(4160)\to\Sigma_{c}^{++}D^{*-}, and pψ(4415)Σc++Dp\psi(4415)\to\Sigma_{c}^{++}D^{*-}).
Refer to caption
Figure 17: The error band between the two solid (dashed, dotted, and dot-dashed) curves indicates uncertainties of the unpolarized cross sections for pψ(3770)Σc+D¯0p\psi(3770)\to\Sigma_{c}^{+}\bar{D}^{0} (pψ(4040)Σc+D¯0p\psi(4040)\to\Sigma_{c}^{+}\bar{D}^{0}, pψ(4160)Σc+D¯0p\psi(4160)\to\Sigma_{c}^{+}\bar{D}^{0}, and pψ(4415)Σc+D¯0p\psi(4415)\to\Sigma_{c}^{+}\bar{D}^{0}).
Refer to caption
Figure 18: The error band between the two solid (dashed, dotted, and dot-dashed) curves indicates uncertainties of the unpolarized cross sections for pψ(3770)Σc+D¯0p\psi(3770)\to\Sigma_{c}^{+}\bar{D}^{*0} (pψ(4040)Σc+D¯0p\psi(4040)\to\Sigma_{c}^{+}\bar{D}^{*0}, pψ(4160)Σc+D¯0p\psi(4160)\to\Sigma_{c}^{+}\bar{D}^{*0}, and pψ(4415)Σc+D¯0p\psi(4415)\to\Sigma_{c}^{+}\bar{D}^{*0}).
Refer to caption
Figure 19: The error band between the two solid (dashed, dotted, and dot-dashed) curves indicates uncertainties of the unpolarized cross sections for pψ(3770)Σc++Dp\psi(3770)\to\Sigma_{c}^{*++}D^{-} (pψ(4040)Σc++Dp\psi(4040)\to\Sigma_{c}^{*++}D^{-}, pψ(4160)Σc++Dp\psi(4160)\to\Sigma_{c}^{*++}D^{-}, and pψ(4415)Σc++Dp\psi(4415)\to\Sigma_{c}^{*++}D^{-}).
Refer to caption
Figure 20: The error band between the two solid (dashed, dotted, and dot-dashed) curves indicates uncertainties of the unpolarized cross sections for pψ(3770)Σc++Dp\psi(3770)\to\Sigma_{c}^{*++}D^{*-} (pψ(4040)Σc++Dp\psi(4040)\to\Sigma_{c}^{*++}D^{*-}, pψ(4160)Σc++Dp\psi(4160)\to\Sigma_{c}^{*++}D^{*-}, and pψ(4415)Σc++Dp\psi(4415)\to\Sigma_{c}^{*++}D^{*-}).
Refer to caption
Figure 21: The error band between the two solid (dashed, dotted, and dot-dashed) curves indicates uncertainties of the unpolarized cross sections for pψ(3770)Σc+D¯0p\psi(3770)\to\Sigma_{c}^{*+}\bar{D}^{0} (pψ(4040)Σc+D¯0p\psi(4040)\to\Sigma_{c}^{*+}\bar{D}^{0}, pψ(4160)Σc+D¯0p\psi(4160)\to\Sigma_{c}^{*+}\bar{D}^{0}, and pψ(4415)Σc+D¯0p\psi(4415)\to\Sigma_{c}^{*+}\bar{D}^{0}).
Refer to caption
Figure 22: The error band between the two solid (dashed, dotted, and dot-dashed) curves indicates uncertainties of the unpolarized cross sections for pψ(3770)Σc+D¯0p\psi(3770)\to\Sigma_{c}^{*+}\bar{D}^{*0} (pψ(4040)Σc+D¯0p\psi(4040)\to\Sigma_{c}^{*+}\bar{D}^{*0}, pψ(4160)Σc+D¯0p\psi(4160)\to\Sigma_{c}^{*+}\bar{D}^{*0}, and pψ(4415)Σc+D¯0p\psi(4415)\to\Sigma_{c}^{*+}\bar{D}^{*0}).
