This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Discriminant divisors for conic bundles

Hiromu Tanaka Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, JAPAN [email protected]
Abstract.

We study some foundational properties on discriminant divisors for generically smooth conic bundles. In particular, we extend the formula ΔffKX/T2\Delta_{f}\equiv-f_{*}K_{X/T}^{2} to arbitrary characteristics.

Key words and phrases:
conic bundles, discriminant, characteristic two.
2020 Mathematics Subject Classification:
14G17, 14D06.

1. Introduction

Conic bundles played a crucial role in the classification of Fano threefolds [MM81], [MM83]. Especially, Mori–Mukai establish the following formula

(1.0.1) ΔffKX/T2,\Delta_{f}\equiv-f_{*}K_{X/T}^{2},

where f:XTf:X\to T is a conic bundle from a smooth projective threefold to a smooth projective surface over an algebraically closed field of characteristic zero. Originally, Δf\Delta_{f} was defined as the reduced closed subscheme of TT that parametrises the singular fibres. Although this naive definition does not behave nicely in characteristic two, [ABBB21] introduced a well-behaved definition. The main objective of this article is to establish the above formula (1.0.1) in arbitrary characteristic by using the definition of [ABBB21].

Theorem 1.1 (Remark 5.11, Theorem 5.15).

Let kk be an algebraically closed field. Let f:XTf:X\to T be a generically smooth conic bundle, where XX and TT are smooth projective varieties over kk. Then the numerical equivalence

Δff(KX/T2)\Delta_{f}\equiv-f_{*}(K_{X/T}^{2})

holds, where KX/T:=KXfKTK_{X/T}:=K_{X}-f^{*}K_{T}.

This theorem will be applied in forthcoming articles on the classification of Fano threefolds in positive characteristic [Tan-Fano1], [Tan-Fano2], [AT], [Tan-Fano4].

1.1. Overview of proofs and contents

In Section 3, we shall introduce a discriminant scheme Δf\Delta_{f} for a conic bundle f:XTf:X\to T, which is a closed subscheme of TT. The definition is designed to satisfy the following two axiomatic properties (I) and (II).

  1. (I)

    Given a point tTt\in T, XtX_{t} is not smooth if and only if tΔft\in\Delta_{f}.

  2. (II)

    An equality Δf=β1Δf\Delta_{f^{\prime}}=\beta^{-1}\Delta_{f} of closed subschemes holds for every carterian diagram of noetherian schemes

    XαXffTβT,\begin{CD}X^{\prime}@>{\alpha}>{}>X\\ @V{}V{f^{\prime}}V@V{}V{f}V\\ T^{\prime}@>{\beta}>{}>T,\end{CD}

    where ff and ff^{\prime} are conic bundles.

The actual definition of Δf\Delta_{f} is given as follows. We first consider the case when the base scheme TT is affine and XX is a conic on T2\mathbb{P}^{2}_{T}. We have T=SpecAT={\operatorname{Spec}}\,A, there is a closed embedding XA2X\subset\mathbb{P}^{2}_{A}, and

X=ProjA[x,y,z]/(Q),Q:=ax2+by2+cz2+αyz+βzx+γxy,a,b,c,α,β,γA.X={\operatorname{Proj}}\,A[x,y,z]/(Q),\quad Q:=ax^{2}+by^{2}+cz^{2}+\alpha yz+\beta zx+\gamma xy,\quad a,b,c,\alpha,\beta,\gamma\in A.

In this case, Δf\Delta_{f} is explicitly defined as follows:

(1.1.1) Δf=Spec(A/δ(Q)A),whereδ(Q):=4abc+αβγaα2bβ2cγ2A.\Delta_{f}={\operatorname{Spec}}\,(A/\delta(Q)A),\quad\text{where}\quad\delta(Q):=4abc+\alpha\beta\gamma-a\alpha^{2}-b\beta^{2}-c\gamma^{2}\in A.

We shall check that the definition Δf\Delta_{f} is independent of the choice of the closed embedding XA2X\subset\mathbb{P}^{2}_{A} and so on. The proof is done by using the fact that two embeddings are related by a linear transform. As mentioned already, this definition is based on [ABBB21]. Although [ABBB21] does not check the well-definedness, the equation (1.1.1) is extracted from [ABBB21], which would be the most essential part to reach the definition explained above. Similarly, we also introduce a closed subscheme Σf\Sigma_{f} of TT such that, in addition to the property corresponding to (II), Σf\Sigma_{f} consists of the points tt of TT such that XtX_{t} is not geometrically reduced.

In Section 4, we study the relation between Δf\Delta_{f} and the singularities of XX. We here only treat the case when the base scheme TT is regular. We shall prove that the following are equivalent (Theorem 4.4):

  • Δf\Delta_{f} is regular.

  • XX is regular and any fibre of ff is geometrically reduced.

In particular, if both XX and TT are regular, then the singular locus of Δf\Delta_{f} is set-theoretically equal to Σf\Sigma_{f}.

In Section 5, we prove the formula (Theorem 1.1):

(1.1.2) ΔffKX/T2.\Delta_{f}\equiv-f_{*}K_{X/T}^{2}.

Note that the argument in characteristic zero [MM83, Proposition 6.8] does not work (cf. Remark 7.6). We here overview some of the ideas of the proof. As a toy case, let us consider the case when f:XTf:X\to T coincides with Univk2/kθHilbk2/kθ{\operatorname{Univ}}_{\mathbb{P}^{2}_{k}/k}^{\theta}\to{\operatorname{Hilb}}_{\mathbb{P}^{2}_{k}/k}^{\theta}, where

  • kk is an algebraically closed field,

  • θ\theta is the Hilbert polynomial of conics,

  • Hilbk2/kθ{\operatorname{Hilb}}_{\mathbb{P}^{2}_{k}/k}^{\theta} denotes the Hilbert scheme parametrising all the conics on 2\mathbb{P}^{2}, and

  • Univk2/kθ{\operatorname{Univ}}_{\mathbb{P}^{2}_{k}/k}^{\theta} is its universal family.

In particular, we have Hilbk2/kθk5{\operatorname{Hilb}}_{\mathbb{P}^{2}_{k}/k}^{\theta}\simeq\mathbb{P}^{5}_{k}. In order to check the numerical equivalence (1.1.2), it is enough to find a line LL on Hilbk2/kθk5{\operatorname{Hilb}}_{\mathbb{P}^{2}_{k}/k}^{\theta}\simeq\mathbb{P}^{5}_{k} such that ΔfL=(fKX/T2)L\Delta_{f}\cdot L=-(f_{*}K_{X/T}^{2})\cdot L. This is carried out by taking a general line LL such that ΔfL\Delta_{f}\cap L is smooth. For the general case, the problem is reduced, by standard argument, to the case when TT is a smooth projective curve. We embed TT to the relative Hilbert scheme HilbT(E)/Tθ{\operatorname{Hilb}}_{\mathbb{P}_{T}(E)/T}^{\theta} for E:=fωX/T1E:=f_{*}\omega_{X/T}^{-1}, which is a locally free sheaf on TT of rank 33. Then the problem is further reduced to the case when ff coincides with a relative version UnivT(E)/TθHilbT(E)/Tθ{\operatorname{Univ}}_{\mathbb{P}_{T}(E)/T}^{\theta}\to{\operatorname{Hilb}}_{\mathbb{P}_{T}(E)/T}^{\theta} of Univk2/kθHilbk2/kθ{\operatorname{Univ}}_{\mathbb{P}^{2}_{k}/k}^{\theta}\to{\operatorname{Hilb}}_{\mathbb{P}^{2}_{k}/k}^{\theta}. By ρ(Hilbk2/kθ)=ρ(5)=1\rho({\operatorname{Hilb}}_{\mathbb{P}^{2}_{k}/k}^{\theta})=\rho(\mathbb{P}^{5})=1, it was enough to find a line LL satisfying ΔfL=(fKX/T2)L\Delta_{f}\cdot L=-(f_{*}K_{X/T}^{2})\cdot L in the above case. For our case, we can check that ρ(HilbT(E)/Tθ)=2\rho({\operatorname{Hilb}}_{\mathbb{P}_{T}(E)/T}^{\theta})=2. Then the proof is carried out by finding suitable two curves C1C_{1} and C2C_{2} such that ΔfC1=(fKX/T2)C1\Delta_{f}\cdot C_{1}=-(f_{*}K_{X/T}^{2})\cdot C_{1} and ΔfC2=(fKX/T2)C2\Delta_{f}\cdot C_{2}=-(f_{*}K_{X/T}^{2})\cdot C_{2}. For more details, see Theorem 5.15.

In order to justify the above argument, we shall introduce an invertible sheaf Δfbdl\Delta_{f}^{{\operatorname{bdl}}}, called the discriminant bundle, which is a variant of the discriminant scheme Δf\Delta_{f} (Subsection 5.3). If f:XTf:X\to T is a generically smooth conic bundle such that TT is a noetherian integral scheme, then Δf\Delta_{f} is an effective Cartier divisor on TT. However, Δf\Delta_{f} is useless when f:XTf:X\to T is a wild conic bundle, i.e., no fibre is smooth (more explicitly, we have Δf=T\Delta_{f}=T). On the other hand, the discriminant bundle Δfbdl\Delta^{{\operatorname{bdl}}}_{f} is an invertible sheaf on TT even if ff is a wild conic bundle. Furthermore, the discriminant bundles Δfbdl\Delta^{{\operatorname{bdl}}}_{f} satisfy the following properties (Theorem 5.13).

  1. (A)

    If f:XTf:X\to T is a generically smooth conic bundle such that TT is a noetherian integral scheme, then Δfbdl𝒪T(Δf)\Delta^{{\operatorname{bdl}}}_{f}\simeq\mathcal{O}_{T}(\Delta_{f}).

  2. (B)

    An isomorphism ΔfbdlβΔfbdl\Delta_{f^{\prime}}^{{\operatorname{bdl}}}\simeq\beta^{*}\Delta_{f}^{{\operatorname{bdl}}} of invertible sheaves holds for every carterian diagram

    XαXffTβT,\begin{CD}X^{\prime}@>{\alpha}>{}>X\\ @V{}V{f^{\prime}}V@V{}V{f}V\\ T^{\prime}@>{\beta}>{}>T,\end{CD}

    where TT and TT^{\prime} are smooth varieties over a field.

The definition of Δfbdl\Delta^{{\operatorname{bdl}}}_{f} is given as follows. For a conic bundle f:XTf:X\to T, we have the following cartesian diagram for the Hilbert polynomial θ\theta of conics:

XφX~:=UnivT(fωX/T1)/Tθff~TψT~:=HilbT(fωX/T1)/Tθ.\begin{CD}X@>{\varphi}>{}>\widetilde{X}:={\operatorname{Univ}}^{\theta}_{\mathbb{P}_{T}(f_{*}\omega_{X/T}^{-1})/T}\\ @V{}V{f}V@V{}V{\widetilde{f}}V\\ T@>{\psi}>{}>\widetilde{T}:={\operatorname{Hilb}}^{\theta}_{\mathbb{P}_{T}(f_{*}\omega_{X/T}^{-1})/T}.\end{CD}

Then Δfbdl\Delta^{{\operatorname{bdl}}}_{f} is defined by Δfbdl:=ψ𝒪T~(Δf~)\Delta^{{\operatorname{bdl}}}_{f}:=\psi^{*}\mathcal{O}_{\widetilde{T}}(\Delta_{\widetilde{f}}). It is clear that (A) holds. The property (B) can be checked as follows. By standard argument, we may assume that β:TT\beta:T^{\prime}\to T is either smooth or a closed immersion such that β(T)\beta(T^{\prime}) is an effective Cartier divisor. For each case, it is not so hard to check (B).

In Section 6, we study Δf\Delta_{f} for surface conic bundles. We restrict ourselves to treating the case when TT is a smooth curve and XX is a surface having at worst canonical singularities. Since we are interested in the relation between Δf\Delta_{f} and the singularities of XX, let us assume that there is a closed point 0T0\in T such that X0X_{0} is the unique singular fibre. We shall first prove that

degΔf=m1,\deg\Delta_{f}=m-1,

where mm is the number of the irreducible components of the central fibre Y0Y_{0} for the minimal resolution φ:YX\varphi:Y\to X of XX. Given such a conic bundle f:XTf:X\to T, we shall prove that the singularity of XX is determined by degΔf\deg\Delta_{f} and whether the X0X_{0} is reduced (Theorem 6.3). We then exhibit several examples.

In Section 7, we observe some phenomena which occur only in characteristic two. For example, the following hold in characteristic 2\neq 2 (Proposition 7.2).

  1. (1)

    If f:XTf:X\to T is a conic bundle of smooth varieties, then Δf\Delta_{f} is a reduced divisor.

  2. (2)

    If f:XTf:X\to T is a conic bundle of smooth varieties with dimT=2\dim T=2, then Δf\Delta_{f} is normal crossing.

We shall see that both the properties fail in characteristic two (Example 7.3). Furthermore, (2) does not hold even after replacing Δf\Delta_{f} by (Δf)red(\Delta_{f})_{{\operatorname{red}}}. Roughly speaking, the singularities of Δf\Delta_{f} and (Δf)red(\Delta_{f})_{{\operatorname{red}}} can be arbitrarily bad even if f:XTf:X\to T is a generically smooth conic bundle from a smooth threefold XX to a smooth surface TT.

Remark 1.2.

As explained above, we shall establish some foundational results on discriminant divisors Δf\Delta_{f} for conic bundles f:XTf:X\to T, where XX and TT are noetherian schemes. Most results in Section 3 and Section 4 are essentially contained in [Bea77, Chapitre I] and [Sar82, Section 1] for the case when XX and TT are smooth varieties over an algebraically closed field of characteristic 2\neq 2. As far as the author knows, the contents in Section 3 and Section 4 are new even when XX and TT are smooth varieties over an algebraically closed field of characteristic two.

Acknowledgements: The author thanks the referee for reading the manuscript carefully and for suggesting several improvements. The author was funded by JSPS KAKENHI Grant numbers JP22H01112 and JP23K03028.

2. Preliminaries

2.1. Notation

  1. (1)

    We say that XX is a variety (over a field kk) if XX is an integral scheme that is separated and of finite type over kk. We say that XX is a curve (resp. surface, resp. threefold) if XX is a variety of dimension one (resp. two, resp. three).

  2. (2)

    We say that a noetherian scheme XX is excellent if all the stalks 𝒪X,x\mathcal{O}_{X,x} are excellent.

  3. (3)

    Given a morphism f:XSf:X\to S of schemes and a point sSs\in S, XsX_{s} denotes the fibre of ff over ss, i.e., Xs:=X×SSpecκ(s)X_{s}:=X\times_{S}{\operatorname{Spec}}\,\kappa(s), where κ(s)\kappa(s) denotes the residue field of SS at ss. Unless otherwise specified, we consider κ(s)\kappa(s) as the base field of XsX_{s}. For example, we say that XsX_{s} is smooth (resp. geometrically reduced) if XsX_{s} is smooth (resp. geometrically reduced) over κ(s)\kappa(s). When SS is an integral scheme, the base field of the generic fibre is the function field K(S)K(S) of SS.

  4. (4)

    For the definition of the relative dualising sheaf ωX/T\omega_{X/T}, we refer to Remark 2.6.

  5. (5)

    For the definition of conic bundles, see Subsection 2.2.

  6. (6)

    For the definition and basic properties on strictly henselian local rings, we refer to [Fu15, Subsection 2.8].

  7. (7)

    For a ring AA, GLn(A){\operatorname{GL}}_{n}(A) denotes the group consisting of invertible matrices of size n×nn\times n. Given a matrix MM of size n×nn\times n, it is well known that MM is invertible if and only if detMA×\det M\in A^{\times}.

  8. (8)

    Given fA[x,y,z]f\in A[x,y,z] and MGL3(A)M\in{\operatorname{GL}}_{3}(A), we define fMA[x,y,z]f^{M}\in A[x,y,z] as follows. For f=f(x,y,z)f=f(x,y,z), we set

    fM(x,y,z):=f((M(x,y,z)T)T),f^{M}(x,y,z):=f((M(x,y,z)^{T})^{T}),

    where ()T(-)^{T} denotes the transposed matrix. More explicitly, for

    M(xyz)=(m11m12m13m21m22m23m31m32m33)(xyz)=(m11x+m12y+m13zm21x+m22y+m23zm31x+m32y+m33z),M\begin{pmatrix}x\\ y\\ z\end{pmatrix}=\begin{pmatrix}m_{11}&m_{12}&m_{13}\\ m_{21}&m_{22}&m_{23}\\ m_{31}&m_{32}&m_{33}\\ \end{pmatrix}\begin{pmatrix}x\\ y\\ z\end{pmatrix}=\begin{pmatrix}m_{11}x+m_{12}y+m_{13}z\\ m_{21}x+m_{22}y+m_{23}z\\ m_{31}x+m_{32}y+m_{33}z\\ \end{pmatrix},

    we have

    fM(x,y,z)=f(m11x+m12y+m13z,m21x+m22y+m23z,m31x+m32y+m33z).f^{M}(x,y,z)=f(m_{11}x+m_{12}y+m_{13}z,m_{21}x+m_{22}y+m_{23}z,m_{31}x+m_{32}y+m_{33}z).
  9. (9)

    Set θ:=2m+1[m]\theta:=2m+1\in\mathbb{Z}[m], which is the Hilbert polynomial of an arbitrary conic on k2\mathbb{P}^{2}_{k} for a field kk.

  10. (10)

    Given a scheme SS and SS-schemes XX and YY, we say that XX is SS-isomorphic to YY if there exists an isomorphism θ:XY\theta:X\to Y of schemes such that both θ:XY\theta:X\to Y and θ1:YX\theta^{-1}:Y\to X are SS-morphisms. When S=SpecAS={\operatorname{Spec}}\,A for a ring AA, we say that XX is AA-isomorphic to YY if XX is SpecA{\operatorname{Spec}}\,A-isomorphic to YY.

2.1.1. Singularities of minimal model program

We will freely use the standard notation in birational geometry, for which we refer to [Kol13] and [KM98]. Let XX be an integral normal excellent scheme admitting a dualising complex. We say that XX is canonical or has at worst canonical singularities if

  1. (1)

    KXK_{X} is \mathbb{Q}-Cartier, and

  2. (2)

    all the coefficients aia_{i} are 0\geq 0 for every proper birational morphism f:YXf:Y\to X from an integral normal excellent scheme YY and

    KY=fKX+i=1raiEi,K_{Y}=f^{*}K_{X}+\sum_{i=1}^{r}a_{i}E_{i},

    where E1,,ErE_{1},...,E_{r} are all the ff-exceptional prime divisors.

Under assuming (1), if there exists a proper birational morphism g:ZXg:Z\to X from an integral regular excellent scheme ZZ, then (2) is known to be equivalent to (2)’ below [KM98, Lemma 2.30].

  1. (2)’

    all the coefficients bib_{i} are 0\geq 0 for some proper birational morphism g:ZXg:Z\to X from an integral regular excellent scheme ZZ and

    KZ=gKX+j=1sbjFj,K_{Z}=g^{*}K_{X}+\sum_{j=1}^{s}b_{j}F_{j},

    where F1,,FsF_{1},...,F_{s} are all the gg-exceptional prime divisors.

2.1.2. Linear algebra over local rings

Lemma 2.1.

Let AA be a local ring. If MGLn(A)M\in{\operatorname{GL}}_{n}(A), then we can write M=M1MrM=M_{1}\cdots M_{r}, where each MiM_{i} is an elementary matrix. Recall, e.g., that if n=3n=3, then the list of elementary matrices are as follows:

(λ00010001)(1000λ0001)(10001000λ)(λA×)\displaystyle\begin{pmatrix}\lambda&0&0\\ 0&1&0\\ 0&0&1\\ \end{pmatrix}\qquad\begin{pmatrix}1&0&0\\ 0&\lambda&0\\ 0&0&1\\ \end{pmatrix}\qquad\begin{pmatrix}1&0&0\\ 0&1&0\\ 0&0&\lambda\\ \end{pmatrix}\qquad(\lambda\in A^{\times})
(010100001)(100001010)(001010100)\displaystyle\begin{pmatrix}0&1&0\\ 1&0&0\\ 0&0&1\\ \end{pmatrix}\qquad\begin{pmatrix}1&0&0\\ 0&0&1\\ 0&1&0\\ \end{pmatrix}\qquad\begin{pmatrix}0&0&1\\ 0&1&0\\ 1&0&0\\ \end{pmatrix}
(1μ0010001)(10μ010001)(10001μ001)\displaystyle\begin{pmatrix}1&\mu&0\\ 0&1&0\\ 0&0&1\\ \end{pmatrix}\qquad\begin{pmatrix}1&0&\mu\\ 0&1&0\\ 0&0&1\\ \end{pmatrix}\qquad\begin{pmatrix}1&0&0\\ 0&1&\mu\\ 0&0&1\\ \end{pmatrix}
(100μ10001)(100010μ01)(1000100μ1)(μA).\displaystyle\begin{pmatrix}1&0&0\\ \mu&1&0\\ 0&0&1\\ \end{pmatrix}\qquad\begin{pmatrix}1&0&0\\ 0&1&0\\ \mu&0&1\\ \end{pmatrix}\qquad\begin{pmatrix}1&0&0\\ 0&1&0\\ 0&\mu&1\\ \end{pmatrix}\qquad(\mu\in A).
Proof.

If AA is a field, then the assertion follows from linear algebra, i.e., MM becomes the identity matrix EE after applying elementary transformations finitely many times.

The same argument works even when AA is a local ring. For example, we can find an entry mijm_{ij} of MM which is a unit of AA, where mijm_{ij} denotes the (i,j)(i,j)-entry of MM. Then, applying suitable elementary transformations, we may assume that m11=1m_{11}=1. ∎

2.2. Definitions of conic bundles

In this subsection, we first introduce the definition of conic bundles (Definition 2.3) and conics over a noetherian ring (Definition 2.8). We also summarise some basic properties, which should be well known to experts.

2.2.1. Conic bundles

Definition 2.2.

Let κ\kappa be a field.

  1. (1)

    We say that CC is a conic on κ2\mathbb{P}^{2}_{\kappa} if the equality

    C=Projκ[x,y,z]/(ax2+by2+cz2+αyz+βza+γxy)κ2=Projκ[x,y,z]C={\operatorname{Proj}}\,\kappa[x,y,z]/(ax^{2}+by^{2}+cz^{2}+\alpha yz+\beta za+\gamma xy)\subset\mathbb{P}^{2}_{\kappa}={\operatorname{Proj}}\,\kappa[x,y,z]

    holds for some (a,b,c,α,β,γ)κ6{(0,0,0,0,0,0)}(a,b,c,\alpha,\beta,\gamma)\in\kappa^{6}\setminus\{(0,0,0,0,0,0)\}.

  2. (2)

    We say that CC is a conic over κ\kappa if CC is κ\kappa-isomorphic to a conic on κ2\mathbb{P}^{2}_{\kappa}.

Definition 2.3.

We say that f:XTf:X\to T is a conic bundle if f:XTf:X\to T is a flat proper morphism of noetherian schemes such that XtX_{t} is a conic over κ(t)\kappa(t) for any point tTt\in T.

Remark 2.4.

If f:XTf:X\to T is a conic bundle and TTT^{\prime}\to T is a morphism of noetherian schemes, then also the base change X×TTTX\times_{T}T^{\prime}\to T^{\prime} is a conic bundle.

Lemma 2.5.

Let f:XTf:X\to T be a conic bundle. Then f𝒪X=𝒪Tf_{*}\mathcal{O}_{X}=\mathcal{O}_{T} and Rif𝒪X=0R^{i}f_{*}\mathcal{O}_{X}=0 for every i>0i>0.

Proof.

We have Hi(Xt,𝒪Xt)=0H^{i}(X_{t},\mathcal{O}_{X_{t}})=0 for every i>0i>0. By [Har77, Ch. III, Theorem 12.11], it holds that Rif𝒪X=0R^{i}f_{*}\mathcal{O}_{X}=0 for every i>0i>0 and f𝒪Xf_{*}\mathcal{O}_{X} is an invertible sheaf on TT. Then f:𝒪Tf𝒪Xf^{\sharp}:\mathcal{O}_{T}\to f_{*}\mathcal{O}_{X} is an isomorphism, because the induced ring homomorphism

fk(t):𝒪Tk(t)(f𝒪X)k(t)f^{\sharp}\otimes k(t):\mathcal{O}_{T}\otimes k(t)\to(f_{*}\mathcal{O}_{X})\otimes k(t)

is a nonzero k(t)k(t)-linear map of one-dimensional k(t)k(t)-vector spaces for every point tTt\in T. ∎

Since a conic bundle f:XTf:X\to T is a flat proper morphism of noetherian schemes whose fibres are Cohen–Macaulay of pure dimension one, there exists a dualising sheaf ωX/T\omega_{X/T} in the sense of [Con00, page 157].

Remark 2.6.

We here summarise some basic properties on ωX/T\omega_{X/T} for later usage.

  1. (1)

    Let f:XTf:X\to T be a conic bundle of noetherian schemes. Since every fibre XtX_{t} is Gorenstein of pure dimension one, we have ωX/T=1(f!𝒪Y)\omega_{X/T}=\mathcal{H}^{-1}(f^{!}\mathcal{O}_{Y}) and ωX/T\omega_{X/T} is an invertible sheaf on XX.

  2. (2)

    Let

    XαXffTβT\begin{CD}X^{\prime}@>{\alpha}>{}>X\\ @V{}V{f^{\prime}}V@V{}V{f}V\\ T^{\prime}@>{\beta}>{}>T\end{CD}

    be a carterian diagram of noetherian schemes, where ff (and hence ff^{\prime}) is a conic bundle. We then obtain

    ωX/TαωX/T.\omega_{X^{\prime}/T^{\prime}}\simeq\alpha^{*}\omega_{X/T}.

    In particular, ωX/T|XtωXt\omega_{X/T}|_{X_{t}}\simeq\omega_{X_{t}} for any point tTt\in T and the fibre XtX_{t} over tt.

  3. (3)

    Let f:XTf:X\to T be a conic bundle, where XX and TT are Gorenstein normal varieties over an algebraically closed field. Then ωX/T𝒪X(KXfKT)\omega_{X/T}\simeq\mathcal{O}_{X}(K_{X}-f^{*}K_{T}).

Proposition 2.7 (cf. [Bea77]*Proposition 1.2).

Let f:XTf:X\to T be a conic bundle. Then the following hold.

  1. (1)

    RifωX/T1=0R^{i}f_{*}\omega_{X/T}^{-1}=0 for every i>0i>0.

  2. (2)

    fωX/T1:=f(ωX/T1)f_{*}\omega_{X/T}^{-1}:=f_{*}(\omega_{X/T}^{-1}) is a locally free sheaf of rank 33.

  3. (3)

    ωX/T1\omega_{X/T}^{-1} is very ample over TT, and hence it defines a closed immersion ι:X(fωX/T1)\iota:X\hookrightarrow\mathbb{P}(f_{*}\omega_{X/T}^{-1}) over TT.

Proof.

Let us show (1) and (2). Fix a point tTt\in T. By [Har77, Ch. III, Corollary 12.9], it is enough to show that dimκ(t)H0(Xt,ωX/T1|Xt)=3\dim_{\kappa(t)}H^{0}(X_{t},\omega^{-1}_{X/T}|_{X_{t}})=3 and Hi(Xt,ωX/T1)=0H^{i}(X_{t},\omega^{-1}_{X/T})=0 for every i>0i>0. This follows from ωX/T1|XtωXt1\omega^{-1}_{X/T}|_{X_{t}}\simeq\omega^{-1}_{X_{t}} and the fact that XtX_{t} is a conic on κ(t)2\mathbb{P}^{2}_{\kappa(t)}. Thus (1) and (2) hold.

Let us show (3). First, we prove that ωX/T1\omega_{X/T}^{-1} is ff-free, i.e., ffωX/T1ωX/T1f^{*}f_{*}\omega_{X/T}^{-1}\to\omega_{X/T}^{-1} is surjective. Fix a closed point xXx\in X and set t:=f(x)t:=f(x). Then xXtx\in X_{t}, and there exists a section σH0(Xt,ωX/T1|Xt)\sigma\in H^{0}(X_{t},\omega_{X/T}^{-1}|_{X_{t}}) such that σ|{x}0\sigma|_{\{x\}}\neq 0. We have two maps

(2.7.1) fωX1(fωX/T1)k(t)H0(Xt,ωX/T1|Xt).f_{*}\omega_{X}^{-1}\to(f_{*}\omega_{X/T}^{-1})\otimes k(t)\xrightarrow{\simeq}H^{0}(X_{t},\omega_{X/T}^{-1}|_{X_{t}}).

The first map is the projection, and the second map is obtained by [Har77, Ch. III, Corollary 12.9]. Let TT^{\prime} be an affine open subset containing tt, and set X:=f1(T){\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}X^{\prime}:=f^{-1}(T^{\prime})}. Then, by the above (2.7.1), we obtain

(2.7.2) H0(X,ωX/T1|X)H0(X,ωX/T1|X)k(t)H0(Xt,ωX/T1|Xt).H^{0}(X^{\prime},\omega^{-1}_{X/T}|_{X^{\prime}})\to H^{0}(X^{\prime},\omega^{-1}_{X/T}|_{X^{\prime}})\otimes k(t)\xrightarrow{\simeq}H^{0}(X_{t},\omega_{X/T}^{-1}|_{X_{t}}).

Since the first map is surjective and the second map is an isomorphism, (2.7.2) is surjective. Hence we can take τH0(X,ωX/T1|X)\tau\in H^{0}(X^{\prime},\omega^{-1}_{X/T}|_{X^{\prime}}) such that τ|Xt=σ\tau|_{X_{t}}=\sigma. Thus ωX/T1\omega_{X/T}^{-1} is ff-free. Let ι:X(fωX/T1)\iota:X\to\mathbb{P}(f_{*}\omega_{X/T}^{-1}) be the induced morphism.

