This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Discrete Wigner - Weyl calculus for the finite lattice

M.A. Zubkov [email protected] Ariel University, Ariel 40700, Israel
Abstract

Abstract

We develop the approach of Felix Buot to construction of Wigner - Weyl calculus for the lattice models. We apply this approach to the tight - binding models with finite number of lattice cells. For simplicity we restrict ourselves to the case of rectangular lattice. We start from the original Buot definition of the symbol of operator. This definition is corrected in order to maintain self - consistency of the algebraic constructions. It appears, however, that the Buot symbol for simple operators does not have a regular limit when the lattice size tends to infinity. Therefore, using a more dense auxiliary lattice we modify the Buot symbol of operator in order to build our new discrete Weyl symbol. The latter obeys several useful identities inherited from the continuum theory. Besides, the limit of infinitely large lattice becomes regular. We formulate Keldysh technique for the lattice models using the proposed Weyl symbols of operators. Within this technique the simple expression for the electric conductivity of a two dimensional non - equilibrium and non - homogeneous system is derived. This expression smoothly approaches the topological one in the limit of thermal equilibrium at small temperature and large system area.

Hall effect, Wigner transformation, Keldysh technique

I Introduction

The development of original Wigner-Weyl calculus began from the works of H. Groenewold [1] and J. Moyal [2]. This calculus replaces the conventional operator formulation of quantum mechanics by the formulation in terms of the Weyl symbols of operators. The Weyl symbol of operator is a function on phase space. This calculus was based on the ideas of H. Weyl [3] and E. Wigner [4]. Within the Wigner - Weyl calculus for quantum mechanics Wigner distribution is used instead of the wave function, while Weyl symbols are used instead of the operators of physical observables. Moyal product of the two functions defined in phase space replaces the product of two operators [5, 6]. Applications of this calculus to several problems in quantum mechanics have been proposed [7, 8]. In the context of field theory certain modifications of Wigner-Weyl formalism were built. Such constructions were applied to the high energy physics theory and to the condensed matter physics [9, 10, 11, 12, 13, 14, 15]. In particular, the notion Wigner distribution has been used in QCD [16, 17]. In the framework of quantum kinetic theory the Wigner distribution has been used widely [18, 19]. The applications to the noncommutative field theories have been proposed as well [20, 21].

Attempts to build lattice formulation of Wigner-Weyl calculus encountered certain difficulties. Some work in this direction has been undertaken already in the works by Schwinger [22]. Below we will discuss in more details the work by Buot [23, 15, 24]. Here we would like to mention the physical applications discussed by Wooters [25], and Leonhardt [26], as well as the mathematical constructions reported by Kasperowitz [27], and Ligabó [28]. It is worth mentioning that the deformational quantization is related intimately to Wigner - Weyl calculus [29, 30, 31, 32].

The so - called approximate version of the lattice Wigner-Weyl calculus (more details see below) has been proposed in the works with the participation of the present author [33]. The application of this calculus is limited to the systems with weak inhomogeneity and slowly varying external fields. Using this formalism it is possible to express through the topological invariants the response of various nondissipative currents to external field strength [34, 35, 36, 37, 38, 39]. This formalism has also been applied to the investigation of scale magnetic effect [40, 35].

Motivation of the present study originates from the idea to describe rigorously the topological properties of the non - homogeneous systems using Wigner - Weyl calculus. The methodology developed in the series of our previous publications [33, 41, 42, 43], and in the present paper, may, in principle, be applied to the study of various non - dissipative transport phenomena. The corresponding conductivities are typically expressed as the topological invariants of various kinds. For definiteness we concentrate here at one of the most remarkable non - dissipative transport phenomena, which is the Quantum Hall Effect (QHE). The topological description of the QHE has been proposed originally for the uniform systems in the presence of constant external magnetic field. The conductivity of such an idealized system is expressed through the TKNN invariant [44]. This invariant can also be used for the description of the intrinsic anomalous quantum Hall effect (AQHE) in 2D2D topological insulators. This version of the QHE exists without external magnetic field. The TKNN topological invariant is expressed through the integral of Berry curvature over the occupied energy levels. If the one - particle Hamiltonian of the system is modified smoothly, then the TKNN invariant (i.e. the Hall conductivity) is not changed [45, 46, 47, 48, 49, 50]. Although expression for the QHE conductivity through the TKNN invariant is the most popular topological expression for the QHE, its applicability is limited to unphysically idealized systems, which are uniform (except for the presence of external magnetic field) and non - interacting. This excludes, in particular, consideration of strong Coulomb interactions between electrons, the role of disorder, and boundary. The alternative topological description of the QHE may be given in terms of the Green functions. The development of the corresponding methodology has a long history. It began from the consideration of intrinsic AQHE in homogenous topological insulators without interactions [51, 52, 53]. For the tight - binding model defined on the infinite lattice the corresponding expression is given by

σH=𝒩2π,\sigma_{H}=\frac{\cal N}{2\pi},

where

𝒩=ϵijk 3! 4π2d3pTr[G(p)G1(p)piG(p)pjG1(p)pk].{\cal N}=-\frac{\epsilon_{ijk}}{\,3!\,4\pi^{2}}\,\int d^{3}p\mathop{{\rm Tr}}\nolimits\left[{G}(p)\frac{\partial{G}^{-1}(p)}{\partial p_{i}}\frac{\partial{G}(p)}{\partial p_{j}}\frac{\partial{G}^{-1}(p)}{\partial p_{k}}\right]. (1)

Here G(p)G(p) is the two - point Green function depending on momentum.

The more simple topological invariant expressed through the two - point Green function is the one responsible for the stability of the Fermi surface [53] N1=trCdpl2πiG(p0,p)lG1(p0,p)N_{1}=\mathop{\rm tr}\nolimits\oint_{C}\frac{dp^{l}}{2\pi\mathrm{i}}G(p_{0},p)\partial_{l}G^{-1}(p_{0},p). Here ρpρ\partial^{\rho}\equiv\frac{\partial}{\partial p_{\rho}}, while CC is the contour that windes in momentum space around the Fermi surface. The more complicated topological invariant is responsible for the stability of Fermi points [54, 53]. In fact, algebraically its expression is identical to the one of Eq. (1). The similar constructions are also used in the other branches of condensed matter physics [55, 56, 57, 58, 59]. In particular, such topological invariants protect gapless fermions existing along the boundaries of topological insulators [60, 61] and in Dirac/Weyl semimetals [53, 59], in the bulk. The similar constructions are also discussed for the 3He-superfluid [62]. Various incarnations of these constructions may be found also in the high energy physics [63, 64, 65, 51, 66, 67, 53, 68, 69, 70].

As it was mentioned above, the TKNN invariant has been obtained for the uniform system without interactions. The same refers also to expression of Eq. (1). However, later it has been proven that Eq. (1) remains valid in the presence of interactions when the two-point Green function is taken with the interaction corrections [71, 72, 73]. Notice, that the original TKNN invariant cannot be extended in a similar way to the interacting systems as the matter of principle. However, the role of interaction corrections to QHE conductivity was considered even before the mentioned above proof has been given [74, 75, 76, 77].

Although Eq. (1) solves the problem with interaction corrections, by construction it is defined for the homogeneous systems only. Direct extension of this expression to the non - homogeneous systems has been given in [33]. Namely, for the tight - binding model of a two - dimensional system defined on infinite lattice the Hall conductivity averaged over the system area is given by σH=𝒩2π,\sigma_{H}=\frac{\cal N}{2\pi}, with

𝒩=Tϵijk|𝐀| 3! 4π2dx3dp3trG𝒞(x,p)Q𝒞(x,p)piG𝒞(x,p)pjQ𝒞(x,p)pk{\cal N}=-\frac{T\epsilon_{ijk}}{|{\bf A}|\,3!\,4\pi^{2}}\,\int\!d{}^{3}x\,\int_{{\mathcal{M}}}\!d{}^{3}p\,\,{\rm tr}\,{G}_{{\mathcal{C}}}(x,p)\star\frac{\partial{Q}_{{\mathcal{C}}}(x,p)}{\partial p_{i}}\star\frac{\partial{G}_{{\mathcal{C}}}(x,p)}{\partial p_{j}}\star\frac{\partial{Q}_{{\mathcal{C}}}(x,p)}{\partial p_{k}} (2)

Here T0T\to 0 is temperature, |𝐀||{\bf A}|\to\infty is the area of the system, G𝒞(x,p){G}_{{\mathcal{C}}}(x,p) is Wigner transformation of the two-point Green function G^\hat{G}. Correspondingly, Q𝒞(x,p){Q}_{{\mathcal{C}}}(x,p) is lattice Weyl symbol of operator Q^\hat{Q} (Q^\hat{Q} is inverse to the Green function itself). Symbol \star means the Moyal product. Notice that the Weyl symbol of an operator is defined for any real values of its arguments, and not only for the discrete coordinate lattice points x\vec{x}. Eq. (2) has been derived originally for the non - interacting systems with weak inhomogeneity. This assumes, in particular, that the external magnetic fields remain not large (although are admitted to vary in space). Namely, the magnitude of magnetic field is much smaller than several thousands Tesla, while the wavelengths of external electromagnetic fields are much larger than 11 Angstrom. Except for the artificial lattices, the bound on the magnetic field strength is satisfied for any real system. In [78, 42] it has been proven that in the presence of interactions the Hall conductivity is still given by the expression of Eq. (2), when the Green function is replaced by the complete interacting two-point Green’s function. The version of the Wigner-Weyl calculus for the lattice models with the Weyl symbol of operator A^\hat{A} denoted above as A𝒞A_{{\mathcal{C}}} was called approximate because some of the basic identities of continuum Wigner - Weyl calculus are satisfied by the given Weyl symbols only approximately [79]. The approximate nature of the formalism results in the requirement of the weakness of inhomogeneity. As a result Eq. (2) remains valid only approximately, and is to be modified for artificial lattices or in case of strong inhomogeneities. Notice, that these are the systems, where the so - called Hofstadter butterfly appears.

Extension of Eq. (2) to the case of arbitrarily strong inhomogeneity has been given in [41]. There the tight - binding model on the infinite rectangular lattice has been considered. The version of lattice Wigner - Weyl calculus has been proposed that was called ”precise” because the corresponding Weyl symbol of an operator satisfies the basic identities of continuous Wigner - Weyl calculus precisely. Using the developed formalism it was derived that Eq. (2) is to be replaced by

𝒩=ϵijk|𝐀| 3! 4π2|𝒱(2)|22x𝒪d3pTr[GW(x,p)QW(x,p)piGW(x,p)pjQW(x,p)pk].{\cal N}=-\frac{\epsilon_{ijk}}{|{\bf A}|\,3!\,4\pi^{2}}\,\frac{|{\cal V}^{(2)}|}{2^{2}}\sum_{\overrightarrow{x}\in{\cal O}^{\prime}}\int_{{\mathcal{M}}}{d^{3}p}\mathop{{\rm Tr}}\nolimits\left[{G}_{W}(x,p)\star\frac{\partial{Q}_{W}(x,p)}{\partial p_{i}}\star\frac{\partial{G}_{W}(x,p)}{\partial p_{j}}\star\frac{\partial{Q}_{W}(x,p)}{\partial p_{k}}\right]. (3)

Here x=(τ,x)x=(\tau,\overrightarrow{x}), x\overrightarrow{x} is the point in space, τ\tau is imaginary time that varies between 0 and 1/T1/T\to\infty, but Wigner transformation of the Green function GW{G}_{W} and Weyl symbol of its inverse QW{Q}_{W} do not depend on τ\tau. 𝒱(2){\cal V}^{(2)} is the area of the two-dimensional lattice cell while |𝐀||{\bf A}|\to\infty is the overall area of the system. By 𝒪{\cal O}^{\prime} we denote the refined lattice, in which the extra lattice sites are added with the half - integer coordinates (the coordinates of the original lattice are implied to be integer).

The silent feature of the construction proposed in [41] is that Eq. (3) contains the sum over the lattice of large but finite area |𝐀||{\bf A}|. Such a finite lattice approximates the infinite lattice. The limit of infinite |𝐀||{\bf A}|\to\infty is to be taken at the end of calculation. At the same time the very definition of the Weyl symbol (entering Eq. (3)) as well as the derivation of its basic properties are valid for the infinite lattice with continuous compact Brillouin zone. Intuitively it is clear that Eq. (3) remains valid under these conditions. However, it is better to build the rigorous infrared regularization of the theory with the version of Wigner - Weyl calculus that obeys all necessary axioms inherited from the continuous theory, and that is reduced smoothly to the ”precise” Wigner - Weyl calculus of [41]. In the present paper we report the corresponding construction. Moreover, we extend the considerations of the Wigner - Weyl field theory to the kinetic domain, and build the version of Keldysh technique for the models defined on finite lattices, written on the language of Weyl symbols of operators instead of the conventional operator formalism. Here we follow the methodology developed ealier in [80, 81, 82, 83] for continuous models and extended in [43] to the lattice models with weak inhomogeneity using the mentioned above ”approximate” Wigner - Weyl calculus.

The first attempt to build the version of Wigner - Weyl calculus adopted for the models defined on finite lattices was performed in the works by Felix Buot [23, 15, 24]. He defined the Weyl symbol of an operator as a function on discrete phase space 𝒪{\cal O}\otimes{\cal M} composed of the original coordinate lattice 𝒪{\cal O} and discrete momentum space {\cal M} with the same number of points. Unfortunately, the further constructions of [23, 15, 24] contain certain algebraic inconsistencies. As a result, in particular, the so - called star property (see below Eq. (10)) is valid only approximately under the condition that external fields vary slowly (as well as in the mentioned above ”approximate” Wigner - Weyl calculus of [33]). Nevertheless, certain results remain valid precisely under the assumption that the proper lattice Weyl symbol is constructed and replaces the original definition by Buot. The very proposition to use lattice version of Wigner - Weyl calculus adopted for the finite lattice seems to us extremely important. Moreover, the ideas developed in the works of F.Buot are very interesting and fruitful. We pay tribute to the physical intuition of Felix Buot, to his constructions and physical results that remain correct in spite of certain technical mistakes. We consider our present study as a logical prolongation of his work.

We perform the correction of the original constructions by F.Buot in three steps. At the first step we build the symbol of operator that is called by us the Buot symbol of operator. This construction is maximally close to the original definition of F.Buot (see below Eq. (100)). In principle, it is possible to build the self - contained version of lattice field theory completely in the language of the Buot symbol of operators. However, it appears that the limit of infinite lattice volume is not regular being written in terms of this type of the symbol of operator. The same refers to the attempt to approach continuum limit. More specifically, the Buot symbol of physically relevant operators (including the unit operator) is the fast oscillating function of both coordinates and momenta. As a result we proceed constructing the two subsequent modifications of the Buot symbol. The first modification results from the consideration of the model on the auxiliary more dense momentum lattice. The second modification is the mirror construction of the first modification based on the consideration of the auxiliary coordinate lattice that contains 2D2^{D} times more lattice points than the original lattice. The doubly modified Buot symbol still contains the fast oscillating factors depending on space coordinates and momenta. However, these factors are common for all considered operators. Our final construction appears when we simply omit these factors in the doubly modified Buot symbol. We call the resulting symbol of operator the Weyl symbol, and prove its basic properties. It appears, that this Weyl symbol obeys the basic axioms inherited from the continuous Wigner - Weyl calculus. Moreover, the limit of infinitely large lattice as well as the continuum limit are regular, i.e. the Weyl symbol as a function on phase space has the well - defined limit when the number of lattice points tends to infinity. As expected, this continuum limit is the Weyl symbol of ”precise” Wigner - Weyl calculus proposed in [41]. Written in terms of our new Weyl symbol the Hall conductivity of the two - dimensional system is given by σH=𝒩2π,\sigma_{H}=\frac{\cal N}{2\pi}, with

𝒩\displaystyle{\cal N} =\displaystyle= 13!ϵμνρ1(2N)2D𝑑Π3p,x𝒪tr(ΠμQ^WMG^WMΠνQ^WMG^WMΠρQ^WMG^WM).\displaystyle\frac{1}{3!\,}\epsilon^{\mu\nu\rho}\frac{1}{(2N)^{2D}}\int{d\Pi^{3}}\sum_{p\in{\cal M}^{\prime},x\in{\cal O}^{\prime}}\mathop{\rm tr}\nolimits\left(\partial_{{\Pi^{\mu}}}\hat{Q}_{W}^{\rm M}\star\hat{G}_{W}^{\rm M}\star\partial_{{\Pi^{\nu}}}\hat{Q}_{W}^{\rm M}\star\hat{G}_{W}^{\rm M}\star\partial_{{\Pi^{\rho}}}\hat{Q}_{W}^{\rm M}\star\hat{G}_{W}^{\rm M}\right). (4)

Here the G^WM\hat{G}_{W}^{M} is the Weyl symbol of the Matsubara Green function while Q^WM\hat{Q}_{W}^{M} is Weyl symbol of its inverse. Momentum space is Euclidean one, its points are denoted by Πi\Pi_{i}. In particular, Π3\Pi^{3} is the Matsubara frequency. The original coordinate space lattice 𝒪\cal O contains N2N^{2} lattice sites, while the Brillouin zone \cal M is discrete as well, and also contains N2N^{2} points. By 𝒪{\cal O}^{\prime} we denote the twice more dense spatial lattice that contains 4N24N^{2} points. Correspondingly, {\cal M}^{\prime} is the twice more dense Brillouin zone containing 4N24N^{2} points. Eq. (4) represents the rigorous infrared regularization of Eq. (3).