Table 1: Values of the parameters. a1a_{1} and a2a_{2} are in units of millibarns; b1b_{1} and b2b_{2} are in units of GeV; c1c_{1} and c2c_{2} are dimensionless.
reaction a1a_{1} b1b_{1} c1c_{1} a2a_{2} b2b_{2} c2c_{2}
pψ(3770)Λc+D¯0p\psi(3770)\to\Lambda_{c}^{+}\bar{D}^{0} 0.13 0.01 0.51 0.23 0.09 1.08
pψ(4040)Λc+D¯0p\psi(4040)\to\Lambda_{c}^{+}\bar{D}^{0} 0.065 0.068 0.41 0.017 0.18 62.4
pψ(4160)Λc+D¯0p\psi(4160)\to\Lambda_{c}^{+}\bar{D}^{0} 0.026 0.032 0.55 0.018 0.18 4.67
pψ(4415)Λc+D¯0p\psi(4415)\to\Lambda_{c}^{+}\bar{D}^{0} 0.0164 0.08 0.42 0.005 0.07 11.7
pψ(3770)Λc+D¯0p\psi(3770)\to\Lambda_{c}^{+}\bar{D}^{*0} 6.4 0.03 0.54 3.18 0.18 4.15
pψ(4040)Λc+D¯0p\psi(4040)\to\Lambda_{c}^{+}\bar{D}^{*0} 0.14 0.31 1.15 1.12 0.06 0.47
pψ(4160)Λc+D¯0p\psi(4160)\to\Lambda_{c}^{+}\bar{D}^{*0} 0.58 0.02 0.54 0.66 0.12 2.35
pψ(4415)Λc+D¯0p\psi(4415)\to\Lambda_{c}^{+}\bar{D}^{*0} 0.034 0.02 0.08 0.3 0.08 0.65
pψ(3770)Σc++Dp\psi(3770)\to\Sigma_{c}^{++}D^{-} 0.017 0.07 0.93 0.021 0.05 0.35
pψ(4040)Σc++Dp\psi(4040)\to\Sigma_{c}^{++}D^{-} 0.0067 0.071 0.51 0.004 0.19 38.6
pψ(4160)Σc++Dp\psi(4160)\to\Sigma_{c}^{++}D^{-} 0.0012 0.01 0.35 0.0042 0.08 0.66
pψ(4415)Σc++Dp\psi(4415)\to\Sigma_{c}^{++}D^{-} 0.0013 0.024 0.58 0.0022 0.168 4.29
pψ(3770)Σc++Dp\psi(3770)\to\Sigma_{c}^{++}D^{*-} 0.012 0.04 0.01 5.4 0.058 0.48
pψ(4040)Σc++Dp\psi(4040)\to\Sigma_{c}^{++}D^{*-} 0.34 0.03 0.64 0.53 0.19 2.33
pψ(4160)Σc++Dp\psi(4160)\to\Sigma_{c}^{++}D^{*-} 0.13 0.017 5.92 0.85 0.058 0.5
pψ(4415)Σc++Dp\psi(4415)\to\Sigma_{c}^{++}D^{*-} 0.007 0.0025 0.01 0.27 0.079 0.6
pψ(3770)Σc+D¯0p\psi(3770)\to\Sigma_{c}^{+}\bar{D}^{0} 0.005 0.1 0.38 0.014 0.04 0.47
pψ(4040)Σc+D¯0p\psi(4040)\to\Sigma_{c}^{+}\bar{D}^{0} 0.0009 0.01 0.29 0.0033 0.12 1.6
pψ(4160)Σc+D¯0p\psi(4160)\to\Sigma_{c}^{+}\bar{D}^{0} 0.00112 0.16 2.11 0.002 0.03 0.49
pψ(4415)Σc+D¯0p\psi(4415)\to\Sigma_{c}^{+}\bar{D}^{0} 0.0008 0.07 0.437 0.0006 0.162 9.3
Table 2: The same as Table 1, but for twenty other reactions.
