This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Dissipative probability vector fields and generation of evolution semigroups in Wasserstein spaces

Giulia Cavagnari Giulia Cavagnari: Politecnico di Milano, Dipartimento di Matematica, Piazza Leonardo Da Vinci 32, 20133 Milano (Italy) [email protected] Giuseppe Savaré Giuseppe Savaré: Bocconi University, Department of Decision Sciences and BIDSA, Via Roentgen 1, 20136 Milano (Italy) [email protected]  and  Giacomo Enrico Sodini Giacomo Enrico Sodini: TUM Fakultät für Mathematik, Boltzmannstrasse 3, 85748 Garching bei München (Germany) [email protected]
Abstract.

We introduce and investigate a notion of multivalued λ\lambda-dissipative probability vector field (MPVF) in the Wasserstein space 𝒫2(𝖷)\mathcal{P}_{2}(\mathsf{X}) of Borel probability measures on a Hilbert space 𝖷\mathsf{X}. Taking inspiration from the theory of dissipative operators in Hilbert spaces and of Wasserstein gradient flows of geodesically convex functionals, we study local and global well posedness of evolution equations driven by dissipative MPVFs. Our approach is based on a measure-theoretic version of the Explicit Euler scheme, for which we prove novel convergence results with optimal error estimates under an abstract CFL stability condition, which do not rely on compactness arguments and also hold when 𝖷\mathsf{X} has infinite dimension.

We characterize the limit solutions by a suitable Evolution Variational Inequality (EVI), inspired by the Bénilan notion of integral solutions to dissipative evolutions in Banach spaces. Existence, uniqueness and stability of EVI solutions are then obtained under quite general assumptions, leading to the generation of a semigroup of nonlinear contractions.

Key words and phrases:
Measure differential equations/inclusions in Wasserstein spaces, probability vector fields, dissipative operators, evolution variational inequality, explicit Euler scheme.
1991 Mathematics Subject Classification:
Primary: 34A06, 34A45; Secondary: 34A12, 34A34, 34A60, 28A50

1. Introduction

The aim of this paper is to study the local and global well posedness of evolution equations for Borel probability measures driven by a suitable notion of probability vector fields in an Eulerian framework.

For the sake of simplicity, let us consider here a finite dimensional Euclidean space 𝖷\mathsf{X} with scalar product ,\langle\cdot,\cdot\rangle and norm |||\cdot| (our analysis however will not be confined to finite dimension and will be carried out in a separable Hilbert space) and the space 𝒫(𝖷)\mathcal{P}(\mathsf{X}) (resp. 𝒫b(𝖷)\mathcal{P}_{b}(\mathsf{X})) of Borel probability measures in 𝖷\mathsf{X} (resp. with bounded support).

A Cauchy-Lipschitz approach, via vector fields

A first notion of vector field can be described by maps 𝒃:𝒫b(𝖷)C(𝖷;𝖷)\boldsymbol{b}:\mathcal{P}_{b}(\mathsf{X})\to\mathrm{C}(\mathsf{X};\mathsf{X}), typically taking values in some subset of continuous vector fields in 𝖷\mathsf{X} (as the locally Lipschitz ones of Liploc(𝖷;𝖷)\mathrm{Lip}_{loc}(\mathsf{X};\mathsf{X})), and satisfying suitable growth-continuity conditions. In this respect, the evolution driven by 𝒃\boldsymbol{b} can be described by a continuous curve tμt𝒫b(𝖷)t\mapsto\mu_{t}\in\mathcal{P}_{b}(\mathsf{X}), t[0,T]t\in[0,T], starting from an initial measure μ0𝒫b(𝖷)\mu_{0}\in\mathcal{P}_{b}(\mathsf{X}) and satisfying the continuity equation

tμt+(𝒗tμt)\displaystyle\partial_{t}\mu_{t}+\nabla\cdot(\boldsymbol{v}_{t}\mu_{t}) =0\displaystyle=0 in (0,T)×𝖷,\displaystyle\text{in }(0,T)\times\mathsf{X}, (1.1a)
𝒗t\displaystyle\boldsymbol{v}_{t} =𝒃[μt]\displaystyle=\boldsymbol{b}[\mu_{t}] μt-a.e. for every t(0,T),\displaystyle\text{$\mu_{t}$-a.e.\leavevmode\nobreak\ for every $t\in(0,T)$}, (1.1b)

in the distributional sense, i.e.

0T𝖷(tζ+ζ,𝒗t)dμtdt=0,𝒗t=𝒃[μt],for every ζCc1((0,T)×𝖷).\int_{0}^{T}\int_{\mathsf{X}}\Big{(}\partial_{t}\zeta+\langle\nabla\zeta,\boldsymbol{v}_{t}\rangle\Big{)}\,\mathrm{d}\mu_{t}\,\mathrm{d}t=0,\quad\boldsymbol{v}_{t}=\boldsymbol{b}[\mu_{t}],\quad\text{for every }\zeta\in\mathrm{C}^{1}_{c}((0,T)\times\mathsf{X}). (1.2)

If 𝒃\boldsymbol{b} is sufficiently smooth, solutions to (1.1a,b) can be obtained by many techniques. Recent contributions in this direction are given by the papers [Pic19, Pic18, BF21, Cav+20], we also mention [PR14, PR19] for the analysis in presence of sources. In particular, in [BF21] the aim of the authors is to develop a suitable Cauchy-Lipschitz theory in Wasserstein spaces for differential inclusions which generalizes (1.1b) to multivalued maps 𝒃:𝒫b(𝖷)Liploc(𝖷;𝖷)\boldsymbol{b}:\mathcal{P}_{b}(\mathsf{X})\rightrightarrows\mathrm{Lip}_{loc}(\mathsf{X};\mathsf{X}) and requires (1.1b), (1.2) to hold for a suitable measurable selection of 𝒃\boldsymbol{b}. As it occurs in the classical finite-dimensional case, the differential-inclusion approach is suitable to describe the dynamics of control systems, when the velocity vector field involved in the continuity equation depends on a control parameter.

The Explicit Euler method

A natural approach, that is suitable for a great generalization, is to approximate (1.1a,b) by a measure-theoretic version of the Explicit Euler scheme. Choosing a step size τ>0\tau>0 and a partition {0,τ,,nτ,,Nτ}\{0,\tau,\cdots,n\tau,\cdots,N\tau\} of the interval [0,T][0,T], N=N(T,τ)=T/τN={\mathrm{N}(T,\tau)}=\left\lceil T/\tau\right\rceil, we construct a sequence Mτn𝒫b(𝖷)M^{n}_{\tau}\in\mathcal{P}_{b}(\mathsf{X}), n=0,,N,n=0,\cdots,N, by the algorithm

Mτ0:=μ0,Mτn+1:=(𝒊𝖷+τ𝒃τn)Mτn,𝒃τn𝒃[Mτn],M^{0}_{\tau}:=\mu_{0},\quad M^{n+1}_{\tau}:=(\boldsymbol{i}_{\mathsf{X}}+\tau\boldsymbol{b}^{n}_{\tau})_{\sharp}M^{n}_{\tau},\quad\boldsymbol{b}^{n}_{\tau}\in\boldsymbol{b}[M^{n}_{\tau}], (1.3)

where 𝒊𝖷(x):=x\boldsymbol{i}_{\mathsf{X}}(x):=x is the identity map and 𝒓μ\boldsymbol{r}_{\sharp}\mu denotes the push forward of μ𝒫(𝖷)\mu\in\mathcal{P}(\mathsf{X}) induced by a Borel map 𝒓:𝖷𝖷\boldsymbol{r}:\mathsf{X}\to\mathsf{X} and defined by 𝒓μ(B):=μ(𝒓1(B))\boldsymbol{r}_{\sharp}\mu(B):=\mu(\boldsymbol{r}^{-1}(B)) for every Borel set B𝖷B\subset\mathsf{X}. If M¯τ\bar{M}_{\tau} is the piecewise constant interpolation of the discrete values (Mτn)n=0N(M^{n}_{\tau})_{n=0}^{N}, one can then study the convergence of M¯τ\bar{M}_{\tau} as τ0\tau\downarrow 0, hoping to obtain a solution to (1.1a,b) in the limit.

It is then natural to investigate a few relevant questions:

  1. \langleE.1\rangle

    what is the most general framework where the Explicit Euler scheme can be implemented,

  2. \langleE.2\rangle

    what are the structural conditions ensuring its convergence,

  3. \langleE.3\rangle

    how to characterize the limit solutions and their properties.

Concerning the first question \langleE.1\rangle, one immediately realizes that each iteration of (1.3) actually depends on the probability distribution on the tangent bundle 𝖳𝖷\mathsf{T\kern-1.5ptX} (which we may identify with 𝖷×𝖷\mathsf{X}\times\mathsf{X}, where the second component plays the role of velocity)

Φτn:=(𝒊𝖷,𝒃τn)Mτn,𝒫(𝖳𝖷)\Phi^{n}_{\tau}:=(\boldsymbol{i}_{\mathsf{X}},\boldsymbol{b}^{n}_{\tau})_{\sharp}M^{n}_{\tau},\in\mathcal{P}(\mathsf{T\kern-1.5ptX})

whose first marginal is MτnM^{n}_{\tau}. If we denote by 𝗑,𝗏:𝖳𝖷𝖷\mathsf{x},\mathsf{v}:\mathsf{T\kern-1.5ptX}\to\mathsf{X} the projections 𝗑(x,v)=x,𝗏(x,v)=v\mathsf{x}(x,v)=x,\ \mathsf{v}(x,v)=v, and by 𝖾𝗑𝗉τ:𝖳𝖷𝖷\operatorname{\mathsf{exp}}^{\tau}:\mathsf{T\kern-1.5ptX}\to\mathsf{X} the exponential map in the flat space 𝖷\mathsf{X} 𝖾𝗑𝗉τ(x,v):=x+τv\operatorname{\mathsf{exp}}^{\tau}(x,v):=x+\tau v, we recover Mτn+1M^{n+1}_{\tau} by a single step of “free motion” driven by Φτn\Phi^{n}_{\tau} and given by

Mτn+1=𝖾𝗑𝗉τΦτn=(𝗑+τ𝗏)Φτn.M^{n+1}_{\tau}=\operatorname{\mathsf{exp}}^{\tau}_{\sharp}\Phi^{n}_{\tau}=(\mathsf{x}+\tau\mathsf{v})_{\sharp}\Phi^{n}_{\tau}.

This operation does not depend on the fact that Φτn\Phi^{n}_{\tau} is concentrated on the graph of a map (in this case 𝒃τn𝒃[Mτn]\boldsymbol{b}^{n}_{\tau}\in\boldsymbol{b}[M^{n}_{\tau}]): one can more generally assign a multivalued map 𝐅:𝒫b(𝖷)𝒫b(𝖳𝖷){\boldsymbol{\mathrm{F}}}:\mathcal{P}_{b}(\mathsf{X})\rightrightarrows\mathcal{P}_{b}(\mathsf{T\kern-1.5ptX}) such that for every μ𝒫b(𝖷)\mu\in\mathcal{P}_{b}(\mathsf{X}) every measure Φ𝐅[μ]𝒫b(𝖳𝖷)\Phi\in{\boldsymbol{\mathrm{F}}}[\mu]\in\mathcal{P}_{b}(\mathsf{T\kern-1.5ptX}) has first marginal μ=𝗑Φ\mu=\mathsf{x}_{\sharp}\Phi. We call 𝐅{\boldsymbol{\mathrm{F}}} a multivalued probability vector field (MPVF in the following), which is in good analogy with a Riemannian interpretation of 𝒫b(𝖳𝖷)\mathcal{P}_{b}(\mathsf{T\kern-1.5ptX}). The disintegration Φx𝒫b(𝖷)\Phi_{x}\in\mathcal{P}_{b}(\mathsf{X}) of Φ\Phi with respect to μ\mu provides a (unique up to μ\mu-negligible sets) Borel family of probability measures on the space of velocities such that Φ=𝖷Φxdμ(x)\Phi=\int_{\mathsf{X}}\Phi_{x}\,\mathrm{d}\mu(x). Φ\Phi is induced by a vector field 𝒃\boldsymbol{b} only if Φx=δ𝒃(x)\Phi_{x}=\delta_{\boldsymbol{b}(x)} is a Dirac mass for μ\mu-a.e.xx. (1.3) now reads as

Mτ0:=μ0,Mτn+1:=𝖾𝗑𝗉τΦτn=(𝗑+τ𝗏)Φτn,Φτn𝐅[Mτn].M^{0}_{\tau}:=\mu_{0},\quad M^{n+1}_{\tau}:=\operatorname{\mathsf{exp}}^{\tau}_{\sharp}\Phi^{n}_{\tau}=(\mathsf{x}+\tau\mathsf{v})_{\sharp}\Phi^{n}_{\tau},\quad\Phi^{n}_{\tau}\in{\boldsymbol{\mathrm{F}}}[M^{n}_{\tau}]. (1.4)

Besides greater generality, this point of view has other advantages: working with the joint distribution 𝐅[μ]{\boldsymbol{\mathrm{F}}}[\mu] instead of the disintegrated vector field 𝒃[μ]\boldsymbol{b}[\mu] potentially allows for the weakening of the continuity assumption with respect to μ\mu. This relaxation corresponds to the introduction of Young’s measures to study the limit behaviour of weakly converging maps [CRV04]. Adopting this viewpoint, the classical discontinuous example in \mathbb{R} (see [Fil88]), where 𝒃(x)=sign(x)\boldsymbol{b}(x)=-\mathrm{sign}(x), admits a natural closed realization as MPVF given by

Φ𝐅[μ]Φx={δ𝒃(x)if x0(1θ)δ1+θδ1if x=0for some θ[0,1].\Phi\in{\boldsymbol{\mathrm{F}}}[\mu]\quad\Leftrightarrow\quad\Phi_{x}=\begin{cases}\delta_{\boldsymbol{b}(x)}&\text{if }x\neq 0\\ (1-\theta)\delta_{-1}+\theta\delta_{1}&\text{if }x=0\end{cases}\quad\text{for some }\theta\in[0,1].

In particular, 𝐅[δ0]={δ0((1θ)δ1+θδ1)θ[0,1]}{\boldsymbol{\mathrm{F}}}[\delta_{0}]=\big{\{}\delta_{0}\otimes\left((1-\theta)\delta_{-1}+\theta\delta_{1}\right)\mid\theta\in[0,1]\big{\}} (see also [Cam+21, Example 6.2]).

The study of measure-driven differential equations/inclusions is not new in the literature \citesDalMasoRampazzo,SilvaVinter. However, these studies, devoted to the description of impulsive control systems [Bre96] and mainly motivated by applications in rational mechanics and engineering, have been used to describe evolutions in d\mathbb{R}^{d} rather than in the space of measures.

A second advantage in considering a MPVF is the consistency with the theory of Wasserstein gradient flows generated by geodesically convex functionals introduced in [AGS08] (Wasserstein subdifferentials are particular examples of MPVFs) and with the multivalued version of the notion of probability vector fields introduced in [Pic19, Pic18], whose originating idea was indeed to describe the uncertainty affecting not only the state of the system, but possibly also the distribution of the vector field itself.

A third advantage is to allow for a more intrinsic geometric view, inspired by Otto’s non-smooth Riemannian interpretation of the Wasserstein space: probability vector fields provide an appropriate description of infinitesimal deformations of probability measures, which should be measured by, e.g., the L2L^{2}-Kantorovich-Rubinstein-Wasserstein distance

W22(μ,ν):=min{𝖷×𝖷|xy|2d𝜸(x,y):𝜸Γ(μ,ν)},W_{2}^{2}(\mu,\nu):=\min\Big{\{}\int_{\mathsf{X}\times\mathsf{X}}|x-y|^{2}\,\mathrm{d}\boldsymbol{\gamma}(x,y):\boldsymbol{\gamma}\in\Gamma(\mu,\nu)\Big{\}}, (1.5)

where Γ(μ,ν)\Gamma(\mu,\nu) is the set of couplings with marginals μ\mu and ν\nu respectively. It is well known [AGS08, Vil09, San15] that if μ,ν\mu,\nu belong to the space 𝒫2(𝖷)\mathcal{P}_{2}(\mathsf{X}) of Borel probability measures with finite second moment

𝗆22(μ):=𝖷|x|2dμ(x)<,\mathsf{m}_{2}^{2}(\mu):=\int_{\mathsf{X}}|x|^{2}\,\mathrm{d}\mu(x)<\infty,

then the minimum in (1.5) is attained in a compact convex set Γo(μ,ν)\Gamma_{o}(\mu,\nu) and (𝒫2(𝖷),W2)(\mathcal{P}_{2}(\mathsf{X}),W_{2}) is a complete and separable metric space. Adopting this viewpoint and proceeding by analogy with the theory of dissipative operators in Hilbert spaces, a natural class of MPVFs for evolutionary problems should at least satisfy a λ\lambda-dissipativity condition, λ\lambda\in\mathbb{R}, as

Φ𝐅[μ],Ψ𝐅[ν],μν:W2(𝖾𝗑𝗉τΦ,𝖾𝗑𝗉τΨ)(1+λτ)W2(μ,ν)+o(τ)as τ0.\forall\,\Phi\in{\boldsymbol{\mathrm{F}}}[\mu],\ \Psi\in{\boldsymbol{\mathrm{F}}}[\nu],\ \mu\neq\nu:\quad W_{2}(\operatorname{\mathsf{exp}}^{\tau}_{\sharp}\Phi,\operatorname{\mathsf{exp}}^{\tau}_{\sharp}\Psi)\leq(1+\lambda\tau)W_{2}(\mu,\nu)+o(\tau)\quad\text{as }\tau\downarrow 0. (1.6)

Metric dissipativity

Condition (1.6) in the simple case λ=0\lambda=0 has a clear interpretation in terms of one step of the Explicit Euler method: it is an asymptotic contraction as the time step goes to 0. By using the properties of the Wasserstein distance, we will first compute the right derivative of the (squared) Wasserstein distance along the deformation 𝖾𝗑𝗉τ\operatorname{\mathsf{exp}}^{\tau}

[Φ,Ψ]r\displaystyle\left[\Phi,\Psi\right]_{r} :=12ddτW22(𝖾𝗑𝗉τΦ,𝖾𝗑𝗉τΨ)|τ=0+\displaystyle:=\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}\tau}W_{2}^{2}(\operatorname{\mathsf{exp}}^{\tau}_{\sharp}\Phi,\operatorname{\mathsf{exp}}^{\tau}_{\sharp}\Psi)\Big{|}_{\tau=0+} (1.7)
=\displaystyle={} min{𝖳𝖷×𝖳𝖷wv,yxd𝚯(x,v;y,w):𝚯Γ(Φ,Ψ),(𝗑,𝗒)𝚯Γo(μ,ν)}\displaystyle\min\Big{\{}\int_{\mathsf{T\kern-1.5ptX}\times\mathsf{T\kern-1.5ptX}}\langle w-v,y-x\rangle\,\mathrm{d}\boldsymbol{\Theta}(x,v;y,w):\boldsymbol{\Theta}\in\Gamma(\Phi,\Psi),\ (\mathsf{x},\mathsf{y})_{\sharp}\boldsymbol{\Theta}\in\Gamma_{o}(\mu,\nu)\Big{\}}

and we will show that (1.6) admits the equivalent characterization

[Φ,Ψ]rλW22(μ,ν)for every Φ𝐅[μ],Ψ𝐅[ν].\left[\Phi,\Psi\right]_{r}\leq\lambda W_{2}^{2}(\mu,\nu)\quad\text{for every $\Phi\in{\boldsymbol{\mathrm{F}}}[\mu],\ \Psi\in{\boldsymbol{\mathrm{F}}}[\nu]$}. (1.8)

If we interpret the left hand side of (1.8) as a sort of Wasserstein pseudo-scalar product of Φ\Phi and Ψ\Psi along the direction of an optimal coupling between μ\mu and ν\nu, (1.8) is in perfect analogy with the canonical definition of λ\lambda-dissipativity (also called one-sided Lipschitz condition) for a multivalued map 𝑭:𝖷𝖷{\boldsymbol{F}}:\mathsf{X}\rightrightarrows\mathsf{X}:

wv,yxλ|xy|2for every v𝑭[x],w𝑭[y].\langle w-v,y-x\rangle\leq\lambda|x-y|^{2}\quad\text{for every $v\in{\boldsymbol{F}}[x],\ w\in{\boldsymbol{F}}[y]$}. (1.9)

It turns out that the (opposite of the) Wasserstein subdifferential \boldsymbol{\partial}\mathcal{F} [AGS08, Section 10.3] of a geodesically (λ)(-\lambda)-convex functional :𝒫2(𝖷)(,+]\mathcal{F}:\mathcal{P}_{2}(\mathsf{X})\to(-\infty,+\infty] is a MPVF and satisfies a condition equivalent to (1.6) and (1.8). We also notice that (1.8) reduces to (1.9) in the particular case when Φ=δ(x,v),Ψ=δ(y,w)\Phi=\delta_{(x,v)},\Psi=\delta_{(y,w)} are Dirac masses in 𝖳𝖷\mathsf{T\kern-1.5ptX}.

Conditional convergence of the Explicit Euler method

Differently from the Implicit Euler method, however, even if a MPVF satisfies (1.8), every step of the Explicit Euler scheme (1.4) affects the distance by a further quadratic correction according to the formula

W22(𝖾𝗑𝗉τΦ,𝖾𝗑𝗉τΨ)W22(μ,ν)+2τ[Φ,Ψ]r+τ2(|Φ|22+|Ψ|22),|Φ|22:=𝖳𝖷|v|2dΦ(x,v),W_{2}^{2}(\operatorname{\mathsf{exp}}^{\tau}_{\sharp}\Phi,\operatorname{\mathsf{exp}}^{\tau}_{\sharp}\Psi)\leq W_{2}^{2}(\mu,\nu)+2\tau\left[\Phi,\Psi\right]_{r}+\tau^{2}\Big{(}|\Phi|_{2}^{2}+|\Psi|_{2}^{2}\Big{)},\quad|\Phi|_{2}^{2}:=\int_{\mathsf{T\kern-1.5ptX}}|v|^{2}\,\mathrm{d}\Phi(x,v),

which depends on the order of magnitude of Φ\Phi and Ψ\Psi, and thus of 𝐅{\boldsymbol{\mathrm{F}}}, at μ\mu and ν\nu.

Our first main result (Theorems 7.5,7.7), which provides an answer to question \langleE.2\rangle, states that if 𝐅{\boldsymbol{\mathrm{F}}} is a λ\lambda-dissipative MPVF according to (1.8) then every family of discrete solutions (M¯τ)τ>0(\bar{M}_{\tau})_{\tau>0} of (1.4) in an interval [0,T][0,T] satisfying the abstract CFL condition

|Φτn|2Lif 0nN=N(T,τ),|\Phi^{n}_{\tau}|_{2}\leq L\quad\text{if }0\leq n\leq N={\mathrm{N}(T,\tau)}, (1.10)

is uniformly converging to a limit curve μLip([0,T];𝒫2(𝖷))\mu\in\mathrm{Lip}([0,T];\mathcal{P}_{2}(\mathsf{X})) starting from μ0\mu_{0}, with a uniform error estimate

W2(μt,M¯τ(t))CLτ(t+τ)eλ+tfor every t[0,T]W_{2}(\mu_{t},\bar{M}_{\tau}(t))\leq CL\sqrt{\tau(t+\tau)}\mathrm{e}^{\lambda_{+}t}\quad\text{for every }t\in[0,T] (1.11)

and a universal constant C14C\leq 14. Apart from the precise value of CC, the estimate (1.11) is sharp [Rul96] and reproduces in the measure-theoretic framework the celebrated Crandall-Liggett [CL71] estimate for the generation of dissipative semigroups in Banach spaces. We derive it by adapting to the metric-Wasserstein setting the relaxation and doubling variable techniques of [NS06], strongly inspired by the ideas of Kružkov [Kru70] and Crandall-Evans [CE75].

This crucial result does not require any bound on the support of the measures neither local compactness of the underlying space 𝖷\mathsf{X}, so that we will prove it in a general Hilbert space, possibly with infinite dimension. Moreover, if μ,ν\mu,\nu are two limit solutions starting from μ0,ν0\mu_{0},\nu_{0} we show that

W2(μt,νt)W2(μ0,ν0)eλtt[0,T],W_{2}(\mu_{t},\nu_{t})\leq W_{2}(\mu_{0},\nu_{0})\mathrm{e}^{\lambda t}\quad t\in[0,T],

as it happens in the case of gradient flows of (λ)(-\lambda)-convex functions. Once one has these building blocks, it is not too difficult to construct a local and global existence theory, mimicking the standard arguments for ODEs.

Metric characterization of the limit solution

As we stated in question \langleE.3\rangle, a further important point is to get an effective characterization of the solution μ\mu obtained as limit of the approximation scheme.

As a first property, considered in [Pic19, Pic18] in the case of a single-valued PVF, one could hope that μ\mu satisfies the continuity equation (1.1a) coupled with the barycentric condition replacing (1.1b)

𝒗t(x)=𝖳𝖷vdΦt(x,v),Φt=𝐅[μt].\boldsymbol{v}_{t}(x)=\int_{\mathsf{T\kern-1.5ptX}}v\,\mathrm{d}\Phi_{t}(x,v),\quad\Phi_{t}={\boldsymbol{\mathrm{F}}}[\mu_{t}]. (1.12)

This is in fact true, as shown in [Pic19, Pic18] in the finite dimensional case, if 𝐅{\boldsymbol{\mathrm{F}}} is single valued and satisfies a stronger Lipschitz dependence w.r.t. μ\mu (see (H1) in Appendix A).

In the framework of dissipative MPVFs, we will replace (1.12) with its relaxation à la Filippov (see e.g. [Vin10, Chapter 2] and [AF09, Chapter 10])

𝒗t(x)=𝖳𝖷vdΦt(x,v)for someΦtco¯(cl(𝐅)[μt]),\boldsymbol{v}_{t}(x)=\int_{\mathsf{T\kern-1.5ptX}}v\,\mathrm{d}\Phi_{t}(x,v)\quad\text{for some}\quad\Phi_{t}\in\overline{\operatorname{co}}(\operatorname{cl}({\boldsymbol{\mathrm{F}}})[\mu_{t}]),

where cl(𝐅)\operatorname{cl}({\boldsymbol{\mathrm{F}}}) is the sequential closure of the graph of 𝐅{\boldsymbol{\mathrm{F}}} in the strong-weak topology of 𝒫2sw(𝖳𝖷)\mathcal{P}_{2}^{sw}(\mathsf{T\kern-1.5ptX}) (see [NS21] and Section 2.2 for more details; in fact, a more restrictive “directional” closure could be considered, see (6.34)) and co¯(cl(𝐅)[μ])\overline{\operatorname{co}}(\operatorname{cl}({\boldsymbol{\mathrm{F}}})[\mu]) denotes the closed convex hull of the given section cl(𝐅)[μ]\operatorname{cl}({\boldsymbol{\mathrm{F}}})[\mu].

However, even in the case of a single valued map, (1.12) is not enough to characterize the limit solution, as it has been shown by an interesting example in [Pic19, Cam+21] (see also the gradient flow of Example 6.34).

Here we follow the metric viewpoint adopted in [AGS08] for gradient flows and we will characterize the limit solutions by a suitable Evolution Variational Inequality satisfied by the squared distance function from given test measures. This approach is also strongly influenced by the Bénilan notion of integral solutions to dissipative evolutions in Banach spaces [Bén72]. The main idea is that any differentiable solution to x˙(t)𝑭[x(t)]\dot{x}(t)\in{\boldsymbol{F}}[x(t)] driven by a λ\lambda-dissipative operator in a Hilbert space as in (1.9) satisfies

12ddt|x(t)y|2\displaystyle\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}|x(t)-y|^{2} =x˙(t),x(t)y=x˙(t)w,x(t)y+w,x(t)y\displaystyle=\langle\dot{x}(t),x(t)-y\rangle=\langle\dot{x}(t)-w,x(t)-y\rangle+\langle w,x(t)-y\rangle
λ|x(t)y|2w,yx(t)for every w𝐅[y].\displaystyle\leq\lambda|x(t)-y|^{2}-\langle w,y-x(t)\rangle\quad\text{for every }w\in{\boldsymbol{\mathrm{F}}}[y].

In the framework of 𝒫2(𝖷)\mathcal{P}_{2}(\mathsf{X}), we replace w𝑭[y]w\in{\boldsymbol{F}}[y] with Ψ𝐅[ν]\Psi\in{\boldsymbol{\mathrm{F}}}[\nu] and the scalar product w,yx(t)\langle w,y-x(t)\rangle with

[Ψ,μt]r:=min{𝖳𝖷×𝖷w,yxd𝚯(y,w;x):𝚯Γ(Ψ,μt),(𝗒,𝗑)𝚯Γo(ν,μt)},\left[\Psi,\mu_{t}\right]_{r}:=\min\Big{\{}\int_{\mathsf{T\kern-1.5ptX}\times\mathsf{X}}\langle w,y-x\rangle\,\mathrm{d}\boldsymbol{\Theta}(y,w;x):\boldsymbol{\Theta}\in\Gamma(\Psi,\mu_{t}),\ (\mathsf{y},\mathsf{x})_{\sharp}\boldsymbol{\Theta}\in\Gamma_{o}(\nu,\mu_{t})\Big{\}},

as in (1.7). According to this formal heuristic, we obtain the λ\lambda-EVI characterization of a limit curve μ\mu as

12ddtW22(μt,ν)λW22(μt,ν)[Ψ,μt]rfor every Ψ𝐅[ν].\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}W_{2}^{2}(\mu_{t},\nu)\leq\lambda W_{2}^{2}(\mu_{t},\nu)-\left[\Psi,\mu_{t}\right]_{r}\quad\text{for every }\Psi\in{\boldsymbol{\mathrm{F}}}[\nu]. (λ\lambda-EVI)

As for Bénilan integral solutions, we can considerably relax the apriori smoothness assumptions on μ\mu, just imposing that μ\mu is continuous and (λ\lambda-EVI) holds in the sense of distributions in (0,T)(0,T). In this way, we obtain a robust characterization, which is stable under uniform convergence and also allows for solutions taking values in the closure of the domain of 𝐅{\boldsymbol{\mathrm{F}}}. This is particularly important when 𝐅{\boldsymbol{\mathrm{F}}} involves drift terms with superlinear growth (see Example 6.32).

The crucial point of this approach relies on a general error estimate, which extends the validity of (1.11) to a general λ\lambda-EVI solution μ\mu and therefore guarantees its uniqueness, whenever the Explicit Euler method is solvable, at least locally in time.

Combining local in time existence with suitable global confinement conditions (see e.g. Theorem 6.31) we can eventually obtain a robust theory for the generation of a λ\lambda-flow, i.e. a semigroup (St)t0(\mathrm{S}_{t})_{t\geq 0} in a suitable subset DD of 𝒫2(𝖷)\mathcal{P}_{2}(\mathsf{X}) such that St[μ0]\mathrm{S}_{t}[\mu_{0}] is the unique λ\lambda-EVI solution starting from μ0\mu_{0} and for every μ0,μ1D\mu_{0},\mu_{1}\in D

W2(St[μ0],St[μ1])W2(μ0,μ1)eλt,t0,W_{2}(\mathrm{S}_{t}[\mu_{0}],\mathrm{S}_{t}[\mu_{1}])\leq W_{2}(\mu_{0},\mu_{1})\mathrm{e}^{\lambda t},\quad t\geq 0,

as in the case of Wasserstein gradient flows of geodesically (λ)(-\lambda)-convex functionals.

Explicit vs Implicit Euler method

In the framework of contraction semigroups generated by λ\lambda-dissipative operators in Hilbert or Banach spaces, a crucial role is played by the Implicit Euler scheme, which has the advantage to be unconditionally stable, and thus avoids any apriori restriction on the local bound of the operator, as we did in (1.10). In Hilbert spaces, it is well known that the solvability of the Implicit Euler scheme is equivalent to the maximality of the graph of the operator.

In the case of a Wasserstein gradient flow of a geodesically convex :𝒫2(𝖷)(,+]\mathcal{F}:\mathcal{P}_{2}(\mathsf{X})\to(-\infty,+\infty], every step of the Implicit Euler method (also called JKO/Minimizing Movement scheme [JKO98, AGS08]) can be solved by a variational approach: Mτn+1M^{n+1}_{\tau} has to be selected among the solutions of

minM𝒫2(𝖷)12τW22(M,Mτn)+(M).\min_{M\in\mathcal{P}_{2}(\mathsf{X})}\frac{1}{2\tau}W_{2}^{2}(M,M^{n}_{\tau})+\mathcal{F}(M). (1.13)

Notice, however, that in this case the MPVF \boldsymbol{\partial}\mathcal{F} is defined implicitely in terms of \mathcal{F} and each step of (1.13) provides a suitable variational selection in \boldsymbol{\partial}\mathcal{F}, leading in the limit to the minimal selection principle.

In the case of more general dissipative evolutions, it is not at all clear how to solve the Implicit Euler scheme, in particular when 𝐅[μ]{\boldsymbol{\mathrm{F}}}[\mu] is not concentrated on a map, and to characterize the maximal extension of 𝐅{\boldsymbol{\mathrm{F}}} (in the Hilbertian case the maximal extension of a dissipative operator 𝑭{\boldsymbol{F}} is explicitly computable at least when the domain of 𝑭{\boldsymbol{F}} has not empty interior, see the Theorems of Robert and Bénilan in [Qi83]). Indeed, the analogy with the Hilbertian theory does not extend to some properties which play a crucial role. In particular, a dissipative MPVF 𝐅{\boldsymbol{\mathrm{F}}} in 𝒫2(𝖷)\mathcal{P}_{2}(\mathsf{X}) is not locally bounded in the interior of its domain (see Example 5.2) and maximality may fail also for single-valued continuous PVFs (see Example 5.3). Even more remarkably, in the Hilbertian case a crucial equivalent characterization of dissipativity reads as

v𝑭[x],w𝑭[y]|xy||(xτv)(yτw)|v\in{\boldsymbol{F}}[x],\ w\in{\boldsymbol{F}}[y]\quad\Rightarrow\quad|x-y|\leq|(x-\tau v)-(y-\tau w)|

which implies that the resolvent operators (Iτ𝑭)1(I-\tau{\boldsymbol{F}})^{-1} (and every single step of the Implicit Euler scheme) are contractions in 𝖷\mathsf{X}. On the contrary, if we assume the forward characterizations (1.6) and (1.8) of dissipativity in 𝒫2(𝖷)\mathcal{P}_{2}(\mathsf{X}) (with λ=0\lambda=0) we cannot conclude in general that

Φ𝐅[μ],Ψ𝐅[ν]W2(μ,ν)W2(𝖾𝗑𝗉τΦ,𝖾𝗑𝗉τΨ),\Phi\in{\boldsymbol{\mathrm{F}}}[\mu],\ \Psi\in{\boldsymbol{\mathrm{F}}}[\nu]\quad\Rightarrow\quad W_{2}(\mu,\nu)\leq W_{2}(\operatorname{\mathsf{exp}}^{-\tau}_{\sharp}\Phi,\operatorname{\mathsf{exp}}^{-\tau}_{\sharp}\Psi), (1.14)

since the squared distance map f(t):=W22(𝖾𝗑𝗉tΦ,𝖾𝗑𝗉tΨ)f(t):=W^{2}_{2}(\operatorname{\mathsf{exp}}^{t}_{\sharp}\Phi,\operatorname{\mathsf{exp}}^{t}_{\sharp}\Psi), tt\in\mathbb{R}, is not convex in general (see e.g. [AGS08, Example 9.1.5]) and the fact that its right derivative at t=0t=0 (corresponding to [Φ,Ψ]r\left[\Phi,\Psi\right]_{r}) is 0\leq 0 according to (1.8) does not imply that f(0)f(t)f(0)\leq f(t) for t<0t<0 (corresponding to (1.14) for t=τt=-\tau).

For these reasons, we decided to approach the investigation of dissipative evolutions in 𝒫2(𝖷)\mathcal{P}_{2}(\mathsf{X}) by the Explicit Euler method, and we defer the study of the implicit one to a forthcoming paper.

Plan of the paper

As we already mentioned, our theory works in a general separable Hilbert space 𝖷\mathsf{X}: we collect some preliminary material concerning the Wasserstein distance in Hilbert spaces and the properties of strong-weak topology for 𝒫2(𝖳𝖷)\mathcal{P}_{2}(\mathsf{T\kern-1.5ptX}) in Section 2.

In Section 3, we will study the semi-concavity properties of W2W_{2} along general deformations induced by the exponential map 𝖾𝗑𝗉τ\operatorname{\mathsf{exp}}^{\tau} and we introduce and study the pairings [,]r\left[\cdot,\cdot\right]_{r}, [,]l\left[\cdot,\cdot\right]_{l}. We will apply such tools to derive the precise expressions of the left and right derivatives of W2W_{2} along absolutely continuous curves in 𝒫2(𝖷)\mathcal{P}_{2}(\mathsf{X}) in Section 3.2.

In Section 4, we will introduce and study the notion of λ\lambda-dissipative MPVF, in particular its behaviour along geodesics (Section 4.2) and its extension properties (Section 4.3). A few examples are collected in Section 5.

The last two sections contain the core of our results. Section 6 is devoted to the notion of λ\lambda-EVI solutions and to their properties: local uniqueness, stability and regularity in Section 6.3, global existence in Section 6.4 and barycentric characterizations in Section 6.5. Section 7 contains the main estimates for the Explicit Euler scheme: the Cauchy estimates between two discrete solutions corresponding to different step sizes in Section 7.2 and the uniform error estimates between a discrete and a λ\lambda-EVI solution in Section 7.3.

Acknowledgments.

G.S. and G.E.S. gratefully acknowledge the support of the Institute of Advanced Study of the Technical University of Munich. The authors thank the Department of Mathematics of the University of Pavia where this project was partially carried out. G.S. also thanks IMATI-CNR, Pavia. G.C. and G.S. have been supported by the MIUR-PRIN 2017 project Gradient flows, Optimal Transport and Metric Measure Structures. G.C. also acknowledges the partial support of the funds FARB 2016 Politecnico di Milano Prog. TDG6ATEN04.

2. Preliminaries

In this section, we introduce the main concepts and results of Optimal Transport theory that will be extensively used in the rest of the paper. We start by listing the adopted notation.

𝒃Φ\boldsymbol{b}_{\Phi} the barycenter of Φ𝒫(𝖳𝖷)\Phi\in\mathcal{P}(\mathsf{T\kern-1.5ptX}) as in Definition 3.1;
BX(x,r)\mathrm{B}_{X}(x,r) the open ball with radius r>0r>0 centered at xXx\in X;
C(X;Y)\mathrm{C}(X;Y) the set of continuous functions from XX to YY;
Cb(X)\mathrm{C}_{b}(X) the set of bounded continuous real valued functions defined in XX;
Cc(X)\mathrm{C}_{c}(X) the set of continuous real valued functions with compact support;
Cyl(𝖷)\operatorname{Cyl}(\mathsf{X}) the space of cylindrical functions on 𝖷\mathsf{X}, see Definition 2.9;
cl(𝐅),co(𝐅)[μ]\operatorname{cl}({\boldsymbol{\mathrm{F}}}),\operatorname{co}({\boldsymbol{\mathrm{F}}})[\mu] the sequential closure and convexification of 𝐅{\boldsymbol{\mathrm{F}}}, see Section 4.3;
co¯(𝐅)[μ],𝐅^\overline{\operatorname{co}}({\boldsymbol{\mathrm{F}}})[\mu],\hat{{\boldsymbol{\mathrm{F}}}} sequential closure of convexification and extension of 𝐅{\boldsymbol{\mathrm{F}}}, see Section 4.3;
ddt+ζ,ddt+ζ{\frac{\mathrm{d}}{\mathrm{d}t}}^{\kern-3.0pt+}\zeta,{\frac{\mathrm{d}}{\mathrm{d}t}}_{\kern-1.0pt+}\zeta the right upper/lower Dini derivatives of ζ\zeta, see (6.3);
D(𝐅)\mathrm{D}({\boldsymbol{\mathrm{F}}}) the proper domain of a set-valued function as in Definition 4.1
fνf_{\sharp}\nu the push-forward of ν𝒫(X)\nu\in\mathcal{P}(X) through the map f:XYf:X\to Y;
Γ(μ,ν)\Gamma(\mu,\nu) the set of admissible couplings between μ,ν\mu,\nu, see (2.1);
Γo(μ,ν)\Gamma_{o}(\mu,\nu) the set of optimal couplings between μ,ν\mu,\nu, see Definition 2.5;
Γoi(μ0,μ1|𝐅),i=0,1\Gamma_{o}^{i}({\mu_{0}},{\mu_{1}}|{\boldsymbol{\mathrm{F}}}),\,i=0,1 the set of optimal couplings conditioned to 𝐅{\boldsymbol{\mathrm{F}}}, see Definition 4.8;
\mathcal{I} an interval of \mathbb{R};
𝒊X()\boldsymbol{i}_{X}(\cdot) the identity function on a set XX;
I(𝝁|𝐅)\mathrm{I}(\boldsymbol{\mu}|{\boldsymbol{\mathrm{F}}}) the set of time instants tt s.t. 𝗑t𝝁\mathsf{x}^{t}_{\sharp}\boldsymbol{\mu} belongs to D(𝐅)\mathrm{D}({\boldsymbol{\mathrm{F}}}), see Definition 4.8;
Λ,Λo\Lambda,\Lambda_{o} the sets of couplings as in Definition 3.8 and Theorem 3.9;
𝗆2(ν)\mathsf{m}_{2}(\nu) the 22-nd moment of ν𝒫(X)\nu\in\mathcal{P}(X) as in Definition 2.5;
|Φ|2|\Phi|_{2} the 22-nd moment of Φ𝒫(𝖳𝖷)\Phi\in\mathcal{P}(\mathsf{T\kern-1.5ptX}) as in (3.2);
|𝐅|2(μ)|{\boldsymbol{\mathrm{F}}}|_{2}(\mu) the 22-nd moment of 𝐅{\boldsymbol{\mathrm{F}}} at μ\mu as in (6.17);
|μ˙|(t)|\dot{\mu}|(t) the metric derivative of a locally absolutely continuous curve μ\mu;
𝒫(X)\mathcal{P}(X) the set of Borel probability measures on the topological space XX;
𝒫b(X)\mathcal{P}_{b}(X) the set of Borel probability measures with bounded support;
𝒫2(X)\mathcal{P}_{2}(X) the subset of measures in 𝒫(X)\mathcal{P}(X) with finite quadratic moments;
𝒫2sw(𝖷×𝖸)\mathcal{P}_{2}^{sw}(\mathsf{X}\times\mathsf{Y}) the space 𝒫2(𝖷×𝖸)\mathcal{P}_{2}(\mathsf{X}\times\mathsf{Y}) endowed with a weaker topology as in Definition 2.14;
𝒫(𝖳𝖷|μ)\mathcal{P}(\mathsf{T\kern-1.5ptX}|\mu) the subset of 𝒫2(𝖳𝖷)\mathcal{P}_{2}(\mathsf{T\kern-1.5ptX}) with fixed first marginal μ\mu as in (3.3);
[,]r\left[\cdot,\cdot\right]_{r}, [,]l\left[\cdot,\cdot\right]_{l} the pseudo scalar products as in Definition 3.5;
[Φ,ϑ]r,t[\Phi,\boldsymbol{\vartheta}]_{r,t}, [Φ,ϑ]l,t[\Phi,\boldsymbol{\vartheta}]_{l,t} the duality pairings as in Definition 3.17;
[𝐅,𝝁]r,t[{\boldsymbol{\mathrm{F}}},\boldsymbol{\mu}]_{r,t}, [𝐅,𝝁]l,t[{\boldsymbol{\mathrm{F}}},\boldsymbol{\mu}]_{l,t} the duality pairings as in Definition 4.9;
[𝐅,𝝁]0+,[𝐅,𝝁]1[{\boldsymbol{\mathrm{F}}},\boldsymbol{\mu}]_{0+},[{\boldsymbol{\mathrm{F}}},\boldsymbol{\mu}]_{1-} the limiting duality pairings as in Definition 4.11;
supp(ν)\operatorname{supp}(\nu) the support of ν𝒫(X)\nu\in\mathcal{P}(X);
Tanμ𝒫2(X)\operatorname{Tan}_{\mu}\mathcal{P}_{2}(X) the tangent space defined in Theorem 2.10;
W2(μ,ν)W_{2}(\mu,\nu) the L2L^{2}-Wasserstein distance between μ\mu and ν\nu, see Definition 2.5;
𝖷\mathsf{X} a separable Hilbert space;
𝖳𝖷\mathsf{T\kern-1.5ptX} the tangent bundle to 𝖷\mathsf{X}, usually endowed with the strong-weak topology;
𝗑,𝗏,𝖾𝗑𝗉t\mathsf{x},\mathsf{v},\operatorname{\mathsf{exp}}^{t} the projection and exponential maps defined in (3.1);
𝗑t\mathsf{x}^{t} the evaluation map defined in (3.4).

In the present paper we will mostly deal with Borel probability measures defined in (subsets of) some separable Hilbert space endowed with the strong or a weaker topology. The convenient setting is therefore provided by Polish/Lusin and completely regular topological spaces.

Recall that a topological space XX is Polish (resp. Lusin) if its topology is induced by a complete and separable metric (resp. is coarser than a Polish topology). We will denote by 𝒫(X)\mathcal{P}(X) the set of Borel probability measures on XX. If XX is Lusin, every measure μ𝒫(X)\mu\in\mathcal{P}(X) is also a Radon measure, i.e. it satisfies

BX Borel, ε>0KB compact s.t. μ(BK)<ε.\forall\,B\subset X\text{ Borel, }\forall\,\varepsilon>0\quad\exists\,K\subset B\text{ compact s.t. }\mu(B\setminus K)<\varepsilon.

XX is completely regular if it is Hausdorff and for every closed set CC and point xXCx\in X\setminus C there exists a continuous function f:X[0,1]f:X\to[0,1] s.t. f(x)=0f(x)=0 and f(C)={1}f(C)=\{1\}.

Given XX and YY Lusin spaces, μ𝒫(X)\mu\in\mathcal{P}(X) and a Borel function f:XYf:X\to Y, there is a canonical way to transfer the measure μ\mu from XX to YY through ff. This is called the push forward of μ\mu through ff, denoted by fμf_{\sharp}\mu and defined by (fμ)(B):=μ(f1(B))(f_{\sharp}\mu)(B):=\mu(f^{-1}(B)) for every Borel set BB in YY, or equivalently

Yφd(fμ)=Xφfdμ\int_{Y}\varphi\,\mathrm{d}(f_{\sharp}\mu)=\int_{X}\varphi\circ f\,\mathrm{d}\mu

for every φ\varphi bounded (or nonnegative) real valued Borel function on YY. A particular case occurs if X=X1×X2X=X_{1}\times X_{2}, Y=XiY=X_{i} and f=πif=\pi^{i} is the projection on the ii-th component, i=1,2i=1,2. In this case, ff is usually denoted with πi\pi^{i} or πXi\pi^{X_{i}}, and πXiμ\pi^{X_{i}}_{\sharp}\mu is called the ii-th marginal of μ\mu.
This notation is particularly useful when dealing with transport plans: given X1X_{1} and X2X_{2} completely regular spaces and μ𝒫(X1)\mu\in\mathcal{P}(X_{1}), ν𝒫(X2)\nu\in\mathcal{P}(X_{2}), we define

Γ(μ,ν):={𝜸𝒫(X1×X2)π1𝜸=μ,π2𝜸=ν},\Gamma(\mu,\nu):=\left\{\boldsymbol{\gamma}\in\mathcal{P}(X_{1}\times X_{2})\mid\pi^{1}_{\sharp}\boldsymbol{\gamma}=\mu\,,\,\pi^{2}_{\sharp}\boldsymbol{\gamma}=\nu\right\}, (2.1)

i.e. the set of probability measures on the product space having μ\mu and ν\nu as marginals.
On 𝒫(X)\mathcal{P}(X) we consider the so called narrow topology which is the coarsest topology on 𝒫(X)\mathcal{P}(X) s.t. the maps μXφdμ\mu\mapsto\int_{X}\varphi\,\mathrm{d}\mu are continuous for every φCb(X)\varphi\in\rm\mathrm{C}_{b}(X), the space of real valued and bounded continuous functions on XX. In this way a net (μα)α𝔸𝒫(X)(\mu_{\alpha})_{\alpha\in\mathbb{A}}\subset\mathcal{P}(X) indexed by a directed set 𝔸\mathbb{A} is said to converge narrowly to μ𝒫(X)\mu\in\mathcal{P}(X), and we write μαμ\mu_{\alpha}\to\mu in 𝒫(X)\mathcal{P}(X), if

limαXφdμα=XφdμφCb(X).\lim_{\alpha}\int_{X}\varphi\,\mathrm{d}\mu_{\alpha}=\int_{X}\varphi\,\mathrm{d}\mu\quad\forall\varphi\in\rm\mathrm{C}_{b}(X).

We recall the well known Prokhorov’s theorem in the context of completely regular topological spaces (see [Sch73, Appendix]).

Theorem 2.1 (Prokhorov).

Let XX be a completely regular topological space and let 𝒫(X)\mathcal{F}\subset\mathcal{P}(X) be a tight subset i.e.

for every ε>0 there exists KεX compact s.t. μ(XKε)<εμ.\text{for every }\varepsilon>0\text{ there exists }K_{\varepsilon}\subset X\text{ compact s.t. }\mu(X\setminus K_{\varepsilon})<\varepsilon\,\;\forall\,\mu\in\mathcal{F}.

Then \mathcal{F} is relatively compact in 𝒫(X)\mathcal{P}(X) w.r.t. the narrow topology.

It is then relevant to know when a given 𝒫(X)\mathcal{F}\subset\mathcal{P}(X) is tight. If XX is a Lusin completely regular topological space, then the set ={μ}𝒫(X)\mathcal{F}=\{\mu\}\subset\mathcal{P}(X) is tight. Another trivial criterion for tightness is the following: if 𝒫(X1×X2)\mathcal{F}\subset\mathcal{P}(X_{1}\times X_{2}) is s.t. i:={πi𝜸𝜸}𝒫(Xi)\mathcal{F}_{i}:=\{\pi_{\sharp}^{i}\boldsymbol{\gamma}\mid\boldsymbol{\gamma}\in\mathcal{F}\}\subset\mathcal{P}(X_{i}) are tight for i=1,2i=1,2, then also \mathcal{F} is tight. We also recall the following useful proposition (see [AGS08, Remark 5.1.5]).

Proposition 2.2.

Let XX be a Lusin completely regular topological space and let 𝒫(X)\mathcal{F}\subset\mathcal{P}(X). Then \mathcal{F} is tight if and only if there exists φ:X[0,+]\varphi:X\to[0,+\infty] with compact sublevels s.t.

supμXφdμ<+.\sup_{\mu\in\mathcal{F}}\int_{X}\varphi\,\mathrm{d}\mu<+\infty.

We recall the so-called disintegration theorem (see e.g. [AGS08, Theorem 5.3.1]).

Theorem 2.3.

Let 𝕏,X\mathbb{X},X be Lusin completely regular topological spaces, 𝛍𝒫(𝕏)\boldsymbol{\mu}\in\mathcal{P}(\mathbb{X}) and r:𝕏Xr:\mathbb{X}\to X a Borel map. Denote with μ=r𝛍𝒫(X)\mu=r_{\sharp}\boldsymbol{\mu}\in\mathcal{P}(X). Then there exists a μ\mu-a.e. uniquely determined Borel family of probability measures {𝛍x}xX𝒫(𝕏)\{\boldsymbol{\mu}_{x}\}_{x\in X}\subset\mathcal{P}(\mathbb{X}) such that 𝛍x(𝕏r1(x))=0\boldsymbol{\mu}_{x}(\mathbb{X}\setminus r^{-1}(x))=0 for μ\mu-a.e. xXx\in X, and

𝕏φ(𝒙)d𝝁(𝒙)=X(r1(x)φ(𝒙)d𝝁x(𝒙))dμ(x)\int_{\mathbb{X}}\varphi(\boldsymbol{x})\,\mathrm{d}\boldsymbol{\mu}(\boldsymbol{x})=\int_{X}\left(\int_{r^{-1}(x)}\varphi(\boldsymbol{x})\,\mathrm{d}\boldsymbol{\mu}_{x}(\boldsymbol{x})\right)\,\mathrm{d}\mu(x)

for every bounded Borel map φ:𝕏\varphi:\mathbb{X}\to\mathbb{R}.

Remark 2.4.

When 𝕏=X1×X2\mathbb{X}=X_{1}\times X_{2} and r=π1r=\pi^{1}, we can canonically identify the disintegration {𝝁x}xX1𝒫(𝕏)\{\boldsymbol{\mu}_{x}\}_{x\in X_{1}}\subset\mathcal{P}(\mathbb{X}) of 𝝁𝒫(X1×X2)\boldsymbol{\mu}\in\mathcal{P}(X_{1}\times X_{2}) w.r.t. μ=π1𝝁\mu=\pi^{1}_{\sharp}\boldsymbol{\mu} with a family of probability measures {μx1}x1X1𝒫(X2)\{\mu_{x_{1}}\}_{x_{1}\in X_{1}}\subset\mathcal{P}(X_{2}). We write 𝝁=X1μx1dμ(x1)\boldsymbol{\mu}=\displaystyle\int_{X_{1}}\mu_{x_{1}}\,\mathrm{d}\mu(x_{1}).

2.1. Wasserstein distance in Hilbert spaces

Let XX be a separable (possibly infinite dimensional) Hilbert space. We will denote by XsX^{s} (respt. XwX^{w}) the Hilbert space endowed with its strong (resp. weak) topology. Notice that XwX^{w} is a Lusin completely regular space. XsX^{s} and XwX^{w} share the same class of Borel sets and therefore of Borel probability measures, which we will simply denote by 𝒫(X)\mathcal{P}(X), using 𝒫(Xs)\mathcal{P}(X^{s}) and 𝒫(Xw)\mathcal{P}(X^{w}) only when we will refer to the correspondent topology. Finally, if XX has finite dimension then the two topologies coincide.

We now list some properties of Wasserstein spaces and we refer to [AGS08, §7] for a complete account of this matter.

Definition 2.5.

Given μ𝒫(X)\mu\in\mathcal{P}(X) we define

𝗆22(μ):=X|x|2dμ(x),𝒫2(X):={μ𝒫(X)𝗆2(μ)<+}.\mathsf{m}_{2}^{2}(\mu):=\int_{X}|x|^{2}\,\mathrm{d}\mu(x),\qquad\mathcal{P}_{2}(X):=\{\mu\in\mathcal{P}(X)\mid\mathsf{m}_{2}(\mu)<+\infty\}.

The L2L^{2}-Wasserstein distance between μ,μ𝒫2(X)\mu,\mu^{\prime}\in\mathcal{P}_{2}(X) is defined as

W22(μ,μ)\displaystyle W_{2}^{2}(\mu,\mu^{\prime}) :=inf{X×X|xy|2d𝜸(x,y)𝜸Γ(μ,μ)}.\displaystyle:=\inf\left\{\int_{X\times X}|x-y|^{2}\,\mathrm{d}\boldsymbol{\gamma}(x,y)\mid\boldsymbol{\gamma}\in\Gamma(\mu,\mu^{\prime})\right\}. (2.2)

The set of elements of Γ(μ,μ)\Gamma(\mu,\mu^{\prime}) realizing the infimum in (2.2) is denoted with Γo(μ,μ)\Gamma_{o}(\mu,\mu^{\prime}). We say that a measure 𝜸𝒫2(X×X)\boldsymbol{\gamma}\in\mathcal{P}_{2}(X\times X) is optimal if 𝜸Γo(π1𝜸,π2𝜸)\boldsymbol{\gamma}\in\Gamma_{o}(\pi^{1}_{\sharp}\boldsymbol{\gamma},\pi^{2}_{\sharp}\boldsymbol{\gamma}).

We will denote by B(μ,ϱ)\mathrm{B}(\mu,\varrho) the open ball centered at μ\mu with radius ϱ\varrho in 𝒫2(X)\mathcal{P}_{2}(X). The metric space (𝒫2(X),W2)(\mathcal{P}_{2}(X),W_{2}) enjoys many interesting properties: here we only recall that it is a complete and separable metric space and that W2W_{2}-convergence (sometimes denoted with W2\overset{W_{2}}{\longrightarrow}) is stronger than the narrow convergence. In particular, given (μn)n𝒫2(X)(\mu_{n})_{n\in\mathbb{N}}\subset\mathcal{P}_{2}(X) and μ𝒫2(X)\mu\in\mathcal{P}_{2}(X), we have [AGS08, Remark 7.1.11] that

μnW2μ, as n+{μnμ in 𝒫(Xs),𝗆2(μn)𝗆2(μ), as n+.\mu_{n}\overset{W_{2}}{\to}\mu,\text{ as }n\to+\infty\quad\Longleftrightarrow\quad\begin{cases}\mu_{n}\to\mu\text{ in }\mathcal{P}(X^{s}),\\ \mathsf{m}_{2}(\mu_{n})\to\mathsf{m}_{2}(\mu),\end{cases}\text{ as }n\to+\infty.\\ (2.3)

Finally, we recall that sequences converging in (𝒫2(X),W2)(\mathcal{P}_{2}(X),W_{2}) are tight. More precisely we have the following characterization of compactness in 𝒫2(X)\mathcal{P}_{2}(X).

Lemma 2.6 (Relative compactness in 𝒫2(X)\mathcal{P}_{2}(X)).

A subset 𝒦𝒫2(X)\mathcal{K}\subset\mathcal{P}_{2}(X) is relatively compact w.r.t. the W2W_{2}-topology if and only if

  1. (1)

    𝒦\mathcal{K} is tight w.r.t. XsX^{s},

  2. (2)

    𝒦\mathcal{K} is uniformly 22-integrable, i.e.

    limksupμ𝒦|x|k|x|2dμ=0.\lim_{k\to\infty}\sup_{\mu\in\mathcal{K}}\int_{|x|\geq k}|x|^{2}\,\mathrm{d}\mu=0. (2.4)
Proof.

Tightness is clearly a necessary condition; concerning (2.4) let us notice that the maps Fk:𝒫2(X)[0,)F_{k}:\mathcal{P}_{2}(X)\to[0,\infty), Fk(μ):=|x|k|x|2dμF_{k}(\mu):=\int_{|x|\geq k}|x|^{2}\,\mathrm{d}\mu are upper semicontinuous, are decreasing w.r.t. kk, and converge pointwise to 0 for every μ𝒫2(X)\mu\in\mathcal{P}_{2}(X). Therefore, if 𝒦\mathcal{K} is relatively compact, they converge uniformly to 0 thanks to Dini’s Theorem.

In order to prove that (1) and (2) are also sufficient for relative compactness, it is sufficient to check that every sequence (μn)n(\mu_{n})_{n\in\mathbb{N}} in 𝒦\mathcal{K} has a convergent subsequence. Applying Prokhorov Theorem 2.1 we can find μ𝒫(X)\mu\in\mathcal{P}(X) and a convergent subsequence kμn(k)k\mapsto\mu_{n(k)} such that μn(k)μ\mu_{n(k)}\to\mu in 𝒫(Xs)\mathcal{P}(X^{s}). Since 𝗆2(μn)\mathsf{m}_{2}(\mu_{n}) is uniformly bounded, then μ𝒫2(X)\mu\in\mathcal{P}_{2}(X). Applying [AGS08, Lemma 5.1.7], we also get limk𝗆2(μn(k))=𝗆2(μ)\lim_{k\to\infty}\mathsf{m}_{2}(\mu_{n(k)})=\mathsf{m}_{2}(\mu) so that limkW2(μn(k),μ)=0\lim_{k\to\infty}W_{2}(\mu_{n(k)},\mu)=0 by (2.3). ∎

Definition 2.7 (Geodesics).

A curve (μt)t[0,1]𝒫2(X)(\mu_{t})_{t\in[0,1]}\subset\mathcal{P}_{2}(X) is said to be a (constant speed) geodesic if for all 0st10\leq s\leq t\leq 1 we have

W2(μs,μt)=(ts)W2(μ0,μ1).W_{2}(\mu_{s},\mu_{t})=(t-s)W_{2}(\mu_{0},\mu_{1}).

We also say that (μt)t[0,1](\mu_{t})_{t\in[0,1]} is a geodesic from μ0\mu_{0} to μ1\mu_{1}. We say that A𝒫2(X)A\subset\mathcal{P}_{2}(X) is a geodesically convex set if for any pair μ0,μ1A\mu_{0},\mu_{1}\in A there exists a geodesic (μt)t[0,1](\mu_{t})_{t\in[0,1]} from μ0\mu_{0} to μ1\mu_{1} such that (μt)t[0,1]A(\mu_{t})_{t\in[0,1]}\subset A.

We recall also the following useful properties of geodesics (see [AGS08, Theorem 7.2.1, Theorem 7.2.2]).

Theorem 2.8 (Properties of geodesics).

Let μ0,μ1𝒫2(X)\mu_{0},\mu_{1}\in\mathcal{P}_{2}(X) and 𝛍Γo(μ0,μ1)\boldsymbol{\mu}\in\Gamma_{o}(\mu_{0},\mu_{1}). Then (μt)t[0,1](\mu_{t})_{t\in[0,1]} defined by

μt:=(𝗑t)𝝁,t[0,1],\mu_{t}:=(\mathsf{x}^{t})_{\sharp}\boldsymbol{\mu},\quad t\in[0,1], (2.5)

is a (constant speed) geodesic from μ0\mu_{0} to μ1\mu_{1}, where 𝗑t:X2X\mathsf{x}^{t}:X^{2}\to X is given by, 𝗑t(x0,x1):=(1t)x0+tx1\mathsf{x}^{t}(x_{0},x_{1}):=(1-t)x_{0}+tx_{1}. Conversely, any (constant speed) geodesic (μt)t[0,1](\mu_{t})_{t\in[0,1]} from μ0\mu_{0} to μ1\mu_{1} admits the representation (2.5) for a suitable plan 𝛍Γo(μ0,μ1)\boldsymbol{\mu}\in\Gamma_{o}(\mu_{0},\mu_{1}).
Finally, if (μt)t[0,1](\mu_{t})_{t\in[0,1]} is a geodesic connecting μ0\mu_{0} to μ1\mu_{1}, then for every t(0,1)t\in(0,1) there exists a unique optimal plan between μ0\mu_{0} and μt\mu_{t} (resp. between μt\mu_{t} and μ1\mu_{1}) and it is concentrated on a map.

We define moreover the analogous of Cc(d)\mathrm{C}^{\infty}_{c}(\mathbb{R}^{d}) when we have XX in place of d\mathbb{R}^{d}.

Definition 2.9 (Cyl(X)\operatorname{Cyl}(X)).

We denote by Πd(X)\Pi_{d}(X) the space of linear maps π:Xd\pi:X\to\mathbb{R}^{d} of the form π(x)=(x,e1,,x,ed)\pi(x)=(\langle x,e_{1}\rangle,\cdots,\langle x,e_{d}\rangle) for an orthonormal set {e1,,ed}\{e_{1},\cdots,e_{d}\} of XX. A function φ:X\varphi:X\to\mathbb{R} belongs to the space of cylindrical functions on XX, Cyl(X)\operatorname{Cyl}(X), if it is of the form

φ=ψπ\varphi=\psi\circ\pi

where πΠd(X)\pi\in\Pi_{d}(X) and ψCc(d)\psi\in\mathrm{C}^{\infty}_{c}(\mathbb{R}^{d}).

We recall the following result (see [AGS08, Theorem 8.3.1, Proposition 8.4.5 and Proposition 8.4.6]) characterizing locally absolutely continuous curves in 𝒫2(X)\mathcal{P}_{2}(X) defined in a (bounded or unbounded) open interval \mathcal{I}\subset\mathbb{R}. We use the equivalent notation μ(t)μt\mu(t)\equiv\mu_{t} for the evaluation at time tt\in\mathcal{I} of a map μ:𝒫2(X)\mu:\mathcal{I}\to\mathcal{P}_{2}(X).

Theorem 2.10 (Wasserstein velocity field).