Next, we show that ι:X(fωX/T1)\iota:X\to\mathbb{P}(f_{*}\omega_{X/T}^{-1}) is injective. Pick distinct points x,xXx,x^{\prime}\in X such that ι(x)=ι(x)=:p\iota(x)=\iota(x^{\prime})=:p. Set t:=f(x)=f(x)t:=f(x)=f(x^{\prime}). Then x,xXtx,x^{\prime}\in X_{t}, and hence we can take a σH0(Xt,ωX1|Xt)\sigma\in H^{0}(X_{t},\omega_{X}^{-1}|_{X_{t}}) such that σ|{x}=0\sigma|_{\{x\}}=0 and σ|{x}0\sigma|_{\{x^{\prime}\}}\neq 0. By the surjection (2.7.2), there exists τH0(X,ωX/T1|X)\tau\in H^{0}(X^{\prime},\omega_{X/T}^{-1}|_{X^{\prime}}) such that τ|Xt=σ\tau|_{X_{t}}=\sigma. This implies ι(x)ι(x)\iota(x)\neq\iota(x^{\prime}), which is absurd.

Finally, we show that ι:X(fωX/T1)=:P\iota:X\to\mathbb{P}(f_{*}\omega_{X/T}^{-1})=:{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}P} is a closed immersion. Now, we have a commutative diagram

Xt{X_{t}}Pt{P_{t}}X{X}P,{P,}ι|Xt\scriptstyle{\iota|_{X_{t}}}ι\scriptstyle{\iota}

where PtP_{t} is a fibre of π:PT\pi\colon P\to T. Since XtX_{t} is a conic over κ(t)\kappa(t), we can embed this into κ(t)2\mathbb{P}^{2}_{\kappa(t)}, and this closed immersion is induced by |KXt||-K_{X_{t}}|. By construction of ι\iota, also ι|Xt\iota|_{X_{t}} is a closed immersion. Then we can check that ι\iota is a closed immersion by applying Nakayama’s lemma. Thus (3) holds. ∎

2.2.2. Conics over rings

Definition 2.8.

Let AA be a noetherian ring.

  1. (1)

    We say that XX is a conic on A2\mathbb{P}^{2}_{A} if the equation

    X=ProjA[x,y,z]/(ax2+by2+cz2+αyz+βza+γxy)κ2=ProjA[x,y,z]X={\operatorname{Proj}}\,A[x,y,z]/(ax^{2}+by^{2}+cz^{2}+\alpha yz+\beta za+\gamma xy)\subset\mathbb{P}^{2}_{\kappa}={\operatorname{Proj}}\,A[x,y,z]

    holds for some (a,b,c,α,β,γ)A6(a,b,c,\alpha,\beta,\gamma)\in A^{6} and the induced morphism XSpecAX\to{\operatorname{Spec}}\,A is a conic bundle.

  2. (2)

    We say that XX is a conic over AA if XX is AA-isomorphic to a conic on A2\mathbb{P}^{2}_{A}.

Proposition 2.9.

Let AA be a noetherian ring and take

Q:=ax2+by2+cz2+αyz+βzx+γxyA[x,y,z].Q:=ax^{2}+by^{2}+cz^{2}+\alpha yz+\beta zx+\gamma xy\in A[x,y,z].

For X:=ProjA[x,y,z]/(Q)X:={\operatorname{Proj}}\,A[x,y,z]/(Q), the following are equivalent.

  1. (1)

    XX is a conic on A2\mathbb{P}^{2}_{A}.

  2. (2)

    The induced morphism f:XSpecAf:X\to{\operatorname{Spec}}\,A is a conic bundle.

  3. (3)

    The induced morphism f:XSpecAf:X\to{\operatorname{Spec}}\,A is flat and any fibre of ff is one-dimensional.

Furthermore, if (A,𝔪)(A,\mathfrak{m}) is a noetherian local ring, then each of (1)–(3) is equivalent to (4).

  1. (4)

    At least one of a,b,c,α,β,γa,b,c,\alpha,\beta,\gamma is not contained in 𝔪\mathfrak{m}.

Proof.

The implications (1)(2)(3)(1)\Rightarrow(2)\Rightarrow(3) are clear. Assume (3). Then f:XSpecAf:X\to{\operatorname{Spec}}\,A is a proper flat morphism. For any tSpecAt\in{\operatorname{Spec}}\,A, its fibre f1(t)f^{-1}(t) is a conic over k(t)k(t), as it is one-dimensional. Thus (1) holds.

Assume that (A,𝔪)(A,\mathfrak{m}) is a local ring. Then it is obvious that (3) implies (4). Assume (4). We first reduce the problem to the case when a𝔪a\not\in\mathfrak{m}. By symmetry, we may assume that γ𝔪\gamma\not\in\mathfrak{m} and a,b,c𝔪a,b,c\in\mathfrak{m}. Applying the linear transform (x,y,z)(x,y+x,z)(x,y,z)\mapsto(x,y+x,z), the problem is reduced to the case when a𝔪a\not\in\mathfrak{m}.

Then the affine open subset D+(z)D_{+}(z) of XX can be written as

SpecA[x,y]/(ax2+φ(y)x+ψ(y)),φ(y),ψ(y)A[y].{\operatorname{Spec}}\,A[x,y]/(ax^{2}+\varphi(y)x+\psi(y)),\qquad\varphi(y),\psi(y)\in A[y].

We get an AA-module isomorphism A[x,y]/(ax2+φ(y)x+ψ(y))A[y]xA[y]A[x,y]/(ax^{2}+\varphi(y)x+\psi(y))\simeq A[y]\oplus xA[y], which is a free AA-module. Therefore, f:XSpecAf:X\to{\operatorname{Spec}}\,A is flat. As the fibre f1(𝔪)f^{-1}(\mathfrak{m}) is one-dimensional, any fibre of ff is one-dimensional. Thus (3) holds. ∎

2.3. Local description of conic bundles

Given a strictly henselian noetherian local ring AA and a conic X=ProjA[x,y,z]/(Q)X={\operatorname{Proj}}\,A[x,y,z]/(Q) on A2\mathbb{P}^{2}_{A}, the purpose of this subsection is to simplify the defining equation QQ via AA-linear transformations. In Subsection 2.3.1 and Subsection 2.3.2, we treat the case when the residue field of AA is of characteristic 2\neq 2 and =2=2, respectively.

Lemma 2.10.

Let (A,𝔪,κ)(A,\mathfrak{m},\kappa) be a noetherian local ring. Let

X:=ProjA[x,y,z]/(Q).X:={\rm Proj}\,A[x,y,z]/(Q).

be a conic on A2\mathbb{P}^{2}_{A} with QA[x,y,z]Q\in A[x,y,z]. Then there exists MGL3(A)M\in{\operatorname{GL}}_{3}(A) such that

QM=ax2+by2+cz2+αyz+βzx+γxyQ^{M}=ax^{2}+by^{2}+cz^{2}+\alpha yz+\beta zx+\gamma xy

for some a,b,cA×a,b,c\in A^{\times} and α,β,γA\alpha,\beta,\gamma\in A.

Proof.

By the same argument as in the second paragraph of the proof of Proposition 2.9, we may assume that aA×a\in A^{\times}. Applying a linear transform (x,y,z)(x+dx+ex,y,z)(x,y,z)\mapsto{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}(x+dx+ex,y,z)} for some d,e{0,1}d,e\in\{0,1\}, we obtain a𝔪,b𝔪a\not\in\mathfrak{m},b\not\in\mathfrak{m}, and c𝔪c\not\in\mathfrak{m}. ∎

2.3.1. Local description in characteristic 2\neq 2

Proposition 2.11.

Let κ\kappa be a field of characteristic 2\neq 2. Let

X:=Projκ[x,y,z]/(Q).X:={\rm Proj}\,\kappa[x,y,z]/(Q).

be a conic on κ2\mathbb{P}^{2}_{\kappa} with Qκ[x,y,z]Q\in\kappa[x,y,z]. Take the 3×33\times 3 symmetric matrix SQS_{Q} such that Q=(xyz)SQ(xyz)TQ=(x\,y\,z)S_{Q}(x\,y\,z)^{T}. Then the following hold.

  1. (1)

    There exists MGL3(A)M\in{\operatorname{GL}}_{3}(A) such that

    QM=ax2+by2+cz2Q^{M}=ax^{2}+by^{2}+cz^{2}

    for some a,b,cκa,b,c\in\kappa.

  2. (2)

    The following are equivalent.

    1. (a)

      XX is smooth.

    2. (b)

      rank(SQ)=3{\rm rank}(S_{Q})=3.

  3. (3)

    The following are equivalent.

    1. (a)

      XX is reduced.

    2. (b)

      XX is geometrically reduced.

    3. (c)

      rank(SQ)=2{\rm rank}(S_{Q})=2.

  4. (4)

    The following are equivalent.

    1. (a)

      XX is not reduced.

    2. (b)

      XX is not geometrically reduced.

    3. (c)

      rank(SQ)=1{\rm rank}(S_{Q})=1.

Proof.

All the assertions follow from linear algebra. ∎

Proposition 2.12.

Let (A,𝔪,κ)(A,\mathfrak{m},\kappa) be a noetherian local ring such that κ\kappa is of characteristic 2\neq 2. Let

X:=ProjA[x,y,z]/(Q).X:={\rm Proj}\,A[x,y,z]/(Q).

be a conic on A2\mathbb{P}^{2}_{A} with QA[x,y,z]Q\in A[x,y,z]. Let 0SpecA0\in{\operatorname{Spec}}\,A be the closed point. Then the following hold.

  1. (1)

    There exists MGL3(A)M\in{\operatorname{GL}}_{3}(A) such that

    QM=ax2+by2+cz2+αyz.Q^{M}=ax^{2}+by^{2}+cz^{2}+\alpha yz.

    for some aA×a\in A^{\times} and b,c,αAb,c,\alpha\in A. Furthermore, X0X_{0} is not reduced if and only if b,c,α𝔪b,c,\alpha\in\mathfrak{m}.

  2. (2)

    If X0X_{0} is reduced, then there exists MGL3(A)M^{\prime}\in{\operatorname{GL}}_{3}(A) such that

    QM=ax2+by2+cz2Q^{M^{\prime}}=a^{\prime}x^{2}+b^{\prime}y^{2}+c^{\prime}z^{2}

    for some a,bA×a^{\prime},b^{\prime}\in A^{\times} and cAc^{\prime}\in A. Furthermore, X0X_{0} is not smooth if and only if c𝔪c^{\prime}\in\mathfrak{m}.

Proof.

Note that 2A×2\in A^{\times}. Indeed, there exists uAu\in A such that 2u1+𝔪2u\in 1+\mathfrak{m}, which implies that 2A×2\in A^{\times}.

Let us show (1). By Proposition 2.9, we can write

Q=ax2+by2+cz2+αyz+βzx+γxy,Q=ax^{2}+by^{2}+cz^{2}+\alpha yz+\beta zx+\gamma xy,

where aA×a\in A^{\times} and b,c,α,β,γAb,c,\alpha,\beta,\gamma\in A. Completing the square

ax2+βzx+γxy=a(x+β2az+γ2ay)2(β2az+γ2ay)2,ax^{2}+\beta zx+\gamma xy=a\left(x+\frac{\beta}{2a}z+\frac{\gamma}{2a}y\right)^{2}-\left(\frac{\beta}{2a}z+\frac{\gamma}{2a}y\right)^{2},

we may assume that β=γ=0\beta=\gamma=0:

Q=ax2+by2+cz2+αyz.Q=ax^{2}+by^{2}+cz^{2}+\alpha yz.

By aA×a\in A^{\times} and Proposition 2.11, X0X_{0} is not reduced if and only if b,c,α𝔪b,c,\alpha\in\mathfrak{m}. Thus (1) holds.

Let us show (2). By (1), we may assume that

Q=ax2+by2+cz2+αyzQ=ax^{2}+by^{2}+cz^{2}+\alpha yz

for some aA×a\in A^{\times} and b,c,αAb,c,\alpha\in A. Since X0X_{0} is reduced, one of b,c,αb,c,\alpha is contained in A×A^{\times}. We may assume that bA×b\in A^{\times} by applying (x,y,z)(x,y,z+y)(x,y,z)\mapsto(x,y,z+y) for the case when b,c𝔪b,c\in\mathfrak{m} and αA×\alpha\in A^{\times}. Then we are done by completing the square again:

by2+cz2+αyz=b(y+α2bz)2+(cα24b2)z2.by^{2}+cz^{2}+\alpha yz=b\left(y+\frac{\alpha}{2b}z\right)^{2}+\left(c-\frac{\alpha^{2}}{4{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}b^{2}}}\right)z^{2}.

Thus (2) holds. ∎

Corollary 2.13.

Let (A,𝔪,κ)(A,\mathfrak{m},\kappa) be a strictly henselian noetherian local ring such that κ\kappa is of characteristic 2\neq 2. Let 0SpecA0\in{\operatorname{Spec}}\,A be the closed point. Let

X:=ProjA[x,y,z]/(Q).X:={\rm Proj}\,A[x,y,z]/(Q).

be a conic on A2\mathbb{P}^{2}_{A} with QA[x,y,z]Q\in A[x,y,z]. Then the following hold.

  1. (1)

    There exists MGL3(A)M\in{\operatorname{GL}}_{3}(A) such that

    QM=x2+by2+cz2+αyz.Q^{M}=x^{2}+by^{2}+cz^{2}+\alpha yz.

    for some b,c,αAb,c,\alpha\in A. Furthermore, X0X_{0} is not reduced if and only if b,c,α𝔪b,c,\alpha\in\mathfrak{m}.

  2. (2)

    If X0X_{0} is reduced, then there exists MGL3(A)M^{\prime}\in{\operatorname{GL}}_{3}(A) such that

    QM=x2+y2+cz2Q^{M^{\prime}}=x^{2}+y^{2}+c^{\prime}z^{2}

    for some cAc^{\prime}\in A. Furthermore, X0X_{0} is not smooth over κ\kappa if and only if c𝔪c^{\prime}\in\mathfrak{m}.

  3. (3)

    If X0X_{0} is smooth over κ\kappa, then there exists M′′GL3(A)M^{\prime\prime}\in{\operatorname{GL}}_{3}(A) such that

    QM′′=x2+y2+z2.Q^{M^{\prime\prime}}=x^{2}+y^{2}+z^{2}.
Proof.

Since AA is a strictly henselian local ring, there exists dA\sqrt{d}\in A for any element dA×d\in A^{\times}. Then the assertions follow from Proposition 2.12. ∎

2.3.2. Local description in characteristic 22

Proposition 2.14.

Let (A,𝔪,κ)(A,\mathfrak{m},\kappa) be a noetherian local ring such that κ\kappa is of characteristic two. Let

X:=ProjA[x,y,z]/(Q)X:={\operatorname{Proj}}\,A[x,y,z]/(Q)

be a conic on A2\mathbb{P}^{2}_{A} with QA[x,y,z]Q\in A[x,y,z]. Let 0SpecA0\in{\operatorname{Spec}}\,A be the closed point. Then the following hold.

  1. (1)

    If X0X_{0} is geometrically reduced, then there exists MGL3(A)M\in{\operatorname{GL}}_{3}(A) such that

    QM=ax2+by2+cz2+yz+2βzx+2γxyQ^{M}=ax^{2}+by^{2}+cz^{2}+yz+2\beta zx+2\gamma xy

    for some a,c,β,γAa,c,\beta,\gamma\in A and bA×b\in A^{\times}.

  2. (2)

    If AA is a strictly henselian local ring and X0X_{0} is geometrically reduced, then there exists MGL3(A)M^{\prime}\in{\operatorname{GL}}_{3}(A) such that

    QM=ax2+yzQ^{M^{\prime}}=a^{\prime}x^{2}+yz

    for some aAa^{\prime}\in A. In this case, X0X_{0} is smooth if and only if aA×a^{\prime}\in A^{\times}.

Proof.

Let us show (1). We can write

Q=ax2+by2+cz2+αyz+βzx+γxyQ=ax^{2}+by^{2}+cz^{2}+\alpha yz+\beta zx+\gamma xy

for some (a,b,c,α,β,γ)A6{(0,,0)}(a,b,c,\alpha,\beta,\gamma)\in A^{6}\setminus\{(0,...,0)\}. We set α¯:=αmod𝔪,β¯:=βmod𝔪,\overline{\alpha}:=\alpha\mod\mathfrak{m},\overline{\beta}:=\beta\mod\mathfrak{m},... etc. As X0X_{0} is geometrically reduced, we have (α¯,β¯,γ¯)(0,0,0)(\overline{\alpha},\overline{\beta},\overline{\gamma})\neq(0,0,0). By symmetry, we may assume that α¯0\overline{\alpha}\neq 0, i.e., αA×\alpha\in A^{\times}. Applying (x,y,z)(x,α1y,z)(x,y,z)\mapsto(x,\alpha^{-1}y,z), the problem is reduced to the case when α=1\alpha=1:

Q(x,y,z)=ax2+by2+cz2+yz+βzx+γxy.Q(x,y,z)=ax^{2}+by^{2}+cz^{2}+yz+\beta zx+\gamma xy.

We have

yz+βzx+γxy=(y+βx)(z+γx)βγx2.yz+\beta zx+\gamma xy=(y+\beta x)(z+\gamma x)-\beta\gamma x^{2}.

Therefore, by applying (x,y+βx,z+γx)(x,y,z)(x,y+\beta x,z+\gamma x)\mapsto(x,y,z), we may assume that α=1,β=2β,γ=2γ\alpha=1,\beta=2\beta^{\prime},\gamma=2\gamma^{\prime} for some β,γA\beta^{\prime},\gamma^{\prime}\in A:

Q(x,y,z)=ax2+by2+cz2+yz+2βzx+2γxy.Q(x,y,z)=ax^{2}+by^{2}+cz^{2}+yz+2\beta^{\prime}zx+2\gamma^{\prime}xy.

If bA×b\in A^{\times} or cA×c\in A^{\times}, then we may assume bA×b\in A^{\times} by switching yy and zz if necessary. If b𝔪b\in\mathfrak{m} and c𝔪c\in\mathfrak{m}. then we apply (x,y,z)(x,y,y+z)(x,y,z)\mapsto(x,y,y+z):

Q(x,y,y+z)\displaystyle Q(x,y,y+z) =\displaystyle= ax2+by2+c(y+z)2+y(y+z)+2β(y+z)x+2γxy\displaystyle ax^{2}+by^{2}+c(y+z)^{2}+y(y+z)+2\beta^{\prime}(y+z)x+2\gamma^{\prime}xy
=\displaystyle= ax2+(b+c+1)y2+cz2+(1+2c)yz+2βzx+2(β+γ)xy.\displaystyle ax^{2}+(b+c+1)y^{2}+cz^{2}+(1+2c)yz+2\beta^{\prime}zx+2(\beta^{\prime}+\gamma^{\prime})xy.

By applying (1+2c)yy(1+2c)y\mapsto y, we are done, because 1+b+c1+𝔪A×1+b+c\in 1+\mathfrak{m}\subset A^{\times}. Thus (1) holds.

Let us show (2). By (1), we may assume that

Q(x,y,z)=ax2+by2+cz2+yz+2βzx+2γxyQ(x,y,z)=ax^{2}+by^{2}+cz^{2}+yz+2\beta zx+2\gamma xy

for some a,c,β,γAa,c,\beta,\gamma\in A and bA×b\in A^{\times}. Since κ\kappa is separably closed, we have

b¯Y2+Y+c¯=b¯(Y+δ¯)(Y+ϵ¯)\overline{b}Y^{2}+Y+\overline{c}=\overline{b}(Y+\overline{\delta})(Y+\overline{\epsilon})

for some δ¯,ϵ¯κ\overline{\delta},\overline{\epsilon}\in\kappa with δ¯ϵ¯\overline{\delta}\neq\overline{\epsilon}. By Hensel’s lemma, it holds that

bY2+Y+c=b(Y+δ)(Y+ϵ)inA[Y]bY^{2}+Y+c=b(Y+\delta)(Y+\epsilon)\qquad\text{in}\qquad A[Y]

for some lifts δ,ϵA\delta,\epsilon\in A of δ¯,ϵ¯κ\overline{\delta},\overline{\epsilon}\in\kappa. Hence we have by2+yz+cz2=b(y+δz)(y+ϵz)by^{2}+yz+cz^{2}=b(y+\delta z)(y+\epsilon z) and

Q(x,y,z)=ax2+by2+cz2+yz+2βzx+2γxy=ax2+b(y+δz)(y+ϵz)+2βzx+2γxy.Q(x,y,z)=ax^{2}+by^{2}+cz^{2}+yz+2\beta zx+2\gamma xy=ax^{2}+b(y+\delta z)(y+\epsilon z)+2\beta zx+2\gamma xy.

Consider the matrix

(1δ1ϵ).\begin{pmatrix}1&\delta\\ 1&\epsilon\end{pmatrix}.

This is an invertible matrix, because its determinant ϵδ\epsilon-\delta is contained in A×A^{\times} (indeed, its reduction ϵ¯δ¯κ\overline{\epsilon}-\overline{\delta}\in\kappa is nonzero). Applying (x,y+δz,y+ϵz)(x,y,z)(x,y+\delta z,y+\epsilon z)\mapsto(x,y,z), the problem is reduced to the case when Q(x,y,z)=ax2+αyz+2βzx+2γxyQ(x,y,z)=ax^{2}+\alpha yz+2\beta zx+2\gamma xy for some a,β,γAa,\beta,\gamma\in A and αA×\alpha\in A^{\times}. By using (x,y,z)(x,y,α1z)(x,y,z)\mapsto(x,y,\alpha^{-1}z), we may assume that α=1\alpha=1: Q(x,y,z)=ax2+yz+2βzx+2γxyQ(x,y,z)=ax^{2}+yz+2\beta zx+2\gamma xy. For a:=a4βγa^{\prime}:=a-4\beta\gamma, y:=y+2βxy^{\prime}:={\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}y+2\beta x} and z:=z+2γxz^{\prime}:=z+2\gamma x, we obtain

Q(x,y,z)=ax2+yz+2βzx+2γxy=(a4βγ)x2+(y+2βx)(z+2γx)=ax2+yz.Q(x,y,z)=ax^{2}+yz+2\beta zx+2\gamma xy=(a-4\beta\gamma)x^{2}+(y+2\beta x)(z+2\gamma x)=a^{\prime}x^{2}+y^{\prime}z^{\prime}.

Then it is clear that X0X_{0} is smooth if and only if aA×a^{\prime}\in A^{\times}. Thus (2) holds. ∎

Proposition 2.15.

Let κ\kappa be a separably closed field of characteristic two. Let

C:=Projκ[x,y,z]/(Q)C:={\operatorname{Proj}}\,\kappa[x,y,z]/(Q)

be a conic on κ2\mathbb{P}^{2}_{\kappa}. Then the following hold.

  1. (1)

    There exists MGL3(κ)M\in{\operatorname{GL}}_{3}(\kappa) such that one of the following holds.

    1. (a)

      QM=ax2+by2+cz2Q^{M}=ax^{2}+by^{2}+cz^{2} for some a,b,cκa,b,c\in\kappa. In this case, CC is not geometrically reduced.

    2. (b)

      QM=ax2+yzQ^{M}=ax^{2}+yz for some aκa\in\kappa. In this case, CC is geometrically reduced. Furthermore, CC is smooth if and only if a0a\neq 0.

  2. (2)

    If κ\kappa is algebraically closed, then there exists MGL3(κ)M^{\prime}\in{\operatorname{GL}}_{3}(\kappa) such that one of the following holds.

    1. (a)

      QM=x2Q^{M^{\prime}}=x^{2}. In this case, CC is not reduced.

    2. (b)

      QM=yzQ^{M^{\prime}}=yz. In this case, CC is not smooth but is reduced.

    3. (c)

      QM=x2+yzQ^{M^{\prime}}=x^{2}+yz. In this case, CC is smooth.

Proof.

Let us show (1). If XX is geometrically reduced, then the assertion follows from Proposition 2.14(2). We may assume that CC is not geometrically reduced. Then α=β=γ=0\alpha=\beta=\gamma=0. Thus (1) holds. The assertion (2) immediately follows from (1). ∎

2.4. Generic smoothness

Definition 2.16.

Let f:XTf:X\to T be a conic bundle such that TT is a noetherian integral scheme. We say that ff is generically smooth if the generic fibre of ff is smooth. We say that ff is wild if XX is normal and ff is not generically smooth.

For a conic bundle f:XTf:X\to T such that TT is a noetherian integral scheme, ff is generically smooth if and only if there exists a non-empty open subset TT^{\prime} of TT such that f1(t)f^{-1}(t) is smooth for every point tTt\in T^{\prime} [EGAIV3, Théorème 12.2.4].

Lemma 2.17.

Let f:XTf:X\to T be a conic bundle such that TT is a noetherian integral scheme. If XX is normal and the function field K(T)K(T) of TT is of characteristic 2\neq 2, then ff is generically smooth.

Proof.

Taking the base change by SpecK(T)T{\operatorname{Spec}}\,K(T)\to T, we may assume that T=SpeckT={\operatorname{Spec}}\,k for a field kk. Then XX is a conic on k2\mathbb{P}^{2}_{k} and XX is a regular scheme. Taking the base change to the separable closure of kk, we may assume that kk is separably closed. By Proposition 2.11(3) or Corollary 2.13(2), we can write X{x2+y2+cz2=0}k2X\simeq\{x^{2}+y^{2}+cz^{2}=0\}\subset\mathbb{P}^{2}_{k} for some ckc\in k. If c=0c=0, then XX is not regular, as the kk-rational point [0:0:1]k2[0:0:1]\in\mathbb{P}^{2}_{k} is a non-regular point. Hence c0c\neq 0. In this case, XX is smooth over T=SpeckT={\operatorname{Spec}}\,k. ∎

Example 2.18.

We work over an algebraically closed field of characteristic two. Set

X:={t0x02+t1x12+t2x22=0}x0,x1,x22×t0,t1,t22.X:=\{t_{0}x_{0}^{2}+t_{1}x_{1}^{2}+t_{2}x_{2}^{2}=0\}\subset\mathbb{P}^{2}_{x_{0},x_{1},x_{2}}\times\mathbb{P}^{2}_{t_{0},t_{1},t_{2}}.

Then the induced morphism f:XT:=t0,t1,t22=Projk[t0,t1,t2]f:X\to T:=\mathbb{P}^{2}_{t_{0},t_{1},t_{2}}={\operatorname{Proj}}\,k[t_{0},t_{1},t_{2}] is a wild conic bundle, because we have a0x02+a1x12+a2x22=(a0x0+a1x1+a2x2)2a_{0}x_{0}^{2}+a_{1}x_{1}^{2}+a_{2}x_{2}^{2}=(\sqrt{a_{0}}x_{0}+\sqrt{a_{1}}x_{1}+\sqrt{a_{2}}x_{2})^{2} for all a0,a1,a2ka_{0},a_{1},a_{2}\in k.

3. Discriminant divisors

Let f:XTf:X\to T be a conic bundle. The purpose of this section is to introduce two closed subschemes Δf\Delta_{f} and Σf\Sigma_{f} of TT which satisfy the following properties (I) and (II).

  1. (I)

    Given a point tTt\in T, XtX_{t} is not smooth (resp. not geometrically reduced) if and only if tΔft\in\Delta_{f} (resp. tΣft\in\Sigma_{f}) (Theorem 3.13).

  2. (II)

    Equalities Δf=β1Δf\Delta_{f^{\prime}}=\beta^{-1}\Delta_{f} and Σf=β1Σf\Sigma_{f^{\prime}}=\beta^{-1}\Sigma_{f} of closed subschemes hold for a carterian diagram of noetherian schemes

    XαXffTβT,\begin{CD}X^{\prime}@>{\alpha}>{}>X\\ @V{}V{f^{\prime}}V@V{}V{f}V\\ T^{\prime}@>{\beta}>{}>T,\end{CD}

    where ff and ff^{\prime} are conic bundles (Remark 3.5, Remark 3.11).

In Subsection 3.1 (resp. Subsection 3.2), we give the definition of Δf\Delta_{f} (resp. Σf\Sigma_{f}). The main technical difficulty is their well-definedness. The property (I) will be established in Subsection 3.3. In Subsection 3.4, we introduce a simpler version Σf\Sigma^{\prime}_{f} of Σf\Sigma_{f} which can be defined only in characteristic two.

3.1. Definition of discriminant divisors

In this subsection, we introduce a closed subscheme Δf\Delta_{f} of TT, called the discriminant scheme of ff, associated with a conic bundle f:XTf:X\to T. We first define Δf\Delta_{f} for the case when TT is affine, say T=SpecAT={\operatorname{Spec}}\,A, and a closed embedding

X=ProjA[x,y,z]/(Q)A2X={\operatorname{Proj}}\,A[x,y,z]/(Q)\subset\mathbb{P}^{2}_{A}

is fixed (Definition 3.1). In this case, we set Δf:=Spec(A/δ(Q)A)\Delta_{f}:={\operatorname{Spec}}\,(A/\delta(Q)A), where δ(Q)A\delta(Q)\in A is determined by QQ. Then we shall check that Δf=Spec(A/δ(Q)A)\Delta_{f}={\operatorname{Spec}}\,(A/\delta(Q)A) is independent of the choice of the embedding XA2X\subset\mathbb{P}^{2}_{A} (Proposition 3.3), which enables us to define Δf\Delta_{f} for the general case, i.e., we may glue {Δfi}iI\{\Delta_{f_{i}}\}_{i\in I} together for a suitable affine open cover T=iITiT=\bigcup_{i\in I}T_{i} and the induced morphisms fi:f1(Ti)Tif_{i}:f^{-1}(T_{i})\to T_{i} (Definition 3.4).

Definition 3.1 (cf.[ABBB21]*Section 2.b).

Let AA be a noetherian ring. For

Q:=ax2+by2+cz2+αyz+βzx+γxyA[x,y,z],Q:=ax^{2}+by^{2}+cz^{2}+\alpha yz+\beta zx+\gamma xy\in A[x,y,z],

we set

δ(Q):=4abc+αβγaα2bβ2cγ2A.\delta(Q):=4abc+\alpha\beta\gamma-a\alpha^{2}-b\beta^{2}-c\gamma^{2}\in A.
Remark 3.2.

Note that if 2A×2\in A^{\times}, then

δ(Q)=12det(2aγβγ2bαβα2c).\delta(Q)=\frac{1}{2}\det\begin{pmatrix}2a&\gamma&\beta\\ \gamma&2b&\alpha\\ \beta&\alpha&2c\end{pmatrix}.
Proposition 3.3.

Let AA be a noetherian ring. For MGL3(A)M\in{\operatorname{GL}}_{3}(A) and

Q:=ax2+by2+cz2+αyz+βzx+γxyA[x,y,z],Q:=ax^{2}+by^{2}+cz^{2}+\alpha yz+\beta zx+\gamma xy\in A[x,y,z],

the equality

δ(Q)A=δ(QM)A\delta(Q)A=\delta(Q^{M})A

of ideals hold.