The paper is organized as follows. In Sect. II we start from the formulation of the main results. In Sect. III we define the Buot symbol of operator and derive its basic properties. In Sect. IV we consider the modification of the notion of Buot symbol and build the final Weyl symbol of operator defined on finite lattice. In Sect. V we describe the dynamics of quantum kinetic theory written in terms of Weyl symbols, and derive the desired expression for the QHE conductivity. In Sect. VI we end with the conclusions.

II Statement of the main results

II.1 Definition of Weyl symbol and its properties

We are considering the rectangular lattice

𝒪={(m1,,mD)|mi{0,1,2,,N1}}{\cal O}=\{(m_{1},...,m_{D})|m_{i}\in\{0,1,2,...,N-1\}\}

with the number of points NDN^{D} and periodic boundary conditions. Momentum space is

={(m12πN,,mD2πN)|mi{0,1,2,,N1}}{\cal M}=\{(m_{1}\frac{2\pi}{N},...,m_{D}\frac{2\pi}{N})|m_{i}\in\{0,1,2,...,N-1\}\}

Hilbert space {\cal H} of one - particle states is spanned on ket vectors

|q,q𝒪|q\rangle,q\in{\cal O}

Another set of basis vectors is

|p,p|p\rangle,p\in{\cal M}

We assume here |q+N=|q|q+N\rangle=|q\rangle and |p+2π=|p|p+2\pi\rangle=|p\rangle. Besides, we define the refined lattice

𝒪={(m1,,mD)|mi{0,1/2,1,,N1/2}}{\cal O}^{\prime}=\{(m_{1},...,m_{D})|m_{i}\in\{0,1/2,1,...,N-1/2\}\}

with the number of points that is 2D2^{D} times larger. We also define the refined momentum space

={(2πm1/N,,2πmD/N)|mi{0,1/2,1,,N1/2}}{\cal M}^{\prime}=\{(2\pi m_{1}/N,...,2\pi m_{D}/N)|m_{i}\in\{0,1/2,1,...,N-1/2\}\}

and extended refined spaces

𝒪2={(m1,,mD)|mi{0,1/2,1,,2N1/2}}{\cal O}^{2\prime}=\{(m_{1},...,m_{D})|m_{i}\in\{0,1/2,1,...,2N-1/2\}\}

and

2={(2πm1/N,,2πmD/N)|mi{0,1/2,1,,2N1/2}}{\cal M}^{2\prime}=\{(2\pi m_{1}/N,...,2\pi m_{D}/N)|m_{i}\in\{0,1/2,1,...,2N-1/2\}\}

We illustrate these constructions by Fig. 1, where lattices 𝒪,𝒪,𝒪2{\cal O},{\cal O}^{\prime},{\cal O}^{2} are represented schematically. Besides, we represent in this figure the douply refined lattice 𝒪′′{\cal O}^{\prime\prime}, which will be defined and used in the following sections. Lattices 𝒪2{\cal O}^{2\prime} and 𝒪2′′{\cal O}^{2\prime\prime} will also be used. Their definition, obviously, contains application of both extention and the transition to the refined lattice. The similar constructions refer also to various modifications of momentum space \cal M.

Refer to caption
Figure 1: In this figure lattices 𝒪,𝒪,𝒪′′,𝒪2{\cal O},{\cal O}^{\prime},{\cal O}^{\prime\prime},{\cal O}^{2} are represented schematically. The extended refined lattice 𝒪2{\cal O}^{2\prime} and doubly refined extended lattice 𝒪2′′{\cal O}^{2\prime\prime} are defined in an obvious way combining both extention and the transition to the refined lattice.

For q𝒪,pq\in{\cal O}^{\prime},p\in{\cal M}^{\prime} we define Weyl symbol as follows

AW(p,q)\displaystyle A_{{W}}(p,q) =\displaystyle= ni=0,1;up+πn/Nu|A^|p+πn/N+ue2iuq\displaystyle\sum_{n_{i}=0,1;u\in{\cal M}^{\prime}}\,\langle p+\pi n/N-u|\hat{A}|p+\pi n/N+u\rangle\,e^{-2iuq} (5)
Πi1+eiui21+eNi(pi+πni/N+ui)2\displaystyle\Pi_{i}\frac{1+e^{iu^{i}}}{2}\frac{1+e^{Ni(p^{i}+\pi n_{i}/N+u^{i})}}{2}

or, equivalently,

AW(p,q)\displaystyle A_{{W}}(p,q) =\displaystyle= ni=0,1;v𝒪e2ipvqv+n/2|A^|q+v+n/2\displaystyle\sum_{n_{i}=0,1;v\in{\cal O}^{\prime}}e^{2ipv}\,\langle q-v+n/2|\hat{A}|q+v+n/2\rangle (6)
Πi1+e2iviπ/(N)21+e2πi(qivi+ni/2)2\displaystyle\Pi_{i}\frac{{1+e^{2iv_{i}\pi/(N)}}}{2}\frac{1+e^{2\pi i(q_{i}-v_{i}+n_{i}/2)}}{2}

Using periodicity of these expressions (pipi+2π,qiqi+Np_{i}\to p_{i}+2\pi,q_{i}\to q_{i}+N) they are naturally extended to q𝒪2,p2q\in{\cal O}^{2\prime},p\in{\cal M}^{2\prime}. This definition may be extended further to any continuous values of qq and pp as follows

AW(p,q)\displaystyle A_{{W}}(p,q) =\displaystyle= p1;q1𝒪;p2;q2𝒪1(4N2)De2i((p2p)(q1q)+(q2q)(pp1))AW(p1,q1)\displaystyle\sum_{p_{1}\in{\cal M}^{\prime};q_{1}\in{\cal O}^{\prime};p_{2}\in{\cal M}^{\prime};q_{2}\in{\cal O}^{\prime}}\frac{1}{(4N^{2})^{D}}e^{2i((p_{2}-p)(q_{1}-q)+(q_{2}-q)(p-p_{1}))}A_{{{W}}}(p_{1},q_{1}) (7)

The matrix elements of operator A^\hat{A} are expressed through Weyl symbol of this operator as follows:

q1|A^|q2\displaystyle\langle q_{1}|\hat{A}|q_{2}\rangle =\displaystyle= 1(4N)DpAW(p,(q1+q2)/2)eip(q1q2)Πi21+ei(q2iq1i)π/N\displaystyle\frac{1}{(4N)^{D}}\sum_{p\in{\cal M}^{\prime}}A_{W}(p,(q_{1}+q_{2})/2)e^{ip(q_{1}-q_{2})}\Pi_{i}\frac{2}{1+e^{i(q_{2}^{i}-q_{1}^{i})\pi/N}} (8)

and

p1|A^|p2\displaystyle\langle p_{1}|\hat{A}|p_{2}\rangle =\displaystyle= 1(4N)Dq𝒪eiq(p2p1)AW((p2+p1)/2,q)Πi21+ei(p2ip1i)/2\displaystyle\frac{1}{(4N)^{D}}\sum_{q\in{\cal O}^{\prime}}e^{iq(p_{2}-p_{1})}A_{W}((p_{2}+p_{1})/2,q)\Pi_{i}\frac{2}{1+e^{i(p_{2}^{i}-p_{1}^{i})/2}} (9)

We formulate the following properties of the Weyl symbol:

  1. 1.

    Trace property.

    TrA^=1(4N)Dp,q𝒪AW(p,q){\rm Tr}\,\hat{A}=\frac{1}{(4N)^{D}}\sum_{p\in{\cal M}^{\prime},q\in{\cal O}^{\prime}}A_{W}(p,q)
  2. 2.

    Second trace identity.

    TrA^B^=1(4N)Dp,q𝒪AW(p,q)BW(p,q){\rm Tr}\hat{A}\hat{B}=\frac{1}{(4N)^{D}}\sum_{p\in{\cal M}^{\prime},q\in{\cal O}^{\prime}}A_{W}(p,q)B_{W}(p,q)
  3. 3.

    Periodicity.

    AW(p,q+Nn/2)=eipNnAW(p,q),AW(p+πn,q)=e2πiqnAW(p,q)A_{W}(p,q+Nn/2)=e^{-ipNn}A_{W}(p,q),\quad A_{W}(p+\pi n,q)=e^{2\pi iqn}A_{W}(p,q)

    with ni=0,1n_{i}=0,1.

  4. 4.

    Star property

    (A^B^)W(p,q)|p,q𝒪=AW(p,q)ei2(qppq)BW(p,q)\displaystyle(\hat{A}\hat{B})_{W}(p,q)\Big{|}_{p\in{\cal M}^{\prime},q\in{\cal O}^{\prime}}=A_{W}(p,q)e^{\frac{i}{2}(\overleftarrow{\partial_{q}}\overrightarrow{\partial_{p}}-\overleftarrow{\partial_{p}}\overrightarrow{\partial_{q}})}B_{W}(p,q) (10)
  5. 5.

    Weyl symbol of unity

    1W(p,q)|p,q𝒪=11_{W}(p,q)\Big{|}_{p\in{\cal M}^{\prime},q\in{\cal O}^{\prime}}=1
  6. 6.

    Weyl symbol of translation to one lattice spacing is given by

    Tj(p,q)\displaystyle T_{j}(p,q) =\displaystyle= eipj(1+e2iπ/N2+eiNpj1e2iπ/N2)\displaystyle e^{ip_{j}}\Big{(}\frac{1+e^{2i\pi/N}}{2}+e^{iNp_{j}}\frac{1-e^{2i\pi/N}}{2}\Big{)} (11)

    One can see that the limit NN\to\infty of this expression exists and gives

    Tj(p,q)\displaystyle T_{j}(p,q) \displaystyle\to eipj\displaystyle e^{ip_{j}} (12)
  7. 7.

    In the limit of infinitely large lattice the Weyl symbol defined here smoothly approaches the Weyl symbol of [41] given by

    A𝒲(p,q)=dDppp|A^|p+pe2ipqΠi(1+eipi)A_{\cal W}(p,q)=\int_{{\cal M}}d^{D}p_{-}\,\langle\langle p-p_{-}|\hat{A}|p+p_{-}\rangle\rangle\,e^{2ip_{-}q}\Pi_{i}(1+e^{ip^{i}_{-}})

    Here vectors |p|p\rangle\rangle are normalized as

    p1|p2=δ(p1p2)\langle\langle p_{1}|p_{2}\rangle\rangle=\delta(p_{1}-p_{2})

    These vectors are defined as

    |p1(2π)Dq𝒪|qeipq|p\rangle\rangle\equiv\frac{1}{\sqrt{(2\pi)^{D}}}\sum_{q\in{\cal O}}|q\rangle e^{ipq}

II.2 Quantum Hall effect in condensed matter system defined on finite rectangular lattice

We consider inhomogeneous system defined on the DD - dimensional lattice 𝒪\cal O. Time remains continuous. The fermionic field Φ\Phi is defined on lattice sites. We assume that the system remains non - interacting. Keldysh Green function is defined as the following matrix

G^(t,x|t,x)=i(TΦ(t,x)Φ+(t,x)Φ+(t,x)Φ(t,x)Φ(t,x)Φ+(t,x)T~Φ(t,x)Φ+(t,x)).\displaystyle\hat{G}(t,x|t^{\prime},x^{\prime})=-i\left(\begin{array}[]{cc}\langle T\Phi(t,x)\Phi^{+}(t^{\prime},x^{\prime})\rangle&-\langle\Phi^{+}(t^{\prime},x^{\prime})\Phi(t,x)\rangle\\ \langle\Phi(t,x)\Phi^{+}(t^{\prime},x^{\prime})\rangle&\langle\tilde{T}\Phi(t,x)\Phi^{+}(t^{\prime},x^{\prime})\rangle\end{array}\right). (15)

Here Heisenberg fermionic field operator Φ\Phi depends on time tt and spatial coordinates xx. By TT we denote the time ordering while T~\tilde{T} is anti - time ordering. \langle...\rangle means average with respect to the initial (in general, non - equilibrium) statistical ensemble.

In the following the D+1D+1 dimensional vectors (with space and time components) are denoted by large Latin letters. For an operator A^\hat{A} we denote its matrix elements by A(X1,X2)=X1|A^|X2A(X_{1},X_{2})=\langle X_{1}|\hat{A}|X_{2}\rangle. Since we deal with the lattice models the space components of D+1D+1 - vectors are discrete while the time components are continuous. We then define Weyl symbol of an operator A^\hat{A} as the mixture of lattice Weyl symbol (with respect to discrete space components) and Wigner transformation with respect to the time component:

AW(X|P)\displaystyle A_{W}(X|P) =\displaystyle= 2𝑑Y0ni=0,1;Y𝒪e2iYμPμA(X+Y+n/2,XY+n/2)Πi=1D1+e2iYiπ/N21+e2πi(Xi+Yi+ni/2)2\displaystyle 2\int dY^{0}\,\sum_{n_{i}=0,1;\vec{Y}\in{\cal O}^{\prime}}e^{2\mathrm{i}Y^{\mu}P_{\mu}}A(X+Y+n/2,X-Y+n/2)\Pi_{i=1...D}\frac{{1+e^{2iY_{i}\pi/N}}}{2}\frac{1+e^{2\pi i(X_{i}+Y_{i}+n_{i}/2)}}{2}
μ=0,1,,D\displaystyle\quad\mu=0,1,...,D

D+1D+1 momentum is denoted by Pμ=(P0,p)P^{\mu}=(P^{0},p), and Pμ=(P0,p)P_{\mu}=(P^{0},-p). Here pp is spatial momentum with DD components. Keldysh Green function is an operator inverse to 𝐐^\hat{\bf Q}. Weyl symbol of Keldysh Green function 𝐆^\hat{\bf G} is denoted by G^W\hat{G}_{W}, while Weyl symbol of Keldysh 𝐐^\hat{\bf Q} is Q^W\hat{Q}_{W}.

We obtain the following results for the dynamics of lattice system written in terms of Weyl symbols of operators.

  1. 1.

    Weyl symbols G^W\hat{G}_{W} and Q^W\hat{Q}_{W} obey Groenewold equation

    Q^WG^W=1W.\hat{Q}_{W}*\hat{G}_{W}=1_{W}. (17)

    Here the Moyal product * is defined as

    (AB)(X|P)=A(X|P)ei(XμPμPμXμ)/2B(X|P).\left(A*B\right)(X|P)=A(X|P)\,e^{{-}\mathrm{i}(\overleftarrow{\partial}_{X^{\mu}}\overrightarrow{\partial}_{P_{\mu}}-\overleftarrow{\partial}_{P_{\mu}}\overrightarrow{\partial}_{X^{\mu}})/2}B(X|P). (18)

    It is worth mentioning that for the complete description of the system we need the values of Weyl symbols defined on discrete spatial phase space 𝒪{\cal O}^{\prime}\otimes{\cal M}^{\prime}. For such values of spatial momenta and coordinates the Weyl symbol of unity is equal to 11.

  2. 2.