Let μ:𝒫2(X)\mu:\mathcal{I}\to\mathcal{P}_{2}(X) be a locally absolutely continuous curve defined in an open interval \mathcal{I}\subset\mathbb{R}. There exists a Borel vector field 𝐯:×XX\boldsymbol{v}:\mathcal{I}\times X\to X and a set A(μ)A(\mu)\subset\mathcal{I} with (A(μ))=0\mathcal{L}(\mathcal{I}\setminus A(\mu))=0 such that for every tA(μ)t\in A(\mu)

𝒗tTanμt𝒫2(X):={φφCyl(X)}¯Lμt2(X;X),X|𝒗t|2dμt=|μ˙t|2=limh0W22(μt+h,μt)h2,\begin{gathered}\boldsymbol{v}_{t}\in\operatorname{Tan}_{\mu_{t}}\mathcal{P}_{2}(X):={}\overline{\{\nabla\varphi\mid\varphi\in\operatorname{Cyl}(X)\}}^{L^{2}_{\mu_{t}}(X;X)},\\ \int_{X}|\boldsymbol{v}_{t}|^{2}\,\mathrm{d}\mu_{t}=|\dot{\mu}_{t}|^{2}=\lim_{h\to 0}\frac{W_{2}^{2}(\mu_{t+h},\mu_{t})}{h^{2}},\end{gathered}

and the continuity equation

tμt+(𝒗tμt)=0\partial_{t}\mu_{t}+\nabla\cdot(\boldsymbol{v}_{t}\mu_{t})=0

holds in the sense of distributions in ×X\mathcal{I}\times X. Moreover, 𝐯t\boldsymbol{v}_{t} is uniquely determined in Lμt2(X;X)L^{2}_{\mu_{t}}(X;X) for tA(μ)t\in A(\mu) and

limh0W2((𝒊X+h𝒗t)μt,μt+h)|h|=0for every tA(μ).\lim_{h\to 0}\frac{W_{2}((\boldsymbol{i}_{X}+h\boldsymbol{v}_{t})_{\sharp}\mu_{t},\mu_{t+h})}{|h|}=0\quad\text{for every }t\in A(\mu). (2.6)

We conclude this section with a useful property concerning the upper derivative of the Wasserstein distance, which in fact holds in every metric space.

Lemma 2.11.

Let μ:𝒫2(𝖷)\mu:\mathcal{I}\to\mathcal{P}_{2}(\mathsf{X}), ν𝒫2(𝖷)\nu\in\mathcal{P}_{2}(\mathsf{X}), tt\in\mathcal{I}, 𝛔Γo(μt,ν)\boldsymbol{\sigma}\in\Gamma_{o}(\mu_{t},\nu), and consider the constant speed geodesic (νt,s)s[0,1](\nu_{t,s})_{s\in[0,1]} defined by νt,s:=(𝗑s)𝛔\nu_{t,s}:=(\mathsf{x}^{s})_{\sharp}\boldsymbol{\sigma} for every s[0,1]s\in[0,1]. The upper right and left Dini derivatives b±:(0,1]b^{\pm}:(0,1]\to\mathbb{R} defined by

b+(s):=\displaystyle b^{+}(s):={} 12slim suph0W22(μt+h,νt,s)W22(μt,νt,s)h,\displaystyle\frac{1}{2s}\limsup_{h\downarrow 0}\frac{W_{2}^{2}(\mu_{t+h},\nu_{t,s})-W_{2}^{2}(\mu_{t},\nu_{t,s})}{h},
b(s):=\displaystyle b^{-}(s):={} 12slim suph0W22(μt,νt,s)W22(μth,νt,s)h\displaystyle\frac{1}{2s}\limsup_{h\downarrow 0}\frac{W_{2}^{2}(\mu_{t},\nu_{t,s})-W_{2}^{2}(\mu_{t-h},\nu_{t,s})}{h}

are respectively decreasing and increasing in (0,1](0,1].

Proof.

Take 0s<s10\leq s^{\prime}<s\leq 1. Since (νt,s)s[0,1](\nu_{t,s})_{s\in[0,1]} is a constant speed geodesic from μt\mu_{t} to ν\nu, we have

W2(μt,νt,s)=W2(μt,νt,s)+W2(νt,s,νt,s),W_{2}(\mu_{t},\nu_{t,s})=W_{2}(\mu_{t},\nu_{t,s^{\prime}})+W_{2}(\nu_{t,s^{\prime}},\nu_{t,s}),

then, by triangular inequality

W2(μt+h,νt,s)W2(μt,νt,s)\displaystyle W_{2}(\mu_{t+h},\nu_{t,s})-W_{2}(\mu_{t},\nu_{t,s}) W2(μt+h,νt,s)+W2(νt,s,νt,s)W2(μt,νt,s)\displaystyle\leq W_{2}(\mu_{t+h},\nu_{t,s^{\prime}})+W_{2}(\nu_{t,s^{\prime}},\nu_{t,s})-W_{2}(\mu_{t},\nu_{t,s})
=W2(μt+h,νt,s)W2(μt,νt,s).\displaystyle=W_{2}(\mu_{t+h},\nu_{t,s^{\prime}})-W_{2}(\mu_{t},\nu_{t,s^{\prime}}).

Dividing by h>0h>0 and passing to the limit as h0h\downarrow 0 we obtain that the function a:[0,1]a:[0,1]\to\mathbb{R} defined by

a+(s):=lim suph0W2(μt+h,νt,s)W2(μt,νt,s)ha^{+}(s):=\limsup_{h\downarrow 0}\frac{W_{2}(\mu_{t+h},\nu_{t,s})-W_{2}(\mu_{t},\nu_{t,s})}{h}

is decreasing. It is then sufficient to observe that for s>0s>0

b+(s)=a+(s)W2(μt,νt,s)s=a+(s)W2(μt,ν).b^{+}(s)=a^{+}(s)\frac{W_{2}(\mu_{t},\nu_{t,s})}{s}=a^{+}(s)W_{2}(\mu_{t},\nu).

The monotonicity property of bb^{-} follows by the same argument. ∎

2.2. A strong-weak topology on measures in product spaces

Let us consider the case when X=𝖷×𝖸X=\mathsf{X}\times\mathsf{Y} where 𝖷,𝖸\mathsf{X},\mathsf{Y} are separable Hilbert spaces. XX is naturally endowed with the product Hilbert norm and 𝒫2(X)\mathcal{P}_{2}(X) with the corresponding topology induced by the L2L^{2}-Wasserstein distance. However, it will be extremely useful to endow 𝒫2(X)\mathcal{P}_{2}(X) with a weaker topology which is related to the strong-weak topology on XX, i.e. the product topology of 𝖷s×𝖸w\mathsf{X}^{s}\times\mathsf{Y}^{w}. We follow the approach of [NS21], to which we refer for the proofs of the results presented in this section.

In order to define the topology, we consider the space C2sw(𝖷×𝖸)\mathrm{C}^{sw}_{2}(\mathsf{X}\times\mathsf{Y}) of test functions ζ:𝖷×𝖸\zeta:\mathsf{X}\times\mathsf{Y}\to\mathbb{R} such that

ζ is sequentially continuous in 𝖷s×𝖸w,\displaystyle\zeta\text{ is sequentially continuous in $\mathsf{X}^{s}\times\mathsf{Y}^{w}$,}
ε>0Aε0:|ζ(x,y)|Aε(1+|x|𝖷2)+ε|y|𝖸2for every (x,y)𝖷×𝖸.\displaystyle\forall\,\varepsilon>0\ \exists\,A_{\varepsilon}\geq 0:|\zeta(x,y)|\leq A_{\varepsilon}(1+|x|_{\mathsf{X}}^{2})+\varepsilon|y|_{\mathsf{Y}}^{2}\quad\text{for every }(x,y)\in\mathsf{X}\times\mathsf{Y}.

Notice in particular that functions in C2sw(𝖷×𝖸)\mathrm{C}^{sw}_{2}(\mathsf{X}\times\mathsf{Y}) have quadratic growth. We endow C2sw(X)\mathrm{C}^{sw}_{2}(X) with the norm

ζC2sw(X):=sup(x,y)X|ζ(x,y)|1+|x|𝖷2+|y|𝖸2.\|\zeta\|_{\mathrm{C}^{sw}_{2}(X)}:=\sup_{(x,y)\in X}\frac{|\zeta(x,y)|}{1+|x|_{\mathsf{X}}^{2}+|y|_{\mathsf{Y}}^{2}}.
Remark 2.12.

When 𝖸\mathsf{Y} is finite dimensional, (2.2) is equivalent to the continuity of ζ\zeta.

Lemma 2.13.

(C2sw(𝖷×𝖸),C2sw(𝖷×𝖸))(\mathrm{C}^{sw}_{2}(\mathsf{X}\times\mathsf{Y}),\|\cdot\|_{\mathrm{C}^{sw}_{2}(\mathsf{X}\times\mathsf{Y})}) is a Banach space.

Definition 2.14 (Topology of 𝒫2sw(𝖷×𝖸)\mathcal{P}_{2}^{sw}(\mathsf{X}\times\mathsf{Y}), [NS21]).

We denote by 𝒫2sw(𝖷×𝖸)\mathcal{P}_{2}^{sw}(\mathsf{X}\times\mathsf{Y}) the space 𝒫2(𝖷×𝖸)\mathcal{P}_{2}(\mathsf{X}\times\mathsf{Y}) endowed with the coarsest topology which makes the following functions continuous

𝝁ζ(x,y)d𝝁(x,y),ζC2sw(𝖷×𝖸).\boldsymbol{\mu}\mapsto\int\zeta(x,y)\,\mathrm{d}\boldsymbol{\mu}(x,y),\quad\zeta\in\mathrm{C}^{sw}_{2}(\mathsf{X}\times\mathsf{Y}).

It is obvious that the topology of 𝒫2(𝖷×𝖸)\mathcal{P}_{2}(\mathsf{X}\times\mathsf{Y}) is finer than the topology of 𝒫2sw(𝖷×𝖸)\mathcal{P}_{2}^{sw}(\mathsf{X}\times\mathsf{Y}) and the latter is finer than the topology of 𝒫(𝖷s×𝖸w)\mathcal{P}(\mathsf{X}^{s}\times\mathsf{Y}^{w}). It is worth noticing that

any bounded bilinear form B:𝖷×𝖸 belongs to C2sw(𝖷×𝖸),\text{any bounded bilinear form $B:\mathsf{X}\times\mathsf{Y}\to\mathbb{R}$ belongs to }\mathrm{C}^{sw}_{2}(\mathsf{X}\times\mathsf{Y}),

so that for every net (𝝁α)α𝔸𝒫(𝖷×𝖸)(\boldsymbol{\mu}_{\alpha})_{\alpha\in\mathbb{A}}\subset\mathcal{P}(\mathsf{X}\times\mathsf{Y}) indexed by a directed set 𝔸\mathbb{A}, we have

limα𝔸𝝁α=𝝁in 𝒫2sw(𝖷×𝖸)limα𝔸Bd𝝁α=Bd𝝁.\lim_{\alpha\in\mathbb{A}}\boldsymbol{\mu}_{\alpha}=\boldsymbol{\mu}\quad\text{in }\mathcal{P}_{2}^{sw}(\mathsf{X}\times\mathsf{Y})\quad\Rightarrow\quad\lim_{\alpha\in\mathbb{A}}\int B\,\mathrm{d}\boldsymbol{\mu}_{\alpha}=\int B\,\mathrm{d}\boldsymbol{\mu}. (2.7)

The following proposition justifies the interest in the 𝒫2sw(𝖷×𝖸)\mathcal{P}_{2}^{sw}(\mathsf{X}\times\mathsf{Y})-topology.

Proposition 2.15.
  1. (1)

    If (𝝁α)α𝔸𝒫2(𝖷×𝖸)(\boldsymbol{\mu}_{\alpha})_{\alpha\in\mathbb{A}}\subset\mathcal{P}_{2}(\mathsf{X}\times\mathsf{Y}) is a net indexed by the directed set 𝔸\mathbb{A} and 𝝁𝒫2(𝖷×𝖸)\boldsymbol{\mu}\in\mathcal{P}_{2}(\mathsf{X}\times\mathsf{Y}) satisfies

    1. (a)

      𝝁α𝝁\boldsymbol{\mu}_{\alpha}\to\boldsymbol{\mu} in 𝒫(𝖷s×𝖸w)\mathcal{P}(\mathsf{X}^{s}\times\mathsf{Y}^{w}),

    2. (b)

      limα𝔸|x|𝖷2d𝝁α(x,y)=|x|𝖷2d𝝁(x,y)\displaystyle\lim_{\alpha\in\mathbb{A}}\int|x|_{\mathsf{X}}^{2}\,\mathrm{d}\boldsymbol{\mu}_{\alpha}(x,y)=\int|x|_{\mathsf{X}}^{2}\,\mathrm{d}\boldsymbol{\mu}(x,y),

    3. (c)

      supα𝔸|y|𝖸2d𝝁α(x,y)<\displaystyle\sup_{\alpha\in\mathbb{A}}\int|y|_{\mathsf{Y}}^{2}\,\mathrm{d}\boldsymbol{\mu}_{\alpha}(x,y)<\infty,

    then 𝝁α𝝁\boldsymbol{\mu}_{\alpha}\to\boldsymbol{\mu} in 𝒫2sw(𝖷×𝖸)\mathcal{P}_{2}^{sw}(\mathsf{X}\times\mathsf{Y}). The converse property holds for sequences: if 𝔸=\mathbb{A}=\mathbb{N} and 𝝁n𝝁\boldsymbol{\mu}_{n}\to\boldsymbol{\mu} in 𝒫2sw(𝖷×𝖸)\mathcal{P}_{2}^{sw}(\mathsf{X}\times\mathsf{Y}) as nn\to\infty then properties (a), (b), (c) hold.

  2. (2)

    For every compact set 𝒦𝒫2(𝖷s)\mathcal{K}\subset\mathcal{P}_{2}(\mathsf{X}^{s}) and every constant c<c<\infty the sets

    𝒦c:={𝝁𝒫2(𝖷×𝖸):π𝖷𝝁𝒦,|y|𝖸2d𝝁(x,y)c}\mathcal{K}_{c}:=\Big{\{}\boldsymbol{\mu}\in\mathcal{P}_{2}(\mathsf{X}\times\mathsf{Y}):\pi^{\mathsf{X}}_{\sharp}\boldsymbol{\mu}\in\mathcal{K},\quad\int|y|_{\mathsf{Y}}^{2}\,\mathrm{d}\boldsymbol{\mu}(x,y)\leq c\Big{\}}

    are compact and metrizable in 𝒫2sw(𝖷×𝖸)\mathcal{P}_{2}^{sw}(\mathsf{X}\times\mathsf{Y}) (in particular they are sequentially compact).

It is worth noticing that the topology 𝒫2ws(𝖷×𝖸)\mathcal{P}_{2}^{ws}(\mathsf{X}\times\mathsf{Y}) is strictly weaker than 𝒫2(𝖷×𝖸)\mathcal{P}_{2}(\mathsf{X}\times\mathsf{Y}) even when 𝖸\mathsf{Y} is finite dimensional. In fact, C2sw(𝖷×𝖸)\mathrm{C}^{sw}_{2}(\mathsf{X}\times\mathsf{Y}) does not contain the quadratic function (x,y)|y|𝖸2(x,y)\mapsto|y|_{\mathsf{Y}}^{2}, so that convergence of the quadratic moment w.r.t. yy is not guaranteed.

3. Directional derivatives and probability measures on the tangent bundle

From now on, we will denote by 𝖷\mathsf{X} a separable Hilbert space with norm |||\cdot| and scalar product ,\langle\cdot,\cdot\rangle. We denote by 𝖳𝖷\mathsf{T\kern-1.5ptX} the tangent bundle to 𝖷\mathsf{X}, which is identified with the set 𝖷×𝖷\mathsf{X}\times\mathsf{X} with the induced norm |(x,v)|:=(|x|2+|v|2)1/2|(x,v)|:=\big{(}|x|^{2}+|v|^{2}\big{)}^{1/2} and the strong-weak topology of 𝖷s×𝖷w\mathsf{X}^{s}\times\mathsf{X}^{w}(i.e. the product of the strong topology on the first component and the weak topology on the second one). We will denote by 𝗑,𝗏:𝖳𝖷𝖷\mathsf{x},\mathsf{v}:\mathsf{T\kern-1.5ptX}\to\mathsf{X} the projection maps and by 𝖾𝗑𝗉t:𝖳𝖷𝖷\operatorname{\mathsf{exp}}^{t}:\mathsf{T\kern-1.5ptX}\to\mathsf{X} the exponential map defined by

𝗑(x,v):=x,𝗏(x,v)=v,𝖾𝗑𝗉t(x,v):=x+tv.\mathsf{x}(x,v):=x,\quad\mathsf{v}(x,v)=v,\quad\operatorname{\mathsf{exp}}^{t}(x,v):=x+tv. (3.1)

The set 𝒫(𝖳𝖷)\mathcal{P}(\mathsf{T\kern-1.5ptX}) is defined thanks to the identification of 𝖳𝖷\mathsf{T\kern-1.5ptX} with 𝖷×𝖷\mathsf{X}\times\mathsf{X} and it is endowed with the narrow topology induced by the strong-weak topology in 𝖳𝖷\mathsf{T\kern-1.5ptX}. For Φ𝒫(𝖳𝖷)\Phi\in\mathcal{P}(\mathsf{T\kern-1.5ptX}) we define

|Φ|22:=𝖳𝖷|v|2dΦ(x,v).|\Phi|_{2}^{2}:=\int_{\mathsf{T\kern-1.5ptX}}|v|^{2}\,\mathrm{d}\Phi(x,v). (3.2)

We denote by 𝒫2(𝖳𝖷)\mathcal{P}_{2}(\mathsf{T\kern-1.5ptX}) the subset of 𝒫(𝖳𝖷)\mathcal{P}(\mathsf{T\kern-1.5ptX}) of measures for which (|x|2+|v|2)dΦ<\int\big{(}|x|^{2}+|v|^{2}\big{)}\,\mathrm{d}\Phi<\infty endowed with the topology of 𝒫2sw(𝖳𝖷)\mathcal{P}_{2}^{sw}(\mathsf{T\kern-1.5ptX}) as in Section 2.2. If μ𝒫(𝖷)\mu\in\mathcal{P}(\mathsf{X}) we will also consider

𝒫(𝖳𝖷|μ):={Φ𝒫(𝖳𝖷)𝗑Φ=μ},𝒫2(𝖳𝖷|μ):={Φ𝒫(𝖳𝖷|μ):|Φ|2<}.\mathcal{P}(\mathsf{T\kern-1.5ptX}|\mu):=\Big{\{}\Phi\in\mathcal{P}(\mathsf{T\kern-1.5ptX})\mid\mathsf{x}_{\sharp}\Phi=\mu\Big{\}},\quad\mathcal{P}_{2}(\mathsf{T\kern-1.5ptX}|\mu):=\Big{\{}\Phi\in\mathcal{P}(\mathsf{T\kern-1.5ptX}|\mu):|\Phi|_{2}<\infty\Big{\}}. (3.3)

We will also deal with the product space 𝖷2\mathsf{X}^{2}: we will use the notation

𝗑t:𝖷2𝖷,𝗑t(x0,x1):=(1t)x0+tx1,t[0,1].\mathsf{x}^{t}:\mathsf{X}^{2}\to\mathsf{X},\quad\mathsf{x}^{t}(x_{0},x_{1}):=(1-t)x_{0}+tx_{1},\quad t\in[0,1]. (3.4)

If 𝒗Lμ2(𝖷;𝖷)\boldsymbol{v}\in L^{2}_{\mu}(\mathsf{X};\mathsf{X}) we can consider the probability

Φμ,𝒗:=(𝒊𝖷,𝒗)μ𝒫2(𝖳𝖷|μ).\Phi_{\mu,\boldsymbol{v}}:=(\boldsymbol{i}_{\mathsf{X}},\boldsymbol{v})_{\sharp}\mu\in\mathcal{P}_{2}(\mathsf{T\kern-1.5ptX}|\mu). (3.5)

In this case we will say that Φ\Phi is concentrated on the graph of the map 𝒗\boldsymbol{v}. More generally, given a Borel family of probability measures (Φx)x𝖷𝒫2(𝖷)(\Phi_{x})_{x\in\mathsf{X}}\subset\mathcal{P}_{2}(\mathsf{X}) satisfying

(|v|2dΦx(v))dμ(x)<\int\Big{(}\int|v|^{2}\,\mathrm{d}\Phi_{x}(v)\Big{)}\,\mathrm{d}\mu(x)<\infty (3.6)

we can consider the probability

Φ=𝖷Φxdμ(x)𝒫2(𝖳𝖷|μ).\Phi=\int_{\mathsf{X}}\Phi_{x}\,\mathrm{d}\mu(x)\in\mathcal{P}_{2}(\mathsf{T\kern-1.5ptX}|\mu). (3.7)

Conversely, every Φ𝒫2(𝖳𝖷|μ)\Phi\in\mathcal{P}_{2}(\mathsf{T\kern-1.5ptX}|\mu) can be disintegrated by a Borel family (Φx)x𝖷𝒫2(𝖷)(\Phi_{x})_{x\in\mathsf{X}}\subset\mathcal{P}_{2}(\mathsf{X}) satisfying (3.6) and (3.7). Φ\Phi can be associated to a vector field 𝒗Lμ2(𝖷;𝖷)\boldsymbol{v}\in L^{2}_{\mu}(\mathsf{X};\mathsf{X}) if and only if for μ\mu-a.e. x𝖷x\in\mathsf{X} Φx=δ𝒗(x)\Phi_{x}=\delta_{\boldsymbol{v}(x)}. Recalling the disintegration Theorem 2.3 and Remark 2.4, we give the following definition.

Definition 3.1.

Given Φ𝒫2(𝖳𝖷|μ)\Phi\in\mathcal{P}_{2}(\mathsf{T\kern-1.5ptX}|\mu), the barycenter of Φ\Phi is the function 𝒃ΦLμ2(𝖷;𝖷)\boldsymbol{b}_{\Phi}\in L^{2}_{\mu}(\mathsf{X};\mathsf{X}) defined by

𝒃Φ(x):=𝖷vdΦx(v)for μ-a.e. x𝖷,\boldsymbol{b}_{\Phi}(x):=\int_{\mathsf{X}}v\,\mathrm{d}\Phi_{x}(v)\quad\text{for }\mu\text{-a.e. }x\in\mathsf{X},

where {Φx}x𝖷𝒫2(𝖷)\{\Phi_{x}\}_{x\in\mathsf{X}}\subset\mathcal{P}_{2}(\mathsf{X}) is the disintegration of Φ\Phi w.r.t. μ\mu.

Remark 3.2.

Notice that, by the linearity of the scalar product, we get the following identity which will be useful later

𝖷𝜻(x),𝒃Φ(x)dμ(x)=𝖳𝖷𝜻(x),vdΦ(x,v)𝜻Lμ2(𝖷;𝖷).\int_{\mathsf{X}}\langle\boldsymbol{\zeta}(x),\boldsymbol{b}_{\Phi}(x)\rangle\,\mathrm{d}\mu(x)=\int_{\mathsf{T\kern-1.5ptX}}\langle\boldsymbol{\zeta}(x),v\rangle\,\mathrm{d}\Phi(x,v)\quad\forall\,\boldsymbol{\zeta}\in L^{2}_{\mu}(\mathsf{X};\mathsf{X}). (3.8)

3.1. Directional derivatives of the Wasserstein distance and duality pairings

Our starting point is a relevant semi-concavity property of the function

f(s,t):=12W22(𝖾𝗑𝗉sΦ0,𝖾𝗑𝗉tΦ1),s,t,f(s,t):=\frac{1}{2}W_{2}^{2}(\operatorname{\mathsf{exp}}^{s}_{\sharp}\Phi_{0},\operatorname{\mathsf{exp}}^{t}_{\sharp}\Phi_{1}),\quad s,t\in\mathbb{R}, (3.9)

with Φ0,Φ1𝒫2(𝖳𝖷)\Phi_{0},\Phi_{1}\in\mathcal{P}_{2}(\mathsf{T\kern-1.5ptX}). We first state an auxiliary result, whose proof is based on [AGS08, Proposition 7.3.1].

Lemma 3.3.

Let Φ0,Φ1𝒫2(𝖳𝖷)\Phi_{0},\Phi_{1}\in\mathcal{P}_{2}(\mathsf{T\kern-1.5ptX}), s,ts,t\in\mathbb{R}, and let ϑs,tΓ(𝖾𝗑𝗉sΦ0,𝖾𝗑𝗉tΦ1)\boldsymbol{\vartheta}^{s,t}\in\Gamma(\operatorname{\mathsf{exp}}^{s}_{\sharp}\Phi_{0},\operatorname{\mathsf{exp}}^{t}_{\sharp}\Phi_{1}). Then there exists 𝚯s,tΓ(Φ0,Φ1)\boldsymbol{\Theta}^{s,t}\in\Gamma(\Phi_{0},\Phi_{1}) such that (𝖾𝗑𝗉s,𝖾𝗑𝗉t)𝚯s,t=ϑs,t(\operatorname{\mathsf{exp}}^{s},\operatorname{\mathsf{exp}}^{t})_{\sharp}\boldsymbol{\Theta}^{s,t}=\boldsymbol{\vartheta}^{s,t}.

Proof.

Define, for every r,s,tr,s,t\in\mathbb{R},

Σr:𝖳𝖷𝖳𝖷,Σr(x,v)=(𝖾𝗑𝗉r(x,v),v);Λs,t:𝖳𝖷×𝖳𝖷𝖳𝖷×𝖳𝖷,Λs,t:=(Σs,Σt).\Sigma^{r}:\mathsf{T\kern-1.5ptX}\to\mathsf{T\kern-1.5ptX},\quad\Sigma^{r}(x,v)=(\operatorname{\mathsf{exp}}^{r}(x,v),v);\quad\Lambda^{s,t}:\mathsf{T\kern-1.5ptX}\times\mathsf{T\kern-1.5ptX}\to\mathsf{T\kern-1.5ptX}\times\mathsf{T\kern-1.5ptX},\quad\Lambda^{s,t}:=(\Sigma^{s},\Sigma^{t}).

Consider the probabilities (Σs)Φ0,(Σt)Φ1(\Sigma^{s})_{\sharp}\Phi_{0},(\Sigma^{t})_{\sharp}\Phi_{1} and ϑs,t\boldsymbol{\vartheta}^{s,t}. They are constructed in such a way that there exists 𝚿s,t𝒫(𝖳𝖷×𝖳𝖷)\boldsymbol{\Psi}^{s,t}\in\mathcal{P}(\mathsf{T\kern-1.5ptX}\times\mathsf{T\kern-1.5ptX}) s.t.

(𝗑0,𝗏0)𝚿s,t=(Σs)Φ0,(𝗑1,𝗏1)𝚿s,t=(Σt)Φ1,(𝗑0,𝗑1)𝚿s,t=ϑs,t,(\mathsf{x}^{0},\mathsf{v}^{0})_{\sharp}\boldsymbol{\Psi}^{s,t}=(\Sigma^{s})_{\sharp}\Phi_{0},\quad(\mathsf{x}^{1},\mathsf{v}^{1})_{\sharp}\boldsymbol{\Psi}^{s,t}=(\Sigma^{t})_{\sharp}\Phi_{1},\quad(\mathsf{x}^{0},\mathsf{x}^{1})_{\sharp}\boldsymbol{\Psi}^{s,t}=\boldsymbol{\vartheta}^{s,t},

where we adopted the notation 𝗑i(x0,v0,x1,v1):=xi\mathsf{x}^{i}(x_{0},v_{0},x_{1},v_{1}):=x_{i} and 𝗏i(x0,v0,x1,v1):=vi\mathsf{v}^{i}(x_{0},v_{0},x_{1},v_{1}):=v_{i}, i=0,1i=0,1. We conclude by taking 𝚯s,t:=(Λs,t)𝚿s,t\boldsymbol{\Theta}^{s,t}:=(\Lambda^{-s,-t})_{\sharp}\boldsymbol{\Psi}^{s,t}. ∎

Proposition 3.4.

Let Φ0,Φ1𝒫2(𝖳𝖷)\Phi_{0},\Phi_{1}\in\mathcal{P}_{2}(\mathsf{T\kern-1.5ptX}) with μ1=𝗑Φ1\mu_{1}=\mathsf{x}_{\sharp}\Phi_{1} and φ2:=|Φ0|22+|Φ1|22\varphi^{2}:=|\Phi_{0}|_{2}^{2}+|\Phi_{1}|_{2}^{2}, let f:2f:\mathbb{R}^{2}\to\mathbb{R} be the function defined by (3.9) and let h,g:h,g:\mathbb{R}\to\mathbb{R} be defined by

h(s):=f(s,s)=12W22(𝖾𝗑𝗉sΦ0,𝖾𝗑𝗉sΦ1),g(s):=f(s,0)=12W22(𝖾𝗑𝗉sΦ0,μ1),s.h(s):=f(s,s)=\frac{1}{2}W_{2}^{2}(\operatorname{\mathsf{exp}}^{s}_{\sharp}\Phi_{0},\operatorname{\mathsf{exp}}^{s}_{\sharp}\Phi_{1}),\quad g(s):=f(s,0)=\frac{1}{2}W_{2}^{2}(\operatorname{\mathsf{exp}}^{s}_{\sharp}\Phi_{0},\mu_{1}),\quad s\in\mathbb{R}. (3.10)
  1. (1)

    The function (s,t)f(s,t)12φ2(s2+t2)(s,t)\mapsto f(s,t)-\frac{1}{2}\varphi^{2}(s^{2}+t^{2}) is concave, i.e. it holds

    f((1α)s0+αs1,(1α)t0+αt1)\displaystyle f((1-\alpha)s_{0}+\alpha s_{1},(1-\alpha)t_{0}+\alpha t_{1}) (1α)f(s0,t0)+αf(s1,t1)\displaystyle\geq(1-\alpha)f(s_{0},t_{0})+\alpha f(s_{1},t_{1}) (3.11)
    12α(1α)[(s1s0)2+(t1t0)2]φ2\displaystyle\quad-\frac{1}{2}\alpha(1-\alpha)\Big{[}(s_{1}-s_{0})^{2}+(t_{1}-t_{0})^{2}\Big{]}\varphi^{2}

    for every s0,s1,t0,t1s_{0},s_{1},t_{0},t_{1}\in\mathbb{R} and every α[0,1]\alpha\in[0,1].

  2. (2)

    The function sh(s)φ2s2s\mapsto h(s)-\varphi^{2}s^{2} is concave.

  3. (3)

    the function sg(s)12s2|Φ0|22s\mapsto g(s)-\frac{1}{2}s^{2}|\Phi_{0}|_{2}^{2} is concave.

Proof.

Let us first prove (3.11). We set s:=(1α)s0+αs1s:=(1-\alpha)s_{0}+\alpha s_{1}, t:=(1α)t0+αt1t:=(1-\alpha)t_{0}+\alpha t_{1} and we apply Lemma 3.3 to find 𝚯Γ(Φ0,Φ1)\boldsymbol{\Theta}\in\Gamma(\Phi_{0},\Phi_{1}) such that (𝖾𝗑𝗉s,𝖾𝗑𝗉t)𝚯Γo(𝖾𝗑𝗉sΦ0,𝖾𝗑𝗉tΦ1)(\operatorname{\mathsf{exp}}^{s},\operatorname{\mathsf{exp}}^{t})_{\sharp}\boldsymbol{\Theta}\in\Gamma_{o}(\operatorname{\mathsf{exp}}^{s}_{\sharp}\Phi_{0},\operatorname{\mathsf{exp}}^{t}_{\sharp}\Phi_{1}). Then, recalling the Hilbertian identity

|(1α)a+αb|2=(1α)|a|2+α|b|2α(1α)|ab|2,a,b𝖷,|(1-\alpha)a+\alpha b|^{2}=(1-\alpha)|a|^{2}+\alpha|b|^{2}-\alpha(1-\alpha)|a-b|^{2},\quad a,b\in\mathsf{X},

we have

W22\displaystyle W_{2}^{2} (𝖾𝗑𝗉sΦ0,𝖾𝗑𝗉tΦ1)=|x0+sv0(x1+tv1)|2d𝚯=\displaystyle(\operatorname{\mathsf{exp}}^{s}_{\sharp}\Phi_{0},\operatorname{\mathsf{exp}}^{t}_{\sharp}\Phi_{1})=\int|x_{0}+sv_{0}-(x_{1}+tv_{1})|^{2}\,\mathrm{d}\boldsymbol{\Theta}=
=|(1α)(x0+s0v0)+α(x0+s1v0)(1α)(x1+t0v1)α(x1+t1v1)|2d𝚯\displaystyle=\int|(1-\alpha)(x_{0}+s_{0}v_{0})+\alpha(x_{0}+s_{1}v_{0})-(1-\alpha)(x_{1}+t_{0}v_{1})-\alpha(x_{1}+t_{1}v_{1})|^{2}\,\mathrm{d}\boldsymbol{\Theta}
=(1α)|x0+s0v0(x1+t0v1)|2d𝚯+α|x0+s1v0(x1+t1v1)|2d𝚯\displaystyle=(1-\alpha)\int|x_{0}+s_{0}v_{0}-(x_{1}+t_{0}v_{1})|^{2}\,\mathrm{d}\boldsymbol{\Theta}+\alpha\int|x_{0}+s_{1}v_{0}-(x_{1}+t_{1}v_{1})|^{2}\,\mathrm{d}\boldsymbol{\Theta}
α(1α)|(s1s0)v0+(t1t0)v1|2d𝚯\displaystyle\quad-\alpha(1-\alpha)\int|(s_{1}-s_{0})v_{0}+(t_{1}-t_{0})v_{1}|^{2}\,\mathrm{d}\boldsymbol{\Theta}
(1α)W22(𝖾𝗑𝗉s0Φ0,𝖾𝗑𝗉t0Φ1)+αW22(𝖾𝗑𝗉s1Φ0,𝖾𝗑𝗉t1Φ1)\displaystyle\geq(1-\alpha)W_{2}^{2}(\operatorname{\mathsf{exp}}_{\sharp}^{s_{0}}\Phi_{0},\operatorname{\mathsf{exp}}^{t_{0}}_{\sharp}\Phi_{1})+\alpha W_{2}^{2}(\operatorname{\mathsf{exp}}_{\sharp}^{s_{1}}\Phi_{0},\operatorname{\mathsf{exp}}^{t_{1}}_{\sharp}\Phi_{1})
α(1α)((s1s0)2+(t1t0)2)(|v0|2dΦ0+|v1|2dΦ1).\displaystyle\quad-\alpha(1-\alpha)\Big{(}(s_{1}-s_{0})^{2}+(t_{1}-t_{0})^{2}\Big{)}\Big{(}\int|v_{0}|^{2}\,\mathrm{d}\Phi_{0}+\int|v_{1}|^{2}\,\mathrm{d}\Phi_{1}\Big{)}.

which is the thesis. Claims (2) and (3) follow as particular cases when t=st=s or t=0t=0. ∎

Semi-concavity is a useful tool to guarantee the existence of one-sided partial derivatives at (0,0)(0,0): for every α,β\alpha,\beta\in\mathbb{R} we have (see e.g. [HL93, Ch. VI, Prop. 1.1.2]) that

fr(α,β)\displaystyle f_{r}^{\prime}(\alpha,\beta) =limϱ0f(αϱ,βϱ)f(0,0)ϱ=supϱ>0f(αϱ,βϱ)f(0,0)ϱϱφ22(α2+β2),\displaystyle=\lim_{\varrho\downarrow 0}\frac{f(\alpha\varrho,\beta\varrho)-f(0,0)}{\varrho}=\sup_{\varrho>0}\frac{f(\alpha\varrho,\beta\varrho)-f(0,0)}{\varrho}-\frac{\varrho\varphi^{2}}{2}(\alpha^{2}+\beta^{2}),
fl(α,β)\displaystyle f_{l}^{\prime}(\alpha,\beta) =limϱ0f(0,0)f(αϱ,βϱ)ϱ=infϱ>0f(0,0)f(αϱ,βϱ)ϱ+ϱφ22(α2+β2).\displaystyle=\lim_{\varrho\downarrow 0}\frac{f(0,0)-f(-\alpha\varrho,-\beta\varrho)}{\varrho}=\inf_{\varrho>0}\frac{f(0,0)-f(-\alpha\varrho,-\beta\varrho)}{\varrho}+\frac{\varrho\varphi^{2}}{2}(\alpha^{2}+\beta^{2}).

frf_{r}^{\prime} (resp. flf^{\prime}_{l}) is a concave (resp. convex) and positively 11-homogeneous function, i.e. a superlinear (resp. sublinear) function. They satisfy

fr(α,β)\displaystyle f_{r}^{\prime}(-\alpha,-\beta) =fl(α,β),fl(α,β)fr(α,β)for every α,β,\displaystyle=-f^{\prime}_{l}(\alpha,\beta),\quad f_{l}^{\prime}(\alpha,\beta)\geq f_{r}^{\prime}(\alpha,\beta)\quad\text{for every }\alpha,\beta\in\mathbb{R}, (3.12)
fr(α,β)\displaystyle f_{r}^{\prime}(\alpha,\beta) αfr(1,0)+βfr(0,1)for every α,β0,\displaystyle\geq\alpha f_{r}^{\prime}(1,0)+\beta f_{r}^{\prime}(0,1)\quad\text{for every }\alpha,\beta\geq 0, (3.13)
f(s,t)\displaystyle f(s,t) f(0,0)+fr(s,t)φ22(s2+t2)for every s,t.\displaystyle\leq f(0,0)+f^{\prime}_{r}(s,t)-\frac{\varphi^{2}}{2}(s^{2}+t^{2})\quad\text{for every }s,t\in\mathbb{R}.

Notice moreover that

fr(1,0)=gr(0)=limϱ0g(ϱ)g(0)ϱf_{r}^{\prime}(1,0)=g^{\prime}_{r}(0)=\lim_{\varrho\downarrow 0}\frac{g(\varrho)-g(0)}{\varrho}

where gg is the function defined in (3.10); a similar representation holds for fl(1,0)f_{l}^{\prime}(1,0). We introduce the following notation for frf^{\prime}_{r}, flf^{\prime}_{l}, grg^{\prime}_{r} and glg^{\prime}_{l}.

Definition 3.5.

Let μ0,μ1𝒫2(𝖷)\mu_{0},\mu_{1}\in\mathcal{P}_{2}(\mathsf{X}), Φ0𝒫2(𝖳𝖷|μ0)\Phi_{0}\in\mathcal{P}_{2}(\mathsf{T\kern-1.5ptX}|\mu_{0}) and Φ1𝒫2(𝖳𝖷|μ1)\Phi_{1}\in\mathcal{P}_{2}(\mathsf{T\kern-1.5ptX}|\mu_{1}). Recalling the definitions of ff and gg given by (3.9) and (3.10), we define

[Φ0,μ1]r\displaystyle\left[\Phi_{0},\mu_{1}\right]_{r} :=gr(0)=fr(1,0)=lims0W22(𝖾𝗑𝗉sΦ0,μ1)W22(μ0,μ1)2s,\displaystyle:=g^{\prime}_{r}(0)=f_{r}^{\prime}(1,0)=\lim_{s\downarrow 0}\frac{W_{2}^{2}(\operatorname{\mathsf{exp}}^{s}_{\sharp}\Phi_{0},\mu_{1})-W_{2}^{2}(\mu_{0},\mu_{1})}{2s},
[Φ0,μ1]l\displaystyle\left[\Phi_{0},\mu_{1}\right]_{l} :=gl(0)=fl(1,0)=lims0W22(μ0,μ1)W22(𝖾𝗑𝗉sΦ0,μ1)2s,\displaystyle:=g^{\prime}_{l}(0)=f_{l}^{\prime}(1,0)=\lim_{s\downarrow 0}\frac{W_{2}^{2}(\mu_{0},\mu_{1})-W_{2}^{2}(\operatorname{\mathsf{exp}}^{-s}_{\sharp}\Phi_{0},\mu_{1})}{2s},
and analogously
[Φ0,Φ1]r\displaystyle\left[\Phi_{0},\Phi_{1}\right]_{r} :=fr(1,1)=limt0W22(𝖾𝗑𝗉tΦ0,𝖾𝗑𝗉tΦ1)W22(μ0,μ1)2t,\displaystyle:=f^{\prime}_{r}(1,1)=\lim_{t\downarrow 0}\frac{W_{2}^{2}(\operatorname{\mathsf{exp}}^{t}_{\sharp}\Phi_{0},\operatorname{\mathsf{exp}}^{t}_{\sharp}\Phi_{1})-W_{2}^{2}(\mu_{0},\mu_{1})}{2t},
[Φ0,Φ1]l\displaystyle\left[\Phi_{0},\Phi_{1}\right]_{l} :=fl(1,1)=limt0W22(μ0,μ1)W22(𝖾𝗑𝗉tΦ0,𝖾𝗑𝗉tΦ1)2t.\displaystyle:=f_{l}^{\prime}(1,1)=\lim_{t\downarrow 0}\frac{W_{2}^{2}(\mu_{0},\mu_{1})-W_{2}^{2}(\operatorname{\mathsf{exp}}^{-t}_{\sharp}\Phi_{0},\operatorname{\mathsf{exp}}^{-t}_{\sharp}\Phi_{1})}{2t}.
Remark 3.6.

Notice that [Φ0,μ1]r=[Φ0,Φμ1]r\left[\Phi_{0},\mu_{1}\right]_{r}=\left[\Phi_{0},\Phi_{\mu_{1}}\right]_{r} and [Φ0,μ1]l=[Φ0,Φμ1]l\left[\Phi_{0},\mu_{1}\right]_{l}=\left[\Phi_{0},\Phi_{\mu_{1}}\right]_{l}, where

Φμ1=(𝒊𝖷,0)μ1𝒫2(𝖳𝖷).\Phi_{\mu_{1}}=(\boldsymbol{i}_{\mathsf{X}},0)_{\sharp}\mu_{1}\in\mathcal{P}_{2}(\mathsf{T\kern-1.5ptX}).

Moreover, using the notation

Φ:=JΦ,Φ𝒫(𝖳𝖷),J(x,v):=(x,v),-\Phi:=J_{\sharp}\Phi,\quad\Phi\in\mathcal{P}(\mathsf{T\kern-1.5ptX}),\ J(x,v):=(x,-v), (3.14)

we have

[Φ0,Φ1]r=[Φ0,Φ1]l, and [Φ0,μ1]r=[Φ0,μ1]l.\left[-\Phi_{0},-\Phi_{1}\right]_{r}=-\left[\Phi_{0},\Phi_{1}\right]_{l},\quad\text{ and }\quad\left[-\Phi_{0},\mu_{1}\right]_{r}=-\left[\Phi_{0},\mu_{1}\right]_{l}.

In particular, the properties of [,]l\left[\cdot,\cdot\right]_{l} (in 𝒫2(𝖳𝖷)×𝒫2(𝖳𝖷)\mathcal{P}_{2}(\mathsf{T\kern-1.5ptX})\times\mathcal{P}_{2}(\mathsf{T\kern-1.5ptX}) or 𝒫2(𝖳𝖷)×𝒫2(𝖷)\mathcal{P}_{2}(\mathsf{T\kern-1.5ptX})\times\mathcal{P}_{2}(\mathsf{X})) and the ones of [,]r\left[\cdot,\cdot\right]_{r} in 𝒫2(𝖳𝖷)×𝒫2(𝖷)\mathcal{P}_{2}(\mathsf{T\kern-1.5ptX})\times\mathcal{P}_{2}(\mathsf{X}) can be easily derived by the corresponding ones of [,]r\left[\cdot,\cdot\right]_{r} in 𝒫2(𝖳𝖷)×𝒫2(𝖳𝖷)\mathcal{P}_{2}(\mathsf{T\kern-1.5ptX})\times\mathcal{P}_{2}(\mathsf{T\kern-1.5ptX}).

Recalling (3.13) and (3.12) we obtain the following result.

Corollary 3.7.

For every μ0,μ1𝒫2(𝖷)\mu_{0},\mu_{1}\in\mathcal{P}_{2}(\mathsf{X}) and for every Φ0𝒫2(𝖳𝖷|μ0)\Phi_{0}\in\mathcal{P}_{2}(\mathsf{T\kern-1.5ptX}|\mu_{0}), Φ1𝒫2(𝖳𝖷|μ1)\Phi_{1}\in\mathcal{P}_{2}(\mathsf{T\kern-1.5ptX}|\mu_{1}), it holds

[Φ0,μ1]r+[Φ1,μ0]r[Φ0,Φ1]r and [Φ0,μ1]l+[Φ1,μ0]l[Φ0,Φ1]l.\left[\Phi_{0},\mu_{1}\right]_{r}+\left[\Phi_{1},\mu_{0}\right]_{r}\leq\left[\Phi_{0},\Phi_{1}\right]_{r}\quad\text{ and }\quad\left[\Phi_{0},\mu_{1}\right]_{l}+\left[\Phi_{1},\mu_{0}\right]_{l}\geq\left[\Phi_{0},\Phi_{1}\right]_{l}.

Let us now show an important equivalent characterization of the quantities we have just introduced. As usual we will denote by 𝗑0,𝗏0,𝗑1:𝖳𝖷×𝖷𝖷\mathsf{x}^{0},\mathsf{v}^{0},\mathsf{x}^{1}:\mathsf{T\kern-1.5ptX}\times\mathsf{X}\to\mathsf{X} the projection maps of a point (x0,v0,x1)(x_{0},v_{0},x_{1}) in 𝖳𝖷×𝖷\mathsf{T\kern-1.5ptX}\times\mathsf{X} (and similarly for 𝖳𝖷×𝖳𝖷\mathsf{T\kern-1.5ptX}\times\mathsf{T\kern-1.5ptX} with 𝗑0,𝗏0,𝗑1,𝗏1\mathsf{x}^{0},\mathsf{v}^{0},\mathsf{x}^{1},\mathsf{v}^{1}).

First of all we introduce the following sets.

Definition 3.8.

For every Φ0𝒫(𝖳𝖷)\Phi_{0}\in\mathcal{P}(\mathsf{T\kern-1.5ptX}) with μ0=𝗑Φ0\mu_{0}=\mathsf{x}_{\sharp}\Phi_{0} and μ1𝒫2(𝖷)\mu_{1}\in\mathcal{P}_{2}(\mathsf{X}) we set

Λ(Φ0,μ1):={𝝈Γ(Φ0,μ1)(𝗑0,𝗑1)𝝈Γo(μ0,μ1)}.\Lambda(\Phi_{0},\mu_{1}):=\left\{\boldsymbol{\sigma}\in\Gamma(\Phi_{0},\mu_{1})\mid(\mathsf{x}^{0},\mathsf{x}^{1})_{\sharp}\boldsymbol{\sigma}\in\Gamma_{o}(\mu_{0},\mu_{1})\right\}.

Analogously, for every Φ0,Φ1𝒫(𝖳𝖷)\Phi_{0},\Phi_{1}\in\mathcal{P}(\mathsf{T\kern-1.5ptX}) with μ0=𝗑Φ0\mu_{0}=\mathsf{x}_{\sharp}\Phi_{0} and μ1=𝗑Φ1\mu_{1}=\mathsf{x}_{\sharp}\Phi_{1} in 𝒫2(𝖷)\mathcal{P}_{2}(\mathsf{X}) we set

Λ(Φ0,Φ1):={𝚯Γ(Φ0,Φ1)(𝗑0,𝗑1)𝚯Γo(μ0,μ1)}.\Lambda(\Phi_{0},\Phi_{1}):=\left\{\boldsymbol{\Theta}\in\Gamma(\Phi_{0},\Phi_{1})\mid(\mathsf{x}^{0},\mathsf{x}^{1})_{\sharp}\boldsymbol{\Theta}\in\Gamma_{o}(\mu_{0},\mu_{1})\right\}.

In the following proposition and subsequent corollary, we provide a useful characterization of the pairings [,]r\left[\cdot,\cdot\right]_{r} and [,]l\left[\cdot,\cdot\right]_{l}.

Theorem 3.9.

For every Φ0,Φ1𝒫2(𝖳𝖷)\Phi_{0},\Phi_{1}\in\mathcal{P}_{2}(\mathsf{T\kern-1.5ptX}) and μ1𝒫2(𝖷)\mu_{1}\in\mathcal{P}_{2}(\mathsf{X}) we have

[Φ0,μ1]r\displaystyle\left[\Phi_{0},\mu_{1}\right]_{r} =min{𝖳𝖷×𝖷x0x1,v0d𝝈𝝈Λ(Φ0,μ1)},\displaystyle=\min\left\{\int_{\mathsf{T\kern-1.5ptX}\times\mathsf{X}}\langle x_{0}-x_{1},v_{0}\rangle\,\mathrm{d}\boldsymbol{\sigma}\mid\boldsymbol{\sigma}\in\Lambda(\Phi_{0},\mu_{1})\right\}, (3.15)
[Φ0,Φ1]r\displaystyle\left[\Phi_{0},\Phi_{1}\right]_{r} =min{𝖳𝖷×𝖳𝖷x0x1,v0v1d𝚯𝚯Λ(Φ0,Φ1)}.\displaystyle=\min\left\{\int_{\mathsf{T\kern-1.5ptX}\times\mathsf{T\kern-1.5ptX}}\langle x_{0}-x_{1},v_{0}-v_{1}\rangle\,\mathrm{d}\boldsymbol{\Theta}\mid\boldsymbol{\Theta}\in\Lambda(\Phi_{0},\Phi_{1})\right\}. (3.16)

We denote by Λo(Φ0,μ1)\Lambda_{o}(\Phi_{0},\mu_{1}) (resp. Λo(Φ0,Φ1)\Lambda_{o}(\Phi_{0},\Phi_{1})) the subset of Λ(Φ0,μ1)\Lambda(\Phi_{0},\mu_{1}) (resp. Λ(Φ0,Φ1)\Lambda(\Phi_{0},\Phi_{1})) where the minimum in (3.15) (resp. (3.16)) is attained.

Proof.

First, we recall that the minima in the right hand side are attained since Λ(Φ0,μ1)\Lambda(\Phi_{0},\mu_{1}) and Λ(Φ0,Φ1)\Lambda(\Phi_{0},\Phi_{1}) are compact subsets of 𝒫2(𝖳𝖷×𝖷)\mathcal{P}_{2}(\mathsf{T\kern-1.5ptX}\times\mathsf{X}) and 𝒫2(𝖳𝖷×𝖳𝖷)\mathcal{P}_{2}(\mathsf{T\kern-1.5ptX}\times\mathsf{T\kern-1.5ptX}) respectively by Lemma 2.6 and the integrands are continuous functions with quadratic growth. Thanks to Remark 3.6, we only need to prove the second equality. For every 𝚯Λ(Φ0,Φ1)\boldsymbol{\Theta}\in\Lambda(\Phi_{0},\Phi_{1}) and setting μ0=𝗑Φ0\mu_{0}=\mathsf{x}_{\sharp}\Phi_{0}, μ1=𝗑Φ1\mu_{1}=\mathsf{x}_{\sharp}\Phi_{1}, we have

W22\displaystyle W_{2}^{2} (𝖾𝗑𝗉t(Φ0),𝖾𝗑𝗉t(Φ1))𝖳𝖷×𝖳𝖷|(x0x1)+t(v0v1)|2d𝚯\displaystyle(\operatorname{\mathsf{exp}}^{t}_{\sharp}(\Phi_{0}),\operatorname{\mathsf{exp}}^{t}_{\sharp}(\Phi_{1}))\leq\int_{\mathsf{T\kern-1.5ptX}\times\mathsf{T\kern-1.5ptX}}|(x_{0}-x_{1})+t(v_{0}-v_{1})|^{2}\,\mathrm{d}\boldsymbol{\Theta}
=𝖷2|x0x1|2d(𝗑0,𝗑1)𝚯+2t𝖳𝖷×𝖳𝖷x0x1,v0v1d𝚯+t2𝖷2|v0v1|2d𝚯\displaystyle=\int_{\mathsf{X}^{2}}|x_{0}-x_{1}|^{2}\,\mathrm{d}(\mathsf{x}^{0},\mathsf{x}^{1})_{\sharp}\boldsymbol{\Theta}+2t\int_{\mathsf{T\kern-1.5ptX}\times\mathsf{T\kern-1.5ptX}}\langle x_{0}-x_{1},v_{0}-v_{1}\rangle\,\mathrm{d}\boldsymbol{\Theta}+t^{2}\int_{\mathsf{X}^{2}}|v_{0}-v_{1}|^{2}\,\mathrm{d}\boldsymbol{\Theta}
=W22(μ0,μ1)+2t𝖳𝖷×𝖳𝖷x0x1,v0v1d𝚯+t2𝖷2|v0v1|2d𝚯.\displaystyle=W_{2}^{2}(\mu_{0},\mu_{1})+2t\int_{\mathsf{T\kern-1.5ptX}\times\mathsf{T\kern-1.5ptX}}\langle x_{0}-x_{1},v_{0}-v_{1}\rangle\,\mathrm{d}\boldsymbol{\Theta}+t^{2}\int_{\mathsf{X}^{2}}|v_{0}-v_{1}|^{2}\,\mathrm{d}\boldsymbol{\Theta}.

and this immediately implies

[Φ0,Φ1]rmin{𝖳𝖷×𝖳𝖷x0x1,v0v1d𝚯𝚯Λ(Φ0,Φ1)}.\displaystyle\left[\Phi_{0},\Phi_{1}\right]_{r}\leq\min\left\{\int_{\mathsf{T\kern-1.5ptX}\times\mathsf{T\kern-1.5ptX}}\langle x_{0}-x_{1},v_{0}-v_{1}\rangle\,\mathrm{d}\boldsymbol{\Theta}\mid\boldsymbol{\Theta}\in\Lambda(\Phi_{0},\Phi_{1})\right\}.

In order to prove the converse inequality, thanks to Lemma 3.3, for every t>0t>0 we can find 𝚯tΓ(Φ0,Φ1)\boldsymbol{\Theta}_{t}\in\Gamma(\Phi_{0},\Phi_{1}) s.t.

(𝖾𝗑𝗉t,𝖾𝗑𝗉t)𝚯tΓo(𝖾𝗑𝗉tΦ0,𝖾𝗑𝗉tΦ1).(\operatorname{\mathsf{exp}}^{t},\operatorname{\mathsf{exp}}^{t})_{\sharp}\boldsymbol{\Theta}_{t}\in\Gamma_{o}(\operatorname{\mathsf{exp}}^{t}_{\sharp}\Phi_{0},\operatorname{\mathsf{exp}}^{t}_{\sharp}\Phi_{1}).

Then

W22(𝖾𝗑𝗉tΦ0,𝖾𝗑𝗉tΦ1)W22(μ0,μ1)2t12t𝖳𝖷×𝖳𝖷|(x0x1)+t(v0v1)|2d𝚯t12t𝖳𝖷×𝖳𝖷|x0x1|2d𝚯t𝖳𝖷×𝖳𝖷x0x1,v0v1d𝚯t.\begin{split}\frac{W_{2}^{2}(\operatorname{\mathsf{exp}}^{t}_{\sharp}\Phi_{0},\operatorname{\mathsf{exp}}^{t}_{\sharp}\Phi_{1})-W_{2}^{2}(\mu_{0},\mu_{1})}{2t}&\geq\frac{1}{2t}\int_{\mathsf{T\kern-1.5ptX}\times\mathsf{T\kern-1.5ptX}}|(x_{0}-x_{1})+t(v_{0}-v_{1})|^{2}\,\mathrm{d}\boldsymbol{\Theta}_{t}\\ &\quad-\frac{1}{2t}\int_{\mathsf{T\kern-1.5ptX}\times\mathsf{T\kern-1.5ptX}}|x_{0}-x_{1}|^{2}\,\mathrm{d}\boldsymbol{\Theta}_{t}\\ &\geq\int_{\mathsf{T\kern-1.5ptX}\times\mathsf{T\kern-1.5ptX}}\langle x_{0}-x_{1},v_{0}-v_{1}\rangle\,\mathrm{d}\boldsymbol{\Theta}_{t}.\end{split} (3.17)

Since Γ(Φ0,Φ1)\Gamma(\Phi_{0},\Phi_{1}) is compact in 𝒫2(𝖳𝖷×𝖳𝖷)\mathcal{P}_{2}(\mathsf{T\kern-1.5ptX}\times\mathsf{T\kern-1.5ptX}), there exists a vanishing sequence kt(k)k\mapsto t(k) and 𝚯Γ(Φ0,Φ1)\boldsymbol{\Theta}\in\Gamma(\Phi_{0},\Phi_{1}) s.t. 𝚯t(k)𝚯\boldsymbol{\Theta}_{t(k)}\to\boldsymbol{\Theta} in 𝒫2(𝖳𝖷×𝖳𝖷)\mathcal{P}_{2}(\mathsf{T\kern-1.5ptX}\times\mathsf{T\kern-1.5ptX}). Moreover it holds (𝖾𝗑𝗉t(k),𝖾𝗑𝗉t(k))𝚯t(k)(𝗑0,𝗑1)𝚯(\operatorname{\mathsf{exp}}^{t(k)},\operatorname{\mathsf{exp}}^{t(k)})_{\sharp}\boldsymbol{\Theta}_{t(k)}\to(\mathsf{x}^{0},\mathsf{x}^{1})_{\sharp}\boldsymbol{\Theta} in 𝒫(𝖳𝖷×𝖳𝖷)\mathcal{P}(\mathsf{T\kern-1.5ptX}\times\mathsf{T\kern-1.5ptX}) so that (𝗑0,𝗑1)𝚯Γo(μ0,μ1)(\mathsf{x}^{0},\mathsf{x}^{1})_{\sharp}\boldsymbol{\Theta}\in\Gamma_{o}(\mu_{0},\mu_{1}), and therefore 𝚯Λ(Φ0,Φ1)\boldsymbol{\Theta}\in\Lambda(\Phi_{0},\Phi_{1}). The convergence in 𝒫2(𝖳𝖷×𝖳𝖷)\mathcal{P}_{2}(\mathsf{T\kern-1.5ptX}\times\mathsf{T\kern-1.5ptX}) yields

limk𝖳𝖷×𝖳𝖷x0x1,v0v1d𝚯t(k)=𝖳𝖷×𝖳𝖷x0x1,v0v1d𝚯,\lim_{k}\int_{\mathsf{T\kern-1.5ptX}\times\mathsf{T\kern-1.5ptX}}\langle x_{0}-x_{1},v_{0}-v_{1}\rangle\,\mathrm{d}\boldsymbol{\Theta}_{t(k)}=\int_{\mathsf{T\kern-1.5ptX}\times\mathsf{T\kern-1.5ptX}}\langle x_{0}-x_{1},v_{0}-v_{1}\rangle\,\mathrm{d}\boldsymbol{\Theta},

so that, passing to the limit in (3.17) along the sequence t(k)t(k), we obtain

[Φ0,Φ1]r𝖳𝖷×𝖳𝖷x0x1,v0v1d𝚯for some 𝚯Λ(Φ0,Φ1).\displaystyle\left[\Phi_{0},\Phi_{1}\right]_{r}\geq\int_{\mathsf{T\kern-1.5ptX}\times\mathsf{T\kern-1.5ptX}}\langle x_{0}-x_{1},v_{0}-v_{1}\rangle\,\mathrm{d}\boldsymbol{\Theta}\quad\text{for some }\boldsymbol{\Theta}\in\Lambda(\Phi_{0},\Phi_{1}).\qed
Corollary 3.10.

Let Φ0,Φ1𝒫2(𝖳𝖷)\Phi_{0},\Phi_{1}\in\mathcal{P}_{2}(\mathsf{T\kern-1.5ptX}) and μ1𝒫2(𝖷)\mu_{1}\in\mathcal{P}_{2}(\mathsf{X}), then

[Φ,μ1]l\displaystyle\left[\Phi,\mu_{1}\right]_{l} =max{𝖳𝖷×𝖷x0x1,v0d𝝈𝝈Λ(Φ0,μ1)},\displaystyle=\max\left\{\int_{\mathsf{T\kern-1.5ptX}\times\mathsf{X}}\langle x_{0}-x_{1},v_{0}\rangle\,\mathrm{d}\boldsymbol{\sigma}\mid\boldsymbol{\sigma}\in\Lambda(\Phi_{0},\mu_{1})\right\}, (3.18)
[Φ0,Φ1]l\displaystyle\left[\Phi_{0},\Phi_{1}\right]_{l} =max{𝖳𝖷×𝖳𝖷x0x1,v0v1d𝚯𝚯Λ(Φ0,Φ1)}.\displaystyle=\max\left\{\int_{\mathsf{T\kern-1.5ptX}\times\mathsf{T\kern-1.5ptX}}\langle x_{0}-x_{1},v_{0}-v_{1}\rangle\,\mathrm{d}\boldsymbol{\Theta}\mid\boldsymbol{\Theta}\in\Lambda(\Phi_{0},\Phi_{1})\right\}.

3.2. Right and left derivatives of the Wasserstein distance along a.c. curves

Let us now discuss the differentiability of the map t12W22(μ(t),ν)\mathcal{I}\ni t\mapsto\frac{1}{2}W_{2}^{2}(\mu(t),\nu) along a locally absolutely continuous curve μ:𝒫2(𝖷)\mu:\mathcal{I}\to\mathcal{P}_{2}(\mathsf{X}), with \mathcal{I} an open interval of \mathbb{R} and ν𝒫2(𝖷)\nu\in\mathcal{P}_{2}(\mathsf{X}).

Theorem 3.11.

Let μ:𝒫2(𝖷)\mu:\mathcal{I}\to\mathcal{P}_{2}(\mathsf{X}) be a locally absolutely continuous curve and let 𝐯:×𝖷𝖷\boldsymbol{v}:\mathcal{I}\times\mathsf{X}\to\mathsf{X} and A(μ)A(\mu) be as in Theorem 2.10. Then, for every ν𝒫2(𝖷)\nu\in\mathcal{P}_{2}(\mathsf{X}) and every tA(μ)t\in A(\mu), it holds

limh0W22(μt+h,ν)W22(μt,ν)2h\displaystyle\lim_{h\downarrow 0}\frac{W_{2}^{2}(\mu_{t+h},\nu)-W_{2}^{2}(\mu_{t},\nu)}{2h} =[(𝒊𝖷,𝒗t)μt,ν]r,\displaystyle=\left[(\boldsymbol{i}_{\mathsf{X}},\boldsymbol{v}_{t})_{\sharp}\mu_{t},\nu\right]_{r}, (3.19)
limh0W22(μt+h,ν)W22(μt,ν)2h\displaystyle\lim_{h\uparrow 0}\frac{W_{2}^{2}(\mu_{t+h},\nu)-W_{2}^{2}(\mu_{t},\nu)}{2h} =[(𝒊𝖷,𝒗t)μt,ν]l,\displaystyle=\left[(\boldsymbol{i}_{\mathsf{X}},\boldsymbol{v}_{t})_{\sharp}\mu_{t},\nu\right]_{l},

so that the map sW22(μs,ν)s\mapsto W_{2}^{2}(\mu_{s},\nu) is left and right differentiable at every tA(μ)t\in A(\mu). In particular,

  1. (1)

    if tA(μ)t\in A(\mu) and ν𝒫2(𝖷)\nu\in\mathcal{P}_{2}(\mathsf{X}) are s.t. there exists a unique optimal transport plan between μt\mu_{t} and ν\nu, then the map sW22(μs,ν)s\mapsto W_{2}^{2}(\mu_{s},\nu) is differentiable at tt;

  2. (2)

    there exists a subset A(μ,ν)A(μ)A({\mu,\nu})\subset A(\mu) of full Lebesgue measure such that sW22(μs,ν)s\mapsto W_{2}^{2}(\mu_{s},\nu) is differentiable in A(μ,ν)A({\mu,\nu}) and

    12ddtW22(μt,ν)\displaystyle\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}W_{2}^{2}(\mu_{t},\nu) =[(𝒊𝖷,𝒗t)μt,ν]r=[(𝒊𝖷,𝒗t)μt,ν]l\displaystyle=\left[(\boldsymbol{i}_{\mathsf{X}},\boldsymbol{v}_{t})_{\sharp}\mu_{t},\nu\right]_{r}=\left[(\boldsymbol{i}_{\mathsf{X}},\boldsymbol{v}_{t})_{\sharp}\mu_{t},\nu\right]_{l}
    =𝒗t(x1),x1x2d𝝁(x1.x2)for every 𝝁Γo(μt,ν),tA(μ,ν).\displaystyle=\int\langle\boldsymbol{v}_{t}(x_{1}),x_{1}-x_{2}\rangle\,\mathrm{d}\boldsymbol{\mu}(x_{1}.x_{2})\quad\text{for every }\boldsymbol{\mu}\in\Gamma_{o}(\mu_{t},\nu),\ t\in A({\mu,\nu}).
Proof.