Proof.

We first reduce the problem to the case when AA is a noetherian local ring. For J:=δ(Q)Aδ(QM)AJ:=\delta(Q)A\cap\delta(Q^{M})A, we have the inclusion

φ:J=δ(Q)Aδ(QM)Aδ(Q)A,\varphi:J=\delta(Q)A\cap\delta(Q^{M})A\hookrightarrow\delta(Q)A,

which is an AA-module homomorphism. For a prime ideal 𝔭SpecA\mathfrak{p}\in{\operatorname{Spec}}\,A, we get the following inclusion [AM69, Corollary 3.4, ii)]:

φ𝔭:J𝔭=δ(Q)A𝔭δ(QM)A𝔭δ(Q)A𝔭.\varphi_{\mathfrak{p}}:J_{\mathfrak{p}}=\delta(Q)A_{\mathfrak{p}}\cap\delta(Q^{M})A_{\mathfrak{p}}\hookrightarrow\delta(Q)A_{\mathfrak{p}}.

As we are assuming that φ𝔭\varphi_{\mathfrak{p}} is an isomorphism for every 𝔭SpecA\mathfrak{p}\in{\operatorname{Spec}}\,A, also φ\varphi is an isomorphism, i.e., δ(Q)Aδ(QM)A\delta(Q)A\subset\delta(Q^{M})A. By symmetry, we obtain the opposite inclusion δ(Q)Aδ(QM)A\delta(Q)A\supset\delta(Q^{M})A, which implies δ(Q)A=δ(QM)A\delta(Q)A=\delta(Q^{M})A. Thus the problem is reduced to the case when AA is a noetherian local ring.

Since AA is a local ring, we have M=M1MrM=M_{1}\cdots M_{r} for some elementary matrices M1,,MrM_{1},...,M_{r} (Lemma 2.1). By symmetry, we may assume that one of (1)–(3) holds.

  1. (1)

    M=(λ00010001)M=\begin{pmatrix}\lambda&0&0\\ 0&1&0\\ 0&0&1\\ \end{pmatrix} for some λA×\lambda\in A^{\times}.

  2. (2)

    M=(010100001)M=\begin{pmatrix}0&1&0\\ 1&0&0\\ 0&0&1\\ \end{pmatrix}.

  3. (3)

    M=(1μ0010001)M=\begin{pmatrix}1&\mu&0\\ 0&1&0\\ 0&0&1\\ \end{pmatrix} for some μA\mu\in A.

Set Q(x,y,z):=QQ(x,y,z):=Q.

(1) In this case, we have

QM(x,y,z)=Q(λx,y,z)=(λ2a)x2+by2+cz2+αyz+(λβ)zx+(λγ)xyQ^{M}(x,y,z)=Q(\lambda x,y,z)=(\lambda^{2}a)x^{2}+by^{2}+cz^{2}+\alpha yz+(\lambda\beta)zx+(\lambda\gamma)xy

and

δ(QM)=4(λ2a)bc+α(λβ)(λγ)(λ2a)α2b(λβ)2c(λγ)2=λ2δ(Q),\delta(Q^{M})=4(\lambda^{2}a)bc+\alpha(\lambda\beta)(\lambda\gamma)-(\lambda^{2}a)\alpha^{2}-b(\lambda\beta)^{2}-c(\lambda\gamma)^{2}=\lambda^{2}\delta(Q),

as required.

(2) In this case, we obtain QM(x,y,z)=Q(y,x,z)Q^{M}(x,y,z)=Q(y,x,z), which implies δ(QM)=δ(Q)\delta(Q^{M})=\delta(Q) by symmetry (Definition 3.1).

(3) In this case, we have

QM(x,y,z)\displaystyle Q^{M}(x,y,z) =\displaystyle= Q(x+μy,y,z)\displaystyle Q(x+\mu y,y,z)
=\displaystyle= a(x+μy)2+by2+cz2+αyz+βz(x+μy)+γ(x+μy)y\displaystyle a(x+\mu y)^{2}+by^{2}+cz^{2}+\alpha yz+\beta z(x+\mu y)+\gamma(x+\mu y)y
=\displaystyle= ax2+(aμ2+b+γμ)y2+cz2+(α+βμ)yz+βzx+(2aμ+γ)xy.\displaystyle ax^{2}+(a\mu^{2}+b+\gamma\mu)y^{2}+cz^{2}+(\alpha+\beta\mu)yz+\beta zx+(2a\mu+\gamma)xy.

Therefore, the assertion holds by the following computation:

δ(QM)\displaystyle\delta(Q^{M}) =\displaystyle= 4a(aμ2+b+γμ)c+(α+βμ)β(2aμ+γ)\displaystyle 4a(a\mu^{2}+b+\gamma\mu)c+(\alpha+\beta\mu)\cdot\beta\cdot(2a\mu+\gamma)
\displaystyle- a(α+βμ)2(aμ2+b+γμ)β2c(2aμ+γ)2\displaystyle a(\alpha+\beta\mu)^{2}-(a\mu^{2}+b+\gamma\mu)\beta^{2}-c(2a\mu+\gamma)^{2}
=\displaystyle= (4a2cμ2+4acγμ+4abc)\displaystyle(4a^{2}c\mu^{2}+4ac\gamma\mu+4abc)
+\displaystyle+ (2aβ2μ2+(2aαβ+β2γ)μ+aβγ)\displaystyle(2a\beta^{2}\mu^{2}+(2a\alpha\beta+\beta^{2}\gamma)\mu+a\beta\gamma)
+\displaystyle+ (aβ2μ22aαβμaα2)\displaystyle(-a\beta^{2}\mu^{2}-2a\alpha\beta\mu-a\alpha^{2})
+\displaystyle+ (aβ2μ2β2γμbβ2)\displaystyle(-a\beta^{2}\mu^{2}-\beta^{2}\gamma\mu-b\beta^{2})
+\displaystyle+ (4a2cμ24acγμcγ2)\displaystyle(-4a^{2}c\mu^{2}-4ac\gamma\mu-c\gamma^{2})
=\displaystyle= 4abc+αβγaα2bβ2cγ2\displaystyle 4abc+\alpha\beta\gamma-a\alpha^{2}-b\beta^{2}-c\gamma^{2}
=\displaystyle= δ(Q).\displaystyle\delta(Q).

Definition 3.4.

Let f:XTf:X\to T be a conic bundle. We define the closed subscheme Δf\Delta_{f} of TT, called the discriminant locus or discriminant scheme of ff, as follows.

  1. (1)

    If T=SpecAT={\operatorname{Spec}}\,A and X=ProjA[x,y,z]/(Q)X={\operatorname{Proj}}\,A[x,y,z]/(Q), then we set

    Δf:=Spec(A/δ(Q)A).\Delta_{f}:={\operatorname{Spec}}\,(A/\delta(Q)A).

    By Proposition 3.3, this definition is independent of the choice of QQ.

  2. (2)

    Fix an affine open cover T=iITiT=\bigcup_{i\in I}T_{i} such that f1(Ti)f^{-1}(T_{i}) is TiT_{i}-isomorphic to a conic on Ti2\mathbb{P}^{2}_{T_{i}} for every iIi\in I (the existence of such an open cover is guaranteed by Proposition 2.7). We can write

    Xi:=f1(Ti)=ProjAi[x,y,z]/(Qi),QiAi[x,y,z],Ai:=Γ(Ti,𝒪T).X_{i}:=f^{-1}(T_{i})={\operatorname{Proj}}\,A_{i}[x,y,z]/(Q_{i}),\qquad Q_{i}\in A_{i}[x,y,z],\qquad A_{i}:=\Gamma(T_{i},\mathcal{O}_{T}).

    By (1), we have a closed subscheme Δfi\Delta_{f_{i}} of TiT_{i} for every iIi\in I. Again by (1), we obtain Δfi|TiTj=Δfj|TiTj\Delta_{f_{i}}|_{T_{i}\cap T_{j}}=\Delta_{f_{j}}|_{T_{i}\cap T_{j}}, so that there exists a closed subscheme Δf\Delta_{f} on TT such that Δf|Ti=Δfi\Delta_{f}|_{T_{i}}=\Delta_{f_{i}} for every iIi\in I. It follows from (1) that Δf\Delta_{f} does not depend on the choice of the affine open cover T=iITiT=\bigcup_{i\in I}T_{i}.

We also call Δf\Delta_{f} the discriminant divisor of ff when Δf\Delta_{f} is an effective Cartier divisor on TT.

Remark 3.5.

Let

XαXffTβT\begin{CD}X^{\prime}@>{\alpha}>{}>X\\ @V{}V{f^{\prime}}V@V{}V{f}V\\ T^{\prime}@>{\beta}>{}>T\end{CD}

be a cartesian diagram of noetherian schemes, where ff is a conic bundle. In particular, also ff^{\prime} is a conic bundle. In this case, the equality

β1(Δf)=Δf\beta^{-1}(\Delta_{f})=\Delta_{f^{\prime}}

holds by Definition 3.4, where β1(Δf)\beta^{-1}(\Delta_{f}) is the scheme-theoretic inverse image of Δf\Delta_{f}.

3.2. Locus of non-reduced fibres

In this subsection, we introduce a closed subscheme Σf\Sigma_{f} of TT associated with a conic bundle f:XTf:X\to T. The outline is similar to that of Subsection 3.2, whilst its proof is more involved, because the defining ideal σ(Q)\sigma(Q) is no longer principal. The proof is carried out by reducing the problem to the case of characteristic zero.

Definition 3.6.

Let AA be a noetherian ring. For

Q(x,y,z):=ax2+by2+cz2+αyz+βzx+γxyA[x,y,z],Q(x,y,z):=ax^{2}+by^{2}+cz^{2}+\alpha yz+\beta zx+\gamma xy\in A[x,y,z],

we set

σ(Q):=(4abγ2,4bcα2,4caβ2,2aαβγ,2bβγα,2cγαβ)A,\sigma(Q):=(4ab-\gamma^{2},4bc-\alpha^{2},4ca-\beta^{2},2a\alpha-\beta\gamma,2b\beta-\gamma\alpha,2c\gamma-\alpha\beta)\subset A,

which is an ideal of AA.

Remark 3.7.

Note that σ(Q)\sigma(Q) is the ideal of AA generated by the 2×22\times 2 minors of

(2aγβγ2bαβα2c).\begin{pmatrix}2a&\gamma&\beta\\ \gamma&2b&\alpha\\ \beta&\alpha&2c\end{pmatrix}.

The following lemma is the key to prove that σ(Q)\sigma(Q) does not depend on the choice of the closed embedding into A2\mathbb{P}^{2}_{A}.

Lemma 3.8.

Let AA be a noetherian ring and fix μA\mu\in A. Set

Q(x,y,z):=ax2+by2+cz2+αyz+βzx+γxyA[x,y,z]Q(x,y,z):=ax^{2}+by^{2}+cz^{2}+\alpha yz+\beta zx+\gamma xy\in A[x,y,z]

and

M:=(10μ010001).M:=\begin{pmatrix}1&0&\mu\\ 0&1&0\\ 0&0&1\end{pmatrix}.

Then the equality

(3.8.1) σ(Q)=σ(QM).\sigma(Q)=\sigma(Q^{M}).

of ideals of AA holds.

Proof.

We introduce the following notation.

  • σ11(Q):=4bcα2\sigma_{11}(Q):=4bc-\alpha^{2}.

  • σ22(Q):=4caβ2\sigma_{22}(Q):=4ca-\beta^{2}.

  • σ33(Q):=4abγ2\sigma_{33}(Q):=4ab-\gamma^{2}.

  • σ12(Q):=2cγαβ\sigma_{12}(Q):=2c\gamma-\alpha\beta.

  • σ23(Q):=2aαβγ\sigma_{23}(Q):=2a\alpha-\beta\gamma.

  • σ31(Q):=2bβγα\sigma_{31}(Q):=2b\beta-\gamma\alpha.

Step 1.

The equality (3.8.1) holds if the following equalities (1)–(6) hold.

  1. (1)

    σ11(QM)=σ11(Q)2μσ31(Q)+μ2σ33(Q)\sigma_{11}(Q^{M})=\sigma_{11}(Q)-2\mu\sigma_{31}(Q)+\mu^{2}\sigma_{33}(Q).

  2. (2)

    σ22(QM)=σ22(Q)\sigma_{22}(Q^{M})=\sigma_{22}(Q).

  3. (3)

    σ33(QM)=σ33(Q)\sigma_{33}(Q^{M})=\sigma_{33}(Q).

  4. (4)

    σ12(QM)=σ12(Q)μσ23(Q)\sigma_{12}(Q^{M})=\sigma_{12}(Q)-\mu\sigma_{23}(Q).

  5. (5)

    σ23(QM)=σ23(Q)\sigma_{23}(Q^{M})=\sigma_{23}(Q).

  6. (6)

    σ31(QM)=σ31(Q)+μσ33(Q)\sigma_{31}(Q^{M})=\sigma_{31}(Q)+\mu\sigma_{33}(Q).

Proof of Step 1.

Note that {σij(Q)}i,j\{\sigma_{ij}(Q)\}_{i,j} and {σij(QM)}i,j\{\sigma_{ij}(Q^{M})\}_{i,j} are generators of σ(Q)\sigma(Q) and σ(QM)\sigma(Q^{M}), respectively:

σ(Q)\displaystyle\sigma(Q) =\displaystyle= (σ11(Q),σ22(Q),σ33(Q),σ12(Q),σ23(Q),σ31(Q))\displaystyle(\sigma_{11}(Q),\sigma_{22}(Q),\sigma_{33}(Q),\sigma_{12}(Q),\sigma_{23}(Q),\sigma_{31}(Q))
σ(QM)\displaystyle\sigma(Q^{M}) =\displaystyle= (σ11(QM),σ22(QM),σ33(QM),σ12(QM),σ23(QM),σ31(QM)).\displaystyle(\sigma_{11}(Q^{M}),\sigma_{22}(Q^{M}),\sigma_{33}(Q^{M}),\sigma_{12}(Q^{M}),\sigma_{23}(Q^{M}),\sigma_{31}(Q^{M})).

Therefore, (1)–(6) imply the equality (3.8.1). This completes the proof of Step 1. ∎

Step 2.

If AA is a field of characteristic zero, then the equalities (1)–(6) of Step 1 hold.

Proof of Step 2.

For the symmetric matrix

S:=(2aγβγ2bαβα2c),S:=\begin{pmatrix}2a&\gamma&\beta\\ \gamma&2b&\alpha\\ \beta&\alpha&2c\end{pmatrix},

we have

Q(x,y,z)=ax2+by2+cz2+αyz+βzx+γxy=12(xyz)S(xyz).Q(x,y,z)=ax^{2}+by^{2}+cz^{2}+\alpha yz+\beta zx+\gamma xy=\frac{1}{2}\begin{pmatrix}x&y&z\end{pmatrix}S\begin{pmatrix}x\\ y\\ z\end{pmatrix}.

Furthermore, the following equalities (i)–(vi) hold if each SijS_{ij} denotes the 2×22\times 2-matrix obtained from SS by excluding the ii-th row and the jj-th column.

  1. (i)

    σ11(Q)=4bcα2=detS11\sigma_{11}(Q)=4bc-\alpha^{2}=\det S_{11}.

  2. (ii)

    σ22(Q)=4caβ2=detS22\sigma_{22}(Q)=4ca-\beta^{2}=\det S_{22}.

  3. (iii)

    σ33(Q)=4abγ2=detS33\sigma_{33}(Q)=4ab-\gamma^{2}=\det S_{33}.

  4. (iv)

    σ12(Q)=2cγαβ=detS12=detS21\sigma_{12}(Q)=2c\gamma-\alpha\beta=\det S_{12}=\det S_{21}.

  5. (v)

    σ23(Q)=2aαβγ=detS23=detS32\sigma_{23}(Q)=2a\alpha-\beta\gamma=\det S_{23}=\det S_{32}.

  6. (vi)

    σ31(Q)=2bβγα=detS31=detS13\sigma_{31}(Q)=2b\beta-\gamma\alpha=-\det S_{31}=-\det S_{13}.

It holds that

QM(x,y,z)=12(xyz)(MTSM)(xyz),Q^{M}(x,y,z)=\frac{1}{2}\begin{pmatrix}x&y&z\end{pmatrix}(M^{T}SM)\begin{pmatrix}x\\ y\\ z\end{pmatrix},

and

MTSM=(2aγβ+μ(2a)γ2bα+μγβ+μ(2a)α+μγ2c+2μβ+μ2(2a))M^{T}SM=\begin{pmatrix}2a&\gamma&\beta+\mu\cdot(2a)\\ \gamma&2b&\alpha+\mu\gamma\\ \beta+\mu\cdot(2a)&\alpha+\mu\gamma&2c+2\mu\beta+\mu^{2}\cdot(2a)\end{pmatrix}

where MTM^{T} denotes the transposed matrix of MM.

(1)

σ11(QM)\displaystyle\sigma_{11}(Q^{M}) =\displaystyle= det(MTSM)11\displaystyle\det(M^{T}SM)_{11}
=\displaystyle= det(2bα+μγα+μγ2c+2μβ+μ2(2a))\displaystyle\det\begin{pmatrix}2b&\alpha+\mu\gamma\\ \alpha+\mu\gamma&2c+2\mu\beta+\mu^{2}\cdot(2a)\end{pmatrix}
=\displaystyle= det(2bα+μγα2c+μβ)+μdet(2bα+μγγβ+μ(2a))\displaystyle\det\begin{pmatrix}2b&\alpha+\mu\gamma\\ \alpha&2c+\mu\beta\end{pmatrix}+\mu\det\begin{pmatrix}2b&\alpha+\mu\gamma\\ \gamma&\beta+\mu\cdot(2a)\end{pmatrix}
=\displaystyle= det(2bαα2c)+μdet(2bγαβ)+μdet(2bαγβ)+μ2det(2bγγ2a)\displaystyle\det\begin{pmatrix}2b&\alpha\\ \alpha&2c\end{pmatrix}+\mu\det\begin{pmatrix}2b&\gamma\\ \alpha&\beta\end{pmatrix}+\mu\det\begin{pmatrix}2b&\alpha\\ \gamma&\beta\end{pmatrix}+\mu^{2}\det\begin{pmatrix}2b&\gamma\\ \gamma&2a\end{pmatrix}
=\displaystyle= detS11μdetS13μdetS31+μ2detS33\displaystyle\det S_{11}-\mu\det S_{13}-\mu\det S_{31}+\mu^{2}\det S_{33}
=\displaystyle= σ11(Q)2μσ31(Q)+μ2σ33(Q).\displaystyle\sigma_{11}(Q)-2\mu\sigma_{31}(Q)+\mu^{2}\sigma_{33}(Q).

(2)

σ22(QM)=det(MTSM)22=det(2aβ+μ(2a)β+μ(2a)2c+2μβ+μ2(2a))\sigma_{22}(Q^{M})=\det(M^{T}SM)_{22}=\det\begin{pmatrix}2a&\beta+\mu\cdot(2a)\\ \beta+\mu\cdot(2a)&2c+2\mu\beta+\mu^{2}\cdot(2a)\end{pmatrix}
=det(2aβ+μ(2a)β2c+μβ)=det(2aββ2c)=detS22=σ22(Q).=\det\begin{pmatrix}2a&\beta+\mu\cdot(2a)\\ \beta&2c+\mu\beta\end{pmatrix}=\det\begin{pmatrix}2a&\beta\\ \beta&2c\end{pmatrix}=\det S_{22}=\sigma_{22}(Q).

(3) σ33(QM)=det(MTSM)33=detS33=σ33(Q)\sigma_{33}(Q^{M})=\det(M^{T}SM)_{33}=\det S_{33}=\sigma_{33}(Q).

(4)

σ12(QM)\displaystyle\sigma_{12}(Q^{M}) =\displaystyle= det(MTSM)12\displaystyle\det(M^{T}SM)_{12}
=\displaystyle= det(γα+μγβ+μ(2a)2c+2μβ+μ2(2a))\displaystyle\det\begin{pmatrix}\gamma&\alpha+\mu\gamma\\ \beta+\mu\cdot(2a)&2c+2\mu\beta+\mu^{2}\cdot(2a)\end{pmatrix}
=\displaystyle= det(γαβ+μ(2a)2c+μβ)\displaystyle\det\begin{pmatrix}\gamma&\alpha\\ \beta+\mu\cdot(2a)&2c+\mu\beta\end{pmatrix}
=\displaystyle= det(γαβ2c)+μdet(γα2aβ)\displaystyle\det\begin{pmatrix}\gamma&\alpha\\ \beta&2c\end{pmatrix}+\mu\det\begin{pmatrix}\gamma&\alpha\\ 2a&\beta\end{pmatrix}
=\displaystyle= detS12μdetS32\displaystyle\det S_{12}-\mu\det S_{32}
=\displaystyle= σ12(Q)μσ23(Q).\displaystyle\sigma_{12}(Q)-\mu\sigma_{23}(Q).

(5)

σ23(QM)=det(MSMT)23=det(2aγβ+μ(2a)α+μγ)=det(2aγβα)\sigma_{23}(Q^{M})=\det(MSM^{T})_{23}=\det\begin{pmatrix}2a&\gamma\\ \beta+\mu\cdot(2a)&\alpha+\mu\gamma\end{pmatrix}=\det\begin{pmatrix}2a&\gamma\\ \beta&\alpha\end{pmatrix}
=detS23=σ23(Q).=\det S_{23}=\sigma_{23}(Q).

(6)

σ31(QM)=det(MTSM)13=det(γ2bβ+μ(2a)α+μγ)\sigma_{31}(Q^{M})=-\det(M^{T}SM)_{13}=-\det\begin{pmatrix}\gamma&2b\\ \beta+\mu\cdot(2a)&\alpha+\mu\gamma\end{pmatrix}
=det(γ2bβα)μdet(γ2b2aγ)=detS13+μdetS33=σ31(Q)+μσ33(Q).=-\det\begin{pmatrix}\gamma&2b\\ \beta&\alpha\end{pmatrix}-\mu\det\begin{pmatrix}\gamma&2b\\ 2a&\gamma\end{pmatrix}=-\det S_{13}+\mu\det S_{33}=\sigma_{31}(Q)+\mu\sigma_{33}(Q).

This completes the proof of Step 2. ∎

Step 3.

The equalities (1)–(6) of Step 1 hold without any additional assumptions.

Proof of Step 3.

Let A:=[a,b,c,α,β,γ,μ]A^{\prime}:=\mathbb{Z}[a^{\prime},b^{\prime},c^{\prime},\alpha^{\prime},\beta^{\prime},\gamma^{\prime},\mu^{\prime}] be the polynomial ring over \mathbb{Z} with seven variables a,b,c,α,β,γ,μa^{\prime},b^{\prime},c^{\prime},\alpha^{\prime},\beta^{\prime},\gamma^{\prime},\mu^{\prime}. Let

φ:A=[a,b,c,α,β,γ,μ]A\varphi:A^{\prime}=\mathbb{Z}[a^{\prime},b^{\prime},c^{\prime},\alpha^{\prime},\beta^{\prime},\gamma^{\prime},\mu^{\prime}]\to A

be the ring homomorphism such that

φ(a)=a,φ(b)=b,φ(c)=c,φ(α)=α,φ(β)=β,φ(γ)=γ,φ(μ)=μ.\varphi(a^{\prime})=a,\quad\varphi(b^{\prime})=b,\quad\varphi(c^{\prime})=c,\quad\varphi(\alpha^{\prime})=\alpha,\quad\varphi(\beta^{\prime})=\beta,\quad\varphi(\gamma^{\prime})=\gamma,\quad\varphi(\mu^{\prime})=\mu.

Take the embedding ψ:AA′′:=FracA\psi:A^{\prime}\hookrightarrow A^{\prime\prime}:={\operatorname{Frac}}\,A^{\prime} into its total ring of fractions A′′=FracAA^{\prime\prime}={\operatorname{Frac}}\,A^{\prime}. Set

Q(x,y,z):=ax2+by2+cz2+αyz+βzx+γxyA[x,y,z]A′′[x,y,z].Q^{\prime}(x,y,z):=a^{\prime}x^{2}+b^{\prime}y^{2}+c^{\prime}z^{2}+\alpha^{\prime}yz+\beta^{\prime}zx+\gamma^{\prime}xy\in A^{\prime}[x,y,z]\subset A^{\prime\prime}[x,y,z].

and

M:=(10μ010001).M^{\prime}:=\begin{pmatrix}1&0&\mu^{\prime}\\ 0&1&0\\ 0&0&1\end{pmatrix}.

Let us only show that (1) of Step 1 holds, as the other ones (2)–(6) are similar. Applying Step 2 to A′′A^{\prime\prime}, we obtain an equality

σ11(QM)=σ11(Q)2μσ31(Q)+μ2σ33(Q)inA′′.\sigma_{11}(Q^{\prime M^{\prime}})=\sigma_{11}(Q^{\prime})-2\mu^{\prime}\sigma_{31}(Q^{\prime})+\mu^{\prime 2}\sigma_{33}(Q^{\prime})\quad{\rm in}\quad A^{\prime\prime}.

Since both sides are elements of AA^{\prime}, it follows from AA′′A^{\prime}\subset A^{\prime\prime} that

σ11(QM)=σ11(Q)2μσ31(Q)+μ2σ33(Q)inA.\sigma_{11}(Q^{\prime M^{\prime}})=\sigma_{11}(Q^{\prime})-2\mu^{\prime}\sigma_{31}(Q^{\prime})+\mu^{\prime 2}\sigma_{33}(Q^{\prime})\quad{\rm in}\quad A^{\prime}.

Take the image by φ:AA\varphi:A^{\prime}\to A:

φ(σ11(QM))=φ(σ11(Q))2μφ(σ31(Q))+μ2φ(σ33(Q)).\varphi(\sigma_{11}(Q^{\prime M^{\prime}}))=\varphi(\sigma_{11}(Q^{\prime}))-2\mu\varphi(\sigma_{31}(Q^{\prime}))+\mu^{2}\varphi(\sigma_{33}(Q^{\prime})).

We can check that φ(σ11(QM))=σ11(QM)\varphi(\sigma_{11}(Q^{\prime M^{\prime}}))=\sigma_{11}(Q^{M}) and φ(σij(Q))=σij(Q)\varphi(\sigma_{ij}(Q^{\prime}))=\sigma_{ij}(Q) for all i,ji,j. This completes the proof of Step 3. ∎

Step 1 and Step 3 complete the proof of Lemma 3.8. ∎

Proposition 3.9.

Let AA be a noetherian ring. For MGL3(A)M\in{\operatorname{GL}}_{3}(A) and

Q(x,y,z):=ax2+by2+cz2+αyz+βzx+γxyA[x,y,z],Q(x,y,z):=ax^{2}+by^{2}+cz^{2}+\alpha yz+\beta zx+\gamma xy\in A[x,y,z],

the equality

σ(Q)=σ(QM)\sigma(Q)=\sigma(Q^{M})

of ideals hold.

Proof.

By the same argument as in the proof of Proposition 3.3, we may assume that AA is a noetherian local ring and one of (1)-(3) holds.

  1. (1)

    M=(λ00010001)M=\begin{pmatrix}\lambda&0&0\\ 0&1&0\\ 0&0&1\\ \end{pmatrix} for some λA×\lambda\in A^{\times}.

  2. (2)

    M=(010100001)M=\begin{pmatrix}0&1&0\\ 1&0&0\\ 0&0&1\\ \end{pmatrix}.

  3. (3)

    M=(10μ010001)M=\begin{pmatrix}1&0&\mu\\ 0&1&0\\ 0&0&1\\ \end{pmatrix} for some μA\mu\in A.

(1) In this case, we have

QM(x,y,z)=Q(λx,y,z)=(λ2a)x2+by2+cz2+αyz+(λβ)zx+(λγ)xyQ^{M}(x,y,z)=Q(\lambda x,y,z)=(\lambda^{2}a)x^{2}+by^{2}+cz^{2}+\alpha yz+(\lambda\beta)zx+(\lambda\gamma)xy

and

σ(QM)=(4λ2ab(λγ)2,4bcα2,4c(λ2a)(λβ)2,\sigma(Q^{M})=(4\lambda^{2}ab-(\lambda\gamma)^{2},4bc-\alpha^{2},4c(\lambda^{2}a)-(\lambda\beta)^{2},
2(λ2a)α(λβ)(λγ),2b(λβ)(λγ)α,2c(λγ)α(λβ))=σ(Q),2(\lambda^{2}a)\alpha-(\lambda\beta)(\lambda\gamma),2b(\lambda\beta)-(\lambda\gamma)\alpha,2c(\lambda\gamma)-\alpha(\lambda\beta))=\sigma(Q),

as required.

(2) In this case, we have σ(QM)=σ(Q)\sigma(Q^{M})=\sigma(Q) by symmetry.

(3) In this case, the equality σ(QM)=σ(Q)\sigma(Q^{M})=\sigma(Q) follows from Lemma 3.8. ∎

Definition 3.10.

Let f:XTf:X\to T be a conic bundle. We define the closed subscheme Σf\Sigma_{f} of TT as follows.

  1. (1)

    If T=SpecAT={\operatorname{Spec}}\,A and X=ProjA[x,y,z]/(Q)X={\operatorname{Proj}}\,A[x,y,z]/(Q), then we set

    Σf:=Spec(A/σ(Q)).\Sigma_{f}:={\operatorname{Spec}}\,(A/\sigma(Q)).

    By Proposition 3.9, this definition is independent of the choice of QQ.

  2. (2)

    Fix an affine open cover T=iITiT=\bigcup_{i\in I}T_{i} such that f1(Ti)f^{-1}(T_{i}) is TiT_{i}-isomorphic to a conic on Ti2\mathbb{P}^{2}_{T_{i}} for every iIi\in I (the existence of such an open cover is guaranteed by Proposition 2.7). We can write

    Xi:=f1(Ti)=ProjAi[x,y,z]/(Qi),QiAi[x,y,z],Ai:=Γ(Ti,𝒪T).X_{i}:=f^{-1}(T_{i})={\operatorname{Proj}}\,A_{i}[x,y,z]/(Q_{i}),\qquad Q_{i}\in A_{i}[x,y,z],\qquad A_{i}:=\Gamma(T_{i},\mathcal{O}_{T}).