    We express DC conductivity (averaged over the lattice area) of the two - dimensional non - interacting systems as

    σij=141(2N)2DdP02πp,x𝒪tr(πiQ^W[G^Wπ[0Q^Wπj]G^W])<+c.c.\sigma^{ij}={\frac{1}{4}}\frac{1}{(2N)^{2D}}\int\frac{dP^{0}}{2\pi}\sum_{p\in{\cal M}^{\prime},x\in{\cal O}^{\prime}}\mathop{\rm tr}\nolimits\left(\partial_{\pi_{i}}\hat{Q}_{W}\left[\hat{G}_{W}\star\partial_{{\pi_{[0}}}\hat{Q}_{W}\star\partial_{{\pi_{j]}}}\hat{G}_{W}\right]\right)^{<}+{\rm c.c.} (19)

    through the lesser component of expression that contains Wigner transformed Keldysh Green function G(X|π)G(X|\pi) and its inverse QQ that obey Groenewold equation QG=1Q\star G=1. Using representation of Keldysh Green function of Eq. (15) the lesser component in the above representation may be rewritten explicitly as

    σij=141(2N)2DdP02πp,x𝒪tr(γ<πiQ^W[G^Wπ[0Q^Wπj]G^W])+c.c.\sigma^{ij}={\frac{1}{4}}\frac{1}{(2N)^{2D}}\int\frac{dP^{0}}{2\pi}\sum_{p\in{\cal M}^{\prime},x\in{\cal O}^{\prime}}\mathop{\rm tr}\nolimits\left(\gamma^{<}\partial_{\pi_{i}}\hat{Q}_{W}\left[\hat{G}_{W}\star\partial_{{\pi_{[0}}}\hat{Q}_{W}\star\partial_{{\pi_{j]}}}\hat{G}_{W}\right]\right)+{\rm c.c.} (20)

    where trace is taken over Keldysh components as well as over the internal indices, while

    γ<=(0010).\gamma^{<}=\left(\begin{array}[]{cc}0&0\\ 1&0\end{array}\right).

    Here ()[0()j]=()0()j()j()0(...)_{[0}(...)_{j]}=(...)_{0}(...)_{j}-(...)_{j}(...)_{0} means anti-symmetrization.

  3. 3.

    We show that the above expression for the conductivity (averaged over the system area) is reduced to the following expression in case of the equilibrium system at zero temperature

    σ¯ij=𝒩2πϵij,\bar{\sigma}^{ij}=\frac{{\cal N}}{2\pi}\epsilon^{ij},

    where

    𝒩\displaystyle{\cal N} =\displaystyle= 13!ϵμνρ1(2N)2D𝑑Π3p,x𝒪tr(ΠμQ^WMG^WMΠνQ^WMG^WMΠρQ^WMG^WM).\displaystyle\frac{1}{3!\,}\epsilon^{\mu\nu\rho}\frac{1}{(2N)^{2D}}\int{d\Pi^{3}}\sum_{p\in{\cal M}^{\prime},x\in{\cal O}^{\prime}}\mathop{\rm tr}\nolimits\left(\partial_{{\Pi^{\mu}}}\hat{Q}_{W}^{\rm M}\star\hat{G}_{W}^{\rm M}\star\partial_{{\Pi^{\nu}}}\hat{Q}_{W}^{\rm M}\star\hat{G}_{W}^{\rm M}\star\partial_{{\Pi^{\rho}}}\hat{Q}_{W}^{\rm M}\star\hat{G}_{W}^{\rm M}\right). (21)

    Here the G^WM\hat{G}_{W}^{M} is the Weyl symbol of the Matsubara Green function while Q^WM\hat{Q}_{W}^{M} is Weyl symbol of its inverse. Momentum space is Euclidean one, its points are denoted by Πi\Pi_{i}. Π3\Pi^{3} is Matsubara frequency. This expression represents the infrared regularization of the one obtained in [41].

  4. 4.

    One can check that Eq. (21) is a topological invariant in the limit of infinitely large lattice when the sum over momenta is replaced by an integral. For that we need that the system was in thermal equilibrium originally, and that the thermal equilibrium corresponds to zero temperature. Moreover, we need that the Hamiltonian does not depend on time, which means that the system remains in thermal equilibrium during the whole process. The value of the average conductivity σ¯ij\bar{\sigma}^{ij} is then robust to smooth variations of the system. (This does not refer, however, to local values of conductivity that may depend on space coordinates.) Notice, that the sum over xx is important for the topological invariance of this quantity.

III Buot symbol and its properties

III.1 Definitions

Here we consider the D - dimensional rectangular lattice with NDN^{D} lattice sites. We enumerate lattice sites by variable q=(q1,,qD)q=(q_{1},...,q_{D}) with qi=0,,N1q_{i}=0,...,N-1, and denote the lattice by 𝒪\cal O:

𝒪={(m1,,mD)|mi{0,1,,N1}}{\cal O}=\{(m_{1},...,m_{D})|m_{i}\in\{0,1,...,N-1\}\}

Periodic boundary conditions are chosen. Therefore, the set of lattice sites may be extended to the set 𝒪=ZD/{\cal O}=Z^{D}/{\cal E} of integer numbers with equivalence :qiqi+N{\cal E}:q_{i}\equiv q_{i}+N. In turn, conjugate momenta are p=(p1,,pD)p=(p_{1},...,p_{D}) with pi=2πNmip_{i}=2\frac{\pi}{N}m_{i} with mi=0,,N1m_{i}=0,...,N-1. The set of momenta is denoted by {\cal M}:

={(m12πN,,mD2πN)|mi{0,1,,N1}}{\cal M}=\{(m_{1}\frac{2\pi}{N},...,m_{D}\frac{2\pi}{N})|m_{i}\in\{0,1,...,N-1\}\}

The values of mim_{i} may be taken from the set of all integer numbers if equivalence relation 𝒯:pipi+2π{\cal T}:p_{i}\equiv p_{i}+2\pi is imposed. In addition, we introduce the extended lattice

𝒪={(m1,,mD)|mi{0,1/2,1,,N1/2}}{\cal O}^{\prime}=\{(m_{1},...,m_{D})|m_{i}\in\{0,1/2,1,...,N-1/2\}\}

And we represent it as

𝒪=𝒪𝒪~{\cal O}^{\prime}={\cal O}\cup\tilde{\cal O}

We also define the refined momentum space

={(m12πN,,mD2πN)|mi{0,1/2,1,,N1/2}}{\cal M}^{\prime}=\{(m_{1}\frac{2\pi}{N},...,m_{D}\frac{2\pi}{N})|m_{i}\in\{0,1/2,1,...,N-1/2\}\}

It may be represented as

=~{\cal M}^{\prime}={\cal M}\cup\tilde{\cal M}

Thus we define two operations on the lattices: 𝒪𝒪{\cal O}\to{\cal O}^{\prime} enlarges the lattice by adding points between any pair of the adjacent lattice sites. Operation 𝒪𝒪~{\cal O}\to\tilde{\cal O} defines the lattice with the lattice sites of 𝒪{\cal O}^{\prime} that complement the points of 𝒪\cal O. For the further convenience we also define here the operation 𝒪𝒪2{\cal O}\to{\cal O}^{2}. 2{\cal M}\to{\cal M}^{2}:

𝒪2={(m1,,mD)|mi{0,1,,2N1}}{\cal O}^{2}=\{(m_{1},...,m_{D})|m_{i}\in\{0,1,...,2N-1\}\}
2={(m12πN,,mD2πN)|mi{0,1,,2N1}}{\cal M}^{2}=\{(m_{1}\frac{2\pi}{N},...,m_{D}\frac{2\pi}{N})|m_{i}\in\{0,1,...,2N-1\}\}

It doubles the lattice in all DD dimensions.

Hilbert space \cal H of one - particle states is spanned on ket vectors

|q,q𝒪|q\rangle,q\in{\cal O}

Another set of basis vectors is

|p,p|p\rangle,p\in{\cal M}

We assume normalization of states

q|p=1NDeipq\langle q|p\rangle=\frac{1}{\sqrt{N^{D}}}e^{ipq}

which implies completeness relations

p|pp|=q𝒪|qq|=1\sum_{p\in{\cal M}}|p\rangle\langle p|=\sum_{q\in{\cal O}}|q\rangle\langle q|=1

Any operator A^\hat{A} acting in \cal H may be represented as follows

A^=p′′,p;q′′,q𝒪|p′′p′′|q′′q′′|A^|qq|pp|\hat{A}=\sum_{p^{\prime\prime},p^{\prime}\in{\cal M};q^{\prime\prime},q^{\prime}\in{\cal O}}|p^{\prime\prime}\rangle\langle p^{\prime\prime}|q^{\prime\prime}\rangle\langle q^{\prime\prime}|\hat{A}|q^{\prime}\rangle\langle q^{\prime}|p^{\prime}\rangle\langle p^{\prime}| (22)

The next step is an introduction of new variables p,q,u,p,q,u, and vv:

p′′=pu,p=p+u,p^{\prime\prime}=p-u,\quad p^{\prime}=p+u,
q′′=qv,q=q+vq^{\prime\prime}=q-v,\quad q^{\prime}=q+v

Here p±up\pm u is assumed to be taken modulo 2π2\pi while q±vq\pm v is modulo NN. Since p,p′′p^{\prime},p^{\prime\prime}\in{\cal M}, and q,q′′𝒪q^{\prime},q^{\prime\prime}\in{\cal O}, in order to reproduce all possible values of these variables, we have to require that

pi+ui{0,2πN,2πN2,,2πN(N1)}p_{i}+u_{i}\in\{0,\frac{2\pi}{N},\frac{2\pi}{N}2,...,\frac{2\pi}{N}(N-1)\}

while

qi+viZq_{i}+v_{i}\in Z

At the same time extra factor 1/221/2^{2} is to be added in order to account for the overcounting of degrees of freedom. As a result we rewrite the above expression for A^\hat{A} as follows:

A^\displaystyle\hat{A} =\displaystyle= 14Dp,u;q,v𝒪|pupu|qvqv|A^|q+vq+v|p+up+u|\displaystyle\frac{1}{4^{D}}\sum_{p,u\in{\cal M}^{\prime};q,v\in{\cal O}^{\prime}}|p-u\rangle\langle p-u|q-v\rangle\langle q-v|\hat{A}|q+v\rangle\langle q+v|p+u\rangle\langle p+u| (23)
Πi1+ei2π(qi+vi)21+eiN(pi+ui)2\displaystyle\Pi_{i}\frac{1+e^{i2\pi(q_{i}+v_{i})}}{2}\frac{1+e^{iN(p_{i}+u_{i})}}{2}

Factor 1+ei2π(qi+vi)2\frac{1+e^{i2\pi(q_{i}+v_{i})}}{2} is introduced in order to provide that both qiq_{i} and viv_{i} are either integer of half - integer. Similar, factor 1+eiN(pi+ui)2\frac{1+e^{iN(p_{i}+u_{i})}}{2} provides that p+up+u\in{\cal M}.

III.2 Buot symbol of operator

We obtain the following representation for A^\hat{A}:

A^=1(2N)Dp;q𝒪Δ^(p,q)AB(p,q)\hat{A}=\frac{1}{(2N)^{D}}\sum_{p\in{\cal M}^{\prime};q\in{\cal O}^{\prime}}\hat{\Delta}(p,q)A_{B}(p,q) (24)

where

AB(p,q)=12Dv𝒪e2ipvqv|A^|q+vΠi1+ei2π(qi+vi)2A_{B}(p,q)=\frac{1}{2^{D}}\sum_{v\in{\cal O}^{\prime}}e^{2ipv}\langle q-v|\hat{A}|q+v\rangle\Pi_{i}\frac{1+e^{i2\pi(q_{i}+v_{i})}}{2} (25)

while

Δ^(p,q)=ue2iqu|pup+u|Πi1+eiN(pi+ui)2\hat{\Delta}(p,q)=\sum_{u\in{\cal M}^{\prime}}e^{2iqu}|p-u\rangle\langle p+u|\Pi_{i}\frac{1+e^{iN(p_{i}+u_{i})}}{2} (26)

The above defined function AB(p,q)A_{B}(p,q) represents the lattice version of Weyl symbol of operator. For the case of the finite lattice it will be called below the Buot symbol of operator A^\hat{A}. Notice, that this definition differs somehow from the original definition by F.Buot. However, we feel this appropriate to call this symbol in his name.

In order to understand better the properties of this symbol let us calculate the Buot symbol of unity operator:

1B(p,q)\displaystyle 1_{B}(p,q) =\displaystyle= 12Dv𝒪e2ipvqv|q+vΠi1+ei2π(qi+vi)2\displaystyle\frac{1}{2^{D}}\sum_{v\in{\cal O}^{\prime}}e^{2ipv}\langle q-v|q+v\rangle\Pi_{i}\frac{1+e^{i2\pi(q_{i}+v_{i})}}{2} (27)
=\displaystyle= 12Dv𝒪e2ipvΠi(δvi,0+δvi,N/2)1+ei2π(qi+vi)2\displaystyle\frac{1}{2^{D}}\sum_{v\in{\cal O}^{\prime}}e^{2ipv}\Pi_{i}(\delta_{v_{i},0}+\delta_{v_{i},N/2})\frac{1+e^{i2\pi(q_{i}+v_{i})}}{2}
=\displaystyle= Πi(1+ei2πqi4+eipiN1+ei(2πqi+πN)4)\displaystyle\Pi_{i}\Big{(}\frac{1+e^{i2\pi q_{i}}}{4}+e^{ip_{i}N}\frac{1+e^{i(2\pi q_{i}+\pi N)}}{4}\Big{)}

For even NN we have

1B(p,q)=(1,p,q𝒪0,p~,q𝒪~0,p,q𝒪~0,p~,q𝒪)1_{B}(p,q)=\left(\begin{array}[]{cc}1,&p\in{\cal M},q\in{\cal O}\\ 0,&p\in\tilde{\cal M},q\in\tilde{\cal O}\\ 0,&p\in{\cal M},q\in\tilde{\cal O}\\ 0,&p\in\tilde{\cal M},q\in{\cal O}\end{array}\right) (28)

For odd NN we have

1B(p,q)=(1/2,p,q𝒪1/2,p~,q𝒪~1/2,p,q𝒪~1/2,p~,q𝒪)1_{B}(p,q)=\left(\begin{array}[]{cc}1/2,&p\in{\cal M},q\in{\cal O}\\ -1/2,&p\in\tilde{\cal M},q\in\tilde{\cal O}\\ 1/2,&p\in{\cal M},q\in\tilde{\cal O}\\ 1/2,&p\in\tilde{\cal M},q\in{\cal O}\end{array}\right) (29)

For the operator of translation to the lattice spacing the Buot symbol is

Tj(p,q)\displaystyle T_{j}(p,q) =\displaystyle= 12Dv𝒪e2ipvqv|eip^j|q+vΠi1+ei2π(qi+vi)2\displaystyle\frac{1}{2^{D}}\sum_{v\in{\cal O}^{\prime}}e^{2ipv}\langle q-v|e^{i\hat{p}_{j}}|q+v\rangle\Pi_{i}\frac{1+e^{i2\pi(q_{i}+v_{i})}}{2} (30)
=\displaystyle= 12Dv𝒪e2ipv(δvj,1/2+δvi,1/2+N/2)1+ei2π(qj+vj)2\displaystyle\frac{1}{2^{D}}\sum_{v\in{\cal O}^{\prime}}e^{2ipv}(\delta_{v_{j},1/2}+\delta_{v_{i},1/2+N/2})\frac{1+e^{i2\pi(q_{j}+v_{j})}}{2}
Πij(δvi,0+δvi,N/2)1+ei2π(qi+vi)2\displaystyle\Pi_{i\neq j}(\delta_{v_{i},0}+\delta_{v_{i},N/2})\frac{1+e^{i2\pi(q_{i}+v_{i})}}{2}
=\displaystyle= Πij(1+ei2πqi4+eipiN1+ei(2πqi+πN)4)\displaystyle\Pi_{i\neq j}\Big{(}\frac{1+e^{i2\pi q_{i}}}{4}+e^{ip_{i}N}\frac{1+e^{i(2\pi q_{i}+\pi N)}}{4}\Big{)}
(eipj1ei2πqj4+eipj(N+1)1ei(2πqj+πN)4)\displaystyle\Big{(}e^{ip_{j}}\frac{1-e^{i2\pi q_{j}}}{4}+e^{ip_{j}(N+1)}\frac{1-e^{i(2\pi q_{j}+\pi N)}}{4}\Big{)}

Let us express the Buot symbol of operator through the matrix elements in momentum space