Let ν𝒫2(𝖷)\nu\in\mathcal{P}_{2}(\mathsf{X}) and for every tt\in\mathcal{I} we set Φt:=(𝒊𝖷,𝒗t)μt𝒫2(𝖳𝖷)\Phi_{t}:=(\boldsymbol{i}_{\mathsf{X}},\boldsymbol{v}_{t})_{\sharp}\mu_{t}\in\mathcal{P}_{2}(\mathsf{T\kern-1.5ptX}). By Theorem 3.9, we have

limh0W22(𝖾𝗑𝗉hΦt,ν)W22(μt,ν)2h\displaystyle\lim_{h\downarrow 0}\frac{W_{2}^{2}(\operatorname{\mathsf{exp}}_{\sharp}^{h}\Phi_{t},\nu)-W_{2}^{2}(\mu_{t},\nu)}{2h} =[(𝒊𝖷,𝒗t)μt,ν]r,\displaystyle=\left[(\boldsymbol{i}_{\mathsf{X}},\boldsymbol{v}_{t})_{\sharp}\mu_{t},\nu\right]_{r},
limh0W22(𝖾𝗑𝗉hΦt,ν)W22(μt,ν)2h\displaystyle\lim_{h\uparrow 0}\frac{W_{2}^{2}(\operatorname{\mathsf{exp}}_{\sharp}^{h}\Phi_{t},\nu)-W_{2}^{2}(\mu_{t},\nu)}{2h} =[(𝒊𝖷,𝒗t)μt,ν]l.\displaystyle=\left[(\boldsymbol{i}_{\mathsf{X}},\boldsymbol{v}_{t})_{\sharp}\mu_{t},\nu\right]_{l}.

Since 𝖾𝗑𝗉hΦt=(𝒊𝖷+h𝒗t)μt\operatorname{\mathsf{exp}}_{\sharp}^{h}\Phi_{t}=(\boldsymbol{i}_{\mathsf{X}}+h\boldsymbol{v}_{t})_{\sharp}\mu_{t}, then thanks to Theorem 2.10 we have that the above limits coincide respectively with the limits in the statement, for all tA(μ)t\in A(\mu).

Claim (1) comes by the characterizations given in Theorem 3.9 and Corollary 3.10. Indeed, if there exists a unique optimal transport plan between μt\mu_{t} and ν\nu, then [(𝒊𝖷,𝒗t)μt,ν]r=[(𝒊𝖷,𝒗t)μt,ν]l\left[(\boldsymbol{i}_{\mathsf{X}},\boldsymbol{v}_{t})_{\sharp}\mu_{t},\nu\right]_{r}=\left[(\boldsymbol{i}_{\mathsf{X}},\boldsymbol{v}_{t})_{\sharp}\mu_{t},\nu\right]_{l}.

Claim (2) is a simple consequence of the fact that sW22(μs,ν)s\mapsto W_{2}^{2}(\mu_{s},\nu) is differentiable a.e. in \mathcal{I}. ∎

Remark 3.12.

Thanks to [AGS08, Proposition 8.5.4], in Theorem 3.11 we can actually replace 𝒗\boldsymbol{v} with any Borel velocity field 𝒘\boldsymbol{w} solving the continuity equation for μ\mu and s.t. 𝒘tLμt2Lloc1()\|\boldsymbol{w}_{t}\|_{L^{2}_{\mu_{t}}}\in L^{1}_{loc}(\mathcal{I}). Indeed, we notice that by [AGS08, Lemma 5.3.2],

Λ((𝒊𝖷,𝒗t)μt,ν)={(𝒊𝖷,𝒗t,𝒊𝖷)𝜸𝜸Γo(μt,ν)}.\Lambda((\boldsymbol{i}_{\mathsf{X}},\boldsymbol{v}_{t})_{\sharp}\mu_{t},\nu)=\{(\boldsymbol{i}_{\mathsf{X}},\boldsymbol{v}_{t},\boldsymbol{i}_{\mathsf{X}})_{\sharp}\boldsymbol{\gamma}\mid\boldsymbol{\gamma}\in\Gamma_{o}(\mu_{t},\nu)\}.

See Appendix B for a further discussion about Theorem 3.11.

Theorem 3.13.

Let μ1,μ2:𝒫2(𝖷)\mu^{1},\mu^{2}:\mathcal{I}\to\mathcal{P}_{2}(\mathsf{X}) be locally absolutely continuous curves and let 𝐯1,𝐯2:×𝖷𝖷\boldsymbol{v}^{1},\boldsymbol{v}^{2}:\mathcal{I}\times\mathsf{X}\to\mathsf{X} be the corresponding Wasserstein velocity fields satisfying (2.6) in A(μ1)A({\mu^{1}}) and A(μ2)A({\mu^{2}}) respectively. Then, for every tA(μ1)A(μ2)t\in A({\mu^{1}})\cap A({\mu^{2}}), it holds

limh0W22(μt+h1,μt+h2)W22(μt1,μt2)2h\displaystyle\lim_{h\downarrow 0}\frac{W_{2}^{2}(\mu^{1}_{t+h},\mu^{2}_{t+h})-W_{2}^{2}(\mu^{1}_{t},\mu^{2}_{t})}{2h} =[(𝒊𝖷,𝒗t1)μt1,(𝒊𝖷,𝒗t2)μt2]r,\displaystyle=\left[(\boldsymbol{i}_{\mathsf{X}},\boldsymbol{v}^{1}_{t})_{\sharp}\mu^{1}_{t},(\boldsymbol{i}_{\mathsf{X}},\boldsymbol{v}^{2}_{t})_{\sharp}\mu^{2}_{t}\right]_{r},
limh0W22(μt+h1,μt+h2)W22(μt1,μt2)2h\displaystyle\lim_{h\uparrow 0}\frac{W_{2}^{2}(\mu^{1}_{t+h},\mu^{2}_{t+h})-W_{2}^{2}(\mu^{1}_{t},\mu^{2}_{t})}{2h} =[(𝒊𝖷,𝒗t1)μt1,(𝒊𝖷,𝒗t2)μt2]l.\displaystyle=\left[(\boldsymbol{i}_{\mathsf{X}},\boldsymbol{v}^{1}_{t})_{\sharp}\mu^{1}_{t},(\boldsymbol{i}_{\mathsf{X}},\boldsymbol{v}^{2}_{t})_{\sharp}\mu^{2}_{t}\right]_{l}.

In particular, there exists a subset AA(μ1)A(μ2)A\subset A({\mu^{1}})\cap A({\mu^{2}}) of full Lebesgue measure such that sW22(μs1,μs2)s\mapsto W_{2}^{2}(\mu^{1}_{s},\mu^{2}_{s}) is differentiable in AA and

12ddtW22(μt1,μt2)\displaystyle\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}W_{2}^{2}(\mu^{1}_{t},\mu^{2}_{t}) =[(𝒊𝖷,𝒗t1)μt1,(𝒊𝖷,𝒗t2)μt2]r=[(𝒊𝖷,𝒗t1)μt1,(𝒊𝖷,𝒗t2)μt2]l\displaystyle=\left[(\boldsymbol{i}_{\mathsf{X}},\boldsymbol{v}^{1}_{t})_{\sharp}\mu^{1}_{t},(\boldsymbol{i}_{\mathsf{X}},\boldsymbol{v}^{2}_{t})_{\sharp}\mu^{2}_{t}\right]_{r}=\left[(\boldsymbol{i}_{\mathsf{X}},\boldsymbol{v}^{1}_{t})_{\sharp}\mu^{1}_{t},(\boldsymbol{i}_{\mathsf{X}},\boldsymbol{v}^{2}_{t})_{\sharp}\mu^{2}_{t}\right]_{l} (3.20)
=𝒗t1𝒗t2,x1x2d𝝁(x1,x2)for every 𝝁Γo(μt1,μt2),tA.\displaystyle=\int\langle\boldsymbol{v}^{1}_{t}-\boldsymbol{v}^{2}_{t},x_{1}-x_{2}\rangle\,\mathrm{d}\boldsymbol{\mu}(x_{1},x_{2})\quad\text{for every }\boldsymbol{\mu}\in\Gamma_{o}(\mu^{1}_{t},\mu^{2}_{t}),\ t\in A.

The proof of Theorem 3.13 follows by the same argument of the proof of Theorem 3.11.

3.3. Convexity and semicontinuity of duality parings

We want now to investigate the semicontinuity and convexity properties of the functionals [,]r\left[\cdot,\cdot\right]_{r} and [,]l\left[\cdot,\cdot\right]_{l}.

Lemma 3.14.

Let (Φn)n𝒫2(𝖳𝖷)(\Phi_{n})_{n\in\mathbb{N}}\subset\mathcal{P}_{2}(\mathsf{T\kern-1.5ptX}) be converging to Φ\Phi in 𝒫2sw(𝖳𝖷)\mathcal{P}_{2}^{sw}(\mathsf{T\kern-1.5ptX}), and let (νn)n𝒫2(𝖷)(\nu_{n})_{n\in\mathbb{N}}\subset\mathcal{P}_{2}(\mathsf{X}) be converging to ν\nu in 𝒫2(𝖷)\mathcal{P}_{2}(\mathsf{X}). Then

lim infn[Φn,νn]r[Φ,ν]r and lim supn[Φn,νn]l[Φ,ν]l.\liminf_{n}\left[\Phi_{n},\nu_{n}\right]_{r}\geq\left[\Phi,\nu\right]_{r}\quad\text{ and }\quad\limsup_{n}\left[\Phi_{n},\nu_{n}\right]_{l}\leq\left[\Phi,\nu\right]_{l}. (3.21)

Finally, if (Φni)n(\Phi_{n}^{i})_{n\in\mathbb{N}}, i=0,1i=0,1, are sequences converging to Φi\Phi^{i} in 𝒫2sw(𝖳𝖷)\mathcal{P}_{2}^{sw}(\mathsf{T\kern-1.5ptX}) then

lim infn[Φn0,Φn1]r[Φ0,Φ1]r,lim supn[Φn0,Φn1]l[Φ0,Φ1]l.\liminf_{n\to\infty}\left[\Phi^{0}_{n},\Phi^{1}_{n}\right]_{r}\geq\left[\Phi^{0},\Phi^{1}\right]_{r},\qquad\limsup_{n\to\infty}\left[\Phi^{0}_{n},\Phi^{1}_{n}\right]_{l}\geq\left[\Phi^{0},\Phi^{1}\right]_{l}. (3.22)
Proof.

We just consider the proof of the first inequality (3.21); the other statements follow by similar arguments and by Remark 3.6.

We can extract a subsequence of (Φn)n(\Phi_{n})_{n\in\mathbb{N}} (not relabeled) s.t. the lim inf\liminf is achieved as a limit. We have to prove that

limn[Φn,νn]r[Φ,ν]r.\lim_{n}\left[\Phi_{n},\nu_{n}\right]_{r}\geq\left[\Phi,\nu\right]_{r}. (3.23)

For every nn\in\mathbb{N} take 𝝈nΛo(Φn,νn)\boldsymbol{\sigma}_{n}\in\Lambda_{o}(\Phi_{n},\nu_{n}) with ϑ¯n=(𝗑0,𝗑1)𝝈n\bar{\boldsymbol{\vartheta}}_{n}=(\mathsf{x}^{0},\mathsf{x}^{1})_{\sharp}\boldsymbol{\sigma}_{n}, and observe that the family (ϑ¯n)n(\bar{\boldsymbol{\vartheta}}_{n})_{n\in\mathbb{N}} is relatively compact in 𝒫2(𝖷2)\mathcal{P}_{2}(\mathsf{X}^{2}) (since the marginals of ϑ¯n\bar{\boldsymbol{\vartheta}}_{n} are converging w.r.t. W2W_{2}) so that (𝝈n)n(\boldsymbol{\sigma}_{n})_{n\in\mathbb{N}} is relatively compact in 𝒫2sws(𝖳𝖷×𝖷)\mathcal{P}_{2}^{sws}(\mathsf{T\kern-1.5ptX}\times\mathsf{X}) by Proposition 2.15 since the moments |v0|2d𝝈n(x0,v0,x1)=|Φn|22\int|v_{0}|^{2}\,\mathrm{d}\boldsymbol{\sigma}_{n}(x_{0},v_{0},x_{1})=|\Phi_{n}|^{2}_{2} are uniformly bounded by assumption. Thus, possibly passing to a further subsequence, we have that (𝝈n)n(\boldsymbol{\sigma}_{n})_{n\in\mathbb{N}} converges to some 𝝈\boldsymbol{\sigma} in 𝒫2sws(𝖳𝖷×𝖷)\mathcal{P}_{2}^{sws}(\mathsf{T\kern-1.5ptX}\times\mathsf{X}). In particular 𝝈Λ(Φ,ν)\boldsymbol{\sigma}\in\Lambda(\Phi,\nu) since optimality of the 𝖷2\mathsf{X}^{2} marginals is preserved by narrow convergence.

(2.7) then yields

limn[Φn,νn]r=limnv0,x0x1d𝝈n=v0,x0x1d𝝈\lim_{n\to\infty}\left[\Phi_{n},\nu_{n}\right]_{r}=\lim_{n\to\infty}\int\langle v_{0},x_{0}-x_{1}\rangle\,\mathrm{d}\boldsymbol{\sigma}_{n}=\int\langle v_{0},x_{0}-x_{1}\rangle\,\mathrm{d}\boldsymbol{\sigma}

which yields (3.23) since the RHS is larger than [Φ,ν]r\left[\Phi,\nu\right]_{r} by Theorem 3.9. ∎

Remark 3.15.

Notice that in the special case in which Λ(Φ,ν)\Lambda(\Phi,\nu) is a singleton, then the limit exists and it holds

limn[Φn,νn]r=[Φ,ν]r,limn[Φn,νn]l=[Φ,ν]l.\lim_{n\to\infty}\left[\Phi_{n},\nu_{n}\right]_{r}=\left[\Phi,\nu\right]_{r},\qquad\lim_{n\to\infty}\left[\Phi_{n},\nu_{n}\right]_{l}=\left[\Phi,\nu\right]_{l}.
Lemma 3.16.

For every μ,ν𝒫2(𝖷)\mu,\nu\in\mathcal{P}_{2}(\mathsf{X}) the maps Φ[Φ,ν]r\Phi\mapsto\left[\Phi,\nu\right]_{r} and (Φ,Ψ)[Φ,Ψ]r(\Phi,\Psi)\mapsto\left[\Phi,\Psi\right]_{r} (resp. Φ[Φ,ν]l\Phi\mapsto\left[\Phi,\nu\right]_{l} and (Φ,Ψ)[Φ,Ψ]l(\Phi,\Psi)\mapsto\left[\Phi,\Psi\right]_{l}) are convex (resp. concave) in 𝒫2(𝖳𝖷|μ)\mathcal{P}_{2}(\mathsf{T\kern-1.5ptX}|\mu) and 𝒫2(𝖳𝖷|μ)×𝒫2(𝖳𝖷|ν)\mathcal{P}_{2}(\mathsf{T\kern-1.5ptX}|\mu)\times\mathcal{P}_{2}(\mathsf{T\kern-1.5ptX}|\nu).

Proof.

We prove the convexity of (Φ,Ψ)[Φ,Ψ]r(\Phi,\Psi)\mapsto\left[\Phi,\Psi\right]_{r} in 𝒫2(𝖳𝖷|μ)×𝒫2(𝖳𝖷|ν)\mathcal{P}_{2}(\mathsf{T\kern-1.5ptX}|\mu)\times\mathcal{P}_{2}(\mathsf{T\kern-1.5ptX}|\nu); the argument of the proofs of the other statements are completely analogous.

Let Φk𝒫2(𝖳𝖷|μ)\Phi_{k}\in\mathcal{P}_{2}(\mathsf{T\kern-1.5ptX}|\mu), Ψk𝒫2(𝖳𝖷|ν)\Psi_{k}\in\mathcal{P}_{2}(\mathsf{T\kern-1.5ptX}|\nu), and let βk0\beta_{k}\geq 0, with kβk=1\sum_{k}\beta_{k}=1, k=1,,Kk=1,\cdots,K. We set Φ=k=1KβkΦk\Phi=\sum_{k=1}^{K}\beta_{k}\Phi_{k}, Ψ=k=1KβkΨk\Psi=\sum_{k=1}^{K}\beta_{k}\Psi_{k}, For every kk let us select 𝚯kΛ(Φk,Ψk)\boldsymbol{\Theta}_{k}\in\Lambda(\Phi_{k},\Psi_{k}) such that

[Φk,Ψk]r=v1v0,x1x0d𝚯k.\left[\Phi_{k},\Psi_{k}\right]_{r}=\int\langle v_{1}-v_{0},x_{1}-x_{0}\rangle\,\mathrm{d}\boldsymbol{\Theta}_{k}.

It is not difficult to check that 𝚯:=kβk𝚯kΛ(Φ,Ψ)\boldsymbol{\Theta}:=\sum_{k}\beta_{k}\boldsymbol{\Theta}_{k}\in\Lambda(\Phi,\Psi) so that

[Φ,Ψ]rv1v0,x1x0d𝚯=kβkv1v0,x1x0d𝚯k=kβk[Φk,Ψk]r.\left[\Phi,\Psi\right]_{r}\leq\int\langle v_{1}-v_{0},x_{1}-x_{0}\rangle\,\mathrm{d}\boldsymbol{\Theta}=\sum_{k}\beta_{k}\int\langle v_{1}-v_{0},x_{1}-x_{0}\rangle\,\mathrm{d}\boldsymbol{\Theta}_{k}=\sum_{k}\beta_{k}\left[\Phi_{k},\Psi_{k}\right]_{r}.\qed

3.4. Behaviour of duality pairings along geodesics

We have seen that the duality pairings [,]r\left[\cdot,\cdot\right]_{r} and [,]l\left[\cdot,\cdot\right]_{l} may differ when the collection of optimal plans Γo(μ0,μ1)\Gamma_{o}(\mu_{0},\mu_{1}) contains more than one element. It is natural to expect a simpler behaviour along geodesics. We will introduce the following definition, where we use the notation

𝗑t(x0,x1):=(1t)x0+tx1,𝗏0(x0,v0,x1):=v0for every (x0,v0,x1)𝖳𝖷×𝖷,t[0,1].\mathsf{x}^{t}(x_{0},x_{1}):=(1-t)x_{0}+tx_{1},\quad\mathsf{v}^{0}(x_{0},v_{0},x_{1}):=v_{0}\quad\text{for every }(x_{0},v_{0},x_{1})\in\mathsf{T\kern-1.5ptX}\times\mathsf{X},\,t\in[0,1].
Definition 3.17.

For ϑ𝒫2(𝖷×𝖷)\boldsymbol{\vartheta}\in\mathcal{P}_{2}(\mathsf{X}\times\mathsf{X}), t[0,1]t\in[0,1], ϑt=𝗑tϑ\vartheta_{t}=\mathsf{x}^{t}_{\sharp}\boldsymbol{\vartheta} and Φ𝒫2(𝖳𝖷|ϑt)\Phi\in\mathcal{P}_{2}(\mathsf{T\kern-1.5ptX}|\vartheta_{t}), we set

Γt(Φ,ϑ):={𝝈𝒫2(𝖳𝖷×𝖷)(𝗑0,𝗑1)𝝈=ϑ,(𝗑t(𝗑0,𝗑1),𝗏0)𝝈=Φ},\Gamma_{t}(\Phi,\boldsymbol{\vartheta}):=\left\{\boldsymbol{\sigma}\in\mathcal{P}_{2}(\mathsf{T\kern-1.5ptX}\times\mathsf{X})\mid(\mathsf{x}^{0},\mathsf{x}^{1})_{\sharp}\boldsymbol{\sigma}=\boldsymbol{\vartheta},\quad(\mathsf{x}^{t}\circ(\mathsf{x}^{0},\mathsf{x}^{1}),\mathsf{v}^{0})_{\sharp}\boldsymbol{\sigma}=\Phi\right\},

which is not empty since ϑt=𝗑tϑ=𝗑Φ\vartheta_{t}=\mathsf{x}^{t}_{\sharp}\boldsymbol{\vartheta}=\mathsf{x}_{\sharp}\Phi. We set

[Φ,ϑ]b,t\displaystyle\left[\Phi,\boldsymbol{\vartheta}\right]_{b,t} :=x0x1,𝒃Φ(𝗑t(x0,x1))dϑ(x0,x1),\displaystyle:=\int\langle x_{0}-x_{1},\boldsymbol{b}_{\Phi}(\mathsf{x}^{t}(x_{0},x_{1}))\rangle\,\mathrm{d}\boldsymbol{\vartheta}(x_{0},x_{1}),
[Φ,ϑ]r,t\displaystyle[\Phi,\boldsymbol{\vartheta}]_{r,t} :=min{x0x1,v0d𝝈(x0,v0,x1)𝝈Γt(Φ,ϑ)},\displaystyle:=\min\left\{\int\langle x_{0}-x_{1},v_{0}\rangle\,\mathrm{d}\boldsymbol{\sigma}(x_{0},v_{0},x_{1})\mid\boldsymbol{\sigma}\in\Gamma_{t}(\Phi,\boldsymbol{\vartheta})\right\},
[Φ,ϑ]l,t\displaystyle[\Phi,\boldsymbol{\vartheta}]_{l,t} :=max{x0x1,v0d𝝈(x0,v0,x1)𝝈Γt(Φ,ϑ)}.\displaystyle:=\max\left\{\int\langle x_{0}-x_{1},v_{0}\rangle\,\mathrm{d}\boldsymbol{\sigma}(x_{0},v_{0},x_{1})\mid\boldsymbol{\sigma}\in\Gamma_{t}(\Phi,\boldsymbol{\vartheta})\right\}.
If moreover Φ0𝒫2(𝖳𝖷|ϑ0)\Phi_{0}\in\mathcal{P}_{2}(\mathsf{T\kern-1.5ptX}|\vartheta_{0}), Φ1𝒫2(𝖳𝖷|ϑ1)\Phi_{1}\in\mathcal{P}_{2}(\mathsf{T\kern-1.5ptX}|\vartheta_{1}), ϑΓ(ϑ0,ϑ1)\boldsymbol{\vartheta}\in\Gamma(\vartheta_{0},\vartheta_{1}), we define
[Φ0,Φ1]r,ϑ\displaystyle[\Phi_{0},\Phi_{1}]_{r,\boldsymbol{\vartheta}} :=[Φ0,ϑ]r,0[Φ1,ϑ]l,1,\displaystyle:=[\Phi_{0},\boldsymbol{\vartheta}]_{r,0}-[\Phi_{1},\boldsymbol{\vartheta}]_{l,1},
[Φ0,Φ1]l,ϑ\displaystyle[\Phi_{0},\Phi_{1}]_{l,\boldsymbol{\vartheta}} :=[Φ0,ϑ]l,0[Φ1,ϑ]r,1.\displaystyle:=[\Phi_{0},\boldsymbol{\vartheta}]_{l,0}-[\Phi_{1},\boldsymbol{\vartheta}]_{r,1}.

Notice that, if Φx\Phi_{x} is the disintegration of Φ\Phi with respect to ϑt=𝗑Φ\vartheta_{t}=\mathsf{x}_{\sharp}\Phi, we can consider the barycentric coupling 𝝈t:=𝖷×𝖷Φ𝗑tdϑΓt(Φ,ϑ)\boldsymbol{\sigma}_{t}:=\int_{\mathsf{X}\times\mathsf{X}}\Phi_{\mathsf{x}^{t}}\,\mathrm{d}\boldsymbol{\vartheta}\in\Gamma_{t}(\Phi,\boldsymbol{\vartheta}), i.e.

ψ(x0,v0,x1)d𝝈t=[ψ(x0,v0,x1)dΦ(1t)x0+tx1(v0)]dϑ(x0,x1)\int\psi(x_{0},v_{0},x_{1})\,\mathrm{d}\boldsymbol{\sigma}_{t}=\int\Big{[}\int\psi(x_{0},v_{0},x_{1})\,\mathrm{d}\Phi_{(1-t)x_{0}+tx_{1}}(v_{0})\Big{]}\,\mathrm{d}\boldsymbol{\vartheta}(x_{0},x_{1})

so that [Φ,ϑ]b,t=v0,x0x1d𝝈t\left[\Phi,\boldsymbol{\vartheta}\right]_{b,t}=\int\langle{v_{0}},x_{0}-x_{1}\rangle\,\mathrm{d}\boldsymbol{\sigma}_{t} and

[Φ,ϑ]r,t[Φ,ϑ]b,t[Φ,ϑ]l,t.[\Phi,\boldsymbol{\vartheta}]_{r,t}\leq\left[\Phi,\boldsymbol{\vartheta}\right]_{b,t}\leq[\Phi,\boldsymbol{\vartheta}]_{l,t}.

If we define by 𝗌:𝖷2𝖷2\mathsf{s}:\mathsf{X}^{2}\to\mathsf{X}^{2} the map 𝗌(x0,x1):=(x1,x0)\mathsf{s}(x_{0},x_{1}):=(x_{1},x_{0}) (with a similar definition for 𝖳𝖷×𝖷\mathsf{T\kern-1.5ptX}\times\mathsf{X}: 𝗌(x0,v0,x1):=(x1,v0,x0)\mathsf{s}(x_{0},v_{0},x_{1}):=(x_{1},v_{0},x_{0})) it is easy to check that

𝝈Γt(Φ,ϑ)𝗌𝝈Γ1t(Φ,𝗌ϑ)\boldsymbol{\sigma}\in\Gamma_{t}(\Phi,\boldsymbol{\vartheta})\quad\Leftrightarrow\quad\mathsf{s}_{\sharp}\boldsymbol{\sigma}\in\Gamma_{1-t}(\Phi,\mathsf{s}_{\sharp}\boldsymbol{\vartheta})

so that

[Φ,ϑ]r,t=[Φ,𝗌ϑ]l,1t,[Φ,ϑ]l,t=[Φ,𝗌ϑ]r,1t.[\Phi,\boldsymbol{\vartheta}]_{r,t}=-[\Phi,\mathsf{s}_{\sharp}\boldsymbol{\vartheta}]_{l,1-t},\quad[\Phi,\boldsymbol{\vartheta}]_{l,t}=-[\Phi,\mathsf{s}_{\sharp}\boldsymbol{\vartheta}]_{r,1-t}. (3.24)

(3.15) and (3.18) have simpler versions in two particular cases, which will be explained in the next remark.

Remark 3.18 (Particular cases).

Suppose that ϑ𝒫2(𝖷2)\boldsymbol{\vartheta}\in\mathcal{P}_{2}(\mathsf{X}^{2}), t[0,1]t\in[0,1], ϑt=𝗑tϑ\vartheta_{t}=\mathsf{x}^{t}_{\sharp}\boldsymbol{\vartheta}, Φ𝒫2(𝖳𝖷|ϑt)\Phi\in\mathcal{P}_{2}(\mathsf{T\kern-1.5ptX}|\vartheta_{t}) and 𝗑t:𝖷2𝖷\mathsf{x}^{t}:\mathsf{X}^{2}\to\mathsf{X} is ϑ\boldsymbol{\vartheta}-essentially injective so that ϑ\boldsymbol{\vartheta} is concentrated on a Borel map (X0,X1):𝖷𝖷×𝖷(X_{0},X_{1}):\mathsf{X}\to\mathsf{X}\times\mathsf{X}, i.e. ϑ=(X0,X1)ϑt\boldsymbol{\vartheta}=(X_{0},X_{1})_{\sharp}\vartheta_{t}. In this case Γt(Φ,ϑ)\Gamma_{t}(\Phi,\boldsymbol{\vartheta}) contains a unique element given by (X0𝗑,𝗏,X1𝗑)Φ(X_{0}\circ\mathsf{x},\mathsf{v},X_{1}\circ\mathsf{x})_{\sharp}\Phi and

[Φ,ϑ]r,t=[Φ,ϑ]l,t=[Φ,ϑ]b,t=v,X0(x)X1(x)dΦ(x,v)=𝒃Φ,X0X1dϑt,[\Phi,\boldsymbol{\vartheta}]_{r,t}=[\Phi,\boldsymbol{\vartheta}]_{l,t}=\left[\Phi,\boldsymbol{\vartheta}\right]_{b,t}=\int\langle v,X_{0}(x)-X_{1}(x)\rangle\,\mathrm{d}\Phi(x,v)=\int\langle\boldsymbol{b}_{\Phi},X_{0}-X_{1}\rangle\,\mathrm{d}\vartheta_{t}, (3.25)

where in the last formula we have applied the barycentric reduction (3.8). When t=0t=0 and ϑ\boldsymbol{\vartheta} is the unique element of Γo(ϑ0,ϑ1)\Gamma_{o}(\vartheta_{0},\vartheta_{1}) then X0(x)=xX_{0}(x)=x and we obtain

[Φ,ϑ1]r=[Φ,ϑ1]l=[Φ,ϑ]r,0=[Φ,ϑ]l,0=v,xX1(x)dΦ(x,v)=𝒃Φ,xX1(x)dϑ0(x).\left[\Phi,\vartheta_{1}\right]_{r}=\left[\Phi,\vartheta_{1}\right]_{l}=[\Phi,\boldsymbol{\vartheta}]_{r,0}=[\Phi,\boldsymbol{\vartheta}]_{l,0}=\int\langle v,x-X_{1}(x)\rangle\,\mathrm{d}\Phi(x,v)=\int\langle\boldsymbol{b}_{\Phi},x-X_{1}(x)\rangle\,\mathrm{d}\vartheta_{0}(x).

Another simple case is when Φ=Φϑt,𝒘\Phi=\Phi_{\vartheta_{t},\boldsymbol{w}} for some vector field 𝒘Lϑt2(𝖷;𝖷)\boldsymbol{w}\in L^{2}_{\vartheta_{t}}(\mathsf{X};\mathsf{X}) as in (3.5) (i.e. its disintegration Φx\Phi_{x} w.r.t. ϑt\vartheta_{t} takes the form δ𝒘(x)\delta_{\boldsymbol{w}(x)} and 𝒘=𝒃Φ.\boldsymbol{w}=\boldsymbol{b}_{\Phi}.). We have

[Φ,ϑ]r,t=[Φ,ϑ]l,t=𝒘((1t)x0+tx1),x0x1dϑ(x0,x1).[\Phi,\boldsymbol{\vartheta}]_{r,t}=[\Phi,\boldsymbol{\vartheta}]_{l,t}=\int\langle\boldsymbol{w}((1-t)x_{0}+tx_{1}),x_{0}-x_{1}\rangle\,\mathrm{d}\boldsymbol{\vartheta}(x_{0},x_{1}).

In particular we get

[Φ,ϑ1]r=min{𝒘(x),x0x1dϑ(x0,x1)ϑΓo(ϑ0,ϑ1)}.\left[\Phi,\vartheta_{1}\right]_{r}=\min\Big{\{}\int\langle\boldsymbol{w}(x),x_{0}-x_{1}\rangle\,\mathrm{d}\boldsymbol{\vartheta}(x_{0},x_{1})\mid\boldsymbol{\vartheta}\in\Gamma_{o}(\vartheta_{0},\vartheta_{1})\Big{\}}.

An important case in which the previous Remark 3.18 applies is that of geodesics in 𝒫2(𝖷)\mathcal{P}_{2}(\mathsf{X}).

Lemma 3.19.

Let μ0,μ1𝒫2(𝖷)\mu_{0},\mu_{1}\in\mathcal{P}_{2}(\mathsf{X}), (μt)t[0,1](\mu_{t})_{t\in[0,1]} be a constant speed geodesic induced by an optimal plan 𝛍Γo(μ0,μ1)\boldsymbol{\mu}\in\Gamma_{o}(\mu_{0},\mu_{1}) by the relation

μt=𝗑t𝝁,t[0,1],𝗑t(x0,x1)=(1t)x0+tx1.\mu_{t}=\mathsf{x}^{t}_{\sharp}\boldsymbol{\mu},\quad t\in[0,1],\quad\mathsf{x}^{t}(x_{0},x_{1})=(1-t)x_{0}+tx_{1}.

If t(0,1)t\in(0,1), Φt𝒫2(𝖳𝖷|μt)\Phi_{t}\in\mathcal{P}_{2}(\mathsf{T\kern-1.5ptX}|\mu_{t}), 𝛍^=𝗌𝛍Γo(μ1,μ0)\hat{\boldsymbol{\mu}}=\mathsf{s}_{\sharp}\boldsymbol{\mu}\in\Gamma_{o}(\mu_{1},\mu_{0}), then

11t[Φt,μ1]r\displaystyle\frac{1}{1-t}\left[\Phi_{t},\mu_{1}\right]_{r} =\displaystyle= 11t[Φt,μ1]l\displaystyle\frac{1}{1-t}\left[\Phi_{t},\mu_{1}\right]_{l} =\displaystyle= [Φt,𝝁]r,t\displaystyle[\Phi_{t},\boldsymbol{\mu}]_{r,t} =\displaystyle= [Φt,𝝁]l,t\displaystyle[\Phi_{t},\boldsymbol{\mu}]_{l,t} (3.26)
=\displaystyle= 1t[Φt,μ0]r\displaystyle-\frac{1}{t}\left[\Phi_{t},\mu_{0}\right]_{r} =\displaystyle= 1t[Φt,μ0]l\displaystyle-\frac{1}{t}\left[\Phi_{t},\mu_{0}\right]_{l} =\displaystyle= [Φt,𝝁^]r,1t\displaystyle-[\Phi_{t},\hat{\boldsymbol{\mu}}]_{r,1-t} =\displaystyle= [Φt,𝝁^]l,1t.\displaystyle-[\Phi_{t},\hat{\boldsymbol{\mu}}]_{l,1-t}.
Proof.

The crucial fact is that 𝗑t:𝖷2𝖷\mathsf{x}^{t}:\mathsf{X}^{2}\to\mathsf{X} is injective on supp(𝝁)\operatorname{supp}(\boldsymbol{\mu}) and thus a bijection on its image supp(μt)\operatorname{supp}(\mu_{t}). Indeed, take (x0,x1),(x0,x1)supp(𝝁)(x_{0},x_{1}),(x_{0}^{\prime},x_{1}^{\prime})\in\operatorname{supp}(\boldsymbol{\mu}), then

|𝗑t(x0,x1)𝗑t(x0,x1)|2\displaystyle\left|\mathsf{x}^{t}(x_{0},x_{1})-\mathsf{x}^{t}(x_{0}^{\prime},x_{1}^{\prime})\right|^{2} =(1t)2|x0x0|2+t2|x1x1|2+2t(1t)x0x0,x1x1\displaystyle=(1-t)^{2}|x_{0}-x_{0}^{\prime}|^{2}+t^{2}|x_{1}-x_{1}^{\prime}|^{2}+2t(1-t)\langle x_{0}-x_{0}^{\prime},x_{1}-x_{1}^{\prime}\rangle
(1t)2|x0x0|2+t2|x1x1|2\displaystyle\geq(1-t)^{2}|x_{0}-x_{0}^{\prime}|^{2}+t^{2}|x_{1}-x_{1}^{\prime}|^{2}

thanks to the cyclical monotonicity of supp(𝝁)\operatorname{supp}(\boldsymbol{\mu}) (see [AGS08, Remark 7.1.2]).

Then, for every xsupp(μt)x\in\operatorname{supp}(\mu_{t}), there exists a unique couple (x0,x1)=(X0(x),X1(x))supp(𝝁)(x_{0},x_{1})=(X_{0}(x),X_{1}(x))\in\operatorname{supp}(\boldsymbol{\mu}) s.t. x=(1t)x0+tx1x=(1-t)x_{0}+tx_{1}, where we refer to Remark 3.18 for the definitions of X0,X1X_{0},X_{1} (cf. also [San15, Theorem 5.29]). Hence, in the following diagram all maps are bijections:

supp(𝝁t0){\operatorname{supp}(\boldsymbol{\mu}_{t0})}supp(𝝁){\operatorname{supp}(\boldsymbol{\mu})}supp(𝝁t1){\operatorname{supp}(\boldsymbol{\mu}_{t1})}   supp(μt){\operatorname{supp}(\mu_{t})}   (𝗑t,𝗑0)\scriptstyle{(\mathsf{x}^{t}\text{,}\,\mathsf{x}^{0})}(𝗑t,𝗑1)\scriptstyle{(\mathsf{x}^{t}\text{,}\,\mathsf{x}^{1})}𝗑t\scriptstyle{\mathsf{x}^{t}}(𝒊𝖷,X1)\scriptstyle{(\boldsymbol{i}_{\mathsf{X}}\text{,}\,X_{1})}(𝒊𝖷,X0)\scriptstyle{(\boldsymbol{i}_{\mathsf{X}}\text{,}\,X_{0})}

where 𝝁t1=(𝗑t,𝗑1)𝝁=(𝒊𝖷,X1)μt\boldsymbol{\mu}_{t1}=(\mathsf{x}^{t},\mathsf{x}^{1})_{\sharp}\boldsymbol{\mu}=(\boldsymbol{i}_{\mathsf{X}},X_{1})_{\sharp}\mu_{t} is the unique element of Γo(μt,μ1)\Gamma_{o}(\mu_{t},\mu_{1}) and 𝝁t0=(𝗑t,𝗑0)𝝁=(𝒊𝖷,X0)μt=(𝗑1t,𝗑1)𝝁^\boldsymbol{\mu}_{t0}=(\mathsf{x}^{t},\mathsf{x}^{0})_{\sharp}\boldsymbol{\mu}=(\boldsymbol{i}_{\mathsf{X}},X_{0})_{\sharp}\mu_{t}=(\mathsf{x}^{1-t},\mathsf{x}^{1})_{\sharp}\hat{\boldsymbol{\mu}} is the unique element of Γo(μt,μ0)\Gamma_{o}(\mu_{t},\mu_{0}) (see Theorem 2.8). Since

xX1(x)1t=xx11t=x0x1=xx0t=xX0(x)t,\frac{x-X_{1}(x)}{1-t}=\frac{x-x_{1}}{1-t}=x_{0}-x_{1}=-\frac{x-x_{0}}{t}=-\frac{x-X_{0}(x)}{t},

and Λ(Φt,μ1)={(𝒊𝖳𝖷,X1𝗑)Φt}\Lambda(\Phi_{t},\mu_{1})=\{(\boldsymbol{i}_{\mathsf{T\kern-1.5ptX}},X_{1}\circ\mathsf{x})_{\sharp}\Phi_{t}\} thanks to Theorem 2.8, by Theorem 3.9 and Corollary 3.10 we have

[Φt,μ1]r=[Φt,μ1]l=𝖳𝖷v,xX1(x)dΦt(x,v).\left[\Phi_{t},\mu_{1}\right]_{r}=\left[\Phi_{t},\mu_{1}\right]_{l}=\int_{\mathsf{T\kern-1.5ptX}}\langle v,x-X_{1}(x)\rangle\,\mathrm{d}\Phi_{t}(x,v).

Analogously, Λ(Φt,μ0)={(𝒊𝖳𝖷,X0𝗑)Φt}\Lambda(\Phi_{t},\mu_{0})=\{(\boldsymbol{i}_{\mathsf{T\kern-1.5ptX}},X_{0}\circ\mathsf{x})_{\sharp}\Phi_{t}\}. Hence

[Φt,μ0]r=[Φt,μ0]l=𝖳𝖷v,xX0(x)dΦt(x,v).\left[\Phi_{t},\mu_{0}\right]_{r}=\left[\Phi_{t},\mu_{0}\right]_{l}=\int_{\mathsf{T\kern-1.5ptX}}\langle v,x-X_{0}(x)\rangle\,\mathrm{d}\Phi_{t}(x,v).

Also recalling (3.24) and (3.25) we conclude. ∎

4. Dissipative probability vector fields: the metric viewpoint

4.1. Multivalued Probability Vector Fields and λ\lambda-dissipativity

Definition 4.1 (Multivalued Probability Vector Field - MPVF).

A multivalued probability vector field 𝐅{\boldsymbol{\mathrm{F}}} is a nonempty subset of 𝒫2(𝖳𝖷)\mathcal{P}_{2}(\mathsf{T\kern-1.5ptX}) with domain D(𝐅):=𝗑(𝐅)={𝗑Φ:Φ𝐅}\mathrm{D}({\boldsymbol{\mathrm{F}}}):=\mathsf{x}_{\sharp}({\boldsymbol{\mathrm{F}}})=\{\mathsf{x}_{\sharp}\Phi:\Phi\in{\boldsymbol{\mathrm{F}}}\}. Given μ𝒫2(𝖷)\mu\in\mathcal{P}_{2}(\mathsf{X}), we define the section 𝐅[μ]{\boldsymbol{\mathrm{F}}}[\mu] of 𝐅{\boldsymbol{\mathrm{F}}} as

𝐅[μ]:=(𝗑)1(μ)𝐅={Φ𝐅𝗑Φ=μ}.{\boldsymbol{\mathrm{F}}}[\mu]:=(\mathsf{x}_{\sharp})^{-1}(\mu)\cap{\boldsymbol{\mathrm{F}}}=\left\{\Phi\in{\boldsymbol{\mathrm{F}}}\mid\mathsf{x}_{\sharp}\Phi=\mu\right\}.

A selection 𝐅{\boldsymbol{\mathrm{F}}}^{\prime} of 𝐅{\boldsymbol{\mathrm{F}}} is a subset of 𝐅{\boldsymbol{\mathrm{F}}} such that D(𝐅)=D(𝐅)\mathrm{D}({\boldsymbol{\mathrm{F}}}^{\prime})=\mathrm{D}({\boldsymbol{\mathrm{F}}}). We call 𝐅{\boldsymbol{\mathrm{F}}} a probability vector field (PVF) if 𝗑\mathsf{x}_{\sharp} is injective in 𝐅{\boldsymbol{\mathrm{F}}}, i.e. 𝐅[μ]{\boldsymbol{\mathrm{F}}}[\mu] contains a unique element for every μD(𝐅)\mu\in\mathrm{D}({\boldsymbol{\mathrm{F}}}). 𝐅{\boldsymbol{\mathrm{F}}} is a vector field if for every μD(𝐅)\mu\in\mathrm{D}({\boldsymbol{\mathrm{F}}}) 𝐅[μ]{\boldsymbol{\mathrm{F}}}[\mu] contains a unique element Φ\Phi concentrated on a map, i.e. Φ=(𝒊𝖷,𝒃Φ)μ\Phi=(\boldsymbol{i}_{\mathsf{X}},\boldsymbol{b}_{\Phi})_{\sharp}\mu.

Remark 4.2.

We can equivalently formulate Definition 4.1 by considering 𝐅{\boldsymbol{\mathrm{F}}} as a multifunction, as in the case, e.g., of the Wasserstein subdifferential \boldsymbol{\partial}\mathcal{F} of a function :𝒫2(𝖷)(,+]\mathcal{F}:\mathcal{P}_{2}(\mathsf{X})\to(-\infty,+\infty], see [AGS08, Ch. 10] and the next Section 5.1. According to this viewpoint, a MPVF is a set-valued map 𝐅:𝒫2(𝖷)D(𝐅)𝒫2(𝖳𝖷){\boldsymbol{\mathrm{F}}}:\mathcal{P}_{2}(\mathsf{X})\supset\mathrm{D}({\boldsymbol{\mathrm{F}}})\rightrightarrows\mathcal{P}_{2}(\mathsf{T\kern-1.5ptX}) such that 𝗑Φ=μ\mathsf{x}_{\sharp}\Phi=\mu for all Φ𝐅[μ]\Phi\in{\boldsymbol{\mathrm{F}}}[\mu]. In this way, each section 𝐅[μ]{\boldsymbol{\mathrm{F}}}[\mu] is nothing but the image of μD(𝐅)\mu\in\mathrm{D}({\boldsymbol{\mathrm{F}}}) through 𝐅{\boldsymbol{\mathrm{F}}}. In this case, probability vector fields correspond to single valued maps: this notion has been used in [Pic19] with the aim of describing a sort of velocity field on 𝒫(𝖷)\mathcal{P}(\mathsf{X}), and later in [Pic18] dealing with Multivalued Probability Vector Fields (called Probability Multifunctions).

Definition 4.3 (Metrically λ\lambda-dissipative MPVF).

A MPVF 𝐅𝒫2(𝖳𝖷){\boldsymbol{\mathrm{F}}}\subset\mathcal{P}_{2}(\mathsf{T\kern-1.5ptX}) is (metrically) λ\lambda-dissipative, λ\lambda\in\mathbb{R}, if

[Φ0,Φ1]rλW22(μ0,μ1)for every Φ0,Φ1𝐅,μi=𝗑Φi.\left[\Phi_{0},\Phi_{1}\right]_{r}\leq\lambda W_{2}^{2}(\mu_{0},\mu_{1})\quad\text{for every }\Phi_{0},\Phi_{1}\in{\boldsymbol{\mathrm{F}}},\ \mu_{i}=\mathsf{x}_{\sharp}\Phi_{i}. (4.1)

We say that 𝐅{\boldsymbol{\mathrm{F}}} is (metrically) λ\lambda-accretive, if 𝐅={Φ:Φ𝐅}-{\boldsymbol{\mathrm{F}}}=\{-\Phi:\Phi\in{\boldsymbol{\mathrm{F}}}\} (recall (3.14)) is λ-\lambda-dissipative, i.e.

[Φ0,Φ1]lλW22(μ0,μ1)for every Φ0,Φ1𝐅,μi=𝗑Φi.\left[\Phi_{0},\Phi_{1}\right]_{l}\geq\lambda W_{2}^{2}(\mu_{0},\mu_{1})\quad\text{for every }\Phi_{0},\Phi_{1}\in{\boldsymbol{\mathrm{F}}},\ \mu_{i}=\mathsf{x}_{\sharp}\Phi_{i}.
Remark 4.4.

Notice that (4.1) is equivalent to ask for the existence of a coupling 𝚯Λ(Φ0,Φ1)\boldsymbol{\Theta}\in\Lambda(\Phi_{0},\Phi_{1}) (thus (𝗑0,𝗑1)𝚯(\mathsf{x}^{0},\mathsf{x}^{1})_{\sharp}\boldsymbol{\Theta} is optimal between μ0=𝗑Φ0\mu_{0}=\mathsf{x}_{\sharp}\Phi_{0} and μ1=𝗑Φ1\mu_{1}=\mathsf{x}_{\sharp}\Phi_{1}) such that

v1v0,x1x0d𝚯λW22(μ0,μ1)=λ|x1x0|2d𝚯.\int\langle v_{1}-v_{0},x_{1}-x_{0}\rangle\,\mathrm{d}\boldsymbol{\Theta}\leq\lambda W_{2}^{2}(\mu_{0},\mu_{1})=\lambda\int|x_{1}-x_{0}|^{2}\,\mathrm{d}\boldsymbol{\Theta}.

Recalling the discussion of the previous section, λ\lambda-dissipativity has a natural metric interpretation: for every Φ0,Φ1𝐅\Phi_{0},\Phi_{1}\in{\boldsymbol{\mathrm{F}}} with μ0=𝗑Φ0\mu_{0}=\mathsf{x}_{\sharp}\Phi_{0}, μ1=𝗑Φ1\mu_{1}=\mathsf{x}_{\sharp}\Phi_{1} we have the asymptotic expansion

W22(𝖾𝗑𝗉tΦ0,𝖾𝗑𝗉tΦ1)(1+2λt)W22(μ0,μ1)+o(t)as t0.W_{2}^{2}(\operatorname{\mathsf{exp}}^{t}\Phi_{0},\operatorname{\mathsf{exp}}^{t}\Phi_{1})\leq(1+2\lambda t)W_{2}^{2}(\mu_{0},\mu_{1})+o(t)\quad\text{as }t\downarrow 0.
Remark 4.5.

Thanks to Corollary 3.7, (4.1) implies the weaker condition

[Φ0,μ1]r+[Φ1,μ0]rλW22(μ0,μ1),Φ0,Φ1𝐅,μ0=𝗑Φ0,μ1=𝗑Φ1.\left[\Phi_{0},\mu_{1}\right]_{r}+\left[\Phi_{1},\mu_{0}\right]_{r}\leq\lambda W_{2}^{2}(\mu_{0},\mu_{1}),\quad\forall\,\Phi_{0},\Phi_{1}\in{\boldsymbol{\mathrm{F}}},\ \mu_{0}=\mathsf{x}_{\sharp}\Phi_{0},\ \mu_{1}=\mathsf{x}_{\sharp}\Phi_{1}. (4.2)

It is clear that the inequality of (4.2) implies the inequality of (4.1) whenever Γo(μ0,μ1)\Gamma_{o}(\mu_{0},\mu_{1}) contains only one element. More generally, we will see in Corollary 4.13 that (4.2) is in fact equivalent to (4.1) when D(𝐅)\mathrm{D}({\boldsymbol{\mathrm{F}}}) is geodesically convex (according to Definition 2.7).

As in the standard Hilbert case, λ\lambda-dissipativity can be reduced to dissipativity (meaning 0-dissipativity) by a simple transformation. Let us introduce the map

Lλ:𝖳𝖷𝖳𝖷,Lλ(x,v):=(x,vλx),L^{\lambda}:\mathsf{T\kern-1.5ptX}\to\mathsf{T\kern-1.5ptX},\quad L^{\lambda}(x,v):=(x,v-\lambda x),

observing that for every 𝝈𝒫2(𝖳𝖷×𝖷)\boldsymbol{\sigma}\in\mathcal{P}_{2}(\mathsf{T\kern-1.5ptX}\times\mathsf{X}) with (𝗑i)𝝈=μi(\mathsf{x}^{i})_{\sharp}\boldsymbol{\sigma}=\mu_{i}, i=0,1i=0,1, the transformed plan 𝝈λ:=(Lλ,𝒊𝖷)𝝈\boldsymbol{\sigma}^{\lambda}:=(L^{\lambda},\boldsymbol{i}_{\mathsf{X}})_{\sharp}\boldsymbol{\sigma} satisfies

v0,x0x1d𝝈λ\displaystyle\int\langle v_{0},x_{0}-x_{1}\rangle\,\mathrm{d}\boldsymbol{\sigma}^{\lambda} =v0λx0,x0x1d𝝈\displaystyle=\int\langle v_{0}-\lambda x_{0},x_{0}-x_{1}\rangle\,\mathrm{d}\boldsymbol{\sigma}
=v0,x0x1d𝝈λ2|x0x1|2d𝝈+λ2(𝗆22(μ1)𝗆22(μ0)).\displaystyle=\int\langle v_{0},x_{0}-x_{1}\rangle\,\mathrm{d}\boldsymbol{\sigma}-\frac{\lambda}{2}\int|x_{0}-x_{1}|^{2}\,\mathrm{d}\boldsymbol{\sigma}+\frac{\lambda}{2}\Big{(}\mathsf{m}_{2}^{2}(\mu_{1})-\mathsf{m}_{2}^{2}(\mu_{0})\Big{)}. (4.3)

Similarly, if Θ𝒫2(𝖳𝖷×𝖳𝖷)\Theta\in\mathcal{P}_{2}(\mathsf{T\kern-1.5ptX}\times\mathsf{T\kern-1.5ptX}) with 𝗑iΘ=μi\mathsf{x}^{i}_{\sharp}\Theta=\mu_{i}, the plan Θλ:=(Lλ,Lλ)Θ\Theta^{\lambda}:=(L^{\lambda},L^{\lambda})_{\sharp}\Theta satisfies

v0v1,x0x1dΘλ\displaystyle\int\langle v_{0}-v_{1},x_{0}-x_{1}\rangle\,\mathrm{d}\Theta^{\lambda} =v0v1λ(x0x1),x0x1dΘ\displaystyle=\int\langle v_{0}-v_{1}-\lambda(x_{0}-x_{1}),x_{0}-x_{1}\rangle\,\mathrm{d}\Theta
=v0v1,x0x1dΘλ|x0x1|2dΘ.\displaystyle=\int\langle v_{0}-v_{1},x_{0}-x_{1}\rangle\,\mathrm{d}\Theta-\lambda\int|x_{0}-x_{1}|^{2}\,\mathrm{d}\Theta. (4.4)
Lemma 4.6.

𝐅{\boldsymbol{\mathrm{F}}} is a λ\lambda-dissipative MPVF (resp. satisfies (4.2)) if and only if 𝐅λ:=Lλ(𝐅)={LλΦΦ𝐅}{\boldsymbol{\mathrm{F}}}^{\lambda}:=L^{\lambda}_{\sharp}({\boldsymbol{\mathrm{F}}})=\{L^{\lambda}_{\sharp}\Phi\mid\Phi\in{\boldsymbol{\mathrm{F}}}\} is dissipative (resp. satisfies (4.2) with λ=0\lambda=0).

Proof.

Let us first check the case of (4.2). Since 𝝈Λo(Φ0,μ1)\boldsymbol{\sigma}\in\Lambda_{o}(\Phi_{0},\mu_{1}) if and only if 𝝈λΛo(LλΦ0,μ1)\boldsymbol{\sigma}^{\lambda}\in\Lambda_{o}(L^{\lambda}_{\sharp}\Phi_{0},\mu_{1}), (4.3) yields

v0,x0x1d𝝈λ=v0,x0x1d𝝈λ2(𝗆22(μ0)𝗆22(μ1)+W22(μ0,μ1))\displaystyle\int\langle v_{0},x_{0}-x_{1}\rangle\,\mathrm{d}\boldsymbol{\sigma}^{\lambda}=\int\langle v_{0},x_{0}-x_{1}\rangle\,\mathrm{d}\boldsymbol{\sigma}-\frac{\lambda}{2}\Big{(}\mathsf{m}_{2}^{2}(\mu_{0})-\mathsf{m}_{2}^{2}(\mu_{1})+W_{2}^{2}(\mu_{0},\mu_{1})\Big{)}

and therefore

[LλΦ0,μ1]r=[Φ0,μ1]rλ2(𝗆22(μ0)𝗆22(μ1)+W22(μ0,μ1)).\left[L^{\lambda}_{\sharp}\Phi_{0},\mu_{1}\right]_{r}=\left[\Phi_{0},\mu_{1}\right]_{r}-\frac{\lambda}{2}\Big{(}\mathsf{m}_{2}^{2}(\mu_{0})-\mathsf{m}_{2}^{2}(\mu_{1})+W_{2}^{2}(\mu_{0},\mu_{1})\Big{)}. (4.5)

Using the corresponding identity for [LλΦ1,μ0]r\left[L^{\lambda}_{\sharp}\Phi_{1},\mu_{0}\right]_{r} we obtain that 𝐅λ{\boldsymbol{\mathrm{F}}}^{\lambda} is dissipative.

A similar argument, using the identity (4.4), shows the equivalence between the λ\lambda-dissipativity of 𝐅{\boldsymbol{\mathrm{F}}} and the dissipativity of 𝐅λ{\boldsymbol{\mathrm{F}}}^{\lambda}. ∎

Let us conclude this section by showing that λ\lambda-dissipativity can be deduced from a Lipschitz like condition similar to the one considered in [Pic19] (see Appendix A).

Lemma 4.7.

Suppose that the MPVF 𝐅{\boldsymbol{\mathrm{F}}} satisfies

𝒲2(𝐅[ν],𝐅[ν])LW2(ν,ν),ν,νD(𝐅),\mathcal{W}_{2}({\boldsymbol{\mathrm{F}}}[\nu],{\boldsymbol{\mathrm{F}}}[\nu^{\prime}])\leq LW_{2}(\nu,\nu^{\prime}),\quad\forall\,\nu,\nu^{\prime}\in\mathrm{D}({\boldsymbol{\mathrm{F}}}),

where 𝒲2:𝒫2(𝖳𝖷)×𝒫2(𝖳𝖷)[0,+)\mathcal{W}_{2}:\mathcal{P}_{2}(\mathsf{T\kern-1.5ptX})\times\mathcal{P}_{2}(\mathsf{T\kern-1.5ptX})\to[0,+\infty) is defined by

𝒲22(Φ0,Φ1)=inf{𝖳𝖷×𝖳𝖷|v0v1|2d𝚯(x0,v0,x1,v1):𝚯Λ(Φ0,Φ1)},\mathcal{W}_{2}^{2}(\Phi_{0},\Phi_{1})=\inf\left\{\int_{\mathsf{T\kern-1.5ptX}\times\mathsf{T\kern-1.5ptX}}|v_{0}-v_{1}|^{2}\,\mathrm{d}\boldsymbol{\Theta}(x_{0},v_{0},x_{1},v_{1}):\boldsymbol{\Theta}\in\Lambda(\Phi_{0},\Phi_{1})\right\},

with Λ(,)\Lambda(\cdot,\cdot) as in Definition 3.8. Then 𝐅{\boldsymbol{\mathrm{F}}} is λ\lambda-dissipative, for λ:=12(1+L2)\lambda:=\frac{1}{2}(1+L^{2})

Proof.

Let ν,ν′′D(𝐅)\nu^{\prime},\nu^{\prime\prime}\in\mathrm{D}({\boldsymbol{\mathrm{F}}}), then by Theorem 3.9 and Young’s inequality, we have

[𝐅[ν],𝐅[ν′′]]r=min{𝖳𝖷×𝖳𝖷xx′′,vv′′d𝚯:𝚯Λ(𝐅[ν],𝐅[ν′′])}12(W22(ν,ν′′)+𝒲22(𝐅[ν],𝐅[ν′′]))L2+12W22(ν,ν′′).\begin{split}\left[{\boldsymbol{\mathrm{F}}}[\nu^{\prime}],{\boldsymbol{\mathrm{F}}}[\nu^{\prime\prime}]\right]_{r}&=\min\left\{\int_{\mathsf{T\kern-1.5ptX}\times\mathsf{T\kern-1.5ptX}}\langle x^{\prime}-x^{\prime\prime},v^{\prime}-v^{\prime\prime}\rangle\,\mathrm{d}\boldsymbol{\Theta}\,:\,\boldsymbol{\Theta}\in\Lambda({\boldsymbol{\mathrm{F}}}[\nu^{\prime}],{\boldsymbol{\mathrm{F}}}[\nu^{\prime\prime}])\right\}\\ &\leq\frac{1}{2}\left(W_{2}^{2}(\nu^{\prime},\nu^{\prime\prime})+\mathcal{W}_{2}^{2}({\boldsymbol{\mathrm{F}}}[\nu^{\prime}],{\boldsymbol{\mathrm{F}}}[\nu^{\prime\prime}])\right)\\ &\leq\frac{L^{2}+1}{2}\,W_{2}^{2}(\nu^{\prime},\nu^{\prime\prime}).\qed\end{split}

4.2. Behaviour of λ\lambda-dissipative MPVF along geodesics

Let us now study the behaviour of a MPVF 𝐅{\boldsymbol{\mathrm{F}}} along geodesics. Recall that in the case of a dissipative map 𝑭:𝖧𝖧{\boldsymbol{F}}:\mathsf{H}\to\mathsf{H} in a Hilbert space 𝖧\mathsf{H}, it is quite immediate to prove that the real function

f(t):=F(xt),x0x1,xt=(1t)x0+tx1,t[0,1]f(t):=\langle F(x_{t}),x_{0}-x_{1}\rangle,\quad x_{t}=(1-t)x_{0}+tx_{1},\quad t\in[0,1]

is monotone increasing. This property has a natural counterpart in the case of measures.

Definition 4.8.

Let 𝐅𝒫2(𝖳𝖷){\boldsymbol{\mathrm{F}}}\subset\mathcal{P}_{2}(\mathsf{T\kern-1.5ptX}), μ0,μ1D(𝐅)¯\mu_{0},\mu_{1}\in\overline{\mathrm{D}({\boldsymbol{\mathrm{F}}})}, 𝝁Γo(μ0,μ1)\boldsymbol{\mu}\in\Gamma_{o}(\mu_{0},\mu_{1}). We define the sets

I(𝝁|𝐅):=\displaystyle\mathrm{I}(\boldsymbol{\mu}|{\boldsymbol{\mathrm{F}}}):={} {t[0,1]:𝗑t𝝁D(𝐅)},\displaystyle\Big{\{}t\in[0,1]:\mathsf{x}^{t}_{\sharp}\boldsymbol{\mu}\in\mathrm{D}({\boldsymbol{\mathrm{F}}})\Big{\}},
Γoi(μ0,μ1|𝐅):=\displaystyle\Gamma_{o}^{i}({\mu_{0}},{\mu_{1}}|{\boldsymbol{\mathrm{F}}}):={} {𝝁Γo(μ0,μ1):i is an accumulation point of I(𝝁|𝐅)},i=0,1\displaystyle\Big{\{}\boldsymbol{\mu}\in\Gamma_{o}(\mu_{0},\mu_{1}):i\text{ is an accumulation point of }\mathrm{I}(\boldsymbol{\mu}|{\boldsymbol{\mathrm{F}}})\Big{\}},i=0,1 (4.6)
Γo01(μ0,μ1|𝐅):=\displaystyle\Gamma_{o}^{01}({\mu_{0}},{\mu_{1}}|{\boldsymbol{\mathrm{F}}}):={} Γo0(μ0,μ1|𝐅)Γo1(μ0,μ1|𝐅).\displaystyle\Gamma_{o}^{0}({\mu_{0}},{\mu_{1}}|{\boldsymbol{\mathrm{F}}})\cap\Gamma_{o}^{1}({\mu_{0}},{\mu_{1}}|{\boldsymbol{\mathrm{F}}}).

Notice that these sets depend on 𝐅{\boldsymbol{\mathrm{F}}} just through D(𝐅)\mathrm{D}({\boldsymbol{\mathrm{F}}}). In particular, if μ0,μ1D(𝐅)\mu_{0},\mu_{1}\in\mathrm{D}({\boldsymbol{\mathrm{F}}}) and D(𝐅)\mathrm{D}({\boldsymbol{\mathrm{F}}}) is open or geodesically convex according to Definition 2.7 then Γo01(μ0,μ1|𝐅)\Gamma_{o}^{01}({\mu_{0}},{\mu_{1}}|{\boldsymbol{\mathrm{F}}})\neq\emptyset.

Definition 4.9.

Let 𝐅𝒫2(𝖳𝖷){\boldsymbol{\mathrm{F}}}\subset\mathcal{P}_{2}(\mathsf{T\kern-1.5ptX}) be a MPVF. Let μ0,μ1D(𝐅)¯\mu_{0},\mu_{1}\in\overline{\mathrm{D}({\boldsymbol{\mathrm{F}}})}, 𝝁Γo(μ0,μ1)\boldsymbol{\mu}\in\Gamma_{o}(\mu_{0},\mu_{1}) and let μt:=𝗑t𝝁\mu_{t}:=\mathsf{x}^{t}_{\sharp}\boldsymbol{\mu}, t[0,1]t\in[0,1]. For every tI(𝝁|𝐅)t\in\mathrm{I}(\boldsymbol{\mu}|{\boldsymbol{\mathrm{F}}}) we define

[𝐅,𝝁]r,t:=sup{[Φ,𝝁]r,tΦ𝐅[μt]},[𝐅,𝝁]l,t:=inf{[Φ,𝝁]l,tΦ𝐅[μt]}.\displaystyle[{\boldsymbol{\mathrm{F}}},\boldsymbol{\mu}]_{r,t}:=\sup\left\{[\Phi,\boldsymbol{\mu}]_{r,t}\mid\Phi\in{\boldsymbol{\mathrm{F}}}[\mu_{t}]\right\},\qquad[{\boldsymbol{\mathrm{F}}},\boldsymbol{\mu}]_{l,t}:=\inf\left\{[\Phi,\boldsymbol{\mu}]_{l,t}\mid\Phi\in{\boldsymbol{\mathrm{F}}}[\mu_{t}]\right\}.
Theorem 4.10.

Let us suppose that the MPVF 𝐅{\boldsymbol{\mathrm{F}}} satisfies (4.2), let μ0,μ1D(𝐅)¯\mu_{0},\mu_{1}\in\overline{\mathrm{D}({\boldsymbol{\mathrm{F}}})}, and let 𝛍Γo(μ0,μ1)\boldsymbol{\mu}\in\Gamma_{o}(\mu_{0},\mu_{1}) with W2:=W22(μ0,μ1)W^{2}:=W_{2}^{2}(\mu_{0},\mu_{1}). Then the following properties hold

  1. (1)

    [𝐅,𝝁]l,t[𝐅,𝝁]r,t[{\boldsymbol{\mathrm{F}}},\boldsymbol{\mu}]_{l,t}\leq[{\boldsymbol{\mathrm{F}}},\boldsymbol{\mu}]_{r,t} for every t(0,1)I(𝝁|𝐅)t\in(0,1)\cap\mathrm{I}(\boldsymbol{\mu}|{\boldsymbol{\mathrm{F}}});

  2. (2)

    [𝐅,𝝁]r,s[𝐅,𝝁]l,t+λW2(ts)[{\boldsymbol{\mathrm{F}}},\boldsymbol{\mu}]_{r,s}\leq[{\boldsymbol{\mathrm{F}}},\boldsymbol{\mu}]_{l,t}+\lambda W^{2}(t-s) for every s,tI(𝝁|𝐅)s,t\in\mathrm{I}(\boldsymbol{\mu}|{\boldsymbol{\mathrm{F}}}), s<ts<t;

  3. (3)

    t[𝐅,𝝁]r,t+λW2tt\mapsto[{\boldsymbol{\mathrm{F}}},\boldsymbol{\mu}]_{r,t}+\lambda W^{2}t and t[𝐅,𝝁]l,t+λW2tt\mapsto[{\boldsymbol{\mathrm{F}}},\boldsymbol{\mu}]_{l,t}+\lambda W^{2}t are increasing respectively in I(𝝁|𝐅){1}\mathrm{I}(\boldsymbol{\mu}|{\boldsymbol{\mathrm{F}}})\setminus\{1\} and in I(𝝁|𝐅){0}\mathrm{I}(\boldsymbol{\mu}|{\boldsymbol{\mathrm{F}}})\setminus\{0\}.