    By (1), we have a closed subscheme Σfi\Sigma_{f_{i}} of TiT_{i} for every iIi\in I. Again by (1), we obtain Σfi|TiTj=Σfj|TiTj\Sigma_{f_{i}}|_{T_{i}\cap T_{j}}=\Sigma_{f_{j}}|_{T_{i}\cap T_{j}}, so that there exists a closed subscheme Σf\Sigma_{f} on TT such that Σf|Ti=Σfi\Sigma_{f}|_{T_{i}}=\Sigma_{f_{i}} for every iIi\in I. It follows from (1) that Σf\Sigma_{f} does not depend on the choice of the affine open cover T=iITiT=\bigcup_{i\in I}T_{i}.

Remark 3.11.

Let

XαXffTβT\begin{CD}X^{\prime}@>{\alpha}>{}>X\\ @V{}V{f^{\prime}}V@V{}V{f}V\\ T^{\prime}@>{\beta}>{}>T\end{CD}

be a cartesian diagram of noetherian schemes, where ff is a conic bundle. In particular, also ff^{\prime} is a conic bundle. In this case, the equation

β1(Σf)=Σf\beta^{-1}(\Sigma_{f})=\Sigma_{f^{\prime}}

holds by Definition 3.10, where β1(Σf)\beta^{-1}(\Sigma_{f}) is the scheme-theoretic inverse image of Σf\Sigma_{f}.

3.3. Singular fibres

The purpose of this subsection is to prove Theorem 3.13, which states that Δf\Delta_{f} (resp. Σf\Sigma_{f}) is set-theoretically equal to the locus parametrising non-smooth fibres (resp. geometrically non-reduced fibres). Since the problem is reduced to the case when the base scheme is Specκ{\operatorname{Spec}}\,\kappa for a field κ\kappa, we start with the following.

Proposition 3.12.

Let κ\kappa be a field. Let

Q:=Q(x,y,z):=ax2+by2+cz2+αyz+βzx+γxyκ[x,y,z]{0}Q:=Q(x,y,z):=ax^{2}+by^{2}+cz^{2}+\alpha yz+\beta zx+\gamma xy\in\kappa[x,y,z]\setminus\{0\}

and set

C:=Projκ[x,y,z]/(Q),C:={\operatorname{Proj}}\,\kappa[x,y,z]/(Q),

which is a conic on κ2\mathbb{P}^{2}_{\kappa}. Then the following hold.

  1. (1)

    CC is not smooth over κ\kappa if and only if δ(Q)=0\delta(Q)=0.

  2. (2)

    CC is not geometrically reduced if and only if σ(Q)=0\sigma(Q)=0.

Proof.

By Proposition 3.3 and Proposition 3.9, we may perform coordinate changes.

We first treat the case when κ{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}\kappa} is of characteristic 2\neq 2. By Proposition 2.11, we may assume that α=β=γ=0\alpha=\beta=\gamma=0:

Q=ax2+by2+cz2.Q=ax^{2}+by^{2}+cz^{2}.

In this case, the following hold (Definition 3.1, Definition 3.6):

δ(Q)=4abc,σ(Q)=(ab,bc,ca).\delta(Q)=4abc,\qquad\sigma(Q)=(ab,bc,ca).

Thus (1) and (2) hold by Proposition 2.11.

Hence we may assume that κ{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}\kappa} is an algebraically closed field of characteristic two. By Proposition 2.15(2), the problem is reduced to the case when QQ is equal to one of x2,x2+yz,yzx^{2},x^{2}+yz,yz. For each case, (1) and (2) hold by Definition 3.1 and Definition 3.6, respectively. ∎

Theorem 3.13.

Let f:XTf:X\to T be a conic bundle and let tt be a point of TT. Then the following hold.

  1. (1)

    XtX_{t} is not smooth if and only if tΔft\in\Delta_{f}.

  2. (2)

    XtX_{t} is not geometrically reduced if and only if tΣft\in\Sigma_{f}.

Proof.

By Remark 3.5, we may assume that T=SpecκT={\operatorname{Spec}}\,\kappa, where κ\kappa is a field. Then the assertion follows from Proposition 3.12. ∎

Theorem 3.13 immediately deduces the set-theoretic inclusion ΣfΔf\Sigma_{f}\subset\Delta_{f}. As the following proposition shows, this inclusion holds even as closed subschemes.

Proposition 3.14.

Let f:XTf:X\to T be a conic bundle. Then the inclusion ΣfΔf\Sigma_{f}\subset\Delta_{f} of closed subschemes holds, i.e., the inclusion IΣfIΔfI_{\Sigma_{f}}\supset I_{\Delta_{f}} holds for the corresponding ideal sheaves.

Proof.

By Proposition 2.7, we may assume that T=SpecAT={\operatorname{Spec}}\,A and

X=ProjA[x,y,z]/(Q)A2X={\operatorname{Proj}}\,A[x,y,z]/(Q)\subset\mathbb{P}^{2}_{A}

for

Q=ax2+by2+cz2+αyz+βzx+γxyA[x,y,z].Q=ax^{2}+by^{2}+cz^{2}+\alpha yz+\beta zx+\gamma xy\in A[x,y,z].

It suffices to show that δ(Q)σ(Q)\delta(Q)\in\sigma(Q). Recall that

  • δ(Q)=4abc+αβγaα2bβ2cγ2\delta(Q)=4abc+\alpha\beta\gamma-a\alpha^{2}-b\beta^{2}-c\gamma^{2} and

  • σ(Q)=(4abγ2,4bcα2,4caβ2,2aαβγ,2bβγα,2cγαβ)\sigma(Q)=(4ab-\gamma^{2},4bc-\alpha^{2},4ca-\beta^{2},2a\alpha-\beta\gamma,2b\beta-\gamma\alpha,2c\gamma-\alpha\beta).

It holds that

4abcaα2,4abcbβ2,4abccγ2σ(Q),4abc-a\alpha^{2},\quad 4abc-b\beta^{2},\quad 4abc-c\gamma^{2}\in\sigma(Q),

and hence

12abcaα2bβ2cγ2σ(Q).12abc-a\alpha^{2}-b\beta^{2}-c\gamma^{2}\in\sigma(Q).

By 8abc2aα2=2a(4bcα2)σ(Q)8abc-2a\alpha^{2}=2a(4bc-\alpha^{2})\in\sigma(Q) and 2aα2αβγ=α(2aαβγ)σ(Q)2a\alpha^{2}-\alpha\beta\gamma=\alpha(2a\alpha-\beta\gamma)\in\sigma(Q), we get

8abcαβγσ(Q),8abc-\alpha\beta\gamma\in\sigma(Q),

which implies

δ(Q)=(12abcaα2bβ2cγ2)(8abcαβγ)σ(Q).\delta(Q)=(12abc-a\alpha^{2}-b\beta^{2}-c\gamma^{2})-(8abc-\alpha\beta\gamma)\in\sigma(Q).

3.4. Case of characteristic two

In this subsection, we introduce a simpler version Σf\Sigma^{\prime}_{f} of Σf\Sigma_{f} which can be defined only in characteristic two. Let us start by recalling the defining equations of Δf\Delta_{f} and Σf\Sigma_{f}.

3.15.

Let AA be a noetherian 𝔽2\mathbb{F}_{2}-algebra. For

Q:=ax2+by2+cz2+αyz+βza+γxyA[x,y,z]Q:=ax^{2}+by^{2}+cz^{2}+\alpha yz+\beta za+\gamma xy\in A[x,y,z]

we have the following (Definition 3.1, Definition 3.6).

  1. (1)

    δ(Q)=αβγ+aα2+bβ2+cγ2\delta(Q)=\alpha\beta\gamma+a\alpha^{2}+b\beta^{2}+c\gamma^{2}.

  2. (2)

    σ(Q)=(α2,β2,γ2,αβ,βγ,γα)\sigma(Q)=(\alpha^{2},\beta^{2},\gamma^{2},\alpha\beta,\beta\gamma,\gamma\alpha).

We now introduce the ring-theoretic counterpart σ\sigma^{\prime} to Σf\Sigma^{\prime}_{f}.

Definition 3.16.

Let AA be a noetherian 𝔽2\mathbb{F}_{2}-algebra. For

Q:=ax2+by2+cz2+αyz+βza+γxyA[x,y,z],Q:=ax^{2}+by^{2}+cz^{2}+\alpha yz+\beta za+\gamma xy\in A[x,y,z],

we define

σ(Q)=(α,β,γ),\sigma^{\prime}(Q)=(\alpha,\beta,\gamma),

which is an ideal of AA.

Proposition 3.17.

Let AA be a noetherian 𝔽2\mathbb{F}_{2}-algebra. For MGL3(A)M\in{\operatorname{GL}}_{3}(A) and

Q:=ax2+by2+cz2+αyz+βzx+γxyA[x,y,z],Q:=ax^{2}+by^{2}+cz^{2}+\alpha yz+\beta zx+\gamma xy\in A[x,y,z],

the equality

σ(Q)=σ(QM)\sigma^{\prime}(Q)=\sigma^{\prime}(Q^{M})

of ideals hold.

Proof.

By the same argument as in the proof of Proposition 3.3, we may assume that AA is a noetherian local ring and one of the following holds.

  1. (1)

    M=(λ00010001)M=\begin{pmatrix}\lambda&0&0\\ 0&1&0\\ 0&0&1\\ \end{pmatrix} for some λA×\lambda\in A^{\times}.

  2. (2)

    M=(010100001)M=\begin{pmatrix}0&1&0\\ 1&0&0\\ 0&0&1\\ \end{pmatrix}.

  3. (3)

    M=(10μ010001)M=\begin{pmatrix}1&0&\mu\\ 0&1&0\\ 0&0&1\\ \end{pmatrix} for some μA\mu\in A.

We only treat the case (3), i.e., we assume that M=(10μ010001)M=\begin{pmatrix}1&0&\mu\\ 0&1&0\\ 0&0&1\\ \end{pmatrix}. Then there exist cAc^{\prime}\in A such that the following holds:

QM(x,y,z)\displaystyle Q^{M}(x,y,z) =\displaystyle= Q(x+μz,y,z)\displaystyle Q(x+\mu z,y,z)
=\displaystyle= a(x+μz)2+by2+cz2+αyz+βz(x+μz)+γ(x+μz)y\displaystyle a(x+\mu z)^{2}+by^{2}+cz^{2}+\alpha yz+\beta z(x+\mu z)+\gamma(x+\mu z)y
=\displaystyle= ax2+by2+cz2+(α+μγ)yz+βzx+γxy.\displaystyle ax^{2}+by^{2}+c^{\prime}z^{2}+(\alpha+\mu\gamma)yz+\beta zx+\gamma xy.

Hence we obtain σ(QM)=(α+μγ,β,γ)=(α,β,γ)=σ(Q)\sigma^{\prime}(Q^{M})=(\alpha+\mu\gamma,\beta,\gamma)=(\alpha,\beta,\gamma)=\sigma(Q). ∎

Definition 3.18.

Let f:XTf:X\to T be a conic bundle. We define the closed subscheme Σf\Sigma^{\prime}_{f} of TT as follows.

  1. (1)

    If T=SpecAT={\operatorname{Spec}}\,A and X=ProjA[x,y,z]/(Q)X={\operatorname{Proj}}\,A[x,y,z]/(Q), then we set

    Σf:=Spec(A/σ(Q)).\Sigma^{\prime}_{f}:={\operatorname{Spec}}\,(A/\sigma^{\prime}(Q)).

    By Proposition 3.17, this definition is independent of the choice of QQ.

  2. (2)

    Fix an affine open cover T=iITiT=\bigcup_{i\in I}T_{i} such that f1(Ti)f^{-1}(T_{i}) is TiT_{i}-isomorphic to a conic on Ti2\mathbb{P}^{2}_{T_{i}} for every iIi\in I (the existence of such an open cover is guaranteed by Proposition 2.7). We can write

    Xi:=f1(Ti)=ProjAi[x,y,z]/(Qi),QiAi[x,y,z],Ai:=Γ(Ti,𝒪T).X_{i}:=f^{-1}(T_{i})={\operatorname{Proj}}\,A_{i}[x,y,z]/(Q_{i}),\qquad Q_{i}\in A_{i}[x,y,z],\qquad A_{i}:=\Gamma(T_{i},\mathcal{O}_{T}).

    By (1), we have a closed subscheme Σfi\Sigma^{\prime}_{f_{i}} of TiT_{i} for every iIi\in I. Again by (1), we obtain Σfi|TiTj=Σfj|TiTj\Sigma^{\prime}_{f_{i}}|_{T_{i}\cap T_{j}}=\Sigma^{\prime}_{f_{j}}|_{T_{i}\cap T_{j}}, so that there exists a closed subscheme Σf\Sigma^{\prime}_{f} on TT such that Σf|Ti=Σfi\Sigma^{\prime}_{f}|_{T_{i}}=\Sigma^{\prime}_{f_{i}} for every iIi\in I. It follows from (1) that Σf\Sigma^{\prime}_{f} does not depend on the choice of the affine open cover T=iITiT=\bigcup_{i\in I}T_{i}.

Remark 3.19.

Let

XαXffTβT\begin{CD}X^{\prime}@>{\alpha}>{}>X\\ @V{}V{f^{\prime}}V@V{}V{f}V\\ T^{\prime}@>{\beta}>{}>T\end{CD}

be a cartesian diagram of schemes, where TT and TT^{\prime} are noetherian schemes and ff is a conic bundle. In particular, also ff^{\prime} is a conic bundle. In this case, the equation

β1(Σf)=Σf\beta^{-1}(\Sigma^{\prime}_{f})=\Sigma^{\prime}_{f^{\prime}}

holds by Definition 3.18, where β1(Σf)\beta^{-1}(\Sigma^{\prime}_{f}) is the scheme-theoretic inverse image of Σf\Sigma^{\prime}_{f}.

Remark 3.20.

Given a conic bundle f:XTf:X\to T, we have an inclusion ΣfΣf\Sigma_{f}\supset\Sigma^{\prime}_{f} of closed subschemes of TT and the following holds ((3.15), Definition 3.16):

(Σf)red=(Σf)red.(\Sigma_{f})_{{\operatorname{red}}}=(\Sigma^{\prime}_{f})_{{\operatorname{red}}}.

4. Singularities of ambient spaces

Given a conic bundle f:XTf:X\to T, it is natural to seek a relation between Δf\Delta_{f} and the singularities of XX. The main result of this section is to prove that the following are equivalent under the assumption that TT is regular (Theorem 4.4).

  1. (1)

    Δf\Delta_{f} is regular.

  2. (2)

    XX is regular and every fibre of ff is geometrically reduced.

In particular, if f:XTf:X\to T is a conic bundle between regular noetherian schemes, then the equality (Δf)non-reg=Σf(\Delta_{f})_{{\rm non}\text{-}{\rm reg}}=\Sigma_{f} holds, where (Δf)non-reg(\Delta_{f})_{{\rm non}\text{-}{\rm reg}} denotes the non-regular locus of Δf\Delta_{f} (Theorem 4.3). These results are known when f:XTf:X\to T is a conic bundle of smooth varieties over an algebraically closed field of characteristic 2\neq 2 [Sar82, Proposition 1.8].

Proposition 4.1.

Let f:XTf:X\to T be a generically smooth conic bundle, where TT is a regular noetherian integral scheme. Fix a point 0Δf0\in\Delta_{f}. If Δf\Delta_{f} is regular at 0, then the fibre X0X_{0} is geometrically reduced.

Proof.

Assume that X0X_{0} is not geometrically reduced. It suffices to show that Δf\Delta_{f} is not regular at 0. By taking the strict henselisation of the local ring 𝒪T,0\mathcal{O}_{T,0}, we may assume that T=SpecAT={\operatorname{Spec}}\,A, (A,𝔪,κ)(A,\mathfrak{m},\kappa) is a strictly henselian regular local ring, and 0 is the closed point of TT. We can write

X=ProjA[x,y,z]/(Q)forQ=ax2+by2+cz2+αyz+βzx+γxyA[x,y,z].X={\operatorname{Proj}}\,A[x,y,z]/(Q)\qquad\text{for}\qquad Q=ax^{2}+by^{2}+cz^{2}+\alpha yz+\beta zx+\gamma xy\in A[x,y,z].

By Definition 3.1 and Definition 3.4, we get

Δf=Spec(A/δ(Q)A)andδ(Q)=4abc+αβγaα2bβ2cγ2A.\Delta_{f}={\operatorname{Spec}}\,(A/\delta(Q)A)\qquad\text{and}\qquad\delta(Q)=4abc+\alpha\beta\gamma-a\alpha^{2}-b\beta^{2}-c\gamma^{2}\in A.

If κ\kappa is of characteristic two, then Theorem 3.13 and Remark 3.20 imply

2,α,β,γ𝔪.2,\alpha,\beta,\gamma\in\mathfrak{m}.

In particular, we get δ(Q)𝔪2\delta(Q)\in\mathfrak{m}^{2}, and hence Δf\Delta_{f} is not regular at 0.

Then the problem is reduced to the case when κ\kappa is of characteristic 2\neq 2. By Corollary 2.13(1), we may assume that

X=ProjA[x,y,z]/(x2+by2+cz2+αyz),X={\operatorname{Proj}}\,A[x,y,z]/(x^{2}+by^{2}+cz^{2}+\alpha yz),

where b,c,α𝔪b,c,\alpha\in\mathfrak{m}. By δ(Q)=4bcα2𝔪2\delta(Q)=4bc-\alpha^{2}\in\mathfrak{m}^{2}, Δf\Delta_{f} is not regular at 0. ∎

Proposition 4.2.

Let f:XTf:X\to T be a generically smooth conic bundle, where XX and TT are regular noetherian integral schemes. Fix a point 0Δf0\in\Delta_{f}. Then the following are equivalent.

  1. (1)

    X0X_{0} is geometrically reduced.

  2. (2)

    Δf\Delta_{f} is regular at 0.

Proof.

The implication (2) \Rightarrow (1) has been settled in Proposition 4.1. Let us show the opposite one: (1) \Rightarrow (2). By taking the strict henselisation of the local ring 𝒪T,0\mathcal{O}_{T,0}, we may assume that T=SpecAT={\operatorname{Spec}}\,A, (A,𝔪,κ)(A,\mathfrak{m},\kappa) is a strictly henselian regular local ring, and 0 is the closed point of TT.

Step 1.

The implication (1) \Rightarrow (2) holds if κ\kappa is of characteristic 2\neq 2.

Proof of Step 1.

Assume (1). By Corollary 2.13(2), we may assume that

X=ProjA[x,y,z]/(x2+y2+cz2)X={\operatorname{Proj}}\,A[x,y,z]/(x^{2}+y^{2}+cz^{2})

for some cAc\in A. Then the following hold (Definition 3.1, Theorem 3.13):

δ(Q)=4candσ(Q)=A.\delta(Q)=4c\qquad{\rm and}\qquad\sigma(Q)=A.

It suffices to show that c𝔪2c\not\in\mathfrak{m}^{2}. Suppose c𝔪2c\in\mathfrak{m}^{2}. Let 𝔫\mathfrak{n} be the closed point of XX lying over 0T0\in T corresponding to [0:0:1]Projκ[x,y,z]=κ2[0:0:1]\in{\operatorname{Proj}}\,\kappa[x,y,z]=\mathbb{P}^{2}_{\kappa}. For x~:=x/z\widetilde{x}:=x/z and y~:=y/z\widetilde{y}:=y/z, we have the induced injective ring homomorphism

AB:=A[x~,y~]/(x~2+y~2+c),A\hookrightarrow B:=A[\widetilde{x},\widetilde{y}]/(\widetilde{x}^{2}+\widetilde{y}^{2}+c),

where SpecB{\operatorname{Spec}}\,B is an open neighbourhood of 𝔫X\mathfrak{n}\in X. Via this injection, we consider AA as a subring of BB. We have 𝔪𝔫\mathfrak{m}\subset\mathfrak{n}, which implies c𝔪2𝔫2c\in\mathfrak{m}^{2}\subset\mathfrak{n}^{2}. By x~𝔫\widetilde{x}\in\mathfrak{n} and y~𝔫\widetilde{y}\in\mathfrak{n}, we obtain x~2+y~2+c𝔫2\widetilde{x}^{2}+\widetilde{y}^{2}+c\in\mathfrak{n}^{2}, and hence BB is not regular at 𝔫\mathfrak{n}, which is a contradiction. Thus (1) implies (2). This completes the proof of Step 1. ∎

Step 2.

The implication (1) \Rightarrow (2) holds if κ\kappa is of characteristic two.

Proof of Step 2.

Assume (1), i.e., X0X_{0} is geometrically reduced. It follows from 0Δf0\in\Delta_{f} that X0X_{0} is not smooth. By Proposition 2.14(2), we can write

X=ProjA[x,y,z]/(ax2+yz)X={\operatorname{Proj}}\,A[x,y,z]/(ax^{2}+yz)

for some a𝔪a\in\mathfrak{m}. Then we have

δ(Q)=aandΔf=Spec(A/δ(Q)A).\delta(Q)=-a\qquad\text{and}\qquad\Delta_{f}={\operatorname{Spec}}\,(A/\delta(Q)A).

By

D+(x)=SpecA[y,z]/(a+yz)X,D_{+}(x)={\operatorname{Spec}}\,A[y,z]/(a+yz)\subset X,

we have a𝔪2a\not\in\mathfrak{m}^{2}, as otherwise D+(x)D_{+}(x) would not be regular. Hence Δf={a=0}\Delta_{f}=\{a=0\} is regular at 0. Thus (2) holds. This completes the proof of Step 2. ∎

Step 1 and Step 2 complete the proof of Proposition 4.2. ∎

Theorem 4.3.

Let f:XTf:X\to T be a generically smooth conic bundle, where XX and TT are regular noetherian integral schemes. Set

(Δf)non-reg:={tΔf|𝒪Δf,t is not a regular local ring}.(\Delta_{f})_{{\rm non}\text{-}{\rm reg}}:=\{t\in\Delta_{f}\,|\,\mathcal{O}_{\Delta_{f},t}\text{ is not a regular local ring}\}.

Then the set-theoretic equality

(Δf)non-reg=Σf(\Delta_{f})_{{\rm non}\text{-}{\rm reg}}=\Sigma_{f}

holds.

Proof.

By Theorem 3.13 or Proposition 3.14, both sides are subsets of Δf\Delta_{f} .

Let us show the inclusion (Δf)non-regΣf(\Delta_{f})_{{\rm non}\text{-}{\rm reg}}\supset\Sigma_{f}. Pick a point tΔf(Δf)non-regt\in\Delta_{f}\setminus(\Delta_{f})_{{\rm non}\text{-}{\rm reg}}, i.e., tt is a point of Δf\Delta_{f} at which Δf\Delta_{f} is regular. By Proposition 4.1, the fibre XtX_{t} over tt is geometrically reduced. It follows from Theorem 3.13 that tΣft\not\in\Sigma_{f}. This completes the proof of the inclusion (Δf)non-regΣf(\Delta_{f})_{{\rm non}\text{-}{\rm reg}}\supset\Sigma_{f}.

Let us prove the opposite inclusion (Δf)non-regΣf(\Delta_{f})_{{\rm non}\text{-}{\rm reg}}\subset\Sigma_{f}. Pick a point tΔfΣft\in\Delta_{f}\setminus\Sigma_{f}. Then XtX_{t} is not smooth but geometrically reduced (Theorem 3.13). By Proposition 4.2, Δf\Delta_{f} is regular at tt, i.e., t(Δf)non-regt\not\in(\Delta_{f})_{{\rm non}\text{-}{\rm reg}}. Therefore, we get (Δf)non-regΣf(\Delta_{f})_{{\rm non}\text{-}{\rm reg}}\subset\Sigma_{f}. ∎

Theorem 4.4.

Let f:XTf:X\to T be a generically smooth conic bundle, where TT is a regular noetherian integral scheme. Then the following are equivalent.

  1. (1)

    Δf\Delta_{f} is regular.

  2. (2)

    XX is regular and any fibre of ff is geometrically reduced.

Proof.

By Proposition 4.2, (2) implies (1). Assume (1), i.e., Δf\Delta_{f} is regular. By Proposition 4.1, any fibre of ff is geometrically reduced. Fix a point PX{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}P}\in X and set 0:=f(P)0:=f({\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}P}). Hence it is enough to show that XX is regular at P{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}P}. Taking the strict henselisation of the local ring 𝒪T,0\mathcal{O}_{T,0}, we may assume that T=SpecAT={\operatorname{Spec}}\,A, (A,𝔪,κ)(A,\mathfrak{m},\kappa) is a strictly henselian regular local ring, and 0 is the closed point of TT.

Since X0X_{0} is geometrically reduced, we can write

X=ProjA[x,y,z]/(ax2+yz)X={\operatorname{Proj}}\,A[x,y,z]/(ax^{2}+yz)

for some aAa\in A (Corollary 2.13(2), Proposition 2.14(2)). Then we obtain δ(Q)=a\delta(Q)=-a for Q:=ax2+yzQ:=ax^{2}+yz (Definition 3.1). As Δf=Spec(A/δ(Q)A)\Delta_{f}={\operatorname{Spec}}\,(A/\delta(Q)A) is regular, we have a𝔪2a\not\in\mathfrak{m}^{2}. It suffices to show that A[y,z]/(a+yz)A[y,z]/(a+yz) is regular. We may assume that a𝔪a\in\mathfrak{m}. Since (A/𝔪)[y,z]/(yz)=κ[y,z]/(yz)(A/\mathfrak{m})[y,z]/(yz)=\kappa[y,z]/(yz) is smooth outside the origin (0,0)(0,0), we may assume that P=(0,0){\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}P}=(0,0). Then the prime ideal P{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}P} is the image of the maximal ideal 𝔫:=𝔪A[y,z]+(y,z)A[y,z]\mathfrak{n}:=\mathfrak{m}A[y,z]+(y,z)A[y,z] of A[y,z]A[y,z] by the natural surjection A[y,z]A[y,z]/(a+yz)A[y,z]\to A[y,z]/(a+yz). By a𝔪2a\not\in\mathfrak{m}^{2}, we obtain a+yz𝔫2a+yz\not\in\mathfrak{n}^{2}, and hence A[y,z]/(a+yz)A[y,z]/(a+yz) is regular at P{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}P}. Thus XX is regular. ∎

Proposition 4.5.

Let kk be an algebraically closed field. Let f:XTf:X\to T be a conic bundle, where TT is a smooth variety over kk. Assume that

  1. (1)

    ff is generically smooth, and

  2. (2)

    any fibre of ff is geometrically reduced.

Then XX is canonical in the sense of [Kol13, Definition 2.8]. If kk is characteristic p>0p>0, then XX is strongly FF-regular.

In the proof below, we use the following fact: if XXX^{\prime}\to X is an étale surjective morphism, then XX is canonical if and only if so is XX^{\prime} [Kol13, Proposition 2.15].

Proof.

Let us prove the assertion under the assumption that kk is of characteristic p>0p>0. We prove the assertion by induction on dimT\dim T.

We first treat the case when dimT=1\dim T=1. By Corollary 2.13(2) and Proposition 2.14(2), we may assume, after taking suitable étale cover of XX, that

X=ProjA[x,y,z]/(xy+cz2),T=SpecA,cA.X={\operatorname{Proj}}\,A[x,y,z]/(xy+cz^{2}),\qquad T={\operatorname{Spec}}\,A,\qquad c\in A.

The singular locus of XX is contained in

D+(z)=SpecA[x,y]/(xy+c).D_{+}(z)={\operatorname{Spec}}\,A[x,y]/(xy+c).

This is an AnA_{n}-singularity, and hence canonical and strongly FF-regular (note that these singularities are toric).

Assume that dimT2\dim T\geq 2 and that the assertion holds for the lower dimensional case. By (1), Δf\Delta_{f} is a nonzero effective Cartier divisor on TT. Fix a closed point 0T0\in T around which we will work. Take a general smooth prime divisor TT^{\prime} on TT passing through 0. Set X:=X×TTX^{\prime}:=X\times_{T}T^{\prime}. Then f:XTf^{\prime}:X^{\prime}\to T^{\prime} is a conic bundle over TT^{\prime}. In particular, XX^{\prime} is strongly FF-regular by the induction hypothesis. Since dim(XSingX)<dimX1\dim(X^{\prime}\cap{\rm Sing}\,X)<\dim X^{\prime}-1 (where dim:=\dim\emptyset:=-\infty), we have

(KX+X)|X=KX,(K_{X}+X^{\prime})|_{X^{\prime}}=K_{X^{\prime}},

i.e., the different DiffX(0){\operatorname{Diff}}_{X^{\prime}}(0) is equal to zero (for the definition of DiffX(0){\operatorname{Diff}}_{X^{\prime}}(0), see [Kol13, Subsection 4.1]). Since (X,DiffX(0)=0)(X^{\prime},{\operatorname{Diff}}_{X^{\prime}}(0)=0) is strongly FF-regular, it follows from inversion of adjunction [Das15, Theorem 4.1] that (X,X)(X,X^{\prime}) is purely FF-regular around XX^{\prime}. In particular, XX is strongly FF-regular and (X,X)(X,X^{\prime}) is log canonical [HW02, Theorem 3.3]. Since XX^{\prime} is a nonzero effective Cartier divisor, XX is canonical. This completes the proof for the case when kk is of characteristic p>0p>0.

If kk is of characteristic zero, then the above argument works by using the inversion of adjunction for log canonicity [Kaw07, Theorem]. ∎

For a later use, we establish the following Jacobian criterion.

Proposition 4.6 (Jacobian criterion).

Let kk be a field. Set A:=k[t1,,td]A:=k[t_{1},...,t_{d}] and let

X:=ProjA[x,y,z]/(Q)X:={\operatorname{Proj}}\,A[x,y,z]/(Q)

be a conic bundle over AA for Q:=Q(t1,,td,x,y,z)A[x,y,z]Q:=Q(t_{1},...,t_{d},x,y,z)\in A[x,y,z]. Fix a kk-rational point

w:=(t10,,td0)×[x0:y0:z0]XA2,w:=(t_{10},...,t_{d0})\times[x_{0}:y_{0}:z_{0}]\in X\subset\mathbb{P}^{2}_{A},

where t10,,td0,x0,y0,z0kt_{10},...,t_{d0},x_{0},y_{0},z_{0}\in k. Then the following are equivalent.

  1. (1)

    XX is not smooth at ww.

  2. (2)

    The equation

    xQ(w)=yQ(w)=zQ(w)=t1Q(w)==tdQ(w)=0,\partial_{x}Q(w)=\partial_{y}Q(w)=\partial_{z}Q(w)=\partial_{t_{1}}Q(w)=\cdots=\partial_{t_{d}}Q(w)=0,

    holds, where \partial_{\bullet} denotes the partial differential with respect to \bullet.