AB(p,q)=12Dp1,p2v𝒪e2ipvqv|p1p1|A^|P+up2|p2Πi1+ei2π(qi+vi)21+eiN(Pi+ui)2\displaystyle A_{B}(p,q)=\frac{1}{2^{D}}\sum_{p_{1},p_{2}\in{\cal M}}\sum_{v\in{\cal O}^{\prime}}e^{2ipv}\langle q-v|p_{1}\rangle\langle p_{1}|\hat{A}|P+u\rangle\langle p_{2}|p_{2}\rangle\Pi_{i}\frac{1+e^{i2\pi(q_{i}+v_{i})}}{2}\frac{1+e^{iN(P_{i}+u_{i})}}{2}
=14DP,uv𝒪e2ipvqv|PuPu|A^|P+uP+u|q+vΠi1+ei2π(qi+vi)21+eiN(Pi+ui)2\displaystyle=\frac{1}{4^{D}}\sum_{P,u\in{\cal M}^{\prime}}\sum_{v\in{\cal O}^{\prime}}e^{2ipv}\langle q-v|P-u\rangle\langle P-u|\hat{A}|P+u\rangle\langle P+u|q+v\rangle\Pi_{i}\frac{1+e^{i2\pi(q_{i}+v_{i})}}{2}\frac{1+e^{iN(P_{i}+u_{i})}}{2}
=1(4N)DP,uv𝒪e2ipv+i(Pu)(qv)i(P+u)(q+v)Pu|A^|P+uΠi1+ei2π(qi+vi)21+eiN(Pi+ui)2\displaystyle=\frac{1}{(4N)^{D}}\sum_{P,u\in{\cal M}^{\prime}}\sum_{v\in{\cal O}^{\prime}}e^{2ipv+i(P-u)(q-v)-i(P+u)(q+v)}\langle P-u|\hat{A}|P+u\rangle\Pi_{i}\frac{1+e^{i2\pi(q_{i}+v_{i})}}{2}\frac{1+e^{iN(P_{i}+u_{i})}}{2}
=1(8N)DP,umi=0,1v𝒪e2ipv+i(Pu)(qv)i(P+u)(q+v)+i2πm(q+v)Pu|A^|P+uΠi1+eiN(Pi+ui)2\displaystyle=\frac{1}{(8N)^{D}}\sum_{P,u\in{\cal M}^{\prime}}\sum_{m_{i}=0,1}\sum_{v\in{\cal O}^{\prime}}e^{2ipv+i(P-u)(q-v)-i(P+u)(q+v)+i2\pi m(q+v)}\langle P-u|\hat{A}|P+u\rangle\Pi_{i}\frac{1+e^{iN(P_{i}+u_{i})}}{2}
=14Dumi=0,1e2i(uπm)qp+πmu|A^|p+πm+uΠi1+eiN(pi+πmi+ui)2\displaystyle=\frac{1}{4^{D}}\sum_{u\in{\cal M}^{\prime}}\sum_{m_{i}=0,1}e^{-2i(u-\pi m)q}\langle p+\pi m-u|\hat{A}|p+\pi m+u\rangle\Pi_{i}\frac{1+e^{iN(p_{i}+\pi m_{i}+u_{i})}}{2}
=12Due2iuqpu|A^|p+uΠi1+eiN(pi+ui)2\displaystyle=\frac{1}{2^{D}}\sum_{u\in{\cal M}^{\prime}}e^{-2iuq}\langle p-u|\hat{A}|p+u\rangle\Pi_{i}\frac{1+e^{iN(p_{i}+u_{i})}}{2} (31)

Here in the transition to the second line we change variables:

p1=Pu,p2=P+up_{1}=P-u,\quad p_{2}=P+u
P=(p1+p2)/2,u=(p1p2)/2P=(p_{1}+p_{2})/2,\quad u=(p_{1}-p_{2})/2

Factor 1/21/2 accounts for the overcounting of degrees of freedom during this transformation. In the similar way we obtain

Δ^(p,q)=v𝒪e2ipv|qvq+v|Πi1+ei2π(qi+vi)2\hat{\Delta}(p,q)=\sum_{v\in{\cal O}^{\prime}}e^{-2ipv}|q-v\rangle\langle q+v|\Pi_{i}\frac{1+e^{i2\pi(q_{i}+v_{i})}}{2} (32)

Notice, that in the original paper by Buot it was not specified that the sum in Eq. (31) is over {\cal M}^{\prime}. Correspondingly, constraint p+up+u\in{\cal M} resulted in function (1+eiN(pi+ui))/2(1+e^{iN(p_{i}+u_{i})})/2 was not imposed. This resulted in mistakes in the further expressions. By the present paper we correct these mistakes and introduce the proper definition of the lattice Weyl symbol. Strictly speaking our definition of function AB(p,q)A_{B}(p,q) differs from the original definition of Buot. We feel, however, appropriate to use this notation because we evaluate the very idea of such a formalism proposed for the first time by F.Buot.

We can express the matrix elements of an operator through the Buot symbol as follows:

q1|A^|q2\displaystyle\langle q_{1}|\hat{A}|q_{2}\rangle =\displaystyle= 1(2N)Dp;q𝒪q1|Δ^(p,q)|q2AB(p,q)\displaystyle\frac{1}{(2N)^{D}}\sum_{p\in{\cal M}^{\prime};q\in{\cal O}^{\prime}}\langle q_{1}|\hat{\Delta}(p,q)|q_{2}\rangle A_{B}(p,q)
=\displaystyle= p;q𝒪ue2iquq1|pup+u|q2AB(p,q)Πi1+eiN(pi+ui)(4N)\displaystyle\sum_{p\in{\cal M}^{\prime};q\in{\cal O}^{\prime}}\sum_{u\in{\cal M}^{\prime}}e^{2iqu}\langle q_{1}|p-u\rangle\langle p+u|q_{2}\rangle A_{B}(p,q)\Pi_{i}\frac{1+e^{iN(p_{i}+u_{i})}}{(4N)}
=\displaystyle= p;q𝒪ueiu(2qq1q2)+ip(q1q2)AB(p,q)Πi1+eiN(pi+ui)(4N2)\displaystyle\sum_{p\in{\cal M}^{\prime};q\in{\cal O}^{\prime}}\sum_{u\in{\cal M}^{\prime}}e^{iu(2q-q_{1}-q_{2})+ip(q_{1}-q_{2})}A_{B}(p,q)\Pi_{i}\frac{1+e^{iN(p_{i}+u_{i})}}{(4N^{2})}
=\displaystyle= 1(4N2)Dp;q𝒪u;ni=0,1eiu(2qq1q2+Nn)+ip(q1q2+Nn)AB(p,q)\displaystyle\frac{1}{(4N^{2})^{D}}\sum_{p\in{\cal M}^{\prime};q\in{\cal O}^{\prime}}\sum_{u\in{\cal M}^{\prime};n_{i}=0,1}e^{iu(2q-q_{1}-q_{2}+Nn)+ip(q_{1}-q_{2}+Nn)}A_{B}(p,q)
=\displaystyle= 1(2N)Dp;ni=0,1AB(p,(q1+q2Nn)/2)eip(q1q2+Nn)\displaystyle\frac{1}{(2N)^{D}}\sum_{p\in{\cal M}^{\prime};n_{i}=0,1}A_{B}(p,(q_{1}+q_{2}-Nn)/2)e^{ip(q_{1}-q_{2}+Nn)} (34)

Using property of the Buot symbol AB(p,qNm/2)=eipmNAB(p,q)A_{B}(p,q-Nm/2)=e^{ipmN}A_{B}(p,q) (for integer - valued vector mm) we obtain:

q1|A^|q2\displaystyle\langle q_{1}|\hat{A}|q_{2}\rangle =\displaystyle= 1NDpAB(p,(q1+q2)/2)eip(q1q2)\displaystyle\frac{1}{N^{D}}\sum_{p\in{\cal M}^{\prime}}A_{B}(p,(q_{1}+q_{2})/2)e^{ip(q_{1}-q_{2})} (35)

As an example let us calculate the last row of this expression for A^=1\hat{A}=1 and even NN:

1NDp1B(p,(q1+q2)/2)eip(q1q2)\displaystyle\frac{1}{N^{D}}\sum_{p\in{\cal M}^{\prime}}1_{B}(p,(q_{1}+q_{2})/2)e^{ip(q_{1}-q_{2})} (36)
=\displaystyle= δq1,q2\displaystyle\delta_{q_{1},q_{2}}

In the similar way we can derive

p1|A^|p2\displaystyle\langle p_{1}|\hat{A}|p_{2}\rangle =\displaystyle= 1(2N)Dp;q𝒪p1|Δ^(p,q)|p2AB(p,q)\displaystyle\frac{1}{(2N)^{D}}\sum_{p\in{\cal M}^{\prime};q\in{\cal O}^{\prime}}\langle p_{1}|\hat{\Delta}(p,q)|p_{2}\rangle A_{B}(p,q)
=\displaystyle= 1(2N)Dp;q𝒪ue2iqup1|pup+u|p2AB(p,q)Πi1+eiN(pi+ui)2\displaystyle\frac{1}{(2N)^{D}}\sum_{p\in{\cal M}^{\prime};q\in{\cal O}^{\prime}}\sum_{u\in{\cal M}^{\prime}}e^{2iqu}\langle p_{1}|p-u\rangle\langle p+u|p_{2}\rangle A_{B}(p,q)\Pi_{i}\frac{1+e^{iN(p_{i}+u_{i})}}{2}
=\displaystyle= 1(2N)Dq𝒪ni=0,1e2iq((p2p1)/2+πn)AB((p2+p1)/2+πn,q)Πi1+eiN((p2i+p1i)/2+πni+(p2ip1i)/2+πni)2\displaystyle\frac{1}{(2N)^{D}}\sum_{q\in{\cal O}^{\prime}}\sum_{n_{i}=0,1}e^{2iq((p_{2}-p_{1})/2+\pi n)}A_{B}((p_{2}+p_{1})/2+\pi n,q)\Pi_{i}\frac{1+e^{iN((p^{i}_{2}+p^{i}_{1})/2+\pi n_{i}+(p^{i}_{2}-p^{i}_{1})/2+\pi n_{i})}}{2}
=\displaystyle= 1(2N)Dq𝒪ni=0,1e2iq((p2p1)/2+πn)AB((p2+p1)/2+πn,q)\displaystyle\frac{1}{(2N)^{D}}\sum_{q\in{\cal O}^{\prime}}\sum_{n_{i}=0,1}e^{2iq((p_{2}-p_{1})/2+\pi n)}A_{B}((p_{2}+p_{1})/2+\pi n,q)
=\displaystyle= 1NDq𝒪e2iq(p2p1)/2AB((p2+p1)/2,q)\displaystyle\frac{1}{N^{D}}\sum_{q\in{\cal O}^{\prime}}e^{2iq(p_{2}-p_{1})/2}A_{B}((p_{2}+p_{1})/2,q) (38)

The above expressions give the following two representations of the trace of an operator:

TrA^\displaystyle{\rm Tr}\,\hat{A} =\displaystyle= 1NDp,q𝒪AB(p,q)=1NDp,q𝒪AB(p,q)\displaystyle\frac{1}{N^{D}}\sum_{p\in{\cal M}^{\prime},q\in{\cal O}}A_{B}(p,q)=\frac{1}{N^{D}}\sum_{p\in{\cal M},q\in{\cal O}^{\prime}}A_{B}(p,q) (39)

Notice that

1NDq𝒪AB(p,q)\displaystyle\frac{1}{N^{D}}\sum_{q\in{\cal O}^{\prime}}A_{B}(p,q) =\displaystyle= 1(2N)Du,q𝒪e2iuqpu|A^|p+uΠi1+eiN(pi+ui)2\displaystyle\frac{1}{(2N)^{D}}\sum_{u\in{\cal M}^{\prime},q\in{\cal O}^{\prime}}e^{-2iuq}\langle p-u|\hat{A}|p+u\rangle\Pi_{i}\frac{1+e^{iN(p_{i}+u_{i})}}{2} (40)
=\displaystyle= p|A^|pΠi1+eiNpi2\displaystyle\langle p|\hat{A}|p\rangle\Pi_{i}\frac{1+e^{iNp_{i}}}{2}

and

1NDq𝒪,p~AB(p,q)\displaystyle\frac{1}{N^{D}}\sum_{q\in{\cal O}^{\prime},p\in\tilde{\cal M}}A_{B}(p,q) =\displaystyle= p~p|A^|pΠi1+eiNpi2=0\displaystyle\sum_{p\in\tilde{\cal M}}\langle p|\hat{A}|p\rangle\Pi_{i}\frac{1+e^{iNp_{i}}}{2}=0 (41)

As a result we can write

TrA^\displaystyle{\rm Tr}\,\hat{A} =\displaystyle= 1NDp,q𝒪AB(p,q)\displaystyle\frac{1}{N^{D}}\sum_{p\in{\cal M}^{\prime},q\in{\cal O}^{\prime}}A_{B}(p,q) (42)

Besides, we have

1NDq𝒪AB(p,q)\displaystyle\frac{1}{N^{D}}\sum_{q\in{\cal O}}A_{B}(p,q) =\displaystyle= 1(2N)Du,q𝒪e2iuqpu|A^|p+uΠi1+eiN(pi+ui)2\displaystyle\frac{1}{(2N)^{D}}\sum_{u\in{\cal M}^{\prime},q\in{\cal O}}e^{-2iuq}\langle p-u|\hat{A}|p+u\rangle\Pi_{i}\frac{1+e^{iN(p_{i}+u_{i})}}{2} (43)
=\displaystyle= 12Dni=0,1p+πn|A^|p+πnΠi1+eiN(pi+πni)2\displaystyle\frac{1}{2^{D}}\sum_{n_{i}=0,1}\langle p+\pi n|\hat{A}|p+\pi n\rangle\Pi_{i}\frac{1+e^{iN(p_{i}+\pi n_{i})}}{2}

and

1NDq𝒪,pAB(p,q)\displaystyle\frac{1}{N^{D}}\sum_{q\in{\cal O},p\in{\cal M}}A_{B}(p,q) =\displaystyle= 12Dp,ni=0,1p+πn|A^|p+πnΠi1+eiN(pi+πni)2\displaystyle\frac{1}{2^{D}}\sum_{p\in{\cal M},n_{i}=0,1}\langle p+\pi n|\hat{A}|p+\pi n\rangle\Pi_{i}\frac{1+e^{iN(p_{i}+\pi n_{i})}}{2} (44)

Therefore, for even NN we have also

TrA^\displaystyle{\rm Tr}\,\hat{A} =\displaystyle= 1NDp,q𝒪AB(p,q)\displaystyle\frac{1}{N^{D}}\sum_{p\in{\cal M},q\in{\cal O}}A_{B}(p,q) (45)

while for odd NN:

TrA^\displaystyle{\rm Tr}\,\hat{A} =\displaystyle= 2DNDp,q𝒪AB(p,q)\displaystyle\frac{2^{D}}{N^{D}}\sum_{p\in{\cal M},q\in{\cal O}}A_{B}(p,q) (46)

III.3 Star product

Now let us consider the product of two operators A^\hat{A} and B^\hat{B}. Our aim is to express the Buot symbol of this product through Buot symbols AB(p,q)A_{B}(p,q) and BB(p,q)B_{B}(p,q). We have

A^B^\displaystyle\hat{A}\hat{B} =\displaystyle= 1(4N2)Dp1;q1𝒪Δ^(p1,q1)AB(p1,q1)p2;q2𝒪Δ^(p2,q2)AB(p2,q2)\displaystyle\frac{1}{(4N^{2})^{D}}\sum_{p_{1}\in{\cal M}^{\prime};q_{1}\in{\cal O}^{\prime}}\hat{\Delta}(p_{1},q_{1})A_{B}(p_{1},q_{1})\sum_{p_{2}\in{\cal M}^{\prime};q_{2}\in{\cal O}^{\prime}}\hat{\Delta}(p_{2},q_{2})A_{B}(p_{2},q_{2}) (47)
=\displaystyle= 1(4N2)Dp1,p2;q1,q2𝒪Δ^(p1,q1)Δ^(p2,q2)AB(p1,q1)AB(p2,q2)\displaystyle\frac{1}{(4N^{2})^{D}}\sum_{p_{1},p_{2}\in{\cal M}^{\prime};q_{1},q_{2}\in{\cal O}^{\prime}}\hat{\Delta}(p_{1},q_{1})\hat{\Delta}(p_{2},q_{2})A_{B}(p_{1},q_{1})A_{B}(p_{2},q_{2})

and

(A^B^)B(p,q)\displaystyle(\hat{A}\hat{B})_{B}(p,q) =\displaystyle= 1(8N2)Dp1,p2,u;q1,q2𝒪pu|Δ^(p1,q1)Δ^(p2,q2)|p+u\displaystyle\frac{1}{(8N^{2})^{D}}\sum_{p_{1},p_{2},u\in{\cal M}^{\prime};q_{1},q_{2}\in{\cal O}^{\prime}}\langle p-u|\hat{\Delta}(p_{1},q_{1})\hat{\Delta}(p_{2},q_{2})|p+u\rangle (48)
e2iuqAB(p1,q1)BB(p2,q2)Πi1+eiN(pi+ui)2\displaystyle e^{-2iuq}A_{B}(p_{1},q_{1})B_{B}(p_{2},q_{2})\Pi_{i}\frac{1+e^{iN(p_{i}+u_{i})}}{2}