  4. (4)

    the right (resp. left) limits of t[𝐅,𝝁]r,tt\mapsto[{\boldsymbol{\mathrm{F}}},\boldsymbol{\mu}]_{r,t} and t[𝐅,𝝁]l,tt\mapsto[{\boldsymbol{\mathrm{F}}},\boldsymbol{\mu}]_{l,t} exist at every right (resp. left) accumulation point of I(𝝁|𝐅)\mathrm{I}(\boldsymbol{\mu}|{\boldsymbol{\mathrm{F}}}), and in those points the right (resp. left) limits of [𝐅,𝝁]r,t[{\boldsymbol{\mathrm{F}}},\boldsymbol{\mu}]_{r,t} coincide with the right (resp. left) limits of [𝐅,𝝁]l,t[{\boldsymbol{\mathrm{F}}},\boldsymbol{\mu}]_{l,t}.

  5. (5)

    [𝐅,𝝁]l,t=[𝐅,𝝁]r,t[{\boldsymbol{\mathrm{F}}},\boldsymbol{\mu}]_{l,t}=[{\boldsymbol{\mathrm{F}}},\boldsymbol{\mu}]_{r,t} at every interior point tt of I(𝝁|𝐅)\mathrm{I}(\boldsymbol{\mu}|{\boldsymbol{\mathrm{F}}}) where one of them is continuous.

Proof.

Throughout all the proof we set fr(t):=[𝐅,𝝁]r,tf_{r}(t):=[{\boldsymbol{\mathrm{F}}},\boldsymbol{\mu}]_{r,t} and fl(t):=[𝐅,𝝁]l,tf_{l}(t):=[{\boldsymbol{\mathrm{F}}},\boldsymbol{\mu}]_{l,t}. Thanks to Lemma 4.6 and in particular to (4.5), it is easy to check that it is sufficient to consider the dissipative case λ=0\lambda=0.

  1. (1)

    It is a direct consequence of Lemma 3.19 and the definitions of frf_{r} and flf_{l}.

  2. (2)

    We prove that for every Φ𝐅[μs]\Phi\in{\boldsymbol{\mathrm{F}}}[\mu_{s}] and Φ𝐅[μt]\Phi^{\prime}\in{\boldsymbol{\mathrm{F}}}[\mu_{t}] it holds

    [Φ,𝝁]r,s[Φ,𝝁]l,t.[\Phi,\boldsymbol{\mu}]_{r,s}\leq[\Phi^{\prime},\boldsymbol{\mu}]_{l,t}. (4.7)

    The thesis will follow immediately passing to the sup\sup over Φ𝐅[μs]\Phi\in{\boldsymbol{\mathrm{F}}}[\mu_{s}] in the LHS and to the inf\inf over Φ𝐅[μt]\Phi^{\prime}\in{\boldsymbol{\mathrm{F}}}[\mu_{t}] in the RHS. It is enough to prove (4.7) in case at least one between s,ts,t belongs to (0,1)(0,1). Let us define the map L:𝒫2(𝖳𝖷×𝖷)L:\mathcal{P}_{2}(\mathsf{T\kern-1.5ptX}\times\mathsf{X})\to\mathbb{R} as

    L(γ):=𝖳𝖷×𝖷v0,x0x1dγ(x0,v0,x1)γ𝒫2(𝖳𝖷×𝖷).L(\gamma):=\int_{\mathsf{T\kern-1.5ptX}\times\mathsf{X}}\langle v_{0},x_{0}-x_{1}\rangle\,\mathrm{d}\gamma(x_{0},v_{0},x_{1})\quad\gamma\in\mathcal{P}_{2}(\mathsf{T\kern-1.5ptX}\times\mathsf{X}).

    Observe that, since it never happens that s=0s=0 and t=1t=1 at the same time, the map T:Γs(Φ,𝝁)Λ(Φ,μt)T:\Gamma_{s}(\Phi,\boldsymbol{\mu})\to\Lambda(\Phi,\mu_{t}) defined as

    T(𝝈):=(𝗑s(𝗑0,𝗑1),𝗏0,𝗑t(𝗑0,𝗑1))𝝈T(\boldsymbol{\sigma}):=(\mathsf{x}^{s}\circ(\mathsf{x}^{0},\mathsf{x}^{1}),\mathsf{v}^{0},\mathsf{x}^{t}\circ(\mathsf{x}^{0},\mathsf{x}^{1}))_{\sharp}\boldsymbol{\sigma}

    is a bijection s.t. (ts)L(𝝈)=L(T(𝝈))(t-s)L(\boldsymbol{\sigma})=L(T(\boldsymbol{\sigma})) for every 𝝈Γs(Φ,𝝁)\boldsymbol{\sigma}\in\Gamma_{s}(\Phi,\boldsymbol{\mu}). This immediately gives that

    (ts)[Φ,𝝁]r,s=[Φ,μt]r.(t-s)[\Phi,\boldsymbol{\mu}]_{r,s}=\left[\Phi,\mu_{t}\right]_{r}.

    In the same way we can deduce that

    (st)[Φ,𝝁]l,t=[Φ,μs]r.(s-t)[\Phi^{\prime},\boldsymbol{\mu}]_{l,t}=\left[\Phi^{\prime},\mu_{s}\right]_{r}.

    Thanks to the dissipativity of 𝐅{\boldsymbol{\mathrm{F}}} we get

    (ts)[Φ,𝝁]r,s(ts)[Φ,𝝁]l,t=[Φ,μt]r+[Φ,μs]r0.(t-s)[\Phi,\boldsymbol{\mu}]_{r,s}-(t-s)[\Phi^{\prime},\boldsymbol{\mu}]_{l,t}=\left[\Phi,\mu_{t}\right]_{r}+\left[\Phi^{\prime},\mu_{s}\right]_{r}\leq 0.
  3. (3)

    Combining (1) and (2) we have that for every s,tI(𝝁|𝐅)s,t\in\mathrm{I}(\boldsymbol{\mu}|{\boldsymbol{\mathrm{F}}}) with 0<s<t<10<s<t<1 it holds

    fl(s)fr(s)fl(t)fr(t).f_{l}(s)\leq f_{r}(s)\leq f_{l}(t)\leq f_{r}(t). (4.8)

    This implies that both flf_{l} and frf_{r} are increasing in I(𝝁|𝐅)(0,1)\mathrm{I}(\boldsymbol{\mu}|{\boldsymbol{\mathrm{F}}})\cap(0,1). Observe that, again combining (1) and (2), it also holds

    fr(0)\displaystyle f_{r}(0) fl(t)fr(t),\displaystyle\leq f_{l}(t)\leq f_{r}(t),
    fl(t)\displaystyle f_{l}(t) fr(t)fl(1)\displaystyle\leq f_{r}(t)\leq f_{l}(1)

    for every tI(𝝁|𝐅){0,1}t\in\mathrm{I}(\boldsymbol{\mu}|{\boldsymbol{\mathrm{F}}})\setminus\{0,1\}, and then frf_{r} is increasing in I(𝝁|𝐅){1}\mathrm{I}(\boldsymbol{\mu}|{\boldsymbol{\mathrm{F}}})\setminus\{1\} and flf_{l} is increasing in I(𝝁|𝐅){0}\mathrm{I}(\boldsymbol{\mu}|{\boldsymbol{\mathrm{F}}})\setminus\{0\}.

  4. (4)

    It is an immediate consequence of (4.8).

  5. (5)

    It is a straightforward consequence of (4). ∎

Thanks to the previous Theorem 4.10 the next definition is well posed.

Definition 4.11.

Let us suppose that the MPVF 𝐅{\boldsymbol{\mathrm{F}}} satisfies (4.2), let μ0,μ1D(𝐅)¯\mu_{0},\mu_{1}\in\overline{\mathrm{D}({\boldsymbol{\mathrm{F}}})}.

If 𝝁Γo0(μ0,μ1|𝐅) we set[𝐅,𝝁]0+\displaystyle\text{If $\boldsymbol{\mu}\in\Gamma_{o}^{0}({\mu_{0}},{\mu_{1}}|{\boldsymbol{\mathrm{F}}})$ we set}\quad[{\boldsymbol{\mathrm{F}}},\boldsymbol{\mu}]_{0+} :=limt0[𝐅,𝝁]r,t=limt0[𝐅,𝝁]l,t\displaystyle:=\lim_{t\downarrow 0}[{\boldsymbol{\mathrm{F}}},\boldsymbol{\mu}]_{r,t}=\lim_{t\downarrow 0}[{\boldsymbol{\mathrm{F}}},\boldsymbol{\mu}]_{l,t}
If 𝝁Γo1(μ0,μ1|𝐅) we set[𝐅,𝝁]1\displaystyle\text{If $\boldsymbol{\mu}\in\Gamma_{o}^{1}({\mu_{0}},{\mu_{1}}|{\boldsymbol{\mathrm{F}}})$ we set}\quad[{\boldsymbol{\mathrm{F}}},\boldsymbol{\mu}]_{1-} :=limt1[𝐅,𝝁]r,t=limt1[𝐅,𝝁]l,t.\displaystyle:=\lim_{t\uparrow 1}[{\boldsymbol{\mathrm{F}}},\boldsymbol{\mu}]_{r,t}=\lim_{t\uparrow 1}[{\boldsymbol{\mathrm{F}}},\boldsymbol{\mu}]_{l,t}.
Corollary 4.12.

Let us keep the same notation of Theorem 4.10 and let sI(𝛍|𝐅)(0,1)s\in\mathrm{I}(\boldsymbol{\mu}|{\boldsymbol{\mathrm{F}}})\cap(0,1) with Φ𝐅[μs]\Phi\in{\boldsymbol{\mathrm{F}}}[\mu_{s}].

  1. (1)

    If 𝝁Γo0(μ0,μ1|𝐅)\boldsymbol{\mu}\in\Gamma_{o}^{0}({\mu_{0}},{\mu_{1}}|{\boldsymbol{\mathrm{F}}}), we have that

    [𝐅,𝝁]0+\displaystyle[{\boldsymbol{\mathrm{F}}},\boldsymbol{\mu}]_{0+} [Φ,𝝁]l,s+λsW2=[Φ,𝝁]r,s+λsW2;\displaystyle\leq[\Phi,\boldsymbol{\mu}]_{l,s}+\lambda sW^{2}=[\Phi,\boldsymbol{\mu}]_{r,s}+\lambda sW^{2}; (4.9)

    if moreover Φ0𝐅[μ0]\Phi_{0}\in{\boldsymbol{\mathrm{F}}}[\mu_{0}] then

    [Φ0,μ1]r[Φ0,𝝁]r,0[𝐅,𝝁]0+.\left[\Phi_{0},\mu_{1}\right]_{r}\leq[\Phi_{0},\boldsymbol{\mu}]_{r,0}\leq[{\boldsymbol{\mathrm{F}}},\boldsymbol{\mu}]_{0+}. (4.10)
  2. (2)

    If 𝝁Γo1(μ0,μ1|𝐅)\boldsymbol{\mu}\in\Gamma_{o}^{1}({\mu_{0}},{\mu_{1}}|{\boldsymbol{\mathrm{F}}}), we have that

    [Φ,𝝁]l,sλ(1s)W2=[Φ,𝝁]r,sλ(1s)W2[𝐅,𝝁]1;\displaystyle[\Phi,\boldsymbol{\mu}]_{l,s}-\lambda(1-s)W^{2}=[\Phi,\boldsymbol{\mu}]_{r,s}-\lambda(1-s)W^{2}\leq[{\boldsymbol{\mathrm{F}}},\boldsymbol{\mu}]_{1-};

    if moreover Φ1𝐅[μ1]\Phi_{1}\in{\boldsymbol{\mathrm{F}}}[\mu_{1}] then

    [𝐅,𝝁]1[Φ1,𝝁]l,1[Φ1,μ0]r[{\boldsymbol{\mathrm{F}}},\boldsymbol{\mu}]_{1-}\leq[\Phi_{1},\boldsymbol{\mu}]_{l,1}\leq-\left[\Phi_{1},\mu_{0}\right]_{r} (4.11)
  3. (3)

    In particular, for every Φ0𝐅[μ0]\Phi_{0}\in{\boldsymbol{\mathrm{F}}}[\mu_{0}], Φ1𝐅[μ1]\Phi_{1}\in{\boldsymbol{\mathrm{F}}}[\mu_{1}] and 𝝁Γo01(μ0,μ1|𝐅)\boldsymbol{\mu}\in\Gamma_{o}^{01}({\mu_{0}},{\mu_{1}}|{\boldsymbol{\mathrm{F}}}) we obtain

    [Φ0,Φ1]r,𝝁[𝐅,𝝁]0+[𝐅,𝝁]1λW22(μ0,μ1).[\Phi_{0},\Phi_{1}]_{r,\boldsymbol{\mu}}\leq[{\boldsymbol{\mathrm{F}}},\boldsymbol{\mu}]_{0+}-[{\boldsymbol{\mathrm{F}}},\boldsymbol{\mu}]_{1-}\leq\lambda W^{2}_{2}(\mu_{0},\mu_{1}). (4.12)

(4.12) immediately yields the following property.

Corollary 4.13.

Suppose that a MPVF 𝐅{\boldsymbol{\mathrm{F}}} satisfies

for every μ0,μ1D(𝐅)\mu_{0},\mu_{1}\in\mathrm{D}({\boldsymbol{\mathrm{F}}}) the set Γo01(μ0,μ1|𝐅)\Gamma_{o}^{01}({\mu_{0}},{\mu_{1}}|{\boldsymbol{\mathrm{F}}}) of (4.6) is not empty (4.13)

(e.g. if D(𝐅)\mathrm{D}({\boldsymbol{\mathrm{F}}}) is open or geodesically convex), then 𝐅{\boldsymbol{\mathrm{F}}} is λ\lambda-dissipative if and only if it satisfies (4.2).

Proposition 4.14.

Let 𝐅𝒫2(𝖳𝖷){\boldsymbol{\mathrm{F}}}\subset\mathcal{P}_{2}(\mathsf{T\kern-1.5ptX}) be a MPVF satisfying (4.2), let μ0D(𝐅)¯\mu_{0}\in\overline{\mathrm{D}({\boldsymbol{\mathrm{F}}})} and let Φ𝒫2(𝖳𝖷|μ0)\Phi\in\mathcal{P}_{2}(\mathsf{T\kern-1.5ptX}|\mu_{0}). Consider the following statements

  1. (P1)(\mathrm{P1})

    [Φ,μ]r+[Ψ,μ0]rλW22(μ0,μ)\left[\Phi,\mu\right]_{r}+\left[\Psi,\mu_{0}\right]_{r}\leq\lambda W_{2}^{2}(\mu_{0},\mu) for every Ψ𝐅\Psi\in{\boldsymbol{\mathrm{F}}} with μ=𝗑Ψ\mu=\mathsf{x}_{\sharp}\Psi;

  2. (P2)(\mathrm{P2})

    for every μD(𝐅)\mu\in\mathrm{D}({\boldsymbol{\mathrm{F}}}) there exists Ψ𝐅[μ]\Psi\in{\boldsymbol{\mathrm{F}}}[\mu] s.t. [Φ,μ]r+[Ψ,μ0]rλW22(μ0,μ)\left[\Phi,\mu\right]_{r}+\left[\Psi,\mu_{0}\right]_{r}\leq\lambda W_{2}^{2}(\mu_{0},\mu);

  3. (P3)(\mathrm{P3})

    [Φ,𝝁]r,0[𝐅,𝝁]0+[\Phi,\boldsymbol{\mu}]_{r,0}\leq[{\boldsymbol{\mathrm{F}}},\boldsymbol{\mu}]_{0+} for every μ1D(𝐅)¯\mu_{1}\in\overline{\mathrm{D}({\boldsymbol{\mathrm{F}}})}, 𝝁Γo0(μ0,μ1|𝐅)\boldsymbol{\mu}\in\Gamma_{o}^{0}({\mu_{0}},{\mu_{1}}|{\boldsymbol{\mathrm{F}}});

  4. (P4)(\mathrm{P4})

    [Φ,𝝁]r,0[𝐅,𝝁]0+[\Phi,\boldsymbol{\mu}]_{r,0}\leq[{\boldsymbol{\mathrm{F}}},\boldsymbol{\mu}]_{0+} for every μ1D(𝐅)\mu_{1}\in\mathrm{D}({\boldsymbol{\mathrm{F}}}), 𝝁Γo0(μ0,μ1|𝐅)\boldsymbol{\mu}\in\Gamma_{o}^{0}({\mu_{0}},{\mu_{1}}|{\boldsymbol{\mathrm{F}}});

  5. (P5)(\mathrm{P5})

    [Φ,𝝁]r,0λW22(μ0,μ1)+[𝐅,𝝁]1[\Phi,\boldsymbol{\mu}]_{r,0}\leq\lambda W_{2}^{2}(\mu_{0},\mu_{1})+[{\boldsymbol{\mathrm{F}}},\boldsymbol{\mu}]_{1-} for every μ1D(𝐅)¯\mu_{1}\in\overline{\mathrm{D}({\boldsymbol{\mathrm{F}}})}, 𝝁Γo1(μ0,μ1|𝐅)\boldsymbol{\mu}\in\Gamma_{o}^{1}({\mu_{0}},{\mu_{1}}|{\boldsymbol{\mathrm{F}}});

  6. (P6)(\mathrm{P6})

    [Φ,𝝁]r,0λW22(μ0,μ1)+[𝐅,𝝁]1[\Phi,\boldsymbol{\mu}]_{r,0}\leq\lambda W_{2}^{2}(\mu_{0},\mu_{1})+[{\boldsymbol{\mathrm{F}}},\boldsymbol{\mu}]_{1-} for every μ1D(𝐅)\mu_{1}\in\mathrm{D}({\boldsymbol{\mathrm{F}}}), 𝝁Γo1(μ0,μ1|𝐅)\boldsymbol{\mu}\in\Gamma_{o}^{1}({\mu_{0}},{\mu_{1}}|{\boldsymbol{\mathrm{F}}}).

Then the following hold

  1. (1)

    (P1)(\mathrm{P1}) \Rightarrow (P2)(\mathrm{P2}) \Rightarrow (P3)(\mathrm{P3}) \Rightarrow (P4)(\mathrm{P4});

  2. (2)

    (P1)(\mathrm{P1}) \Rightarrow (P2)(\mathrm{P2}) \Rightarrow (P5)(\mathrm{P5}) \Rightarrow (P6)(\mathrm{P6});

  3. (3)

    if for every μ1D(𝐅)\mu_{1}\in\mathrm{D}({\boldsymbol{\mathrm{F}}}) Γo0(μ0,μ1|𝐅)\Gamma_{o}^{0}({\mu_{0}},{\mu_{1}}|{\boldsymbol{\mathrm{F}}})\neq\emptyset, then (P4)(\mathrm{P4}) \Rightarrow (P1)(\mathrm{P1}) (in particular, (P1)(\mathrm{P1}), (P2)(\mathrm{P2}), (P3)(\mathrm{P3}), (P4)(\mathrm{P4}) are equivalent);

  4. (4)

    if for every μ1D(𝐅)\mu_{1}\in\mathrm{D}({\boldsymbol{\mathrm{F}}}) Γo1(μ0,μ1|𝐅)\Gamma_{o}^{1}({\mu_{0}},{\mu_{1}}|{\boldsymbol{\mathrm{F}}})\neq\emptyset, then (P6)(\mathrm{P6}) \Rightarrow (P1)(\mathrm{P1}) (in particular, (P1)(\mathrm{P1}), (P2)(\mathrm{P2}), (P5)(\mathrm{P5}), (P6)(\mathrm{P6}) are equivalent).

Proof.

We first prove that (P2)(\mathrm{P2}) \Rightarrow (P3)(\mathrm{P3}),(P5)(\mathrm{P5}). Let us choose an arbitrary μ1D(𝐅)¯\mu_{1}\in\overline{\mathrm{D}({\boldsymbol{\mathrm{F}}})}; by the definition of [𝐅,𝝁]r,t[{\boldsymbol{\mathrm{F}}},\boldsymbol{\mu}]_{r,t} and arguing as in the proof of Theorem 4.10(2), for all 𝝁Γo(μ0,μ1)\boldsymbol{\mu}\in\Gamma_{o}(\mu_{0},\mu_{1}) and tI(𝝁|𝐅)t\in\mathrm{I}(\boldsymbol{\mu}|{\boldsymbol{\mathrm{F}}}) there exists Ψ𝐅[μt]\Psi\in{\boldsymbol{\mathrm{F}}}[\mu_{t}] such that

[Φ,𝝁]r,0\displaystyle[\Phi,\boldsymbol{\mu}]_{r,0} =1t[Φ,μt]r1t[Ψ,μ0]r+tλW22(μ0,μ1)=[Ψ,𝝁]r,t+tλW22(μ0,μ1)\displaystyle=\frac{1}{t}\left[\Phi,\mu_{t}\right]_{r}\leq-\frac{1}{t}\left[\Psi,\mu_{0}\right]_{r}+t\lambda W_{2}^{2}(\mu_{0},\mu_{1})=[\Psi,\boldsymbol{\mu}]_{r,t}+t\lambda W_{2}^{2}(\mu_{0},\mu_{1})
[𝐅,𝝁]r,t+tλW22(μ0,μ1)\displaystyle\leq[{\boldsymbol{\mathrm{F}}},\boldsymbol{\mu}]_{r,t}+t\lambda W_{2}^{2}(\mu_{0},\mu_{1})

where we also used (3.26). If 𝝁Γo0(μ0,μ1|𝐅)\boldsymbol{\mu}\in\Gamma_{o}^{0}({\mu_{0}},{\mu_{1}}|{\boldsymbol{\mathrm{F}}}), by passing to the limit as t0t\downarrow 0 we get (P3)(\mathrm{P3}).

In the second case, assuming that 𝝁Γo1(μ0,μ1|𝐅)\boldsymbol{\mu}\in\Gamma_{o}^{1}({\mu_{0}},{\mu_{1}}|{\boldsymbol{\mathrm{F}}}), we can pass to the limit as t1t\uparrow 1 and we get (P5)(\mathrm{P5}).

We now prove item (3). Let μ1D(𝐅)\mu_{1}\in\mathrm{D}({\boldsymbol{\mathrm{F}}}), Ψ𝐅[μ1]\Psi\in{\boldsymbol{\mathrm{F}}}[\mu_{1}], 𝝁Γo0(μ0,μ1|𝐅)\boldsymbol{\mu}\in\Gamma_{o}^{0}({\mu_{0}},{\mu_{1}}|{\boldsymbol{\mathrm{F}}}), sI(𝝁|𝐅)(0,1)s\in\mathrm{I}(\boldsymbol{\mu}|{\boldsymbol{\mathrm{F}}})\cap(0,1), Φs𝐅[μs]\Phi_{s}\in{\boldsymbol{\mathrm{F}}}[\mu_{s}], with μs=𝗑s𝝁\mu_{s}=\mathsf{x}^{s}_{\sharp}\boldsymbol{\mu}. Assuming (P4)(\mathrm{P4}) and using (4.10), (4.9), (3.26) and (4.2), we have

[Φ,μ1]r\displaystyle\left[\Phi,\mu_{1}\right]_{r} [Φ,𝝁]r,0[𝐅,𝝁]0+[Φs,𝝁]r,s+λsW22(μ0,μ1)\displaystyle\leq[\Phi,\boldsymbol{\mu}]_{r,0}\leq[{\boldsymbol{\mathrm{F}}},\boldsymbol{\mu}]_{0+}\leq[\Phi_{s},\boldsymbol{\mu}]_{r,s}+\lambda sW_{2}^{2}(\mu_{0},\mu_{1})
=11s[Φs,μ1]r+λsW22(μ0,μ1)11s[Ψ,μs]r+λ(1+s)W22(μ0,μ1).\displaystyle=\frac{1}{1-s}\left[\Phi_{s},\mu_{1}\right]_{r}+\lambda sW_{2}^{2}(\mu_{0},\mu_{1})\leq-\frac{1}{1-s}\left[\Psi,\mu_{s}\right]_{r}+\lambda(1+s)W_{2}^{2}(\mu_{0},\mu_{1}).

By Lemma 3.14, letting s0s\downarrow 0 we get (P1)(\mathrm{P1}). Item (4) follows by (4.10), (4.11). ∎

4.3. Extensions of dissipative MPVF

Let us briefly study a few simple properties about extensions of λ\lambda-dissipative MPVFs. The first one concerns the sequential closure in 𝒫2sw(𝖳𝖷)\mathcal{P}_{2}^{sw}(\mathsf{T\kern-1.5ptX}) (the sequential closure may be smaller than the topological closure, but see Proposition 2.15): given A𝒫2(𝖳𝖷)A\subset\mathcal{P}_{2}(\mathsf{T\kern-1.5ptX}), we will denote by cl(A)\operatorname{cl}(A) its sequential closure defined by

cl(A):={Φ𝒫2(𝖳𝖷):ΦnA:ΦnΦin 𝒫2sw(𝖳𝖷)}.\operatorname{cl}(A):=\Big{\{}\Phi\in\mathcal{P}_{2}(\mathsf{T\kern-1.5ptX}):\exists\,\Phi_{n}\in A:\Phi_{n}\to\Phi\ \text{in }\mathcal{P}_{2}^{sw}(\mathsf{T\kern-1.5ptX})\Big{\}}.
Proposition 4.15.

If 𝐅{\boldsymbol{\mathrm{F}}} is a λ\lambda-dissipative MPVF then its sequential closure cl(𝐅)\operatorname{cl}({\boldsymbol{\mathrm{F}}}) is λ\lambda-dissipative as well.

Proof.

If Φi\Phi^{i}, i=0,1i=0,1, belong to cl(𝐅)\operatorname{cl}({\boldsymbol{\mathrm{F}}}), we can find sequences Φni𝐅\Phi^{i}_{n}\in{\boldsymbol{\mathrm{F}}} such that ΦniΦi\Phi^{i}_{n}\to\Phi^{i} in 𝒫2sw(𝖳𝖷)\mathcal{P}_{2}^{sw}(\mathsf{T\kern-1.5ptX}) as nn\to\infty, i=0,1i=0,1. It is then sufficient to pass to the limit in the inequality

[Φn0,Φn1]rλW22(μn0,μn1),μni=𝗑Φni\left[\Phi^{0}_{n},\Phi^{1}_{n}\right]_{r}\leq\lambda W_{2}^{2}(\mu^{0}_{n},\mu^{1}_{n}),\quad\mu^{i}_{n}=\mathsf{x}_{\sharp}\Phi^{i}_{n}

using the lower semicontinuity property (3.22) and the fact that convergence in 𝒫2sw(𝖳𝖷)\mathcal{P}_{2}^{sw}(\mathsf{T\kern-1.5ptX}) yields μni𝗑Φi\mu^{i}_{n}\to\mathsf{x}_{\sharp}\Phi^{i} in 𝒫2(𝖷)\mathcal{P}_{2}(\mathsf{X}) as nn\to\infty. ∎

A second result concerns the convexification of the sections of 𝐅{\boldsymbol{\mathrm{F}}}. For every μD(𝐅)\mu\in\mathrm{D}({\boldsymbol{\mathrm{F}}}) we set

co(𝐅)[μ]:=\displaystyle\operatorname{co}({\boldsymbol{\mathrm{F}}})[\mu]:={} the convex hull of 𝐅[μ]={kαkΦk:Φk𝐅[μ],αk0,kαk=1},\displaystyle\text{the convex hull of }{\boldsymbol{\mathrm{F}}}[\mu]=\Big{\{}\sum_{k}\alpha_{k}\Phi_{k}:\Phi_{k}\in{\boldsymbol{\mathrm{F}}}[\mu],\alpha_{k}\geq 0,\sum_{k}\alpha_{k}=1\Big{\}},
co¯(𝐅)[μ]:=\displaystyle\overline{\operatorname{co}}({\boldsymbol{\mathrm{F}}})[\mu]:={} cl(co(𝐅)[μ]).\displaystyle\operatorname{cl}(\operatorname{co}({\boldsymbol{\mathrm{F}}})[\mu]).

Notice that if 𝐅[μ]{\boldsymbol{\mathrm{F}}}[\mu] is bounded in 𝒫2(𝖳𝖷)\mathcal{P}_{2}(\mathsf{T\kern-1.5ptX}) then co¯(𝐅)[μ]\overline{\operatorname{co}}({\boldsymbol{\mathrm{F}}})[\mu] coincides with the closed convex hull of 𝐅[μ]{\boldsymbol{\mathrm{F}}}[\mu].

Proposition 4.16.

If 𝐅{\boldsymbol{\mathrm{F}}} is λ\lambda-dissipative, then co(𝐅)\operatorname{co}({\boldsymbol{\mathrm{F}}}) and co¯(𝐅)\overline{\operatorname{co}}({\boldsymbol{\mathrm{F}}}) are λ\lambda-dissipative as well.

Proof.

By Proposition 4.15 and noting that co¯(𝐅)cl(co(𝐅))\overline{\operatorname{co}}({\boldsymbol{\mathrm{F}}})\subset\operatorname{cl}(\operatorname{co}({\boldsymbol{\mathrm{F}}})), it is sufficient to prove that co(𝐅)\operatorname{co}({\boldsymbol{\mathrm{F}}}) is λ\lambda-dissipative. By Lemma 4.6 it is not restrictive to assume λ=0\lambda=0. Let Φico(𝐅)[μi]\Phi^{i}\in\operatorname{co}({\boldsymbol{\mathrm{F}}})[\mu_{i}], i=0,1i=0,1; there exist positive coefficients αki\alpha^{i}_{k}, k=1,,Kk=1,\cdots,K, with kαki=1\sum_{k}\alpha^{i}_{k}=1, and elements Φki𝐅[μi]\Phi^{i}_{k}\in{\boldsymbol{\mathrm{F}}}[\mu^{i}], i=0,1i=0,1, such that Φi=k=1KαkiΦki\Phi^{i}=\sum_{k=1}^{K}\alpha^{i}_{k}\Phi^{i}_{k}. Setting βh,k:=αh0αk1\beta_{h,k}:=\alpha^{0}_{h}\alpha^{1}_{k}, we can apply Lemma 3.16 and we obtain

[Φ0,Φ1]r=[h,kβh,kΦh0,h,kβh,kΦk1]rh,kβh,k[Φh0,Φk1]r0.\left[\Phi^{0},\Phi^{1}\right]_{r}=\Big{[}{\sum_{h,k}\beta_{h,k}\Phi^{0}_{h}},{\sum_{h,k}\beta_{h,k}\Phi^{1}_{k}}\Big{]}_{r}\leq\sum_{h,k}\beta_{h,k}\left[\Phi^{0}_{h},\Phi^{1}_{k}\right]_{r}\leq 0.\qed

As a last step, we want to study the properties of the extended MPVF

𝐅^:={\displaystyle\hat{{\boldsymbol{\mathrm{F}}}}:=\Big{\{} Φ𝒫2(𝖳𝖷):μ=𝗑ΦD(𝐅)¯,\displaystyle\Phi\in\mathcal{P}_{2}(\mathsf{T\kern-1.5ptX}):\mu=\mathsf{x}_{\sharp}\Phi\in\overline{\mathrm{D}({\boldsymbol{\mathrm{F}}})}, (4.14)
[Φ,ν]r+[Ψ,μ]rλW22(μ,ν)Ψ𝐅,ν=𝗑Ψ}.\displaystyle\left[\Phi,\nu\right]_{r}+\left[\Psi,\mu\right]_{r}\leq\lambda W_{2}^{2}(\mu,\nu)\quad\forall\,\Psi\in{\boldsymbol{\mathrm{F}}},\ \nu=\mathsf{x}_{\sharp}\Psi\Big{\}}.

It is obvious that 𝐅𝐅^{\boldsymbol{\mathrm{F}}}\subset\hat{\boldsymbol{\mathrm{F}}}; if the domain of 𝐅{\boldsymbol{\mathrm{F}}} satisfies the geometric condition (4.16), the following result shows that 𝐅^\hat{\boldsymbol{\mathrm{F}}} provides the maximal λ\lambda-dissipative extension of 𝐅{\boldsymbol{\mathrm{F}}}.

Proposition 4.17.

Let 𝐅{\boldsymbol{\mathrm{F}}} be a λ\lambda-dissipative MPVF.

  1. (a)

    If 𝐅𝐅{\boldsymbol{\mathrm{F}}}^{\prime}\supset{\boldsymbol{\mathrm{F}}} is λ\lambda-dissipative with D(𝐅)D(𝐅)¯\mathrm{D}({\boldsymbol{\mathrm{F}}}^{\prime})\subset\overline{\mathrm{D}({\boldsymbol{\mathrm{F}}})}, then 𝐅𝐅^{\boldsymbol{\mathrm{F}}}^{\prime}\subset\hat{\boldsymbol{\mathrm{F}}}. In particular co¯(cl(𝐅))𝐅^\overline{\operatorname{co}}(\operatorname{cl}({\boldsymbol{\mathrm{F}}}))\subset\hat{\boldsymbol{\mathrm{F}}}.

  2. (b)

    cl(𝐅)^=𝐅^\widehat{{\operatorname{cl}({\boldsymbol{\mathrm{F}}})}}=\hat{\boldsymbol{\mathrm{F}}} and co(𝐅)^=𝐅^\widehat{{\operatorname{co}({\boldsymbol{\mathrm{F}}})}}=\hat{\boldsymbol{\mathrm{F}}}.

  3. (c)

    𝐅^\hat{\boldsymbol{\mathrm{F}}} is sequentially closed and 𝐅^[μ]\hat{\boldsymbol{\mathrm{F}}}[\mu] is convex for every μD(𝐅^)\mu\in\mathrm{D}(\hat{\boldsymbol{\mathrm{F}}}).

  4. (d)

    If D(𝐅)\mathrm{D}({\boldsymbol{\mathrm{F}}}) satisfies (4.13), then the restriction of 𝐅^\hat{\boldsymbol{\mathrm{F}}} to D(𝐅)\mathrm{D}({\boldsymbol{\mathrm{F}}}) is λ\lambda-dissipative and for every μ0,μ1D(𝐅)\mu_{0},\mu_{1}\in\mathrm{D}({\boldsymbol{\mathrm{F}}})

    [𝐅,𝝁]0+=[𝐅^,𝝁]0+,[𝐅,𝝁]1=[𝐅^,𝝁]1for every 𝝁Γo01(μ0,μ1|𝐅).[{\boldsymbol{\mathrm{F}}},\boldsymbol{\mu}]_{0+}=[\hat{\boldsymbol{\mathrm{F}}},\boldsymbol{\mu}]_{0+},\quad[{\boldsymbol{\mathrm{F}}},\boldsymbol{\mu}]_{1-}=[\hat{\boldsymbol{\mathrm{F}}},\boldsymbol{\mu}]_{1-}\quad\text{for every }\boldsymbol{\mu}\in\Gamma_{o}^{01}({\mu_{0}},{\mu_{1}}|{\boldsymbol{\mathrm{F}}}). (4.15)
  5. (e)

    If μ0D(𝐅)¯,μ1D(𝐅)\mu_{0}\in\overline{\mathrm{D}({\boldsymbol{\mathrm{F}}})},\ \mu_{1}\in\mathrm{D}({\boldsymbol{\mathrm{F}}}) and Γo1(μ0,μ1|𝐅)\Gamma_{o}^{1}({\mu_{0}},{\mu_{1}}|{\boldsymbol{\mathrm{F}}})\neq\emptyset then

    Φi𝐅^[μi][Φ0,Φ1]rλW22(μ0,μ1).\Phi_{i}\in\hat{\boldsymbol{\mathrm{F}}}[\mu_{i}]\quad\Rightarrow\quad\left[\Phi_{0},\Phi_{1}\right]_{r}\leq\lambda W_{2}^{2}(\mu_{0},\mu_{1}).
  6. (f)

    If

    for every μ0,μ1D(𝐅)¯\mu_{0},\mu_{1}\in\overline{\mathrm{D}({\boldsymbol{\mathrm{F}}})} the set Γo01(μ0,μ1|𝐅)\Gamma_{o}^{01}({\mu_{0}},{\mu_{1}}|{\boldsymbol{\mathrm{F}}}) is not empty, (4.16)

    then 𝐅^\hat{\boldsymbol{\mathrm{F}}} is λ\lambda-dissipative as well and for every μ0,μ1D(𝐅)¯\mu_{0},\mu_{1}\in\overline{\mathrm{D}({\boldsymbol{\mathrm{F}}})} (4.15) holds.

Proof.

Claim (a) is obvious since every λ\lambda-dissipative extension 𝐅{\boldsymbol{\mathrm{F}}}^{\prime} of 𝐅{\boldsymbol{\mathrm{F}}} in D(𝐅)¯\overline{\mathrm{D}({\boldsymbol{\mathrm{F}}})} satisfies 𝐅𝐅^{\boldsymbol{\mathrm{F}}}^{\prime}\subset\hat{\boldsymbol{\mathrm{F}}}.

(b) Let us prove that if Φ𝐅^\Phi\in\hat{\boldsymbol{\mathrm{F}}} then Φcl(𝐅)^\Phi\in\widehat{\operatorname{cl}({\boldsymbol{\mathrm{F}}})}. If Ψcl(𝐅)\Psi\in\operatorname{cl}({\boldsymbol{\mathrm{F}}}) we can find a sequence Ψn𝐅\Psi_{n}\in{\boldsymbol{\mathrm{F}}} converging to Ψ\Psi in 𝒫2sw(𝖳𝖷)\mathcal{P}_{2}^{sw}(\mathsf{T\kern-1.5ptX}) as nn\to\infty. We can then pass to the limit in the inequalities

[Φ,νn]r+[Φn,μ]rλW22(μ,νn),μ=𝗑Φ,νn=𝗑Ψn,\left[\Phi,\nu_{n}\right]_{r}+\left[\Phi_{n},\mu\right]_{r}\leq\lambda W_{2}^{2}(\mu,\nu_{n}),\quad\mu=\mathsf{x}_{\sharp}\Phi,\ \nu_{n}=\mathsf{x}_{\sharp}\Psi_{n},

using the lower semicontinuity results of Lemma 3.14. We conclude since D(𝐅)¯=D(cl(𝐅))¯\overline{\mathrm{D}({\boldsymbol{\mathrm{F}}})}=\overline{\mathrm{D}(\operatorname{cl}({\boldsymbol{\mathrm{F}}}))}.

In order to prove that Φ𝐅^Φco(𝐅)^\Phi\in\hat{\boldsymbol{\mathrm{F}}}\ \Rightarrow\ \Phi\in\widehat{{\operatorname{co}({\boldsymbol{\mathrm{F}}})}} we take Ψ=αkΨkco(𝐅)\Psi=\sum\alpha_{k}\Psi_{k}\in\operatorname{co}({\boldsymbol{\mathrm{F}}}); for some Ψk𝐅[ν]\Psi_{k}\in{\boldsymbol{\mathrm{F}}}[\nu], ν=𝗑ΨD(𝐅)\nu=\mathsf{x}_{\sharp}\Psi\in\mathrm{D}({\boldsymbol{\mathrm{F}}}), and positive coefficients αk\alpha_{k}, k=1,,Kk=1,\cdots,K, with kαk=1\sum_{k}\alpha_{k}=1. Taking a convex combination of the inequalities

[Φ,ν]r+[Ψk,μ]rλW22(μ,ν),for every k=1,,K,\left[\Phi,\nu\right]_{r}+\left[\Psi_{k},\mu\right]_{r}\leq\lambda W_{2}^{2}(\mu,\nu),\quad\text{for every }k=1,\cdots,K,

and using Lemma 3.16 we obtain

[Φ,ν]r+[Ψ,μ]rkαk([Φ,ν]r+[Ψk,μ]r)λW22(μ,ν).\left[\Phi,\nu\right]_{r}+\left[\Psi,\mu\right]_{r}\leq\sum_{k}\alpha_{k}\Big{(}\left[\Phi,\nu\right]_{r}+\left[\Psi_{k},\mu\right]_{r}\Big{)}\leq\lambda W_{2}^{2}(\mu,\nu).

The proof of claim (c) follows by a similar argument.

(d) Let μiD(𝐅)\mu_{i}\in\mathrm{D}({\boldsymbol{\mathrm{F}}}), Φi𝐅^[μi]\Phi_{i}\in\hat{\boldsymbol{\mathrm{F}}}[\mu_{i}], i=0,1i=0,1, and 𝝁Γo01(μ0,μ1|𝐅)\boldsymbol{\mu}\in\Gamma_{o}^{01}({\mu_{0}},{\mu_{1}}|{\boldsymbol{\mathrm{F}}}). The implication (P1)(\mathrm{P1})\Rightarrow(P4)(\mathrm{P4}) of Proposition 4.14 applied to 𝝁\boldsymbol{\mu} and to 𝗌𝝁\mathsf{s}_{\sharp}\boldsymbol{\mu} yields

[Φ0,𝝁]r,0[𝐅,𝝁]0+,[Φ1,𝗌𝝁]r,0[𝐅,𝗌𝝁]0+=[𝐅,𝝁]1[\Phi_{0},\boldsymbol{\mu}]_{r,0}\leq[{\boldsymbol{\mathrm{F}}},\boldsymbol{\mu}]_{0+},\quad[\Phi_{1},\mathsf{s}_{\sharp}\boldsymbol{\mu}]_{r,0}\leq[{\boldsymbol{\mathrm{F}}},\mathsf{s}_{\sharp}\boldsymbol{\mu}]_{0+}=-[{\boldsymbol{\mathrm{F}}},\boldsymbol{\mu}]_{1-}

so that (4.12) yields

[Φ0,Φ1]r[Φ0,𝝁]r,0+[Φ1,𝗌𝝁]r,0[𝐅,𝝁]0+[𝐅,𝝁]1λW22(μ0,μ1).\left[\Phi_{0},\Phi_{1}\right]_{r}\leq[\Phi_{0},\boldsymbol{\mu}]_{r,0}+[\Phi_{1},\mathsf{s}_{\sharp}\boldsymbol{\mu}]_{r,0}\leq[{\boldsymbol{\mathrm{F}}},\boldsymbol{\mu}]_{0+}-[{\boldsymbol{\mathrm{F}}},\boldsymbol{\mu}]_{1-}\leq\lambda W_{2}^{2}(\mu_{0},\mu_{1}).

In order to prove (4.15) we observe that 𝐅𝐅^{\boldsymbol{\mathrm{F}}}\subset\hat{\boldsymbol{\mathrm{F}}} so that, for every 𝝁Γo01(μ0,μ1|𝐅)\boldsymbol{\mu}\in\Gamma_{o}^{01}({\mu_{0}},{\mu_{1}}|{\boldsymbol{\mathrm{F}}}) and every tI(𝝁|𝐅)t\in\mathrm{I}(\boldsymbol{\mu}|{\boldsymbol{\mathrm{F}}}), we have [𝐅,𝝁]r,t[𝐅^,𝝁]r,t[{\boldsymbol{\mathrm{F}}},\boldsymbol{\mu}]_{r,t}\leq[\hat{\boldsymbol{\mathrm{F}}},\boldsymbol{\mu}]_{r,t} and [𝐅,𝝁]l,t[𝐅^,𝝁]l,t[{\boldsymbol{\mathrm{F}}},\boldsymbol{\mu}]_{l,t}\geq[\hat{\boldsymbol{\mathrm{F}}},\boldsymbol{\mu}]_{l,t}, hence (4.15) is a consequence of Definition 4.11 and Theorem 4.10.

The proof of claim (f) follows by the same argument.

In the case of claim (e), we use the implication (P1)(\mathrm{P1})\Rightarrow(P6)(\mathrm{P6}) of Proposition 4.14 applied to 𝝁\boldsymbol{\mu} and the implication (P1)(\mathrm{P1})\Rightarrow(P3)(\mathrm{P3}) applied to 𝗌𝝁\mathsf{s}_{\sharp}\boldsymbol{\mu}, obtaining

[Φ0,𝝁]r,0λW22(μ0,μ1)+[𝐅,𝝁]1,[Φ1,𝗌𝝁]r,0[𝐅,𝗌𝝁]0+=[𝐅,𝝁]1[\Phi_{0},\boldsymbol{\mu}]_{r,0}\leq\lambda W_{2}^{2}(\mu_{0},\mu_{1})+[{\boldsymbol{\mathrm{F}}},\boldsymbol{\mu}]_{1-},\quad[\Phi_{1},\mathsf{s}_{\sharp}\boldsymbol{\mu}]_{r,0}\leq[{\boldsymbol{\mathrm{F}}},\mathsf{s}_{\sharp}\boldsymbol{\mu}]_{0+}=-[{\boldsymbol{\mathrm{F}}},\boldsymbol{\mu}]_{1-}

and then

[Φ0,Φ1]r[Φ0,𝝁]r,0+[Φ1,𝗌𝝁]r,0λW22(μ0,μ1).\left[\Phi_{0},\Phi_{1}\right]_{r}\leq[\Phi_{0},\boldsymbol{\mu}]_{r,0}+[\Phi_{1},\mathsf{s}_{\sharp}\boldsymbol{\mu}]_{r,0}\leq\lambda W_{2}^{2}(\mu_{0},\mu_{1}).\qed

5. Examples of λ\lambda-dissipative MPVFs

In this section we present significant examples of λ\lambda-dissipative MPVFs which are interesting for applications.

5.1. Subdifferentials of λ\lambda-convex functionals

Recall that a functional :𝒫2(𝖷)(,+]\mathcal{F}:\mathcal{P}_{2}(\mathsf{X})\to(-\infty,+\infty] is λ\lambda-(geodesically) convex on 𝒫2(𝖷)\mathcal{P}_{2}(\mathsf{X}) (see [AGS08, Definition 9.1.1]) if for any μ0,μ1\mu_{0},\mu_{1} in the proper domain D():={μ𝒫2(𝖷)(μ)<+}D(\mathcal{F}):=\{\mu\in\mathcal{P}_{2}(\mathsf{X})\mid\mathcal{F}(\mu)<+\infty\} there exists 𝝁Γo(μ0,μ1)\boldsymbol{\mu}\in\Gamma_{o}(\mu_{0},\mu_{1}) such that

(μt)(1t)(μ0)+t(μ1)λ2t(1t)W22(μ0,μ1)t[0,1],\mathcal{F}(\mu_{t})\leq(1-t)\mathcal{F}(\mu_{0})+t\mathcal{F}(\mu_{1})-\frac{\lambda}{2}t(1-t)W_{2}^{2}(\mu_{0},\mu_{1})\qquad\forall\,t\in[0,1],

where (μt)t[0,1](\mu_{t})_{t\in[0,1]} is the constant speed geodesic induced by 𝝁\boldsymbol{\mu}, i.e. μt=𝗑t𝝁\mu_{t}=\mathsf{x}^{t}_{\sharp}\boldsymbol{\mu}.

The Fréchet subdifferential \boldsymbol{\partial}\mathcal{F} of \mathcal{F} [AGS08, Definition 10.3.1] is a MPVF which can be characterized [AGS08, Theorem 10.3.6] by

Φ[μ]μD(),(ν)(μ)[Φ,ν]l+λ2W22(μ,ν)for every νD().\Phi\in\boldsymbol{\partial}\mathcal{F}[\mu]\quad\Leftrightarrow\quad\mu\in D(\mathcal{F}),\ \mathcal{F}(\nu)-\mathcal{F}(\mu)\geq-\left[\Phi,\nu\right]_{l}+\frac{\lambda}{2}W_{2}^{2}(\mu,\nu)\quad\text{for every }\nu\in D(\mathcal{F}).

According to the notation introduced in (3.14), we set

[μ]=J[μ],J(x,v)=(x,v),-\boldsymbol{\partial}\mathcal{F}[\mu]=J_{\sharp}\boldsymbol{\partial}\mathcal{F}[\mu],\quad J(x,v)=(x,-v), (5.1)

and we have the following result.

Theorem 5.1.

If :𝒫2(𝖷)(,+]\mathcal{F}:\mathcal{P}_{2}(\mathsf{X})\to(-\infty,+\infty] is a proper, lower semicontinuous and λ\lambda-convex functional, then -\boldsymbol{\partial}\mathcal{F} is a (λ)(-\lambda)-dissipative MPVF.

Referring to [AGS08], here we list interesting and explicit examples of (λ)(-\lambda)-dissipative MPVFs induced by proper, lower semicontinuous and λ\lambda-convex functionals, focusing on the cases when D()=𝒫2(𝖷).\mathrm{D}(\boldsymbol{\partial}\mathcal{F})=\mathcal{P}_{2}(\mathsf{X}).

  1. (1)

    Potential energy. Let P:𝖷P:\mathsf{X}\to\mathbb{R} be a l.s.c. and λ\lambda-convex functional satisfying

    |oP(x)|C(1+|x|)for every x𝖷,|\partial^{o}P(x)|\leq C(1+|x|)\quad\text{for every }x\in\mathsf{X},

    for some constant C>0C>0, where oP(x)\partial^{o}P(x) is the element of minimal norm in P(x)\partial P(x). By [AGS08, Proposition 10.4.2] the PVF

    𝐅[μ]:=(𝒊𝖷,oP)μ,μ𝒫2(𝖷),{\boldsymbol{\mathrm{F}}}[\mu]:=(\boldsymbol{i}_{\mathsf{X}},-\partial^{o}P)_{\sharp}\mu,\quad\mu\in\mathcal{P}_{2}(\mathsf{X}),

    is a (λ)(-\lambda)-dissipative selection of P-\boldsymbol{\partial}\mathcal{F}_{P} for the potential energy functional

    P(μ):=𝖷Pdμ,μ𝒫2(𝖷).\mathcal{F}_{P}(\mu):=\int_{\mathsf{X}}P\,\mathrm{d}\mu,\quad\mu\in\mathcal{P}_{2}(\mathsf{X}).
  2. (2)

    Interaction energy. If W:𝖷[0,+)W:\mathsf{X}\to[0,+\infty) is an even, differentiable, and λ\lambda-convex function for some λ\lambda\in\mathbb{R}, whose differential has a linear growth, then, by [AGS08, Theorem 10.4.11], the PVF

    𝐅[μ]:=(𝒊𝖷,(Wμ))μ,μ𝒫2(𝖷),{\boldsymbol{\mathrm{F}}}[\mu]:=(\boldsymbol{i}_{\mathsf{X}},(-\nabla W\ast\mu))_{\sharp}\mu,\quad\mu\in\mathcal{P}_{2}(\mathsf{X}),

    is a (λ)(-\lambda)-dissipative selection of W-\boldsymbol{\partial}\mathcal{F}_{W}, the opposite of the Wasserstein subdifferential of the interaction energy functional

    W(μ):=12𝖷2W(xy)d(μμ)(x,y),μ𝒫2(𝖷).\mathcal{F}_{W}(\mu):=\frac{1}{2}\int_{\mathsf{X}^{2}}W(x-y)\,\mathrm{d}(\mu\otimes\mu)(x,y),\quad\mu\in\mathcal{P}_{2}(\mathsf{X}).
  3. (3)

    Opposite Wasserstein distance. Let μ¯𝒫2(𝖷)\bar{\mu}\in\mathcal{P}_{2}(\mathsf{X}) be fixed and consider the functional Wass:𝒫2(𝖷)\mathcal{F}_{\text{Wass}}:\mathcal{P}_{2}(\mathsf{X})\to\mathbb{R} defined as

    Wass(μ):=12W22(μ,μ¯),μ𝒫2(𝖷),\mathcal{F}_{\text{Wass}}(\mu):=-\frac{1}{2}W_{2}^{2}(\mu,\bar{\mu}),\quad\mu\in\mathcal{P}_{2}(\mathsf{X}),

    which is geodesically (1)(-1)-convex [AGS08, Proposition 9.3.12]. Setting

    𝒃(μ):=argmin{𝖷|𝒃(x)x|2dμ:𝒃=𝒃𝜸Lμ2(𝖷;𝖷),𝜸Γo(μ,μ¯)},\boldsymbol{b}(\mu):=\operatorname*{arg\,min}\left\{\int_{\mathsf{X}}|\boldsymbol{b}(x)-x|^{2}\,\mathrm{d}\mu:\boldsymbol{b}=\boldsymbol{b}_{\boldsymbol{\gamma}}\in L^{2}_{\mu}(\mathsf{X};\mathsf{X}),\ \boldsymbol{\gamma}\in\Gamma_{o}(\mu,\bar{\mu})\right\},

    the PVF

    𝐅[μ]:=(𝒊𝖷,𝒊𝖷𝒃(μ))#μ,μ𝒫2(𝖷){\boldsymbol{\mathrm{F}}}[\mu]:=(\boldsymbol{i}_{\mathsf{X}},\boldsymbol{i}_{\mathsf{X}}-\boldsymbol{b}(\mu))_{\#}\mu,\quad\mu\in\mathcal{P}_{2}(\mathsf{X})

    is a selection of Wass(μ)-\boldsymbol{\partial}\mathcal{F}_{\text{Wass}}(\mu) and it is therefore 11-dissipative.

5.2. MPVF concentrated on the graph of a multifunction

The previous example of Section 5.1 has a natural generalization in terms of dissipative graphs in 𝖷×𝖷\mathsf{X}\times\mathsf{X} [AC84, AF09, Bré73]. We consider a (not empty) λ\lambda-dissipative set F𝖷×𝖷F\subset\mathsf{X}\times\mathsf{X}, i.e. satisfying

v0v1,x0x1λ|x0x1|2for any (x0,v0),(x1,v1)F.\langle v_{0}-v_{1},x_{0}-x_{1}\rangle\leq\lambda|x_{0}-x_{1}|^{2}\quad\text{for any }(x_{0},v_{0}),\ (x_{1},v_{1})\in F.

The corresponding MPVF defined as

𝐅:={Φ𝒫2(𝖳𝖷)Φ is concentrated on F}{\boldsymbol{\mathrm{F}}}:=\left\{\Phi\in\mathcal{P}_{2}(\mathsf{T\kern-1.5ptX})\mid\Phi\text{ is concentrated on }F\right\}

is λ\lambda-dissipative as well. In fact, if Φ0,Φ1𝐅\Phi_{0},\Phi_{1}\in{\boldsymbol{\mathrm{F}}} with νi=𝗑Φi\nu_{i}=\mathsf{x}_{\sharp}\Phi_{i}, i=0,1i=0,1, and 𝚯Λ(Φ0,Φ1)\boldsymbol{\Theta}\in\Lambda(\Phi_{0},\Phi_{1}) then (x0,v0,x1,v1)F×F(x_{0},v_{0},x_{1},v_{1})\in F\times F 𝚯\boldsymbol{\Theta}-a.e., so that

𝖳𝖷×𝖳𝖷v0v1,x0x1d𝚯(x0,v0,x1,v1)λ𝖳𝖷×𝖳𝖷|x0x1|2d𝚯=λW22(ν0,ν1).\displaystyle\int_{\mathsf{T\kern-1.5ptX}\times\mathsf{T\kern-1.5ptX}}\langle v_{0}-v_{1},x_{0}-x_{1}\rangle\,\mathrm{d}\boldsymbol{\Theta}(x_{0},v_{0},x_{1},v_{1})\leq\lambda\int_{\mathsf{T\kern-1.5ptX}\times\mathsf{T\kern-1.5ptX}}|x_{0}-x_{1}|^{2}\,\mathrm{d}\boldsymbol{\Theta}=\lambda W_{2}^{2}(\nu_{0},\nu_{1}).

since (𝗑0,𝗑1)𝚯Γo(ν0,ν1)(\mathsf{x}^{0},\mathsf{x}^{1})_{\sharp}\boldsymbol{\Theta}\in\Gamma_{o}(\nu_{0},\nu_{1}). Taking the supremum w.r.t. 𝚯Λ(Φ0,Φ1)\boldsymbol{\Theta}\in\Lambda(\Phi_{0},\Phi_{1}) we obtain [Φ0,Φ1]lλW22(ν0,ν1)\left[\Phi_{0},\Phi_{1}\right]_{l}\leq\lambda W_{2}^{2}(\nu_{0},\nu_{1}) which is even stronger than λ\lambda-dissipativity. If D(F)=𝖷\mathrm{D}(F)=\mathsf{X} then D(𝐅)\mathrm{D}({\boldsymbol{\mathrm{F}}}) contains 𝒫c(𝖷)\mathcal{P}_{\rm c}(\mathsf{X}), the set of Borel probability measures with compact support. If FF has also a linear growth, then it is easy to check that D(𝐅)=𝒫2(𝖷)\mathrm{D}({\boldsymbol{\mathrm{F}}})=\mathcal{P}_{2}(\mathsf{X}) as well.

Despite the analogy just shown with dissipative operators in Hilbert spaces, there are important differences with the Wasserstein framework, as highlighted in the following examples. The main point here is that the dissipativity property of Definition 4.3 does not force the sections 𝗏𝐅[μ]\mathsf{v}_{\sharp}{\boldsymbol{\mathrm{F}}}[\mu] to belong to the tangent space Tanμ𝒫2(𝖷)\operatorname{Tan}_{\mu}\mathcal{P}_{2}(\mathsf{X}).

Example 5.2.

Let 𝖷=2\mathsf{X}=\mathbb{R}^{2}, let B:={x2|x|1}B:=\{x\in\mathbb{R}^{2}\mid|x|\leq 1\} be the closed unit ball, let B{\mathcal{L}_{B}} be the (normalized) Lebesgue measure on BB, and let 𝒓:22{\boldsymbol{r}}:\mathbb{R}^{2}\to\mathbb{R}^{2}, 𝒓(x1,x2)=(x2,x1){\boldsymbol{r}}(x_{1},x_{2})=(x_{2},-x_{1}) be the anti-clockwise rotation of π/2\pi/2 degrees. We define the MPVF

𝐅[ν]={(𝒊2,0)ν, if ν𝒫2(2){B},{(𝒊2,a𝒓)Ba}, if ν=B.{\boldsymbol{\mathrm{F}}}[\nu]=\begin{cases}(\boldsymbol{i}_{\mathbb{R}^{2}},0)_{\sharp}\nu,\quad&\text{ if }\nu\in\mathcal{P}_{2}(\mathbb{R}^{2})\setminus\{{\mathcal{L}_{B}}\},\\ \left\{(\boldsymbol{i}_{\mathbb{R}^{2}},a{\boldsymbol{r}})_{\sharp}{\mathcal{L}_{B}}\mid a\in\mathbb{R}\right\},\quad&\text{ if }\nu={\mathcal{L}_{B}}.\end{cases}

Observe that D(𝐅)=𝒫2(2)\mathrm{D}({\boldsymbol{\mathrm{F}}})=\mathcal{P}_{2}(\mathbb{R}^{2}) and 𝐅{\boldsymbol{\mathrm{F}}} is obviously unbounded at ν=B\nu={\mathcal{L}_{B}}. 𝐅{\boldsymbol{\mathrm{F}}} also satisfies (4.2) with λ=0\lambda=0 (hence it is dissipative): it is enough to check that

[(𝒊2,a𝒓)B,ν]r=0 for every ν𝒫2(2),a.\left[(\boldsymbol{i}_{\mathbb{R}^{2}},a{\boldsymbol{r}})_{\sharp}{\mathcal{L}_{B}},\nu\right]_{r}=0\quad\text{ for every }\nu\in\mathcal{P}_{2}(\mathbb{R}^{2}),\,a\in\mathbb{R}. (5.2)

To prove (5.2), we notice that the optimal transport plan from B{\mathcal{L}_{B}} to ν\nu is concentrated on a map and optimal maps belong to the tangent space TanB𝒫2(2)\operatorname{Tan}_{{\mathcal{L}_{B}}}\mathcal{P}_{2}(\mathbb{R}^{2}) [AGS08, Prop. 8.5.2]; by Remark 3.18 we have just to check that

2𝒓(x),φ(x)dB(x)=0φCc(2),\int_{\mathbb{R}^{2}}\langle{\boldsymbol{r}}(x),\nabla\varphi(x)\rangle\,\mathrm{d}{\mathcal{L}_{B}}(x)=0\quad\forall\varphi\in\mathrm{C}^{\infty}_{c}(\mathbb{R}^{2}),

that is a consequence of the Divergence Theorem on BB. This example is in contrast with the Hilbertian theory of dissipative operators according to which an everywhere defined dissipative operator is locally bounded (see [Bré73, Proposition 2.9]).

Example 5.3.

In the same setting of the previous example, let us define the MPVF

𝐅[ν]=(𝒊2,𝒓)ν,𝒓(x1,x2)=(x2,x1),ν𝒫2(2).{\boldsymbol{\mathrm{F}}}[\nu]=(\boldsymbol{i}_{\mathbb{R}^{2}},{\boldsymbol{r}})_{\sharp}\nu,\quad{\boldsymbol{r}}(x_{1},x_{2})=(x_{2},-x_{1}),\quad\nu\in\mathcal{P}_{2}(\mathbb{R}^{2}).

It is easy to check that 𝐅{\boldsymbol{\mathrm{F}}} is dissipative and Lipschitz continuous (as a map from 𝒫2(2)\mathcal{P}_{2}(\mathbb{R}^{2}) to 𝒫2(T2)\mathcal{P}_{2}(\mathrm{T}\mathbb{R}^{2})). Moreover, arguing as in Example 5.2, we can show that (𝒊d,0)B𝐅^[B](\boldsymbol{i}_{\mathbb{R}^{d}},0)_{\sharp}{\mathcal{L}_{B}}\in\hat{\boldsymbol{\mathrm{F}}}[{\mathcal{L}_{B}}], where 𝐅^\hat{\boldsymbol{\mathrm{F}}} is defined in (4.14). This is again in contrast with the Hilbertian theory of dissipative operators, stating that a single valued, everywhere defined, and continuous dissipative operator coincides with its maximal extension (see [Bré73, Proposition 2.4]).

5.3. Interaction field induced by a dissipative map

Let us consider the Hilbert space 𝖸=𝖷n\mathsf{Y}=\mathsf{X}^{n}, nn\in\mathbb{N}, endowed with the scalar product 𝒙,𝒚:=1ni=1nxi,yi\langle\boldsymbol{x},\boldsymbol{y}\rangle:=\frac{1}{n}\sum_{i=1}^{n}\langle x_{i},y_{i}\rangle, for every 𝒙=(xi)i=1n,𝒚=(yi)i=1n𝖷n\boldsymbol{x}=(x_{i})_{i=1}^{n},\ \boldsymbol{y}=(y_{i})_{i=1}^{n}\in\mathsf{X}^{n}. We identify 𝖳𝖸\mathsf{T\kern-1.5ptY} with (𝖳𝖷)n(\mathsf{T\kern-1.5ptX})^{n} and we denote by 𝗑i,𝗏i\mathsf{x}^{i},\mathsf{v}^{i} the ii-th coordinate maps. Every permutation σ:{1,,n}{1,,n}\sigma:\{1,\cdots,n\}\to\{1,\cdots,n\} in Sym(n)\mathrm{Sym}(n) operates on 𝖸\mathsf{Y} by the obvious formula σ(𝒙)i=xσ(i)\sigma(\boldsymbol{x})_{i}=x_{\sigma(i)}, i=1,,ni=1,\cdots,n, 𝒙𝖸\boldsymbol{x}\in\mathsf{Y}.