Proof.

Taking the base change to the algebraic closure, the problem is reduced to the case when kk is algebraically closed. If kk is of characteristic 2\neq 2, then the assertion is well known. We may assume that kk is of characteristic two.

We have

Q=ax2+by2+cz2+αyz+βzx+γxy,a,b,c,α,β,γA=k[t1,,td].Q=ax^{2}+by^{2}+cz^{2}+\alpha yz+\beta zx+\gamma xy,\qquad a,b,c,\alpha,\beta,\gamma\in A=k[t_{1},...,t_{d}].

By symmetry, we may assume that x0=1x_{0}=1. Set

Q:=Q(t1,,td,y,z):=Q(t1,,td,1,y,z)=a+by2+cz2+αyz+βz+γy,Q^{\prime}:=Q^{\prime}(t_{1},...,t_{d},y,z):=Q(t_{1},...,t_{d},1,y,z)=a+by^{2}+cz^{2}+\alpha yz+\beta z+\gamma y,

which corresponds to the affine open subset X:=D+(x)X^{\prime}:=D_{+}(x) of XX defined by x0x\neq 0. Consider the following conditions.

  1. (1)’

    XX^{\prime} is not smooth at ww.

  2. (2)’
    yQ(w)=zQ(w)=t1Q(w)==tdQ(w)=0.\partial_{y}Q^{\prime}(w)=\partial_{z}Q^{\prime}(w)=\partial_{t_{1}}Q^{\prime}(w)=\cdots=\partial_{t_{d}}Q^{\prime}(w)=0.

It is clear that (1) \Leftrightarrow (1)’ \Leftrightarrow (2)’. Therefore it suffices to show that (2) \Leftrightarrow (2)’. It is clear that (2) \Rightarrow (2)’, because the partial differentials y,z,t1,,td\partial_{y},\partial_{z},\partial_{t_{1}},...,\partial_{t_{d}} commute with the substitution x=1x=1.

Therefore, it is enough to show that (2)’ \Rightarrow (2). Assume (2)’. Then we have

yQ(w)=zQ(w)=t1Q(w)==tdQ(w)=0.\partial_{y}Q(w)=\partial_{z}Q(w)=\partial_{t_{1}}Q(w)=\cdots=\partial_{t_{d}}Q(w)=0.

It suffices to show xQ(w)=0\partial_{x}Q(w)=0. By yQ(w)=zQ(w)=0\partial_{y}Q(w)=\partial_{z}Q(w)=0, we have

αz0+γ=0,αy0+β=0.\alpha z_{0}+\gamma=0,\qquad\alpha y_{0}+\beta=0.

Therefore, we get

xQ(w)=βz0+γy0=(αy0)z0+(αz0)y0=0,\partial_{x}Q(w)=\beta z_{0}+\gamma y_{0}=(\alpha y_{0})z_{0}+(\alpha z_{0})y_{0}=0,

as required. ∎

Remark 4.7.

Proposition 4.6 holds even when A=k[[t1,,td]]A=k[[t_{1},...,t_{d}]]. In this case, the kk-rational point ww is lying over 𝔪=(t1,,td)\mathfrak{m}=(t_{1},...,t_{d}), and hence t10==td0=0t_{10}=\cdots=t_{d0}=0.

5. The Mori–Mukai formula

In this section, we prove the Mori–Mukai formula (Theorem 5.15 in Subsection 5.4):

(5.0.1) Δff(KX/T2)\Delta_{f}\equiv-f_{*}(K_{X/T}^{2})

for an arbitrary generically smooth conic bundle f:XTf:X\to T between smooth projective varieties. As explained in Subsection 1.1, the problem is reduced to the case when ff coincides with UnivT(E)/TθHilbT(E)/Tθ{\operatorname{Univ}}_{\mathbb{P}_{T}(E)/T}^{\theta}\to{\operatorname{Hilb}}_{\mathbb{P}_{T}(E)/T}^{\theta}, where TT is a smooth projective curve, EE is a locally free sheaf on TT of rank 33, and UnivT(E)/Tθ{\operatorname{Univ}}_{\mathbb{P}_{T}(E)/T}^{\theta} denotes the universal family associated with the relative Hilbert scheme HilbT(E)/Tθ{\operatorname{Hilb}}_{\mathbb{P}_{T}(E)/T}^{\theta} parametrising conics. We start by studying the absolute Hilbert scheme Univ2/θHilb2/θ{\operatorname{Univ}}_{\mathbb{P}^{2}_{\mathbb{Z}}/\mathbb{Z}}^{\theta}\to{\operatorname{Hilb}}_{\mathbb{P}^{2}_{\mathbb{Z}}/{\mathbb{Z}}}^{\theta} parametrising conics (Subsection 5.1), because the absolute case determines the local structure of the relative one UnivT(E)/TθHilbT(E)/Tθ{\operatorname{Univ}}_{\mathbb{P}_{T}(E)/T}^{\theta}\to{\operatorname{Hilb}}_{\mathbb{P}_{T}(E)/T}^{\theta}. More specifically, if T=iITiT=\bigcup_{i\in I}T_{i} is an open cover trivialising EE, then UnivTi(E|Ti)/TiθHilbTi(E|Ti)/Tiθ{\operatorname{Univ}}_{\mathbb{P}_{T_{i}}(E|_{T_{i}})/T_{i}}^{\theta}\to{\operatorname{Hilb}}_{\mathbb{P}_{T_{i}}(E|_{T_{i}})/T_{i}}^{\theta} coincides with Univ2/θ×TiHilb2/θ×Ti{\operatorname{Univ}}_{\mathbb{P}^{2}_{\mathbb{Z}}/\mathbb{Z}}^{\theta}\times_{\mathbb{Z}}T_{i}\to{\operatorname{Hilb}}_{\mathbb{P}^{2}_{\mathbb{Z}}/{\mathbb{Z}}}^{\theta}\times_{\mathbb{Z}}T_{i}. We then summarise properties on the relative version UnivT(E)/TθHilbT(E)/Tθ{\operatorname{Univ}}_{\mathbb{P}_{T}(E)/T}^{\theta}\to{\operatorname{Hilb}}_{\mathbb{P}_{T}(E)/T}^{\theta} in Subsection 5.2, most of which are immediate conclusions from the absolute case.

In order to include generically non-smooth conic bundles, we shall introduce an invertible sheaf Δfbdl\Delta_{f}^{{\operatorname{bdl}}}, which we shall call the discriminant bundle (Subsection 5.3), for an arbitrary conic bundle f:XSf:X\to S with SS integral. When ff is generically smooth, it satisfies Δfbdl𝒪T(Δf)\Delta_{f}^{{\operatorname{bdl}}}\simeq\mathcal{O}_{T}(\Delta_{f}) (Remark 5.11) and the above Mori–Mukai formula (5.0.1) is generalised as follows:

(5.0.2) Δfbdlf(KX/T2).\Delta_{f}^{{\operatorname{bdl}}}\equiv-f_{*}(K_{X/T}^{2}).

Moreover, the proof of (5.0.1) becomes simpler by using the notion of discriminant bundles, as otherwise we would need to be careful with the generically smooth condition.

5.1. The universal family

In this subsection, we study the conic bundle Univ2/θHilb2/θ{\operatorname{Univ}}_{\mathbb{P}^{2}_{\mathbb{Z}}/\mathbb{Z}}^{\theta}\to{\operatorname{Hilb}}_{\mathbb{P}^{2}_{\mathbb{Z}}/{\mathbb{Z}}}^{\theta}, where Hilb2/θ{\operatorname{Hilb}}_{\mathbb{P}^{2}_{\mathbb{Z}}/{\mathbb{Z}}}^{\theta} denotes the Hilbert scheme of conics and Univ2/θ{\operatorname{Univ}}_{\mathbb{P}^{2}_{\mathbb{Z}}/\mathbb{Z}}^{\theta} is its universal family. As explained above, this plays an essential role in the proof of the Mori–Mukai formula (5.0.1). It is also worth studying this conic bundle Univ2/θHilb2/θ{\operatorname{Univ}}_{\mathbb{P}^{2}_{\mathbb{Z}}/\mathbb{Z}}^{\theta}\to{\operatorname{Hilb}}_{\mathbb{P}^{2}_{\mathbb{Z}}/{\mathbb{Z}}}^{\theta} as a concrete example. For foundations on Hilbert schemes, we refer to [FGI05].

Notation 5.1.
  1. (1)

    Set θ(m):=2m+1[m]\theta(m):=2m+1\in\mathbb{Z}[m], which is nothing but the Hilbert polynomial of conics. In other words, if κ\kappa is a field and CC is a conic on κ2\mathbb{P}^{2}_{\kappa}, then the following holds for any mm\in\mathbb{Z}:

    θ(m)=χ(C,𝒪2(m)|C)=2m+1.\theta(m)=\chi(C,\mathcal{O}_{\mathbb{P}^{2}}(m)|_{C})=2m+1.
  2. (2)

    We have

    Hilb2/θ5=Proj[a,b,c,α,β,γ],{\operatorname{Hilb}}^{\theta}_{\mathbb{P}^{2}_{\mathbb{Z}}/\mathbb{Z}}\simeq\mathbb{P}^{5}_{\mathbb{Z}}={\operatorname{Proj}}\,\mathbb{Z}[a,b,c,\alpha,\beta,\gamma],

    where [a,b,c,α,β,γ]\mathbb{Z}[a,b,c,\alpha,\beta,\gamma] denotes the polynomial ring over \mathbb{Z} with six variables a,b,c,α,β,γa,b,c,\alpha,\beta,\gamma. We identify Hilb2/θ{\operatorname{Hilb}}^{\theta}_{\mathbb{P}^{2}_{\mathbb{Z}}/\mathbb{Z}} with 5=Proj[a,b,c,α,β,γ]\mathbb{P}^{5}_{\mathbb{Z}}={\operatorname{Proj}}\,\mathbb{Z}[a,b,c,\alpha,\beta,\gamma].

  3. (3)

    Let Univ2/θHilb2/θ×2{\operatorname{Univ}}^{\theta}_{\mathbb{P}^{2}_{\mathbb{Z}}/\mathbb{Z}}\subset{\operatorname{Hilb}}^{\theta}_{\mathbb{P}^{2}_{\mathbb{Z}}/\mathbb{Z}}\times_{\mathbb{Z}}\mathbb{P}^{2}_{\mathbb{Z}} be the universal closed subscheme:

    Univ2/θ={ax2+by2+cz2+αyz+βzx+γxy=0}2×Hilb2/θ{\operatorname{Univ}}^{\theta}_{\mathbb{P}^{2}_{\mathbb{Z}}/\mathbb{Z}}=\{ax^{2}+by^{2}+cz^{2}+\alpha yz+\beta zx+\gamma xy=0\}\subset\mathbb{P}^{2}_{\mathbb{Z}}\times_{\mathbb{Z}}{\operatorname{Hilb}}^{\theta}_{\mathbb{P}^{2}_{\mathbb{Z}}/\mathbb{Z}}
  4. (4)

    The induced composite morphism

    funiv:Univ2/θ2×Hilb2/θpr2Hilb2/θf_{{\operatorname{univ}}}:{\operatorname{Univ}}^{\theta}_{\mathbb{P}^{2}_{\mathbb{Z}}/\mathbb{Z}}\hookrightarrow\mathbb{P}^{2}_{\mathbb{Z}}\times_{\mathbb{Z}}{\operatorname{Hilb}}^{\theta}_{\mathbb{P}^{2}_{\mathbb{Z}}/\mathbb{Z}}\xrightarrow{{\rm pr}_{2}}{\operatorname{Hilb}}^{\theta}_{\mathbb{P}^{2}_{\mathbb{Z}}/\mathbb{Z}}

    is a generically smooth conic bundle. Set Δuniv:=ΔfunivHilb2/θ\Delta_{{\operatorname{univ}}}:=\Delta_{f_{{\operatorname{univ}}}}\subset{\operatorname{Hilb}}^{\theta}_{\mathbb{P}^{2}_{\mathbb{Z}}/\mathbb{Z}}, which satisfies the following (Definition 3.1 and Definition 3.4):

    Δuniv={4abc+αβγaα2bβ2cγ2=0}Hilb2/θ=5=Proj[a,b,c,α,β,γ].\Delta_{{\operatorname{univ}}}=\{4abc+\alpha\beta\gamma-a\alpha^{2}-b\beta^{2}-c\gamma^{2}=0\}\subset{\operatorname{Hilb}}^{\theta}_{\mathbb{P}^{2}_{\mathbb{Z}}/\mathbb{Z}}=\mathbb{P}^{5}_{\mathbb{Z}}={\operatorname{Proj}}\,\mathbb{Z}[a,b,c,\alpha,\beta,\gamma].

    Similarly, we set Σuniv:=ΣfunivHilb2/θ\Sigma_{{\operatorname{univ}}}:=\Sigma_{f_{{\operatorname{univ}}}}\subset{\operatorname{Hilb}}^{\theta}_{\mathbb{P}^{2}_{\mathbb{Z}}/\mathbb{Z}}.

  5. (5)

    For a field KK and the morphism SpecKSpec{\operatorname{Spec}}\,K\to{\operatorname{Spec}}\,\mathbb{Z}, we set

    Δuniv,K:=Δuniv×KandΣuniv,K:=Σuniv×K.\Delta_{{\operatorname{univ}},K}:=\Delta_{{\operatorname{univ}}}\times_{\mathbb{Z}}K\quad{\rm and}\quad\Sigma_{{\operatorname{univ}},K}:=\Sigma_{{\operatorname{univ}}}\times_{\mathbb{Z}}K.
Proposition 5.2.

We use Notation 5.1. Then Univ2/θ{\operatorname{Univ}}^{\theta}_{\mathbb{P}^{2}_{\mathbb{Z}}/\mathbb{Z}} is smooth over \mathbb{Z}. In particular, Univ2/θ,Univ2/θ,{\operatorname{Univ}}^{\theta}_{\mathbb{P}^{2}_{\mathbb{Z}}/\mathbb{Z}},{\operatorname{Univ}}^{\theta}_{\mathbb{P}^{2}_{\mathbb{Q}}/\mathbb{Q}}, and Univ𝔽p2/𝔽pθ{\operatorname{Univ}}^{\theta}_{\mathbb{P}^{2}_{\mathbb{F}_{p}}/\mathbb{F}_{p}} are regular for any prime number pp.

Proof.

Both funiv:Univ2/θHilb2/θf_{{\operatorname{univ}}}:{\operatorname{Univ}}^{\theta}_{\mathbb{P}^{2}_{\mathbb{Z}}/\mathbb{Z}}\to{\operatorname{Hilb}}^{\theta}_{\mathbb{P}^{2}_{\mathbb{Z}}/\mathbb{Z}} and Hilb2/θSpec{\operatorname{Hilb}}^{\theta}_{\mathbb{P}^{2}_{\mathbb{Z}}/\mathbb{Z}}\to{\operatorname{Spec}}\,\mathbb{Z} are flat by Hilb2/θ5{\operatorname{Hilb}}^{\theta}_{\mathbb{P}^{2}_{\mathbb{Z}}/\mathbb{Z}}\simeq\mathbb{P}^{5}_{\mathbb{Z}}. Hence also Univ2/θSpec{\operatorname{Univ}}^{\theta}_{\mathbb{P}^{2}_{\mathbb{Z}}/\mathbb{Z}}\to{\operatorname{Spec}}\,\mathbb{Z} is flat. Fix a prime number pp. It suffices to show that

Univ𝔽¯p2/𝔽¯pθ={Q:=ax2+by2+cz2+αyz+βzx+γxy=0}𝔽¯p2×𝔽¯p𝔽¯p5{\operatorname{Univ}}^{\theta}_{\mathbb{P}^{2}_{\overline{\mathbb{F}}_{p}}/\overline{\mathbb{F}}_{p}}=\{Q:=ax^{2}+by^{2}+cz^{2}+\alpha yz+\beta zx+\gamma xy=0\}\subset\mathbb{P}^{2}_{\overline{\mathbb{F}}_{p}}\times_{\overline{\mathbb{F}}_{p}}\mathbb{P}^{5}_{\overline{\mathbb{F}}_{p}}

is smooth, where 𝔽¯p\overline{\mathbb{F}}_{p} denotes the algebraic closure of 𝔽p\mathbb{F}_{p}. We shall apply the Jacobian criterion. Suppose that Univ𝔽¯p2/𝔽¯pθ{\operatorname{Univ}}^{\theta}_{\mathbb{P}^{2}_{\overline{\mathbb{F}}_{p}}/\overline{\mathbb{F}}_{p}} is not smooth at a closed point

w:=[x0:y0:z0]×[a0:b0:c0:α0:β0:γ0]Univ𝔽¯p2/𝔽¯pθ𝔽¯p2×𝔽¯p𝔽¯p5w:=[x_{0}:y_{0}:z_{0}]\times[a_{0}:b_{0}:c_{0}:\alpha_{0}:\beta_{0}:\gamma_{0}]\in{\operatorname{Univ}}^{\theta}_{\mathbb{P}^{2}_{\overline{\mathbb{F}}_{p}}/\overline{\mathbb{F}}_{p}}\subset\mathbb{P}^{2}_{\overline{\mathbb{F}}_{p}}\times_{\overline{\mathbb{F}}_{p}}\mathbb{P}^{5}_{\overline{\mathbb{F}}_{p}}

Then [a0:b0:c0:α0:β0:γ0]𝔽¯p5[a_{0}:b_{0}:c_{0}:\alpha_{0}:\beta_{0}:\gamma_{0}]\in\mathbb{P}^{5}_{\overline{\mathbb{F}}_{p}} is its image. By symmetry, we may assume that a00a_{0}\neq 0 or α00\alpha_{0}\neq 0.

Assume α00\alpha_{0}\neq 0. By the Jacobian criterion (Proposition 4.6), we have aQ(w)=bQ(w)=cQ(w)=0\partial_{a}Q(w)=\partial_{b}Q(w)=\partial_{c}Q(w)=0, which concludes that x0=y0=z0=0x_{0}=y_{0}=z_{0}=0. This contradicts [x0:y0:z0]𝔽¯p2[x_{0}:y_{0}:z_{0}]\in\mathbb{P}^{2}_{\overline{\mathbb{F}}_{p}}.

Assume a00a_{0}\neq 0. For 𝔸𝔽¯p5=D+(a)\mathbb{A}^{5}_{\overline{\mathbb{F}}_{p}}=D_{+}(a) and A:=𝔽¯p[b,c,α,β,γ]A:=\overline{\mathbb{F}}_{p}[b,c,\alpha,\beta,\gamma], we have

funiv1(D+(a)){x2+by2+cz2+αyz+βzx+γxy=0}A2.f_{{\operatorname{univ}}}^{-1}(D_{+}(a))\simeq\{x^{2}+by^{2}+cz^{2}+\alpha yz+\beta zx+\gamma xy=0\}\subset\mathbb{P}^{2}_{A}.

By Proposition 4.6, our singular point satisfies b=c=0\partial_{b}=\partial_{c}=0, which implies [x0:y0:z0]=[1:0:0][x_{0}:y_{0}:z_{0}]=[1:0:0]. However, such a point does not lie on Univ𝔽¯p2/𝔽¯pθ{\operatorname{Univ}}^{\theta}_{\mathbb{P}^{2}_{\overline{\mathbb{F}}_{p}}/\overline{\mathbb{F}}_{p}}, because [x0:y0:z0]=[1:0:0][x_{0}:y_{0}:z_{0}]=[1:0:0] and a00a_{0}\neq 0 imply

a0x02+b0y02+c0z02+α0y0z0+β0z0x0+γ0x0y0=a0x020.a_{0}x_{0}^{2}+b_{0}y_{0}^{2}+c_{0}z_{0}^{2}+\alpha_{0}y_{0}z_{0}+\beta_{0}z_{0}x_{0}+\gamma_{0}x_{0}y_{0}=a_{0}x_{0}^{2}\neq 0.

Theorem 5.3.

We use Notation 5.1. Then the following set-theoretic equality holds:

Σuniv={vΔuniv|ΔunivSpec is not smooth at v}.\Sigma_{{\operatorname{univ}}}=\{v\in\Delta_{{\operatorname{univ}}}\,|\,\Delta_{{\operatorname{univ}}}\to{\operatorname{Spec}}\,\mathbb{Z}\text{ is not smooth at }v\}.
Proof.

Set

Σ¯univ:={vΔuniv|ΔunivSpec is not smooth at v},\overline{\Sigma}_{{\operatorname{univ}}}:=\{v\in\Delta_{{\operatorname{univ}}}\,|\,\Delta_{{\operatorname{univ}}}\to{\operatorname{Spec}}\,\mathbb{Z}\text{ is not smooth at }v\},

which we equip with the reduced scheme structure. Fix a prime number pp. It is enough to show the set-theoretic equality Σuniv×𝔽p=Σ¯univ×𝔽p\Sigma_{{\operatorname{univ}}}\times_{\mathbb{Z}}\mathbb{F}_{p}=\overline{\Sigma}_{{\operatorname{univ}}}\times_{\mathbb{Z}}\mathbb{F}_{p}. Since Univ𝔽p2/𝔽pθHilb𝔽p2/𝔽pθ{\operatorname{Univ}}^{\theta}_{\mathbb{P}^{2}_{\mathbb{F}_{p}}/\mathbb{F}_{p}}\to{\operatorname{Hilb}}^{\theta}_{\mathbb{P}^{2}_{\mathbb{F}_{p}}/\mathbb{F}_{p}} is a conic bundle of regular schemes (Proposition 5.2), the assertion follows from Theorem 3.13 and Proposition 4.2. ∎

Proposition 5.4.

We use Notation 5.1. Let KK be a field. Then Δuniv,K\Delta_{{\operatorname{univ}},K} is geometrically integral over KK and geometrically normal over KK. In particular, Δuniv,K\Delta_{{\operatorname{univ}},K} is a normal prime divisor on K5\mathbb{P}^{5}_{K}

Proof.

We may assume that KK is an algebraically closed field by taking the base change (Remark 3.5). Set p:=charKp:={\rm char}\,K, which is possibly zero. Recall that Δuniv,K\Delta_{{\operatorname{univ}},K} is an effective Cartier divisor on K5\mathbb{P}^{5}_{K}. It suffices to show that Δuniv,K\Delta_{{\operatorname{univ}},K} is a normal prime divisor.

Step 1.

Δuniv,K\Delta_{{\operatorname{univ}},K} is smooth outside some closed subset of dimension two.

Proof of Step 1.

We first treat the case when p2p\neq 2 and p3p\neq 3. Consider the hyperplane K4\mathbb{P}^{4}_{K} defined by γ=0\gamma=0:

K4={γ=0}K5.\mathbb{P}^{4}_{K}=\{\gamma=0\}\subset\mathbb{P}^{5}_{K}.

We then have

ΔKK4={δ:=4abcaα2bβ2=0}K4=ProjK[a,b,c,α,β].\Delta_{K}\cap\mathbb{P}^{4}_{K}=\{\delta^{\prime}:=4abc-a\alpha^{2}-b\beta^{2}=0\}\subset\mathbb{P}^{4}_{K}={\operatorname{Proj}}\,K[a,b,c,\alpha,\beta].

Then the singular locus (Δuniv,KK4)sing(\Delta_{{\operatorname{univ}},K}\cap\mathbb{P}^{4}_{K})_{{\rm sing}} of Δuniv,KK4\Delta_{{\operatorname{univ}},K}\cap\mathbb{P}^{4}_{K} is given by

aδ=4bcα2=0,bδ=4acβ2=0,cδ=4ab=0,\partial_{a}\delta^{\prime}=4bc-\alpha^{2}=0,\qquad\partial_{b}\delta^{\prime}=4ac-\beta^{2}=0,\qquad\partial_{c}\delta^{\prime}=4ab=0,
αδ=2aα=0,βδ=2bβ=0.\partial_{\alpha}\delta^{\prime}=-2a\alpha=0,\qquad\partial_{\beta}\delta^{\prime}=-2b\beta=0.

On the open subset {a0}\{a\neq 0\}, these equations become b=α=4acβ2=0b=\alpha=4ac-\beta^{2}=0, which is one-dimensional. By symmetry, these equations define a one-dimensional locus also on the open subset {b0}\{b\neq 0\}. Finally, on the remaining closed subset {a=b=0}\{a=b=0\}, the equations become {a=b=α=β=0}\{a=b=\alpha=\beta=0\}, which is zero-dimensional. To summarise, Δuniv,KK4\Delta_{{\operatorname{univ}},K}\cap\mathbb{P}^{4}_{K} is smooth outside a one-dimensional closed subset. Therefore, Δuniv,K\Delta_{{\operatorname{univ}},K} is smooth outside a two-dimensional closed subset when p2p\neq 2 and p3p\neq 3. If p=3p=3, then we can not use the Jacobian criterion for homogeneous polynomials. However, we can still apply a similar argument to the above after taking the standard affine cover of K4\mathbb{P}^{4}_{K}.

Assume p=2p=2. We then have

Δuniv,K={δ:=αβγ+aα2+bβ2+cγ2=0}K5=ProjK[a,b,c,α,β,γ].\Delta_{{\operatorname{univ}},K}=\{\delta:=\alpha\beta\gamma+a\alpha^{2}+b\beta^{2}+c\gamma^{2}=0\}\subset\mathbb{P}^{5}_{K}={\operatorname{Proj}}\,K[a,b,c,\alpha,\beta,\gamma].

We have

aδ=α2,bδ=β2,cδ=γ2,\partial_{a}\delta=\alpha^{2},\qquad\partial_{b}\delta=\beta^{2},\qquad\partial_{c}\delta=\gamma^{2},
αδ=βγ,βδ=αγ,γδ=αβ.\partial_{\alpha}\delta=\beta\gamma,\qquad\partial_{\beta}\delta=\alpha\gamma,\qquad\partial_{\gamma}\delta=\alpha\beta.

Therefore, the singular locus of Δuniv,K\Delta_{{\operatorname{univ}},K} is given by {α=β=γ=0}\{\alpha=\beta=\gamma=0\}, which is two-dimensional. This completes the proof of Step 1. ∎

Step 2.

Δuniv,K\Delta_{{\operatorname{univ}},K} is a normal prime divisor on K5\mathbb{P}^{5}_{K}.

Proof of Step 2.

Since Δuniv,K\Delta_{{\operatorname{univ}},K} is an effective Cartier divisor on K5\mathbb{P}^{5}_{K}, Δuniv,K\Delta_{{\operatorname{univ}},K} is Cohen–Macaulay. By Step 1, Δuniv,K\Delta_{{\operatorname{univ}},K} is normal by Serre’s criterion. If Δuniv,K\Delta_{{\operatorname{univ}},K} is not irreducible, then Δuniv,K\Delta_{{\operatorname{univ}},K} would be non-normal, because two distinct prime divisors on K5\mathbb{P}^{5}_{K} intersect along a three-dimensional non-empty closed subset. Therefore, Δuniv,K\Delta_{{\operatorname{univ}},K} is a normal prime divisor. This completes the proof of Step 2. ∎

Step 2 completes the proof of Proposition 5.4. ∎

Corollary 5.5.

Δuniv\Delta_{{\operatorname{univ}}} is flat over Spec{\operatorname{Spec}}\,\mathbb{Z}.

Proof.

The assertion follows from the fact that ΔunivSpec\Delta_{{\operatorname{univ}}}\to{\operatorname{Spec}}\,\mathbb{Z} is a equi-dimensional morphism (Proposition 5.4) from a Cohen–Macaulay scheme to a regular scheme. ∎

5.2. Relative universal families

Notation 5.6.
  1. (1)

    Let kk be an algebraically closed field, let CC be a smooth projective curve over kk, and let EE be a locally free sheaf on CC of rank 33.

  2. (2)

    Set θ(m):=2m+1[m]\theta(m):=2m+1\in\mathbb{Z}[m], which is the Hilbert polynomial of conics.

  3. (3)

    We have the Hilbert scheme HilbC(E)/Cθ{\operatorname{Hilb}}^{\theta}_{\mathbb{P}_{C}(E)/C} and let UnivC(E)/CθC(E)×CHilbC(E)/Cθ{\operatorname{Univ}}^{\theta}_{\mathbb{P}_{C}(E)/C}\subset\mathbb{P}_{C}(E)\times_{C}{\operatorname{Hilb}}^{\theta}_{\mathbb{P}_{C}(E)/C} be the universal closed subscheme.

  4. (4)

    The induced morphism

    funiv,C,E:UnivC(E)/CθHilbC(E)/Cθ×CC(E)pr1HilbC(E)/Cθf_{{\operatorname{univ}},C,E}:{\operatorname{Univ}}^{\theta}_{\mathbb{P}_{C}(E)/C}\hookrightarrow{\operatorname{Hilb}}^{\theta}_{\mathbb{P}_{C}(E)/C}\times_{C}\mathbb{P}_{C}(E)\xrightarrow{{\rm pr}_{1}}{\operatorname{Hilb}}^{\theta}_{\mathbb{P}_{C}(E)/C}

    is a generically smooth conic bundle. Set

    Δuniv,C,E:=Δfuniv,C,EandΣuniv,C,E:=Σfuniv,C,E.\Delta_{{\operatorname{univ}},C,E}:=\Delta_{f_{{\operatorname{univ}},C,E}}\qquad{\rm and}\qquad\Sigma_{{\operatorname{univ}},C,E}:=\Sigma_{f_{{\operatorname{univ}},C,E}}.
Theorem 5.7.

We use Notation 5.6. Then the following hold.

  1. (1)

    The induced morphism π:HilbC(E)/CθC\pi:{\operatorname{Hilb}}^{\theta}_{\mathbb{P}_{C}(E)/C}\to C is a 5\mathbb{P}^{5}-bundle, i.e., there exists an open cover C=iICiC=\bigcup_{i\in I}C_{i} such that the induced morphism HilbC(E)/Cθ×CCi{\operatorname{Hilb}}^{\theta}_{\mathbb{P}_{C}(E)/C}\times_{C}C_{i} is isomorphic to 5×kCi\mathbb{P}^{5}\times_{k}C_{i} for every iIi\in I.

  2. (2)

    HilbC(E)/Cθ{\operatorname{Hilb}}^{\theta}_{\mathbb{P}_{C}(E)/C} is a 66-dimensional smooth projective variety.

  3. (3)

    UnivC(E)/Cθ{\operatorname{Univ}}^{\theta}_{\mathbb{P}_{C}(E)/C} is a 77-dimensional smooth projective variety.