For the matrix elements of the product of two Δ\Delta - operators we obtain:

upu|Δ^(p1,q1)Δ^(p2,q2)|p+ue2iquΠi1+eiN(pi+ui)2=u,u1,u2e2iqu+2iq1u1+2iq2u2\displaystyle\sum_{u\in{\cal M}^{\prime}}\langle p-u|\hat{\Delta}(p_{1},q_{1})\hat{\Delta}(p_{2},q_{2})|p+u\rangle e^{-2iqu}\Pi_{i}\frac{1+e^{iN(p^{i}+u^{i})}}{2}=\sum_{u,u_{1},u_{2}\in{\cal M}^{\prime}}e^{-2iqu+2iq_{1}u_{1}+2iq_{2}u_{2}}
pu|p1u1p1+u1|p2u2p2+u2|p+uΠi1+eiN(p1i+u1i)21+eiN(p2i+u2i)21+eiN(pi+ui)2\displaystyle\langle p-u|p_{1}-u_{1}\rangle\langle p_{1}+u_{1}|p_{2}-u_{2}\rangle\langle p_{2}+u_{2}|p+u\rangle\Pi_{i}\frac{1+e^{iN(p^{i}_{1}+u^{i}_{1})}}{2}\frac{1+e^{iN(p^{i}_{2}+u^{i}_{2})}}{2}\frac{1+e^{iN(p^{i}+u^{i})}}{2}
=ni=0,1e2i((p2p)(q1q)+(q2q)(pp1))|pp1p2+πne2πin(q+q1+q2)\displaystyle=\sum_{n_{i}=0,1}e^{2i((p_{2}-p)(q_{1}-q)+(q_{2}-q)(p-p_{1}))}\Big{|}_{p-p_{1}-p_{2}+\pi n\in{\cal M}}e^{2\pi in(-q+q_{1}+q_{2})}

Here several combinations of momenta lead to the non - vanishing matrix elements like pu|p1u1\langle p-u|p_{1}-u_{1}\rangle:

pu|p1u1=miZδpu,p1u1+2πm\langle p-u|p_{1}-u_{1}\rangle=\sum_{m_{i}\in Z}\delta_{p-u,p_{1}-u_{1}+2\pi m}

The constraints on the values of u,u1,u2u,u_{1},u_{2} appear:

{2πm=pup1+u12πm=p1+u1p2+u22πm′′=p2+u2pu\Bigl{\{}\begin{array}[]{cc}2\pi m&=p-u-p_{1}+u_{1}\\ 2\pi m^{\prime}&=p_{1}+u_{1}-p_{2}+u_{2}\\ 2\pi m^{\prime\prime}&=p_{2}+u_{2}-p-u\end{array} (49)

with integer mi,mi,mi′′m_{i},m_{i}^{\prime},m_{i}^{\prime\prime}. We have solutions of these equations:

{u=p2p1+πlu1=p2p+πlu2=pp1+πl\Bigl{\{}\begin{array}[]{cc}u&=p_{2}-p_{1}+\pi l\\ u_{1}&=p_{2}-p+\pi l\\ u_{2}&=p-p_{1}+\pi l\end{array} (50)

with li=0,1l_{i}=0,1. Here the values of u1i,u2i,u3iu^{i}_{1},u^{i}_{2},u^{i}_{3} are taken modulo 2π2\pi.

Considering analytical continuation of functions AB(p1,q1)A_{B}(p_{1},q_{1}) and AB(p2,q2)A_{B}(p_{2},q_{2}) to real values of arguments, we come to

8D(A^B^)B(p,q)\displaystyle 8^{D}(\hat{A}\hat{B})_{B}(p,q) =\displaystyle= ni=0,1;p1,p2;q1,q2𝒪1N2De2i((p2p)(q1q)+(q2q)(pp1))\displaystyle\sum_{n_{i}=0,1;p_{1},p_{2}\in{\cal M}^{\prime};q_{1},q_{2}\in{\cal O}^{\prime}}\frac{1}{N^{2D}}e^{2i((p_{2}-p)(q_{1}-q)+(q_{2}-q)(p-p_{1}))} (51)
AB(p1,q1)BB(p2,q2)|(pp1p2+πn)e2πin(q+q1+q2)\displaystyle A_{B}(p_{1},q_{1})B_{B}(p_{2},q_{2})\Big{|}_{(p-p_{1}-p_{2}+\pi n)\in{\cal M}}e^{2\pi in(-q+q_{1}+q_{2})}
=\displaystyle= p1,δp2;q1,δq2𝒪1N2De2i(δp2(q1q)+δq2(pp1))\displaystyle\sum_{p_{1},\delta p_{2}\in{\cal M}^{\prime};q_{1},\delta q_{2}\in{\cal O}^{\prime}}\frac{1}{N^{2D}}e^{2i(\delta p_{2}(q_{1}-q)+\delta q_{2}(p-p_{1}))}
AB(p1,q1)eδp2p+δq2qBB(p,q)Πi(1+eiN(δp2ip1i)2+1+eiN(δp2ip1i+π)2ei2π(δq2iq1i))\displaystyle A_{B}(p_{1},q_{1})e^{\delta p_{2}\partial_{p}+\delta q_{2}\partial_{q}}B_{B}(p,q)\Pi_{i}\Big{(}\frac{1+e^{iN(\delta p^{i}_{2}-p^{i}_{1})}}{2}+\frac{1+e^{iN(\delta p^{i}_{2}-p^{i}_{1}+\pi)}}{2}e^{i2\pi(\delta q^{i}_{2}-q^{i}_{1})}\Big{)}
=\displaystyle= p1,δp2;q1,δq2𝒪1N2De2i(δp2(q1q)+δq2(pp1))\displaystyle\sum_{p_{1},\delta p_{2}\in{\cal M}^{\prime};q_{1},\delta q_{2}\in{\cal O}^{\prime}}\frac{1}{N^{2D}}e^{2i(\delta p_{2}(q_{1}-q)+\delta q_{2}(p-p_{1}))}
Πi(1+eiN(δp2ip1i)2+1+eiN(δp2ip1i+π)2ei2π(δq2iq1i))\displaystyle\Pi_{i}\Big{(}\frac{1+e^{iN(\delta p^{i}_{2}-p^{i}_{1})}}{2}+\frac{1+e^{iN(\delta p^{i}_{2}-p^{i}_{1}+\pi)}}{2}e^{i2\pi(\delta q^{i}_{2}-q^{i}_{1})}\Big{)}
AB(p1,q1)ei2(qppq)BB(p,q)\displaystyle A_{B}(p_{1},q_{1})e^{\frac{i}{2}(\overleftarrow{\partial_{q}}\overrightarrow{\partial_{p}}-\overleftarrow{\partial_{p}}\overrightarrow{\partial_{q}})}B_{B}(p,q)

We will consider the above expression for pp\in{\cal M}\cup{\cal M}^{\prime} and q𝒪𝒪q\in{\cal O}\cup{\cal O}^{\prime}.

However, we define function AB(p,q)A_{B}(p,q) for any intermediate values of pp and qq:

AB(p,q)\displaystyle A_{B}(p,q) =\displaystyle= p1,p2;q1,q2𝒪1(4N2)De2i((p2p)(q1q)+(q2q)(pp1))AB(p1,q1)\displaystyle\sum_{p_{1},p_{2}\in{\cal M}^{\prime};q_{1},q_{2}\in{\cal O}^{\prime}}\frac{1}{(4N^{2})^{D}}e^{2i((p_{2}-p)(q_{1}-q)+(q_{2}-q)(p-p_{1}))}A_{B}(p_{1},q_{1}) (52)

One can easily check the following properties of the Buot symbol extended to real values of arguments (ni=0,1n_{i}=0,1):

AB(p,q+Nn/2)=eipnNAB(p,q),AB(p+πn,q)=e2πiqnAB(p,q)A_{B}(p,q+Nn/2)=e^{-ipnN}A_{B}(p,q),\quad A_{B}(p+\pi n,q)=e^{2\pi iqn}A_{B}(p,q) (53)

Namely, we have for p;q𝒪p\in{\cal M}\cup{\cal M}^{\prime};q\in{\cal O}^{\prime}:

AB(p,q+Nn/2)\displaystyle A_{B}(p,q+Nn/2) =\displaystyle= 12Dv𝒪e2ipvq+Nn/2v|A^|q+Nn/2+vΠi1+ei2π(qi+Nni/2+vi)2\displaystyle\frac{1}{2^{D}}\sum_{v\in{\cal O}^{\prime}}e^{2ipv}\langle q+Nn/2-v|\hat{A}|q+Nn/2+v\rangle\Pi_{i}\frac{1+e^{i2\pi(q^{i}+Nn^{i}/2+v^{i})}}{2} (54)
=\displaystyle= 12Dv𝒪e2ip(vNn/2)qv|A^|q+vΠi1+ei2π(qi+vi)2\displaystyle\frac{1}{2^{D}}\sum_{v\in{\cal O}^{\prime}}e^{2ip(v-Nn/2)}\langle q-v|\hat{A}|q+v\rangle\Pi_{i}\frac{1+e^{i2\pi(q^{i}+v^{i})}}{2}
=\displaystyle= 12DeipnNv𝒪e2ipvqv|A^|q+vΠi1+ei2π(qi+vi)2\displaystyle\frac{1}{2^{D}}e^{-ipnN}\sum_{v\in{\cal O}^{\prime}}e^{2ipv}\langle q-v|\hat{A}|q+v\rangle\Pi_{i}\frac{1+e^{i2\pi(q^{i}+v^{i})}}{2}
=\displaystyle= eipnNAB(p,q)\displaystyle e^{-ipnN}A_{B}(p,q)

Therefore, for continuous values of pp and qq:

AB(p,q+Nn/2)\displaystyle A_{B}(p,q+Nn/2) =\displaystyle= p1,p2;q1,q2𝒪1(4N2)De2i((p2p)(q1qNn/2)+(q2qNn/2)(pp1))AB(p1,q1)\displaystyle\sum_{p_{1},p_{2}\in{\cal M}^{\prime};q_{1},q_{2}\in{\cal O}^{\prime}}\frac{1}{(4N^{2})^{D}}e^{2i((p_{2}-p)(q_{1}-q-Nn/2)+(q_{2}-q-Nn/2)(p-p_{1}))}A_{B}(p_{1},q_{1}) (55)
=\displaystyle= p1,p2;q1,q2𝒪1(4N2)De2i((p2p)(q1q)+(q2q)(pp1))AB(p1,q1+Nn/2)\displaystyle\sum_{p_{1},p_{2}\in{\cal M}^{\prime};q_{1},q_{2}\in{\cal O}^{\prime}}\frac{1}{(4N^{2})^{D}}e^{2i((p_{2}-p)(q_{1}-q)+(q_{2}-q)(p-p_{1}))}A_{B}(p_{1},q_{1}+Nn/2)
=\displaystyle= p1,p2;q1,q2𝒪1(4N2)De2i((p2p)(q1q)+(q2q)(pp1))eip1nNAB(p1,q1)\displaystyle\sum_{p_{1},p_{2}\in{\cal M}^{\prime};q_{1},q_{2}\in{\cal O}^{\prime}}\frac{1}{(4N^{2})^{D}}e^{2i((p_{2}-p)(q_{1}-q)+(q_{2}-q)(p-p_{1}))}e^{-ip_{1}nN}A_{B}(p_{1},q_{1})
=\displaystyle= p1,p2;q1,q2𝒪1(4N2)De2i((p2p)(q1q)+(q2q+Nn/2)(pp1))eipnNAB(p1,q1)\displaystyle\sum_{p_{1},p_{2}\in{\cal M}^{\prime};q_{1},q_{2}\in{\cal O}^{\prime}}\frac{1}{(4N^{2})^{D}}e^{2i((p_{2}-p)(q_{1}-q)+(q_{2}-q+Nn/2)(p-p_{1}))}e^{-ipnN}A_{B}(p_{1},q_{1})
=\displaystyle= p1,p2;q1,q2𝒪1(4N2)De2i((p2p)(q1q)+(q2q)(pp1))eipnNAB(p1,q1)\displaystyle\sum_{p_{1},p_{2}\in{\cal M}^{\prime};q_{1},q_{2}\in{\cal O}^{\prime}}\frac{1}{(4N^{2})^{D}}e^{2i((p_{2}-p)(q_{1}-q)+(q_{2}-q)(p-p_{1}))}e^{-ipnN}A_{B}(p_{1},q_{1})

In the similar way, for discrete pp and qq we have

AB(p+πn,q)\displaystyle A_{B}(p+\pi n,q) =\displaystyle= 12Due2iqup+πnu|A^|p+πn+uΠi1+eiN(p+πn+u)2\displaystyle\frac{1}{2^{D}}\sum_{u\in{\cal M}^{\prime}}e^{-2iqu}\langle p+\pi n-u|\hat{A}|p+\pi n+u\rangle\Pi_{i}\frac{1+e^{iN(p+\pi n+u)}}{2} (56)
=\displaystyle= 12Due2iq(uπ)pu|A^|p+uΠi1+eiN(pi+ui)2\displaystyle\frac{1}{2^{D}}\sum_{u\in{\cal M}^{\prime}}e^{-2iq(u-\pi)}\langle p-u|\hat{A}|p+u\rangle\Pi_{i}\frac{1+e^{iN(p^{i}+u^{i})}}{2}
=\displaystyle= e2iqnπAB(p,q)\displaystyle e^{2iqn\pi}A_{B}(p,q)

This equality may be extended also to the continuous values of pp and qq.

In Eq. (51) we encounter the two sums: The sum over p2p_{2} gives:

1(2N)Dp2e2ip2(q1q)=1(2N)Dmi=0,1,,2N1e2πim(q1q)=Πi1e4NπNi(q1iqi)2N(1e2πNi(q1iqi))=δq1q\frac{1}{(2N)^{D}}\sum_{p_{2}\in{\cal M}^{\prime}}e^{-2ip_{2}(q_{1}-q)}=\frac{1}{(2N)^{D}}\sum_{m_{i}=0,1,...,2N-1}e^{-2\pi im(q_{1}-q)}=\Pi_{i}\frac{1-e^{-\frac{4N\pi}{N}i(q^{i}_{1}-q^{i})}}{2N(1-e^{-\frac{2\pi}{N}i(q^{i}_{1}-q^{i})})}=\delta_{q_{1}q}

for q1,q𝒪𝒪q_{1},q\in{\cal O}\cup{\cal O}^{\prime}. In the similar way the sum over q2q_{2} results in

1(2N)Dq2𝒪e2iq2(pp1)=δp1p\frac{1}{(2N)^{D}}\sum_{q_{2}\in{\cal O}^{\prime}}e^{2iq_{2}(p-p_{1})}=\delta_{p_{1}p}

for p1,pp_{1},p\in{\cal M}^{\prime}. We recall that in Eq. (57) the arguments of AB,BBA_{B},B_{B} are real - valued, and according to the definition of the Buot symbol we obtain

8D(A^B^)B(p,q)=ni,mi=0,1;p1,δp2;q1,δq2𝒪12DN2De2i(δp2(q1q)+δq2(pp1))\displaystyle 8^{D}(\hat{A}\hat{B})_{B}(p,q)=\sum_{n_{i},m_{i}=0,1;p_{1},\delta p_{2}\in{\cal M}^{\prime};q_{1},\delta q_{2}\in{\cal O}^{\prime}}\frac{1}{2^{D}N^{2D}}e^{2i(\delta p_{2}(q_{1}-q)+\delta q_{2}(p-p_{1}))}
(eiNn(p1πm)AB(p1+πm,q1Nn/2))e2πiq1)\displaystyle\Big{(}e^{-iNn(p_{1}-\pi m)}A_{B}(p_{1}+\pi m,q_{1}-Nn/2))e^{-2\pi iq_{1}}\Big{)}
ei2(qppq)BB(p,q)\displaystyle e^{\frac{i}{2}(\overleftarrow{\partial_{q}}\overrightarrow{\partial_{p}}-\overleftarrow{\partial_{p}}\overrightarrow{\partial_{q}})}B_{B}(p,q) (57)

Using Eq. (53) and Eq. (52) we obtain

(A^B^)B(p,q)|p,q𝒪=AB(p,q)ei2(qppq)BB(p,q)\displaystyle(\hat{A}\hat{B})_{B}(p,q)\Big{|}_{p\in{\cal M}^{\prime},q\in{\cal O}^{\prime}}=A_{B}(p,q)e^{\frac{i}{2}(\overleftarrow{\partial_{q}}\overrightarrow{\partial_{p}}-\overleftarrow{\partial_{p}}\overrightarrow{\partial_{q}})}B_{B}(p,q) (58)

III.4 Alternative derivation of star identity

Let us give the alternative derivation of this equality. It is assumed that pp\in{\cal M}^{\prime} while q𝒪q\in{\cal O}^{\prime}. We start from the star product of Buot symbols and come back to the Buot symbol of the product as follows.