Let G:𝖸𝖸G:\mathsf{Y}\to\mathsf{Y} be a Borel λ\lambda-dissipative map bounded on bounded sets (this property is always true if 𝖸\mathsf{Y} has finite dimension) and satisfying

𝒙D(G)σ(𝒙)D(G),G(σ(𝒙))=σ(G(𝒙))for every permutation σ.{\boldsymbol{x}}\in\mathrm{D}(G)\quad\Rightarrow\quad\sigma({\boldsymbol{x}})\in\mathrm{D}(G),\ G(\sigma({\boldsymbol{x}}))=\sigma(G({\boldsymbol{x}}))\quad\text{for every permutation $\sigma$}. (5.3)

Denoting by (G1,,Gn)(G^{1},\cdots,G^{n}) the components of GG, by 𝗑i\mathsf{x}^{i} the projections from 𝖸\mathsf{Y} to 𝖷\mathsf{X} and by μn=i=1nμ\mu^{\otimes n}=\bigotimes_{i=1}^{n}\mu, the MPVF

𝐅[μ]:=(𝗑1,G1)μnwith domain D(𝐅):=𝒫b(𝖷){\boldsymbol{\mathrm{F}}}[\mu]:=(\mathsf{x}^{1},G^{1})_{\sharp}\mu^{\otimes n}\quad\text{with domain }\mathrm{D}({\boldsymbol{\mathrm{F}}}):=\mathcal{P}_{b}(\mathsf{X})

is λ\lambda-dissipative as well. In fact, if μ,νD(𝐅)\mu,\nu\in\mathrm{D}({\boldsymbol{\mathrm{F}}}), Φ=(𝗑1,G1)μn\Phi=(\mathsf{x}^{1},G^{1})_{\sharp}\mu^{\otimes n} and Ψ=(𝗑1,G1)νn\Psi=(\mathsf{x}^{1},G^{1})_{\sharp}\nu^{\otimes n}, and 𝜸Γo(μ,ν)\boldsymbol{\gamma}\in\Gamma_{o}(\mu,\nu), we can consider the plan 𝜷:=P𝜸nΓ(μn,νn)\boldsymbol{\beta}:=P_{\sharp}\boldsymbol{\gamma}^{\otimes n}\in\Gamma(\mu^{\otimes n},\nu^{\otimes n}), where P((x1,y1),,(xn,yn)):=((x1,,xn),(y1,,yn))P((x_{1},y_{1}),\cdots,(x_{n},y_{n})):=((x_{1},\cdots,x_{n}),(y_{1},\cdots,y_{n})). Considering the map H1(𝒙,𝒚):=(x1,G1(𝒙),y1,G1(𝒚))H^{1}({\boldsymbol{x}},{\boldsymbol{y}}):=(x_{1},G^{1}({\boldsymbol{x}}),y_{1},G^{1}({\boldsymbol{y}})) we have 𝚯:=H1𝜷Λ(Φ,Ψ)\boldsymbol{\Theta}:=H^{1}_{\sharp}\boldsymbol{\beta}\in\Lambda(\Phi,\Psi), so that

[Φ,Ψ]r\displaystyle\left[\Phi,\Psi\right]_{r} v1w1,x1y1d𝚯(x1,v1,y1,w1)=G1(𝒙)G1(𝒚),x1y1d𝜷(𝒙,𝒚)\displaystyle\leq\int\langle v_{1}-w_{1},x_{1}-y_{1}\rangle\,\mathrm{d}\boldsymbol{\Theta}(x_{1},v_{1},y_{1},w_{1})=\int\langle G^{1}({\boldsymbol{x}})-G^{1}({\boldsymbol{y}}),x_{1}-y_{1}\rangle\,\mathrm{d}\boldsymbol{\beta}({\boldsymbol{x}},{\boldsymbol{y}})
=1nk=1nGk(𝒙)Gk(𝒚),xkykd𝜷(𝒙,𝒚)=G(𝒙)G(𝒚),𝒙𝒚d𝜷(𝒙,𝒚)\displaystyle=\frac{1}{n}\sum_{k=1}^{n}\int\langle G^{k}({\boldsymbol{x}})-G^{k}({\boldsymbol{y}}),x_{k}-y_{k}\rangle\,\mathrm{d}\boldsymbol{\beta}({\boldsymbol{x}},{\boldsymbol{y}})=\int\langle G({\boldsymbol{x}})-G({\boldsymbol{y}}),{\boldsymbol{x}}-{\boldsymbol{y}}\rangle\,\mathrm{d}\boldsymbol{\beta}({\boldsymbol{x}},{\boldsymbol{y}})

where we used (5.3) and the invariance of 𝜷\boldsymbol{\beta} with respect to permutations. The λ\lambda-dissipativity of GG then yields

G(𝒙)G(𝒚),𝒙𝒚d𝜷(𝒙,𝒚)\displaystyle\int\langle G({\boldsymbol{x}})-G({\boldsymbol{y}}),{\boldsymbol{x}}-{\boldsymbol{y}}\rangle\,\mathrm{d}\boldsymbol{\beta}({\boldsymbol{x}},{\boldsymbol{y}}) λ|𝒙𝒚|𝖸2d𝜷(𝒙,𝒚)=λ1nk=1n|xkyk|𝖸2d𝜷(𝒙,𝒚)\displaystyle\leq\lambda\int|{\boldsymbol{x}}-{\boldsymbol{y}}|^{2}_{\mathsf{Y}}\,\mathrm{d}\boldsymbol{\beta}({\boldsymbol{x}},{\boldsymbol{y}})=\lambda\frac{1}{n}\sum_{k=1}^{n}\int|x_{k}-y_{k}|^{2}_{\mathsf{Y}}\,\mathrm{d}\boldsymbol{\beta}({\boldsymbol{x}},{\boldsymbol{y}})
=λ1nk=1n|xkyk|𝖸2d𝜸(xk,yk)=λW22(μ,ν).\displaystyle=\lambda\frac{1}{n}\sum_{k=1}^{n}\int|x_{k}-y_{k}|^{2}_{\mathsf{Y}}\,\mathrm{d}\boldsymbol{\boldsymbol{\gamma}}(x_{k},y_{k})=\lambda W_{2}^{2}(\mu,\nu).

A typical example when n=2n=2 is provided by

G(x1,x2):=(A(x1x2),A(x2x1))G(x_{1},x_{2}):=(A(x_{1}-x_{2}),A(x_{2}-x_{1}))

where A:𝖷𝖷A:\mathsf{X}\to\mathsf{X} is a Borel, locally bounded, dissipative and antisymmetric map satisfying A(z)=A(z)A(-z)=-A(z). We easily get

\displaystyle\langle G(𝒙)G(𝒚),𝒙𝒚\displaystyle G({\boldsymbol{x}})-G({\boldsymbol{y}}),{\boldsymbol{x}}-{\boldsymbol{y}}\rangle
=12(A(x1x2)A(y1y2),x1y1A(x1x2)A(y1y2),x2y2)\displaystyle=\frac{1}{2}\Big{(}\langle A(x_{1}-x_{2})-A(y_{1}-y_{2}),x_{1}-y_{1}\rangle-\langle A(x_{1}-x_{2})-A(y_{1}-y_{2}),x_{2}-y_{2}\rangle\Big{)}
=12A(x1x2)A(y1y2),x1x2(y1y2)0.\displaystyle=\frac{1}{2}\langle A(x_{1}-x_{2})-A(y_{1}-y_{2}),x_{1}-x_{2}-(y_{1}-y_{2})\rangle\leq 0.

In this case

𝐅[μ]=(𝒊𝖷,𝒂[μ])μ,𝒂[μ](x)=𝖷A(xy)dμ(y)for every x𝖷.{\boldsymbol{\mathrm{F}}}[\mu]=(\boldsymbol{i}_{\mathsf{X}},\boldsymbol{a}[\mu])_{\sharp}\mu,\quad\boldsymbol{a}[\mu](x)=\int_{\mathsf{X}}A(x-y)\,\mathrm{d}\mu(y)\quad\text{for every }x\in\mathsf{X}.

6. Solutions to Measure Differential Inclusions

6.1. Metric characterization and EVI

Let \mathcal{I} denote an arbitrary (bounded or unbounded) interval in \mathbb{R}.

The aim of this section is to study a suitable notion of solution to the following differential inclusion in the L2L^{2}-Wasserstein space of probability measures

μ˙(t)𝐅[μ(t)],t,\dot{\mu}(t)\in{\boldsymbol{\mathrm{F}}}[\mu(t)],\qquad t\in\mathcal{I}, (6.1)

driven by a MPVF 𝐅{\boldsymbol{\mathrm{F}}} as in Definition 4.1. In particular, we will address the usual Cauchy problem when (6.1) is supplemented by a given initial condition.

Measure Differential Inclusions have been introduced in [Pic18] extending to the multi-valued framework the theory of Measure Differential Equations developed in [Pic19]. In these papers, the author aims to describe the evolution of curves in the space of probability measures under the action of a so called probability vector field 𝐅{\boldsymbol{\mathrm{F}}} (see Definition 4.1 and Remark 4.2). However, as exploited also in [Cam+21], the definition of solution to (6.1) given in \citesPiccoli_2019,Piccoli_MDI,Camilli_MDE is too weak and it does not enjoy uniqueness property which is recovered only at the level of the semigroup through an approximation procedure.

From the Wasserstein viewpoint, the simplest way to interpret (6.1) is to ask for a locally absolutely continuous curve μ:𝒫2(𝖷)\mu:\mathcal{I}\to\mathcal{P}_{2}(\mathsf{X}) to satisfy

(𝒊𝖷,𝒗t)μt𝐅[μt]for a.e. t,(\boldsymbol{i}_{\mathsf{X}},\boldsymbol{v}_{t})_{\sharp}\mu_{t}\in{{\boldsymbol{\mathrm{F}}}}[\mu_{t}]\quad\text{for a.e. }t\in\mathcal{I}, (6.2)

where 𝒗\boldsymbol{v} is the Wasserstein metric velocity vector associated to μ\mu (see Theorem 2.10). Even in the case of a regular PVF, however, (6.2) is too strong, since there is no reason why a given 𝐅[μt]{\boldsymbol{\mathrm{F}}}[\mu_{t}] should be associated to a vector field of the tangent space Tanμt𝒫2(𝖷)\operatorname{Tan}_{\mu_{t}}\mathcal{P}_{2}(\mathsf{X}). Starting from (6.2), we thus introduce a weaker definition of solution to (6.1), modeled on the so-called EVI formulation for gradient flows, which will eventually suggest, as a natural formulation of (6.1), the relaxed version of (6.2) as a differential inclusion with respect to the extension 𝐅^\hat{\boldsymbol{\mathrm{F}}} of 𝐅{\boldsymbol{\mathrm{F}}} introduced in (4.14).

We start from this simple remark: whenever 𝐅{\boldsymbol{\mathrm{F}}} is λ\lambda-dissipative, recalling Theorem 3.11 and Remark 4.5, one easily sees that every locally absolutely continuous solution according to the above definition (6.2) also satisfies the Evolution Variational Inequality (λ\lambda-EVI)

12ddtW22(μt,ν)λW22(μt,ν)[Φ,μt]rin 𝒟(int()),\frac{1}{2}\frac{\,\mathrm{d}}{\,\mathrm{d}t}W_{2}^{2}(\mu_{t},\nu)\leq\lambda W_{2}^{2}(\mu_{t},\nu)-\left[\Phi,\mu_{t}\right]_{r}\quad\text{in }\mathscr{D}^{\prime}\big{(}\operatorname{int}\left(\mathcal{I}\right)\big{)}, (λ\lambda-EVI)

for every νD(𝐅)\nu\in\mathrm{D}({\boldsymbol{\mathrm{F}}}) and every Φ𝐅[ν]\Phi\in{\boldsymbol{\mathrm{F}}}[\nu], where [,]r\left[\cdot,\cdot\right]_{r} is the functional pairing in Definition 3.5 (in fact, (λ\lambda-EVI) holds a.e. in \mathcal{I}). This provides a heuristic motivation for the following definition.

Definition 6.1 (λ\lambda-Evolution Variational Inequality).

Let 𝐅{\boldsymbol{\mathrm{F}}} be a MPVF and let λ\lambda\in\mathbb{R}. We say that a continuous curve μ:D(𝐅)¯\mu:\mathcal{I}\to\overline{\mathrm{D}({\boldsymbol{\mathrm{F}}})} is a λ\lambda-EVI solution to (6.1) for the MPVF 𝐅{\boldsymbol{\mathrm{F}}} if (λ\lambda-EVI) holds for every νD(𝐅)\nu\in\mathrm{D}({\boldsymbol{\mathrm{F}}}) and every Φ𝐅[ν]\Phi\in{\boldsymbol{\mathrm{F}}}[\nu].
A λ\lambda-EVI solution μ\mu is said to be a strict solution if μtD(𝐅)\mu_{t}\in\mathrm{D}({\boldsymbol{\mathrm{F}}}) for every tt\in\mathcal{I}, t>inft>\inf\mathcal{I}.
A λ\lambda-EVI solution μ\mu is said to be a global solution if sup=+\sup\mathcal{I}=+\infty.

In Example 6.32 we will clarify the interest in imposing no more than continuity in the above definition.

Recall that the right upper and lower Dini derivatives of a function ζ:\zeta:\mathcal{I}\to\mathbb{R} are defined for every tt\in\mathcal{I}, t<supt<\sup\mathcal{I} by

ddt+ζ(t)lim suph0ζ(t+h)ζ(t)h,ddt+ζ(t)lim infh0ζ(t+h)ζ(t)h.{\frac{\mathrm{d}}{\mathrm{d}t}}^{\kern-3.0pt+}\zeta(t)\limsup_{h\downarrow 0}\frac{\zeta(t+h)-\zeta(t)}{h},\qquad{\frac{\mathrm{d}}{\mathrm{d}t}}_{\kern-1.0pt+}\zeta(t)\liminf_{h\downarrow 0}\frac{\zeta(t+h)-\zeta(t)}{h}. (6.3)
Remark 6.2.

Arguing as in [MS20, Lemma A.1] and using the lower semicontinuity of the map t[Φ,μt]rt\mapsto\left[\Phi,\mu_{t}\right]_{r}, the distributional inequality of (λ\lambda-EVI) can be equivalently reformulated in terms of the right upper or lower Dini derivatives of the squared distance function and requiring the condition to hold for every tint()t\in\operatorname{int}\left(\mathcal{I}\right):

12ddt+W22(μt,ν)\displaystyle\frac{1}{2}{\frac{\mathrm{d}}{\mathrm{d}t}}^{\kern-3.0pt+}W_{2}^{2}(\mu_{t},\nu) λW22(μt,ν)[Φ,μt]r\displaystyle\leq\lambda W_{2}^{2}(\mu_{t},\nu)-\left[\Phi,\mu_{t}\right]_{r} for every tint(),Φ𝐅,ν=𝗑Φ,\displaystyle\text{for every }t\in\operatorname{int}\left(\mathcal{I}\right),\ \Phi\in{\boldsymbol{\mathrm{F}}},\ \nu=\mathsf{x}_{\sharp}\Phi, (λ\lambda-EVI1)
12ddt+W22(μt,ν)\displaystyle\frac{1}{2}{\frac{\mathrm{d}}{\mathrm{d}t}}_{\kern-1.0pt+}W_{2}^{2}(\mu_{t},\nu) λW22(μt,ν)[Φ,μt]r\displaystyle\leq\lambda W_{2}^{2}(\mu_{t},\nu)-\left[\Phi,\mu_{t}\right]_{r} for every tint(),Φ𝐅,ν=𝗑Φ.\displaystyle\text{for every }t\in\operatorname{int}\left(\mathcal{I}\right),\ \Phi\in{\boldsymbol{\mathrm{F}}},\ \nu=\mathsf{x}_{\sharp}\Phi. (λ\lambda-EVI2)

A further equivalent formulation [MS20, Theorem 3.3] involves the difference quotients: for every s,ts,t\in\mathcal{I}, s<ts<t

e2λ(ts)W22(μt,ν)W22(μs,ν)2ste2λ(rs)[Φ,μr]rdrfor every Φ𝐅,ν=𝗑Φ.{\mathrm{e}^{-2\lambda(t-s)}}\,W_{2}^{2}(\mu_{t},\nu)-W_{2}^{2}(\mu_{s},\nu)\leq-2\int_{s}^{t}\mathrm{e}^{-2\lambda(r-s)}\left[\Phi,\mu_{r}\right]_{r}\,\mathrm{d}r\quad\text{for every }\Phi\in{\boldsymbol{\mathrm{F}}},\ \nu=\mathsf{x}_{\sharp}\Phi. (λ\lambda-EVI3)

Finally, if μ\mu is also locally absolutely continuous, then (λ\lambda-EVI1) and (λ\lambda-EVI2) are also equivalent to

12ddtW22(μt,ν)λW22(μt,ν)[Φ,μt]rfor a.e. t and everyΦ𝐅,ν=𝗑Φ.\begin{aligned} \frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}W_{2}^{2}(\mu_{t},\nu)&\leq\lambda W_{2}^{2}(\mu_{t},\nu)-\left[\Phi,\mu_{t}\right]_{r}\end{aligned}\quad\text{for a.e.\leavevmode\nobreak\ }t\in\mathcal{I}\text{ and every}\ \Phi\in{\boldsymbol{\mathrm{F}}},\ \nu=\mathsf{x}_{\sharp}\Phi.

The following Lemma provides a further insight.

Lemma 6.3.

Let 𝐅{\boldsymbol{\mathrm{F}}} be a λ\lambda-dissipative MPVF and let μ:D(𝐅)¯\mu:\mathcal{I}\to\overline{\mathrm{D}({\boldsymbol{\mathrm{F}}})} be a continuous λ\lambda-EVI solution to (6.1). We have

12ddt+W22(μt,ν)[𝐅,𝝁]0+\displaystyle\frac{1}{2}{\frac{\mathrm{d}}{\mathrm{d}t}}^{\kern-3.0pt+}W_{2}^{2}(\mu_{t},\nu)\leq[{\boldsymbol{\mathrm{F}}},\boldsymbol{\mu}]_{0+}\quad for every νD(𝐅)¯\nu\in\overline{\mathrm{D}({\boldsymbol{\mathrm{F}}})}, tint()t\in\operatorname{int}\left(\mathcal{I}\right), 𝛍Γo0(μt,ν|𝐅)\boldsymbol{\mu}\in\Gamma_{o}^{0}({\mu_{t}},{\nu}|{\boldsymbol{\mathrm{F}}}), (6.4a)
12ddt+W22(μt,ν)λW22(μt,ν)+[𝐅,𝝁]1\displaystyle\frac{1}{2}{\frac{\mathrm{d}}{\mathrm{d}t}}^{\kern-3.0pt+}W_{2}^{2}(\mu_{t},\nu)\leq\lambda W_{2}^{2}(\mu_{t},\nu)+[{\boldsymbol{\mathrm{F}}},\boldsymbol{\mu}]_{1-}\quad for every νD(𝐅)¯\nu\in\overline{\mathrm{D}({\boldsymbol{\mathrm{F}}})}, tint(),t\in\operatorname{int}\left(\mathcal{I}\right), 𝛍Γo1(μt,ν|𝐅)\boldsymbol{\mu}\in\Gamma_{o}^{1}({\mu_{t}},{\nu}|{\boldsymbol{\mathrm{F}}}). (6.4b)

If moreover μ\mu is locally absolutely continuous with Wasserstein velocity field 𝐯\boldsymbol{v} satisfying (2.6) for every tt in the subset A(μ)A(\mu)\subset\mathcal{I} of full Lebesgue measure, then

[(𝒊𝖷,𝒗t)μt,ν]r\displaystyle\left[(\boldsymbol{i}_{\mathsf{X}},\boldsymbol{v}_{t})_{\sharp}\mu_{t},\nu\right]_{r} λW22(μt,ν)[Φ,μt]r\displaystyle\leq\lambda W_{2}^{2}(\mu_{t},\nu)-\left[\Phi,\mu_{t}\right]_{r} if tA(μ)Φ𝐅,ν=𝗑Φ,\displaystyle\text{if $t\in A(\mu)$,\ $\Phi\in{\boldsymbol{\mathrm{F}}},\ \nu=\mathsf{x}_{\sharp}\Phi$}, (6.5a)
[(𝒊𝖷,𝒗t)μt,𝝁]r,0\displaystyle[(\boldsymbol{i}_{\mathsf{X}},\boldsymbol{v}_{t})_{\sharp}\mu_{t},\boldsymbol{\mu}]_{r,0} [𝐅,𝝁]0+\displaystyle\leq[{\boldsymbol{\mathrm{F}}},\boldsymbol{\mu}]_{0+} if tA(μ)νD(𝐅)¯,𝝁Γo0(μt,ν|𝐅),\displaystyle\text{if $t\in A(\mu)$, }\nu\in\overline{\mathrm{D}({\boldsymbol{\mathrm{F}}})},\ \boldsymbol{\mu}\in\Gamma_{o}^{0}({\mu_{t}},{\nu}|{\boldsymbol{\mathrm{F}}}), (6.5b)
[(𝒊𝖷,𝒗t)μt,𝝁]r,0\displaystyle[(\boldsymbol{i}_{\mathsf{X}},\boldsymbol{v}_{t})_{\sharp}\mu_{t},\boldsymbol{\mu}]_{r,0} λW22(μt,ν)+[𝐅,𝝁]1\displaystyle\leq\lambda W_{2}^{2}(\mu_{t},\nu)+[{\boldsymbol{\mathrm{F}}},\boldsymbol{\mu}]_{1-} if tA(μ)νD(𝐅)¯,𝝁Γo1(μt,ν|𝐅).\displaystyle\text{if $t\in A(\mu)$, }\nu\in\overline{\mathrm{D}({\boldsymbol{\mathrm{F}}})},\ \boldsymbol{\mu}\in\Gamma_{o}^{1}({\mu_{t}},{\nu}|{\boldsymbol{\mathrm{F}}}). (6.5c)
Proof.

In order to check (6.5a) it is sufficient to combine (3.19) of Theorem 3.11 with (λ\lambda-EVI1). (6.5b) and (6.5c) then follow applying Proposition 4.14. Let us now prove (6.4a): let us fix νD(𝐅)¯\nu\in\overline{\mathrm{D}({\boldsymbol{\mathrm{F}}})} and tint()t\in\operatorname{int}\left(\mathcal{I}\right). Take 𝝁Γo(μt,ν)\boldsymbol{\mu}\in\Gamma_{o}(\mu_{t},\nu) and define the constant speed geodesic (νs)s[0,1](\nu_{s})_{s\in[0,1]} by νs:=(𝗑s)𝝁\nu_{s}:=(\mathsf{x}^{s})_{\sharp}\boldsymbol{\mu}, thus in particular ν0=μt\nu_{0}=\mu_{t} and ν1=ν\nu_{1}=\nu. Then by Lemma 2.11, for every sI(𝝁|𝐅)(0,1)s\in\mathrm{I}(\boldsymbol{\mu}|{\boldsymbol{\mathrm{F}}})\cap(0,1) and Φs𝐅(νs)\Phi_{s}\in{\boldsymbol{\mathrm{F}}}(\nu_{s}) we have

12ddt+W22(μt,ν)12sddt+W22(μt,νs)1s[Φs,μt]r+λsW22(μt,νs)[𝐅,𝝁]r,s+λsW22(μt,ν),\begin{split}\frac{1}{2}{\frac{\mathrm{d}}{\mathrm{d}t}}^{\kern-3.0pt+}W_{2}^{2}(\mu_{t},\nu)&\leq\frac{1}{2s}{\frac{\mathrm{d}}{\mathrm{d}t}}^{\kern-3.0pt+}W_{2}^{2}(\mu_{t},\nu_{s})\leq-\frac{1}{s}\left[\Phi_{s},\mu_{t}\right]_{r}+\frac{\lambda}{s}W_{2}^{2}(\mu_{t},\nu_{s})\\ &\leq[{\boldsymbol{\mathrm{F}}},\boldsymbol{\mu}]_{r,s}+\lambda sW_{2}^{2}(\mu_{t},\nu),\end{split}

where the second inequality comes from (λ\lambda-EVI1). Taking 𝝁Γo0(μt,ν|𝐅)\boldsymbol{\mu}\in\Gamma_{o}^{0}({\mu_{t}},{\nu}|{\boldsymbol{\mathrm{F}}}) and passing to the limit as s0s\downarrow 0 we get (6.4a). Analogously for (6.4b). ∎

We can now give an interpretation of absolutely continuous λ\lambda-EVI solutions in terms of differential inclusions.

Theorem 6.4.

Let 𝐅{\boldsymbol{\mathrm{F}}} be a λ\lambda-dissipative MPVF and let μ:D(𝐅)¯\mu:\mathcal{I}\to\overline{\mathrm{D}({\boldsymbol{\mathrm{F}}})} be a locally absolutely continuous curve.

  1. (1)

    If μ\mu satisfies the differential inclusion (6.2) driven by any λ\lambda-dissipative extension of 𝐅{\boldsymbol{\mathrm{F}}} in D(𝐅){\mathrm{D}({\boldsymbol{\mathrm{F}}})}, then μ\mu is also a λ\lambda-EVI solution to (6.1) for 𝐅{\boldsymbol{\mathrm{F}}}.

  2. (2)

    μ\mu is a λ\lambda-EVI solution of (6.1) for 𝐅{\boldsymbol{\mathrm{F}}} if and only if

    (𝒊𝖷,𝒗t)μt𝐅^[μt]for a.e. t.(\boldsymbol{i}_{\mathsf{X}},\boldsymbol{v}_{t})_{\sharp}\mu_{t}\in{\hat{\boldsymbol{\mathrm{F}}}}[\mu_{t}]\quad\text{for a.e. }t\in\mathcal{I}. (6.6)
  3. (3)

    If D(𝐅)\mathrm{D}({\boldsymbol{\mathrm{F}}}) satisfies (4.13) and μtD(𝐅)\mu_{t}\in\mathrm{D}({\boldsymbol{\mathrm{F}}}) for a.e. tt\in\mathcal{I}, then the following properties are equivalent:

    • -

      μ\mu is a λ\lambda-EVI solution to (6.1) for 𝐅{\boldsymbol{\mathrm{F}}}.

    • -

      μ\mu satisfies (6.5b).

    • -

      μ\mu is a λ\lambda-EVI solution to (6.1) for the restriction of 𝐅^\hat{\boldsymbol{\mathrm{F}}} to D(𝐅)\mathrm{D}({\boldsymbol{\mathrm{F}}}).

  4. (4)

    If 𝐅{\boldsymbol{\mathrm{F}}} satisfies (4.16) then μ\mu is a λ\lambda-EVI solution to (6.1) for 𝐅{\boldsymbol{\mathrm{F}}} if and only if it is a λ\lambda-EVI solution to (6.1) for 𝐅^\hat{\boldsymbol{\mathrm{F}}}.

Proof.

(1) It is sufficient to apply Theorem 3.11 and the definition of λ\lambda-dissipativity.

The left-to-right implication \Rightarrow of (2) follows by (6.5a) of Lemma 6.3 and the definition of 𝐅^\hat{\boldsymbol{\mathrm{F}}}.

Conversely, if μ\mu satisfies (6.6), νD(𝐅)\nu\in\mathrm{D}({\boldsymbol{\mathrm{F}}}), Φ𝐅[ν]\Phi\in{\boldsymbol{\mathrm{F}}}[\nu], then Theorem 3.11 and the definition of 𝐅^\hat{\boldsymbol{\mathrm{F}}} yield

12ddtW22(μt,ν)\displaystyle\frac{1}{2}\frac{\,\mathrm{d}}{\,\mathrm{d}t}W_{2}^{2}(\mu_{t},\nu) =[(𝒊𝖷,𝒗t)μt,ν]rλW22(μt,ν)[Φ,μt]ra.e. in .\displaystyle=\left[(\boldsymbol{i}_{\mathsf{X}},\boldsymbol{v}_{t})_{\sharp}\mu_{t},\nu\right]_{r}\leq\lambda W_{2}^{2}(\mu_{t},\nu)-\left[\Phi,\mu_{t}\right]_{r}\quad\text{a.e.\leavevmode\nobreak\ in }\mathcal{I}.

Claim (3) is an immediate consequence of Lemma 6.3, Proposition 4.17(d) and Proposition 4.14.

Claim (4) is a consequence of Proposition 4.17(f) and the λ\lambda-dissipativity of 𝐅^\hat{\boldsymbol{\mathrm{F}}}. ∎

Proposition 6.5.

Let :𝒫2(𝖷)(,+]\mathcal{F}:\mathcal{P}_{2}(\mathsf{X})\to(-\infty,+\infty] be a proper, lower semicontinuous and λ\lambda-convex functional and let μC(;D())\mu\in\mathrm{C}(\mathcal{I};\mathrm{D}(\boldsymbol{\partial}\mathcal{F})) be a locally absolutely continuous curve. Then

  1. (1)

    if μ\mu is a Gradient Flow for \mathcal{F} i.e.

    (𝒊𝖷,𝒗t)μt(μt) a.e. t,(\boldsymbol{i}_{\mathsf{X}},\boldsymbol{v}_{t})_{\sharp}\mu_{t}\in-\boldsymbol{\partial}\mathcal{F}(\mu_{t})\quad\text{ a.e. }t\in\mathcal{I},

    then μ\mu is a (λ)(-\lambda)-EVI solution of (6.1) for the MPVF -\boldsymbol{\partial}\mathcal{F} as in (5.1);

  2. (2)

    if μ\mu is a (λ)(-\lambda)-EVI solution of (6.1) for the MPVF -\boldsymbol{\partial}\mathcal{F} and the domain of \boldsymbol{\partial}\mathcal{F} satisfies

     for a.e. t,Γo0(μt,ν|)νD(),\text{ for a.e. }t\in\mathcal{I},\,\Gamma_{o}^{0}({\mu_{t}},{\nu}|\boldsymbol{\partial}\mathcal{F})\neq\emptyset\quad\forall\nu\in\mathrm{D}(\boldsymbol{\partial}\mathcal{F}),

    then μ\mu is a Gradient Flow for \mathcal{F}.

Proof.

The first assertion is a consequence Theorem 6.4(1). We prove the second claim; by (6.5b) we have that for a.e. tt\in\mathcal{I} it holds

[(𝒊𝖷,𝒗t)μt,ν]r[(𝒊𝖷,𝒗t)μt,𝝁]r,0[,𝝁]0+νD()𝝁Γo0(μt,ν|).\left[(\boldsymbol{i}_{\mathsf{X}},\boldsymbol{v}_{t})_{\sharp}\mu_{t},\nu\right]_{r}\leq[(\boldsymbol{i}_{\mathsf{X}},\boldsymbol{v}_{t})_{\sharp}\mu_{t},\boldsymbol{\mu}]_{r,0}\leq[-\boldsymbol{\partial}\mathcal{F},\boldsymbol{\mu}]_{0+}\quad\forall\,\nu\in\mathrm{D}(\mathcal{F})\,\,\forall\,\boldsymbol{\mu}\in\Gamma_{o}^{0}({\mu_{t}},{\nu}|\boldsymbol{\partial}\mathcal{F}).

We show that for every ν0,ν1D()\nu_{0},\nu_{1}\in\mathrm{D}(\boldsymbol{\partial}\mathcal{F}) and every 𝝂Γo0(ν0,ν1|𝐅)\boldsymbol{\nu}\in\Gamma_{o}^{0}({\nu_{0}},{\nu_{1}}|{\boldsymbol{\mathrm{F}}})

[,𝝂]0+(ν1)(ν0)λ2W22(ν0,ν1).[-\boldsymbol{\partial}\mathcal{F},\boldsymbol{\nu}]_{0+}\leq\mathcal{F}(\nu_{1})-\mathcal{F}(\nu_{0})-\frac{\lambda}{2}W_{2}^{2}(\nu_{0},\nu_{1}). (6.7)

To prove that, we take sI(𝝂|)(0,1)s\in\mathrm{I}(\boldsymbol{\nu}|\boldsymbol{\partial}\mathcal{F})\cap(0,1) and Φs(νs)\Phi_{s}\in-\boldsymbol{\partial}\mathcal{F}(\nu_{s}). By definition of subdifferential we have

[Φs,ν1]r(ν1)(νs)λ2W22(νs,ν1)\left[\Phi_{s},\nu_{1}\right]_{r}\leq\mathcal{F}(\nu_{1})-\mathcal{F}(\nu_{s})-\frac{\lambda}{2}W_{2}^{2}(\nu_{s},\nu_{1})

where νs=𝗑s𝝂\nu_{s}=\mathsf{x}^{s}_{\sharp}\boldsymbol{\nu}. Dividing by (1s)(1-s), using (3.26) and passing to the infimum w.r.t. Φs(νs)\Phi_{s}\in-\boldsymbol{\partial}\mathcal{F}(\nu_{s}) we obtain

[,𝝂]r,s11s((ν1)(νs))λ(1s)2W22(ν0,ν1).[-\boldsymbol{\partial}\mathcal{F},\boldsymbol{\nu}]_{r,s}\leq\frac{1}{1-s}\left(\mathcal{F}(\nu_{1})-\mathcal{F}(\nu_{s})\right)-\frac{\lambda(1-s)}{2}W_{2}^{2}(\nu_{0},\nu_{1}).

Passing to the limit as s0s\downarrow 0 and using the lower semicontinuity of \mathcal{F} lead to the result. Once that (6.7) is established we have that for a.e. tt\in\mathcal{I} it holds

[(𝒊𝖷,𝒗t)μt,ν]r(ν)(μt)λ2W22(μt,ν) for every νD().\left[(\boldsymbol{i}_{\mathsf{X}},\boldsymbol{v}_{t})_{\sharp}\mu_{t},\nu\right]_{r}\leq\mathcal{F}(\nu)-\mathcal{F}(\mu_{t})-\frac{\lambda}{2}W_{2}^{2}(\mu_{t},\nu)\text{ for every }\nu\in\mathrm{D}(\boldsymbol{\partial}\mathcal{F}). (6.8)

To conclude it is enough to use the lower semicontinuity of the LHS (see Lemma 3.14) and the fact that D()\mathrm{D}(\boldsymbol{\partial}\mathcal{F}) is dense in D()\mathrm{D}(\mathcal{F}) in energy: indeed we can apply [NS21, Corollary 4.5] and [AGS08, Lemma 3.1.2] to the proper, lower semicontinuous and convex functional λ:𝒫2(𝖷)(,+]\mathcal{F}^{\lambda}:\mathcal{P}_{2}(\mathsf{X})\to(-\infty,+\infty] defined as

λ(ν)=(ν)λ2𝗆22(ν)\mathcal{F}^{\lambda}(\nu)=\mathcal{F}(\nu)-\frac{\lambda}{2}\mathsf{m}_{2}^{2}(\nu)

to get the existence, for every νD()\nu\in\mathrm{D}(\mathcal{F}), of a family (ντ)τ>0D(λ)=D()(\nu_{\tau})_{\tau>0}\subset\mathrm{D}(\mathcal{F}^{\lambda})=\mathrm{D}(\mathcal{F}) s.t.

ντν,λ(ντ)λ(ν) as τ0.\nu_{\tau}\to\nu,\quad\mathcal{F}^{\lambda}(\nu_{\tau})\to\mathcal{F}^{\lambda}(\nu)\quad\text{ as }\tau\downarrow 0.

Of course (ντ)(ν)\mathcal{F}(\nu_{\tau})\to\mathcal{F}(\nu) as τ0\tau\downarrow 0 and, applying [AGS08, Lemma 10.3.4], we see that ντD(λ)\nu_{\tau}\in\mathrm{D}(\boldsymbol{\partial}\mathcal{F}^{\lambda}). However λ=Lλ\boldsymbol{\partial}\mathcal{F}^{\lambda}=L^{\lambda}_{\sharp}\boldsymbol{\partial}\mathcal{F} (see (4.5)) so that ντD()\nu_{\tau}\in\mathrm{D}(\boldsymbol{\partial}\mathcal{F}). We can thus write (6.8) for ντ\nu_{\tau} in place of ν\nu and pass to the limit as τ0\tau\downarrow 0, obtaining that, by definition of subdifferential, (𝒊𝖷,𝒗t)μt(μt)(\boldsymbol{i}_{\mathsf{X}},\boldsymbol{v}_{t})_{\sharp}\mu_{t}\in-\boldsymbol{\partial}\mathcal{F}(\mu_{t}) for a.e. tt\in\mathcal{I}. ∎

We derive a further useful a priori bound for λ\lambda-EVI solutions.

Proposition 6.6.

Let 𝐅{\boldsymbol{\mathrm{F}}} be a λ\lambda-dissipative MPVF and let T(0,+]T\in(0,+\infty]. Every λ\lambda-EVI solution μ:[0,T)D(𝐅)¯\mu:[0,T)\to\overline{\mathrm{D}({\boldsymbol{\mathrm{F}}})} with initial datum μ0D(𝐅)\mu_{0}\in\mathrm{D}({\boldsymbol{\mathrm{F}}}) satisfies the a priori bound

W2(μt,μ0)2|𝐅|2(μ0)0teλsds,for all t[0,T),W_{2}(\mu_{t},\mu_{0})\leq 2|{\boldsymbol{\mathrm{F}}}|_{2}(\mu_{0})\int_{0}^{t}\mathrm{e}^{\lambda s}\,\mathrm{d}s,\quad\text{for all }t\in[0,T), (6.9)

where

|𝐅|2(μ):=inf{|Φ|2:Φ𝐅[μ]}for every μD(𝐅).|{\boldsymbol{\mathrm{F}}}|_{2}(\mu):={}\inf\Big{\{}|\Phi|_{2}:\Phi\in{\boldsymbol{\mathrm{F}}}[\mu]\Big{\}}\quad\text{for every }\mu\in\mathrm{D}({\boldsymbol{\mathrm{F}}}).
Proof.

Let Φ𝐅(μ0)\Phi\in{\boldsymbol{\mathrm{F}}}(\mu_{0}). (λ\lambda-EVI) with ν:=μ0\nu:=\mu_{0} then yields

ddt+W22(μt,μ0)2λW22(μt,μ0)2[Φ,μt]r2|Φ|2W2(μt,μ0),for every t[0,T).{\frac{\mathrm{d}}{\mathrm{d}t}}^{\kern-3.0pt+}W_{2}^{2}(\mu_{t},\mu_{0})-2\lambda W_{2}^{2}(\mu_{t},\mu_{0})\leq-2\left[\Phi,\mu_{t}\right]_{r}\leq 2|\Phi|_{2}\,W_{2}(\mu_{t},\mu_{0}),\quad\text{for every }t\in[0,T).

We can then apply the estimate of [AGS08, Lemma 4.1.8] to obtain

eλtW2(μt,μ0)2|Φ|20teλsds,for all t[0,T),\mathrm{e}^{-\lambda t}W_{2}(\mu_{t},\mu_{0})\leq 2|\Phi|_{2}\int_{0}^{t}\mathrm{e}^{-\lambda s}\,\mathrm{d}s,\quad\text{for all }t\in[0,T),

which in turn yields (6.9). ∎

We conclude this section with a result showing the robustness of the notion of λ\lambda-EVI solution.

Proposition 6.7.

If μn:D(𝐅)¯\mu_{n}:\mathcal{I}\to\overline{\mathrm{D}({\boldsymbol{\mathrm{F}}})} is a sequence of λ\lambda-EVI solutions locally uniformly converging to μ\mu as nn\to\infty, then μ\mu is a λ\lambda-EVI solution.

Proof.

μ\mu is a continuous curve defined in \mathcal{I} with values in D(𝐅)¯\overline{\mathrm{D}({\boldsymbol{\mathrm{F}}})}. Using pointwise convergence, the lower semicontinuity of μ[Φ,μ]r\mu\mapsto\left[\Phi,\mu\right]_{r} of Lemma 3.14, and Fatou’s Lemma, it is easy to pass to the limit in the equivalent characterization (λ\lambda-EVI3) of λ\lambda-EVI solutions, written for μn\mu_{n}. ∎

6.2. Local existence of λ\lambda-EVI solutions by the Explicit Euler Scheme

In order to prove the existence of a λ\lambda-EVI solution to (6.1), our strategy is to employ an approximation argument through an Explicit Euler scheme as it occurs for ODEs.
In the following \left\lfloor\cdot\right\rfloor and \left\lceil\cdot\right\rceil denote the floor and the ceiling functions respectively.

Definition 6.8 (Explicit Euler Scheme).

Let 𝐅{\boldsymbol{\mathrm{F}}} be a MPVF and suppose we are given a step size τ>0\tau>0, an initial datum μτ0D(𝐅)\mu^{0}_{\tau}\in\mathrm{D}({\boldsymbol{\mathrm{F}}}), a bounded interval [0,T][0,T], corresponding to the final step N(T,τ):=T/τ,{\mathrm{N}(T,\tau)}:=\left\lceil T/\tau\right\rceil, and a stability bound L>0L>0. A sequence (Mτn,𝑭τn)0nN(T,τ)D(𝐅)×𝐅(M^{n}_{\tau},{\boldsymbol{F}}_{\tau}^{n})_{0\leq n\leq{\mathrm{N}(T,\tau)}}\subset\mathrm{D}({\boldsymbol{\mathrm{F}}})\times{\boldsymbol{\mathrm{F}}} is a LL-stable solution to the Explicit Euler Scheme in [0,T][0,T] starting from μτ0D(𝐅)\mu^{0}_{\tau}\in\mathrm{D}({\boldsymbol{\mathrm{F}}}) if

{Mτ0=μτ0,𝑭τn𝐅[Mτn],|𝑭τn|2L0n<N(T,τ),Mτn=(𝖾𝗑𝗉τ)𝑭τn11nN(T,τ).\left\{\begin{aligned} M_{\tau}^{0}&=\mu^{0}_{\tau},\\ {\boldsymbol{F}}_{\tau}^{n}&\in{\boldsymbol{\mathrm{F}}}[M_{\tau}^{n}],\ |{\boldsymbol{F}}_{\tau}^{n}|_{2}\leq L&&0\leq n<{\mathrm{N}(T,\tau)},\\ M_{\tau}^{n}&=(\operatorname{\mathsf{exp}}^{\tau})_{\sharp}{\boldsymbol{F}}_{\tau}^{n-1}&&1\leq n\leq{\mathrm{N}(T,\tau)}.\end{aligned}\right. (EE)

We define the following two different interpolations of the sequence (Mτn,𝑭τn)(M^{n}_{\tau},{\boldsymbol{F}}_{\tau}^{n}):

  • the affine interpolation:

    Mτ(t):=(𝖾𝗑𝗉tnτ)𝑭τn if t[nτ,(n+1)τ] for some n, 0n<N(T,τ),M_{\tau}(t):=(\operatorname{\mathsf{exp}}^{t-n\tau})_{\sharp}{\boldsymbol{F}}_{\tau}^{n}\text{\quad if }t\in[n\tau,(n+1)\tau]\text{ for some }n\in\mathbb{N},\ 0\leq n<{\mathrm{N}(T,\tau)}, (6.10)
  • the piecewise constant interpolation:

    M¯τ(t):=Mτt/τ,t[0,T],𝑭τ(t):=𝐅τt/τ,t[0,T].\begin{split}\bar{M}_{\tau}(t)&:=M^{\left\lfloor t/\tau\right\rfloor}_{\tau},\quad t\in[0,T],\\ {\boldsymbol{F}}_{\tau}(t)&:={\boldsymbol{\mathrm{F}}}^{\left\lfloor t/\tau\right\rfloor}_{\tau},\quad t\in[0,T].\end{split}

We will call (μτ0,τ,T,L)\mathscr{E}(\mu^{0}_{\tau},\tau,T,L) (resp. (μτ0,τ,T,L)\mathscr{M}(\mu^{0}_{\tau},\tau,T,L)) the (possibly empty) set of all the curves (Mτ,𝑭τ)(M_{\tau},{\boldsymbol{F}}_{\tau}) (resp. MτM_{\tau}) arising from the solution of (EE).

The affine interpolation can be trivially written as

Mτ(t)=(𝖾𝗑𝗉tt/ττ)(𝑭τ(t)),t[0,T],M_{\tau}(t)=\left(\operatorname{\mathsf{exp}}^{t-\left\lfloor t/\tau\right\rfloor\tau}\right)_{\sharp}\left({\boldsymbol{F}}_{\tau}(t)\right),\quad t\in[0,T],

and MτM_{\tau} satisfies the uniform Lipschitz bound

W2(Mτ(t),Mτ(s))L|ts|0stT,Mτ(μ0,τ,T,L).W_{2}(M_{\tau}(t),M_{\tau}(s))\leq L|t-s|\quad 0\leq s\leq t\leq T,\quad M_{\tau}\in\mathscr{E}(\mu_{0},\tau,T,L). (6.11)

Notice that, since in general 𝐅[μ]{\boldsymbol{\mathrm{F}}}[\mu] is not reduced to a singleton, the sets (μ0,τ,T,L)\mathscr{E}(\mu_{0},\tau,T,L) and (μ0,τ,T,L)\mathscr{M}(\mu_{0},\tau,T,L) may contain more than one element (or may be empty). Stable solutions to the Explicit Euler scheme generated by a λ\lambda-dissipative MPVF exhibit a nice behaviour, which is clarified by the following important result, which will be proved in Section 7 (see Proposition 7.3 and Theorems 7.4, 7.5, 7.7), with a more accurate estimate of the error constants A(ϑ)A(\vartheta). We stress that in the next statement A(ϑ)A(\vartheta) solely depend on ϑ\vartheta (in particular, it is independent of λ,L,T,τ,η,Mτ,Mη\lambda,L,T,\tau,\eta,M_{\tau},M_{\eta}).

Theorem 6.9.

Let 𝐅{\boldsymbol{\mathrm{F}}} be a λ\lambda-dissipative MPVF.

  1. (1)

    For every μ0,μ0D(𝐅)\mu_{0},\mu_{0}^{\prime}\in\mathrm{D}({\boldsymbol{\mathrm{F}}}), every Mτ(μ0,τ,T,L)M_{\tau}\in\mathscr{M}(\mu_{0},\tau,T,L), Mτ(μ0,τ,T,L)M_{\tau}^{\prime}\in\mathscr{M}(\mu_{0}^{\prime},\tau,T,L) with τλ+2\tau\lambda_{+}\leq 2 we have

    W2(Mτ(t),Mτ(t))eλtW2(μ0,μ0)+8Ltτ(1+|λ|tτ)eλ+tfor every t[0,T].W_{2}(M_{\tau}(t),M_{\tau}^{\prime}(t))\leq\mathrm{e}^{\lambda t}W_{2}(\mu_{0},\mu_{0}^{\prime})+8L\sqrt{t\tau}\Big{(}1+|\lambda|\sqrt{t\tau}\Big{)}\mathrm{e}^{\lambda_{+}t}\quad\text{for every }t\in[0,T]. (6.12)
  2. (2)

    For every ϑ>1\vartheta>1 there exists a constant A(ϑ)A(\vartheta) such that if Mτ(Mτ0,τ,T,L)M_{\tau}\in\mathscr{M}(M^{0}_{\tau},\tau,T,L) and Mη(Mη0,η,T,L)M_{\eta}\in\mathscr{M}(M^{0}_{\eta},\eta,T,L) with λ+(τ+η)1\lambda_{+}(\tau+\eta)\leq 1 then

    W2(Mτ(t),Mη(t))(ϑW2(Mτ0,Mη0)+A(ϑ)L(τ+η)(t+τ+η))eλ+t,t[0,T].W_{2}(M_{\tau}(t),M_{\eta}(t))\leq\Big{(}\vartheta W_{2}(M^{0}_{\tau},M^{0}_{\eta})+A(\vartheta)L\sqrt{(\tau+\eta)(t+\tau+\eta)}\Big{)}\mathrm{e}^{\lambda_{+}\,t},\quad t\in[0,T].
  3. (3)

    For every ϑ>1\vartheta>1 there exists a constant A(ϑ)A(\vartheta) such that if μC([0,T];D(𝐅)¯)\mu\in\mathrm{C}([0,T];\overline{\mathrm{D}({\boldsymbol{\mathrm{F}}})}) is a λ\lambda-EVI solution and Mτ(Mτ0,τ,T,L)M_{\tau}\in\mathscr{M}(M^{0}_{\tau},\tau,T,L) then

    W2(μ(t),Mτ(t))(ϑW2(μ0,Mτ0)+A(ϑ)Lτ(t+τ))eλ+tfor every t[0,T].W_{2}(\mu(t),M_{\tau}(t))\leq\Big{(}\vartheta\,W_{2}(\mu_{0},M^{0}_{\tau})+A(\vartheta)L\sqrt{\tau(t+\tau)}\Big{)}\mathrm{e}^{\lambda_{+}t}\quad\text{for every }t\in[0,T]. (6.13)
  4. (4)

    If nτ(n)n\mapsto\tau(n) is a vanishing sequence of time steps, (μ0,n)n(\mu_{0,n})_{n\in\mathbb{N}} is a sequence in D(𝐅)\mathrm{D}({\boldsymbol{\mathrm{F}}}) converging to μ0D(𝐅)¯\mu_{0}\in\overline{\mathrm{D}({\boldsymbol{\mathrm{F}}})} in 𝒫2(𝖷)\mathcal{P}_{2}(\mathsf{X}) and Mn(μ0,n,τ(n),T,L)M_{n}\in\mathscr{M}(\mu_{0,n},\tau(n),T,L), then MnM_{n} is uniformly converging to a limit curve μLip([0,T];D(𝐅)¯)\mu\in\mathrm{Lip}([0,T];\overline{\mathrm{D}({\boldsymbol{\mathrm{F}}})}) which is a λ\lambda-EVI solution starting from μ0\mu_{0}.

If we assume that the Explicit Euler scheme is locally solvable, Theorem 6.9 provides a crucial tool to obtain local existence and uniqueness of λ\lambda-EVI solutions.

Definition 6.10 (Local and global solvability of (EE)).

We say that the Explicit Euler Scheme (EE) associated to a MPVF 𝐅{\boldsymbol{\mathrm{F}}} is locally solvable at μ0D(𝐅)\mu_{0}\in\mathrm{D}({\boldsymbol{\mathrm{F}}}) if there exist strictly positive constants 𝝉,T,L\boldsymbol{\tau},T,L such that (μ0,τ,T,L)\mathscr{E}(\mu_{0},\tau,T,L) is not empty for every τ(0,𝝉)\tau\in(0,\boldsymbol{\tau}).
We say that (EE) is globally solvable at μ0D(𝐅)\mu_{0}\in\mathrm{D}({\boldsymbol{\mathrm{F}}}) if for every T>0T>0 there exist strictly positive constants 𝝉,L\boldsymbol{\tau},L such that (μ0,τ,T,L)\mathscr{E}(\mu_{0},\tau,T,L) is not empty for every τ(0,𝝉)\tau\in(0,\boldsymbol{\tau}).

Let us now state the main existence result for λ\lambda-EVI solutions. Given T(0,+]T\in(0,+\infty] and μ:[0,T)𝒫2(𝖷)\mu:[0,T)\to\mathcal{P}_{2}(\mathsf{X}) we denote by |μ˙|+(t)|\dot{\mu}|_{+}(t) the right upper metric derivative

|μ˙|+(t):=lim suph0W2(μt+h,μt)h.|\dot{\mu}|_{+}(t):=\limsup_{h\downarrow 0}\frac{W_{2}(\mu_{t+h},\mu_{t})}{h}.
Theorem 6.11 (Local existence and uniqueness).

Let 𝐅{\boldsymbol{\mathrm{F}}} be a λ\lambda-dissipative MPVF.

  1. (a)

    If the Explicit Euler Scheme is locally solvable at μ0D(𝐅)\mu_{0}\in\mathrm{D}({\boldsymbol{\mathrm{F}}}), then there exists T>0T>0 and a unique λ\lambda-EVI solution μLip([0,T];D(𝐅)¯)\mu\in\mathrm{Lip}([0,T];\overline{\mathrm{D}({\boldsymbol{\mathrm{F}}})}) starting from μ0\mu_{0}, satisfying

    teλt|μ˙|+(t)is decreasing in [0,T).t\mapsto\mathrm{e}^{-\lambda t}|\dot{\mu}|_{+}(t)\quad\text{is decreasing in }[0,T). (6.14)

    If μ:[0,T]D(𝐅)¯\mu^{\prime}:[0,T^{\prime}]\to\overline{\mathrm{D}({\boldsymbol{\mathrm{F}}})} is any other λ\lambda-EVI solution starting from μ0\mu_{0} then μ(t)=μ(t)\mu(t)=\mu^{\prime}(t) if 0tTT0\leq t\leq T\land T^{\prime}.

  2. (b)

    If the Explicit Euler Scheme is locally solvable in D(𝐅)\mathrm{D}({\boldsymbol{\mathrm{F}}}) and

    for any local λ-EVI solution μ starting from μ0D(𝐅)there exists δ>0:t[0,δ]μ(t)D(𝐅),\begin{gathered}\text{for any local $\lambda$-{\rm EVI} solution $\mu$ starting from $\mu_{0}\in\mathrm{D}({\boldsymbol{\mathrm{F}}})$}\\ \text{there exists }\delta>0:\quad t\in[0,\delta]\quad\Rightarrow\quad\mu(t)\in\mathrm{D}({\boldsymbol{\mathrm{F}}}),\end{gathered} (6.15)

    then for every μ0D(𝐅)\mu_{0}\in\mathrm{D}({\boldsymbol{\mathrm{F}}}) there exist a unique maximal time T(0,]T\in(0,\infty] and a unique strict λ\lambda-EVI solution μLiploc([0,T);D(𝐅))\mu\in\mathrm{Lip}_{\rm loc}([0,T);\mathrm{D}({\boldsymbol{\mathrm{F}}})) starting from μ0\mu_{0}, which satisfies (6.14) and

    T<limtTμtD(𝐅).T<\infty\quad\Rightarrow\quad\lim_{t\uparrow T}\mu_{t}\not\in\mathrm{D}({\boldsymbol{\mathrm{F}}}). (6.16)

    Any other λ\lambda-EVI solution μ:[0,T)D(𝐅)¯\mu^{\prime}:[0,T^{\prime})\to\overline{\mathrm{D}({\boldsymbol{\mathrm{F}}})} starting from μ0\mu_{0} coincides with μ\mu in [0,TT)[0,T\land T^{\prime}).

Proof.

(a) Let 𝝉,T,L\boldsymbol{\tau},T,L positive constants such that (μ0,τ,T,L)\mathscr{E}(\mu_{0},\tau,T,L) is not empty for every τ(0,𝝉)\tau\in(0,\boldsymbol{\tau}). Thanks to Theorem 6.9(2), the family Mτ(μ0,τ,T,L)M_{\tau}\in\mathscr{E}(\mu_{0},\tau,T,L) satisfies the Cauchy condition in C([0,T];𝒫2(𝖷))\mathrm{C}([0,T];\mathcal{P}_{2}(\mathsf{X})) so that there exists a unique limit curve μ=limτ0Mτ\mu=\lim_{\tau\downarrow 0}M_{\tau} which is also Lipschitz in time, thanks to the a-priori bound (6.11). Theorem 6.9(4) shows that μ\mu is a λ\lambda-EVI solution starting from μ0\mu_{0} and the estimate (6.13) of Theorem 6.9(3) shows that any other λ\lambda-EVI solution in an interval [0,T][0,T^{\prime}] starting from μ0\mu_{0} should coincide with μ\mu in [0,TT][0,T^{\prime}\land T].

Let us now check (6.14): we fix s,ts,t such that 0s<t<T0\leq s<t<T and h(0,Tt)h\in(0,T-t), and we set sτ:=τs/τs_{\tau}:=\tau\left\lfloor s/\tau\right\rfloor, hτ:=τh/τh_{\tau}:=\tau\left\lfloor h/\tau\right\rfloor. The curves rMτ(sτ+r)r\mapsto M_{\tau}(s_{\tau}+r), rMτ(sτ+hτ+r)r\mapsto M_{\tau}(s_{\tau}+h_{\tau}+r) belong to (Mτ(sτ),τ,ts,L)\mathscr{M}(M_{\tau}(s_{\tau}),\tau,t-s,L) and (Mτ(sτ+hτ),τ,ts,L)\mathscr{M}(M_{\tau}(s_{\tau}+h_{\tau}),\tau,t-s,L), so that (6.12) yields

W2(Mτ(sτ+ts),Mτ(sτ+hτ+(ts)))eλ(ts)W2(Mτ(sτ),Mτ(sτ+hτ))+Bτ,W_{2}(M_{\tau}(s_{\tau}+t-s),M_{\tau}(s_{\tau}+h_{\tau}+(t-s)))\leq\mathrm{e}^{\lambda(t-s)}W_{2}(M_{\tau}(s_{\tau}),M_{\tau}(s_{\tau}+h_{\tau}))+B\sqrt{\tau},

for B=B(λ,L,𝝉,T)B=B(\lambda,L,\boldsymbol{\tau},T). Passing to the limit as τ0\tau\downarrow 0 we get

W2(μ(t),μ(t+h))eλ(ts)W2(μ(s),μ(s+h)).W_{2}(\mu(t),\mu(t+h))\leq\mathrm{e}^{\lambda(t-s)}W_{2}(\mu(s),\mu(s+h)).

Dividing by hh and passing to the limit as h0h\downarrow 0 we get (6.14).

(b) Let us call 𝒮\mathcal{S} the collection of λ\lambda-EVI solutions μ:[0,S)D(𝐅)\mu:[0,S)\to\mathrm{D}({\boldsymbol{\mathrm{F}}}) starting from μ0\mu_{0} with values in D(𝐅)\mathrm{D}({\boldsymbol{\mathrm{F}}}) and defined in some interval [0,S)[0,S), S=S(μ)S=S(\mu). Thanks to (6.15) and the previous claim the set 𝒮\mathcal{S} is not empty.

It is also easy to check that two curves μ,μ′′𝒮\mu^{\prime},\mu^{\prime\prime}\in\mathcal{S} coincide in the common domain [0,S)[0,S) with S:=S(μ)S(μ′′)S:=S(\mu^{\prime})\land S(\mu^{\prime\prime}): in fact the set {t[0,S):μ(r)=μ′′(r) if 0rt}\{t\in[0,S):\mu^{\prime}(r)=\mu^{\prime\prime}(r)\text{ if }0\leq r\leq t\} contains t=0t=0, is closed since μ,μ′′\mu^{\prime},\mu^{\prime\prime} are continuous, and it is also open since if μ=μ′′\mu^{\prime}=\mu^{\prime\prime} in [0,t][0,t] then the previous claim and the fact that μ(t)=μ′′(t)D(𝐅)\mu^{\prime}(t)=\mu^{\prime\prime}(t)\in\mathrm{D}({\boldsymbol{\mathrm{F}}}) show that μ=μ′′\mu^{\prime}=\mu^{\prime\prime} also in a right neighborhood of tt. Since [0,S)[0,S) is connected, we conclude that μ=μ′′\mu^{\prime}=\mu^{\prime\prime} in [0,S)[0,S).

We can thus define T:=sup{S(μ):μ𝒮}T:=\sup\{S(\mu):\mu\in\mathcal{S}\} obtaining that there exists a unique λ\lambda-EVI solution μ\mu starting from μ0\mu_{0} and defined in [0,T)[0,T) with values in D(𝐅)\mathrm{D}({\boldsymbol{\mathrm{F}}}).

If T<T<\infty, since μ\mu is Lipschitz in [0,T)[0,T) thanks to (6.14), we know that there exists the limit μ¯:=limtTμ(t)\bar{\mu}:=\lim_{t\uparrow T}\mu(t) in 𝒫2(𝖷)\mathcal{P}_{2}(\mathsf{X}). If μ¯D(𝐅)\bar{\mu}\in\mathrm{D}({\boldsymbol{\mathrm{F}}}) we can extend μ\mu to a λ\lambda-EVI solution with values in D(𝐅)\mathrm{D}({\boldsymbol{\mathrm{F}}}) and defined in an interval [0,T)[0,T^{\prime}) with T>TT^{\prime}>T, which contradicts the maximality of TT. ∎

Recall that a set AA in a metric space XX is locally closed if every point of AA has a neighborhood UU such that AU=A¯UA\cap U=\bar{A}\cap U. Equivalently, AA is the intersection of an open and a closed subset of XX. In particular, open or closed sets are locally closed.

Corollary 6.12.

Let 𝐅{\boldsymbol{\mathrm{F}}} be a λ\lambda-dissipative MPVF for which the Explicit Euler Scheme is locally solvable in D(𝐅)\mathrm{D}({\boldsymbol{\mathrm{F}}}). If D(𝐅)\mathrm{D}({\boldsymbol{\mathrm{F}}}) is locally closed then for every μ0D(𝐅)\mu_{0}\in\mathrm{D}({\boldsymbol{\mathrm{F}}}) there exists a unique maximal strict λ\lambda-EVI solution μLiploc([0,T);D(𝐅))\mu\in\mathrm{Lip}_{\rm loc}([0,T);\mathrm{D}({\boldsymbol{\mathrm{F}}})), T(0,+]T\in(0,+\infty], satisfying (6.16).

Let us briefly discuss the question of local solvability of the Explicit Euler scheme. The main constraints of the Explicit Euler construction relies on the a priori stability bound and in the condition MτnD(𝐅)M_{\tau}^{n}\in\mathrm{D}({\boldsymbol{\mathrm{F}}}) for every step 0nN(T,τ)0\leq n\leq{\mathrm{N}(T,\tau)}. This constraint is feasible if at each measure MτnM^{n}_{\tau}, 0n<N(T,τ)0\leq n<{\mathrm{N}(T,\tau)}, the set Admτ,L(Mτn)\operatorname{Adm}_{\tau,L}(M^{n}_{\tau}) defined by

Admτ,L(μ):={Φ𝐅[μ]:|Φ|2Land𝖾𝗑𝗉τΦD(𝐅)}\operatorname{Adm}_{\tau,L}(\mu):=\Big{\{}\Phi\in{\boldsymbol{\mathrm{F}}}[\mu]:|\Phi|_{2}\leq L\quad\text{and}\quad\operatorname{\mathsf{exp}}_{\sharp}^{\tau}\Phi\in\mathrm{D}({\boldsymbol{\mathrm{F}}})\Big{\}}

is not empty. If D(𝐅)\mathrm{D}({\boldsymbol{\mathrm{F}}}) is open and 𝐅{\boldsymbol{\mathrm{F}}} is locally bounded, then it is easy to check that the Explicit Euler scheme is locally solvable (see Lemma 6.13). We will adopt the following notation:

|𝐅|2(μ):=\displaystyle|{\boldsymbol{\mathrm{F}}}|_{2}(\mu):={} inf{|Φ|2:Φ𝐅[μ]}for every μD(𝐅),\displaystyle\inf\Big{\{}|\Phi|_{2}:\Phi\in{\boldsymbol{\mathrm{F}}}[\mu]\Big{\}}\quad\text{for every }\mu\in\mathrm{D}({\boldsymbol{\mathrm{F}}}), (6.17)

and we will also introduce the upper semicontinuous envelope |𝐅|2|{\boldsymbol{\mathrm{F}}}|_{2\star} of the function |𝐅|2|{\boldsymbol{\mathrm{F}}}|_{2}: i.e.

|𝐅|2(μ):=\displaystyle|{\boldsymbol{\mathrm{F}}}|_{2\star}(\mu):={} infδ>0sup{|𝐅|2(ν):νD(𝐅),W2(ν,μ)δ}\displaystyle\inf_{\delta>0}\sup\Big{\{}|{\boldsymbol{\mathrm{F}}}|_{2}(\nu):\nu\in\mathrm{D}({\boldsymbol{\mathrm{F}}}),\ W_{2}(\nu,\mu)\leq\delta\Big{\}}
=\displaystyle={} sup{lim supk|𝐅|2(μk):μkD(𝐅),μkμ in 𝒫2(𝖷)}.\displaystyle\sup\Big{\{}\limsup_{k\to\infty}|{\boldsymbol{\mathrm{F}}}|_{2}(\mu_{k}):\mu_{k}\in\mathrm{D}({\boldsymbol{\mathrm{F}}}),\ \mu_{k}\to\mu\text{ in }\mathcal{P}_{2}(\mathsf{X})\Big{\}}.
Lemma 6.13.

If 𝐅{\boldsymbol{\mathrm{F}}} is a λ\lambda-dissipative MPVF, μ0Int(D(𝐅))\mu_{0}\in\mathrm{Int}(\mathrm{D}({\boldsymbol{\mathrm{F}}})) and 𝐅{\boldsymbol{\mathrm{F}}} is bounded in a neighborhood of μ0\mu_{0}, i.e. there exists ϱ>0\varrho>0 such that |𝐅|2|{\boldsymbol{\mathrm{F}}}|_{2} is bounded in B(μ0,ϱ)\mathrm{B}(\mu_{0},\varrho), then the Explicit Euler scheme is locally solvable at μ0\mu_{0} and the locally Lipschitz solution μ\mu given by Theorem 6.11(a) satisfies

|μ˙|+(t)eλt|𝐅|2(μ0)t[0,T).|\dot{\mu}|_{+}(t)\leq e^{\lambda t}|{\boldsymbol{\mathrm{F}}}|_{2\star}(\mu_{0})\quad\forall\,t\in[0,T). (6.18)

In particular, if D(𝐅)\mathrm{D}({\boldsymbol{\mathrm{F}}}) is open and 𝐅{\boldsymbol{\mathrm{F}}} is locally bounded, for every μ0D(𝐅)\mu_{0}\in\mathrm{D}({\boldsymbol{\mathrm{F}}}) there exists a unique maximal λ\lambda-EVI solution μLiploc([0,T);𝒫2(𝖷))\mu\in\mathrm{Lip}_{\rm loc}([0,T);\mathcal{P}_{2}(\mathsf{X})) satisfying (6.16) and (6.18).

Proof.