reaction a1a_{1} b1b_{1} c1c_{1} a2a_{2} b2b_{2} c2c_{2}
pψ(3770)Σc+D¯0p\psi(3770)\to\Sigma_{c}^{+}\bar{D}^{*0} 1.4 0.01 0.52 2.6 0.1 1.21
pψ(4040)Σc+D¯0p\psi(4040)\to\Sigma_{c}^{+}\bar{D}^{*0} 0.041 0.0035 0.53 0.39 0.117 1.16
pψ(4160)Σc+D¯0p\psi(4160)\to\Sigma_{c}^{+}\bar{D}^{*0} 0.14 0.008 0.53 0.42 0.072 0.82
pψ(4415)Σc+D¯0p\psi(4415)\to\Sigma_{c}^{+}\bar{D}^{*0} 0.025 0.008 0.46 0.131 0.1 0.66
pψ(3770)Σc++Dp\psi(3770)\to\Sigma_{c}^{*++}D^{-} 0.06 0.03 0.85 0.29 0.06 0.43
pψ(4040)Σc++Dp\psi(4040)\to\Sigma_{c}^{*++}D^{-} 0.026 0.027 0.55 0.044 0.17 2.86
pψ(4160)Σc++Dp\psi(4160)\to\Sigma_{c}^{*++}D^{-} 0.0446 0.054 0.45 0.003 0.234 82.8
pψ(4415)Σc++Dp\psi(4415)\to\Sigma_{c}^{*++}D^{-} 0.0037 0.24 0.21 0.013 0.07 0.63
pψ(3770)Σc++Dp\psi(3770)\to\Sigma_{c}^{*++}D^{*-} 0.4 0.09 3.24 1 0.06 0.4
pψ(4040)Σc++Dp\psi(4040)\to\Sigma_{c}^{*++}D^{*-} 0.0058 0.0038 0.38 0.0967 0.158 1.34
pψ(4160)Σc++Dp\psi(4160)\to\Sigma_{c}^{*++}D^{*-} 0.05 0.02 0.61 0.17 0.08 0.52
pψ(4415)Σc++Dp\psi(4415)\to\Sigma_{c}^{*++}D^{*-} 0.034 0.059 2.62 0.038 0.29 0.32
pψ(3770)Σc+D¯0p\psi(3770)\to\Sigma_{c}^{*+}\bar{D}^{0} 0.005 0.013 9.57 0.178 0.059 0.49
pψ(4040)Σc+D¯0p\psi(4040)\to\Sigma_{c}^{*+}\bar{D}^{0} 0.012 0.212 8.38 0.021 0.066 0.45
pψ(4160)Σc+D¯0p\psi(4160)\to\Sigma_{c}^{*+}\bar{D}^{0} 0.0073 0.0161 1.5 0.019 0.061 0.4
pψ(4415)Σc+D¯0p\psi(4415)\to\Sigma_{c}^{*+}\bar{D}^{0} 0.0002 0.001 0.5 0.0082 0.08 0.57
pψ(3770)Σc+D¯0p\psi(3770)\to\Sigma_{c}^{*+}\bar{D}^{*0} 0.148 0.186 4.97 0.583 0.0477 0.514
pψ(4040)Σc+D¯0p\psi(4040)\to\Sigma_{c}^{*+}\bar{D}^{*0} 0.0057 0.008 0.55 0.065 0.164 2.08
pψ(4160)Σc+D¯0p\psi(4160)\to\Sigma_{c}^{*+}\bar{D}^{*0} 0.037 0.013 0.33 0.1 0.09 1.25
pψ(4415)Σc+D¯0p\psi(4415)\to\Sigma_{c}^{*+}\bar{D}^{*0} 0.003 0.014 0.18 0.026 0.1 0.71