AB(p,q)ei2(qppq)BB(p,q)=\displaystyle A_{B}(p,q)e^{\frac{i}{2}(\overleftarrow{\partial_{q}}\overrightarrow{\partial_{p}}-\overleftarrow{\partial_{p}}\overrightarrow{\partial_{q}})}B_{B}(p,q)= (59)
=\displaystyle= p1,δp2;q1,δq2𝒪1(2N)2De2i(δp2(q1q)+δq2(pp1))\displaystyle\sum_{p_{1},\delta p_{2}\in{\cal M}^{\prime};q_{1},\delta q_{2}\in{\cal O}^{\prime}}\frac{1}{(2N)^{2D}}e^{2i(\delta p_{2}(q_{1}-q)+\delta q_{2}(p-p_{1}))}
AB(p1,q1)ei2(qppq)BB(p,q)\displaystyle A_{B}(p_{1},q_{1})e^{\frac{i}{2}(\overleftarrow{\partial_{q}}\overrightarrow{\partial_{p}}-\overleftarrow{\partial_{p}}\overrightarrow{\partial_{q}})}B_{B}(p,q)
=\displaystyle= p1,p2;q1,q2𝒪1(2N)2De2i((p2p)(q1q)+(q2q)(pp1))\displaystyle\sum_{p_{1},p_{2}\in{\cal M}^{\prime};q_{1},q_{2}\in{\cal O}^{\prime}}\frac{1}{(2N)^{2D}}e^{2i((p_{2}-p)(q_{1}-q)+(q_{2}-q)(p-p_{1}))}
AB(p1,q1)BB(p2,q2)\displaystyle A_{B}(p_{1},q_{1})B_{B}(p_{2},q_{2})
=\displaystyle= p1,p2;v1,v2,q1,q2𝒪122D(2N)2De2i((p2p)(q1q)+(q2q)(pp1))\displaystyle\sum_{p_{1},p_{2}\in{\cal M}^{\prime};v_{1},v_{2},q_{1},q_{2}\in{\cal O}^{\prime}}\frac{1}{2^{2D}(2N)^{2D}}e^{2i((p_{2}-p)(q_{1}-q)+(q_{2}-q)(p-p_{1}))}
e2ip1v1+2p2v2q1v1|A^|q1+v1q2v2|B^|q2+v2|q1+v1,q2+v2𝒪\displaystyle e^{2ip_{1}v_{1}+2p_{2}v_{2}}\langle q_{1}-v_{1}|\hat{A}|q_{1}+v_{1}\rangle\langle q_{2}-v_{2}|\hat{B}|q_{2}+v_{2}\rangle\Big{|}_{q_{1}+v_{1},q_{2}+v_{2}\in{\cal O}}
=\displaystyle= v1,v2𝒪122De2ip(v1+v2)\displaystyle\sum_{v_{1},v_{2}\in{\cal O}^{\prime}}\frac{1}{2^{2D}}e^{2ip(v_{1}+v_{2})}
qv1v2|A^|q+v1v2q+v1v2|B^|q+v1+v2|q+v1+v2,q+v1v2𝒪\displaystyle\langle q-v_{1}-v_{2}|\hat{A}|q+v_{1}-v_{2}\rangle\langle q+v_{1}-v_{2}|\hat{B}|q+v_{1}+v_{2}\rangle\Big{|}_{q+v_{1}+v_{2},q+v_{1}-v_{2}\in{\cal O}}
=\displaystyle= v+,v𝒪2123De2ipv+\displaystyle\sum_{v_{+},v_{-}\in{\cal O}^{2\prime}}\frac{1}{2^{3D}}e^{2ipv_{+}}
qv+|A^|q+vq+v|B^|q+v+|q+v+,q+v,v++v𝒪\displaystyle\langle q-v_{+}|\hat{A}|q+v_{-}\rangle\langle q+v_{-}|\hat{B}|q+v_{+}\rangle\Big{|}_{q+v_{+},q+v_{-},v_{+}+v_{-}\in{\cal O}}
=\displaystyle= v+,v𝒪12De2ipv+\displaystyle\sum_{v_{+},v_{-}\in{\cal O}^{\prime}}\frac{1}{2^{D}}e^{2ipv_{+}}
qv+|A^|q+vq+v|B^|q+v+|q+v+,q+v,v++v𝒪\displaystyle\langle q-v_{+}|\hat{A}|q+v_{-}\rangle\langle q+v_{-}|\hat{B}|q+v_{+}\rangle\Big{|}_{q+v_{+},q+v_{-},v_{+}+v_{-}\in{\cal O}}
=\displaystyle= ni=0,1;v+,v𝒪122De2ipv++2πin(v++v)\displaystyle\sum_{n_{i}=0,1;v_{+},v_{-}\in{\cal O}^{\prime}}\frac{1}{2^{2D}}e^{2ipv_{+}+2\pi in(v_{+}+v_{-})}
qv+|A^|q+vq+v|B^|q+v+|q+v+,q+v𝒪\displaystyle\langle q-v_{+}|\hat{A}|q+v_{-}\rangle\langle q+v_{-}|\hat{B}|q+v_{+}\rangle\Big{|}_{q+v_{+},q+v_{-}\in{\cal O}}

One can see that for qiZq_{i}\in Z both v+iv_{+}^{i} and viv_{-}^{i} are integer. At the same time if qiq_{i} is half integer, both v+iv_{+}^{i} and viv_{-}^{i} are half integer. In both cases v++vv_{+}+v_{-} is integer. As a result

AB(p,q)ei2(qppq)BB(p,q)=\displaystyle A_{B}(p,q)e^{\frac{i}{2}(\overleftarrow{\partial_{q}}\overrightarrow{\partial_{p}}-\overleftarrow{\partial_{p}}\overrightarrow{\partial_{q}})}B_{B}(p,q)= (60)
=\displaystyle= n=0,1;v+,v𝒪122De2ipv++2πin(v++v)\displaystyle\sum_{n=0,1;v_{+},v_{-}\in{\cal O}^{\prime}}\frac{1}{2^{2D}}e^{2ipv_{+}+2\pi in(v_{+}+v_{-})}
qv+|A^|q+vq+v|B^|q+v+|q+v+,q+v𝒪\displaystyle\langle q-v_{+}|\hat{A}|q+v_{-}\rangle\langle q+v_{-}|\hat{B}|q+v_{+}\rangle\Big{|}_{q+v_{+},q+v_{-}\in{\cal O}}
=\displaystyle= v+,v𝒪12De2ipv+\displaystyle\sum_{v_{+},v_{-}\in{\cal O}^{\prime}}\frac{1}{2^{D}}e^{2ipv_{+}}
qv+|A^|q+vq+v|B^|q+v+|q+v+,q+v𝒪\displaystyle\langle q-v_{+}|\hat{A}|q+v_{-}\rangle\langle q+v_{-}|\hat{B}|q+v_{+}\rangle\Big{|}_{q+v_{+},q+v_{-}\in{\cal O}}
=\displaystyle= v+𝒪12De2ipv+\displaystyle\sum_{v_{+}\in{\cal O}^{\prime}}\frac{1}{2^{D}}e^{2ipv_{+}}
qv+|A^B^|q+v+=(A^B^)B(p,q)\displaystyle\langle q-v_{+}|\hat{A}\hat{B}|q+v_{+}\rangle=(\hat{A}\hat{B})_{B}(p,q)

III.5 Trace of the product

Let us consider the trace of the product of two operators A^\hat{A} and B^\hat{B}. We have

A^B^\displaystyle\hat{A}\hat{B} =\displaystyle= 1(4N2)Dp1;q1𝒪Δ^(p1,q1)AB(p1,q1)p2;q2𝒪Δ^(p2,q2)AB(p2,q2)\displaystyle\frac{1}{(4N^{2})^{D}}\sum_{p_{1}\in{\cal M}^{\prime};q_{1}\in{\cal O}^{\prime}}\hat{\Delta}(p_{1},q_{1})A_{B}(p_{1},q_{1})\sum_{p_{2}\in{\cal M}\cup{\cal M}^{\prime};q_{2}\in{\cal O}^{\prime}}\hat{\Delta}(p_{2},q_{2})A_{B}(p_{2},q_{2}) (61)
=\displaystyle= 1(4N2)Dp1,p2;q1,q2𝒪Δ^(p1,q1)Δ^(p2,q2)AB(p1,q1)AB(p2,q2)\displaystyle\frac{1}{(4N^{2})^{D}}\sum_{p_{1},p_{2}\in{\cal M}^{\prime};q_{1},q_{2}\in{\cal O}^{\prime}}\hat{\Delta}(p_{1},q_{1})\hat{\Delta}(p_{2},q_{2})A_{B}(p_{1},q_{1})A_{B}(p_{2},q_{2})

and

Tr(A^B^)\displaystyle{\rm Tr}(\hat{A}\hat{B}) =\displaystyle= 1(4N2)Dpp1,p2;q1,q2𝒪p|Δ^(p1,q1)Δ^(p2,q2)|p\displaystyle\frac{1}{(4N^{2})^{D}}\sum_{p\in{\cal M}}\sum_{p_{1},p_{2}\in{\cal M}^{\prime};q_{1},q_{2}\in{\cal O}^{\prime}}\langle p|\hat{\Delta}(p_{1},q_{1})\hat{\Delta}(p_{2},q_{2})|p\rangle (62)
AB(p1,q1)BB(p2,q2)\displaystyle A_{B}(p_{1},q_{1})B_{B}(p_{2},q_{2})

For the matrix elements of the product of two Δ\Delta - operators we obtain:

pp|Δ^(p1,q1)Δ^(p2,q2)|p=p;u1,u2e2iq1u1+2iq2u2\displaystyle\sum_{p\in{\cal M}}\langle p|\hat{\Delta}(p_{1},q_{1})\hat{\Delta}(p_{2},q_{2})|p\rangle=\sum_{p\in{\cal M};u_{1},u_{2}\in{\cal M}^{\prime}}e^{2iq_{1}u_{1}+2iq_{2}u_{2}}
p|p1u1p1+u1|p2u2p2+u2|pi1+eiN(p1i+u1i)21+eiN(p2i+u2i)2\displaystyle\langle p|p_{1}-u_{1}\rangle\langle p_{1}+u_{1}|p_{2}-u_{2}\rangle\langle p_{2}+u_{2}|p\rangle\sum_{i}\frac{1+e^{iN(p^{i}_{1}+u^{i}_{1})}}{2}\frac{1+e^{iN(p^{i}_{2}+u^{i}_{2})}}{2}
=NDni,mi=0,1δp1p2+πn,0δq1q2Nm/2,0e2πiq1n+iNmp1iπnmN\displaystyle=N^{D}\sum_{n_{i},m_{i}=0,1}\delta_{p_{1}-p_{2}+\pi n,0}\delta_{q_{1}-q_{2}-Nm/2,0}e^{2\pi iq_{1}n+iNmp_{1}-i\pi nmN} (63)

Here several combinations of momenta lead to the nonvanishing matrix elements like p|p1u1\langle p|p_{1}-u_{1}\rangle:

p|p1u1=miZδp,p1u1+2πm\langle p|p_{1}-u_{1}\rangle=\sum_{m_{i}\in Z}\delta_{p,p_{1}-u_{1}+2\pi m}

The constraints on the values of p,u1,u2p,u_{1},u_{2} appear:

{2πm=pp1+u12πm=p1+u1p2+u22πm′′=p2+u2p\Bigl{\{}\begin{array}[]{cc}2\pi m&=p-p_{1}+u_{1}\\ 2\pi m^{\prime}&=p_{1}+u_{1}-p_{2}+u_{2}\\ 2\pi m^{\prime\prime}&=p_{2}+u_{2}-p\end{array} (64)

with integer m,m,m′′m,m^{\prime},m^{\prime\prime}. We have the following solutions of these equations:

{u2=pp2u1=p1pp1=p2+πn\Bigl{\{}\begin{array}[]{cc}u_{2}&=p-p_{2}\\ u_{1}&=p_{1}-p\\ p_{1}&=p_{2}+\pi n\end{array} (65)

with ni=0,1n_{i}=0,1. Here all values of variables are taken modulo 2π2\pi.

We are in the position to obtain the necessary expression for the trace of product:

Tr(A^B^)\displaystyle{\rm Tr}(\hat{A}\hat{B}) =\displaystyle= 1(4N)Dp1;q1𝒪;ni,mi=0,1(AB(p1,q1)BB(p1+πn,q1Nm/2)e2πiqn+iNp1miNnmπ)\displaystyle\frac{1}{(4N)^{D}}\sum_{p_{1}\in{\cal M}^{\prime};q_{1}\in{\cal O}^{\prime};n_{i},m_{i}=0,1}\Big{(}A_{B}(p_{1},q_{1})B_{B}(p_{1}+\pi n,q_{1}-Nm/2)e^{2\pi iqn+iNp_{1}m-iNnm\pi}\Big{)} (66)
=\displaystyle= 1NDp1;q1𝒪AB(p1,q1)BB(p1,q1)\displaystyle\frac{1}{N^{D}}\sum_{p_{1}\in{\cal M}^{\prime};q_{1}\in{\cal O}^{\prime}}A_{B}(p_{1},q_{1})B_{B}(p_{1},q_{1})

III.6 Summary of the properties of the Buot symbol

For q𝒪,pq\in{\cal O}^{\prime},p\in{\cal M}^{\prime} we define

AB(p,q)\displaystyle A_{B}(p,q) =\displaystyle= 12Dv𝒪e2ipvqv|A^|q+vΠi1+ei2π(qi+vi)2\displaystyle\frac{1}{2^{D}}\sum_{v\in{\cal O}^{\prime}}e^{2ipv}\langle q-v|\hat{A}|q+v\rangle\Pi_{i}\frac{1+e^{i2\pi(q_{i}+v_{i})}}{2} (67)
=\displaystyle= 12Due2iuqpu|A^|p+uΠi1+eiN(pi+ui)2\displaystyle\frac{1}{2^{D}}\sum_{u\in{\cal M}^{\prime}}e^{-2iuq}\langle p-u|\hat{A}|p+u\rangle\Pi_{i}\frac{1+e^{iN(p_{i}+u_{i})}}{2}

This definition is extended further to any values of p,qRDp,q\in R^{D} as follows:

AB(p,q)\displaystyle A_{B}(p,q) =\displaystyle= p1,p2;q1,q2𝒪1(4N2)De2i((p2p)(q1q)+(q2q)(pp1))AB(p1,q1)\displaystyle\sum_{p_{1},p_{2}\in{\cal M}^{\prime};q_{1},q_{2}\in{\cal O}^{\prime}}\frac{1}{(4N^{2})^{D}}e^{2i((p_{2}-p)(q_{1}-q)+(q_{2}-q)(p-p_{1}))}A_{B}(p_{1},q_{1}) (68)

The matrix elements of operator A^\hat{A} are expressed through the Buot symbol of this operator as follows:

q1|A^|q2\displaystyle\langle q_{1}|\hat{A}|q_{2}\rangle =\displaystyle= 1NDpAB(p,(q1+q2)/2)eip(q1q2)\displaystyle\frac{1}{N^{D}}\sum_{p\in{\cal M}^{\prime}}A_{B}(p,(q_{1}+q_{2})/2)e^{ip(q_{1}-q_{2})} (69)

and

p1|A^|p2\displaystyle\langle p_{1}|\hat{A}|p_{2}\rangle =\displaystyle= 1NDq𝒪eiq(p2p1)AB((p2+p1)/2,q)\displaystyle\frac{1}{N^{D}}\sum_{q\in{\cal O}^{\prime}}e^{iq(p_{2}-p_{1})}A_{B}((p_{2}+p_{1})/2,q) (70)

We formulate the following properties of the Buot symbol:

  1. 1.

    Trace property.

    TrA^=1NDp,q𝒪AB(p,q)=1NDp,q𝒪AB(p,q)=1NDp,q𝒪AB(p,q){\rm Tr}\,\hat{A}=\frac{1}{N^{D}}\sum_{p\in{\cal M}^{\prime},q\in{\cal O}}A_{B}(p,q)=\frac{1}{N^{D}}\sum_{p\in{\cal M},q\in{\cal O}^{\prime}}A_{B}(p,q)=\frac{1}{N^{D}}\sum_{p\in{\cal M}^{\prime},q\in{\cal O}^{\prime}}A_{B}(p,q)
  2. 2.