Let μ0Int(D(𝐅))\mu_{0}\in\mathrm{Int}(\mathrm{D}({\boldsymbol{\mathrm{F}}})) and let ϱ,L>0\varrho,L>0 so that |𝐅|2(μ)<L|{\boldsymbol{\mathrm{F}}}|_{2}(\mu)<L for every μB(μ0,ϱ)\mu\in\mathrm{B}(\mu_{0},\varrho). We set T:=ϱ/(2L)T:=\varrho/(2L), 𝝉=T1\boldsymbol{\tau}=T\land 1 and we perform a simple induction argument to prove that W2(Mτn,μ0)Lnτ<ϱW_{2}(M^{n}_{\tau},\mu_{0})\leq Ln\tau<\varrho if nN(T,τ)n\leq{\mathrm{N}(T,\tau)} so that we can always find an element 𝑭τn𝐅τ,L{\boldsymbol{F}}^{n}_{\tau}\in{\boldsymbol{\mathrm{F}}}_{\tau,L}. In fact, if W2(Mτn,μ0)<LnτW_{2}(M^{n}_{\tau},\mu_{0})<Ln\tau and n<N(T,τ)n<{\mathrm{N}(T,\tau)} then W2(Mτn+1,μ0)W2(Mτn+1,Mτn)+W2(Mτn,μ0)L(n+1)τW_{2}(M^{n+1}_{\tau},\mu_{0})\leq W_{2}(M^{n+1}_{\tau},M^{n}_{\tau})+W_{2}(M^{n}_{\tau},\mu_{0})\leq L(n+1)\tau. (6.14) shows that |μ˙t|+Leλt|\dot{\mu}_{t}|_{+}\leq L\mathrm{e}^{\lambda t} for every L>|𝐅|2(μ0)L>|{\boldsymbol{\mathrm{F}}}|_{2\star}(\mu_{0}), so that we obtain (6.18). ∎

More refined estimates will be discussed in the next sections. Here we will show another example, tailored to the case of measures with bounded support.

Proposition 6.14.

Let 𝐅{\boldsymbol{\mathrm{F}}} be a λ\lambda-dissipative MPVF such that D(𝐅)𝒫b(𝖷)\mathrm{D}({\boldsymbol{\mathrm{F}}})\subset\mathcal{P}_{\rm b}(\mathsf{X}) and for every μ0D(𝐅)\mu_{0}\in\mathrm{D}({\boldsymbol{\mathrm{F}}}) there exist ϱ>0\varrho>0, L>0L>0 such that for every μ𝒫b(𝖷)\mu\in\mathcal{P}_{\rm b}(\mathsf{X})

supp(μ)supp(μ0)+B𝖷(ϱ)Φ𝐅[μ]:supp(𝗏Φ)B𝖷(L).\operatorname{supp}(\mu)\subset\operatorname{supp}(\mu_{0})+\mathrm{B}_{\mathsf{X}}(\varrho)\quad\Rightarrow\quad\exists\Phi\in{\boldsymbol{\mathrm{F}}}[\mu]:\operatorname{supp}(\mathsf{v}_{\sharp}\Phi)\subset\mathrm{B}_{\mathsf{X}}(L).

Then for every μ0D(𝐅)\mu_{0}\in\mathrm{D}({\boldsymbol{\mathrm{F}}}) there exists T(0,+]T\in(0,+\infty] and a unique maximal strict λ\lambda-EVI solution μLiploc([0,T);D(𝐅))\mu\in\mathrm{Lip}_{\rm{loc}}([0,T);\mathrm{D}({\boldsymbol{\mathrm{F}}})) satisfying (6.16).

Proof.

Arguing as in the proof of Lemma 6.13, it is easy to check that setting T:=ϱ/4LT:=\varrho/4L, 𝝉=T1\boldsymbol{\tau}=T\wedge 1 we can find a discrete solution (Mτ,𝑭τ)(μ0,τ,T,L)(M_{\tau},{\boldsymbol{F}}_{\tau})\in\mathscr{E}(\mu_{0},\tau,T,L) satisfying the more restrictive condition supp(Mτn)supp(μ0)+B𝖷(Lnτ)supp(μ0)+B𝖷(ϱ/2)\operatorname{supp}(M^{n}_{\tau})\subset\operatorname{supp}(\mu_{0})+\mathrm{B}_{\mathsf{X}}(Ln\tau)\subset\operatorname{supp}(\mu_{0})+\mathrm{B}_{\mathsf{X}}(\varrho/2), supp(𝗏𝑭τn)B𝖷(L)\operatorname{supp}(\mathsf{v}_{\sharp}{\boldsymbol{F}}^{n}_{\tau})\subset\mathrm{B}_{\mathsf{X}}(L) so that the Explicit Euler scheme is locally solvable and MτM_{\tau} satisfies the uniform bound

supp(Mτ(t))supp(μ0)+B𝖷(ϱ/2)for every t[0,T].\operatorname{supp}(M_{\tau}(t))\subset\operatorname{supp}(\mu_{0})+\mathrm{B}_{\mathsf{X}}(\varrho/2)\quad\text{for every }t\in[0,T]. (6.19)

Theorem 6.11 then yields the existence of a local solution, and Theorem 6.9(3) shows that the local solution satisfies the same bound (6.19) on the support, so that (6.15) holds. ∎

6.3. Stability and uniqueness

In the following theorem we prove a stability result for λ\lambda-EVI solutions of (6.1), as it occurs in the classical Hilbertian case scenario. We distinguish three cases: the first one assumes that the Explicit Euler scheme is locally solvable in D(𝐅)\mathrm{D}({\boldsymbol{\mathrm{F}}}).

Theorem 6.15 (Uniqueness and Stability).

Let 𝐅{\boldsymbol{\mathrm{F}}} be a λ\lambda-dissipative MPVF such that the Explicit Euler scheme is locally solvable in D(𝐅)\mathrm{D}({\boldsymbol{\mathrm{F}}}), and let μ1,μ2:[0,T)D(𝐅)¯\mu^{1},\mu^{2}:[0,T)\to\overline{\mathrm{D}({\boldsymbol{\mathrm{F}}})}, T(0,+]T\in(0,+\infty], be λ\lambda-EVI solutions to (6.1). If μ1\mu^{1} is strict, then

W2(μt1,μt2)W2(μ01,μ02)eλ+tfor every t[0,T).W_{2}(\mu^{1}_{t},\mu^{2}_{t})\leq W_{2}(\mu^{1}_{0},\mu^{2}_{0})\mathrm{e}^{\lambda_{+}\,t}\quad\text{for every }t\in[0,T). (6.20)

In particular, if μ01=μ02\mu^{1}_{0}=\mu^{2}_{0} then μ1μ2\mu^{1}\equiv\mu^{2} in [0,T)[0,T).
If μ1,μ2\mu^{1},\mu^{2} are both strict, then

W2(μt1,μt2)W2(μ01,μ02)eλtfor all t[0,T).W_{2}(\mu_{t}^{1},\mu_{t}^{2})\leq W_{2}(\mu^{1}_{0},\mu^{2}_{0})\mathrm{e}^{\lambda t}\quad\text{for all }t\in[0,T). (6.21)
Proof.

In order to prove (6.20), let us fix t(0,T)t\in(0,T). Since the Explicit Euler scheme is locally solvable and μt1D(𝐅)\mu^{1}_{t}\in\mathrm{D}({\boldsymbol{\mathrm{F}}}), there exist 𝝉,δ,L\boldsymbol{\tau},\delta,L such that (μt1,τ,δ,L)\mathscr{M}(\mu^{1}_{t},\tau,\delta,L) is not empty for every τ(0,𝝉)\tau\in(0,\boldsymbol{\tau}). If Mτ1(μt1,τ,δ,L)M^{1}_{\tau}\in\mathscr{M}(\mu^{1}_{t},\tau,\delta,L), then (6.13) yields

W2(μt+h1,μt+h2)\displaystyle W_{2}(\mu^{1}_{t+h},\mu^{2}_{t+h}) W2(Mτ1(h),μt+h2)+W2(Mτ1(h),μt+h1)\displaystyle\leq W_{2}(M^{1}_{\tau}(h),\mu^{2}_{t+h})+W_{2}(M^{1}_{\tau}(h),\mu^{1}_{t+h})
ϑW2(μt1,μt2)eλ+h+Bτif 0hδ,\displaystyle\leq\vartheta W_{2}(\mu^{1}_{t},\mu^{2}_{t})\mathrm{e}^{\lambda_{+}h}+B\sqrt{\tau}\quad\text{if }0\leq h\leq\delta,

for B=B(λ,L,𝝉,δ)B=B(\lambda,L,\boldsymbol{\tau},\delta) Passing to the limit as τ0\tau\downarrow 0 we obtain

W2(μt+h1,μt+h2)ϑW2(μt1,μt2)eλ+hW_{2}(\mu^{1}_{t+h},\mu^{2}_{t+h})\leq\vartheta W_{2}(\mu^{1}_{t},\mu^{2}_{t})\mathrm{e}^{\lambda_{+}h}

and a further limit as ϑ1\vartheta\downarrow 1 yields

W2(μt+h1,μt+h2)W2(μt1,μt2)eλ+hfor every h[0,δ],W_{2}(\mu^{1}_{t+h},\mu^{2}_{t+h})\leq W_{2}(\mu^{1}_{t},\mu^{2}_{t})\mathrm{e}^{\lambda_{+}h}\quad\text{for every }h\in[0,\delta],

which implies that the map teλ+tW2(μt1,μt2)t\mapsto\mathrm{e}^{-\lambda_{+}t}W_{2}(\mu^{1}_{t},\mu^{2}_{t}) is decreasing in [t,t+δ][t,t+\delta]. Since tt is arbitrary, we obtain (6.20).

In order to prove the estimate (6.21) (which is better than (6.20) when λ<0\lambda<0), we argue in a similar way, using (6.12).

As before, for a given t(0,T)t\in(0,T), since the Explicit Euler scheme is locally solvable and μt1,μt2D(𝐅)\mu^{1}_{t},\mu^{2}_{t}\in\mathrm{D}({\boldsymbol{\mathrm{F}}}), there exist 𝝉,δ,L\boldsymbol{\tau},\delta,L such that (μt1,τ,δ,L)\mathscr{M}(\mu^{1}_{t},\tau,\delta,L) and (μt2,τ,δ,L)\mathscr{M}(\mu^{2}_{t},\tau,\delta,L) are not empty for every τ(0,𝝉)\tau\in(0,\boldsymbol{\tau}). If Mτi(μti,τ,δ,L)M^{i}_{\tau}\in\mathscr{M}(\mu^{i}_{t},\tau,\delta,L), for i=1,2i=1,2, (6.12) and (6.13) then yield

W2(μt+h1,μt+h2)\displaystyle W_{2}(\mu^{1}_{t+h},\mu^{2}_{t+h}) W2(μt+h1,Mτ1(h))+W2(Mτ1(h),Mτ2(h))+W2(μt+h2,Mτ2(h))\displaystyle\leq W_{2}(\mu^{1}_{t+h},M^{1}_{\tau}(h))+W_{2}(M^{1}_{\tau}(h),M^{2}_{\tau}(h))+W_{2}(\mu^{2}_{t+h},M^{2}_{\tau}(h))
eλhW2(μt1,μt2)+Bτif 0hδ,\displaystyle\leq\mathrm{e}^{\lambda h}W_{2}(\mu^{1}_{t},\mu^{2}_{t})+B\sqrt{\tau}\quad\text{if }0\leq h\leq\delta,

for B=B(λ,L,𝝉,δ)B=B(\lambda,L,\boldsymbol{\tau},\delta). Passing to the limit as τ0\tau\downarrow 0 we obtain

W2(μt+h1,μt+h2)eλhW2(μt1,μt2)W_{2}(\mu^{1}_{t+h},\mu^{2}_{t+h})\leq\mathrm{e}^{\lambda h}W_{2}(\mu^{1}_{t},\mu^{2}_{t})

which implies that the map teλtW2(μt1,μt2)t\mapsto\mathrm{e}^{-\lambda t}W_{2}(\mu^{1}_{t},\mu^{2}_{t}) is decreasing in (0,T)(0,T). ∎

It is possible to prove (6.21) by a direct argument depending on the definition of λ\lambda-EVI solution and a geometric condition on D(𝐅)\mathrm{D}({\boldsymbol{\mathrm{F}}}). The simplest situation deals with absolutely continuous curves.

Theorem 6.16 (Stability for absolutely continuous solutions).

Let 𝐅{\boldsymbol{\mathrm{F}}} be a λ\lambda-dissipative MPVF and let μ1,μ2:[0,T)D(𝐅)¯\mu^{1},\mu^{2}:[0,T)\to\overline{\mathrm{D}({\boldsymbol{\mathrm{F}}})}, T(0,+]T\in(0,+\infty], be locally absolutely continuous λ\lambda-EVI solutions to (6.1). If Γo0(μt1,μt2|𝐅)\Gamma_{o}^{0}({\mu^{1}_{t}},{\mu^{2}_{t}}|{\boldsymbol{\mathrm{F}}})\neq\emptyset for a.e. t(0,T)t\in(0,T), then (6.21) holds. In particular, if μ01=μ02\mu^{1}_{0}=\mu^{2}_{0} then μ1μ2\mu^{1}\equiv\mu^{2} in [0,T)[0,T).

Proof.

Since μ1,μ2\mu^{1},\mu^{2} are locally absolutely continuous curves, we can apply Theorem 3.13 and find a subset AA(μ1)A(μ2)A\subset A({\mu^{1}})\cap A({\mu^{2}}) of full Lebesgue measure such that (3.20) holds and Γo0(μt1,μt2|𝐅)\Gamma_{o}^{0}({\mu^{1}_{t}},{\mu^{2}_{t}}|{\boldsymbol{\mathrm{F}}})\neq\emptyset for every tAt\in A. Selecting 𝝁tΓo0(μt1,μt2|𝐅)\boldsymbol{\mu}_{t}\in\Gamma_{o}^{0}({\mu^{1}_{t}},{\mu^{2}_{t}}|{\boldsymbol{\mathrm{F}}}), we have

12ddtW22(μt1,μt2)=𝒗t1(x1),x1x2d𝝁t(x1,x2)+𝒗t2(x2),x2x1d𝝁t(x1,x2).\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}W_{2}^{2}(\mu^{1}_{t},\mu^{2}_{t})=\int\langle\boldsymbol{v}_{t}^{1}(x_{1}),x_{1}-x_{2}\rangle\,\mathrm{d}\boldsymbol{\mu}_{t}(x_{1},x_{2})+\int\langle\boldsymbol{v}_{t}^{2}(x_{2}),x_{2}-x_{1}\rangle\,\mathrm{d}\boldsymbol{\mu}_{t}(x_{1},x_{2}).

Using (6.5b), (6.5c), for every tAt\in A we get

12ddtW22(μt1,μt2)=[(𝒊𝖷,𝒗t)μt1,μt2]r[𝐅,𝝁t]0++λW22(μt1,μt2)+[𝐅,𝗌𝝁t]1=λW22(μt1,μt2),\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}W_{2}^{2}(\mu^{1}_{t},\mu^{2}_{t})=\left[(\boldsymbol{i}_{\mathsf{X}},\boldsymbol{v}_{t})_{\sharp}\mu_{t}^{1},\mu_{t}^{2}\right]_{r}\leq[{\boldsymbol{\mathrm{F}}},\boldsymbol{\mu}_{t}]_{0+}+\lambda W_{2}^{2}(\mu^{1}_{t},\mu^{2}_{t})+[{\boldsymbol{\mathrm{F}}},\mathsf{s}_{\sharp}\boldsymbol{\mu}_{t}]_{1-}=\lambda W_{2}^{2}(\mu^{1}_{t},\mu^{2}_{t}),

where we also used the property

[𝐅,𝗌𝝁t]1=[𝐅,𝝁t]0+.[{\boldsymbol{\mathrm{F}}},\mathsf{s}_{\sharp}\boldsymbol{\mu}_{t}]_{1-}=-[{\boldsymbol{\mathrm{F}}},\boldsymbol{\mu}_{t}]_{0+}.\qed

The last situation deals with comparison between an absolutely continuous and a merely continuous λ\lambda-EVI solution. The argument is technically more involved and takes inspiration from the proof of [NS06, Theorem 1.1]: we refer to the Introduction of [NS06] for an explanation of the heuristic idea. Since it is also at the core of the discrete estimates of Theorem 6.9, we present it here in the easier continuous setting.

Theorem 6.17 (Refined stability).

Let T>0T>0 and let μ1AC([0,T];D(𝐅))\mu^{1}\in\mathrm{AC}([0,T];\mathrm{D}({\boldsymbol{\mathrm{F}}})) and μ2C([0,T];D(𝐅)¯)\mu^{2}\in\mathrm{C}([0,T];\overline{\mathrm{D}({\boldsymbol{\mathrm{F}}})}) be λ\lambda-EVI solutions for the λ\lambda-dissipative MPVF 𝐅{\boldsymbol{\mathrm{F}}}. If at least one of the following properties hold:

  1. (1)

    Γo0(μr1,μs2|𝐅) for every s(0,T) and r[0,T)N\Gamma_{o}^{0}({\mu^{1}_{r}},{\mu^{2}_{s}}|{\boldsymbol{\mathrm{F}}})\neq\emptyset\text{ for every }s\in(0,T)\text{ and }r\in[0,T)\setminus N with N(0,T),1(N)=0N\subset(0,T),\ \mathcal{L}^{1}(N)=0;

  2. (2)

    μ1\mu^{1} satisfies (6.2),

then

W2(μt1,μt2)eλtW2(μ01,μ02) for every t[0,T].W_{2}(\mu^{1}_{t},\mu^{2}_{t})\leq e^{\lambda t}W_{2}(\mu^{1}_{0},\mu^{2}_{0})\quad\text{ for every }t\in[0,T].
Proof.

We extend μ1\mu^{1} in (,0)(-\infty,0) with the constant value μ01\mu^{1}_{0}, we denote by 𝒗\boldsymbol{v} the Wasserstein velocity field associated to μ1\mu^{1} (and extended to 0 outside A(μ1)A(\mu^{1})) and we define the functions w,f,h:(,T]×[0,T]w,f,h:(-\infty,T]\times[0,T]\to\mathbb{R} by

w(r,s):=W2(μr1,μs2)w(r,s):=W_{2}(\mu^{1}_{r},\mu^{2}_{s})
f(r,s):={2|𝐅|2(μ01)w(0,s) if r<0,0 if r0,h(r,s):={0 if r<0,2[(𝒊𝖷,𝒗r)μr1,μs2]r if r0.f(r,s):=\begin{cases}2|{\boldsymbol{\mathrm{F}}}|_{2}(\mu_{0}^{1})w(0,s)\quad&\text{ if }r<0,\\ 0&\text{ if }r\geq 0,\end{cases}\qquad h(r,s):=\begin{cases}0\quad&\text{ if }r<0,\\ 2\left[(\boldsymbol{i}_{\mathsf{X}},\boldsymbol{v}_{r})_{\sharp}\mu^{1}_{r},\mu^{2}_{s}\right]_{r}&\text{ if }r\geq 0.\end{cases}

Theorem 3.11 yields

rw2(r,s)=h(r,s)\displaystyle\frac{\partial}{\partial r}w^{2}(r,s)=h(r,s)\quad in 𝒟(,T) for every s[0,T].\displaystyle\text{ in }\mathcal{D}^{\prime}(-\infty,T)\text{ for every }s\in[0,T]. (6.22)

In case (1) holds, writing (6.4b) for μ2\mu^{2} with ν=μr1\nu=\mu^{1}_{r} with r(,T]Nr\in(-\infty,T]\setminus N, then for every 𝝁rsΓo0(μr1,μs2|𝐅)\boldsymbol{\mu}_{rs}\in\Gamma_{o}^{0}({\mu^{1}_{r}},{\mu^{2}_{s}}|{\boldsymbol{\mathrm{F}}}) we obtain

dds+w2(r,s)2λw2(r,s)2[𝐅,𝝁rs]0+\displaystyle{\frac{\mathrm{d}}{\mathrm{d}s}}^{\kern-3.0pt+}w^{2}(r,s)\leq 2\lambda w^{2}(r,s)-2[{\boldsymbol{\mathrm{F}}},\boldsymbol{\mu}_{rs}]_{0+}\quad for s(0,T) and r(,T)N.\displaystyle\text{ for }s\in(0,T)\text{ and }r\in(-\infty,T)\setminus N. (6.23)

On the other hand (6.5b) yields

2[𝐅,𝝁rs]0+\displaystyle-2[{\boldsymbol{\mathrm{F}}},\boldsymbol{\mu}_{rs}]_{0+} 2[(𝒊𝖷,𝒗r)μr1,𝝁rs]r,02[(𝒊𝖷,𝒗r)μr1,μs2]rfor every rA(μ1)N,\displaystyle\leq-2[(\boldsymbol{i}_{\mathsf{X}},\boldsymbol{v}_{r})_{\sharp}\mu^{1}_{r},\boldsymbol{\mu}_{rs}]_{r,0}\leq-2\left[(\boldsymbol{i}_{\mathsf{X}},\boldsymbol{v}_{r})_{\sharp}\mu^{1}_{r},\mu^{2}_{s}\right]_{r}\quad\text{for every }r\in A(\mu^{1})\setminus N, (6.24)
2[𝐅,𝝁rs]0+\displaystyle-2[{\boldsymbol{\mathrm{F}}},\boldsymbol{\mu}_{rs}]_{0+} 2|𝐅|2(μ01)w(0,s)=f(r,s)for every r<0.\displaystyle\leq 2|{\boldsymbol{\mathrm{F}}}|_{2}(\mu_{0}^{1})w(0,s)=f(r,s)\quad\text{for every }r<0.

Combining (6.3) and (6.24) we obtain

dds+w2(r,s)2λw2(r,s)+f(r,s)h(r,s)for s(0,T),r(,0]A(μ1)N.{\frac{\mathrm{d}}{\mathrm{d}s}}^{\kern-3.0pt+}w^{2}(r,s)\leq 2\lambda w^{2}(r,s)+f(r,s)-h(r,s)\quad\text{for }s\in(0,T),\ r\in(-\infty,0]\cup A(\mu^{1})\setminus N.

Since |h(r,s)|2|μ˙r1|w(r,s)|h(r,s)|\leq 2|\dot{\mu}^{1}_{r}|\,w(r,s), applying Lemma C.2 we get

sw2(r,s)2λw2(r,s)+f(r,s)h(r,s)in 𝒟(0,T) for a.e. r(,T].\frac{\partial}{\partial s}w^{2}(r,s)\leq 2\lambda w^{2}(r,s)+f(r,s)-h(r,s)\quad\text{in }\mathcal{D}^{\prime}(0,T)\text{ for a.e.\leavevmode\nobreak\ }r\in(-\infty,T]. (6.25)

(6.25) can also be deduced in case (2) using (6.2).

By multiplying both inequalities (6.22) and (6.25) by e2λse^{-2\lambda s} we get

r(e2λsw2(r,s))=e2λsh(r,s)\displaystyle\frac{\partial}{\partial r}\Big{(}e^{-2\lambda s}w^{2}(r,s)\Big{)}=e^{-2\lambda s}h(r,s)\quad in 𝒟(,T) and every s[0,T],\displaystyle\text{ in }\mathcal{D}^{\prime}(-\infty,T)\text{ and every }s\in[0,T],
s(e2λsw2(r,s))e2λs(f(r,s)h(r,s))\displaystyle\frac{\partial}{\partial s}\Big{(}e^{-2\lambda s}w^{2}(r,s)\Big{)}\leq e^{-2\lambda s}\big{(}f(r,s)-h(r,s)\big{)}\quad in 𝒟(0,T) and a.e. r(,T].\displaystyle\text{ in }\mathcal{D}^{\prime}(0,T)\text{ and a.e.\leavevmode\nobreak\ }r\in(-\infty,T].

We fix t[0,T]t\in[0,T] and ε>0\varepsilon>0 and we apply the Divergence theorem in [NS06, Lemma 6.15] on the two-dimensional strip Q0,tεQ_{0,t}^{\varepsilon} as in Figure 1,

Q0,tε:={(r,s)20st,sεrs},Q_{0,t}^{\varepsilon}:=\{(r,s)\in\mathbb{R}^{2}\mid 0\leq s\leq t\,,\,s-\varepsilon\leq r\leq s\},
ε\varepsilonε\varepsilonr=tr=ts=ts=tQε0,tQ^{\varepsilon}_{0,t}rrssr=sr=sr=sεr=s-\varepsilon
Figure 1. Strip Qε0,tQ^{\varepsilon}_{0,t} corresponding to penalization about the diagonal {r=s}\{r=s\}.

and we get

tεte2λtw2(r,t)drε0w2(r,0)dr+Qε0,te2λsf(r,s)drds.\int_{t-\varepsilon}^{t}e^{-2\lambda t}w^{2}(r,t)\,\mathrm{d}r\leq\int_{-\varepsilon}^{0}w^{2}(r,0)\,\mathrm{d}r+\iint_{Q^{\varepsilon}_{0,t}}e^{-2\lambda s}f(r,s)\,\mathrm{d}r\,\mathrm{d}s.

Using

w(t,t)rt|μ˙1|(u)du+w(r,t)tεt|μ˙1|(u)du+w(r,t) if tεrt,w(t,t)\leq\int_{r}^{t}|\dot{\mu}^{1}|(u)\,\mathrm{d}u+w(r,t)\leq\int_{t-\varepsilon}^{t}|\dot{\mu}^{1}|(u)\,\mathrm{d}u+w(r,t)\quad\text{ if }t-\varepsilon\leq r\leq t,

then, for every ϑ,ϑ>1\vartheta,\vartheta_{\star}>1 conjugate coefficients (ϑ=ϑ/(ϑ1)\vartheta_{\star}=\vartheta/(\vartheta-1)), we get

w2(t,t)ϑw2(r,t)+ϑ(tεt|μ˙1|(u)du)2.w^{2}(t,t)\leq\vartheta w^{2}(r,t)+\vartheta_{\star}\left(\int_{t-\varepsilon}^{t}|\dot{\mu}^{1}|(u)\,\mathrm{d}u\right)^{2}. (6.26)

Integrating (6.26) w.r.t. rr in the interval (tε,t)(t-\varepsilon,t), we obtain

e2λtw2(t,t)ϑεtεte2λtw2(r,t)dr+ϑ(tεt|μ˙1|(u)du)2max{1,e2|λ|T}.e^{-2\lambda t}w^{2}(t,t)\leq\frac{\vartheta}{\varepsilon}\int_{t-\varepsilon}^{t}e^{-2\lambda t}w^{2}(r,t)\,\mathrm{d}r+\vartheta_{\star}\left(\int_{t-\varepsilon}^{t}|\dot{\mu}^{1}|(u)\,\mathrm{d}u\right)^{2}\max\{1,e^{2|\lambda|T}\}. (6.27)

Finally, we have the following inequality

ε1Qε0,te2λsf(r,s)drds2|𝐅|2(μ0)0εe2λsw(0,s)ds.\varepsilon^{-1}\iint_{Q^{\varepsilon}_{0,t}}e^{-2\lambda s}f(r,s)\,\mathrm{d}r\,\mathrm{d}s\leq 2|{\boldsymbol{\mathrm{F}}}|_{2}(\mu_{0})\int_{0}^{\varepsilon}e^{-2\lambda s}w(0,s)\,\mathrm{d}s. (6.28)

Summing up (6.27) and (6.28) we obtain

e2λtw2(t)ϑ(w2(0)+2|𝐅|2(μ0)0εe2λsw(0,s)ds)+ϑ(tεt|μ˙1|(u)du)2max{1,e2|λ|T}.e^{-2\lambda t}w^{2}(t)\leq\vartheta\left(w^{2}(0)+2|{\boldsymbol{\mathrm{F}}}|_{2}(\mu_{0})\int_{0}^{\varepsilon}e^{-2\lambda s}w(0,s)\,\mathrm{d}s\right)+\vartheta_{\star}\left(\int_{t-\varepsilon}^{t}|\dot{\mu}^{1}|(u)\,\mathrm{d}u\right)^{2}\max\{1,e^{2|\lambda|T}\}.

where we have used the notation w(s)=w(s,s)w(s)=w(s,s). Taking the limit as ε0\varepsilon\downarrow 0 and ϑ1\vartheta\downarrow 1, we obtain the thesis. ∎

Corollary 6.18 (Local Lipschitz estimate).

Let 𝐅{\boldsymbol{\mathrm{F}}} be a λ\lambda-dissipative MPVF and let μ:(0,T)D(𝐅)¯\mu:(0,T)\to\overline{\mathrm{D}({\boldsymbol{\mathrm{F}}})}, T(0,+]T\in(0,+\infty], be a λ\lambda-EVI solution to (6.1). If at least one of the following two conditions holds

  1. (a)

    μ\mu is strict and (EE) is locally solvable in D(𝐅)\mathrm{D}({\boldsymbol{\mathrm{F}}}),

  2. (b)

    μ\mu is locally absolutely continuous and (4.16) holds,

then μ\mu is locally Lipschitz and

teλt|μ˙|+(t)is decreasing in (0,T).t\mapsto\mathrm{e}^{-\lambda t}|\dot{\mu}|_{+}(t)\quad\text{is decreasing in }(0,T). (6.29)
Proof.

Since for every h>0h>0 the curve tμt+ht\mapsto\mu_{t+h} is a λ\lambda-EVI solution, (6.21) yields

eλ(ts)W2(μt+h,μt)W2(μs+h,μs)for every 0<s<t.\mathrm{e}^{-\lambda(t-s)}W_{2}(\mu_{t+h},\mu_{t})\leq W_{2}(\mu_{s+h},\mu_{s})\quad\text{for every $0<s<t$.}

Dividing by hh and taking the limsup as h0h\downarrow 0, we get (6.29), which in turn shows the local Lipschitz character of μ\mu. ∎

6.4. Global existence and generation of λ\lambda-flows

We collect here a few simple results on the existence of global solutions and the generation of a λ\lambda-flow. A first result can be deduced from the global solvability of the Explicit Euler scheme.

Theorem 6.19 (Global existence).

Let 𝐅{\boldsymbol{\mathrm{F}}} be a λ\lambda-dissipative MPVF. If the Explicit Euler Scheme is globally solvable at μ0D(𝐅)\mu_{0}\in\mathrm{D}({\boldsymbol{\mathrm{F}}}), then there exists a unique global λ\lambda-EVI solution μLiploc([0,);D(𝐅)¯)\mu\in\mathrm{Lip}_{\rm loc}([0,\infty);\overline{\mathrm{D}({\boldsymbol{\mathrm{F}}})}) starting from μ0\mu_{0}.

Proof.

We can argue as in the proof of Theorem 6.11(a), observing that the global solvability of (EE) allows for the construction of a limit solution on every interval [0,T][0,T], T>0T>0. ∎

Let us provide a simple condition ensuring global solvability, whose proof is deferred to Section 7.

Proposition 6.20.

Let 𝐅{\boldsymbol{\mathrm{F}}} be a λ\lambda-dissipative MPVF such that for every R>0R>0 there exist M=M(R)>0M=\mathrm{M}(R)>0 and τ¯=τ¯(R)>0\bar{\tau}=\bar{\tau}(R)>0 such that

μD(𝐅),𝗆2(μ)R, 0<ττ¯Φ𝐅[μ]:|Φ|2M(R),𝖾𝗑𝗉τΦD(𝐅).\mu\in\mathrm{D}({\boldsymbol{\mathrm{F}}}),\ \mathsf{m}_{2}(\mu)\leq R,\ 0<\tau\leq\bar{\tau}\quad\Rightarrow\quad\exists\,\Phi\in{\boldsymbol{\mathrm{F}}}[\mu]:|\Phi|_{2}\leq\mathrm{M}(R),\ \operatorname{\mathsf{exp}}^{\tau}_{\sharp}\Phi\in\mathrm{D}({\boldsymbol{\mathrm{F}}}). (6.30)

Then the Explicit Euler scheme is globally solvable in D(𝐅)\mathrm{D}({\boldsymbol{\mathrm{F}}}).

Global existence of λ\lambda-EVI solution is also related to the existence of a λ\lambda-flow.

Definition 6.21.

We say that the λ\lambda-dissipative MPVF 𝐅{\boldsymbol{\mathrm{F}}} generates a λ\lambda-flow if for every μ0D(𝐅)¯\mu_{0}\in\overline{\mathrm{D}({\boldsymbol{\mathrm{F}}})} there exists a unique λ\lambda-EVI solution μ=S[μ0]\mu=\mathrm{S}[\mu_{0}] starting from μ0\mu_{0} and the maps μ0St[μ0]=(S[μ0])t\mu_{0}\mapsto\mathrm{S}_{t}[\mu_{0}]=(\mathrm{S}[\mu_{0}])_{t} induce a semigroup of Lipschitz transformations (St)t0(\mathrm{S}_{t})_{t\geq 0} of D(𝐅)¯\overline{\mathrm{D}({\boldsymbol{\mathrm{F}}})} satisfying

W2(St[μ0],St[μ1])eλtW2(μ0,μ1)for every t0.W_{2}(\mathrm{S}_{t}[\mu_{0}],\mathrm{S}_{t}[\mu_{1}])\leq\mathrm{e}^{\lambda t}W_{2}(\mu_{0},\mu_{1})\quad\text{for every }t\geq 0. (6.31)
Theorem 6.22 (Generation of a λ\lambda-flow).

Let 𝐅{\boldsymbol{\mathrm{F}}} be a λ\lambda-dissipative MPVF. If at least one of the following properties is satisfied:

  1. (a)

    the Explicit Euler Scheme is globally solvable for every μ0\mu_{0} in a dense subset of D(𝐅)\mathrm{D}({\boldsymbol{\mathrm{F}}});

  2. (b)

    the Explicit Euler Scheme is locally solvable in D(𝐅)\mathrm{D}({\boldsymbol{\mathrm{F}}}) and, for every μ0\mu_{0} in a dense subset of D(𝐅)\mathrm{D}({\boldsymbol{\mathrm{F}}}), there exists a strict global λ\lambda-EVI solution starting from μ0\mu_{0};

  3. (c)

    the Explicit Euler Scheme is locally solvable in D(𝐅)\mathrm{D}({\boldsymbol{\mathrm{F}}}) and D(𝐅)\mathrm{D}({\boldsymbol{\mathrm{F}}}) is closed;

  4. (d)

    for every μ0D(𝐅)\mu_{0}\in\mathrm{D}({\boldsymbol{\mathrm{F}}}), μ1D(𝐅)¯\mu_{1}\in\overline{\mathrm{D}({\boldsymbol{\mathrm{F}}})} Γo0(μ0,μ1|𝐅)\Gamma_{o}^{0}({\mu_{0}},{\mu_{1}}|{\boldsymbol{\mathrm{F}}})\neq\emptyset and, for every μ0\mu_{0} in a dense subset of D(𝐅)\mathrm{D}({\boldsymbol{\mathrm{F}}}), there exists a locally absolutely continuous strict global λ\lambda-EVI solution starting from μ0\mu_{0};

  5. (e)

    for every μ0\mu_{0} in a dense subset of D(𝐅)\mathrm{D}({\boldsymbol{\mathrm{F}}}), there exists a locally absolutely continuous solution of (6.2) starting from μ0\mu_{0},

then 𝐅{\boldsymbol{\mathrm{F}}} generates a λ\lambda-flow.

Proof.

(a) Let DD be the dense subset of D(𝐅)\mathrm{D}({\boldsymbol{\mathrm{F}}}) for which (EE) is globally solvable. For every μ0D\mu_{0}\in D we define St[μ0]\mathrm{S}_{t}[\mu_{0}], t0t\geq 0, as the value at time tt of the unique λ\lambda-EVI solution starting from μ0\mu_{0}, whose existence is guaranteed by Theorem 6.19.

If μ0,μ1D\mu_{0},\mu_{1}\in D, T>0T>0, we can find 𝝉,L\boldsymbol{\tau},L such that (μ0,τ,T,L)\mathscr{M}(\mu_{0},\tau,T,L) and (μ1,τ,T,L)\mathscr{M}(\mu_{1},\tau,T,L) are not empty for every τ(0,𝝉)\tau\in(0,\boldsymbol{\tau}). We can then pass to the limit in the uniform estimate (6.12) for every choice of Miτ(μi,τ,T,L)M^{i}_{\tau}\in\mathscr{M}(\mu_{i},\tau,T,L), i=0,1i=0,1, obtaining (6.31) for every μ0,μ1D\mu_{0},\mu_{1}\in D.

We can then extend the map St\mathrm{S}_{t} to D¯=D(𝐅)¯\overline{D}=\overline{\mathrm{D}({\boldsymbol{\mathrm{F}}})} still preserving the same property. Proposition 6.7 shows that for every μ0D(𝐅)¯\mu_{0}\in\overline{\mathrm{D}({\boldsymbol{\mathrm{F}}})} the continuous curve tSt[μ0]t\mapsto\mathrm{S}_{t}[\mu_{0}] is a λ\lambda-EVI solution starting from μ0\mu_{0}.

Finally, if μC([0,T);D(𝐅)¯)\mu\in\mathrm{C}([0,T^{\prime});\overline{\mathrm{D}({\boldsymbol{\mathrm{F}}})}) is any λ\lambda-EVI solution starting from μ0\mu_{0}, we can apply (6.13) to get

W2(μt,M1τ(t))(2W2(μ0,μ1)+C(𝝉,L,T)τ)eλ+tfor every t[0,T],W_{2}(\mu_{t},M^{1}_{\tau}(t))\leq\Big{(}2W_{2}(\mu_{0},\mu_{1})+C(\boldsymbol{\tau},L,T)\sqrt{\tau}\Big{)}\mathrm{e}^{\lambda_{+}t}\quad\text{for every }t\in[0,T], (6.32)

for every T<TT<T^{\prime}, τ<𝝉\tau<\boldsymbol{\tau}, where C(𝝉,L,T)>0C(\boldsymbol{\tau},L,T)>0 is a suitable constant. Passing to the limit as τ0\tau\downarrow 0 in (6.32) we obtain

W2(μt,St[μ1])2W2(μ0,μ1)eλ+tfor every t[0,T].W_{2}(\mu_{t},\mathrm{S}_{t}[\mu_{1}])\leq 2W_{2}(\mu_{0},\mu_{1})\mathrm{e}^{\lambda_{+}t}\quad\text{for every }t\in[0,T]. (6.33)

Choosing now a sequence μ1,n\mu_{1,n} in DD converging to μ0\mu_{0} and observing that we can choose arbitrary T<TT<T^{\prime}, we eventually get μt=St[μ0]\mu_{t}=\mathrm{S}_{t}[\mu_{0}] for every t[0,T)t\in[0,T^{\prime}).

(b) Let DD be the dense subset of D(𝐅)\mathrm{D}({\boldsymbol{\mathrm{F}}}) such that there exists a global strict λ\lambda-EVI solution starting from DD. By Theorem 6.15 such a solution is unique and the corresponding family of solution maps St:DD(𝐅)\mathrm{S}_{t}:D\to\mathrm{D}({\boldsymbol{\mathrm{F}}}) satisfy (6.31). Arguing as in the previous claim, we can extend St\mathrm{S}_{t} to D(𝐅)¯\overline{\mathrm{D}({\boldsymbol{\mathrm{F}}})} still preserving (6.31) and the fact that tSt[μ0]t\mapsto\mathrm{S}_{t}[\mu_{0}] is a λ\lambda-EVI solution.

If μ\mu is λ\lambda-EVI solution starting from μ0\mu_{0}, Theorem 6.15 shows that (6.33) holds for every μ1D\mu_{1}\in D. By approximation we conclude that μt=St[μ0]\mu_{t}=\mathrm{S}_{t}[\mu_{0}].

(c) Corollary 6.12 shows that for every initial datum μ0D(𝐅)\mu_{0}\in\mathrm{D}({\boldsymbol{\mathrm{F}}}) there exists a global λ\lambda-EVI solution. We can then apply Claim (b).

(d) Let DD be the dense subset of D(𝐅)\mathrm{D}({\boldsymbol{\mathrm{F}}}) such that there exists a locally absolutely continuous strict global λ\lambda-EVI solution starting from DD. By Theorem 6.16 such a solution is the unique locally absolutely continuous solution starting from μ0\mu_{0} and the corresponding family of solution maps St:DD(𝐅)\mathrm{S}_{t}:D\to\mathrm{D}({\boldsymbol{\mathrm{F}}}) satisfy (6.31). Arguing as in the previous claim (b), we can extend St\mathrm{S}_{t} to D(𝐅)¯\overline{\mathrm{D}({\boldsymbol{\mathrm{F}}})} still preserving (6.31) (again thanks to Theorem 6.16) and the fact that tSt[μ0]t\mapsto\mathrm{S}_{t}[\mu_{0}] is a λ\lambda-EVI solution.

If μ\mu is a λ\lambda-EVI solution starting from μ0D(𝐅)¯\mu_{0}\in\overline{\mathrm{D}({\boldsymbol{\mathrm{F}}})} and (μ0n)nD(\mu_{0}^{n})_{n\in\mathbb{N}}\subset D is a sequence converging to μ0\mu_{0}, we can apply Theorem 6.17(1) and conclude that μt=St[μ0]\mu_{t}=\mathrm{S}_{t}[\mu_{0}].

(e) The proof follows by the same argument of the previous claim, eventually applying Theorem 6.17(2). ∎

By Lemma 6.13 we immediately get the following result.

Corollary 6.23.

If 𝐅{\boldsymbol{\mathrm{F}}} is locally bounded λ\lambda-dissipative MPVF with D(𝐅)=𝒫2(𝖷)\mathrm{D}({\boldsymbol{\mathrm{F}}})=\mathcal{P}_{2}(\mathsf{X}) then for every μ0𝒫2(𝖷)\mu_{0}\in\mathcal{P}_{2}(\mathsf{X}) there exists a unique global λ\lambda-EVI solution starting from μ0\mu_{0}.

We conclude this section by showing a consistency result with the Hilbertian theory, related to the example of Section 5.2.

Corollary 6.24 (Consistency with the theory of contraction semigroups in Hilbert spaces).

Let F𝖷×𝖷F\subset\mathsf{X}\times\mathsf{X} be a dissipative maximal subset generating the semigroup (Rt)t0(R_{t})_{t\geq 0} of nonlinear contractions [Bré73, Theorem 3.1]. Let 𝐅{\boldsymbol{\mathrm{F}}} be the dissipative MPVF

𝐅:={Φ𝒫2(𝖳𝖷)Φ is concentrated on F}.{\boldsymbol{\mathrm{F}}}:=\{\Phi\in\mathcal{P}_{2}(\mathsf{T\kern-1.5ptX})\mid\Phi\text{ is concentrated on }F\}.

The semigroup μ0St[μ0]:=(Rt)μ0\mu_{0}\mapsto\mathrm{S}_{t}[\mu_{0}]:=(R_{t})_{\sharp}\mu_{0}, t0t\geq 0, is the 0-flow generated by 𝐅{\boldsymbol{\mathrm{F}}} in D(𝐅)¯\overline{\mathrm{D}({\boldsymbol{\mathrm{F}}})}.

Proof.

Let DD be the set of discrete measures 1nj=1nδxj\frac{1}{n}\sum_{j=1}^{n}\delta_{x_{j}} with xjD(F)x_{j}\in\mathrm{D}(F). Since every μ0D(𝐅)¯\mu_{0}\in\overline{\mathrm{D}({\boldsymbol{\mathrm{F}}})} is supported in D(F)¯\overline{\mathrm{D}(F)}, DD is dense in D(𝐅)¯\overline{\mathrm{D}({\boldsymbol{\mathrm{F}}})}. Our thesis follows by applying Theorem 6.22(e) if we show that for every μ0=1nj=1nδxj,0D\mu_{0}=\frac{1}{n}\sum_{j=1}^{n}\delta_{x_{j,0}}\in D there exists a locally absolutely continuous solution μ:[0,)D\mu:[0,\infty)\to D of (6.2) starting from μ0\mu_{0}.

It can be directly checked that

μt:=(Rt)μ0=1nj=1nδxj,t,xj,t:=Rt(xj,0)\mu_{t}:=(R_{t})_{\sharp}\mu_{0}=\frac{1}{n}\sum_{j=1}^{n}\delta_{x_{j,t}},\quad x_{j,t}:=R_{t}(x_{j,0})

satisfies the continuity equation with Wasserstein velocity vector 𝒗t\boldsymbol{v}_{t} (defined on the finite support of μt\mu_{t}) satisfying

𝒗t(xj,t)=x˙j,t=F(xj,t),|𝒗t(xj,t)||F(xj,0)|for every j=1,,n,and a.e. t>0,\boldsymbol{v}_{t}(x_{j,t})=\dot{x}_{j,t}=F^{\circ}(x_{j,t}),\quad|\boldsymbol{v}_{t}(x_{j,t})|\leq|F^{\circ}(x_{j,0})|\quad\text{for every }j=1,\cdots,n,\ \text{and a.e.\leavevmode\nobreak\ }t>0,

where FF^{\circ} is the minimal selection of FF. It follows that

(𝒊𝖷,𝒗t)μt𝐅[μt] for a.e. t>0,(\boldsymbol{i}_{\mathsf{X}},\boldsymbol{v}_{t})_{\sharp}\mu_{t}\in{\boldsymbol{\mathrm{F}}}[\mu_{t}]\quad\text{ for a.e. }t>0,

so that μ\mu is a Lipschitz EVI solution for 𝐅{\boldsymbol{\mathrm{F}}} starting from μ0\mu_{0}. We can thus conclude observing that the map μ0(Rt)μ0\mu_{0}\mapsto(R_{t})_{\sharp}\mu_{0} are contractions in 𝒫2(𝖷)\mathcal{P}_{2}(\mathsf{X}) and the curve μt=(Rt)μ0\mu_{t}=(R_{t})_{\sharp}\mu_{0} is continuous with values in D(𝐅)¯\overline{\mathrm{D}({\boldsymbol{\mathrm{F}}})}. ∎

6.5. Barycentric property

If we assume that the MPVF 𝐅{\boldsymbol{\mathrm{F}}} is a sequentially closed subset of 𝒫2sw(𝖳𝖷)\mathcal{P}_{2}^{sw}(\mathsf{T\kern-1.5ptX}) with convex sections, we are able to provide a stronger result showing a particular property satisfied by the solutions of (6.1) (see Theorem 6.27). This is called barycentric property and it is strictly connected with the weaker definition of solution discussed in \citesPiccoli_2019, Piccoli_MDI, Camilli_MDE.

We first introduce a directional closure of 𝐅{\boldsymbol{\mathrm{F}}} along smooth cylindrical deformations. We set

expφ(x):=x+φ(x)for every φCyl(𝖷)\mathrm{exp}^{\varphi}(x):=x+\nabla\varphi(x)\quad\text{for every }\varphi\in\operatorname{Cyl}(\mathsf{X})

and

𝐅¯[μ]:={Φ𝒫2(𝖷)\displaystyle{\overline{{\boldsymbol{\mathrm{F}}}}}[\mu]:={}\Big{\{}\Phi\in\mathcal{P}_{2}(\mathsf{X})\mid{} φCyl(𝖷),(rn)n[0,+),rn0,Φn𝐅[exprnφμ]:\displaystyle\exists\,\varphi\in\operatorname{Cyl}(\mathsf{X}),\ (r_{n})_{n\in\mathbb{N}}\subset[0,+\infty),\ r_{n}\downarrow 0,\ \Phi_{n}\in{\boldsymbol{\mathrm{F}}}[\mathrm{exp}^{r_{n}\varphi}_{\sharp}\mu]: (6.34)
ΦnΦ in 𝒫2sw(𝖳𝖷)}.\displaystyle\Phi_{n}\to\Phi\text{ in }\mathcal{P}_{2}^{sw}(\mathsf{T\kern-1.5ptX})\Big{\}}.
Definition 6.25 (Barycentric property).

Let 𝐅{\boldsymbol{\mathrm{F}}} be a MPVF. We say that a locally absolutely continuous curve μ:D(𝐅)\mu:\mathcal{I}\to\mathrm{D}({\boldsymbol{\mathrm{F}}}) satisfies the barycentric property (resp. the relaxed barycentric property) if for a.e. tt\in\mathcal{I} there exists Φt𝐅[μt]\Phi_{t}\in{\boldsymbol{\mathrm{F}}}[\mu_{t}] (resp. Φtco¯(𝐅¯[μt])\Phi_{t}\in\overline{\operatorname{co}}({\overline{{\boldsymbol{\mathrm{F}}}}}[\mu_{t}])) s.t.

ddt𝖷φ(x)dμt(x)=𝖳𝖷φ(x),vdΦt(x,v)φCyl(𝖷).\frac{\,\mathrm{d}}{\,\mathrm{d}t}\int_{\mathsf{X}}\varphi(x)\,\mathrm{d}\mu_{t}(x)=\int_{\mathsf{T\kern-1.5ptX}}\langle\nabla\varphi(x),v\rangle\,\mathrm{d}\Phi_{t}(x,v)\quad\forall\,\varphi\in\operatorname{Cyl}(\mathsf{X}). (6.35)

Notice that 𝐅𝐅¯cl(𝐅){\boldsymbol{\mathrm{F}}}\subset{\overline{{\boldsymbol{\mathrm{F}}}}}\subset\operatorname{cl}({\boldsymbol{\mathrm{F}}}) and 𝐅¯=𝐅{\overline{{\boldsymbol{\mathrm{F}}}}}={\boldsymbol{\mathrm{F}}} if 𝐅{\boldsymbol{\mathrm{F}}} is sequentially closed in 𝒫2sw(𝖳𝖷)\mathcal{P}_{2}^{sw}(\mathsf{T\kern-1.5ptX}). Recalling Proposition 4.17(a) we also get

co¯(𝐅¯)𝐅^,\overline{\operatorname{co}}({\overline{{\boldsymbol{\mathrm{F}}}}})\subset\hat{\boldsymbol{\mathrm{F}}},

so that the relaxed barycentric property implies the corresponding property for the extended MPVF 𝐅^\hat{\boldsymbol{\mathrm{F}}}.

Remark 6.26.

If 𝖷=d\mathsf{X}=\mathbb{R}^{d}, the property stated in Definition 6.25 coincides with the weak definition of solution to (6.1) given in [Pic18].

The aim is to prove that the λ\lambda-EVI solution of (6.1) enjoys the barycentric property of Definition 6.25, under suitable mild conditions on 𝐅{\boldsymbol{\mathrm{F}}}. This is strictly related to the behaviour of 𝐅{\boldsymbol{\mathrm{F}}} along the family of smooth deformations induced by cylindrical functions. Let us denote by 𝐩𝐫μ\mathbf{pr}_{\mu} the orthogonal projection in L2μ(𝖷;𝖷)L^{2}_{\mu}(\mathsf{X};\mathsf{X}) onto the tangent space Tanμ𝒫2(𝖷)\operatorname{Tan}_{\mu}\mathcal{P}_{2}(\mathsf{X}) and by 𝒃Φ\boldsymbol{b}_{\Phi} the barycenter of Φ\Phi as in Definition 3.1.

Theorem 6.27.

Let 𝐅{\boldsymbol{\mathrm{F}}} be a λ\lambda-dissipative MPVF such that for every μD(𝐅)\mu\in\mathrm{D}({\boldsymbol{\mathrm{F}}}) there exist constants M,ε>0M,\varepsilon>0 such that

φCyl(𝖷):sup𝖷|φ|εexpφμD(𝐅),|𝐅|2(expφμ)<M.\forall\varphi\in\operatorname{Cyl}(\mathsf{X}):\ \sup_{\mathsf{X}}|\nabla\varphi|\leq\varepsilon\quad\Rightarrow\quad\mathrm{exp}^{\varphi}_{\sharp}\mu\in\mathrm{D}({\boldsymbol{\mathrm{F}}}),\ |{\boldsymbol{\mathrm{F}}}|_{2}(\mathrm{exp}^{\varphi}_{\sharp}\mu)<M. (6.36)

If μ:D(𝐅)\mu:\mathcal{I}\to\mathrm{D}({\boldsymbol{\mathrm{F}}}) is a locally absolutely continuous λ\lambda-EVI solution of (6.1) with Wasserstein velocity field 𝐯\boldsymbol{v} satisfying (2.6) for every tt in the subset A(μ)A(\mu)\subset\mathcal{I} of full Lebesgue measure, then

for every tA(μ) there exists Φtco¯(𝐅¯)[μt] such that𝒗t=𝐩𝐫μt𝒃Φt.\text{for every $t\in A(\mu)$ there exists $\Phi_{t}\in\overline{\operatorname{co}}({\overline{{\boldsymbol{\mathrm{F}}}}})[\mu_{t}]$ such that}\quad\boldsymbol{v}_{t}=\mathbf{pr}_{\mu_{t}}\circ\boldsymbol{b}_{\Phi_{t}}. (6.37)

In particular, μ\mu satisfies the relaxed barycentric property.

If moreover 𝐅¯=𝐅{\overline{{\boldsymbol{\mathrm{F}}}}}={\boldsymbol{\mathrm{F}}} and for every νD(𝐅)\nu\in\mathrm{D}({\boldsymbol{\mathrm{F}}}) 𝐅[ν]{\boldsymbol{\mathrm{F}}}[\nu] is a convex subset of 𝒫2(𝖳𝖷)\mathcal{P}_{2}(\mathsf{T\kern-1.5ptX}), then μ\mu satisfies (6.35).

Proof.

In the following tt is a fixed element of A(μ)A(\mu) and MM is the constant associated to the measure μt\mu_{t} in (6.36). For every ζCyl(𝖷)\zeta\in\operatorname{Cyl}(\mathsf{X}) there exists δ=δ(ζ)>0\delta=\delta(\zeta)>0 such that νζ:=expδζμtD(𝐅)\nu^{\zeta}:=\mathrm{exp}^{-\delta\zeta}_{\sharp}\mu_{t}\in\mathrm{D}({\boldsymbol{\mathrm{F}}}) and 𝝈ζ:=(𝒊𝖷,expδζ)μtΓo01(μt,νζ|𝐅)\boldsymbol{\sigma}^{\zeta}:=(\boldsymbol{i}_{\mathsf{X}},\mathrm{exp}^{-\delta\zeta})_{\sharp}\mu_{t}\in\Gamma_{o}^{01}({\mu_{t}},{\nu^{\zeta}}|{\boldsymbol{\mathrm{F}}}) is the unique optimal transport plan between μt\mu_{t} and νζ\nu^{\zeta}.
Thanks to Theorem 3.11, the map sW22(μs,νζ)s\mapsto W_{2}^{2}(\mu_{s},\nu^{\zeta}) is differentiable at s=ts=t, moreover by employing also (6.5b), it holds

δ𝖷𝒗t(x),ζ(x)dμt(x)=ddt12W22(μt,νζ)[𝐅,𝝈ζ]0+=lims0[𝐅,𝝈ζ]l,s.\delta\int_{\mathsf{X}}\langle\boldsymbol{v}_{t}(x),\nabla\zeta(x)\rangle\,\mathrm{d}\mu_{t}(x)=\frac{\,\mathrm{d}}{\,\mathrm{d}t}\frac{1}{2}W_{2}^{2}(\mu_{t},\nu^{\zeta})\leq[{\boldsymbol{\mathrm{F}}},\boldsymbol{\sigma}^{\zeta}]_{0+}=\lim_{s\downarrow 0}\,[{\boldsymbol{\mathrm{F}}},\boldsymbol{\sigma}^{\zeta}]_{l,s}. (6.38)

We can choose a decreasing vanishing sequence (sk)k(0,1)(s_{k})_{k\in\mathbb{N}}\subset(0,1), measures νkζ:=𝗑sk𝝈ζ\nu_{k}^{\zeta}:=\mathsf{x}^{s_{k}}_{\sharp}\boldsymbol{\sigma}^{\zeta} and Φkζ𝐅[νkζ]\Phi_{k}^{\zeta}\in{\boldsymbol{\mathrm{F}}}[\nu_{k}^{\zeta}] such that supk|Φkζ|2M\sup_{k}|\Phi_{k}^{\zeta}|_{2}\leq M and ΦkζΦζ\Phi_{k}^{\zeta}\to\Phi^{\zeta} in 𝒫2sw(𝖳𝖷)\mathcal{P}_{2}^{sw}(\mathsf{T\kern-1.5ptX}). Then, by (6.13), we get Φζ𝐅¯[μt]\Phi^{\zeta}\in{\overline{{\boldsymbol{\mathrm{F}}}}}[\mu_{t}] with |Φζ|2M|\Phi^{\zeta}|_{2}\leq M and by (6.38) and the upper semicontinuity of [,]l\left[\cdot,\cdot\right]_{l} (see Lemma 3.14) we get

δ𝖷𝒗t(x),ζ(x)dμt(x)[Φζ,νζ]l=δ𝖳𝖷v,ζ(x)dΦζ(x,v).\delta\int_{\mathsf{X}}\langle\boldsymbol{v}_{t}(x),\nabla\zeta(x)\rangle\,\mathrm{d}\mu_{t}(x)\leq\left[\Phi^{\zeta},\nu^{\zeta}\right]_{l}=\delta\int_{\mathsf{T\kern-1.5ptX}}\langle v,\nabla\zeta(x)\rangle\,\mathrm{d}\Phi^{\zeta}(x,v). (6.39)

Indeed, notice that, by [AGS08, Lemma 5.3.2], we have Λ(Φζ,νζ)={Φζνζ}\Lambda(\Phi^{\zeta},\nu^{\zeta})=\{\Phi^{\zeta}\otimes\nu^{\zeta}\} with (𝗑0,𝗑1)(Φζνζ)=𝝈ζ(\mathsf{x}^{0},\mathsf{x}^{1})_{\sharp}(\Phi^{\zeta}\otimes\nu^{\zeta})=\boldsymbol{\sigma}^{\zeta}.

By means of the identity highlighted in Remark 3.2, the expression in (6.39) can be written as follows

𝒗t,ζL2μt(𝖷;𝖷)𝒃Φζ,ζL2μt(𝖷;𝖷)=𝐩𝐫μt(𝒃Φζ),ζL2μt(𝖷;𝖷)\langle\boldsymbol{v}_{t},\nabla\zeta\rangle_{L^{2}_{\mu_{t}}(\mathsf{X};\mathsf{X})}\leq\langle\boldsymbol{b}_{\Phi^{\zeta}},\nabla\zeta\rangle_{L^{2}_{\mu_{t}}(\mathsf{X};\mathsf{X})}=\langle\mathbf{pr}_{\mu_{t}}(\boldsymbol{b}_{\Phi^{\zeta}}),\nabla\zeta\rangle_{L^{2}_{\mu_{t}}(\mathsf{X};\mathsf{X})}

so that

𝒗t,ζL2μt(𝖷;𝖷)sup𝒃K𝒃,ζL2μt(𝖷;𝖷)for all ζCyl(𝖷)\langle\boldsymbol{v}_{t},\nabla\zeta\rangle_{L^{2}_{\mu_{t}}(\mathsf{X};\mathsf{X})}\leq\sup_{\boldsymbol{b}\in K}\,\langle\boldsymbol{b},\nabla\zeta\rangle_{L^{2}_{\mu_{t}}(\mathsf{X};\mathsf{X})}\quad\text{for all }\,\zeta\in\operatorname{Cyl}(\mathsf{X})

where

K:={𝐩𝐫μt(𝒃Φ):Φ𝐅¯[μt],|Φ|2M}Tanμt𝒫2(𝖷).K:=\left\{\mathbf{pr}_{\mu_{t}}(\boldsymbol{b}_{\Phi})\,:\,\Phi\in{\overline{{\boldsymbol{\mathrm{F}}}}}[\mu_{t}],\,|\Phi|_{2}\leq M\right\}\subset\operatorname{Tan}_{\mu_{t}}\mathcal{P}_{2}(\mathsf{X}). (6.40)

Applying Lemma C.1 in Tanμt𝒫2(𝖷)L2μt(𝖷;𝖷)\operatorname{Tan}_{\mu_{t}}\mathcal{P}_{2}(\mathsf{X})\subset L^{2}_{\mu_{t}}(\mathsf{X};\mathsf{X}) we obtain that 𝒗tco¯(K)\boldsymbol{v}_{t}\in\overline{\operatorname{co}}(K). In order to obtain (6.37) it is sufficient to prove that 𝒗t\boldsymbol{v}_{t} is the L2L^{2}-projection of the barycenter of an element of co¯(𝐅¯[μt])\overline{\operatorname{co}}({\overline{{\boldsymbol{\mathrm{F}}}}}[\mu_{t}]).

Notice that an element 𝒗Tanμ𝒫2(𝖷)\boldsymbol{v}\in\operatorname{Tan}_{\mu}\mathcal{P}_{2}(\mathsf{X}) coincides with 𝐩𝐫μ(𝒃Φ)\mathbf{pr}_{\mu}(\boldsymbol{b}_{\Phi}) for Φ𝒫2(𝖳𝖷|μ)\Phi\in\mathcal{P}_{2}(\mathsf{T\kern-1.5ptX}|\mu) if and only if

𝒗,ζdμ=v,ζdΦ(x,v)for every ζCyl(𝖷).\int\langle\boldsymbol{v},\nabla\zeta\rangle\,\mathrm{d}\mu=\int\langle v,\nabla\zeta\rangle\,\mathrm{d}\Phi(x,v)\quad\text{for every }\zeta\in\mathrm{Cyl}(\mathsf{X}). (6.41)

It is easy to check that any element 𝒗co(K)\boldsymbol{v}\in\operatorname{co}(K) can be represented as 𝐩𝐫μt(𝒃Φ)\mathbf{pr}_{\mu_{t}}(\boldsymbol{b}_{\Phi}) (and thus as in (6.41)) for some Φco(𝐅¯[μt])\Phi\in\operatorname{co}({\overline{{\boldsymbol{\mathrm{F}}}}}[\mu_{t}]). If 𝒗co¯(K)\boldsymbol{v}\in\overline{\operatorname{co}}(K) we can find a sequence Φnco(𝐅¯[μt])\Phi_{n}\in\operatorname{co}({\overline{{\boldsymbol{\mathrm{F}}}}}[\mu_{t}]) such that |Φn|2M|\Phi_{n}|_{2}\leq M and 𝒗n=𝐩𝐫μt(𝒃Φn)𝒗\boldsymbol{v}_{n}=\mathbf{pr}_{\mu_{t}}(\boldsymbol{b}_{\Phi_{n}})\to\boldsymbol{v} in L2μt(𝖷;𝖷)L^{2}_{\mu_{t}}(\mathsf{X};\mathsf{X}). Since the sequence (Φn)n(\Phi_{n})_{n\in\mathbb{N}} is relatively compact in 𝒫2sw(𝖳𝖷)\mathcal{P}_{2}^{sw}(\mathsf{T\kern-1.5ptX}) by Proposition 2.15(2), we can extract a (not relabeled) subsequence converging to a limit Φ\Phi in 𝒫2sw(𝖳𝖷)\mathcal{P}_{2}^{sw}(\mathsf{T\kern-1.5ptX}), as n+n\to+\infty. By definition Φco¯(𝐅¯[μt])\Phi\in\overline{\operatorname{co}}({\overline{{\boldsymbol{\mathrm{F}}}}}[\mu_{t}]) with |Φ|2M|\Phi|_{2}\leq M. We can eventually pass to the limit in (6.41) written for 𝒗n\boldsymbol{v}_{n} and Φn\Phi_{n} thanks to 𝒫2sw(𝖳𝖷)\mathcal{P}_{2}^{sw}(\mathsf{T\kern-1.5ptX}) convergence, obtaining the corresponding identity for 𝒗\boldsymbol{v} and Φ\Phi in the limit.
Finally, being μ\mu locally absolutely continuous, it satisfies the continuity equation driven by 𝒗\boldsymbol{v} in the sense of distributions (see Theorem 2.10), so that

ddt𝖷ζ(x)dμt(x)=𝖷ζ(x),𝒗t(x)dμt(x)=𝖳𝖷ζ(x),vdΦt(x,v)ζCyl(𝖷).\frac{\,\mathrm{d}}{\,\mathrm{d}t}\int_{\mathsf{X}}\zeta(x)\,\mathrm{d}\mu_{t}(x)=\int_{\mathsf{X}}\langle\nabla\zeta(x),\boldsymbol{v}_{t}(x)\rangle\,\mathrm{d}\mu_{t}(x)=\int_{\mathsf{T\kern-1.5ptX}}\langle\nabla\zeta(x),v\rangle\,\mathrm{d}\Phi_{t}(x,v)\quad\forall\zeta\in\text{Cyl}(\mathsf{X}).\qed
Remark 6.28.

We notice that it is always possible to estimate the value of MM in (6.40) by |𝐅|2(μt)|{\boldsymbol{\mathrm{F}}}|_{2\star}(\mu_{t}).

Remark 6.29.

Using a standard approximation argument (see for example the proof of Lemma 5.1.12(f) in [AGS08]) it is possible to show that actually the barycentric property (6.35) holds for every φC1,1(𝖷;)\varphi\in\mathrm{C}^{1,1}(\mathsf{X};\mathbb{R}) (indeed, in this case, φTanμ𝒫2(𝖷)\nabla\varphi\in\operatorname{Tan}_{\mu}\mathcal{P}_{2}(\mathsf{X}) for every μ𝒫2(𝖷)\mu\in\mathcal{P}_{2}(\mathsf{X})).

As a complement to the studies investigated in this section, we prove the converse characterization of Theorem 6.27 in the particular case of regular measures or regular vector fields. We refer to [AGS08, Definitions 6.2.1, 6.2.2] for the definition of 𝒫2r(𝖷)\mathcal{P}_{2}^{r}(\mathsf{X}), that is the space of regular measures on 𝖷\mathsf{X}. When 𝖷=d\mathsf{X}=\mathbb{R}^{d} has finite dimension, 𝒫2r(𝖷)\mathcal{P}_{2}^{r}(\mathsf{X}) is just the subset of measures in 𝒫2(𝖷)\mathcal{P}_{2}(\mathsf{X}) which are absolutely continuous w.r.t. the Lebesgue measure d\mathcal{L}^{d}.