  4. (4)

    Δuniv,C,E\Delta_{{\operatorname{univ}},C,E} is a reduced normal divisor on HilbC(E)/Cθ{\operatorname{Hilb}}^{\theta}_{\mathbb{P}_{C}(E)/C}.

  5. (5)

    For the singular locus (Δuniv,C,E)sing(\Delta_{{\operatorname{univ}},C,E})_{{\rm sing}} of Δuniv,C,E\Delta_{{\operatorname{univ}},C,E}, we have the set-theoretic equality

    (Δuniv,C,E)sing=Σuniv,C,E.(\Delta_{{\operatorname{univ}},C,E})_{{\rm sing}}=\Sigma_{{\operatorname{univ}},C,E}.

    Furthermore, it holds that dimΣuniv,C,E3\dim\Sigma_{{\operatorname{univ}},C,E}\leq 3.

Proof.

Fix a non-empty open subset CC^{\prime} of CC such that E:=E|C𝒪C3E^{\prime}:=E|_{C^{\prime}}\simeq\mathcal{O}_{C^{\prime}}^{\oplus 3}. Then we have the following diagrams in which all the squares are cartesian:

UnivC(E)/Cθ{{\operatorname{Univ}}^{\theta}_{\mathbb{P}_{C^{\prime}}(E^{\prime})/C^{\prime}}}UnivC(E)/Cθ{{\operatorname{Univ}}^{\theta}_{\mathbb{P}_{C}(E)/C}}HilbC(E)/Cθ{{\operatorname{Hilb}}^{\theta}_{\mathbb{P}_{C^{\prime}}(E^{\prime})/C^{\prime}}}HilbC(E)/Cθ{{\operatorname{Hilb}}^{\theta}_{\mathbb{P}_{C}(E)/C}}C{C^{\prime}}C.{C.}f\scriptstyle{f^{\prime}}funiv,C,E\scriptstyle{f_{{\operatorname{univ}},C,E}}      UnivC(E)/Cθ{{\operatorname{Univ}}^{\theta}_{\mathbb{P}_{C^{\prime}}(E^{\prime})/C^{\prime}}}Univk2/kθ{{\operatorname{Univ}}^{\theta}_{\mathbb{P}^{2}_{k}/k}}HilbC(E)/Cθ{{\operatorname{Hilb}}^{\theta}_{\mathbb{P}_{C^{\prime}}(E^{\prime})/C^{\prime}}}Hilbk2/kθk5{{\operatorname{Hilb}}^{\theta}_{\mathbb{P}^{2}_{k}/k}\simeq\mathbb{P}^{5}_{k}}C{C^{\prime}}Speck.{{\operatorname{Spec}}\,k.}f\scriptstyle{f^{\prime}}funiv×k\scriptstyle{f_{{\operatorname{univ}}}\times_{\mathbb{Z}}k}

Then the assertion (1) holds by Hilbk2/kθk5{\operatorname{Hilb}}^{\theta}_{\mathbb{P}^{2}_{k}/k}\simeq\mathbb{P}^{5}_{k} (cf. Notation 5.1).

Let us show (2) and (3). By (1) and Proposition 5.2, both HilbC(E)/CθC{\operatorname{Hilb}}^{\theta}_{\mathbb{P}_{C}(E)/C}\to C and UnivC(E)/CθC{\operatorname{Univ}}^{\theta}_{\mathbb{P}_{C}(E)/C}\to C are smooth morphisms. Hence it is enough to show that HilbC(E)/Cθ{\operatorname{Hilb}}^{\theta}_{\mathbb{P}_{C}(E)/C} and UnivC(E)/Cθ{\operatorname{Univ}}^{\theta}_{\mathbb{P}_{C}(E)/C} are connected. Since CC and all the fibres of π:HilbC(E)/CθC\pi:{\operatorname{Hilb}}^{\theta}_{\mathbb{P}_{C}(E)/C}\to C are connected, also HilbC(E)/Cθ{\operatorname{Hilb}}^{\theta}_{\mathbb{P}_{C}(E)/C} is connected. Similarly, UnivC(E)/Cθ{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}{\operatorname{Univ}}^{\theta}_{\mathbb{P}_{C}(E)/C}} is connected, because so are HilbC(E)/Cθ{\operatorname{Hilb}}^{\theta}_{\mathbb{P}_{C}(E)/C} and all the fibres of UnivC(E)/CθHilbC(E)/Cθ{\operatorname{Univ}}^{\theta}_{\mathbb{P}_{C}(E)/C}\to{\operatorname{Hilb}}^{\theta}_{\mathbb{P}_{C}(E)/C}. This completes the proof of (2) and (3).

The assertion (4) follows from Remark 3.5 and Proposition 5.4. Let us show (5). Since HilbC(E)/Cθ{\operatorname{Hilb}}^{\theta}_{\mathbb{P}_{C}(E)/C} and UnivC(E)/Cθ{\operatorname{Univ}}^{\theta}_{\mathbb{P}_{C}(E)/C} are smooth varieties by (2) and (3), the set-theoretic equality (Δuniv,C,E)sing=Σuniv,C,E(\Delta_{{\operatorname{univ}},C,E})_{{\rm sing}}=\Sigma_{{\operatorname{univ}},C,E} follows from Theorem 4.3. Since Δuniv,C,E\Delta_{{\operatorname{univ}},C,E} is a reduced normal divisor on HilbC(E)/Cθ{\operatorname{Hilb}}^{\theta}_{\mathbb{P}_{C}(E)/C}, we obtain

dimΣuniv,C,E=dim(Δuniv,C,E)singdimΔuniv,C,E2(dimHilbC(E)/Cθ1)2=3.\dim\Sigma_{{\operatorname{univ}},C,E}=\dim(\Delta_{{\operatorname{univ}},C,E})_{{\rm sing}}\leq\dim\Delta_{{\operatorname{univ}},C,E}-2\leq(\dim{\operatorname{Hilb}}^{\theta}_{\mathbb{P}_{C}(E)/C}-1)-2=3.

Thus (5) holds. ∎

Lemma 5.8.

We use Notation 5.6. Let Γ\Gamma and LL be curves on HilbC(E)/Cθ{\operatorname{Hilb}}^{\theta}_{\mathbb{P}_{C}(E)/C} such that π(Γ)=C\pi(\Gamma)=C and π(L)\pi(L) is a point. Then

N1(HilbC(E)/Cθ)=[Γ]+[L],N_{1}({\operatorname{Hilb}}^{\theta}_{\mathbb{P}_{C}(E)/C})\otimes_{\mathbb{Z}}\mathbb{Q}=\mathbb{Q}[\Gamma]+\mathbb{Q}[L],

where N1(HilbC(E)/Cθ):=Z1(HilbC(E)/Cθ)/N_{1}({\operatorname{Hilb}}^{\theta}_{\mathbb{P}_{C}(E)/C}):=Z_{1}({\operatorname{Hilb}}^{\theta}_{\mathbb{P}_{C}(E)/C})/\equiv, Z1(HilbC(E)/Cθ):=B:curveBZ_{1}({\operatorname{Hilb}}^{\theta}_{\mathbb{P}_{C}(E)/C}):=\bigoplus_{B:\text{curve}}\mathbb{Z}B, \equiv denotes the numerical equivalence, and [Γ][\Gamma] and [L][L] are the numerical equivalence classes.

Proof.

For an ample Cartier divisor HH on CC, we obtain πHΓ>0\pi^{*}H\cdot\Gamma>0 and πHL=0\pi^{*}H\cdot L=0, which imply that [Γ][\Gamma] and [L][L] are linearly independent over \mathbb{Q}. Hence it suffices to show that the following sequence is exact, because it implies ρ(HilbC(E)/Cθ)=2\rho({\operatorname{Hilb}}^{\theta}_{\mathbb{P}_{C}(E)/C})=2:

0PicCπPic(HilbC(E)/Cθ)L.0\to{\operatorname{Pic}}\,C\xrightarrow{\pi^{*}}{\operatorname{Pic}}\,({\operatorname{Hilb}}^{\theta}_{\mathbb{P}_{C}(E)/C})\xrightarrow{\cdot L}\mathbb{Z}.

By π𝒪HilbC(E)/Cθ=𝒪C\pi_{*}\mathcal{O}_{{\operatorname{Hilb}}^{\theta}_{\mathbb{P}_{C}(E)/C}}=\mathcal{O}_{C} (Theorem 5.7(1)), π:PicCPic(HilbC(E)/Cθ)\pi^{*}:{\operatorname{Pic}}\,C\to{\operatorname{Pic}}\,({\operatorname{Hilb}}^{\theta}_{\mathbb{P}_{C}(E)/C}) is injective. Pick MPic(HilbC(E)/Cθ)M\in{\operatorname{Pic}}\,({\operatorname{Hilb}}^{\theta}_{\mathbb{P}_{C}(E)/C}) satisfying ML=0M\cdot L=0. By using Theorem 5.7(1), it is easy to see that πMPicC\pi_{*}M\in{\operatorname{Pic}}\,C and ππMM\pi^{*}\pi_{*}M\to M is an isomorphism. ∎

5.3. Discriminant bundles

Recall that the discriminant scheme Δf\Delta_{f} for a conic bundle f:XTf:X\to T satisfies the following properties.

  1. (I)

    For a point tTt\in T, XtX_{t} is not smooth if and only if tΔft\not\in\Delta_{f} (Theorem 3.13).

  2. (II)

    Let

    XαXffTβT\begin{CD}X^{\prime}@>{\alpha}>{}>X\\ @V{}V{f^{\prime}}V@V{}V{f}V\\ T^{\prime}@>{\beta}>{}>T\end{CD}

    be a cartesian diagram of noetherian schemes such that ff is a conic bundle. In particular, also ff^{\prime} is a conic bundle. Then the equality

    Δfbdl=β1Δfbdl\Delta^{{\operatorname{bdl}}}_{f^{\prime}}=\beta^{-1}\Delta^{{\operatorname{bdl}}}_{f}

    of closed subschemes holds (Remark 3.5).

The purpose of this subsection is to introduce an invertible sheaf Δfbdl\Delta_{f}^{{\operatorname{bdl}}} on TT that satisfies the following two properties.

  1. (I)’

    Let f:XTf:X\to T be a generically smooth conic bundle such that TT is a noetherian integral scheme. Then Δfbdl𝒪T(Δf)\Delta^{{\operatorname{bdl}}}_{f}\simeq\mathcal{O}_{T}(\Delta_{f}) (Remark 5.11).

  2. (II)’

    Let

    XαXffTβT\begin{CD}X^{\prime}@>{\alpha}>{}>X\\ @V{}V{f^{\prime}}V@V{}V{f}V\\ T^{\prime}@>{\beta}>{}>T\end{CD}

    be a cartesian diagram, where TT and TT^{\prime} are notherian integral schemes, ff is a conic bundle, and β\beta is of finite type. In particular, also ff^{\prime} is a conic bundle. Then ΔfbdlβΔfbdl\Delta^{{\operatorname{bdl}}}_{f^{\prime}}\simeq\beta^{*}\Delta^{{\operatorname{bdl}}}_{f} (Theorem 5.13).

Although our definition (Definition 5.9) might look unnatural at first sight, it is designed in order that Δfbdl\Delta^{{\operatorname{bdl}}}_{f} satisfies (I)’ and (II)’. Indeed, it is easy to see that there is the unique way, if it exists, to define invertible sheaves Δfbdl\Delta_{f}^{{\operatorname{bdl}}} satisfying (I)’and (II)’ when f:XTf:X\to T is a conic bundle and TT is a regular noetherian integral scheme.

Definition 5.9.

Let f:XTf:X\to T be a conic bundle, where TT is a noetherian integral scheme. We then have the following cartesian diagram:

XUniv(fωX/T1)/TθfgTjHilb(fωX/T1)/Tθ,\begin{CD}X@>{}>{}>{\operatorname{Univ}}^{\theta}_{\mathbb{P}(f_{*}\omega_{X/T}^{-1})/T}\\ @V{}V{f}V@V{}V{g}V\\ T@>{j}>{}>{\operatorname{Hilb}}^{\theta}_{\mathbb{P}(f_{*}\omega_{X/T}^{-1})/T},\end{CD}

where θ\theta is the Hilbert polynomial of conics (Subsection 2.1(9)) and jj denotes the morphism induced by the closed immersion X(fωX/T1)X\hookrightarrow\mathbb{P}(f_{*}\omega_{X/T}^{-1}) (Proposition 2.7(3)). We set

Δfbdl:=j𝒪T(Δg),\Delta^{{\operatorname{bdl}}}_{f}:=j^{*}\mathcal{O}_{T}(\Delta_{g}),

which we call the discriminant bundle of ff. Note that Δg\Delta_{g} is an effective Cartier divisor on TT (Lemma 5.10) and 𝒪T(Δg)\mathcal{O}_{T}(\Delta_{g}) denotes the invertible sheaf corresponding to Δg\Delta_{g}. In particular, Δfbdl\Delta^{{\operatorname{bdl}}}_{f} is an invertible sheaf on TT.

Lemma 5.10.

We use the same notation as in Definition 5.9. Then Δg\Delta_{g} is an effective Cartier divisor.

Proof.

By the same argument as in Theorem 5.7(1)(2), we see that Hilb(fωX/T1)/TθT{\operatorname{Hilb}}^{\theta}_{\mathbb{P}(f_{*}\omega_{X/T}^{-1})/T}\to T is a 5\mathbb{P}^{5}-bundle and Hilb(fωX/T1)/Tθ{\operatorname{Hilb}}^{\theta}_{\mathbb{P}(f_{*}\omega_{X/T}^{-1})/T} is a noetherian integral scheme. Furthermore, Univ(fωX/T1)/TθHilb(fωX/T1)/Tθ{\operatorname{Univ}}^{\theta}_{\mathbb{P}(f_{*}\omega_{X/T}^{-1})/T}\to{\operatorname{Hilb}}^{\theta}_{\mathbb{P}(f_{*}\omega_{X/T}^{-1})/T} is a generically smooth conic bundle. Thus Δg\Delta_{g} is an effective Cartier divisor. ∎

Remark 5.11.

Let f:XTf:X\to T be a conic bundle, where TT is a noetherian integral scheme. If ff is generically smooth, then it follows from Definition 5.9 that Δfbdl𝒪T(Δf)\Delta^{{\operatorname{bdl}}}_{f}\simeq\mathcal{O}_{T}(\Delta_{f}). On the other hand, if ff is not generically smooth, then Δf=T\Delta_{f}=T, which is no longer a Cartier divisor.

Lemma 5.12.

Let β:TT\beta:T^{\prime}\to T be a morphism of noetherian schemes. Let EE be a locally free sheaf of rank 33 on TT. Set E:=βEE^{\prime}:=\beta^{*}E. Then

HilbT(E)/TθHilbT(E)/Tθ×TT,{\operatorname{Hilb}}^{\theta}_{\mathbb{P}_{T^{\prime}}(E^{\prime})/T^{\prime}}\simeq{\operatorname{Hilb}}^{\theta}_{\mathbb{P}_{T}(E)/T}\times_{T}T^{\prime},

where θ:=2m+1[m]\theta:=2m+1\in\mathbb{Z}[m], which is the Hilbert polynomial of conics.

Proof.

The assertion follows from T(E)T(E)×TT\mathbb{P}_{T^{\prime}}(E^{\prime})\simeq\mathbb{P}_{T}(E)\times_{T}T^{\prime}. ∎

Theorem 5.13.

Let

XαXffTβT\begin{CD}X^{\prime}@>{\alpha}>{}>X\\ @V{}V{f^{\prime}}V@V{}V{f}V\\ T^{\prime}@>{\beta}>{}>T\end{CD}

be a cartesian diagram of noetherian schemes, where TT and TT^{\prime} are noetherian integral schemes and ff is a conic bundle. Assume that one of the following holds.

  1. (A)

    β\beta is flat.

  2. (B)

    β\beta is a closed immersion such that β(T)\beta(T^{\prime}) is an effective Cartier divisor on TT.

  3. (C)

    Both TT and TT^{\prime} are regular and β\beta is of finite type.

Then the following hold.

  1. (1)

    The induced homomorphism

    θ:βfωX/T1fαωX/T1\theta:\beta^{*}f_{*}\omega_{X/T}^{-1}\to f^{\prime}_{*}\alpha^{*}\omega^{-1}_{X/T}

    is an isomorphism.

  2. (2)

    An isomorphism ΔX/TbdlβΔX/Tbdl\Delta^{{\operatorname{bdl}}}_{X^{\prime}/T^{\prime}}\simeq\beta^{*}\Delta^{{\operatorname{bdl}}}_{X/T} holds.

Proof.

By Remark 3.5 and Lemma 5.12, (1) implies (2). Hence it suffices to prove (1). We may assume that TT and TT^{\prime} are affine. If (A) holds, then the assertion (1) immediately follows from the flat base change theorem.

Assume (B). Recall that βfωX/T1\beta^{*}f_{*}\omega_{X/T}^{-1} is a locally free sheaf of rank 33 (Proposition 2.7). By the same argument as in Proposition 2.7, also fαωX/T1f^{\prime}_{*}\alpha^{*}\omega^{-1}_{X/T} is a locally free sheaf of rank 33. Then it is enough to show that θ:βfωX/T1fαωX/T1\theta:\beta^{*}f_{*}\omega_{X/T}^{-1}\to f^{\prime}_{*}\alpha^{*}\omega^{-1}_{X/T} is surjective. Hence the problem is reduced to the surjectivity of

H0(X,ωX/T1)H0(X,αωX/T1).H^{0}(X,\omega_{X/T}^{-1})\to H^{0}(X^{\prime},\alpha^{*}\omega_{X/T}^{-1}).

We have an exact sequence:

0ωX/T1IXωX/T1ααωX/T10.0\to\omega^{-1}_{X/T}\otimes I_{X^{\prime}}\to\omega^{-1}_{X/T}\to\alpha_{*}\alpha^{*}\omega^{-1}_{X/T}\to 0.

By IX=𝒪X(X)=f𝒪T(T)I_{X^{\prime}}=\mathcal{O}_{X}(-X^{\prime})=f^{*}\mathcal{O}_{T}(-T^{\prime}), we obtain

R1f(ωX/T1IX)R1f(ωX/T1f𝒪T(T))R1f(ωX/T1)𝒪T(T)=()0,R^{1}f_{*}(\omega^{-1}_{X/T}\otimes I_{X^{\prime}})\simeq R^{1}f_{*}(\omega^{-1}_{X/T}\otimes f^{*}\mathcal{O}_{T}(-T^{\prime}))\simeq R^{1}f_{*}(\omega^{-1}_{X/T})\otimes\mathcal{O}_{T}(-T^{\prime})\overset{{\rm(*)}}{=}0,

where (){\rm(*)} follows from Proposition 2.7. This completes the proof of (1) when (B) holds.

Assume (C). Since the problem is local on TT and TT^{\prime}, the problem is reduced to the case when β:TT\beta:T^{\prime}\to T is factored as follows:

T=:T0T1Tr:=T×𝔸npr1T,T=:T_{0}\hookrightarrow T_{1}\hookrightarrow\cdots\hookrightarrow T_{r}:=T^{\prime}\times\mathbb{A}^{n}\xrightarrow{{\rm pr}_{1}}T^{\prime},

where each TiT_{i} is a regular affine noetherian integral scheme and each TiTi+1T_{i}\hookrightarrow T_{i+1} is a closed immersion with dimTi=dimTi+11\dim T_{i}=\dim T_{i+1}-1 [Mat86, Theorem 14.2 and Theorem 21.2]. Therefore, the problem is reduced to the case when (A) or (B) holds. This completes the proof of (1). ∎

5.4. Proof of the Mori–Mukai formula

Lemma 5.14.

We work over an algebraically closed field kk. Let f:XTf:X\to T be a conic bundle, where XX is a smooth surface and TT is a smooth curve. Then ff is generically smooth and every singular fibre of ff is reduced and consists of exactly two (1)(-1)-curves.

Proof.

Let XX^{\prime} be a relatively minimal model of ff, so that we obtain the induced morphisms

f:X𝜑XfT.f:X\xrightarrow{\varphi}X^{\prime}\xrightarrow{f^{\prime}}T.

Then the assertion follows from the fact that f:XTf^{\prime}:X^{\prime}\to T is a 1\mathbb{P}^{1}-bundle and φ:XX\varphi:X\to X^{\prime} is a sequence of blowups. ∎

We are ready to prove the Mori-Mukai formula in arbitrary characteristics, which generalises the case of characteristic zero [MM83, Proposition 6.2].

Theorem 5.15.

We work over an algebraically closed field kk. Let f:XTf:X\to T be a conic bundle, where TT is a smooth projective variety. Then the equality

(5.15.1) ΔfbdlC=ωX/TωX/Tf1(C)\Delta^{{\operatorname{bdl}}}_{f}\cdot C=-\omega_{X/T}\cdot\omega_{X/T}\cdot f^{-1}(C)

holds for every curve CC on TT. In particular, when also XX is smooth over kk, the numerical equivalence

Δfbdlf(KX/T2)\Delta^{{\operatorname{bdl}}}_{f}\equiv-f_{*}(K_{X/T}^{2})

holds for a Cartier divisor KX/TK_{X/T} on XX satisfying ωX/T𝒪X(KX/T)\omega_{X/T}\simeq\mathcal{O}_{X}(K_{X/T}).

Proof.

The in-particular part follows from the projection formula. Hence it suffices to show (5.15.1). In what follows, we write 2:=\mathcal{L}^{2}:=\mathcal{L}\cdot\mathcal{L} (note that 2\mathcal{L}^{2} differs from 2\mathcal{L}^{\otimes 2}).

Step 1.

Let CC be a projective curve on TT. Let CNCC^{N}\to C be the normalisation of CC and let g:X×TCNCNg:X\times_{T}C^{N}\to C^{N} be the base change of ff. Then the following hold.

  1. (1)

    ΔfbdlC=degΔgbdl\Delta^{{\operatorname{bdl}}}_{f}\cdot C=\deg\Delta^{{\operatorname{bdl}}}_{g}.

  2. (2)

    ωX/T2f1(C)=ωX×TCN/CN2\omega_{X/T}^{2}\cdot f^{-1}(C)=\omega^{2}_{X\times_{T}C^{N}/C^{N}}.

Proof of Step 1.

We have the following cartesian diagram:

X×TCN{X\times_{T}C^{N}}X{X}CN{C^{N}}T.{T.}g\scriptstyle{g}α\scriptstyle{\alpha}f\scriptstyle{f}β\scriptstyle{\beta}

The assertion (1) holds by

ΔfbdlC=deg(βΔfbdl)=degΔgbdl,\Delta^{{\operatorname{bdl}}}_{f}\cdot C=\deg(\beta^{*}\Delta^{{\operatorname{bdl}}}_{f})=\deg\Delta^{{\operatorname{bdl}}}_{g},

where the latter equality follows from βΔfbdlΔgbdl\beta^{*}\Delta^{{\operatorname{bdl}}}_{f}\simeq\Delta^{{\operatorname{bdl}}}_{g} (Theorem 5.13(2)). We obtain (2) by the following:

ωX/T2f1(C)=()(ωX/T|f1(C))2=(αωX/T)2=()ωX×TCN/CN2,\omega_{X/T}^{2}\cdot f^{-1}(C)\overset{{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}(\star)}}{=}(\omega_{X/T}|_{f^{-1}(C)})^{2}=(\alpha^{*}\omega_{X/T})^{2}\overset{{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}(\star\star)}}{=}\omega_{X\times_{T}C^{N}/C^{N}}^{2},

where ()(\star) holds by [Bad01, Lemma 1.10] and ()(\star\star) follows from αωX/TωX×TCN/CN\alpha^{*}\omega_{X/T}\simeq\omega_{X\times_{T}C^{N}/C^{N}} [Con00, Theorem 3.6.1]. For the definition and some properties of the intersection number (ωX/T|f1(C))2(\omega_{X/T}|_{f^{-1}(C)})^{2}, we refer to [Bad01, Section 1]. This completes the proof of Step 1. ∎

Step 2.

The assertion of Theorem 5.15 holds when TT is a smooth projective curve, ff is generically smooth, and Δf\Delta_{f} is reduced.

Proof of Step 2.

By Theorem 4.4, XX is smooth over kk and any fibre of ff is reduced, i.e., each singular fibre consists of two (1)(-1)-curves (Lemma 5.14). Let

f:X𝜇XfTf:X\xrightarrow{\mu}X^{\prime}\xrightarrow{f^{\prime}}T

be a relatively minimal model. Then any fibre of f:XTf^{\prime}:X^{\prime}\to T is 1\mathbb{P}^{1}. Set ee to be the number of the singular fibres of f:XTf:X\to T. Then we have

KX2=KX2e.K_{X}^{2}=K_{X^{\prime}}^{2}-e.

For the genus g(T)g(T) of TT, it holds that

KX/T2=(KXfKT)2=KX22KXfKTK_{X^{\prime}/T}^{2}=(K_{X^{\prime}}-f^{\prime*}K_{T})^{2}=K_{X^{\prime}}^{2}-2K_{X^{\prime}}\cdot f^{\prime*}K_{T}
=8(1g(T))2(2)(2g(T)2)=0.=8(1-g(T))-2\cdot(-2)\cdot(2g(T)-2)=0.

By Δfbdl𝒪T(Δf)\Delta_{f}^{{\operatorname{bdl}}}\simeq\mathcal{O}_{T}(\Delta_{f}) (Remark 5.11), we obtain

degΔfbdl=degΔf=e=KX2KX2=KX/T2KX/T2=KX/T2.\deg\Delta^{{\operatorname{bdl}}}_{f}=\deg\Delta_{f}=e=K_{X^{\prime}}^{2}-K_{X}^{2}=K_{X^{\prime}/T}^{2}-K_{X/T}^{2}=-K_{X/T}^{2}.

This completes the proof of Step 2. ∎

Step 3.

The assertion of Theorem 5.15 holds when f:XTf:X\to T coincides with the induced morphism

funiv,C,E:UnivC(E)/CθHilbC(E)/Cθf_{{\operatorname{univ}},C,E}:{\operatorname{Univ}}^{\theta}_{\mathbb{P}_{C}(E)/C}\to{\operatorname{Hilb}}^{\theta}_{\mathbb{P}_{C}(E)/C}

for some smooth projective curve CC and locally free sheaf EE on CC of rank 33.

Proof of Step 3.

We have the projection

π:HilbC(E)/CθC.\pi:{\operatorname{Hilb}}^{\theta}_{\mathbb{P}_{C}(E)/C}\to C.

Recall that there exists an open cover C=iICiC=\bigcup_{i\in I}C_{i} such that π1(Ci)5×Ci\pi^{-1}(C_{i})\simeq\mathbb{P}^{5}\times C_{i} (Theorem 5.7). Take a general line LL contained in a fibre of π\pi. Fix a smooth projective curve TT^{\prime} obtained as a complete intersection of general hyperplane sections of T=HilbC(E)/CθT={\operatorname{Hilb}}^{\theta}_{\mathbb{P}_{C}(E)/C}. It follows from Lemma 5.8 that

N1(T)=[T]+[L].N_{1}(T)\otimes_{\mathbb{Z}}\mathbb{Q}=\mathbb{Q}[T^{\prime}]+\mathbb{Q}[L].

Therefore, it is enough to show

ΔfbdlT=ωX/T2f1(T)andΔfbdlL=ωX/T2f1(L).\Delta^{{\operatorname{bdl}}}_{f}\cdot T^{\prime}=-\omega_{X/T}^{2}\cdot f^{-1}(T^{\prime})\qquad\text{and}\qquad\Delta^{{\operatorname{bdl}}}_{f}\cdot L=-\omega_{X/T}^{2}\cdot f^{-1}(L).

We now prove ΔfbdlT=ωX/T2f1(T)\Delta^{{\operatorname{bdl}}}_{f}\cdot T^{\prime}=-\omega_{X/T}^{2}\cdot f^{-1}(T^{\prime}). Recall that Δuniv,C,E\Delta_{{\operatorname{univ}},C,E} is a reduced divisor on a 66-dimensional smooth projective variety T=HilbC(E)/CθT={\operatorname{Hilb}}^{\theta}_{\mathbb{P}_{C}(E)/C} (Theorem 5.7). Hence the scheme-theoretic intersection TΔuniv,C,ET^{\prime}\cap\Delta_{{\operatorname{univ}},C,E} is smooth, because the curve TT^{\prime} is defined as a complete intersection of general hyperplane sections. For the base change f:X×TTTf^{\prime}:X\times_{T}T^{\prime}\to T^{\prime} of ff, we have Δf=TΔf=TΔuniv,C,E\Delta_{f^{\prime}}=T^{\prime}\cap\Delta_{f}=T^{\prime}\cap\Delta_{{\operatorname{univ}},C,E} (Remark 3.5), and hence Δf\Delta_{f^{\prime}} is smooth. Then

ΔfbdlT=(i)degΔf=(ii)ωX×TT/T2=(iii)ωX/T2f1(T),\Delta^{{\operatorname{bdl}}}_{f}\cdot T^{\prime}\overset{{\rm(i)}}{=}\deg\Delta_{f^{\prime}}\overset{{\rm(ii)}}{=}-\omega_{X\times_{T}T^{\prime}/T^{\prime}}^{2}\overset{{\rm(iii)}}{=}-\omega_{X/T}^{2}\cdot f^{-1}(T^{\prime}),

where (i) and (iii) hold by Step 1(1) and Step 1(2) respectively, and (ii) follows from Step 2. This completes the proof of ΔfbdlT=ωX/T2f1(T)\Delta^{{\operatorname{bdl}}}_{f}\cdot T^{\prime}=-\omega_{X/T}^{2}\cdot f^{-1}(T^{\prime}).

It suffices to show ΔfbdlL=ωX/T2f1(L)\Delta^{{\operatorname{bdl}}}_{f}\cdot L=-\omega_{X/T}^{2}\cdot f^{-1}(L). By the same argument as in the previous paragraph, it is enough to prove that the scheme-theoretic intersection LΔuniv,C,EL\cap\Delta_{{\operatorname{univ}},C,E} is smooth. Let F(k5)F(\simeq\mathbb{P}^{5}_{k}) be the fibre of π:HilbC(E)/CθC\pi:{\operatorname{Hilb}}^{\theta}_{\mathbb{P}_{C}(E)/C}\to C containing LL. There is iIi\in I such that Fπ1(Ci)F\hookrightarrow\pi^{-1}(C_{i}). Consider the following composite isomorphism:

ι:Fπ1(Ci)5×Cipr15.\iota:F\hookrightarrow\pi^{-1}(C_{i})\simeq\mathbb{P}^{5}\times C_{i}\xrightarrow{{\rm pr}_{1}}\mathbb{P}^{5}.