    Second trace identity.

    TrA^B^=1NDp,q𝒪AB(p,q)BB(p,q){\rm Tr}\hat{A}\hat{B}=\frac{1}{N^{D}}\sum_{p\in{\cal M}^{\prime},q\in{\cal O}^{\prime}}A_{B}(p,q)B_{B}(p,q)
  3. 3.

    Periodicity.

    AB(p,q+Nn/2)=eipNnAB(p,q),AB(p+πn,q)=e2πiqnAB(p,q)A_{B}(p,q+Nn/2)=e^{-ipNn}A_{B}(p,q),\quad A_{B}(p+\pi n,q)=e^{2\pi iqn}A_{B}(p,q)

    with ni=0,1n_{i}=0,1.

  4. 4.

    Star property

    (A^B^)B(p,q)|p,q𝒪=AB(p,q)ei2(qppq)BB(p,q)\displaystyle(\hat{A}\hat{B})_{B}(p,q)\Big{|}_{p\in{\cal M}^{\prime},q\in{\cal O}^{\prime}}=A_{B}(p,q)e^{\frac{i}{2}(\overleftarrow{\partial_{q}}\overrightarrow{\partial_{p}}-\overleftarrow{\partial_{p}}\overrightarrow{\partial_{q}})}B_{B}(p,q) (71)
  5. 5.

    Buot symbol of unity

    1B(p,q)=Πi(1+ei2πqi4+eipiN1+ei(2πqi+πN)4)1_{B}(p,q)=\Pi_{i}\Big{(}\frac{1+e^{i2\pi q_{i}}}{4}+e^{ip_{i}N}\frac{1+e^{i(2\pi q_{i}+\pi N)}}{4}\Big{)}

IV Modifications of the Buot symbol of operator, and the definition of lattice Weyl symbol

IV.1 The 1D1D construction that uses auxiliary lattice

First let us consider for simplicity the case of the one - dimensional system. In the following we will consider the even values of NN, and impose the following constraints on all operators.

p1|A^|p2=p1+2π/N|A^|p2+2π/N\langle p_{1}|\hat{A}|p_{2}\rangle=\langle p_{1}+2\pi/N|\hat{A}|p_{2}+2\pi/N\rangle

for p1,p2p_{1},p_{2}\in{\cal M}, while

p1|A^|p2=0\langle p_{1}|\hat{A}|p_{2}\rangle=0

for even Np1/(2π)Np_{1}/(2\pi) and odd Np2/(2π)Np_{2}/(2\pi).

Now \cal M may be divided into the two pieces =12{\cal M}={\cal M}_{1}\cup{\cal M}_{2}. Here

1={0,22πN,42πN,,(N2)2πN}{\cal M}_{1}=\{0,2\frac{2\pi}{N},4\frac{2\pi}{N},...,(N-2)\frac{2\pi}{N}\}

while

2={12πN,32πN,52πN,,(N1)2πN}{\cal M}_{2}=\{1\frac{2\pi}{N},3\frac{2\pi}{N},5\frac{2\pi}{N},...,(N-1)\frac{2\pi}{N}\}

Notice that 1={\cal M}^{\prime}_{1}={\cal M} while 2=~1{\cal M}_{2}=\tilde{\cal M}_{1}. By A^1\hat{A}_{1} we denote restriction of operator A^\hat{A} to space spanned on vectors |p|p\rangle with p1p\in{\cal M}_{1}.

Hilbert space {\cal H} of one - particle states on the reduced momentum lattice 1{\cal M}_{1} is spanned on ket vectors

|p1,p1|p\rangle_{1},p\in{\cal M}_{1}

Another set of basis vectors is

|q1,q𝒪1/2|q\rangle_{1},q\in{\cal O}^{1/2}

with

𝒪1/2={0,1,2,,(N/21)}{\cal O}^{1/2}=\{0,1,2,...,(N/2-1)\}

We also use

𝒪1/2={1/2,1,3/2,,(N/21/2)}{\cal O}^{1/2\prime}=\{1/2,1,3/2,...,(N/2-1/2)\}

Here

|q1=1N/2p1|p1eipq|q\rangle_{1}=\frac{1}{\sqrt{N/2}}\sum_{p\in{\cal M}_{1}}|p\rangle_{1}e^{-ipq}

These vectors are defined also for any q𝒪q\in{\cal O}. We assume normalization of states

q|p11=1N/2eipq{}_{1}\langle q|p\rangle_{1}=\frac{1}{\sqrt{N/2}}e^{ipq}

which implies completeness relations within 1{\cal H}_{1}:

p1|p11p|=q𝒪1/2|q11q|=1\sum_{p\in{\cal M}_{1}}|p\rangle_{1}{}_{1}\langle p|=\sum_{q\in{\cal O}^{1/2}}|q\rangle_{1}{}_{1}\langle q|=1

In the similar way the Hilbert space 2{\cal H}_{2} for 2{\cal M}_{2} is defined:

|q2,q𝒪1/2|q\rangle_{2},q\in{\cal O}^{1/2}

Another set of basis vectors is

|p2,p2|p\rangle_{2},p\in{\cal M}_{2}

with

𝒪1/2={0,1,2,,(N/21)}{\cal O}^{1/2}=\{0,1,2,...,(N/2-1)\}

One can see that (𝒪1/2)2=𝒪({\cal O}^{1/2\prime})^{2}={\cal O}^{\prime} and (𝒪1/2)2=𝒪({\cal O}^{1/2})^{2}={\cal O}. Here

|q2=1N/2p2|p2eipq|q\rangle_{2}=\frac{1}{\sqrt{N/2}}\sum_{p\in{\cal M}_{2}}|p\rangle_{2}e^{-ipq}

We assume normalization of states

q|p22=1N/2eipq{}_{2}\langle q|p\rangle_{2}=\frac{1}{\sqrt{N/2}}e^{ipq}

which implies completeness relations in 2{\cal H}_{2}:

p2|p22p|=q𝒪1/2|q22q|=1\sum_{p\in{\cal M}_{2}}|p\rangle_{2}{}_{2}\langle p|=\sum_{q\in{\cal O}^{1/2}}|q\rangle_{2}{}_{2}\langle q|=1

One can consider inclusion of 1{\cal H}_{1} into {\cal H} with the following rules:

|p1=|p,|q=|q1+|q22|p\rangle_{1}=|p\rangle,\quad|q\rangle=\frac{|q\rangle_{1}+|q\rangle_{2}}{\sqrt{2}}

Notice that not all vectors |q1|q\rangle_{1} for q𝒪q\in{\cal O} are independent:

|q+N/21=|q1|q+N/2\rangle_{1}=|q\rangle_{1}

Therefore, we may choose as basis vectors those with q𝒪1/2q\in{\cal O}^{1/2}. In the similar way

|q+N/22=|q2|q+N/2\rangle_{2}=-|q\rangle_{2}

while

|q+N=|q|q+N\rangle=|q\rangle

Modified Buot symbol of operator A^1\hat{A}_{1} is defined as the Buot symbol of operator A^\hat{A}:

A1,(p,q)\displaystyle A_{1,{\cal B}}(p,q) \displaystyle\equiv AB(p,q)=12v𝒪e2ipvqv|A^|q+v1+ei2π(q+v)2\displaystyle A_{B}(p,q)=\frac{1}{2}\sum_{v\in{\cal O}^{\prime}}e^{2ipv}\langle q-v|\hat{A}|q+v\rangle\frac{1+e^{i2\pi(q+v)}}{2} (72)
=\displaystyle= 14v𝒪e12ipvqv|A^1|q+v1(1+e4ivπ/N)1+ei2π(q+v)2\displaystyle\frac{1}{4}\sum_{v\in{\cal O}^{\prime}}e^{2ipv}\,_{1}\langle q-v|\hat{A}_{1}|q+v\rangle_{1}({1+e^{-4iv\pi/N}})\frac{1+e^{i2\pi(q+v)}}{2}
=\displaystyle= 12v𝒪1e12ipvqv|A^1|q+v1(1+e4ivπ/N)1+ei2π(q+v)21+eipN2\displaystyle\frac{1}{2}\sum_{v\in{\cal O}_{1}^{\prime}}e^{2ipv}\,_{1}\langle q-v|\hat{A}_{1}|q+v\rangle_{1}({1+e^{-4iv\pi/N}})\frac{1+e^{i2\pi(q+v)}}{2}\frac{1+e^{ipN}}{2}

for q𝒪q\in{\cal O}^{\prime}, pp\in{\cal M}^{\prime}. Factor 1+eiNp2\frac{1+e^{iNp}}{2} entering this expression results in vanishing of the modified Buot symbol for pp\in{\cal M}^{\prime}\setminus{\cal M}.

Here we express matrix elements of operator A^\hat{A} as follows:

q1|A^|q2\displaystyle\langle q_{1}|\hat{A}|q_{2}\rangle =\displaystyle= 1Np1,p212p1|A^|p2eip2q2+ip1q1\displaystyle\frac{1}{N}\sum_{p_{1},p_{2}\in{\cal M}_{1}\cup{\cal M}_{2}}\langle p_{1}|\hat{A}|p_{2}\rangle e^{-ip_{2}q_{2}+ip_{1}q_{1}} (73)
=\displaystyle= 1Np1,p21(eip2q2+ip1q1p1|A^|p2+ei(p2+2π/N)q2+i(p1+2π/N)q1p1+2π/N|A^|p2+2π/N)\displaystyle\frac{1}{N}\sum_{p_{1},p_{2}\in{\cal M}_{1}}\Big{(}e^{-ip_{2}q_{2}+ip_{1}q_{1}}\langle p_{1}|\hat{A}|p_{2}\rangle+e^{-i(p_{2}+2\pi/N)q_{2}+i(p_{1}+2\pi/N)q_{1}}\langle p_{1}+2\pi/N|\hat{A}|p_{2}+2\pi/N\rangle\Big{)}
=\displaystyle= 2Np1,p21eip2q2+ip1q1p1|A^|p21+ei(q2q1)2π/N2\displaystyle\frac{2}{N}\sum_{p_{1},p_{2}\in{\cal M}_{1}}e^{-ip_{2}q_{2}+ip_{1}q_{1}}\langle p_{1}|\hat{A}|p_{2}\rangle\frac{1+e^{-i(q_{2}-q_{1})2\pi/N}}{2}
=\displaystyle= q1|A^1|q2111+ei(q2q1)2π/N2{}_{1}\langle q_{1}|\hat{A}_{1}|q_{2}\rangle_{1}\frac{1+e^{-i(q_{2}-q_{1})2\pi/N}}{2}

This expression works both for q1,q2𝒪1/2q_{1},q_{2}\in{\cal O}^{1/2} and for q1,q2𝒪q_{1},q_{2}\in{\cal O} assuming |q+N/21=|q1|q+N/2\rangle_{1}=|q\rangle_{1}.

This definition may be easily extended to the whole range of real values of pp and qq as follows:

A(p,q)\displaystyle A_{\cal B}(p,q) =\displaystyle= p2;q2𝒪;p1;q1𝒪14N2e2i((p2p)(q1q)+(q2q)(pp1))A1,(p1,q1)\displaystyle\sum_{p_{2}\in{\cal M}^{\prime};q_{2}\in{\cal O}^{\prime};p_{1}\in{\cal M}^{\prime};q_{1}\in{\cal O}^{\prime}}\frac{1}{4N^{2}}e^{2i((p_{2}-p)(q_{1}-q)+(q_{2}-q)(p-p_{1}))}A_{1,{\cal B}}(p_{1},q_{1}) (74)

With this extension we obtain the basic property of the modified Buot symbol that follows directly from the corresponding property of Buot symbol:

(A^B^)(p,q)|p,q𝒪=A(p,q)ei2(qppq)B(p,q)\displaystyle(\hat{A}\hat{B})_{\cal B}(p,q)\Big{|}_{p\in{\cal M}^{\prime},q\in{\cal O}^{\prime}}=A_{\cal B}(p,q)e^{\frac{i}{2}(\overleftarrow{\partial_{q}}\overrightarrow{\partial_{p}}-\overleftarrow{\partial_{p}}\overrightarrow{\partial_{q}})}B_{\cal B}(p,q) (75)

IV.2 The DD - dimensional construction with auxiliary lattice

Now we extend the above construction to the case of the DD - dimensional system. We still consider the even values of NN, and impose the following constraints on all operators.

p1|A^|p2=p1+2j(π/N)njej|A^|p2+2j(π/N)njej\langle p_{1}|\hat{A}|p_{2}\rangle=\langle p_{1}+2\sum_{j}(\pi/N)n^{j}e_{j}|\hat{A}|p_{2}+2\sum_{j}(\pi/N)n^{j}e_{j}\rangle

where ej=(0,,1,0)e_{j}=(0,...,1,...0) is unity vector in the jj - th direction while nj=0,1n_{j}=0,1. Here p1,p2p_{1},p_{2}\in{\cal M}. We define

1={(m12πN,,mD2πN)|mi{0,2,4,,N2}}{\cal M}_{1}=\{(m_{1}\frac{2\pi}{N},...,m_{D}\frac{2\pi}{N})|m_{i}\in\{0,2,4,...,N-2\}\}

We also require

p1|A^|p2+2(π/N)ej=0\langle p_{1}|\hat{A}|p_{2}+2(\pi/N)e_{j}\rangle=0

for p1,p21p_{1},p_{2}\in{\cal M}_{1} and any jj.

Now \cal M may be divided into the two pieces =12{\cal M}={\cal M}_{1}\cup{\cal M}_{2}. Here 2{\cal M}_{2} is the remaining piece of \cal M.

By A^1\hat{A}_{1} we denote restriction of operator A^\hat{A} to space spanned on vectors |p|p\rangle with p1p\in{\cal M}_{1}.

Hilbert space {\cal H} of one - particle states on the reduced momentum lattice 1{\cal M}_{1} is spanned on ket vectors

|p1,p1|p\rangle_{1},p\in{\cal M}_{1}

Another set of basis vectors is

|q1,q𝒪1/2|q\rangle_{1},q\in{\cal O}^{1/2}

with

𝒪1/2={(m1,,mD)|mi{0,1,2,,N/21}}{\cal O}^{1/2}=\{(m_{1},...,m_{D})|m_{i}\in\{0,1,2,...,N/2-1\}\}

We also have

𝒪1/2={(m1,,mD)|mi{0,1/2,1,,N/21/2}}{\cal O}^{1/2\prime}=\{(m_{1},...,m_{D})|m_{i}\in\{0,1/2,1,...,N/2-1/2\}\}

Here

|p1=1(N/2)Dx𝒪1|x1eipx|p\rangle_{1}=\frac{1}{\sqrt{(N/2)^{D}}}\sum_{x\in{\cal O}_{1}}|x\rangle_{1}e^{ipx}

We assume normalization of states

x|p11=1(N/2)Deipx{}_{1}\langle x|p\rangle_{1}=\frac{1}{\sqrt{(N/2)^{D}}}e^{ipx}

which implies completeness relations

p1|p11p|=q𝒪1|q11q|=1\sum_{p\in{\cal M}_{1}}|p\rangle_{1}{}_{1}\langle p|=\sum_{q\in{\cal O}_{1}}|q\rangle_{1}{}_{1}\langle q|=1

One can consider inclusion of 1{\cal H}_{1} into {\cal H} with the following rules:

|p1=|p|p\rangle_{1}=|p\rangle

Notice that

|q+ejN/21=|q1|q+e_{j}N/2\rangle_{1}=|q\rangle_{1}

while

|q+ejN=|q|q+e_{j}N\rangle=|q\rangle

Modified Buot symbol of operator A^1\hat{A}_{1} is defined as the Buot symbol of operator A^\hat{A}:

A1,(p,q)\displaystyle A_{1,{\cal B}}(p,q) \displaystyle\equiv AB(p,q)=12Dv𝒪e2ipvqv|A^|q+vΠi1+ei2π(qi+vi)2\displaystyle A_{B}(p,q)=\frac{1}{2^{D}}\sum_{v\in{\cal O}^{\prime}}e^{2ipv}\langle q-v|\hat{A}|q+v\rangle\Pi_{i}\frac{1+e^{i2\pi(q_{i}+v_{i})}}{2} (76)
=\displaystyle= 12Dv𝒪1/2e12ipvqv|A^1|q+v1Πi(1+e4iviπ/N)1+ei2π(qi+vi)21+eiNpi2\displaystyle\frac{1}{2^{D}}\sum_{v\in{\cal O}^{1/2\prime}}e^{2ipv}\,_{1}\langle q-v|\hat{A}_{1}|q+v\rangle_{1}\Pi_{i}({1+e^{-4iv_{i}\pi/N}})\frac{1+e^{i2\pi(q_{i}+v_{i})}}{2}\frac{1+e^{iNp_{i}}}{2}

for q𝒪q\in{\cal O}^{\prime}, pp\in{\cal M}^{\prime}. Again, the modified Buot symbol is vanisning for pp\in{\cal M}^{\prime}\setminus{\cal M}.