Theorem 6.30.

Let 𝐅{\boldsymbol{\mathrm{F}}} be a λ\lambda-dissipative MPVF. Let μ:D(𝐅)\mu:\mathcal{I}\to\mathrm{D}({\boldsymbol{\mathrm{F}}}) be a locally absolutely continuous curve satisfying the relaxed barycentric property of Definition 6.25. If for a.e. tt\in\mathcal{I} at least one of the following properties holds:

  1. (1)

    μt𝒫2r(𝖷)\mu_{t}\in\mathcal{P}_{2}^{r}(\mathsf{X}),

  2. (2)

    𝐅¯[μt]{\overline{{\boldsymbol{\mathrm{F}}}}}[\mu_{t}] contains a unique element Φt\Phi_{t} concentrated on a map, i.e. Φt=(𝒊𝖷,𝒃Φt)μt\Phi_{t}=(\boldsymbol{i}_{\mathsf{X}},\boldsymbol{b}_{\Phi_{t}})_{\sharp}\mu_{t}

then μ\mu is λ\lambda-EVI solution of (6.1).

Proof.

Take φCyl(𝖷)\varphi\in\operatorname{Cyl}(\mathsf{X}) and observe that, since μ\mu has the relaxed barycentric property, then for a.e. tt\in\mathcal{I} (recall Theorem 3.11) there exists Φtco¯(𝐅¯[μt])\Phi_{t}\in\overline{\operatorname{co}}({\overline{{\boldsymbol{\mathrm{F}}}}}[\mu_{t}]) such that

ddt𝖷φ(x)dμt(x)=𝖳𝖷φ(x),vdΦt=𝖷φ,𝐩𝐫μt𝒃Φtdμt=𝖷𝒗t,φdμt,\frac{\,\mathrm{d}}{\,\mathrm{d}t}\int_{\mathsf{X}}\varphi(x)\,\mathrm{d}\mu_{t}(x)=\int_{\mathsf{T\kern-1.5ptX}}\langle\nabla\varphi(x),v\rangle\,\mathrm{d}\Phi_{t}=\int_{\mathsf{X}}\langle\nabla\varphi,\mathbf{pr}_{\mu_{t}}\circ\boldsymbol{b}_{\Phi_{t}}\rangle\,\mathrm{d}\mu_{t}=\int_{\mathsf{X}}\langle\boldsymbol{v}_{t},\nabla\varphi\rangle\,\mathrm{d}\mu_{t},

hence μ\mu solves the continuity equation tμt+div(𝒗tμt)=0\partial_{t}\mu_{t}+\text{div}(\boldsymbol{v}_{t}\mu_{t})=0, with 𝒗t=𝐩𝐫μt𝒃ΦtTanμt𝒫2(𝖷)\boldsymbol{v}_{t}=\mathbf{pr}_{\mu_{t}}\circ\boldsymbol{b}_{\Phi_{t}}\in\operatorname{Tan}_{\mu_{t}}\mathcal{P}_{2}(\mathsf{X}). By Theorem 3.11, we also know that

ddt12W22(μt,ν)=𝖷2𝒗t(x0),x0x1d𝜸t(x0,x1),tA(μ,ν),𝜸tΓo(μt,ν),ν𝒫2(𝖷).\frac{\,\mathrm{d}}{\,\mathrm{d}t}\frac{1}{2}W_{2}^{2}(\mu_{t},\nu)=\int_{\mathsf{X}^{2}}\langle\boldsymbol{v}_{t}(x_{0}),x_{0}-x_{1}\rangle\,\mathrm{d}\boldsymbol{\gamma}_{t}(x_{0},x_{1}),\quad t\in A(\mu,\nu),\ \boldsymbol{\gamma}_{t}\in\Gamma_{o}(\mu_{t},\nu),\nu\in\mathcal{P}_{2}(\mathsf{X}). (6.42)

Possibly disregarding a Lebesgue negligible set, we can decompose the set A(μ,ν)A(\mu,\nu) in the union A1A2A_{1}\cup A_{2}, where A1,A2A_{1},A_{2} correspond to the times tt for which the properties (1) and (2) hold.

If tA1t\in A_{1} and νD(𝐅)\nu\in\mathrm{D}({\boldsymbol{\mathrm{F}}}), then by [AGS08, Theorem 6.2.10], since μt𝒫2r(𝖷)\mu_{t}\in\mathcal{P}_{2}^{r}(\mathsf{X}), there exists a unique 𝜸tΓo(μt,ν)\boldsymbol{\gamma}_{t}\in\Gamma_{o}(\mu_{t},\nu) and 𝜸t=(𝒊𝖷,𝒓t)μt\boldsymbol{\gamma}_{t}=(\boldsymbol{i}_{\mathsf{X}},\boldsymbol{r}_{t})_{\sharp}\mu_{t} for some map 𝒓t\boldsymbol{r}_{t} s.t. 𝒊𝖷𝒓tTanμt𝒫2(𝖷)L2μt(𝖷;𝖷)\boldsymbol{i}_{\mathsf{X}}-\boldsymbol{r}_{t}\in\operatorname{Tan}_{\mu_{t}}\mathcal{P}_{2}(\mathsf{X})\subset L^{2}_{\mu_{t}}(\mathsf{X};\mathsf{X}) (recall [AGS08, Proposition 8.5.2]), so that

𝖷2𝒗t(x0),x0x1d𝜸t(x0,x1)=𝖷𝒗t(x0),x0𝒓t(x0)dμt(x0)\displaystyle\int_{\mathsf{X}^{2}}\langle\boldsymbol{v}_{t}(x_{0}),x_{0}-x_{1}\rangle\,\mathrm{d}\boldsymbol{\gamma}_{t}(x_{0},x_{1})=\int_{\mathsf{X}}\langle\boldsymbol{v}_{t}(x_{0}),x_{0}-\boldsymbol{r}_{t}(x_{0})\rangle\,\mathrm{d}\mu_{t}(x_{0})
=𝖷𝒃Φt,x0𝒓t(x0)dμt(x0)=𝖳𝖷v,x𝒓t(x)dΦt(x,v)=[Φt,ν]r,\displaystyle=\int_{\mathsf{X}}\langle\boldsymbol{b}_{\Phi_{t}},x_{0}-\boldsymbol{r}_{t}(x_{0})\rangle\,\mathrm{d}\mu_{t}(x_{0})=\int_{\mathsf{T\kern-1.5ptX}}\langle v,x-\boldsymbol{r}_{t}(x)\rangle\,\mathrm{d}\Phi_{t}(x,v)=\left[\Phi_{t},\nu\right]_{r}, (6.43)

where we also applied Theorem 3.9 and Remark 3.18, recalling that in this case Λ(Φt,ν)\Lambda(\Phi_{t},\nu) is a singleton.

If tA2t\in A_{2} we can select the optimal plan 𝜸tΓo(μt,ν)\boldsymbol{\gamma}_{t}\in\Gamma_{o}(\mu_{t},\nu) along which

[Φt,ν]r=[Φt,𝜸t]r,0=𝖷𝒃Φt(x0),x0x1d𝜸t(x0,x1).\left[\Phi_{t},\nu\right]_{r}=[\Phi_{t},\boldsymbol{\gamma}_{t}]_{r,0}=\int_{\mathsf{X}}\langle\boldsymbol{b}_{\Phi_{t}}(x_{0}),x_{0}-x_{1}\rangle\,\mathrm{d}\boldsymbol{\gamma}_{t}(x_{0},x_{1}).

If 𝒓t\boldsymbol{r}_{t} is the barycenter of 𝜸t\boldsymbol{\gamma}_{t} with respect to its first marginal μt\mu_{t}, recalling that 𝒊𝖷𝒓tTanμt𝒫2(𝖷)\boldsymbol{i}_{\mathsf{X}}-\boldsymbol{r}_{t}\in\operatorname{Tan}_{\mu_{t}}\mathcal{P}_{2}(\mathsf{X}) (see also the proof of [AGS08, Thm. 12.4.4]) we also get

𝖷2\displaystyle\int_{\mathsf{X}^{2}} 𝒗t(x0),x0x1d𝜸t(x0,x1)=𝖷𝒗t(x0),x0𝒓t(x0)dμt(x0)\displaystyle\langle\boldsymbol{v}_{t}(x_{0}),x_{0}-x_{1}\rangle\,\mathrm{d}\boldsymbol{\gamma}_{t}(x_{0},x_{1})=\int_{\mathsf{X}}\langle\boldsymbol{v}_{t}(x_{0}),x_{0}-\boldsymbol{r}_{t}(x_{0})\rangle\,\mathrm{d}\mu_{t}(x_{0})
=𝖷𝒃Φt(x0),x0𝒓t(x0)dμt(x0)=𝖷𝒃Φt(x0),x0x1d𝜸t(x0,x1)=[Φt,ν]r\displaystyle=\int_{\mathsf{X}}\langle\boldsymbol{b}_{\Phi_{t}}(x_{0}),x_{0}-\boldsymbol{r}_{t}(x_{0})\rangle\,\mathrm{d}\mu_{t}(x_{0})=\int_{\mathsf{X}}\langle\boldsymbol{b}_{\Phi_{t}}(x_{0}),x_{0}-x_{1}\rangle\,\mathrm{d}\boldsymbol{\gamma}_{t}(x_{0},x_{1})=\left[\Phi_{t},\nu\right]_{r} (6.44)

where we still applied Theorem 3.9 and Remark 3.18.

Combining (6.42) with (6.43) and (6.44) we eventually get

ddt12W22(μt,ν)\displaystyle\frac{\,\mathrm{d}}{\,\mathrm{d}t}\frac{1}{2}W_{2}^{2}(\mu_{t},\nu) =[Φt,ν]r[Ψ,μt]r+λW22(μt,ν),Ψ𝐅[ν],\displaystyle=\left[\Phi_{t},\nu\right]_{r}\leq-\left[\Psi,\mu_{t}\right]_{r}+\lambda W_{2}^{2}(\mu_{t},\nu),\quad\forall\,\Psi\in{\boldsymbol{\mathrm{F}}}[\nu],

by definition of 𝐅^\hat{\boldsymbol{\mathrm{F}}} and the fact that co¯(𝐅¯)[μt]𝐅^[μt]\overline{\operatorname{co}}(\overline{{\boldsymbol{\mathrm{F}}}})[\mu_{t}]\subset\hat{\boldsymbol{\mathrm{F}}}[\mu_{t}]. ∎

Thanks to Theorem 6.30, we can apply to barycentric solutions the uniqueness and approximation results of the previous Sections. We conclude this section with a general result on the existence of a λ\lambda-flow for λ\lambda-dissipative MPVFs, which is the natural refinement of Proposition 6.14

Theorem 6.31 (Generation of λ\lambda-flow).

Let 𝐅{\boldsymbol{\mathrm{F}}} be a λ\lambda-dissipative MPVF such that 𝒫b(𝖷)D(𝐅)\mathcal{P}_{b}(\mathsf{X})\subset\mathrm{D}({\boldsymbol{\mathrm{F}}}) and for every μ0𝒫b(𝖷)\mu_{0}\in\mathcal{P}_{b}(\mathsf{X}) there exist ϱ>0\varrho>0 and L>0L>0 such that

supp(μ)supp(μ0)+B𝖷(ϱ)Φ𝐅[μ]:supp(𝗏Φ)B𝖷(L).\operatorname{supp}(\mu)\subset\operatorname{supp}(\mu_{0})+\mathrm{B}_{\mathsf{X}}(\varrho)\quad\Rightarrow\quad\exists\Phi\in{\boldsymbol{\mathrm{F}}}[\mu]:\operatorname{supp}(\mathsf{v}_{\sharp}\Phi)\subset\mathrm{B}_{\mathsf{X}}(L). (6.45)

Let 𝐅b:=𝐅𝒫b(𝖳𝖷){\boldsymbol{\mathrm{F}}}_{b}:={\boldsymbol{\mathrm{F}}}\cap\mathcal{P}_{b}(\mathsf{T\kern-1.5ptX}). If there exists a0a\geq 0 such that for every Φ𝐅b\Phi\in{\boldsymbol{\mathrm{F}}}_{b}

supp(Φ){(x,v)𝖳𝖷:v,xa(1+|x|2)},\operatorname{supp}(\Phi)\subset\Big{\{}(x,v)\in\mathsf{T\kern-1.5ptX}:\langle v,x\rangle\leq a(1+|x|^{2})\Big{\}}, (6.46)

then 𝐅{\boldsymbol{\mathrm{F}}} generates a λ\lambda-flow.

Proof.

It is enough to prove that 𝐅b{\boldsymbol{\mathrm{F}}}_{b} generates a λ\lambda-flow. Applying Proposition 6.14 to the MPVF 𝐅b{\boldsymbol{\mathrm{F}}}_{b}, we know that for every μ0D(𝐅b)\mu_{0}\in\mathrm{D}({\boldsymbol{\mathrm{F}}}_{b}) there exists a unique maximal strict λ\lambda-EVI solution μLiploc([0,T);𝒫b(𝖷))\mu\in\mathrm{Lip}_{\rm loc}([0,T);\mathcal{P}_{b}(\mathsf{X})) driven by 𝐅b{\boldsymbol{\mathrm{F}}}_{b} and satisfying (6.16). We argue by contradiction, and we assume that T<+T<+\infty. Notice that by (6.45) 𝐅{\boldsymbol{\mathrm{F}}} satisfies (6.36), so that μ\mu is a relaxed barycentric solution for 𝐅b{\boldsymbol{\mathrm{F}}}_{b}. Since μ0𝒫b(𝖷)\mu_{0}\in\mathcal{P}_{b}(\mathsf{X}), we know that supp(μ0)B𝖷(r0)\operatorname{supp}(\mu_{0})\subset\mathrm{B}_{\mathsf{X}}(r_{0}) for some r0>1r_{0}>1.

It is easy to check that (6.46) holds also for every Φco¯(𝐅¯b)\Phi\in\overline{\operatorname{co}}({\overline{{\boldsymbol{\mathrm{F}}}}}_{b}). Moreover, setting b:=2ab:=2a, condition (6.46) yields

v,xb|x|2for every(x,v)suppΦ𝐅b,|x|1.\langle v,x\rangle\leq b|x|^{2}\quad\text{for every}\quad(x,v)\in\operatorname{supp}\Phi\in{\boldsymbol{\mathrm{F}}}_{b},\ |x|\geq 1. (6.47)

Let ϕ(r):\phi(r):\mathbb{R}\to\mathbb{R} be any smooth increasing function such that ϕ(r)=0\phi(r)=0 if rr0r\leq r_{0} and ϕ(r)=1\phi(r)=1 if rr0+1r\geq r_{0}+1, and let φ(t,x):=ϕ(|x|ebt)\varphi(t,x):=\phi(|x|\mathrm{e}^{-bt}). Clearly φC1,1(𝖷×[0,+))\varphi\in\mathrm{C}^{1,1}(\mathsf{X}\times[0,+\infty)), with φ(t,x)=x|x|ϕ(|x|ebt)ebt\nabla\varphi(t,x)=\frac{x}{|x|}\phi^{\prime}(|x|\mathrm{e}^{-bt})\mathrm{e}^{-bt} if x0x\neq 0, φ(t,0)=0\nabla\varphi(t,0)=0, and tφ(t,x)=bϕ(|x|ebt)|x|ebt.\partial_{t}\varphi(t,x)=-b\phi^{\prime}(|x|\mathrm{e}^{-bt})|x|\mathrm{e}^{-bt}. We thus have for a.e. t[0,T)t\in[0,T)

ddt𝖷φ(t,x)dμt\displaystyle\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathsf{X}}\varphi(t,x)\,\mathrm{d}\mu_{t} =ebt𝖳𝖷(bϕ(|x|ebt)|x|+v,x|x|1ϕ(|x|ebt))dΦt(v,x)\displaystyle=\mathrm{e}^{-bt}\int_{\mathsf{T\kern-1.5ptX}}\Big{(}-b\phi^{\prime}(|x|\mathrm{e}^{-bt})|x|+\langle v,x\rangle|x|^{-1}\phi^{\prime}(|x|\mathrm{e}^{-bt})\Big{)}\mathrm{d}\Phi_{t}(v,x)
ebt𝖳𝖷(bϕ(|x|ebt)|x|+b|x|ϕ(|x|ebt))dΦt(v,x)=0\displaystyle\leq\mathrm{e}^{-bt}\int_{\mathsf{T\kern-1.5ptX}}\Big{(}-b\phi^{\prime}(|x|\mathrm{e}^{-bt})|x|+b|x|\phi^{\prime}(|x|\mathrm{e}^{-bt})\Big{)}\mathrm{d}\Phi_{t}(v,x)=0

where in the last inequality we used (6.47) and the fact that the integrand vanishes if |x|1|x|\leq 1. We get

𝖷φ(t,x)dμt=0in [0,T);\int_{\mathsf{X}}\varphi(t,x)\,\mathrm{d}\mu_{t}=0\quad\text{in }[0,T);

this implies that supp(μt)B𝖷((r0+1)ebt)\operatorname{supp}(\mu_{t})\subset\mathrm{B}_{\mathsf{X}}((r_{0}+1)\mathrm{e}^{bt}) so that the limit measure μT\mu_{T} belongs to 𝒫b(𝖷)\mathcal{P}_{b}(\mathsf{X}) as well, leading to a contradiction with (6.16) for 𝐅b{\boldsymbol{\mathrm{F}}}_{b}.

We deduce that μ\mu is a global strict λ\lambda-EVI solution for 𝐅b{\boldsymbol{\mathrm{F}}}_{b}. We can then apply Theorem 6.22(b) to 𝐅b{\boldsymbol{\mathrm{F}}}_{b}. ∎

6.6. A few borderline examples

We conclude this section with a few examples which reveal the importance of some of the technical tools we developed so far. First of all we exhibit an example of dissipative MPVF generating a 0-flow, for which solutions starting from initial data are merely continuous (in particular the nice regularizing effect of gradient flows does not hold for general dissipative evolutions). This clarifies the interest in a definition of continuous, not necessarily absolutely continuous, solution.

Example 6.32 (Lifting of dissipative evolutions and lack of regularizing effect).

Let us consider the situation of Corollary 6.24, choosing the Hilbert space 𝖷=2()\mathsf{X}=\ell^{2}(\mathbb{N}). Following [Rul96, Example 3] we can easily find a maximal linear dissipative operator A:D(A)2()2()A:\mathrm{D}(A)\subset\ell^{2}(\mathbb{N})\to\ell^{2}(\mathbb{N}) whose semigroup does not provide a regularizing effect.

The domain of AA is D(A):={x2():k=1k2|xk|2<}\mathrm{D}(A):=\{x\in\ell^{2}(\mathbb{N}):\sum_{k=1}^{\infty}k^{2}|x_{k}|^{2}<\infty\} and AA is defined as

A(x1,x2,,x2k1,x2k,)=(x2,x1,,kx2k,kx2k1,),xD(A),A(x_{1},x_{2},\dots,x_{2k-1},x_{2k},\dots)=(-x_{2},x_{1},\dots,-kx_{2k},kx_{2k-1},\dots),\quad x\in\mathrm{D}(A),

so that there is no regularizing effect for the semigroup (Rt)t0(R_{t})_{t\geq 0} generated by (the graph of) AA: evolutions starting outside the domain D(A)\mathrm{D}(A) stay outside the domain and do not give raise to locally Lipschitz or a.e. differentiable curves. Corollary 6.24 shows that the 0-flow (St)t0(S_{t})_{t\geq 0} generated by 𝐅{\boldsymbol{\mathrm{F}}} on 𝒫2(X)\mathcal{P}_{2}(X) is given by

St[μ0]=(Rt)μ0 for every μ0D(𝐅)¯=𝒫2(𝖷)S_{t}[\mu_{0}]=(R_{t})_{\sharp}\mu_{0}\quad\text{ for every }\mu_{0}\in\overline{\mathrm{D}({\boldsymbol{\mathrm{F}}})}=\mathcal{P}_{2}(\mathsf{X})

so that there is the same lack of regularizing effect on probability measures.

In the next example we show that a constant MPVF generates a barycentric solution.

Example 6.33 (Constant PVF and barycentric evolutions).

Given θ𝒫2(𝖷)\theta\in\mathcal{P}_{2}(\mathsf{X}), we consider the constant PVF

𝐅[μ]:=μθ.{\boldsymbol{\mathrm{F}}}[\mu]:=\mu\otimes\theta.

𝐅{\boldsymbol{\mathrm{F}}} is dissipative: in fact, if Φi=μiθ\Phi_{i}=\mu_{i}\otimes\theta, i=0,1i=0,1, 𝝁Γo(μ0,μ1)\boldsymbol{\mu}\in\Gamma_{o}(\mu_{0},\mu_{1}), and 𝒓:𝖷×𝖷×X𝖳𝖷×𝖳𝖷\boldsymbol{r}:\mathsf{X}\times\mathsf{X}\times X\to\mathsf{T\kern-1.5ptX}\times\mathsf{T\kern-1.5ptX} is defined by 𝒓(x0,x1,v):=(x0,v;x1,v)\boldsymbol{r}(x_{0},x_{1},v):=(x_{0},v;x_{1},v), then

Θ=𝒓(𝝁θ)Λ(Φ0,Φ1)\Theta=\boldsymbol{r}_{\sharp}(\boldsymbol{\mu}\otimes\theta)\in\Lambda(\Phi_{0},\Phi_{1})

so that (3.16) yields

[Φ0,Φ1]rx0x1,vvd(𝝁θ)(x0,x1,v)=0.\left[\Phi_{0},\Phi_{1}\right]_{r}\leq\int\langle x_{0}-x_{1},v-v\rangle\,\mathrm{d}(\boldsymbol{\mu}\otimes\theta)(x_{0},x_{1},v)=0.

Applying Proposition 6.20 and Theorem 6.19 we immediately see that 𝐅{\boldsymbol{\mathrm{F}}} generates a 0-flow (St)t0(\mathrm{S}_{t})_{t\geq 0} in 𝒫2(𝖷)\mathcal{P}_{2}(\mathsf{X}), obtained as a limit of the Explicit Euler scheme. It is also straightforward to notice that we can apply Theorem 6.27 to 𝐅{\boldsymbol{\mathrm{F}}} so that for every μ0𝒫2(𝖷)\mu_{0}\in\mathcal{P}_{2}(\mathsf{X}) the unique EVI solution μt=Stμ0\mu_{t}=\mathrm{S}_{t}\mu_{0} satisfies the continuity equation

tμt+(𝒃μt)=0,𝒃=𝖷xdθ(x).\partial_{t}\mu_{t}+\nabla\cdot(\boldsymbol{b}\mu_{t})=0,\quad\boldsymbol{b}=\int_{\mathsf{X}}x\,\mathrm{d}\theta(x).

Since 𝒃\boldsymbol{b} is constant, we deduce that St\mathrm{S}_{t} acts as a translation with constant velocity 𝒃\boldsymbol{b}, i.e.

μt=(𝒊𝖷+t𝒃)μ0,\mu_{t}=(\boldsymbol{i}_{\mathsf{X}}+t\boldsymbol{b})_{\sharp}\mu_{0},

so that St\mathrm{S}_{t} coincides with the semigroup generated by the PVF 𝐅[μ]:=(𝒊𝖷,𝒃)μ{\boldsymbol{\mathrm{F}}}^{\prime}[\mu]:=(\boldsymbol{i}_{\mathsf{X}},\boldsymbol{b})_{\sharp}\mu.

We conclude this section with a 11-dimensional example of a curve which satisfies the barycentric property but it is not an EVI solution.

Example 6.34.

Let 𝖷=\mathsf{X}=\mathbb{R}. It is well known (see e.g. [NS09]) that 𝒫2()\mathcal{P}_{2}(\mathbb{R}) is isometric to the closed convex subset 𝒦L2(0,1)\mathcal{K}\subset L^{2}(0,1) of the (essentially) increasing maps and the isometry 𝒥:𝒫2()𝒦\mathcal{J}:\mathcal{P}_{2}(\mathbb{R})\to\mathcal{K} maps each measure μ𝒫2()\mu\in\mathcal{P}_{2}(\mathbb{R}) into the pseudo inverse of its cumulative distribution function.

It follows that for every ν¯𝒫2()\bar{\nu}\in\mathcal{P}_{2}(\mathbb{R}) the functional :𝒫2()\mathcal{F}:\mathcal{P}_{2}(\mathbb{R})\to\mathbb{R} defined as

(μ):=12W22(μ,ν¯)\mathcal{F}(\mu):=\frac{1}{2}W_{2}^{2}(\mu,\bar{\nu})

is 11-convex, since it satisfies (μ)=𝒢(𝒥(μ))\mathcal{F}(\mu)=\mathcal{G}(\mathcal{J}(\mu)) where 𝒢:L2(0,1)\mathcal{G}:L^{2}(0,1)\to\mathbb{R} is defined as

𝒢(u):=12u𝒥(ν¯)2for every uL2(0,1).\mathcal{G}(u):=\frac{1}{2}\|u-\mathcal{J}(\bar{\nu})\|^{2}\quad\text{for every }u\in L^{2}(0,1).

Thus \mathcal{F} generates a gradient flow (St)t0(\mathrm{S}_{t})_{t\geq 0} which is a semigroup of contractions in 𝒫2()\mathcal{P}_{2}(\mathbb{R}); for every μ0𝒫2()\mu_{0}\in\mathcal{P}_{2}(\mathbb{R}) St[μ0]\mathrm{S}_{t}[\mu_{0}] is the unique (1)(-1)-EVI solution for the MPVF -\boldsymbol{\partial}\mathcal{F} starting from μ0𝒫2(𝖷)\mu_{0}\in\mathcal{P}_{2}(\mathsf{X}) (see Proposition 6.5). Since the notion of gradient flow is purely metric, the gradient flow of 𝒢\mathcal{G} starting from 𝒥(μ0)\mathcal{J}(\mu_{0}) is just the image through 𝒥\mathcal{J} of the gradient flow of \mathcal{F} starting from μ0𝒫2(𝖷)\mu_{0}\in\mathcal{P}_{2}(\mathsf{X}). It is easy to check that

u(t):=et𝒥(μ0)+(1et)𝒥(ν¯)u(t):=\mathrm{e}^{-t}\mathcal{J}(\mu_{0})+(1-\mathrm{e}^{-t})\mathcal{J}(\bar{\nu})

is the gradient flow of 𝒢\mathcal{G} starting from u0=𝒥(μ0)u_{0}=\mathcal{J}(\mu_{0}). Note that u(t)u(t) is the L2(0,1)L^{2}(0,1) geodesic from 𝒥(ν¯)\mathcal{J}(\bar{\nu}) to 𝒥(μ0)\mathcal{J}(\mu_{0}) evaluated at the rescaled time ete^{-t}, so that St[μ0]\mathrm{S}_{t}[\mu_{0}] must coincide with the evaluation at time et\mathrm{e}^{-t} of the (unique) geodesic connecting ν¯\bar{\nu} to μ0\mu_{0} i.e.

St[μ0]=𝗑s𝜸,s=et(0,1],\mathrm{S}_{t}[\mu_{0}]=\mathsf{x}^{s}_{\sharp}\boldsymbol{\gamma},\quad s=\mathrm{e}^{-t}\in(0,1],

where 𝜸Γo(ν¯,μ0)\boldsymbol{\gamma}\in\Gamma_{o}(\bar{\nu},\mu_{0}).

Let us now consider the particular case ν¯=12δa+12δa\bar{\nu}=\frac{1}{2}\delta_{-a}+\frac{1}{2}\delta_{a}, where a>0a>0 is a fixed parameter and μ0=δ0\mu_{0}=\delta_{0}. It is straightforward to see that

μt=St[δ0]=12δa(1et)+12δa(et1),t0\mu_{t}=\mathrm{S}_{t}[\delta_{0}]=\frac{1}{2}\delta_{a(1-\mathrm{e}^{-t})}+\frac{1}{2}\delta_{a(\mathrm{e}^{-t}-1)},\quad t\geq 0

so that

(𝒊𝖷,𝒗t)μt=12δ((1et)a,eta)+12δ((et1)a,eta)(μt), a.e. t>0,(\boldsymbol{i}_{\mathsf{X}},\boldsymbol{v}_{t})_{\sharp}\mu_{t}=\frac{1}{2}\delta_{((1-e^{-t})a,e^{-t}a)}+\frac{1}{2}\delta_{((e^{-t}-1)a,-e^{-t}a)}\in-\boldsymbol{\partial}\mathcal{F}(\mu_{t}),\quad\text{ a.e. }t>0,

where 𝒗\boldsymbol{v} is the Wasserstein velocity field of μt\mu_{t}. On the other hand, [AGS08, Lemma 10.3.8] shows that

δ0(12δa+12δa)(δ0)\delta_{0}\otimes\left(\frac{1}{2}\delta_{-a}+\frac{1}{2}\delta_{a}\right)\in-\boldsymbol{\partial}\mathcal{F}(\delta_{0})

so that the constant curve μ¯t:=δ0\bar{\mu}_{t}:=\delta_{0} for t0t\geq 0 has the barycentric property for the MPVF -\boldsymbol{\partial}\mathcal{F} but it is not a EVI solution for -\boldsymbol{\partial}\mathcal{F}, being different from μt=St[δ0]\mu_{t}=\mathrm{S}_{t}[\delta_{0}].

7. Explicit Euler Scheme

In this section, we collect all the main estimates concerning the Explicit Euler scheme (EE).

7.1. The Explicit Euler Scheme: preliminary estimates

Our first step is to prove simple a priori estimates and a discrete version of (λ\lambda-EVI) as a consequence of Proposition 3.4.

Proposition 7.1.

Every solution (Mτ,𝐅τ)(μ0,τ,T,L)(M_{\tau},{\boldsymbol{F}}_{\tau})\in\mathscr{E}(\mu_{0},\tau,T,L) of (EE) satisfies

W2(Mτ(t),μ0)Lt,|𝑭τ(t)|2Lfor every t[0,T],W_{2}(M_{\tau}(t),\mu_{0})\leq Lt,\quad|{\boldsymbol{F}}_{\tau}(t)|_{2}\leq L\quad\text{for every $t\in[0,T]$,} (7.1)
W2(Mτ(t),Mτ(s))L|ts|for every s,t[0,T],W_{2}(M_{\tau}(t),M_{\tau}(s))\leq L|t-s|\quad\text{for every }s,t\in[0,T], (7.2)
ddt12W22(Mτ(t),ν)[𝑭τ(t),ν]r+τ|𝑭τ(t)|22[𝑭τ(t),ν]r+τL2in [0,T]ν𝒫2(𝖷),\frac{\,\mathrm{d}}{\,\mathrm{d}t}\frac{1}{2}W_{2}^{2}(M_{\tau}(t),\nu)\leq\left[{\boldsymbol{F}}_{\tau}(t),\nu\right]_{r}+\tau|{\boldsymbol{F}}_{\tau}(t)|_{2}^{2}\leq\left[{\boldsymbol{F}}_{\tau}(t),\nu\right]_{r}+\tau L^{2}\quad\text{in $[0,T]$, }\forall\nu\in\mathcal{P}_{2}(\mathsf{X}), (IEVI)

with possibly countable exceptions. In particular

12W22(Mτn+1,ν)12W22(Mτn,ν)τ[𝑭τn,ν]r+12τ2L2for every 0n<N(T,τ),ν𝒫2(𝖷).\frac{1}{2}W_{2}^{2}(M_{\tau}^{n+1},\nu)-\frac{1}{2}W_{2}^{2}(M_{\tau}^{n},\nu)\leq\tau\left[{\boldsymbol{F}}_{\tau}^{n},\nu\right]_{r}+\frac{1}{2}{\tau^{2}}L^{2}\quad\text{for every }0\leq n<{\mathrm{N}(T,\tau)},\forall\nu\in\mathcal{P}_{2}(\mathsf{X}). (7.3)
Proof.

The second inequality of (7.1) is a trivial consequence of the definition of (μ0,τ,T,L)\mathscr{E}(\mu_{0},\tau,T,L), the first inequality is a particular case of (7.2). The estimate (7.2) is immediate if nτs<t(n+1)τn\tau\leq s<t\leq(n+1)\tau since

W2(Mτ(s),Mτ(t))\displaystyle W_{2}(M_{\tau}(s),M_{\tau}(t)) =W2((𝖾𝗑𝗉snτ)𝑭τn,(𝖾𝗑𝗉tnτ)𝑭τn)𝖳𝖷|(ts)v)|2d𝑭τn\displaystyle=W_{2}((\operatorname{\mathsf{exp}}^{s-n\tau})_{\sharp}{\boldsymbol{F}}_{\tau}^{n},(\operatorname{\mathsf{exp}}^{t-n\tau})_{\sharp}{\boldsymbol{F}}_{\tau}^{n})\leq\sqrt{\int_{\mathsf{T\kern-1.5ptX}}|(t-s)v)|^{2}\,\mathrm{d}{\boldsymbol{F}}_{\tau}^{n}}
=(ts)𝖳𝖷|v|2d𝑭τn(ts)L.\displaystyle=(t-s)\sqrt{\int_{\mathsf{T\kern-1.5ptX}}|v|^{2}\,\mathrm{d}{\boldsymbol{F}}_{\tau}^{n}}\leq(t-s)L.

This implies that the metric velocity of MτM_{\tau} is bounded by LL in [0,T][0,T] and therefore MτM_{\tau} is LL-Lipschitz.

Let us recall that for every ν𝒫2(𝖷)\nu\in\mathcal{P}_{2}(\mathsf{X}) and Φ𝒫2(𝖳𝖷)\Phi\in\mathcal{P}_{2}(\mathsf{T\kern-1.5ptX}) the function g(t):=12W22(𝖾𝗑𝗉tΦ,ν)g(t):=\frac{1}{2}W_{2}^{2}(\operatorname{\mathsf{exp}}^{t}_{\sharp}\Phi,\nu) satisfies

tg(t)12t2|Φ|22 is concave,gr(0)=[Φ,ν]r,g(t)[Φ,ν]r+t|Φ|22t0,t\mapsto g(t)-\frac{1}{2}t^{2}|\Phi|_{2}^{2}\text{ is concave},\quad g^{\prime}_{r}(0)=\left[\Phi,\nu\right]_{r},\quad g^{\prime}(t)\leq\left[\Phi,\nu\right]_{r}+t|\Phi|_{2}^{2}\quad t\geq 0, (7.4)

by Definition 3.5 and Proposition 3.4. In particular, the concavity yields the differentiability of gg with at most countable exceptions. Thus, taking any nn\in\mathbb{N}, 0n<N(T,τ)0\leq n<{\mathrm{N}(T,\tau)}, t[nτ,(n+1)τ)t\in[n\tau,(n+1)\tau) and Φ=𝑭τn\Phi={\boldsymbol{F}}_{\tau}^{n} so that 𝖾𝗑𝗉tΦ=Mτ(t)\operatorname{\mathsf{exp}}^{t}_{\sharp}\Phi=M_{\tau}(t), (7.4) yields (IEVI). (7.3) follows by integration in each interval [nτ,(n+1)τ][n\tau,(n+1)\tau]. ∎

In the following, we prove a uniform bound on curves Mτ(μ0,τ,T,L)M_{\tau}\in\mathscr{M}(\mu_{0},\tau,T,L) which is useful to prove global solvability of the Explicit Euler scheme, as stated in Proposition 6.20. We will use the following discrete Gronwall estimate: if a sequence (xn)n(x_{n})_{n\in\mathbb{N}} of positive real numbers satisfies

xn+1xnτy+ταxn,1nN,α0,y0,τ>0,x_{n+1}-x_{n}\leq\tau y+\tau\alpha x_{n},\quad 1\leq n\leq N,\,\alpha\geq 0,\,y\geq 0,\,\tau>0,

then

xn(x0+τny)eαnτ0nN+1.x_{n}\leq(x_{0}+\tau ny)\mathrm{e}^{\alpha n\tau}\quad 0\leq n\leq N+1. (7.5)
Proposition 7.2.

Let 𝐅{\boldsymbol{\mathrm{F}}} be a λ\lambda-dissipative MPVF such that for every R>0R>0 there exist M=M(R)>0M=\mathrm{M}(R)>0 and τ¯=τ¯(R)>0\bar{\tau}=\bar{\tau}(R)>0 such that

μD(𝐅),𝗆2(μ)R, 0<ττ¯Φ𝐅[μ]:|Φ|2M(R),𝖾𝗑𝗉τΦD(𝐅),\mu\in\mathrm{D}({\boldsymbol{\mathrm{F}}}),\ \mathsf{m}_{2}(\mu)\leq R,\ 0<\tau\leq\bar{\tau}\quad\Rightarrow\quad\exists\,\Phi\in{\boldsymbol{\mathrm{F}}}[\mu]:|\Phi|_{2}\leq\mathrm{M}(R),\ \operatorname{\mathsf{exp}}^{\tau}_{\sharp}\Phi\in\mathrm{D}({\boldsymbol{\mathrm{F}}}), (7.6)

then the Explicit Euler scheme is globally solvable in D(𝐅)\mathrm{D}({\boldsymbol{\mathrm{F}}}). More precisely, if for a given μ0D(𝐅)\mu_{0}\in\mathrm{D}({\boldsymbol{\mathrm{F}}}) with Ψ0𝐅[μ0]\Psi_{0}\in{\boldsymbol{\mathrm{F}}}[\mu_{0}], 𝗆0:=𝗆2(μ0),\mathsf{m}_{0}:=\mathsf{m}_{2}(\mu_{0}), and we set

R:=𝗆0+(|Ψ0|2+1)2Te(1+2λ+)T,L:=M(R),𝝉=1L2τ¯(R)T,R:=\mathsf{m}_{0}+\Big{(}|\Psi_{0}|_{2}+1\Big{)}\sqrt{2T}\mathrm{e}^{(1+2\lambda_{+})T},\quad L:=\mathrm{M}(R),\quad\boldsymbol{\tau}=\frac{1}{L^{2}}\land\bar{\tau}(R)\wedge T, (7.7)

then for every τ(0,𝛕]\tau\in(0,\boldsymbol{\tau}] the set (μ0,τ,T,L)\mathscr{E}(\mu_{0},\tau,T,L) is not empty.

Proof.

We want to prove by induction that for every integer NN(T,τ)N\leq{\mathrm{N}(T,\tau)}, (EE) has a solution up to the index NN satisfying the upper bound

𝗆2(MNτ)R,\mathsf{m}_{2}(M^{N}_{\tau})\leq R, (7.8)

corresponding to the constants R,LR,L given by (7.7). For N=0N=0 the statement is trivially satisfied. Assuming that 0N<N(T,τ)0\leq N<{\mathrm{N}(T,\tau)} and elements (Mnτ,𝐅nτ)(M^{n}_{\tau},{\boldsymbol{\mathrm{F}}}^{n}_{\tau}), 0n<N0\leq n<N, MNτM^{N}_{\tau}, are given satisfying (EE) and (7.8), we want to show that we can perform a further step of the Euler Scheme so that (EE) is solvable up to the index N+1N+1 and 𝗆2(MN+1τ)R\mathsf{m}_{2}(M^{N+1}_{\tau})\leq R.

Notice that by the induction hypothesis, for n=0,,N1n=0,\dots,N-1, we have |𝑭nτ|2L|{\boldsymbol{F}}^{n}_{\tau}|_{2}\leq L; since 𝗆2(MNτ)R\mathsf{m}_{2}(M^{N}_{\tau})\leq R, by (7.6) we can select 𝑭Nτ𝐅[MNτ]{\boldsymbol{F}}^{N}_{\tau}\in{\boldsymbol{\mathrm{F}}}[M^{N}_{\tau}] with |𝑭Nτ|2L|{\boldsymbol{F}}^{N}_{\tau}|_{2}\leq L such that MN+1τ=𝖾𝗑𝗉τ𝑭NτD(𝐅)M^{N+1}_{\tau}=\operatorname{\mathsf{exp}}^{\tau}_{\sharp}{\boldsymbol{F}}^{N}_{\tau}\in\mathrm{D}({\boldsymbol{\mathrm{F}}}). Using (7.3) with ν=μ0\nu=\mu_{0}, the λ\lambda-dissipativity with Ψ0𝐅[μ0]\Psi_{0}\in{\boldsymbol{\mathrm{F}}}[\mu_{0}]

[𝑭τn,μ0]rλW22(Mτn,μ0)[Ψ0,Mτn]r,\left[{\boldsymbol{F}}_{\tau}^{n},\mu_{0}\right]_{r}\leq\lambda W_{2}^{2}(M_{\tau}^{n},\mu_{0})-\left[\Psi_{0},M_{\tau}^{n}\right]_{r},

and the bound

[Ψ0,Mτn]r12W22(Mτn,μ0)+12|Ψ0|22,-\left[\Psi_{0},M_{\tau}^{n}\right]_{r}\leq\frac{1}{2}W_{2}^{2}(M_{\tau}^{n},\mu_{0})+\frac{1}{2}|\Psi_{0}|_{2}^{2},

we end up with

12W22(Mτn+1,μ0)12W22(Mτn,μ0)τ22L2+τ(12+λ+)W22(Mτn,μ0)+τ2|Ψ0|22,\frac{1}{2}W_{2}^{2}(M_{\tau}^{n+1},\mu_{0})-\frac{1}{2}W_{2}^{2}(M_{\tau}^{n},\mu_{0})\leq\frac{\tau^{2}}{2}L^{2}+\tau\left(\frac{1}{2}+\lambda_{+}\right)\,W_{2}^{2}(M_{\tau}^{n},\mu_{0})+\frac{\tau}{2}|\Psi_{0}|_{2}^{2},

for every nNn\leq N. Using the Gronwall estimate (7.5) we get

W2(Mτn,μ0)\displaystyle W_{2}(M_{\tau}^{n},\mu_{0}) T+τ(|Ψ0|2+τL)e(12+λ+)(T+τ)2T(|Ψ0|2+1)e(1+2λ+)T\displaystyle\leq\sqrt{T+\tau}\Big{(}|\Psi_{0}|_{2}+\sqrt{\tau}L\Big{)}\mathrm{e}^{(\frac{1}{2}+\lambda_{+})\,(T+\tau)}\leq\sqrt{2T}\Big{(}|\Psi_{0}|_{2}+1\Big{)}\mathrm{e}^{(1+2\lambda_{+})T}

for every nN+1n\leq N+1, so that

𝗆2(MN+1τ)𝗆0+2T(|Ψ0|2+1)e(1+2λ+)TR.\mathsf{m}_{2}(M^{N+1}_{\tau})\leq\mathsf{m}_{0}+\sqrt{2T}\Big{(}|\Psi_{0}|_{2}+1\Big{)}\mathrm{e}^{(1+2\lambda_{+})T}\leq R.\qed

We conclude this section by proving the stability estimate (6.12) of Theorem 6.9. We introduce the notation

Iκ(t):=0teκrdr=1κ(eκt1)if κ0;I0(t):=t.I_{\kappa}(t):=\int_{0}^{t}\mathrm{e}^{\kappa r}\,\mathrm{d}r=\frac{1}{\kappa}(\mathrm{e}^{\kappa t}-1)\quad\text{if }\kappa\neq 0;\quad I_{0}(t):=t.

Notice that for every t0t\geq 0

Iκ(t)teκtif κ0;I_{\kappa}(t)\leq t\mathrm{e}^{\kappa t}\quad\text{if }\kappa\geq 0;\qquad (7.9)
Proposition 7.3.

Let Mτ(μ0,τ,T,L)M_{\tau}\in\mathscr{M}(\mu_{0},\tau,T,L) and Mτ(μ0,τ,T,L)M_{\tau}^{\prime}\in\mathscr{M}(\mu_{0}^{\prime},\tau,T,L). If λ+τ2\lambda_{+}\tau\leq 2 then

W2(Mτ(t),Mτ(t))W2(μ0,μ0)eλt+8Ltτ(1+|λ|tτ)eλ+tW_{2}(M_{\tau}(t),M_{\tau}^{\prime}(t))\leq W_{2}(\mu_{0},\mu_{0}^{\prime})\mathrm{e}^{\lambda t}+8L\sqrt{t\tau}\Big{(}1+|\lambda|\sqrt{t\tau}\Big{)}\mathrm{e}^{\lambda_{+}t}

for every t[0,T]t\in[0,T].

Proof.

Let us set w(t):=W2(Mτ(t),Mτ(t))w(t):=W_{2}(M_{\tau}(t),M_{\tau}^{\prime}(t)). Since by Proposition 3.4(2), in every interval [nτ,(n+1)τ][n\tau,(n+1)\tau] the function tw2(t)4L2(tnτ)2t\mapsto w^{2}(t)-4L^{2}(t-n\tau)^{2} is concave, with

ddtw2(t)|t=nτ+=2[𝑭τ(t),𝑭τ(t)]r2λW22(M¯τ(t),M¯τ(t)),\frac{\mathrm{d}}{\mathrm{d}t}w^{2}(t)\bigg{|}_{t=n\tau+}=2\left[{\boldsymbol{F}}_{\tau}(t),{\boldsymbol{F}}_{\tau}^{\prime}(t)\right]_{r}\leq 2\lambda W_{2}^{2}(\bar{M}_{\tau}(t),\bar{M}_{\tau}^{\prime}(t)),

we obtain

ddtw2(t)2λW22(M¯τ(t),M¯τ(t))+8L2τt[0,T],\frac{\mathrm{d}}{\mathrm{d}t}w^{2}(t)\leq 2\lambda W_{2}^{2}(\bar{M}_{\tau}(t),\bar{M}_{\tau}^{\prime}(t))+8L^{2}\tau\quad t\in[0,T],

with possibly countable exceptions. Using the identity a2b2=2b(ab)+|ab|2a^{2}-b^{2}=2b(a-b)+|a-b|^{2} with a=W2(M¯τ(t),M¯τ(t))a=W_{2}(\bar{M}_{\tau}(t),\bar{M}_{\tau}^{\prime}(t)) and b=W2(Mτ(t),Mτ(t))b=W_{2}(M_{\tau}(t),M_{\tau}^{\prime}(t)) and observing that |ab|W2(M¯τ(t),Mτ(t))+W2(M¯τ(t),Mτ(t))2Lτ|a-b|\leq W_{2}(\bar{M}_{\tau}(t),M_{\tau}(t))+W_{2}(\bar{M}_{\tau}^{\prime}(t),M_{\tau}^{\prime}(t))\leq 2L\tau, we eventually get

ddtw2(t)\displaystyle\frac{\mathrm{d}}{\mathrm{d}t}w^{2}(t) 2λw2(t)+8L2τ+8|λ|Lτw(t)+λ+8L2τ2\displaystyle\leq 2\lambda w^{2}(t)+8L^{2}\tau+8|\lambda|L\tau w(t)+\lambda_{+}8L^{2}\tau^{2}
2λw2(t)+8|λ|Lτw(t)+24L2τ,\displaystyle\leq 2\lambda w^{2}(t)+8|\lambda|L\tau w(t)+24L^{2}\tau,

since λ+τ2\lambda_{+}\tau\leq 2 by assumption. The Gronwall lemma [AGS08, Lemma 4.1.8] and (7.9) yield

w(t)\displaystyle w(t) (w2(0)e2λt+24L2τI2λ(t))1/2+8|λ|LτIλ(t)\displaystyle\leq\Big{(}w^{2}(0)\mathrm{e}^{2\lambda t}+24L^{2}\tau\mathrm{I}_{2\lambda}(t)\Big{)}^{1/2}+8|\lambda|L\tau\mathrm{I}_{\lambda}(t)
w(0)eλt+8Ltτ(1+|λ|tτ)eλ+t.\displaystyle\leq w(0)\mathrm{e}^{\lambda t}+8L\sqrt{t\tau}\Big{(}1+|\lambda|\sqrt{t\tau}\Big{)}\mathrm{e}^{\lambda_{+}t}.\qed

7.2. Error estimates for the Explicit Euler scheme

Theorem 7.4.

Let 𝐅{\boldsymbol{\mathrm{F}}} be a λ\lambda-dissipative MPVF. If Mτ(M0τ,τ,T,L)M_{\tau}\in\mathscr{M}(M^{0}_{\tau},\tau,T,L), Mη(M0η,η,T,L)M_{\eta}\in\mathscr{M}(M^{0}_{\eta},\eta,T,L) with λT(τ+η)1\lambda\sqrt{T(\tau+\eta)}\leq 1, then for every ϑ>1\vartheta>1 there exists a constant C(ϑ)C(\vartheta) such that

W2(Mτ(t),Mη(t))(ϑW2(M0τ,M0η)+C(ϑ)L(τ+η)(t+τ+η))eλ+tW_{2}(M_{\tau}(t),M_{\eta}(t))\leq\Big{(}\sqrt{\vartheta}W_{2}(M^{0}_{\tau},M^{0}_{\eta})+C(\vartheta)L\sqrt{(\tau+\eta)(t+\tau+\eta)}\Big{)}\mathrm{e}^{\lambda_{+}\,t}

for every t[0,T]t\in[0,T].

Proof.

We argue as in the proof of Theorem 6.17 with the aim to gain a convenient order of convergence. Since λ\lambda-dissipativity implies λ\lambda^{\prime}-dissipativity for λλ\lambda^{\prime}\geq\lambda, it is not restrictive to assume λ>0\lambda>0. We set σ:=τ+η\sigma:=\tau+\eta. We will extensively use the a priori bounds (7.1) and (7.2); in particular,

W2(Mτ(t),M¯τ(t))Lτ,W2(Mη(t),M¯η(t))Lη.W_{2}(M_{\tau}(t),\bar{M}_{\tau}(t))\leq L\tau,\quad W_{2}(M_{\eta}(t),\bar{M}_{\eta}(t))\leq L\eta.

We will also extend MτM_{\tau} and M¯τ\bar{M}_{\tau} for negative times by setting

Mτ(t)=M¯τ(t)=M0τ,𝐅τ(t)=M0τδ0if t<0.M_{\tau}(t)=\bar{M}_{\tau}(t)=M^{0}_{\tau},\quad{\boldsymbol{\mathrm{F}}}_{\tau}(t)=M^{0}_{\tau}\otimes\delta_{0}\quad\text{if }t<0. (7.10)

The proof is divided into several steps.

1. Doubling variables.

We fix a final time t[0,T]t\in[0,T] and two variables r,s[0,t]r,s\in[0,t] together with the functions

w(r,s):=\displaystyle w(r,s):={} W2(Mτ(r),Mη(s)),\displaystyle W_{2}(M_{\tau}(r),M_{\eta}(s)),\quad wτ(r,s):=\displaystyle w_{\tau}(r,s):={} W2(M¯τ(r),Mη(s)),\displaystyle W_{2}(\bar{M}_{\tau}(r),M_{\eta}(s)), (7.11)
wη(r,s):=\displaystyle w_{\eta}(r,s):={} W2(Mτ(r),M¯η(s)),\displaystyle W_{2}(M_{\tau}(r),\bar{M}_{\eta}(s)),\quad wτ,η(r,s):=\displaystyle w_{\tau,\eta}(r,s):={} W2(M¯τ(r),M¯η(s)),\displaystyle W_{2}(\bar{M}_{\tau}(r),\bar{M}_{\eta}(s)),

observing that

|wwτ||wηwτ,η|Lτ,|wwη||wτwτ,η|Lη.|w-w_{\tau}|\lor|w_{\eta}-w_{\tau,\eta}|\leq L\tau,\quad|w-w_{\eta}|\lor|w_{\tau}-w_{\tau,\eta}|\leq L\eta. (7.12)

By Proposition 7.1, we can write (IEVI) both for MτM_{\tau} and MηM_{\eta} and we obtain

r12W22(Mτ(r),ν1)\displaystyle\frac{\partial}{\partial r}\frac{1}{2}W_{2}^{2}(M_{\tau}(r),\nu_{1}) τ|𝑭τ(r)|22+[𝑭τ(r),ν1]rν1𝒫2(𝖷)\displaystyle\leq\tau|{\boldsymbol{F}}_{\tau}(r)|_{2}^{2}+\left[{\boldsymbol{F}}_{\tau}(r),\nu_{1}\right]_{r}\quad\forall\nu_{1}\in\mathcal{P}_{2}(\mathsf{X}) (IEVIτ\text{IEVI}_{\tau})
s12W22(Mη(s),ν2)\displaystyle\frac{\partial}{\partial s}\frac{1}{2}W_{2}^{2}(M_{\eta}(s),\nu_{2}) η|𝑭η(s)|22+[𝑭η(s),ν2]r\displaystyle\leq\eta|{\boldsymbol{F}}_{\eta}(s)|_{2}^{2}+\left[{\boldsymbol{F}}_{\eta}(s),\nu_{2}\right]_{r}
η|𝑭η(s)|22+λW22(M¯η(s),ν2)[Φ,M¯η(s)]r,ν2D(𝐅),Φ𝐅[ν2].\displaystyle\leq\eta|{\boldsymbol{F}}_{\eta}(s)|_{2}^{2}+\lambda W_{2}^{2}(\bar{M}_{\eta}(s),\nu_{2})-\left[\Phi,\bar{M}_{\eta}(s)\right]_{r},\quad\forall\nu_{2}\in\mathrm{D}({\boldsymbol{\mathrm{F}}}),\,\Phi\in{\boldsymbol{\mathrm{F}}}[\nu_{2}]. (IEVIη\text{IEVI}_{\eta})

Apart from possible countable exceptions, (IEVIτ\text{IEVI}_{\tau}) holds for r(,t]r\in(-\infty,t] and (IEVIη\text{IEVI}_{\eta}) for s[0,t]s\in[0,t]. Taking ν1=M¯η(s)\nu_{1}=\bar{M}_{\eta}(s), ν2=M¯τ(r)\nu_{2}=\bar{M}_{\tau}(r), Φ=𝑭τ(r0)𝐅[M¯τ(r)]\Phi={\boldsymbol{F}}_{\tau}(r\lor 0)\in{\boldsymbol{\mathrm{F}}}[\bar{M}_{\tau}(r)], summing the two inequalities (IEVIτ,η)(\text{IEVI}_{\tau,\eta}), setting

f(r,s):={2LW2(M¯η(s),Mτ(0))=2Lwη(0,s)if r<0,0if r0,f(r,s):=\begin{cases}2LW_{2}(\bar{M}_{\eta}(s),M_{\tau}(0))=2Lw_{\eta}(0,s)&\text{if }r<0,\\ 0&\text{if }r\geq 0,\end{cases}

using (7.1) and the λ\lambda-dissipativity of 𝐅{\boldsymbol{\mathrm{F}}}, we obtain

rwη2(r,s)+swτ2(r,s)2λwτ,η2(r,s)+2L2σ+f(r,s)\frac{\partial}{\partial r}w_{\eta}^{2}(r,s)+\frac{\partial}{\partial s}w_{\tau}^{2}(r,s)\leq 2\lambda w_{\tau,\eta}^{2}(r,s)+2L^{2}\sigma+f(r,s)

in (,t]×[0,t](-\infty,t]\times[0,t] (see also [NS06, Lemma 6.15]). By multiplying both sides by e2λse^{-2\lambda s}, we have

re2λswη2+se2λswτ2(2λ(wτ,η2wτ2)+f+2L2σ)e2λs.\begin{split}&\frac{\partial}{\partial r}\mathrm{e}^{-2\lambda s}w_{\eta}^{2}+\frac{\partial}{\partial s}\mathrm{e}^{-2\lambda s}w_{\tau}^{2}\leq\Big{(}2\lambda\left(w_{\tau,\eta}^{2}-w_{\tau}^{2}\right)+f+2L^{2}\sigma\Big{)}\mathrm{e}^{-2\lambda s}.\end{split} (7.13)

Using (7.12), the inequality

wτ,η+wτ=wτ,ηwτ+2(wτw)+2w2Lσ+2w,|w(r,s)w(s,s)|L|rs|w_{\tau,\eta}+w_{\tau}=w_{\tau,\eta}-w_{\tau}+2(w_{\tau}-w)+2w\leq 2L\sigma+2w,\quad|w(r,s)-w(s,s)|\leq L|r-s|

and the elementary inequality a2b2|ab||a+b|,a^{2}-b^{2}\leq|a-b||a+b|, we get

2(wτ,η2(r,s)wτ2(r,s))R,R:=4L2σ(σ+|rs|)+4Lσw(s,s)if r,st.2\big{(}w_{\tau,\eta}^{2}(r,s)-w_{\tau}^{2}(r,s)\big{)}\leq R,\quad R:=4L^{2}\sigma(\sigma+|r-s|)+4L\sigma w(s,s)\quad\text{if }r,s\leq t.

Thus (7.13) becomes

re2λswη2+se2λswτ2Z,Z:=(Rλ+f+2L2σ)e2λs.\frac{\partial}{\partial r}\mathrm{e}^{-2\lambda s}w_{\eta}^{2}+\frac{\partial}{\partial s}\mathrm{e}^{-2\lambda s}w_{\tau}^{2}\leq Z,\quad Z:=\Big{(}R\lambda+f+2L^{2}\sigma\Big{)}\mathrm{e}^{-2\lambda s}. (7.14)

2. Penalization.

We fix any ε>0\varepsilon>0 and apply the Divergence Theorem to the inequality (7.14) in the two-dimensional strip Qε0,tQ^{\varepsilon}_{0,t} as in Figure 1 and we get

tεte2λtwτ2(r,t)drε0w2τ(r,0)dr++0te2λs(wτ2(s,s)wη2(s,s))ds+0te2λs(wη2(sε,s)wτ2(sε,s))ds+Q0,tεZdrds.\displaystyle\begin{split}\int_{t-\varepsilon}^{t}&\mathrm{e}^{-2\lambda t}w_{\tau}^{2}(r,t)\,\mathrm{d}r\leq\int_{-\varepsilon}^{0}w^{2}_{\tau}(r,0)\,\mathrm{d}r+\\ &+\int_{0}^{t}\mathrm{e}^{-2\lambda s}\left(w_{\tau}^{2}(s,s)-w_{\eta}^{2}(s,s)\right)\,\mathrm{d}s+\int_{0}^{t}\mathrm{e}^{-2\lambda s}\left(w_{\eta}^{2}(s-\varepsilon,s)-w_{\tau}^{2}(s-\varepsilon,s)\right)\,\mathrm{d}s\\ &+\iint_{Q_{0,t}^{\varepsilon}}Z\,\mathrm{d}r\mathrm{d}s.\end{split} (7.15)

3. Estimates of the RHS.

We want to estimate the integrals (say I0,I1,I2,I3)I_{0},I_{1},I_{2},I_{3}) of the right hand side of (7.15) in terms of

w(s):=w(s,s)andW(t):=sup0steλsw(s).w(s):=w(s,s)\quad\text{and}\quad W(t):=\sup_{0\leq s\leq t}\mathrm{e}^{-\lambda s}w(s).

We easily get

I0=ε0wτ2(r,0)dr=εw2(0).I_{0}=\int_{-\varepsilon}^{0}w_{\tau}^{2}(r,0)\,\mathrm{d}r=\varepsilon w^{2}(0).

(7.12) yields

|wτ(s,s)wη(s,s)|L(τ+η)=Lσ\displaystyle|w_{\tau}(s,s)-w_{\eta}(s,s)|\leq L(\tau+\eta)=L\sigma

and

|w2τ(s,s)w2η(s,s)|Lσ(Lσ+2w(s));|w^{2}_{\tau}(s,s)-w^{2}_{\eta}(s,s)|\leq L\sigma\Big{(}L\sigma+2w(s)\Big{)};

after an integration,

I1\displaystyle I_{1} L2σ2t+2Lσ0te2λsw(s)dsL2σ2t+2LσtW(t).\displaystyle\leq{L^{2}\sigma^{2}t}+2L\sigma\int_{0}^{t}e^{-2\lambda s}w(s)\,\mathrm{d}s\leq L^{2}\sigma^{2}t+2L\sigma tW(t).

Performing the same computations for the third integral term at the RHS of (7.15) we end up with

I2=0te2λs(wη2(sε,s)wτ2(sε,s))dsL2tσ2+2Lσ0te2λsw(sε,s)dsL2σ2t+2L2σεt+2Lσ0te2λsw(s)dsL2σ2t+2L2σεt+2LσtW(t).\begin{split}I_{2}&=\int_{0}^{t}e^{-2\lambda s}\left(w_{\eta}^{2}(s-\varepsilon,s)-w_{\tau}^{2}(s-\varepsilon,s)\right)\,\mathrm{d}s\leq{L^{2}t\sigma^{2}}+2L\sigma\int_{0}^{t}e^{-2\lambda s}w(s-\varepsilon,s)\,\mathrm{d}s\\ &\leq L^{2}\sigma^{2}t+2L^{2}\sigma\varepsilon t+2L\sigma\int_{0}^{t}e^{-2\lambda s}w(s)\,\mathrm{d}s\leq L^{2}\sigma^{2}t+2L^{2}\sigma\varepsilon t+2L\sigma tW(t).\end{split}

Eventually, using the elementary inequalities,

Qε0,tλe2λsdrdsε2,Qε0,te2λsw(s,s)drds=ε0te2λsw(s)ds,\iint_{Q^{\varepsilon}_{0,t}}\lambda\mathrm{e}^{-2\lambda s}\,\mathrm{d}r\,\mathrm{d}s\leq\frac{\varepsilon}{2},\quad\iint_{Q^{\varepsilon}_{0,t}}\mathrm{e}^{-2\lambda s}w(s,s)\,\mathrm{d}r\,\mathrm{d}s=\varepsilon\int_{0}^{t}\mathrm{e}^{-2\lambda s}w(s)\,\mathrm{d}s,

and f(r,s)2L2(η+s)+2Lw(s)f(r,s)\leq 2L^{2}(\eta+s)+2Lw(s) for r<0r<0 and f(r,s)=0f(r,s)=0 for r0r\geq 0, we get

I3\displaystyle I_{3} =Qε0,tZdrds2L2σε(σ+ε)+4Lλσε0te2λsw(s)ds+2L2σεt\displaystyle=\iint_{Q^{\varepsilon}_{0,t}}Z\,\mathrm{d}r\mathrm{d}s\leq 2L^{2}\sigma\varepsilon(\sigma+\varepsilon)+4L\lambda\sigma\varepsilon\int_{0}^{t}\mathrm{e}^{-2\lambda s}w(s)\,\mathrm{d}s+2L^{2}\sigma\varepsilon t
+2Qε0,εt(L2(η+s)+Lw(s))e2λsdrds\displaystyle\qquad+2\iint_{Q^{\varepsilon}_{0,\varepsilon\wedge t}}(L^{2}(\eta+s)+Lw(s))\mathrm{e}^{-2\lambda s}\,\mathrm{d}r\mathrm{d}s
2L2σε(σ+ε)+2L2ε2(σ+ε)+2L2σεt+4LλσεtW(t)+2Lε2W(tε).\displaystyle\leq 2L^{2}\sigma\varepsilon(\sigma+\varepsilon)+2L^{2}\varepsilon^{2}(\sigma+\varepsilon)+2L^{2}\sigma\varepsilon t+4L\lambda\sigma\varepsilon tW(t)+2L\varepsilon^{2}W(t\land\varepsilon).

We eventually get

k=03Ikεw2(0)+2L2σ2t+4L2σεt+2L2ε(σ+ε)2+4Lσ(1+λε)tW(t)+2Lε2W(tε).\sum_{k=0}^{3}I_{k}\leq\varepsilon w^{2}(0)+2L^{2}\sigma^{2}t+4L^{2}\sigma\varepsilon t+2L^{2}\varepsilon(\sigma+\varepsilon)^{2}+4L\sigma(1+\lambda\varepsilon)tW(t)+2L\varepsilon^{2}W(t\land\varepsilon). (7.16)

4. LHS and penalization

We want to use the first integral term in (7.15) to derive a pointwise estimate for w(t)w(t);

(7.2) and (7.11) yield

w(t)=w(t,t)L(tr)+w(r,t)L(τ+|tr|)+wτ(r,t)\displaystyle w(t)=w(t,t)\leq L(t-r)+w(r,t)\leq L(\tau+|t-r|)+w_{\tau}(r,t)

so that we get for every ϑ,ϑ>1\vartheta,\vartheta_{\star}>1 conjugate coefficients

e2λtw2(t)ϑεtεte2λtwτ2(r,t)dr+ϑL2(τ+ε)2ϑε(I0+I1+I2+I3)+ϑL2(τ+ε)2.\mathrm{e}^{-2\lambda t}w^{2}(t)\leq\frac{\vartheta}{\varepsilon}\int_{t-\varepsilon}^{t}e^{-2\lambda t}w_{\tau}^{2}(r,t)\,\mathrm{d}r+\vartheta_{\star}L^{2}(\tau+\varepsilon)^{2}\leq\frac{\vartheta}{\varepsilon}(I_{0}+I_{1}+I_{2}+I_{3})+\vartheta_{\star}L^{2}(\tau+\varepsilon)^{2}.