We have ιΔuniv,k=Δuniv,C,E|F\iota^{*}\Delta_{{\operatorname{univ}},k}=\Delta_{{\operatorname{univ}},C,E}|_{F}, because Δuniv,C,E|F\Delta_{{\operatorname{univ}},C,E}|_{F} is the pullback of Δuniv,C,E|π1(Ci)\Delta_{{\operatorname{univ}},C,E}|_{\pi^{-1}(C_{i})}. It follows from Proposition 5.4 that the scheme-theoretic intersection MΔuniv,kM\cap\Delta_{{\operatorname{univ}},k} is smooth for a general line MM on 5\mathbb{P}^{5}. As LL is chosen to be a general line on F5F\simeq\mathbb{P}^{5}, also LΔuniv,C,EL\cap\Delta_{{\operatorname{univ}},C,E} is smooth. This completes the proof of Step 3. ∎

Step 4.

The assertion of Theorem 5.15 holds when TT is a smooth projective curve.

Proof of Step 4.

Set E:=f(ωX/T1)E:=f_{*}(\omega_{X/T}^{-1}). Then EE is a locally free sheaf of rank 33 (Proposition 2.7(2)) and f:XT(E)Tf:X\hookrightarrow\mathbb{P}_{T}(E)\to T is a flat family of conics on T(E)\mathbb{P}_{T}(E) relatively over TT. Therefore, we have the following cartesian diagram

X{X}UnivT(E)/Tθ{{\operatorname{Univ}}^{\theta}_{\mathbb{P}_{T}(E)/T}}T{T}HilbT(E)/Tθ.{{\operatorname{Hilb}}^{\theta}_{\mathbb{P}_{T}(E)/T}.}f\scriptstyle{f}α\scriptstyle{\alpha}funiv,T,E\scriptstyle{f_{{\operatorname{univ}},T,E}}β\scriptstyle{\beta}

Note that β:THilbT(E)/Tθ\beta:T\to{\operatorname{Hilb}}^{\theta}_{\mathbb{P}_{T}(E)/T} is a section of the projection HilbT(E)/TθT{\operatorname{Hilb}}^{\theta}_{\mathbb{P}_{T}(E)/T}\to T. In particular, β:THilbT(E)/Tθ\beta:T\to{\operatorname{Hilb}}^{\theta}_{\mathbb{P}_{T}(E)/T} is a closed immersion. We then obtain

degΔfbdl=(i)Δfuniv,T,Ebdlβ(T)=(ii)ωUnivT(E)/Tθ/HilbT(E)/Tθ2funiv,T,E1(β(T))=(iii)ωX/T2,\deg\Delta^{{\operatorname{bdl}}}_{f}\overset{{\rm(i)^{\prime}}}{=}\Delta^{{\operatorname{bdl}}}_{f_{{\operatorname{univ}},T,E}}\cdot\beta(T)\overset{{\rm(ii)^{\prime}}}{=}-\omega^{2}_{{\operatorname{Univ}}^{\theta}_{\mathbb{P}_{T}(E)/T}/{\operatorname{Hilb}}^{\theta}_{\mathbb{P}_{T}(E)/T}}\cdot f_{{\operatorname{univ}},T,E}^{-1}(\beta(T))\overset{{\rm(iii)^{\prime}}}{=}-\omega_{X/T}^{2},

where (i){\rm(i)^{\prime}} and (iii){\rm(iii)^{\prime}} hold by Step 1(1) and Step 1(2) respectively, and (ii){\rm(ii)^{\prime}} follows from Step 3. This completes the proof of Step 4. ∎

Step 5.

Theorem 5.15 holds without any additional assumptions.

Proof of Step 5.

It suffices to show that ΔfC=fωX/T2C\Delta_{f}\cdot C=-f_{*}\omega_{X/T}^{2}\cdot C for any curve CC on TT. This follows from

ΔfbdlC=(i)′′degΔhbdl=(ii)′′ωX×TCN/CN2=(iii)′′ωX/T2f1(C),\Delta^{{\operatorname{bdl}}}_{f}\cdot C\overset{{\rm(i)^{\prime\prime}}}{=}\deg\Delta^{{\operatorname{bdl}}}_{h}\overset{{\rm(ii)^{\prime\prime}}}{=}-\omega_{X\times_{T}C^{N}/C^{N}}^{2}\overset{{\rm(iii)^{\prime\prime}}}{=}-\omega_{X/T}^{2}\cdot f^{-1}(C),

where h:X×TCNCNh:X\times_{T}C^{N}\to C^{N} denotes the base change of f:XTf:X\to T, (i)′′{\rm(i)^{\prime\prime}} and (iii)′′{\rm(iii)^{\prime\prime}} hold by Step 1(1) and Step 1(2) respectively, and (ii)′′{\rm(ii)^{\prime\prime}} follows from Step 4. This completes the proof of Step 5. ∎

Step 5 completes the proof of Theorem 5.15. ∎

6. Surfaces

In this section, we focus on surface conic bundles f:XTf:X\to T. More precisely, we treat the case when XX has at worst canonical singularities, since there is nothing to do for the case when XX is smooth over kk (Lemma 5.14). The motivation is to seek a relation between Δf\Delta_{f} and the singularities of XX. For this purpose, we assume that f:XTf:X\to T has the unique singular fibre X0X_{0}, where 0T0\in T is a closed point. The primary goal of this section is to establish the following results (Theorem 6.3 in Subsection 6.2).

  1. (1)

    degΔf=m1\deg\Delta_{f}=m-1, where mm denotes the number of the irreducible components of the fibre Y0Y_{0}, where YXY\to X is the minimal resolution of XX.

  2. (2)

    If X0X_{0} is reduced, then

    • XX has the unique singularity xx, and

    • xx is of type AnA_{n}, where n:=m2=degΔf1n:=m-2=\deg\Delta_{f}-1.

  3. (3)

    If X0X_{0} is not reduced, then one and only one of the following holds.

    1. (a)

      XX has exactly two singularities xx and xx^{\prime}. Moreover, both xx and xx^{\prime} are of type A1A_{1}. In this case, degΔf=2\deg\Delta_{f}=2.

    2. (b)

      XX has the unique singularity xx. Moreover, xx is of type DnD_{n} with n3n\geq 3, where n=m1=degΔfn=m-1=\deg\Delta_{f}.

For example, XX has the unique singularity of type D4D_{4} if degΔf=4\deg\Delta_{f}=4 and X0X_{0} is not reduced (note that each of these conditions can be checked, as far as f:XTf:X\to T is explicitly given). In order to establish the above properties (1)–(3), we first classify the dual graphs of the exceptional loci of the minimal resolutions of surface conic bundles (Subsection 6.1). In Subsection 6.3, we shall summarise further classification results for surface conic bundles and exhibit several examples.

6.1. The classification of dual graphs

In this subsection, we classify the singularities of surface conic bundles for the case when the total space XX has at worst canonical singularities (Proposition 6.1, Proposition 6.2). The results in this subsection should be well known to experts. We include the proofs for the reader’s convenience. We refer to [KM98, §4.1, cf. 4.19] for some foundational results on canonical surface singularities.

Proposition 6.1.

We work over an algebraically closed field kk. Let f:XTf:X\to T be a conic bundle, where XX is a canonical surface and TT is a smooth curve. Fix a closed point 0T0\in T. Assume that X0X_{0} is reduced and X0X_{0} is the unique singular fibre. Let φ:YX\varphi:Y\to X be the minimal resolution of XX. Then the dual graph of the singular fibre of the composition Y𝜑X𝑓TY\xrightarrow{\varphi}X\xrightarrow{f}T is as follows:

(1)(2)(2)(2)(1).(-1)-(-2)-(-2)-\cdots-(-2)-(-1).

In particular, XX has the unique singularity xx and xx is of type AnA_{n} for some n>0n\in\mathbb{Z}_{>0}.

Proof.

We run a KYK_{Y}-MMP over TT:

ψ:Y=:Zmψm1Zm1ψm2ψ2Z2ψ1Z1=:Z,\psi:Y=:Z_{m}\xrightarrow{\psi_{m-1}}Z_{m-1}\xrightarrow{\psi_{m-2}}\cdots\xrightarrow{\psi_{2}}Z_{2}\xrightarrow{\psi_{1}}Z_{1}=:Z,

i.e., each ψi:Zi+1Zi\psi_{i}:Z_{i+1}\to Z_{i} is a contraction of a (1)(-1)-curve contained in the fibre over 0T0\in T. After possibly replacing TT by an open neighbourhood of 0T0\in T, we may assume that Z1=Z=1×TZ_{1}=Z=\mathbb{P}^{1}\times T. Then the singular fibre (Z2)0(Z_{2})_{0} consists of exactly two (1)(-1)-curves E1+E2E_{1}+E_{2}.

It is enough to prove the following three properties (1)-(3).

  1. (1)

    The blowup centre of ψi:Zi+1Zi\psi_{i}:Z_{i+1}\to Z_{i} is a smooth point of the fibre (Zi)0(Z_{i})_{0} for every ii.

  2. (2)

    The fibre (Zi)0(Z_{i})_{0} over 0 is reduced for every ii.

  3. (3)

    The blowup centre of ψi:Zi+1Zi\psi_{i}:Z_{i+1}\to Z_{i} is disjoint from any (2)(-2)-curve contained in (Zi)0(Z_{i})_{0}.

Indeed, if the singular fibre (Zi)0(Z_{i})_{0} is a chain

(1)(2)(2)(2)(1),(-1)-(-2)-(-2)-\cdots-(-2)-(-1),

which is reduced, then the next blowup centre lies on one of the leftmost and rightmost (1)(-1)-curves and avoids the (2)(-2)-curves.

Let us show (1). Suppose that (Zi)0(Z_{i})_{0} is reduced and the blowup centre of ψi:Zi+1Zi\psi_{i}:Z_{i+1}\to Z_{i} is a singular point of (Zi)0(Z_{i})_{0}, i.e., it is an intersection of two irreducible components. Then (Zi+1)0(Z_{i+1})_{0} is not reduced along the resulting (1)(-1)-curve Fi+1F_{i+1}. Then we can show, by induction on jj, that there is a (1)(-1)-curve FjF_{j} on ZjZ_{j} such that (Zj)0(Z_{j})_{0} is non-reduced along FjF_{j}. This implies that Y=ZmY=Z_{m} contains a (1)(-1)-curve FF inside the singular fibre Y0Y_{0} such that Y0Y_{0} is not reduced along FF. Then X0X_{0} is non-reduced along φ(F)\varphi(F). This contradicts our assumption. Thus (1) holds. By induction on ii, the assertion (2) follows from (1).

Let us show (3). Note that the number of the irreducible components of (Zi)0(Z_{i})_{0} is equal to ii. Let νi\nu_{i} be the number of (2)(-2)-curves inside the fibre (Zi)0(Z_{i})_{0}, e.g., we have ν1=ν2=0\nu_{1}=\nu_{2}=0 and ν3=1\nu_{3}=1. For i2i\geq 2, let us show that νi=i2\nu_{i}=i-2 by induction on ii. Fix i2i\geq 2 and assume νi=i2\nu_{i}=i-2. By (1), we obtain

νi+1νi+1.\nu_{i+1}\leq\nu_{i}+1.

Furthermore, the equality holds if and only if the blowup centre lies on a (1)(-1)-curve. We obtain

m2νmν2+m2=m2,m-2\leq\nu_{m}\leq\nu_{2}+m-2=m-2,

where the first inequality follows from the fact that XX has two irreducible components and Ex(φ){\operatorname{Ex}}(\varphi) consists of (m2)(m-2) irreducible components. Therefore, we obtain νi+1=νi+1\nu_{i+1}=\nu_{i}+1. This completes the proof of νi=i2\nu_{i}=i-2 for i2i\geq 2. Then we get νi+1=νi+1\nu_{i+1}=\nu_{i}+1, i.e., the blowup centre of ψi:Zi+1Zi\psi_{i}:Z_{i+1}\to Z_{i} lies on a (1)(-1)-curve. Thus (3) holds. ∎

Proposition 6.2.

We work over an algebraically closed field kk. Let f:XTf:X\to T be a conic bundle, where XX is a canonical surface and TT is a smooth curve. Fix a closed point 0T0\in T. Assume that X0X_{0} is non-reduced and X0X_{0} is the unique singular fibre. Let φ:YX\varphi:Y\to X be the minimal resolution of XX. Then the dual graph of the singular fibre of the composition Y𝜑X𝑓TY\xrightarrow{\varphi}X\xrightarrow{f}T is either a chain

(2)(1)(2)(-2)-(-1)-(-2)

or

Dn(1)D_{n}-(-1)

with n3n\geq 3, where the latter case means that (1)(-1)-curve intersects only with the long tail.

Proof.

We run a KYK_{Y}-MMP over TT:

ψ:Y=:Zmψm1Zm1ψm2ψ2Z2ψ1Z1=:Z,\psi:Y=:Z_{m}\xrightarrow{\psi_{m-1}}Z_{m-1}\xrightarrow{\psi_{m-2}}\cdots\xrightarrow{\psi_{2}}Z_{2}\xrightarrow{\psi_{1}}Z_{1}=:Z,

i.e., each ψi:Zi+1Zi\psi_{i}:Z_{i+1}\to Z_{i} is a contraction of a (1)(-1)-curve contained in the fibre over 0T0\in T. After possibly replacing TT by an open neighbourhood of 0T0\in T, we may assume that Z1=Z=1×TZ_{1}=Z=\mathbb{P}^{1}\times T. It is clear that (Zi)0(Z_{i})_{0} contains at least one (1)(-1)-curve for every i2i\geq 2. Since X0X_{0} is irreducible and Ex(φ:Y=ZmX){\operatorname{Ex}}(\varphi:Y=Z_{m}\to X) consists of (2)(-2)-curves, the following holds:

  1. (1)

    We have the irreducible decomposition ((Zm)0)red=A1Am1B((Z_{m})_{0})_{{\operatorname{red}}}=A_{1}\cup\cdots\cup A_{m-1}\cup B, where each AiA_{i} is a (2)(-2)-curve and BB is a (1)(-1)-curve.

We see that

  1. (2)

    (Zi)0(Z_{i})_{0} contains no prime divisor CC satisfying C23C^{2}\leq-3,

as otherwise its proper transform C(Zm)0C^{\prime}\subset(Z_{m})_{0} would satisfy C23C^{\prime 2}\leq-3, which contradicts (1).

We now show that the blowup centre of ψ2:Z3Z2\psi_{2}:Z_{3}\to Z_{2} is the singular point E1E2E_{1}\cap E_{2} for the irreducible decomposition (Z2)0=E1E2(Z_{2})_{0}=E_{1}\cup E_{2}. Otherwise, (Z3)0(Z_{3})_{0} contains two (1)(-1)-curves FF and FF^{\prime} which are mutually disjoint. This property is stable under taking a blowup. Hence also (Zm)0(Z_{m})_{0} has at least two (1)(-1)-curves, which contradicts (1). Therefore, the dual graph of (Z3)0(Z_{3})_{0} is given by

(2)(1)(2).(-2)-(-1)-(-2).

The blowup centre of the next blowup Z4Z3Z_{4}\to Z_{3} is disjoint from the two (2)(-2)-curves by (2). Then (Z4)0(Z_{4})_{0} consists of three (2)(-2)-curves and the unique (1)(-1)-curve. The blowup centre of ψ4:Z5Z4\psi_{4}:Z_{5}\to Z_{4} is disjoint from these (2)(-2)-curves. Repeating this procedure, we see that the resulting dual graph of Y0=(Zm)0Y_{0}=(Z_{m})_{0} is as in the statement. ∎

6.2. Discriminants vs singularities

We are ready to prove a main theorem of this section.

Theorem 6.3.

We work over an algebraically closed field kk. Let f:XTf:X\to T be a conic bundle, where XX is a canonical surface and TT is a smooth curve. Assume that there exists a closed point 0T0\in T such that X0X_{0} is the unique singular fibre. Let φ:YX\varphi:Y\to X be the minimal resolution of XX and set mm to be the number of the irreducible components of the fibre Y0Y_{0} over 0T0\in T. Then the following hold.

  1. (1)

    degΔf=m1\deg\Delta_{f}=m-1.

  2. (2)

    Assume that X0X_{0} is reduced. Then XX has the unique singularity xx and xx is of type AnA_{n}, where n=m2=degΔf1n=m-2=\deg\Delta_{f}-1.

  3. (3)

    Assume that X0X_{0} is not reduced. Then one and only one of the following holds.

    1. (a)

      XX has exactly two singularities xx and xx^{\prime}. Moreover, both xx and xx^{\prime} are of type A1A_{1}. In this case, degΔf=2\deg\Delta_{f}=2.

    2. (b)

      XX has the unique singularity xx and xx is of type DnD_{n} with n3n\geq 3, where n=m1=degΔfn=m-1=\deg\Delta_{f}.

Proof.

Let us show (1). By compactifying TT suitably, we may assume that TT is a smooth projective curve. We run a KYK_{Y}-MMP: ψ:YZ\psi:Y\to Z over TT, so that fZ:ZTf_{Z}:Z\to T is a 1\mathbb{P}^{1}-bundle. Let fY:YTf_{Y}:Y\to T be the induced morphism. By degΔf=KX/T2\deg\Delta_{f}=-K_{X/T}^{2} (Remark 5.11, Theorem 5.15), we obtain

degΔf=KX/T2=(KXfKT)2=(KYfYKT)2\deg\Delta_{f}=-K_{X/T}^{2}=-(K_{X}-f^{*}K_{T})^{2}=-(K_{Y}-f_{Y}^{*}K_{T})^{2}
=(KZfZKT)2+(m1)=m1.=-(K_{Z}-f_{Z}^{*}K_{T})^{2}+(m-1)=m-1.

Thus (1) holds. By (1), the assertions (2) and (3) follow from Proposition 6.1 and Proposition 6.2, respectively. ∎

6.3. Description and examples

In this subsection, we study generically smooth conic bundles over k[[t]]k[[t]]. We shall classify such conic bundles for the case when either

  • chark2{\rm char}\,k\neq 2 (Proposition 6.4, Proposition 6.5), or

  • chark=2{\rm char}\,k=2 and the fibre X0X_{0} over the closed point is reduced (Proposition 6.6).

The remaining case is when chark=2{\rm char}\,k=2 and the fibre X0X_{0} is non-reduced. Although we will not give the complete classification in this case, we shall check, by exhibiting several examples, that all the canonical (RDP) singularities of type AA and DD in Artin’s list [Art77] actually appear.

6.3.1. chark2{\rm char}\,k\neq 2

In Proposition 6.4 (resp. Proposition 6.5), we treat the case when the singular fibre is reduced (resp. non-reduced).

Proposition 6.4.

Let kk be an algebraically closed field of characteristic 2\neq 2. Set A:=k[[t]]A:=k[[t]] and let 0 be the closed point of SpecA{\operatorname{Spec}}\,A. Let f:XSpecAf:X\to{\operatorname{Spec}}\,A be a conic bundle, where XX is canonical and X0X_{0} is not smooth but is reduced. Then the following hold.

  1. (1)

    We have an AA-isomorphism

    XProjA[x,y,z]/(x2+y2+tn+1z2)X\simeq{\operatorname{Proj}}\,A[x,y,z]/(x^{2}+y^{2}+t^{n+1}z^{2})

    for some n0n\geq 0.

  2. (2)

    degΔf=n+1\deg\Delta_{f}=n+1.

  3. (3)

    If n=0n=0, then XX is regular. If n1n\geq 1, then XX has the unique singularity and it is of type AnA_{n}.

Proof.

Let us show (1). By Corollary 2.13(2), we can write

XProjA[x,y,z]/(x2+y2+cz2)X\simeq{\operatorname{Proj}}\,A[x,y,z]/(x^{2}+y^{2}+cz^{2})

for some cA=k[[t]]c\in A=k[[t]]. Then we have c=dtmc=dt^{m} for some m0m\in\mathbb{Z}_{\geq 0} and dk[[t]]×d\in k[[t]]^{\times}. Since X0X_{0} is not smooth, we get m>0m>0. By Hensel’s lemma, we have dk[[t]]\sqrt{d}\in k[[t]]. Thus (1) holds.

The assertion (2) follows from Definition 3.1 and Definition 3.4. The assertion (3) holds by either direct computation, or (2) and Theorem 6.3. ∎

Proposition 6.5.

Let kk be an algebraically closed field of characteristic 2\neq 2. Set A:=k[[t]]A:=k[[t]] and let 0 be the closed point of SpecA{\operatorname{Spec}}\,A. Let f:XSpecAf:X\to{\operatorname{Spec}}\,A be a conic bundle, where XX is canonical and X0X_{0} is not reduced. Then the following hold.

  1. (1)

    We have an AA-isomorphism

    XProjA[x,y,z]/(x2+ty2+tn1z2)X\simeq{\operatorname{Proj}}\,A[x,y,z]/(x^{2}+ty^{2}+t^{n-1}z^{2})

    for some n2n\geq 2.

  2. (2)

    degΔf=n\deg\Delta_{f}=n.

  3. (3)

    If n=2n=2, then XX has exactly two singular points and both of them are of type A1A_{1}. If n3n\geq 3, then XX has the unique singular point and it is of type DnD_{n}.

Proof.

Let us show (1). By Corollary 2.13(1), we can write

X=ProjA[x,y,z]/(x2+by2+cz2+αyz)X={\operatorname{Proj}}\,A[x,y,z]/(x^{2}+by^{2}+cz^{2}+\alpha yz)

for some b,c,α𝔪:=tk[[t]]b,c,\alpha\in\mathfrak{m}:=tk[[t]].

We now reduce the problem to the case when α=0\alpha=0. For a suitable m>0m\in\mathbb{Z}_{>0}, we have

by2+cz2+αyz=tm(by2+cz2+αyz),by^{2}+cz^{2}+\alpha yz=t^{m}(b^{\prime}y^{2}+c^{\prime}z^{2}+\alpha^{\prime}yz),

where b,c,αAb^{\prime},c^{\prime},\alpha^{\prime}\in A and one of b,c,αb^{\prime},c^{\prime},\alpha^{\prime} is a unit of AA. If bA×b^{\prime}\in A^{\times}, then we may assume that b=1b^{\prime}=1 (Hensel’s lemma) and α=0\alpha^{\prime}=0 by completing a square: y2+cz2+αyz=(y+α2z)2+(cα24)z2y^{2}+c^{\prime}z^{2}+\alpha^{\prime}yz=(y+\frac{\alpha^{\prime}}{2}z)^{2}+(c^{\prime}-\frac{\alpha^{\prime 2}}{4})z^{2}. If cA×c^{\prime}\in A^{\times}, then the problem is reduced to the case when bA×b^{\prime}\in A^{\times} by switching yy and zz. If b𝔪b^{\prime}\in\mathfrak{m}, c𝔪c^{\prime}\in\mathfrak{m}, and αA×\alpha^{\prime}\in A^{\times}, then we may assume that bA×b^{\prime}\in A^{\times} by applying a linear transform (x,y,z)(x,y,y+z)(x,y,z)\mapsto(x,y,y+z). In any case, the problem is reduced to the case when α=0\alpha=0.

After possibly switching yy and zz, Hensel’s lemma enables us to write

XProjA[x,y,z]/(x2+tr(y2+tsz2))X\simeq{\operatorname{Proj}}\,A[x,y,z]/(x^{2}+t^{r}(y^{2}+t^{s}z^{2}))

for some r0r\geq 0 and s0s\geq 0.

We now show that r=1r=1. Suppose r2r\geq 2. It suffices to conclude that XX is not normal. Take the affine open subset defined by z0z\neq 0:

X:=D+(z)=Speck[[t]][x,y]/(x2+tr(y2+ts)).X^{\prime}:=D_{+}(z)={\operatorname{Spec}}\,k[[t]][x,y]/(x^{2}+t^{r}(y^{2}+t^{s})).

By r2r\geq 2, the line defined by x=t=0x=t=0 is contained in the singular locus of XX^{\prime}. Hence XX^{\prime} is not normal. This completes the proof of r=1r=1.

We then obtain

XProjA[x,y,z]/(x2+ty2+ts+1z2)X\simeq{\operatorname{Proj}}\,A[x,y,z]/(x^{2}+ty^{2}+t^{s+1}z^{2})

with s0s\geq 0. Thus (1) holds.

The assertion (2) follows from Definition 3.1 and Definition 3.4. The assertion (3) holds by either direct computation, or (2) and Theorem 6.3. ∎

6.3.2. Reduced-fibre case with chark=2{\rm char}\,k=2

Proposition 6.6.

Let kk be an algebraically closed field of characteristic two. Set A:=k[[t]]A:=k[[t]] and let 0 be the closed point of SpecA{\operatorname{Spec}}\,A. Let f:XSpecAf:X\to{\operatorname{Spec}}\,A be a conic bundle, where XX is canonical and X0X_{0} is not smooth but is reduced. Then the following hold.

  1. (1)

    We have an AA-isomorphism

    XProjA[x,y,z]/(xy+tn+1z2)X\simeq{\operatorname{Proj}}\,A[x,y,z]/(xy+t^{n+1}z^{2})

    for some n0n\geq 0.

  2. (2)

    degΔf=n+1\deg\Delta_{f}=n+1.

  3. (3)

    If n=0n=0, then XX is regular. If n1n\geq 1, then XX has the unique singularity and it is of type AnA_{n}.

Proof.

Let us show (1). By Proposition 2.14(2), we can write

XProjA[x,y,z]/(xy+cz2)X\simeq{\operatorname{Proj}}\,A[x,y,z]/(xy+cz^{2})

for some c𝔪:=tk[[t]]c\in\mathfrak{m}:=tk[[t]]. Then we can write c=ctmc=c^{\prime}t^{m} for some cA×c^{\prime}\in A^{\times} and m0m\in\mathbb{Z}_{\geq 0}. By the following equality of ideals of A[x,y,z]A[x,y,z]

(xy+cz2)=(xy+ctmz2)=((c1x)y+tmz2),(xy+cz^{2})=(xy+c^{\prime}t^{m}z^{2})=((c^{\prime-1}x)y+t^{m}z^{2}),

we may assume that c=tmc=t^{m}. Since X0X_{0} is not smooth, we get m>0m>0. Thus (1) holds.

The assertion (2) follows from Definition 3.1 and Definition 3.4. The assertion (3) holds by either direct computation, or (2) and Theorem 6.3. ∎

6.3.3. Non-reduced-fibre case with chark=2{\rm char}\,k=2

Lemma 6.7.

Let kk be an algebraically closed field of characteristic two. Set A:=k[[t]]A:=k[[t]] and let 0 be the closed point of SpecA{\operatorname{Spec}}\,A. Let f:XSpecAf:X\to{\operatorname{Spec}}\,A be a conic bundle, where XX is canonical and X0X_{0} is not reduced. Then an AA-isomorphism

XProjA[x,y,z]/(ax2+by2+cz2+tnxy)X\simeq{\operatorname{Proj}}\,A[x,y,z]/(ax^{2}+by^{2}+cz^{2}+t^{n}xy)

holds for some a,b,cAa,b,c\in A and n1n\geq 1.

Proof.

We have

X=ProjA[x,y,z]/(ax2+by2+cz2+αyz+βzx+γxy)X={\operatorname{Proj}}\,A[x,y,z]/(ax^{2}+by^{2}+cz^{2}+\alpha yz+\beta zx+\gamma xy)

for some a,b,cA=k[[t]]a,b,c\in A=k[[t]] and α,β,γ𝔪=tk[[t]]\alpha,\beta,\gamma\in\mathfrak{m}=tk[[t]]. We may assume that vt(α)vt(β)vt(γ)=:nv_{t}(\alpha)\geq v_{t}(\beta)\geq v_{t}(\gamma)=:n, where vt:k[[t]]{}v_{t}:k[[t]]\to\mathbb{Z}\cup\{\infty\} denotes the discrete valuation with vt(t)=1v_{t}(t)=1. Then we can write

α=tnα,β=tnβ,γ=tnγ\alpha=t^{n}\alpha^{\prime},\quad\beta=t^{n}\beta^{\prime},\quad\gamma=t^{n}\gamma^{\prime}

for some α,βA\alpha^{\prime},\beta^{\prime}\in A and γA×\gamma^{\prime}\in A^{\times}. Taking the multiple with γ1\gamma^{\prime-1}, we get

XProjA[x,y,z]/(ax2+by2+cz2+tn(αyz+βzx+xy))X\simeq{\operatorname{Proj}}\,A[x,y,z]/(a^{\prime}x^{2}+b^{\prime}y^{2}+c^{\prime}z^{2}+t^{n}(\alpha^{\prime}yz+\beta^{\prime}zx+xy))

for some a,b,cA=k[[t]]a^{\prime},b^{\prime},c^{\prime}\in A=k[[t]]. It holds that

αyz+βzx+xy=(x+αz)(y+βz)αβz2.\displaystyle\alpha^{\prime}yz+\beta^{\prime}zx+xy=(x+\alpha^{\prime}z)(y+\beta^{\prime}z)-\alpha^{\prime}\beta^{\prime}z^{2}.

Applying the coordinate change (x+αz,y+βz,z)(x,y,z)(x+\alpha^{\prime}z,y+\beta^{\prime}z,z)\mapsto(x,y,z), we obtain

XProjA[x,y,z]/(a′′x2+b′′y2+c′′z2+tnxy)X\simeq{\operatorname{Proj}}\,A[x,y,z]/(a^{\prime\prime}x^{2}+b^{\prime\prime}y^{2}+c^{\prime\prime}z^{2}+t^{n}xy)

for some a′′,b′′,c′′Aa^{\prime\prime},b^{\prime\prime},c^{\prime\prime}\in A and n0n\in\mathbb{Z}_{\geq 0}. Since X0X_{0} is not reduced, we obtain n>0n>0. ∎

Notation 6.8.