(7.16) yields

e2λtw2(t)(2ϑ+ϑ)L2(σ+ε)2+ϑ(w2(0)+2L2σ2t/ε+4L2σt)+4L(1+λε)σϑεtW(t)+2LεϑW(tε).\displaystyle\begin{split}\mathrm{e}^{-2\lambda t}w^{2}(t)\leq&(2\vartheta+\vartheta_{\star})L^{2}(\sigma+\varepsilon)^{2}+\vartheta\Big{(}w^{2}(0)+2L^{2}\sigma^{2}t/\varepsilon+4L^{2}\sigma t\Big{)}\\ &+\frac{4L(1+\lambda\varepsilon)\sigma\vartheta}{\varepsilon}tW(t)+2L\varepsilon\vartheta W(t\land\varepsilon).\end{split}

5. Conclusion.

Choosing ε:=σ(σt)\varepsilon:=\sqrt{\sigma(\sigma\lor t)} and assuming λTσ1\lambda\sqrt{T\sigma}\leq 1, we obtain

e2λtw2(t)\displaystyle\mathrm{e}^{-2\lambda t}w^{2}(t) ϑw2(0)+(14ϑ+4ϑ)L2σ(σt)+10ϑLσ(σt)W(t).\displaystyle\leq\vartheta w^{2}(0)+(14\vartheta+4\vartheta_{\star})L^{2}\sigma(\sigma\lor t)+10\vartheta L\sqrt{\sigma(\sigma\lor t)}W(t). (7.17)

Since the right hand side of (7.17) is an increasing function of tt, (7.17) holds even if we substitute the left hand side with e2λsw2(s)\mathrm{e}^{-2\lambda s}w^{2}(s) for every s[0,t]s\in[0,t]; we thus obtain the inequality

W2(t)ϑw2(0)+(14ϑ+4ϑ)L2σ(σt)+10ϑLσ(σt)W(t).W^{2}(t)\leq\vartheta w^{2}(0)+(14\vartheta+4\vartheta_{\star})L^{2}\sigma(\sigma\lor t)+10\vartheta L\sqrt{\sigma(\sigma\lor t)}W(t).

Using the elementary property for positive a,ba,b

W2a+2bWWb+b2+a2b+a,W^{2}\leq a+2bW\quad\Rightarrow\quad W\leq b+\sqrt{b^{2}+a}\leq 2b+\sqrt{a}, (7.18)

we eventually obtain

eλtw(t)\displaystyle\mathrm{e}^{-\lambda t}w(t) (ϑw2(0)+(14ϑ+4ϑ)L2σ(σt))1/2+10ϑLσ(σt)\displaystyle\leq\Big{(}\vartheta w^{2}(0)+(14\vartheta+4\vartheta_{\star})L^{2}\sigma(\sigma\lor t)\Big{)}^{1/2}+10\vartheta L\sqrt{\sigma(\sigma\lor t)}
ϑw(0)+C(ϑ)Lσ(σt),C(ϑ):=(14ϑ+4ϑ)1/2+10ϑ.\displaystyle\leq\sqrt{\vartheta}w(0)+C(\vartheta)L\sqrt{\sigma(\sigma\lor t)},\quad C(\vartheta):=(14\vartheta+4\vartheta_{\star})^{1/2}+10\vartheta.\qed

7.3. Error estimates between discrete and EVI solutions

Theorem 7.5.

Let 𝐅{\boldsymbol{\mathrm{F}}} be a λ\lambda-dissipative MPVF. If μC([0,T];D(𝐅)¯)\mu\in\mathrm{C}([0,T];\overline{\mathrm{D}({\boldsymbol{\mathrm{F}}})}) is a λ\lambda-EVI solution and Mτ(M0τ,τ,T,L)M_{\tau}\in\mathscr{M}(M^{0}_{\tau},\tau,T,L), then for every ϑ>1\vartheta>1 there exists a constant C(ϑ)C(\vartheta) such that

W2(μ(t),Mτ(t))(ϑW2(μ0,M0τ)+C(ϑ)Lτ(t+τ))eλ+tfor every t[0,T].W_{2}(\mu(t),M_{\tau}(t))\leq\Big{(}\sqrt{\vartheta}\,W_{2}(\mu_{0},M^{0}_{\tau})+C(\vartheta)L\sqrt{\tau(t+\tau)}\Big{)}\mathrm{e}^{\lambda_{+}t}\quad\text{for every }t\in[0,T].
Remark 7.6.

When μ0=M0τ\mu_{0}=M^{0}_{\tau} and λ0\lambda\leq 0 we obtain the optimal error estimate

W2(μ(t),Mτ(t))13Lτ(t+τ).W_{2}(\mu(t),M_{\tau}(t))\leq 13L\sqrt{\tau(t+\tau)}.
Proof.

We repeat the same argument of the previous proof, still assuming λ>0\lambda>0, extending Mτ,M¯τ,𝑭¯τM_{\tau},\bar{M}_{\tau},\bar{\boldsymbol{F}}_{\tau} as in (7.10) and setting

w(r,s):=W2(Mτ(r),μ(s)),wτ(r,s):=W2(M¯τ(r),μ(s)).w(r,s):=W_{2}(M_{\tau}(r),\mu(s)),\quad w_{\tau}(r,s):=W_{2}(\bar{M}_{\tau}(r),\mu(s)).

We use (λ\lambda-EVI) for μ(s)\mu(s) with ν=M¯τ(r)\nu=\bar{M}_{\tau}(r) and Φ=𝐅τ(r0)\Phi={\boldsymbol{\mathrm{F}}}_{\tau}(r\lor 0) and (IEVI) for Mτ(r)M_{\tau}(r) with ν=μ(s)\nu=\mu(s) obtaining

re2λs2W22(Mτ(r),μ(s))\displaystyle\frac{\partial}{\partial r}\frac{\mathrm{e}^{-2\lambda s}}{2}W_{2}^{2}(M_{\tau}(r),\mu(s)) e2λs(τ|𝑭τ(r)|22+[𝑭τ(r),μ(s)]r)\displaystyle\leq\mathrm{e}^{-2\lambda s}\Big{(}\tau|{\boldsymbol{F}}_{\tau}(r)|_{2}^{2}+\left[{\boldsymbol{F}}_{\tau}(r),\mu(s)\right]_{r}\Big{)} s[0,T],r(,T)\displaystyle s\in[0,T],r\in(-\infty,T)
se2λs2W22(μ(s),M¯τ(r))\displaystyle\frac{\partial}{\partial s}\frac{\mathrm{e}^{-2\lambda s}}{2}W_{2}^{2}(\mu(s),\bar{M}_{\tau}(r)) e2λs[𝑭τ(r0),μ(s)]r\displaystyle\leq-\mathrm{e}^{-2\lambda s}\left[{\boldsymbol{F}}_{\tau}(r\lor 0),\mu(s)\right]_{r} in 𝒟(0,T)r(,T).\displaystyle\text{in $\mathscr{D}^{\prime}(0,T)$, }r\in(-\infty,T).

Using [NS06, Lemma 6.15] we can sum the two contributions obtaining

re2λsw2(r,s)+se2λswτ2(r,s)Z,Z:=(2L2τ+2f(r,s))e2λs,\frac{\partial}{\partial r}\mathrm{e}^{-2\lambda s}w^{2}(r,s)+\frac{\partial}{\partial s}\mathrm{e}^{-2\lambda s}w_{\tau}^{2}(r,s)\leq Z,\quad Z:=(2L^{2}\tau+2f(r,s))\mathrm{e}^{-2\lambda s},

where

f(r,s):={LW2(Mτ(0),μ(s))=Lw(0,s)if r<0,0if r0.f(r,s):=\begin{cases}LW_{2}(M_{\tau}(0),\mu(s))=Lw(0,s)&\text{if }r<0,\\ 0&\text{if }r\geq 0.\end{cases}

Let t[0,T]t\in[0,T] and ε>0\varepsilon>0. Applying the Divergence Theorem in Q0,tεQ_{0,t}^{\varepsilon} (see Figure 1) we get

tεte2λtwτ2(r,t)drε0wτ2(r,0)dr+0te2λs(wτ2(s,s)w2(s,s))ds+0te2λs(w2(sε,s)wτ2(sε,s))ds+Q0,tεZdrds.\displaystyle\begin{split}\int_{t-\varepsilon}^{t}&\mathrm{e}^{-2\lambda t}w_{\tau}^{2}(r,t)\,\mathrm{d}r\leq\int_{-\varepsilon}^{0}w_{\tau}^{2}(r,0)\,\mathrm{d}r\\ &+\int_{0}^{t}\mathrm{e}^{-2\lambda s}\left(w_{\tau}^{2}(s,s)-w^{2}(s,s)\right)\,\mathrm{d}s+\int_{0}^{t}\mathrm{e}^{-2\lambda s}\left(w^{2}(s-\varepsilon,s)-w_{\tau}^{2}(s-\varepsilon,s)\right)\,\mathrm{d}s\\ &+\iint_{Q_{0,t}^{\varepsilon}}Z\,\mathrm{d}r\mathrm{d}s.\end{split} (7.19)

Using

w(t,t)w(r,t)+L(tr)wτ(r,t)+L(τ+ε)if tεrt,w(t,t)\leq w(r,t)+L(t-r)\leq w_{\tau}(r,t)+L(\tau+\varepsilon)\quad\text{if }t-\varepsilon\leq r\leq t,

we get for every ϑ,ϑ>1\vartheta,\vartheta_{\star}>1 conjugate coefficients (ϑ=ϑ/(ϑ1)\vartheta_{\star}=\vartheta/(\vartheta-1))

e2λtw2(t)ϑεtεte2λtwτ2(r,t)dr+ϑL2(τ+ε)2.\mathrm{e}^{-2\lambda t}w^{2}(t)\leq\frac{\vartheta}{\varepsilon}\int_{t-\varepsilon}^{t}e^{-2\lambda t}w_{\tau}^{2}(r,t)\,\mathrm{d}r+\vartheta_{\star}L^{2}(\tau+\varepsilon)^{2}. (7.20)

Similarly to (7.12) we have

|wτ(s,s)w(s,s)|Lτ,|w2τ(s,s)w2(s,s)|Lτ(Lτ+2w(s))\displaystyle|w_{\tau}(s,s)-w(s,s)|\leq L\tau,\quad|w^{2}_{\tau}(s,s)-w^{2}(s,s)|\leq L\tau\Big{(}L\tau+2w(s)\Big{)}

and, after an integration,

0te2λs(w2τ(s,s)w2(s,s))dsL2tτ2+2Lτ0te2λsw(s)ds.\displaystyle\int_{0}^{t}e^{-2\lambda s}\left(w^{2}_{\tau}(s,s)-w^{2}(s,s)\right)\,\mathrm{d}s\leq{L^{2}t\tau^{2}}+2L\tau\int_{0}^{t}e^{-2\lambda s}w(s)\,\mathrm{d}s. (7.21)

Performing the same computations for the third integral term at the RHS of (7.19) we end up with

0te2λs(w2(sε,s)wτ2(sε,s))dsL2tτ2+2Lτ0te2λsw(sε,s)dsL2tτ(τ+2ε)+2Lτ0te2λsw(s)ds.\begin{split}\int_{0}^{t}&e^{-2\lambda s}\left(w^{2}(s-\varepsilon,s)-w_{\tau}^{2}(s-\varepsilon,s)\right)\,\mathrm{d}s\leq{L^{2}t\tau^{2}}+2L\tau\int_{0}^{t}e^{-2\lambda s}w(s-\varepsilon,s)\,\mathrm{d}s\\ &\leq L^{2}t\tau(\tau+2\varepsilon)+2L\tau\int_{0}^{t}e^{-2\lambda s}w(s)\,\mathrm{d}s.\end{split} (7.22)

Finally, since if r<0r<0 we have f(r,s)=Lw(0,s)L2s+Lw(s,s)f(r,s)=Lw(0,s)\leq L^{2}s+Lw(s,s), then

ε1Qε0,tZdrds\displaystyle\varepsilon^{-1}\iint_{Q^{\varepsilon}_{0,t}}Z\,\mathrm{d}r\mathrm{d}s 2L2tτ+ε1Qε0,εt2f(r,s)e2λsdrds\displaystyle\leq 2L^{2}t\tau+\varepsilon^{-1}\iint_{Q^{\varepsilon}_{0,\varepsilon\land t}}2f(r,s)\mathrm{e}^{-2\lambda s}\,\mathrm{d}r\mathrm{d}s
2L2tτ+L2ε2+2Lεsup0sεteλsw(s).\displaystyle\leq 2L^{2}t\tau+L^{2}\varepsilon^{2}+2L\varepsilon\sup_{0\leq s\leq\varepsilon\land t}\mathrm{e}^{-\lambda s}w(s). (7.23)

Using (7.21), (7.22), (7.23) in (7.19), we can rewrite the bound in (7.20) as

e2λtw2(t)ϑL2(τ+ε)2+ϑ(w2(0)+2L2tτ2/ε+2L2tτ+L2ε2+2Lεsup0sεteλsw(s))+4ϑLτε0te2λsw(s)ds.\displaystyle\begin{split}\mathrm{e}^{-2\lambda t}w^{2}(t)&\leq\vartheta_{\star}L^{2}(\tau+\varepsilon)^{2}+\vartheta\Big{(}w^{2}(0)+2L^{2}t\tau^{2}/\varepsilon+2L^{2}t\tau+L^{2}\varepsilon^{2}+2L\varepsilon\sup_{0\leq s\leq\varepsilon\land t}\mathrm{e}^{-\lambda s}w(s)\Big{)}\\ &\quad+\frac{4\vartheta L\tau}{\varepsilon}\int_{0}^{t}e^{-2\lambda s}w(s)\,\mathrm{d}s.\end{split}

Choosing ε:=τ(τt)\varepsilon:=\sqrt{\tau(\tau\lor t)} we get

e2λtw2(t)4ϑL2τ(tτ)+ϑ(w2(0)+5L2τ(tτ))+6ϑLτ(tτ)sup0steλsw(s).\mathrm{e}^{-2\lambda t}w^{2}(t)\leq 4\vartheta_{\star}L^{2}\tau(t\lor\tau)+\vartheta\Big{(}w^{2}(0)+5L^{2}\tau(t\lor\tau)\Big{)}+6\vartheta L\sqrt{\tau(t\lor\tau)}\sup_{0\leq s\leq t}\mathrm{e}^{-\lambda s}w(s).

A further application of (7.18) yields

eλtw(t)\displaystyle\mathrm{e}^{-\lambda t}w(t) (ϑw2(0)+(5ϑ+4ϑ)L2τ(tτ))1/2+6ϑLτ(tτ)\displaystyle\leq\Big{(}\vartheta w^{2}(0)+(5\vartheta+4\vartheta_{\star})L^{2}\tau(t\lor\tau)\Big{)}^{1/2}+6\vartheta L\sqrt{\tau(t\lor\tau)}
ϑw(0)+C(ϑ)Lt+ττ,C(ϑ):=(5ϑ+4ϑ)1/2+6ϑ.\displaystyle\leq\sqrt{\vartheta}w(0)+C(\vartheta)L\sqrt{t+\tau}\sqrt{\tau},\quad C(\vartheta):=(5\vartheta+4\vartheta_{\star})^{1/2}+6\vartheta.\qed

As proved in the following, the limit curve of the interpolants (Mτ)τ>0(M_{\tau})_{\tau>0} of the Euler Scheme defined in (6.10) is actually a λ\lambda-EVI solution of (6.1).

Theorem 7.7.

Let 𝐅{\boldsymbol{\mathrm{F}}} be a λ\lambda-dissipative MPVF and let nτ(n)n\mapsto\tau(n) be a vanishing sequence of time steps, let (μ0,n)n(\mu_{0,n})_{n\in\mathbb{N}} be a sequence in D(𝐅)\mathrm{D}({\boldsymbol{\mathrm{F}}}) converging to μ0D(𝐅)¯\mu_{0}\in\overline{\mathrm{D}({\boldsymbol{\mathrm{F}}})} in 𝒫2(𝖷)\mathcal{P}_{2}(\mathsf{X}) and let Mn(μ0,n,τ(n),T,L)M_{n}\in\mathscr{M}(\mu_{0,n},\tau(n),T,L). Then MnM_{n} is uniformly converging to a limit curve μLip([0,T];D(𝐅)¯)\mu\in\mathrm{Lip}([0,T];\overline{\mathrm{D}({\boldsymbol{\mathrm{F}}})}) which is a λ\lambda-EVI solution starting from μ0\mu_{0}.

Proof.

Theorem 7.4 shows that MnM_{n} is a Cauchy sequence in C([0,T];D(𝐅)¯)\mathrm{C}([0,T];\overline{\mathrm{D}({\boldsymbol{\mathrm{F}}})}), so that there exists a unique limit curve μ\mu as nn\to\infty. μ\mu is also LL-Lipschitz; moreover we observe that

W2(M¯τ(t),Mτ(t))=W2(Mτ(tττ),Mτ(t))Lτ, for any t[0,T]W_{2}(\bar{M}_{\tau}(t),M_{\tau}(t))=W_{2}\left(M_{\tau}\left(\left\lfloor\frac{t}{\tau}\right\rfloor\tau\right),M_{\tau}(t)\right)\leq L\tau,\quad\text{ for any }t\in[0,T] (7.24)

so that μ\mu is also the uniform limit of M¯τ(n)\bar{M}_{\tau(n)}.
Let us fix a reference measure νD(𝐅)\nu\in\mathrm{D}({\boldsymbol{\mathrm{F}}}) and Φ𝐅[ν]\Phi\in{\boldsymbol{\mathrm{F}}}[\nu]. (IEVI) and the λ\lambda-dissipativity of 𝐅{\boldsymbol{\mathrm{F}}} yield

ddt12W22(Mn(t),ν)\displaystyle\frac{\,\mathrm{d}}{\,\mathrm{d}t}\frac{1}{2}W_{2}^{2}(M_{n}(t),\nu) τ(n)|𝑭τ(n)(t)|22+[𝑭τ(n),ν]r\displaystyle\leq\tau(n)|{\boldsymbol{F}}_{\tau(n)}(t)|_{2}^{2}+\left[{\boldsymbol{F}}_{\tau(n)},\nu\right]_{r}
τ(n)L2+λW22(M¯τ(n)(t),ν)[Φ,M¯τ(n)(t)]r\displaystyle\leq\tau(n)\,L^{2}+\lambda W_{2}^{2}(\bar{M}_{\tau(n)}(t),\nu)-\left[\Phi,\bar{M}_{\tau(n)}(t)\right]_{r}

for a.e. t[0,T]t\in[0,T]. Integrating the above inequality in an interval (t,t+h)[0,T](t,t+h)\subset[0,T] we get

W22(Mn(t+h),ν)W22(Mn(t),ν)2h\displaystyle\frac{W_{2}^{2}(M_{n}(t+h),\nu)-W_{2}^{2}(M_{n}(t),\nu)}{2h} τ(n)L2\displaystyle\leq\tau(n)L^{2} (7.25)
+1htt+h(λW22(M¯τ(n)(s),ν)[Φ,M¯τ(n)(s)]r)ds.\displaystyle+\frac{1}{h}\int_{t}^{t+h}\Big{(}\lambda W_{2}^{2}(\bar{M}_{\tau(n)}(s),\nu)-\left[\Phi,\bar{M}_{\tau(n)}(s)\right]_{r}\Big{)}\,\mathrm{d}s.

Notice that as n+n\to+\infty, by (7.24), we have

lim infn+[Φ,M¯τ(n)(s)]r[Φ,μ(s)]rfor every s[0,T]\liminf_{n\to+\infty}\left[\Phi,\bar{M}_{\tau(n)}(s)\right]_{r}\geq\left[\Phi,\mu(s)\right]_{r}\quad\text{for every }s\in[0,T]

together with the uniform bound given by

|[Φ,M¯τ(n)(s)]r|12W22(M¯τ(n)(s),ν)+12|Φ|22for every s[0,T].\displaystyle\left|\left[\Phi,\bar{M}_{\tau(n)}(s)\right]_{r}\right|\leq\frac{1}{2}W_{2}^{2}(\bar{M}_{\tau(n)}(s),\nu)+\frac{1}{2}|\Phi|_{2}^{2}\quad\text{for every }s\in[0,T].

Thanks to Fatou’s Lemma and the uniform convergence given by Theorem 7.4, we can pass to the limit as n+n\to+\infty in (7.25) obtaining

W22(μ(t+h),ν)W22(μ(t),ν)2h1htt+h(λW22(μ(s),ν)[Φ,μ(s)]r)ds.\frac{W_{2}^{2}(\mu(t+h),\nu)-W_{2}^{2}(\mu(t),\nu)}{2h}\leq\frac{1}{h}\int_{t}^{t+h}\Big{(}\lambda W_{2}^{2}(\mu(s),\nu)-\left[\Phi,\mu(s)\right]_{r}\Big{)}\,\mathrm{d}s.

A further limit as h0h\downarrow 0 yields

12ddt+W22(μ(t),ν)λW22(μ(t),ν)[Φ,μ(t)]r\frac{1}{2}{\frac{\mathrm{d}}{\mathrm{d}t}}^{\kern-3.0pt+}W_{2}^{2}(\mu(t),\nu)\leq\lambda W_{2}^{2}(\mu(t),\nu)-\left[\Phi,\mu(t)\right]_{r}

which provides (λ\lambda-EVI). ∎

Appendix A Comparison with [Pic19]

In this section, we provide a brief comparison between the assumptions we required in order to develop a strong concept of solution to (6.1) and the hypotheses assumed in [Pic19]. We remind that the relation between our solution and the weaker notion studied in [Pic19] was exploited in Section 6.5. Here, we conclude with a further remark coming from the connections between our approximating scheme proposed in (EE) and the schemes proposed in [Cam+21] and [Pic19].

We consider a finite time horizon [0,T][0,T] with T>0T>0, the space 𝖷=d\mathsf{X}=\mathbb{R}^{d} and we deal with measures in 𝒫b(d)\mathcal{P}_{b}(\mathbb{R}^{d}) and in 𝒫b(𝖳d)\mathcal{P}_{b}(\mathsf{T}\mathbb{R}^{d}), i.e. compactly supported. We also deal with single-valued probability vector fields (PVF) for simplicity, which can be considered as everywhere defined maps 𝐅:𝒫b(d)𝒫b(𝖳d){\boldsymbol{\mathrm{F}}}:\mathcal{P}_{b}(\mathbb{R}^{d})\to\mathcal{P}_{b}(\mathsf{T}\mathbb{R}^{d}) such that 𝗑𝐅[ν]=ν\mathsf{x}_{\sharp}{\boldsymbol{\mathrm{F}}}[\nu]=\nu. This is indeed the framework examined in [Pic19].

We start by recalling the assumptions required in [Pic19] for a PVF 𝐅:𝒫b(d)𝒫b(𝖳d){\boldsymbol{\mathrm{F}}}:\mathcal{P}_{b}(\mathbb{R}^{d})\to\mathcal{P}_{b}(\mathsf{T}\mathbb{R}^{d}).

  1. (H1)

    there exists a constant M>0M>0 such that for all ν𝒫b(d)\nu\in\mathcal{P}_{b}(\mathbb{R}^{d}),

    sup(x,v)supp(𝐅[ν])|v|M(1+supxsupp(ν)|x|);\sup_{(x,v)\in\operatorname{supp}({\boldsymbol{\mathrm{F}}}[\nu])}|v|\leq M\left(1+\sup_{x\in\operatorname{supp}(\nu)}|x|\right);
  2. (H2)

    𝐅{\boldsymbol{\mathrm{F}}} satisfies the following Lipschitz condition: there exists a constant L0L\geq 0 such that for every Φ=𝐅[ν],Φ=𝐅[ν]\Phi={\boldsymbol{\mathrm{F}}}[\nu],\ \Phi^{\prime}={\boldsymbol{\mathrm{F}}}[\nu^{\prime}] there exists 𝚯Λ(Φ,Φ)\boldsymbol{\Theta}\in\Lambda(\Phi,\Phi^{\prime}) satisfying

    𝖳d×𝖳d|v0v1|2d𝚯(x0,v0,x1,v1)L2W22(ν,ν),\int_{\mathsf{T}\mathbb{R}^{d}\times\mathsf{T}\mathbb{R}^{d}}|v_{0}-v_{1}|^{2}\,\mathrm{d}\boldsymbol{\Theta}(x_{0},v_{0},x_{1},v_{1})\leq L^{2}W_{2}^{2}(\nu,\nu^{\prime}),

    with Λ(,)\Lambda(\cdot,\cdot) as in Definition 3.8.

Remark A.1.

We stress that actually in [Pic19] condition (H2) is local, meaning that LL is allowed to depend on the radius RR of a ball centered at 0 and containing the supports of ν\nu and ν\nu^{\prime}. Thanks to assumption (H1), it is easy to show that for every final time TT all the discrete solutions of the Explicit Euler scheme and of the scheme of [Pic19] starting from an initial measure with support in B(0,R)\mathrm{B}(0,R) are supported in a ball B(0,R)\mathrm{B}(0,R^{\prime}) where RR^{\prime} solely depends on RR and TT. We can thus restrict the PVF 𝐅{\boldsymbol{\mathrm{F}}} to the (geodesically convex) set of measures with support in B(0,R)\mathrm{B}(0,R^{\prime}) and act as LL does not depend on the support of the measures.

Proposition A.2.

If 𝐅:𝒫b(d)𝒫b(𝖳d){\boldsymbol{\mathrm{F}}}:\mathcal{P}_{b}(\mathbb{R}^{d})\to\mathcal{P}_{b}(\mathsf{T}\mathbb{R}^{d}) is a PVF satisfying (H2), then 𝐅{\boldsymbol{\mathrm{F}}} is λ\lambda-dissipative for λ=L2+12\lambda=\frac{L^{2}+1}{2}, the Explicit Euler scheme is globally solvable in D(𝐅)\mathrm{D}({\boldsymbol{\mathrm{F}}}), and 𝐅{\boldsymbol{\mathrm{F}}} generates a λ\lambda-flow, whose trajectories are the limit of the Explicit Euler scheme in each finite interval [0,T][0,T].

Proof.

The λ\lambda-dissipativity comes from Lemma 4.7. We prove that (6.30) holds. Let νD(𝐅)\nu\in\mathrm{D}({\boldsymbol{\mathrm{F}}}) and take 𝚯Λ(𝐅[ν],𝐅[δ0])\boldsymbol{\Theta}\in\Lambda({\boldsymbol{\mathrm{F}}}[\nu],{\boldsymbol{\mathrm{F}}}[\delta_{0}]) such that

𝖳d×𝖳d|vv|2d𝚯L2W22(ν,δ0)=L2𝗆22(ν).\int_{\mathsf{T}\mathbb{R}^{d}\times\mathsf{T}\mathbb{R}^{d}}|v^{\prime}-v^{\prime\prime}|^{2}\,\mathrm{d}\boldsymbol{\Theta}\leq L^{2}W_{2}^{2}(\nu,\delta_{0})=L^{2}\mathsf{m}_{2}^{2}(\nu).

Since 𝐅[δ0]𝒫c(𝖳d){\boldsymbol{\mathrm{F}}}[\delta_{0}]\in\mathcal{P}_{c}(\mathsf{T}\mathbb{R}^{d}) by assumption, there exists D>0D>0 such that supp(𝗏𝐅[δ0])BD(0)\operatorname{supp}(\mathsf{v}_{\sharp}{\boldsymbol{\mathrm{F}}}[\delta_{0}])\subset B_{D}(0). Hence, we have

L2𝗆22(ν)\displaystyle L^{2}\mathsf{m}_{2}^{2}(\nu) 𝖳d×𝖳d|vv|2d𝚯𝖳d×𝖳d[|v|D]+2d𝚯\displaystyle\geq\int_{\mathsf{T}\mathbb{R}^{d}\times\mathsf{T}\mathbb{R}^{d}}|v^{\prime}-v^{\prime\prime}|^{2}\,\mathrm{d}\boldsymbol{\Theta}\geq\int_{\mathsf{T}\mathbb{R}^{d}\times\mathsf{T}\mathbb{R}^{d}}[|v^{\prime}|-D]_{+}^{2}\,\mathrm{d}\boldsymbol{\Theta}
𝖳d|v|2d𝐅[ν]2D𝖳d|v|d𝐅[ν],\displaystyle\geq\int_{\mathsf{T}\mathbb{R}^{d}}|v^{\prime}|^{2}\,\mathrm{d}{\boldsymbol{\mathrm{F}}}[\nu]-2D\int_{\mathsf{T}\mathbb{R}^{d}}|v^{\prime}|\,\mathrm{d}{\boldsymbol{\mathrm{F}}}[\nu],

where [.]+[\,.\,]_{+} denotes the positive part. By the trivial estimate |v|D+|v|24D|v^{\prime}|\leq D+\frac{|v^{\prime}|^{2}}{4D}, we conclude

|𝐅[ν]|222(2D2+L2𝗆22(ν)).|{\boldsymbol{\mathrm{F}}}[\nu]|_{2}^{2}\leq 2\left(2D^{2}+L^{2}\mathsf{m}_{2}^{2}(\nu)\right).

Hence (6.30) and thus the global solvability of the Explicit Euler scheme in D(𝐅)\mathrm{D}({\boldsymbol{\mathrm{F}}}) by Proposition 6.20. To conclude it is enough to apply Theorem 6.22(a) and Theorem 7.7. ∎

It is immediate to notice that the semi-discrete Lagrangian scheme proposed in [Cam+21] coincides with the Explicit Euler Scheme given in Definition 6.8. In particular, we can state the following comparison between the limit obtained by the Explicit Euler scheme (EE) (leading to the λ\lambda-EVI solution of (6.1)) and that of the approximating LASs scheme proposed in [Pic19] (leading to a barycentric solution to (6.1) in the sense of Definition 6.25).

Corollary A.3.

Let 𝐅{\boldsymbol{\mathrm{F}}} be a PVF satisfying (H1)-(H2), μ0𝒫b(d)\mu_{0}\in\mathcal{P}_{b}(\mathbb{R}^{d}) and let T(0,+)T\in(0,+\infty). Let (nk)k(n_{k})_{k\in\mathbb{N}} be a sequence such that the LASs scheme (μnk)k(\mu^{n_{k}})_{k\in\mathbb{N}} of [Pic19, Definition 3.1] converges uniformly-in-time and let (Mτk)k(M_{\tau_{k}})_{k\in\mathbb{N}} be the affine interpolants of the Explicit Euler Scheme defined in (6.10), with τk=Tnk\tau_{k}=\frac{T}{n_{k}}. Then (μnk)k(\mu^{n_{k}})_{k\in\mathbb{N}} and (Mτk)k(M_{\tau_{k}})_{k\in\mathbb{N}} converge to the same limit curve μC([0,T];𝒫b(d))\mu\in\mathrm{C}([0,T];\mathcal{P}_{b}(\mathbb{R}^{d})), which is the unique λ\lambda-EVI solution of (6.1) in [0,T][0,T].

Proof.

By Proposition A.2, 𝐅{\boldsymbol{\mathrm{F}}} is a (L2+12)\left(\frac{L^{2}+1}{2}\right)-dissipative MPVF s.t. missingM(μ0,τ,T,L~)\mathrm{\mathcal{missing}}{M}(\mu_{0},\tau,T,\tilde{L})\neq\emptyset for every τ>0\tau>0, where L~>0\tilde{L}>0 is a suitable constant depending on μ0\mu_{0} and 𝐅{\boldsymbol{\mathrm{F}}}. Thus by Theorem 7.7, (Mτk)k(M_{\tau_{k}})_{k\in\mathbb{N}} uniformly converges to a λ\lambda-EVI solution μC([0,T];𝒫2(d))\mu\in\mathrm{C}([0,T];\mathcal{P}_{2}(\mathbb{R}^{d})) which is unique since 𝐅{\boldsymbol{\mathrm{F}}} generates a (L2+12)\left(\frac{L^{2}+1}{2}\right)-flow. Since we start from a compactly supported μ0\mu_{0}, the semi-discrete Lagrangian scheme of [Cam+21] and our Euler Scheme actually coincide. To conclude we apply [Cam+21, Theorem 4.1] obtaining that μ\mu is also the limit of the LASs scheme. ∎

We conclude that among the possibly not-unique (see [Cam+21]) barycentric solutions to (6.1) - i.e. the solutions in the sense of [Pic19]/Definition 6.25 - we are selecting only one (the λ\lambda-EVI solution), which turns out to be the one associated with the LASs approximating scheme.

In light of this observation, we revisit an interesting example studied in [Pic19, Section 7.1] and [Cam+21, Section 6].

Example A.4 (Splitting particle).

For every ν𝒫b()\nu\in\mathcal{P}_{b}(\mathbb{R}) define:

B(ν):=sup{x:ν(],x])12},η(ν):=ν(],B(ν)])12,B(\nu):=\sup\left\{x:\nu(]-\infty,x])\leq\frac{1}{2}\right\},\qquad\eta(\nu):=\nu(]-\infty,B(\nu)])-\frac{1}{2},

so that ν({B(ν)})=η(ν)+12ν(],B(ν)[)\nu(\{B(\nu)\})=\eta(\nu)+\frac{1}{2}-\nu(]-\infty,B(\nu)[). We define the PVF 𝐅[ν]:=𝐅x[ν]dν(x){\boldsymbol{\mathrm{F}}}[\nu]:=\int{\boldsymbol{\mathrm{F}}}_{x}[\nu]\,\mathrm{d}\nu(x), by

𝐅x[ν]:={δ1ifx<B(ν)δ1ifx>B(ν)1ν({B(ν)})(ηδ1+(12ν(],B(ν)[))δ1)ifx=B(ν),ν({B(ν)})>0.{\boldsymbol{\mathrm{F}}}_{x}[\nu]:=\left\{\begin{array}[]{ll}\delta_{-1}&\textrm{if}\ x<B(\nu)\\ \delta_{1}&\textrm{if}\ x>B(\nu)\\ \frac{1}{\nu(\{B(\nu)\})}\left(\eta\delta_{1}+\left(\frac{1}{2}-\nu(]-\infty,B(\nu)[)\right)\delta_{-1}\right)&\textrm{if}\ x=B(\nu),\nu(\{B(\nu)\})>0.\end{array}\right.

By [Pic19, Proposition 7.2], 𝐅{\boldsymbol{\mathrm{F}}} satisfies assumptions (H1)-(H2) with L=0L=0 and the LASs scheme admits a unique limit. Moreover, the solution μ:[0,T]𝒫b()\mu:[0,T]\to\mathcal{P}_{b}(\mathbb{R}) obtained as limit of LASs, is given by

μt(A)=μ0((A],B(μ0)t[)+t)+μ0((A]B(μ0)+t,+[)t)+1μ0({B(μ0)})(ηδB(μ0)+t(A)+(12μ0(],B(μ0)[))δB(μ0)t(A)).\begin{split}\mu_{t}(A)=&\mu_{0}((A\cap]-\infty,B(\mu_{0})-t[)+t)+\mu_{0}((A\cap]B(\mu_{0})+t,+\infty[)-t)\\ &+\frac{1}{\mu_{0}(\{B(\mu_{0})\})}\left(\eta\delta_{B(\mu_{0})+t}(A)+(\frac{1}{2}-\mu_{0}(]-\infty,B(\mu_{0})[))\delta_{B(\mu_{0})-t}(A)\right).\end{split} (A.1)

By Corollary A.3, (A.1) is the (unique) λ\lambda-EVI solution of (6.1). In particular:

  • i)

    if μ0=1ba[a,b]\mu_{0}=\frac{1}{b-a}\mathcal{L}\llcorner_{[a,b]}, i.e. the normalized Lebesgue measure restricted to [a,b][a,b], we get μt=1ba[at,a+b2t]+1ba[a+b2+t,b+t]\mu_{t}=\frac{1}{b-a}\mathcal{L}\llcorner_{[a-t,\frac{a+b}{2}-t]}+\frac{1}{b-a}\mathcal{L}\llcorner_{[\frac{a+b}{2}+t,b+t]};

  • ii)

    if μ0=δx0\mu_{0}=\delta_{x_{0}}, we get μt=12δx0+t+12δx0t\mu_{t}=\frac{1}{2}\delta_{x_{0}+t}+\frac{1}{2}\delta_{x_{0}-t}.

Notice that, in case (i), since μt\mu_{t}\ll\mathcal{L} for all t(0,T)t\in(0,T), i.e. μt𝒫2r()\mu_{t}\in\mathcal{P}_{2}^{r}(\mathbb{R}), we can also apply Theorem 6.30 to conclude that μ\mu is the λ\lambda-EVI solution of (6.1) with μ0=1ba[a,b]\mu_{0}=\frac{1}{b-a}\mathcal{L}\llcorner_{[a,b]}. Moreover, take ε>0\varepsilon>0, and consider case (i) where we denote by με0\mu^{\varepsilon}_{0} the initial datum and by με\mu^{\varepsilon} the corresponding λ\lambda-EVI solution to (6.1) with a=x0εa=x_{0}-\varepsilon, b=x0+εb=x_{0}+\varepsilon. We can apply (6.31) with μ0=μ0ε\mu_{0}=\mu_{0}^{\varepsilon} and μ1=δx0\mu_{1}=\delta_{x_{0}} in order to give another proof that, for all t[0,T]t\in[0,T], the W2W_{2}-limit of St[μ0ε]S_{t}[\mu_{0}^{\varepsilon}] as ε0\varepsilon\downarrow 0, that is St[δx0]=12δx0+t+12δx0tS_{t}[\delta_{x_{0}}]=\frac{1}{2}\delta_{x_{0}+t}+\frac{1}{2}\delta_{x_{0}-t}, is a λ\lambda-EVI solution starting from δx0\delta_{x_{0}}. Thus we end up with (ii).

Dealing with case (ii), we recall that, if μ0=δx0\mu_{0}=\delta_{x_{0}} then also the stationary curve μ¯t=δx0\bar{\mu}_{t}=\delta_{x_{0}}, for all t[0,T]t\in[0,T], satisfies the barycentric property of Definition 6.25 (see [Cam+21, Example 6.1]), thus it is a solution in the sense of [Pic19]. However, μ¯\bar{\mu} is not a λ\lambda-EVI solution since it does not coincide with the curve given by ii). This fact can also be checked by a direct calculation as follows: we find ν𝒫b()\nu\in\mathcal{P}_{b}(\mathbb{R}) such that

ddt12W22(μ¯t,ν)>λW22(μ¯t,ν)[𝐅[ν],μ¯t]rt(0,T),\frac{\,\mathrm{d}}{\,\mathrm{d}t}\frac{1}{2}W_{2}^{2}(\bar{\mu}_{t},\nu)>\lambda W_{2}^{2}(\bar{\mu}_{t},\nu)-\left[{\boldsymbol{\mathrm{F}}}[\nu],\bar{\mu}_{t}\right]_{r}\qquad t\in(0,T), (A.2)

where λ=12\lambda=\frac{1}{2} is the dissipativity constant of the PVF 𝐅{\boldsymbol{\mathrm{F}}} coming from the proof of Proposition A.2. Notice that the LHS of (A.2) is always zero since tμ¯t=δ0t\mapsto\bar{\mu}_{t}=\delta_{0} is constant. Take ν=[0,1]\nu=\mathcal{L}\llcorner_{[0,1]} so that we get 𝐅[ν]=𝐅x[ν]dν(x){\boldsymbol{\mathrm{F}}}[\nu]=\int{\boldsymbol{\mathrm{F}}}_{x}[\nu]\,\mathrm{d}\nu(x), with 𝐅x[ν]=δ1{\boldsymbol{\mathrm{F}}}_{x}[\nu]=\delta_{1} if x>12x>\frac{1}{2}, 𝐅x[ν]=δ1{\boldsymbol{\mathrm{F}}}_{x}[\nu]=\delta_{-1} if x<12x<\frac{1}{2}. Noting that Λ(𝐅[ν],δ0)={𝐅[ν]δ0}\Lambda({\boldsymbol{\mathrm{F}}}[\nu],\delta_{0})=\{{\boldsymbol{\mathrm{F}}}[\nu]\otimes\delta_{0}\}, by using the characterization in Theorem 3.9 we compute

[𝐅[ν],δ0]r=𝖳𝖷x,vd𝐅[ν]=01/2x,vd𝐅x[ν](v)dx+1/21x,vd𝐅x[ν](v)dx=14.\left[{\boldsymbol{\mathrm{F}}}[\nu],\delta_{0}\right]_{r}=\int_{\mathsf{T\kern-1.5ptX}}\langle x,v\rangle\,\mathrm{d}{\boldsymbol{\mathrm{F}}}[\nu]=\int_{0}^{1/2}\langle x,v\rangle\,\mathrm{d}{\boldsymbol{\mathrm{F}}}_{x}[\nu](v)\,\mathrm{d}x+\int_{1/2}^{1}\langle x,v\rangle\,\mathrm{d}{\boldsymbol{\mathrm{F}}}_{x}[\nu](v)\,\mathrm{d}x=\frac{1}{4}.

Since W22(δ0,ν)=𝗆22(ν)=13W_{2}^{2}(\delta_{0},\nu)=\mathsf{m}_{2}^{2}(\nu)=\frac{1}{3}, we have

λW22(μ¯t,ν)[𝐅[ν],μ¯t]r=1614<0,\lambda W_{2}^{2}(\bar{\mu}_{t},\nu)-\left[{\boldsymbol{\mathrm{F}}}[\nu],\bar{\mu}_{t}\right]_{r}=\frac{1}{6}-\frac{1}{4}<0,

and thus we obtain the desired inequality (A.2) with ν=[0,1]\nu=\mathcal{L}\llcorner_{[0,1]}.

Appendix B Wasserstein differentiability along curves

In general, if μ:[0,+)𝒫2(𝖷)\mu:[0,+\infty)\to\mathcal{P}_{2}(\mathsf{X}) is a locally absolutely continuous curve and ν𝒫2(𝖷)\nu\in\mathcal{P}_{2}(\mathsf{X}), then the map [0,+)sW22(μs,ν)[0,+\infty)\ni s\mapsto W_{2}^{2}(\mu_{s},\nu) is locally absolutely continuous and thus differentiable in a set of full measure A(μ,ν)(0,+)A({\mu,\nu})\subset(0,+\infty) which, in principle, depends both on μ\mu and ν\nu. What Theorem 3.11 shows is that, independently of ν\nu, there is a full measure set A(μ)A(\mu), depending only on μ\mu, where this map is left and right differentiable. If moreover ν\nu and tA(μ)t\in A(\mu) are such that there is a unique optimal transport plan between them, we can actually conclude that such a map is differentiable at tt.
We want to highlight how this result is optimal giving an example of a locally absolutely continuous curve μ:[0,+)𝒫2(2)\mu:[0,+\infty)\to\mathcal{P}_{2}(\mathbb{R}^{2}) s.t. the full measure set of differentiability points of the map [0,+)sW22(μs,ν)[0,+\infty)\ni s\mapsto W_{2}^{2}(\mu_{s},\nu) depends also on ν𝒫2(2)\nu\in\mathcal{P}_{2}(\mathbb{R}^{2}). To do that it is enough to show that

 for every t0A(μ) there exist ν0𝒫2(2) and 𝜸1,𝜸2Γo(μt0,ν0) s.t. L(𝜸1)L(𝜸2),\text{ for every }t_{0}\in A(\mu)\text{ there exist }\nu_{0}\in\mathcal{P}_{2}(\mathbb{R}^{2})\text{ and }\boldsymbol{\gamma}_{1},\boldsymbol{\gamma}_{2}\in\Gamma_{o}(\mu_{t_{0}},\nu_{0})\text{ s.t. }L(\boldsymbol{\gamma}_{1})\neq L(\boldsymbol{\gamma}_{2}),

where A(μ)A(\mu) is as in Theorem 2.10 and, for 𝜸𝒫2(2×2)\boldsymbol{\gamma}\in\mathcal{P}_{2}(\mathbb{R}^{2}\times\mathbb{R}^{2}) s.t. 𝗑0𝜸=μt\mathsf{x}^{0}_{\sharp}\boldsymbol{\gamma}=\mu_{t}, we define

L(𝜸):=𝖷2𝒗t(x),xyd𝜸(x,y).L(\boldsymbol{\gamma}):=\int_{\mathsf{X}^{2}}\langle\boldsymbol{v}_{t}(x),x-y\rangle\,\mathrm{d}\boldsymbol{\gamma}(x,y).

Indeed this will imply that [(𝒊𝖷,𝒗t0)μt0,ν0]r[(𝒊𝖷,𝒗t0)μt0,ν0]l\left[(\boldsymbol{i}_{\mathsf{X}},\boldsymbol{v}_{t_{0}})_{\sharp}\mu_{t_{0}},\nu_{0}\right]_{r}\neq\left[(\boldsymbol{i}_{\mathsf{X}},\boldsymbol{v}_{t_{0}})_{\sharp}\mu_{t_{0}},\nu_{0}\right]_{l}, hence the non differentiability at t0t_{0}.
Let us consider two regular functions u:[0,+)2u:[0,+\infty)\to\mathbb{R}^{2} and r:[0,+)r:[0,+\infty)\to\mathbb{R} s.t. |ut|=1|u_{t}|=1 for every t0t\geq 0. Let ω:[0,+)2\omega:[0,+\infty)\to\mathbb{R}^{2} be defined as the orthogonal direction to utu_{t}:

ωt:=(0110)ut,t0.\omega_{t}:=\begin{pmatrix}0&-1\\ 1&0\end{pmatrix}u_{t},\quad\quad t\geq 0.

Being the norm of uu constant in time, there exists some regular λ:(0,+)\lambda:(0,+\infty)\to\mathbb{R} s.t. u˙t=λtωt\dot{u}_{t}=\lambda_{t}\omega_{t} for every t>0t>0. Finally we define

x1:[0,+)2,\displaystyle x_{1}:[0,+\infty)\to\mathbb{R}^{2}, x1(t):=rtut,\displaystyle\qquad x_{1}(t):=r_{t}u_{t},
x2:[0,+)2,\displaystyle x_{2}:[0,+\infty)\to\mathbb{R}^{2}, x2(t):=rtut,\displaystyle\qquad x_{2}(t):=-r_{t}u_{t},
μ:[0,+)𝒫2(2),\displaystyle\mu:[0,+\infty)\to\mathcal{P}_{2}(\mathbb{R}^{2}), μt:=12(δx1(t)+δx2(t)).\displaystyle\qquad\mu_{t}:=\frac{1}{2}\left(\delta_{x_{1}(t)}+\delta_{x_{2}(t)}\right).

Observe that x˙1(t)=r˙tut+rtu˙t=x˙2(t)\dot{x}_{1}(t)=\dot{r}_{t}u_{t}+r_{t}\dot{u}_{t}=-\dot{x}_{2}(t) for every t>0t>0. Moreover, for every φCc(2)\varphi\in\mathrm{C}^{\infty}_{c}(\mathbb{R}^{2}) and t>0t>0, we have

ddt2φdμt\displaystyle\frac{\,\mathrm{d}}{\,\mathrm{d}t}\int_{\mathbb{R}^{2}}\varphi\,\mathrm{d}\mu_{t} =ddt(12φ(x1(t))+12φ(x2(t)))=12φ(x1(t))x˙1(t)+12φ(x2(t))x˙2(t)\displaystyle=\frac{\,\mathrm{d}}{\,\mathrm{d}t}\left(\frac{1}{2}\varphi(x_{1}(t))+\frac{1}{2}\varphi(x_{2}(t))\right)=\frac{1}{2}\nabla\varphi(x_{1}(t))\,\dot{x}_{1}(t)+\frac{1}{2}\nabla\varphi(x_{2}(t))\,\dot{x}_{2}(t)
=2vt(x),φ(x)dμt,\displaystyle=\int_{\mathbb{R}^{2}}\langle v_{t}(x),\nabla\varphi(x)\rangle\,\mathrm{d}\mu_{t},

where

𝒗t(x):={x˙1(t) if x=x1(t),x˙2(t) if x=x2(t),t>0.\boldsymbol{v}_{t}(x):=\begin{cases}\dot{x}_{1}(t)\quad&\text{ if }x=x_{1}(t),\\ \dot{x}_{2}(t)\quad&\text{ if }x=x_{2}(t),\end{cases}\quad t>0.

Hence, the above defined vector field 𝒗t\boldsymbol{v}_{t} solves the continuity equation with μt\mu_{t}. Let t0A(μ)t_{0}\in A(\mu) and let us define ω0:=ω(t0)\omega_{0}:=\omega(t_{0}), ν0:=12δω0+12δω0\nu_{0}:=\frac{1}{2}\delta_{\omega_{0}}+\frac{1}{2}\delta_{-\omega_{0}} and the plans 𝜸1,𝜸2Γo(μt0,ν0)\boldsymbol{\gamma}_{1},\boldsymbol{\gamma}_{2}\in\Gamma_{o}(\mu_{t_{0}},\nu_{0}) by

𝜸1:=12δx1(t0)δω0+12δx2(t0)δω0,\displaystyle\boldsymbol{\gamma}_{1}:=\frac{1}{2}\delta_{x_{1}(t_{0})}\otimes\delta_{\omega_{0}}+\frac{1}{2}\delta_{x_{2}(t_{0})}\otimes\delta_{-\omega_{0}},
𝜸2:=12δx2(t0)δω0+12δx1(t0)δω0.\displaystyle\boldsymbol{\gamma}_{2}:=\frac{1}{2}\delta_{x_{2}(t_{0})}\otimes\delta_{\omega_{0}}+\frac{1}{2}\delta_{x_{1}(t_{0})}\otimes\delta_{-\omega_{0}}.

Notice that they are optimal since any plan in Γ(μt0,ν0)\Gamma(\mu_{t_{0}},\nu_{0}) has the same cost, being the points ω0,x1(t0),x2(t0),ω0\omega_{0},x_{1}(t_{0}),x_{2}(t_{0}),-\omega_{0} the vertexes of a rhombus. Finally, we compute L(𝜸1)L(\boldsymbol{\gamma}_{1}) and L(𝜸2)L(\boldsymbol{\gamma}_{2}):

L(𝜸1)\displaystyle L(\boldsymbol{\gamma}_{1}) =2×2xy,𝒗t(x)d𝜸1(x,y)=12x˙1(t0),x1(t0)ω0+12x˙2(t0),x2(t0)+ω0\displaystyle=\int_{\mathbb{R}^{2}\times\mathbb{R}^{2}}\langle x-y,\boldsymbol{v}_{t}(x)\rangle\,\mathrm{d}\boldsymbol{\gamma}_{1}(x,y)=\frac{1}{2}\langle\dot{x}_{1}(t_{0}),x_{1}(t_{0})-\omega_{0}\rangle+\frac{1}{2}\langle\dot{x}_{2}(t_{0}),x_{2}(t_{0})+\omega_{0}\rangle
=x˙1(t0),x1(t0)ω0=r˙t0ut0+rt0u˙t0,rt0ut0ω0=rt0r˙t0rt0λt0,\displaystyle=\langle\dot{x}_{1}(t_{0}),x_{1}(t_{0})-\omega_{0}\rangle=\langle\dot{r}_{t_{0}}u_{t_{0}}+r_{t_{0}}\dot{u}_{t_{0}},r_{t_{0}}u_{t_{0}}-\omega_{0}\rangle=r_{t_{0}}\dot{r}_{t_{0}}-r_{t_{0}}\lambda_{t_{0}},
L(𝜸2)\displaystyle L(\boldsymbol{\gamma}_{2}) =2×2xy,𝒗t(x)d𝜸2(x,y)=12x˙2(t0),x2(t0)ω0+12x˙1(t0),x1(t0)+ω0\displaystyle=\int_{\mathbb{R}^{2}\times\mathbb{R}^{2}}\langle x-y,\boldsymbol{v}_{t}(x)\rangle\,\mathrm{d}\boldsymbol{\gamma}_{2}(x,y)=\frac{1}{2}\langle\dot{x}_{2}(t_{0}),x_{2}(t_{0})-\omega_{0}\rangle+\frac{1}{2}\langle\dot{x}_{1}(t_{0}),x_{1}(t_{0})+\omega_{0}\rangle
=x˙1(t0),x1(t0)+ω0=r˙t0ut0+rt0u˙t0,rt0ut0+ω0=rt0r˙t0+rt0λt0.\displaystyle=\langle\dot{x}_{1}(t_{0}),x_{1}(t_{0})+\omega_{0}\rangle=\langle\dot{r}_{t_{0}}u_{t_{0}}+r_{t_{0}}\dot{u}_{t_{0}},r_{t_{0}}u_{t_{0}}+\omega_{0}\rangle=r_{t_{0}}\dot{r}_{t_{0}}+r_{t_{0}}\lambda_{t_{0}}.

In this way, if rt00r_{t_{0}}\neq 0 and λt00\lambda_{t_{0}}\neq 0 we have L(𝜸1)L(𝜸2)L(\boldsymbol{\gamma}_{1})\neq L(\boldsymbol{\gamma}_{2}). A possible choice for uu and rr satisfying the assumptions is

ut:=(cos(t),sin(t)),rt=1,t0,u_{t}:=(\cos(t),\sin(t)),\quad\quad r_{t}=1,\quad\quad t\geq 0,

so that λt=1\lambda_{t}=1 for every t>0t>0.

Appendix C Support function and Dini derivatives

We recall the following characterization of the closed convex hull co¯(C)\overline{\operatorname{co}}(C) of a set CC (i.e. the intersection of all the closed convex sets containing CC) in a Banach space.

Lemma C.1.

Let ZZ be a Banach space and let CZC\subset Z be nonempty. Then vco¯(C)v\in\overline{\operatorname{co}}(C) if and only if

z,vsupcCz,czZ.\langle z^{*},v\rangle\leq\sup_{c\in C}\,\langle z^{*},c\rangle\quad\forall\,z^{*}\in Z^{*}. (C.1)

Moreover if CC is bounded, it is enough to have (C.1) holding for every zWz^{*}\in W, with WW a dense subset of ZZ^{*}.

Proof.

The result is a direct consequence of Hahn-Banach theorem.

Concerning the last assertion, observe that the function

ZzsupcCz,cZ^{*}\ni z^{*}\mapsto\sup_{c\in C}\,\langle z^{*},c\rangle

is Lipschitz continuous if CC is bounded. Hence, if (C.1) holds only for some WZW\subset Z^{*} dense, then it holds for the whole ZZ^{*}. ∎

Let us state and prove a simple lemma that allows us to pass from a differential inequality for the right upper Dini derivative to the corresponding distributional inequality (see also [MS20, Lemma A.1] and [Gál57]).

Lemma C.2.

Let (a,b)(a,b)\subset\mathbb{R} be an open interval (bounded or unbounded) and let ζ,η:(a,b)\zeta,\eta:(a,b)\to\mathbb{R} be s.t. ζ\zeta is continuous in (a,b)(a,b) and η\eta is measurable and locally bounded from above in (a,b)(a,b). If

ddt+ζ(t)η(t) for every t(a,b),{\frac{\mathrm{d}}{\mathrm{d}t}}^{\kern-3.0pt+}\zeta(t)\leq\eta(t)\quad\text{ for every }t\in(a,b),

then the above inequality holds also in the sense of distributions, meaning that

abζ(t)φ(t)dtabη(t)φ(t)dt for every φCc(a,b).-\int_{a}^{b}\zeta(t)\varphi^{\prime}(t)\,\mathrm{d}t\leq\int_{a}^{b}\eta(t)\varphi(t)\,\mathrm{d}t\quad\text{ for every }\varphi\in\mathrm{C}^{\infty}_{c}(a,b).
Proof.

Let φCc(a,b)\varphi\in\mathrm{C}^{\infty}_{c}(a,b), then there exist a<x<y<ba<x<y<b s.t. the support of φ\varphi is contained in [x,y][x,y] ; since η\eta is locally bounded from above, there exists a positive constant C>0C>0 s.t. η(t)C\eta(t)\leq C for every t[x,y]t\in[x,y]. Then the function tζ(t)Ctt\mapsto\zeta(t)-Ct is s.t.

ddt+(ζ(t)Ct)0 for every t[x,y]{\frac{\mathrm{d}}{\mathrm{d}t}}^{\kern-3.0pt+}(\zeta(t)-Ct)\leq 0\quad\text{ for every }t\in[x,y]

so that it is decreasing in [x,y][x,y] and hence a function of bounded variation in [x,y][x,y]. Its distributional derivative is hence a non positive measure TT on [x,y][x,y] whose absolutely continuous part (w.r.t. the 11-dimensional Lebesgue measure on [x,y][x,y]) coincides a.e. with the right upper Dini derivative. Then we have

ab(ζ(t)Ct)φ(t)dt=T(φ)=abddt+(ζ(t)Ct)φ(t)dt+Ts(φ)ab(ηC)φ(t)dt,-\int_{a}^{b}(\zeta(t)-Ct)\varphi^{\prime}(t)\,\mathrm{d}t=T(\varphi)=\int_{a}^{b}{\frac{\mathrm{d}}{\mathrm{d}t}}^{\kern-3.0pt+}(\zeta(t)-Ct)\varphi(t)\,\mathrm{d}t+T_{s}(\varphi)\leq\int_{a}^{b}(\eta-C)\varphi(t)\,\mathrm{d}t,

where TsT_{s} is the singular part of TT. This immediately gives the thesis. ∎

References

  • [AC84] Jean-Pierre Aubin and Arrigo Cellina “Differential Inclusions” Springer-Verlag Berlin Heidelberg, 1984, pp. xx+342
  • [AF09] Jean-Pierre Aubin and Hélène Frankowska “Set-valued analysis” Reprint of the 1990 edition [MR1048347], Modern Birkhäuser Classics Birkhäuser Boston Inc., 2009, pp. xx+461
  • [AGS08] Luigi Ambrosio, Nicola Gigli and Giuseppe Savaré “Gradient Flows In Metric Spaces and in the Space of Probability Measures”, Lectures in Mathematics. ETH Zürich Birkhäuser Basel, 2008
  • [Bén72] Philippe Bénilan “Solutions intégrales d’équations d’évolution dans un espace de Banach” In C. R. Acad. Sci. Paris Sér. A-B 274, 1972, pp. A47–A50
  • [BF21] Benoı̂t Bonnet and Hélène Frankowska “Differential inclusions in Wasserstein spaces: the Cauchy-Lipschitz framework” In J. Differential Equations 271, 2021, pp. 594–637 DOI: 10.1016/j.jde.2020.08.031
  • [Bré73] Haim Brézis “Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert” North-Holland Mathematics Studies, No. 5. Notas de Matemática (50) North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1973, pp. vi+183
  • [Bre96] Alberto Bressan “Impulsive control systems” In Nonsmooth analysis and geometric methods in deterministic optimal control (Minneapolis, MN, 1993) 78, IMA Vol. Math. Appl. Springer, New York, 1996, pp. 1–22 DOI: 10.1007/978-1-4613-8489-2“˙1
  • [Cam+21] Fabio Camilli, Giulia Cavagnari, Raul De Maio and Benedetto Piccoli “Superposition principle and schemes for measure differential equations” In Kinet. Relat. Models 14.1, 2021, pp. 89–113 DOI: 10.3934/krm.2020050
  • [Cav+20] Giulia Cavagnari, Stefano Lisini, Carlo Orrieri and Giuseppe Savaré “Lagrangian, Eulerian and Kantorovich formulations of multi-agent optimal control problems: Equivalence and Gamma-convergence”, 2020 arXiv:2011.07117 [math.OC]
  • [CE75] Michael G. Crandall and Lawrence C. Evans “On the relation of the operator /s+/τ\partial/\partial s+\partial/\partial\tau to evolution governed by accretive operators” In Israel J. Math. 21.4, 1975, pp. 261–278 DOI: 10.1007/BF02757989
  • [CL71] Michael G. Crandall and Thomas M. Liggett “Generation of semi-groups of nonlinear transformations on general Banach spaces” In Amer. J. Math. 93, 1971, pp. 265–298 DOI: 10.2307/2373376
  • [CRV04] Charles Castaing, Paul Raynaud de Fitte and Michel Valadier “Young measures on topological spaces” With applications in control theory and probability theory 571, Mathematics and its Applications Kluwer Academic Publishers, Dordrecht, 2004, pp. xii+320 DOI: 10.1007/1-4020-1964-5
  • [DR91] Gianni Dal Maso and Franco Rampazzo “On systems of ordinary differential equations with measures as controls” In Differential Integral Equations 4.4, 1991, pp. 739–765
  • [Fil88] A.. Filippov “Differential equations with discontinuous righthand sides” Translated from the Russian 18, Mathematics and its Applications (Soviet Series) Kluwer Academic Publishers Group, Dordrecht, 1988, pp. x+304 DOI: 10.1007/978-94-015-7793-9
  • [Gál57] István S. Gál “On the fundamental theorems of the calculus” In Trans. Amer. Math. Soc. 86, 1957, pp. 309–320
  • [HL93] Jean-Baptiste Hiriart-Urruty and Claude Lemaréchal “Convex analysis and minimization algorithms. I” Fundamentals 305, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] Springer-Verlag, Berlin, 1993, pp. xviii+417
  • [JKO98] Richard Jordan, David Kinderlehrer and Felix Otto “The variational formulation of the Fokker-Planck equation” In SIAM J. Math. Anal. 29.1, 1998, pp. 1–17 DOI: 10.1137/S0036141096303359
  • [Kru70] S.. Kružkov “First order quasilinear equations with several independent variables” In Mat. Sb. (N.S.) 81 (123), 1970, pp. 228–255
  • [MS20] Matteo Muratori and Giuseppe Savaré “Gradient flows and evolution variational inequalities in metric spaces. I: Structural properties” In J. Funct. Anal. 278.4, 2020, pp. 108347\bibrangessep67 DOI: 10.1016/j.jfa.2019.108347
  • [NS06] Ricardo H. Nochetto and Giuseppe Savaré “Nonlinear evolution governed by accretive operators in Banach spaces: error control and applications” In Math. Models Methods Appl. Sci. 16.3, 2006, pp. 439–477 DOI: 10.1142/S0218202506001224
  • [NS09] Luca Natile and Giuseppe Savaré “A Wasserstein approach to the one-dimensional sticky particle system” In SIAM J. Math. Anal. 41.4, 2009, pp. 1340–1365 DOI: 10.1137/090750809
  • [NS21] Emanuele Naldi and Giuseppe Savaré “Weak topology and Opial property in Wasserstein spaces, with applications to Gradient Flows and Proximal Point Algorithms of geodesically convex functionals”, 2021 arXiv:2104.06121 [math.OC]
  • [Pic18] Benedetto Piccoli “Measure differential inclusions” In 2018 IEEE Conference on Decision and Control (CDC), 2018, pp. 1323–1328
  • [Pic19] Benedetto Piccoli “Measure differential equations” In Arch. Ration. Mech. Anal. 233.3, 2019, pp. 1289–1317 DOI: 10.1007/s00205-019-01379-4
  • [PR14] Benedetto Piccoli and Francesco Rossi “Generalized Wasserstein distance and its application to transport equations with source” In Arch. Ration. Mech. Anal. 211.1, 2014, pp. 335–358 DOI: 10.1007/s00205-013-0669-x
  • [PR19] Benedetto Piccoli and Francesco Rossi “Measure dynamics with probability vector fields and sources” In Discrete Contin. Dyn. Syst. 39.11, 2019, pp. 6207–6230 DOI: 10.3934/dcds.2019270
  • [Qi83] Li Qun Qi “Uniqueness of the maximal extension of a monotone operator” In Nonlinear Anal. 7.4, 1983, pp. 325–332 DOI: 10.1016/0362-546X(83)90086-X
  • [Rul96] Jim Rulla “Error analysis for implicit approximations to solutions to Cauchy problems” In SIAM J. Numer. Anal. 33.1, 1996, pp. 68–87 DOI: 10.1137/0733005
  • [San15] Filippo Santambrogio “Optimal transport for applied mathematicians” Calculus of variations, PDEs, and modeling 87, Progress in Nonlinear Differential Equations and their Applications Birkhäuser/Springer, Cham, 2015, pp. xxvii+353 DOI: 10.1007/978-3-319-20828-2
  • [Sch73] Laurent Schwartz “Radon measures on arbitrary topological spaces and cylindrical measures” OUP, Tata Institute Monographs on Mathematics, 1973
  • [SV96] G.. Silva and R.. Vinter “Measure driven differential inclusions” In J. Math. Anal. Appl. 202.3, 1996, pp. 727–746 DOI: 10.1006/jmaa.1996.0344
  • [Vil09] Cédric Villani “Optimal transport” Old and new 338, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] Springer-Verlag, Berlin, 2009, pp. xxii+973 DOI: 10.1007/978-3-540-71050-9
  • [Vin10] Richard Vinter “Optimal control” Paperback reprint of the 2000 edition, Modern Birkhäuser Classics Birkhäuser Boston, Ltd., Boston, MA, 2010, pp. xx+507 DOI: 10.1007/978-0-8176-8086-2