Let kk be an algebraically closed field of characteristic two. Set A:=k[[t]]A:=k[[t]], 𝔪:=tk[[t]]\mathfrak{m}:=tk[[t]], and κ:=A/𝔪(k)\kappa:=A/\mathfrak{m}(\simeq k). Let 0 be the closed point of SpecA{\operatorname{Spec}}\,A. Let

f:X=ProjA[x,y,z]/(Q)SpecAf:X={\operatorname{Proj}}\,A[x,y,z]/(Q)\to{\operatorname{Spec}}\,A

be a conic bundle, where XX is canonical and X0X_{0} is not reduced. Assume that

Q=ax2+by2+cz2+tnxyQ=ax^{2}+by^{2}+cz^{2}+t^{n}xy

for some a,b,cAa,b,c\in A and n1n\geq 1. We often write a(t):=a,b(t):=b,c(t):=ca(t):=a,b(t):=b,c(t):=c. For a(t)=a0+a1t+a2t2+a(t)=a_{0}+a_{1}t+a_{2}t^{2}+\cdots, it holds that a(0)=a0,a(t)=a1+2a2t+3a3t2+a(0)=a_{0},a^{\prime}(t)=a_{1}+2a_{2}t+3a_{3}t^{2}+\cdots, and a(0)=a1a^{\prime}(0)=a_{1}.

Lemma 6.9.

We use Notation 6.8. Assume n2n\geq 2. Then the following hold.

  1. (1)

    The singular locus of XX is given by the intersection of the following two lines on κ2\mathbb{P}^{2}_{\kappa}:

    a(0)x+b(0)y+c(0)z=a(0)x+b(0)y+c(0)z=0.\sqrt{a(0)}x+\sqrt{b(0)}y+\sqrt{c(0)}z=\sqrt{a^{\prime}(0)}x+\sqrt{b^{\prime}(0)}y+\sqrt{c^{\prime}(0)}z=0.

    In particular, these lines are distinct and XX has the unique singular point.

  2. (2)

    We may assume that the singular point is either [0:1:0]κ2[0:1:0]\in\mathbb{P}^{2}_{\kappa} or [0:0:1]κ2[0:0:1]\in\mathbb{P}^{2}_{\kappa}. More precisely, there exist a~,b~,c~A\widetilde{a},\widetilde{b},\widetilde{c}\in A such that an AA-isomorphism

    XProjA[x,y,z]/(a~x2+b~y2+c~z2+tnxy)X\simeq{\operatorname{Proj}}\,A[x,y,z]/(\widetilde{a}x^{2}+\widetilde{b}y^{2}+\widetilde{c}z^{2}+t^{n}xy)

    holds and the singular point of ProjA[x,y,z]/(a~x2+b~y2+c~z2+tnxy){\operatorname{Proj}}\,A[x,y,z]/(\widetilde{a}x^{2}+\widetilde{b}y^{2}+\widetilde{c}z^{2}+t^{n}xy), which is unique by (1), is either [0:1:0]κ2[0:1:0]\in\mathbb{P}^{2}_{\kappa} or [0:0:1]κ2[0:0:1]\in\mathbb{P}^{2}_{\kappa}.

Proof.

Let us show (1). Let [x0:y0:z0]κ2[x_{0}:y_{0}:z_{0}]\in\mathbb{P}^{2}_{\kappa} be a singular point of XX. By Proposition 4.6, this singular point (t,[x:y:z])=(0,[x0:y0:z0])(t,[x:y:z])=(0,[x_{0}:y_{0}:z_{0}]) is a solution of

Q=tQ=xQ=yQ=zQ=0.Q=\partial_{t}Q=\partial_{x}Q=\partial_{y}Q=\partial_{z}Q=0.

By t=0t=0, the following equalities automatically hold:

xQ=yQ=zQ=0.\partial_{x}Q=\partial_{y}Q=\partial_{z}Q=0.

By n2n\geq 2, the remaining conditions Q=tQ=0Q=\partial_{t}Q=0 can be written as

a(0)x2+b(0)y2+c(0)z2=a(0)x2+b(0)y2+c(0)z2=0.a(0)x^{2}+b(0)y^{2}+c(0)z^{2}=a^{\prime}(0)x^{2}+b^{\prime}(0)y^{2}+c^{\prime}(0)z^{2}=0.

Since both are double lines, the singular locus is either a line or a point. If the singular locus is a line, then XX would not be normal. Thus (1) holds.

Let us show (2). Note that the unique singular point can be written as [α:β:γ]κ2[\alpha:\beta:\gamma]\in\mathbb{P}^{2}_{\kappa}. If [α:β:γ]=[0:0:1][\alpha:\beta:\gamma]=[0:0:1], then there is nothing to show. By symmetry, we may assume that β0\beta\neq 0, and hence β=1\beta=1. Applying [x:y:z][x+αy:y:z+γy][x:y:z]\mapsto[x+\alpha y:y:z+\gamma y], we may assume that α=γ=0\alpha=\gamma=0. Thus (2) holds. ∎

Proposition 6.10.

We use Notation 6.8. Assume that n2n\geq 2 and [0:1:0][0:1:0] is the unique singularity of XX. Then one and only one of (I) and (II) holds.

  1. (I)
    1. (1)

      We have an AA-isomorphism

      XProjA[x,y,z]/(tx2+z2+tnxy)X\simeq{\operatorname{Proj}}\,A[x,y,z]/(tx^{2}+z^{2}+t^{n}xy)

      for some n>0n>0.

    2. (2)

      degΔf=2n\deg\Delta_{f}=2n.

    3. (3)
      • If n=1n=1, then XX has exactly two singular points and both of them are of type A1A_{1}.

      • If n2n\geq 2, then XX has the unique singular point and it is of type D2n0D^{0}_{2n} in the sense of [Art77, Page 16].

  2. (II)
    1. (1)

      We have an AA-isomorphism

      XProjA[x,y,z]/(x2+tz2+tnxy)X\simeq{\operatorname{Proj}}\,A[x,y,z]/(x^{2}+tz^{2}+t^{n}xy)

      for some n>0n>0.

    2. (2)

      degΔf=2n+1\deg\Delta_{f}=2n+1.

    3. (3)

      XX has the unique singular point and it is of type D2n+10D^{0}_{2n+1} in the sense of [Art77, Page 16].

Proof.

Let us show (1). For γ:=tn\gamma:=t^{n}, we have

X=ProjA[x,y,z]/(ax2+by2+cz2+γxy).X={\operatorname{Proj}}\,A[x,y,z]/(ax^{2}+by^{2}+cz^{2}+\gamma xy).

Note that the condition γ=tn\gamma=t^{n} is not stable under the following argument. Since [0:1:0][0:1:0] is a singular point of XX, we obtain b(0)=b(0)=0b(0)=b^{\prime}(0)=0 (Lemma 6.9(1)). Recall that the singular point [0:1:0][0:1:0] coincides with the solution of the following equation (Lemma 6.9):

(6.10.1) a(0)x+c(0)z=a(0)x+c(0)z=0.\sqrt{a(0)}x+\sqrt{c(0)}z=\sqrt{a^{\prime}(0)}x+\sqrt{c^{\prime}(0)}z=0.

In particular,

(I)c(0)0or(II)a(0)0.{\rm(I)}\,\,c(0)\neq 0\qquad\qquad\text{or}\qquad\qquad{\rm(II)}\,\,a(0)\neq 0.

In what follows, we only treat (I), since the proofs are very similar.

Assume (I), i.e., c(0)0c(0)\neq 0. We get cA×c\in A^{\times}. Taking the multiplication with c1c^{-1}, the defining equation of XX becomes

ax2+by2+z2+γxy=0.ax^{2}+by^{2}+z^{2}+\gamma xy=0.

By the fact that [0:1:0][0:1:0] is the unique solution of (6.10.1), we obtain a(0)0a^{\prime}(0)\neq 0. Applying zz+a(0)xz\mapsto z+\sqrt{a(0)}x, we may assume that a(0)=0a(0)=0. Hence we can write

a=a(t)=a1t+a2t2+k[[t]],a=a(t)=a_{1}t+a_{2}t^{2}+\cdots\in k[[t]],

where a1,a2,ka_{1},a_{2},...\in k and a10a_{1}\neq 0.

We now erase the term by2by^{2}. Let bmtmb_{m}t^{m} be the leading term of bb, i.e., b=bmtm+bm+1tm+1+k[[t]]b=b_{m}t^{m}+b_{m+1}t^{m+1}+\cdots\in k[[t]] with bm,bm+1,kb_{m},b_{m+1},...\in k and bm0b_{m}\neq 0. If m=2m=2\ell for some 0\ell\in\mathbb{Z}_{\geq 0} (i.e., mm is even), then we can erase b2t2b_{2\ell}t^{2\ell} by applying zz+λyz\mapsto z+\lambda y for suitable λk\lambda\in k. Hence we may assume that m=2+1m=2\ell+1 for some 0\ell\in\mathbb{Z}_{\geq 0} (i.e., mm is odd). We can write

γ=γsts+γs+1ts+1+\gamma=\gamma_{s}t^{s}+\gamma_{s+1}t^{s+1}+\cdots

for some γs,γs+1,k\gamma_{s},\gamma_{s+1},...\in k with γs0\gamma_{s}\neq 0. Since X0X_{0} is non-reduced, we have s1s\geq 1. We treat the following two cases separately.

  1. (i)

    2+1s+2\ell+1\leq s+\ell.

  2. (ii)

    2+1>s+2\ell+1>s+\ell.

Assume (i). In this case, we apply the AA-linear transform (x,y,z)(x+μty,y,z)(x,y,z)\mapsto(x+\mu t^{\ell}y,y,z) for some μk\mu\in k, so that the defining polynomial of XX becomes

a(x+μty)2+by2+z2+γ(x+μty)y=ax2+(aμ2t2+b+γμt)y2+z2+γxy.a(x+\mu t^{\ell}y)^{2}+by^{2}+z^{2}+\gamma(x+\mu t^{\ell}y)y=ax^{2}+(a\mu^{2}t^{2\ell}+b+\gamma\mu t^{\ell})y^{2}+z^{2}+\gamma xy.

If μ0\mu\neq 0, then the leading term of γμt\gamma\mu t^{\ell} is equal to γsμt+s\gamma_{s}\mu t^{\ell+s}, which is of degree 2+1\geq 2\ell+1 by the assumption 2+1s+2\ell+1\leq s+\ell. Therefore, the leading term of aμ2t2+b+γμta\mu^{2}t^{2\ell}+b+\gamma\mu t^{\ell} is of degree 2+1\geq 2\ell+1. It is enough to find μk\mu\in k that makes this inequality strict. The coefficient of t2+1t^{2\ell+1} in aμ2t2+b+γμtk[[t]]a\mu^{2}t^{2\ell}+b+\gamma\mu t^{\ell}\in k[[t]] is equal to

a1μ2+b2+1+γ+1μ,a_{1}\mu^{2}+b_{2\ell+1}+\gamma_{\ell+1}\mu,

where we set γ+1:=0\gamma_{\ell+1}:=0 when +1<s\ell+1<s. By a10a_{1}\neq 0, there is a solution μk\mu\in k of the equation a1μ2+b2+1+γ+1μ=0a_{1}\mu^{2}+b_{2\ell+1}+\gamma_{\ell+1}\mu=0. This completes the case when (i). Hence we may assume (ii). In this case, we apply the AA-linear transform (x,y,z)(x+νt2+1sy,y,z)(x,y,z)\mapsto(x+\nu t^{2\ell+1-s}y,y,z) for some νk\nu\in k, so that the defining polynomial of XX becomes

a(x+νt2+1sy)2+by2+z2+γ(x+νt2+1sy)ya(x+\nu t^{2\ell+1-s}y)^{2}+by^{2}+z^{2}+\gamma(x+\nu t^{2\ell+1-s}y)y
=ax2+(aν2t4+22s+b+γνt2+1s)y2+z2+γxy.=ax^{2}+(a\nu^{2}t^{4\ell+2-2s}+b+\gamma\nu t^{2\ell+1-s})y^{2}+z^{2}+\gamma xy.

The leading term of aν2t4+22sa\nu^{2}t^{4\ell+2-2s} is of degree 1+4+22s1+4\ell+2-2s, which is larger than 2+12\ell+1 by the assumption 2+1>s+2\ell+1>s+\ell. Hence the coefficient of t2+1t^{2\ell+1} in aν2t4+22s+b+γνt2+1sk[[t]]a\nu^{2}t^{4\ell+2-2s}+b+\gamma\nu t^{2\ell+1-s}\in k[[t]] is equal to b2+1+γsνb_{2\ell+1}+\gamma_{s}\nu. Hence it is enough to set ν:=γs1b2+1\nu:=\gamma_{s}^{-1}b_{2\ell+1}. Therefore, we may assume that b=0b=0.

Then the defining equation of XX becomes

ax2+z2+γxy=0.ax^{2}+z^{2}+\gamma xy=0.

By using z2z^{2}, we may assume that aa only has odd terms, i.e., a=a1t+a3t3+a5t5+k[[t]]a=a_{1}t+a_{3}t^{3}+a_{5}t^{5}+\cdots\in k[[t]]. We can write

ax2=(a1t+a3t3+a5t5+)x2=t((a1+a3t+a5t2+)x)2,ax^{2}=(a_{1}t+a_{3}t^{3}+a_{5}t^{5}+\cdots)x^{2}=t((\sqrt{a_{1}}+\sqrt{a_{3}}t+\sqrt{a_{5}}t^{2}+\cdots)x)^{2},

and hence we may assume that a=ta=t. Finally, we can assume that γ=tn\gamma=t^{n} after replacining yy with uyuy for some unit uA×u\in A^{\times}. Since X0X_{0} is not reduced, we get n>0n>0. Thus (1) holds.

The assertion (2) follows from Definition 3.1 and Definition 3.4. The assertion (3) holds by Theorem 6.3 and [Art77, page 16]. ∎

Example 6.11.

Let kk be an algebraically closed field of characteristic two. Set A:=k[[t]]A:=k[[t]] and let 0SpecA0\in{\operatorname{Spec}}\,A be the closed point. Fix r>0r\in\mathbb{Z}_{>0} and s>0s\in\mathbb{Z}_{>0}.

  1. (I)

    Consider a conic bundle:

    f:X:=ProjA[x,y,z]/(x2+ty2+t2rz2+tsxy)SpecA.f:X:={\operatorname{Proj}}\,A[x,y,z]/(x^{2}+ty^{2}+t^{2r}z^{2}+t^{s}xy)\to{\operatorname{Spec}}\,A.

    Then the following hold.

    1. (1)

      degΔf=2r+2s\deg\Delta_{f}=2r+2s.

    2. (2)

      [0:0:1]X0[0:0:1]\in X_{0} is the unique singularity of XX and it is of type D2r+2srD_{2r+2s}^{r} in the sense of [Art77, Page 16].

  2. (II)

    Consider a conic bundle:

    f:X:=ProjA[x,y,z]/(x2+ty2+t2r+1z2+tsxy)SpecA.f:X:={\operatorname{Proj}}\,A[x,y,z]/(x^{2}+ty^{2}+t^{2r+1}z^{2}+t^{s}xy)\to{\operatorname{Spec}}\,A.

    Then the following hold.

    1. (1)

      degΔf=2r+2s+1\deg\Delta_{f}=2r+2s+1.

    2. (2)

      [0:0:1]X0[0:0:1]\in X_{0} is the unique singularity of XX and it is of type D2r+2s+1rD_{2r+2s+1}^{r} in the sense of [Art77, Page 16].

Proof.

We only prove (I). The assertion (1) follows from Definition 3.1 and Definition 3.4. Let us show (2). We now prove that [0:0:1]X0[0:0:1]\in X_{0} is the unique singularity of XX. Take a singular point [x0:y0:z0]×t0x,y,z2×𝔸t1[x_{0}:y_{0}:z_{0}]\times t_{0}\in\mathbb{P}^{2}_{x,y,z}\times\mathbb{A}^{1}_{t} of X~:={x2+ty2+t2rz2+tsxy=0}x,y,z2×𝔸t1\widetilde{X}:=\{x^{2}+ty^{2}+t^{2r}z^{2}+t^{s}xy=0\}\subset\mathbb{P}^{2}_{x,y,z}\times\mathbb{A}^{1}_{t}. By the Jacobian criterion (Proposition 4.6), we obtain the following equation:

x02+t0y02+t02rz02+t0sx0y0=0,x_{0}^{2}+t_{0}y_{0}^{2}+t_{0}^{2r}z_{0}^{2}+t_{0}^{s}x_{0}y_{0}=0,
t0sy0=0,t0sx0=0,y02+st0s1x0y0=0.t^{s}_{0}y_{0}=0,\qquad t_{0}^{s}x_{0}=0,\qquad y_{0}^{2}+st_{0}^{s-1}x_{0}y_{0}=0.

If t00t_{0}\neq 0, then we would get x0=y0=0x_{0}=y_{0}=0, which leads to a contradiction z0=0z_{0}=0. Hence t0=0t_{0}=0. Then we get x0=y0=0x_{0}=y_{0}=0. Thus [0:0:1]×{0}x,y,z2×𝔸t1[0:0:1]\times\{0\}\in\mathbb{P}^{2}_{x,y,z}\times\mathbb{A}^{1}_{t} is the unique singularity of X~:={x2+ty2+t2rz2+tsxy=0}\widetilde{X}:=\{x^{2}+ty^{2}+t^{2r}z^{2}+t^{s}xy=0\}. Thus [0:0:1]X0[0:0:1]\in X_{0} is the unique singularity of XX.

The singularity is the origin of

x2+ty2+t2r+tsxyk[[t]][x,y].x^{2}+ty^{2}+t^{2r}+t^{s}xy\in k[[t]][x,y].

Applying the k[[t]]k[[t]]-linear transform (x,y)(x+tr,y)(x,y)\mapsto(x+t^{r},y), the equation becomes

x2+ty2+tsxy+tr+syk[[t]][x,y].x^{2}+ty^{2}+t^{s}xy+t^{r+s}y\in k[[t]][x,y].

This is of type D2r+2srD_{2r+2s}^{r} in the sense of [Art77, Page 16]. Thus (2) holds. ∎

7. Special phenomena in characteristic two

Although Δf\Delta_{f} can be non-reduced under our definition (e.g., Theorem 6.3), Δf\Delta_{f} was classically defined as its reduced structure (Δf)red(\Delta_{f})_{{\operatorname{red}}} [Bea77], [MM83]. In this section, we shall observe that both Δf\Delta_{f} and (Δf)red(\Delta_{f})_{{\operatorname{red}}} can behave worse in characteristic two than characteristic 2\neq 2 (Subsection 7.2). We start by establishing some results which hold in characteristic 2\neq 2 (Subsection 7.1).

7.1. Results in characteristic 2\neq 2

Proposition 7.1.

Let f:XTf:X\to T be a conic bundle of noetherian regular [12]\mathbb{Z}[\frac{1}{2}]-schemes. Assume that dimT1\dim T\leq 1. Then Δf\Delta_{f} is regular and any fibre of ff is geometrically reduced.

Proof.

If dimT=0\dim T=0, then there is nothing to show. In what follows, we assume that dimT=1\dim T=1 and TT is an integral scheme. Note that ff is generically smooth (Lemma 2.17). By Proposition 4.2, it is enough to show that any fibre of ff is geometrically reduced. Suppose that there exists a point 0T0\in T such that X0X_{0} is not geometrically reduced. Let us derive a contradiction. Taking the strict henselisation of 𝒪T,0\mathcal{O}_{T,0}, we may assume that T=SpecAT={\operatorname{Spec}}\,A, where (A,𝔪,κ)(A,\mathfrak{m},\kappa) is a strictly henselian local ring with dimA=1\dim A=1. In particular, AA is a discrete valuation ring. Let tt be a uniformiser, i.e., 𝔪=tA\mathfrak{m}=tA. By Corollary 2.13, we can write

X=ProjA[x,y,z]/(Q),Q=x2+by2+cz2+αyz,X={\operatorname{Proj}}\,A[x,y,z]/(Q),\qquad Q=x^{2}+by^{2}+cz^{2}+\alpha yz,

for some b,c,α𝔪b,c,\alpha\in\mathfrak{m}. Applying a suitable linear transform, we may assume that b0b\neq 0 (cf. the proof of Proposition 6.5(1)). We can write b=tb~b=t^{\ell}\widetilde{b} for some >0\ell\in\mathbb{Z}_{>0} and b~A×\widetilde{b}\in A^{\times}. By Hensel’s lemma, we may assume b~=1\widetilde{b}=1:

Q=x2+ty2+cz2+αyz.Q=x^{2}+t^{\ell}y^{2}+cz^{2}+\alpha yz.

Since the open subset D+(y)={x2+t+cz2+αz=0}D_{+}(y)=\{x^{2}+t^{\ell}+cz^{2}+\alpha z=0\} of XX is regular, we obtain =1\ell=1. We have α=tα~\alpha=t\widetilde{\alpha} for some α~A\widetilde{\alpha}\in A. By completing a square:

ty2+αyz=ty2+tα~yz=t(y+α~2z)2tα~24z2,t^{\ell}y^{2}+\alpha yz=ty^{2}+t\widetilde{\alpha}yz=t\left(y+\frac{\widetilde{\alpha}}{2}z\right)^{2}-\frac{t\widetilde{\alpha}^{2}}{4}z^{2},

we may assume that α=0\alpha=0, i.e.,

Q=x2+ty2+cz2.Q=x^{2}+ty^{2}+cz^{2}.

By the same argument as above, we may assume that c=tc=t:

Q=x2+ty2+tz2.Q=x^{2}+ty^{2}+tz^{2}.

Then XX is not regular at the closed point [0:1:1]κ2[0:1:\sqrt{-1}]\in\mathbb{P}^{2}_{\kappa} over 0T0\in T, which is absurd. ∎

Proposition 7.2.

Let f:XTf:X\to T be a conic bundle of noetherian regular [12]\mathbb{Z}[\frac{1}{2}]-schemes. Then the following hold.

  1. (1)

    Δf\Delta_{f} is reduced.

  2. (2)

    If TT is a smooth surface over an algebraically closed field kk of characteristic 2\neq 2 (in particular, XX is a smooth threefold over kk), then Δf\Delta_{f} is normal crossing.

Proof.

The assertion (1) holds by applying Proposition 7.1 after taking the base change Spec𝒪T,ξT{\operatorname{Spec}}\,\mathcal{O}_{T,\xi}\to T for a generic point ξ\xi of Δf\Delta_{f}. The assertion (2) holds by (1) and the proof of [Bea77, Ch. I, Proposition 1.2(iii)]. ∎

7.2. Examples in characteristic two

The following example shows that singularities of Δf\Delta_{f} and (Δf)red(\Delta_{f})_{{\operatorname{red}}} can be arbitrarily bad even if XX is a smooth threefold and TT is a smooth surface (cf. Proposition 7.2(2)).

Example 7.3.

We work over an algebraically closed field kk of characteristic two. Set

T:=𝔸u,v2=Speck[u,v]andx,y,z2:=Projk[x,y,z].T:=\mathbb{A}^{2}_{u,v}={\operatorname{Spec}}\,k[u,v]\qquad\text{and}\qquad\mathbb{P}^{2}_{x,y,z}:={\rm Proj}\,k[x,y,z].

Fix φ(u,v)k[u,v]{0}\varphi(u,v)\in k[u,v]\setminus\{0\}. Set

X:={x2+uy2+vz2+φ(u,v)2yz}𝔸u,v2×x,y,z2=T×x,y,z2.X:=\{x^{2}+uy^{2}+vz^{2}+\varphi(u,v)^{2}yz\}\subset\mathbb{A}^{2}_{u,v}\times\mathbb{P}^{2}_{x,y,z}=T\times\mathbb{P}^{2}_{x,y,z}.

Then the induced morphism f:XTf:X\to T is a conic bundle. The discriminant scheme ΔfT\Delta_{f}\subset T of ff is given as follows (Definition 3.1 and Definition 3.4):

Δf={φ(u,v)4=0}T=𝔸u,v2.\Delta_{f}=\{\varphi(u,v)^{4}=0\}\subset T=\mathbb{A}^{2}_{u,v}.

In particular, the conic bundle f:XTf:X\to T is generically smooth by φ(u,v)0\varphi(u,v)\neq 0.

Let us show, by using a Jacobian criterion (Proposition 4.6), that XX is smooth over kk. Suppose that a closed point (u0,v0)×[x0:y0:z0]𝔸u,v2×x,y,z2(u_{0},v_{0})\times[x_{0}:y_{0}:z_{0}]\in\mathbb{A}^{2}_{u,v}\times\mathbb{P}^{2}_{x,y,z} is a solution of

Q=uQ=vQ=xQ=yQ=zQ=0,Q=\partial_{u}Q=\partial_{v}Q=\partial_{x}Q=\partial_{y}Q=\partial_{z}Q=0,
whereQ:=x2+uy2+vz2+φ(u,v)2yz.\text{where}\qquad Q:=x^{2}+uy^{2}+vz^{2}+\varphi(u,v)^{2}yz.

By uQ=0\partial_{u}Q=0 and vQ=0\partial_{v}Q=0, we have y0=z0=0y_{0}=z_{0}=0. Then [x0:y0:z0]=[1:0:0][x_{0}:y_{0}:z_{0}]=[1:0:0]. However, this is not a solution of Q=0Q=0, which is absurd. Hence XX is smooth. This conic bundle f:XTf:X\to T satisfies the following properties.

  1. (1)

    For any point tΔft\in\Delta_{f}, its fibre XtX_{t} is not geometrically reduced.

  2. (2)

    The discriminant divisor ΔfT\Delta_{f}\subset T is set-theoretically given by {φ(u,v)=0}\{\varphi(u,v)=0\} In particular, the following phenomena happen in characteristic two, each of which does not occur in any other characteristic.

    • Assume that φ(u,v)=u\varphi(u,v)=u. In this case, (Δf)red(\Delta_{f})_{{\operatorname{red}}} is a smooth curve, and XtX_{t} is non-reduced for any t(Δf)redt\in(\Delta_{f})_{{\operatorname{red}}} (cf. Theorem 4.4, Proposition 7.2).

    • Assume that φ(u,v)=uv(u+v)\varphi(u,v)=uv(u+v). In this case, (Δf)red(\Delta_{f})_{{\operatorname{red}}} is not normal crossing (cf. Proposition 7.2).

As φ(u,v)\varphi(u,v) is chosen to be an arbitrary nonzero element of k[u,v]k[u,v], the singularities of Δf\Delta_{f} and (Δf)red(\Delta_{f})_{{\operatorname{red}}} can be arbitrarily bad.

Example 7.4.

We use the same notation as in Example 7.3. Set φ(u,v):=u\varphi(u,v):=u. We have

X={x2+uy2+vz2+u2yz}T×x,y,z2.X=\{x^{2}+uy^{2}+vz^{2}+u^{2}yz\}\subset T\times\mathbb{P}^{2}_{x,y,z}.

Take the localisation TT^{\prime} of T=Speck[u,v]T={\operatorname{Spec}}\,k[u,v] at the generic point of {u=0}\{u=0\}, i.e.,

T:=Speck[u,v](u)=Speck(v)[u](u).T^{\prime}:={\operatorname{Spec}}\,k[u,v]_{(u)}={\operatorname{Spec}}\,k(v)[u]_{(u)}.

Then k(v)[u](u)k(v)[u]_{(u)} is a discrete valuation ring. Take the base change X:=X×TTX^{\prime}:=X\times_{T}T^{\prime} and let f:XTf^{\prime}:X^{\prime}\to T^{\prime} be the induced conic bundle. Then the following hold.

  1. (1)

    XX^{\prime} and TT^{\prime} are regular.

  2. (2)

    dimT=1\dim T^{\prime}=1.

  3. (3)

    f:XTf^{\prime}:X^{\prime}\to T^{\prime} is generically smooth.

  4. (4)

    Δf=Spec(k(v)[u](u)/(u4))\Delta_{f^{\prime}}={\operatorname{Spec}}\,(k(v)[u]_{(u)}/(u^{4})) is not reduced.

In particular, Proposition 7.1 does not hold in characteristic two even if we impose the generically smooth assumption.

Example 7.5 (Fano threefolds with non-reduced discriminants).

We work over an algebraically closed field kk of characteristic two. Set

X:={sx2+ty2+uz2+syz}x,y,z2×s,t,u2.X:=\{sx^{2}+ty^{2}+uz^{2}+syz\}\subset\mathbb{P}^{2}_{x,y,z}\times\mathbb{P}^{2}_{s,t,u}.

and let f:XT:=s,t,u2f:X\to T:=\mathbb{P}^{2}_{s,t,u} be the induced morphism, which is a conic bundle. By Proposition 4.6, we can check that XX is smooth over kk. It follows from X|𝒪2×2(2,1)|X\in|\mathcal{O}_{\mathbb{P}^{2}\times\mathbb{P}^{2}}(2,1)| that XX is a smooth Fano threefold. We have

Δf=Projk[s,t,u]/(s3),\Delta_{f}={\operatorname{Proj}}\,k[s,t,u]/(s^{3}),

which is non-reduced. Furthermore, (Δf)red(\Delta_{f})_{{\operatorname{red}}} is a smooth rational curve.

Remark 7.6 (Failure of Bertini).

We use the same notation as in Example 7.5. For any smooth curve TT^{\prime} on T=s,t,u2T=\mathbb{P}^{2}_{s,t,u}, its inverse image X:=f1(T)X^{\prime}:=f^{-1}(T^{\prime}) is not smooth. Indeed, if XX^{\prime} is smooth, then the resulting conic bundle f:XTf^{\prime}:X^{\prime}\to T^{\prime} is a generically smooth conic bundle from a smooth surface XX^{\prime} to a smooth curve TT^{\prime}, which implies that Δf\Delta_{f^{\prime}} is reduced (Proposition 4.2, Lemma 5.14). However, this is absurd, because Δf\Delta_{f} is non-reduced and hence so is Δf\Delta_{f^{\prime}} (Remark 3.5).

Note that the original proof of the Mori-Mukai formula (Theorem 1.1) in characteristic zero depends on the Bertini theorem for base point free divisors [MM83, Proposition 6.2]. This example shows that the same argument does not work in characteristic two.

Remark 7.7 (Wild conic bundles).

We work over an algebraically closed field kk of characteristic two. If f:XTf:X\to T is a wild conic bundle, then it is hard from its definition (Definition 5.9) to know what is Δfbdl\Delta_{f}^{{\operatorname{bdl}}}. When f:XTf:X\to T is a wild conic bundle from a smooth projective threefold XX to a smooth projective surface TT, the following holds:

Δfbdl(i)f(KX/T2)(ii)KT,\Delta^{{\operatorname{bdl}}}_{f}\overset{{\rm(i)}}{\equiv}-f_{*}(K_{X/T}^{2})\overset{{\rm(ii)}}{\equiv}-K_{T},

where (i) follows from Theorem 5.15 and (ii) holds by [MS03, Corollary 4].

References