Here we express matrix elements of operator A^\hat{A} as follows:

q1|A^|q2\displaystyle\langle q_{1}|\hat{A}|q_{2}\rangle =\displaystyle= 1NDp1,p2p1|A^|p2eip2q2+ip1q1\displaystyle\frac{1}{N^{D}}\sum_{p_{1},p_{2}\in{\cal M}}\langle p_{1}|\hat{A}|p_{2}\rangle e^{-ip_{2}q_{2}+ip_{1}q_{1}} (77)
=\displaystyle= 1NDni=0,1;p1,p21(ei(p2+2πn/N)q2+i(p1+2πn/N)q1p1+2πn/N|A^|p2+2πn/N)\displaystyle\frac{1}{N^{D}}\sum_{n_{i}=0,1;p_{1},p_{2}\in{\cal M}_{1}}\Big{(}e^{-i(p_{2}+2\pi n/N)q_{2}+i(p_{1}+2\pi n/N)q_{1}}\langle p_{1}+2\pi n/N|\hat{A}|p_{2}+2\pi n/N\rangle\Big{)}
=\displaystyle= 2DNDp1,p21eip2q2+ip1q1p1|A^|p2Πi1+ei(q2iq1i)2π/N2\displaystyle\frac{2^{D}}{N^{D}}\sum_{p_{1},p_{2}\in{\cal M}_{1}}e^{-ip_{2}q_{2}+ip_{1}q_{1}}\langle p_{1}|\hat{A}|p_{2}\rangle\Pi_{i}\frac{1+e^{-i(q^{i}_{2}-q^{i}_{1})2\pi/N}}{2}
=\displaystyle= q1|A^1|q211Πi1+ei(q2iq1i)2π/N2{}_{1}\langle q_{1}|\hat{A}_{1}|q_{2}\rangle_{1}\Pi_{i}\frac{1+e^{-i(q^{i}_{2}-q^{i}_{1})2\pi/N}}{2}

This definition may be easily extended to the whole range of real values of pp and qq as follows:

A(p,q)\displaystyle A_{\cal B}(p,q) =\displaystyle= p2;q2𝒪;p1;q1𝒪1(4N2)De2i((p2p)(q1q)+(q2q)(pp1))A1,(p1,q1)\displaystyle\sum_{p_{2}\in{\cal M}^{\prime};q_{2}\in{\cal O}^{\prime};p_{1}\in{\cal M}^{\prime};q_{1}\in{\cal O}^{\prime}}\frac{1}{(4N^{2})^{D}}e^{2i((p_{2}-p)(q_{1}-q)+(q_{2}-q)(p-p_{1}))}A_{1,{\cal B}}(p_{1},q_{1}) (78)

With this extension we obtain the basic property of the modified Buot symbol that follows directly from the corresponding property of Buot symbol:

(A^B^)(p,q)|p,q𝒪=A(p,q)ei2(qppq)B(p,q)\displaystyle(\hat{A}\hat{B})_{\cal B}(p,q)\Big{|}_{p\in{\cal M}^{\prime},q\in{\cal O}^{\prime}}=A_{\cal B}(p,q)e^{\frac{i}{2}(\overleftarrow{\partial_{q}}\overrightarrow{\partial_{p}}-\overleftarrow{\partial_{p}}\overrightarrow{\partial_{q}})}B_{\cal B}(p,q) (79)

Let us rewrite the definition of the modified Buot symbol as follows

A1,(p,q)=12Due2iuqpu|A^|p+uΠi1+eiN(pi+ui)2\displaystyle A_{1,{\cal B}}(p,q)=\frac{1}{2^{D}}\sum_{u\in{\cal M}^{\prime}}e^{-2iuq}\langle p-u|\hat{A}|p+u\rangle\Pi_{i}\frac{1+e^{iN(p_{i}+u_{i})}}{2} (80)
=\displaystyle= 12Dni=0,1;ue12iuqpu2πn/N|A^|p+u2πn/N1Πi1+eiN(pi+ui)21+eiN(pi+ui2πn/N)/22\displaystyle\frac{1}{2^{D}}\sum_{n_{i}=0,1;u\in{\cal M}^{\prime}}e^{-2iuq}\,_{1}\langle p-u-2\pi n/N|\hat{A}|p+u-2\pi n/N\rangle_{1}\Pi_{i}\frac{1+e^{iN(p_{i}+u_{i})}}{2}\frac{1+e^{iN(p_{i}+u_{i}-2\pi n/N)/2}}{2}

For the operator of translation to the lattice spacing the modified Buot symbol is

Tj(p,q)\displaystyle T_{j}(p,q) =\displaystyle= 12Dv𝒪1e12ipvqv|eip^j|q+v1Πi(1+e4iviπ/N)1+ei2π(qi+vi)21+eiNpi2\displaystyle\frac{1}{2^{D}}\sum_{v\in{\cal O}_{1}^{\prime}}e^{2ipv}\,_{1}\langle q-v|e^{i\hat{p}_{j}}|q+v\rangle_{1}\Pi_{i}({1+e^{-4iv_{i}\pi/N}})\frac{1+e^{i2\pi(q_{i}+v_{i})}}{2}\frac{1+e^{iNp_{i}}}{2} (81)
=\displaystyle= 12Dv𝒪1e2ipv(δvj,1/2+δvj,1/2+N/4)(1+e4ivjπ/N)1+ei2π(qj+vj)21+eiNpj2\displaystyle\frac{1}{2^{D}}\sum_{v\in{\cal O}_{1}^{\prime}}e^{2ipv}(\delta_{v_{j},1/2}+\delta_{v_{j},1/2+N/4})({1+e^{-4iv_{j}\pi/N}})\frac{1+e^{i2\pi(q_{j}+v_{j})}}{2}\frac{1+e^{iNp_{j}}}{2}
Πij(δvi,0+δvi,N/4)(1+e4iviπ/N)1+ei2π(qi+vi)21+eiNpi2\displaystyle\Pi_{i\neq j}(\delta_{v_{i},0}+\delta_{v_{i},N/4})({1+e^{-4iv_{i}\pi/N}})\frac{1+e^{i2\pi(q_{i}+v_{i})}}{2}\frac{1+e^{iNp_{i}}}{2}
=\displaystyle= eipj(1ei2πqi21+ei2π/N2+eipN/21ei2πqi+iπN/221ei2π/N2)1+eiNpj2\displaystyle e^{ip_{j}}\Bigl{(}\frac{1-e^{i2\pi q_{i}}}{2}\frac{1+e^{-i2\pi/N}}{2}+e^{ipN/2}\frac{1-e^{i2\pi q_{i}+i\pi N/2}}{2}\frac{1-e^{-i2\pi/N}}{2}\Bigr{)}\frac{1+e^{iNp_{j}}}{2}
Πij(1+ei2πqi2)1+eiNpi2\displaystyle\Pi_{i\neq j}\Big{(}\frac{1+e^{i2\pi q_{i}}}{2}\Big{)}\frac{1+e^{iNp_{i}}}{2}

IV.3 Construction without auxiliary lattice of modified Buot symbol. The doubly modified Buot symbol

The above given construction gives expression for the modified Buot symbol for the operator defined on the lattice with lattice spacing equal to 11 and the number of lattice sites (N/2)D(N/2)^{D}. In order to build the modified Buot symbol for the lattice with unit lattice spacing and the number of lattice sites equal to NDN^{D} we need to substitute N2NN\to 2N. In the definition of momentum space we omit the subscript 11, that is we substitute 1{\cal M}_{1}\to{\cal M}:

={(m12πN,,mD2πN)|mi{0,1,2,,N1}}{\cal M}=\{(m_{1}\frac{2\pi}{N},...,m_{D}\frac{2\pi}{N})|m_{i}\in\{0,1,2,...,N-1\}\}

while coordinate space is 𝒪\cal O in place of 𝒪1/2{\cal O}^{1/2}:

𝒪={(m1,,mD)|mi{0,1,2,,N1}}{\cal O}=\{(m_{1},...,m_{D})|m_{i}\in\{0,1,2,...,N-1\}\}

Correspondingly, the previous 𝒪{\cal O} becomes 𝒪2{\cal O}^{2} while {\cal M} becomes {\cal M}^{\prime}. Overall we have the following change of notations:

N2N,𝒪1/2𝒪,𝒪𝒪2,,′′N\to 2N,\quad{\cal O}^{1/2}\to{\cal O},\quad{\cal O}\to{\cal O}^{2},\quad{\cal M}\to{\cal M}^{\prime},\quad{\cal M}^{\prime}\to{\cal M}^{\prime\prime}

The modified Buot symbol is given by

A(p,q)\displaystyle A_{{\cal B}}(p,q) =\displaystyle= 12Dv𝒪e2ipvqv|A^|q+vΠi(1+e2iviπ/N)1+ei2π(qi+vi)21+e2iNpi2\displaystyle\frac{1}{2^{D}}\sum_{v\in{\cal O}^{\prime}}e^{2ipv}\,\langle q-v|\hat{A}|q+v\rangle\Pi_{i}({1+e^{-2iv_{i}\pi/N}})\frac{1+e^{i2\pi(q_{i}+v_{i})}}{2}\frac{1+e^{2iNp_{i}}}{2} (82)
=\displaystyle= 12Dni=0,1;p′′p+πn/Np|A^|p+πn/N+pe2ipqΠi1+ei2N(pi+pi)21+eNi(pi+πn/N+pi)2\displaystyle\frac{1}{2^{D}}\sum_{n_{i}=0,1;p_{-}\in{\cal M}^{\prime\prime}}\,\langle p+\pi n/N-p_{-}|\hat{A}|p+\pi n/N+p_{-}\rangle\,e^{-2ip_{-}q}\Pi_{i}\frac{1+e^{i2N(p_{i}+p_{-}^{i})}}{2}\frac{1+e^{Ni(p^{i}+\pi n/N+p_{-}^{i})}}{2}
=\displaystyle= 12Dni=0,1;pp+πn/Np|A^|p+πn/N+pe2ipqΠi1+ei2Npi21+eNi(pi+πn/N+pi)2\displaystyle\frac{1}{2^{D}}\sum_{n_{i}=0,1;p_{-}\in{\cal M}^{\prime}}\,\langle p+\pi n/N-p_{-}|\hat{A}|p+\pi n/N+p_{-}\rangle\,e^{-2ip_{-}q}\Pi_{i}\frac{1+e^{i2Np_{i}}}{2}\frac{1+e^{Ni(p^{i}+\pi n/N+p_{-}^{i})}}{2}

Here

={(m12πN,,mD2πN)|mi{0,1/2,1,,N1/2}}{\cal M}^{\prime}=\{(m_{1}\frac{2\pi}{N},...,m_{D}\frac{2\pi}{N})|m_{i}\in\{0,1/2,1,...,N-1/2\}\}

and

′′={(m12πN,,mD2πN)|mi{0,1/4,1/2,3/4,1,,N1/4}}{\cal M}^{\prime\prime}=\{(m_{1}\frac{2\pi}{N},...,m_{D}\frac{2\pi}{N})|m_{i}\in\{0,1/4,1/2,3/4,1,...,N-1/4\}\}

The periodicity of Buot symbol receives now the form:

AB(p,q+Nn)=ei2pNnAB(p,q),AB(p+πn,q)=e2πiqnAB(p,q)A_{B}(p,q+Nn)=e^{-i2pNn}A_{B}(p,q),\quad A_{B}(p+\pi n,q)=e^{2\pi iqn}A_{B}(p,q)

with ni=0,1n_{i}=0,1.

Let us consider the modified Buot symbol of Eq. (82). Now we impose on operator A^\hat{A} the following conditions

q1|A^|q2=q1+jnjej|A^|q2+jnjej\langle q_{1}|\hat{A}|q_{2}\rangle=\langle q_{1}+\sum_{j}n^{j}e_{j}|\hat{A}|q_{2}+\sum_{j}n^{j}e_{j}\rangle

where ej=(0,,1,0)e_{j}=(0,...,1,...0) is unity vector in the jj - th direction while nj=0,1n_{j}=0,1. Here q1,q2𝒪q_{1},q_{2}\in{\cal O}. Now we define

𝒪1={(m1,,mD)|mi{0,2,4,,N2}}{\cal O}_{1}=\{(m_{1},...,m_{D})|m_{i}\in\{0,2,4,...,N-2\}\}

We also require

q1|A^|q2+ej=0\langle q_{1}|\hat{A}|q_{2}+e_{j}\rangle=0

for q1,q2𝒪1q_{1},q_{2}\in{\cal O}_{1} and any jj.

𝒪\cal O may be divided into the two pieces 𝒪=𝒪1𝒪2{\cal O}={\cal O}_{1}\cup{\cal O}_{2}. Here 𝒪2{\cal O}_{2} is the remaining piece of 𝒪\cal O. By A^1\hat{A}^{1} we denote restriction of operator A^\hat{A} to space spanned on vectors |q|q\rangle with q𝒪1q\in{\cal O}_{1}.

Hilbert space 1{\cal H}^{1} of one - particle states on the reduced momentum lattice 𝒪1{\cal O}_{1} is spanned on ket vectors

|q1,q𝒪1|q\rangle^{1},q\in{\cal O}_{1}

Another set of basis vectors is

|p1,p1/2|p\rangle^{1},p\in{\cal M}^{1/2}

with

1/2={(2πm1/N,,2πmD/N)|mi{0,1,2,,N/21}}{\cal M}^{1/2}=\{(2\pi m_{1}/N,...,2\pi m_{D}/N)|m_{i}\in\{0,1,2,...,N/2-1\}\}

We also have

1/2={(2πm1/N,,2πmD/N)|mi{0,1/2,1,,N/21/2}}{\cal M}^{1/2\prime}=\{(2\pi m_{1}/N,...,2\pi m_{D}/N)|m_{i}\in\{0,1/2,1,...,N/2-1/2\}\}

Here

|p1=1(N/2)Dx𝒪1|x1eipx|p\rangle^{1}=\frac{1}{\sqrt{(N/2)^{D}}}\sum_{x\in{\cal O}_{1}}|x\rangle^{1}e^{ipx}

We assume normalization of states

x|p11=1(N/2)Deipx{}^{1}\langle x|p\rangle^{1}=\frac{1}{\sqrt{(N/2)^{D}}}e^{ipx}

which implies completeness relations

p1|p11p|=q𝒪1|q11q|=1\sum_{p\in{\cal M}_{1}}|p\rangle^{1}{}^{1}\langle p|=\sum_{q\in{\cal O}_{1}}|q\rangle^{1}{}^{1}\langle q|=1

One can consider inclusion of 1{\cal H}^{1} into {\cal H} with the following rules:

|q1=|q|q\rangle^{1}=|q\rangle

Notice that

|p+ejπ1=|p1|p+e_{j}\pi\rangle^{1}=|p\rangle^{1}

while

|p+2ejπ=|p|p+2e_{j}\pi\rangle=|p\rangle

Doubly modified Buot symbol of operator A^1\hat{A}^{1} is defined as the modified Buot symbol of operator A^\hat{A}:

A𝔅1(p,q)\displaystyle A^{1}_{{\mathfrak{B}}}(p,q) \displaystyle\equiv A(p,q)=12Dni=0,1;p′′p+πn/Np|A^|p+πn/N+pe2ipq\displaystyle A_{\cal B}(p,q)=\frac{1}{2^{D}}\sum_{n_{i}=0,1;p_{-}\in{\cal M}^{\prime\prime}}\,\langle p+\pi n/N-p_{-}|\hat{A}|p+\pi n/N+p_{-}\rangle\,e^{-2ip_{-}q} (83)
Πi1+e2iN(pi+pi)21+eNi(pi+πn/N+pi)2\displaystyle\Pi_{i}\frac{1+e^{2iN(p_{i}+p_{-}^{i})}}{2}\frac{1+e^{Ni(p^{i}+\pi n/N+p_{-}^{i})}}{2}
=\displaystyle= ni=0,1;p1/21p+πn/Np|A^|p+πn/N+p1e2ipq\displaystyle\sum_{n_{i}=0,1;p_{-}\in{\cal M}^{1/2\prime}}\,^{1}\langle p+\pi n/N-p_{-}|\hat{A}|p+\pi n/N+p_{-}\rangle^{1}\,e^{-2ip_{-}q}
Πi1+e2ipi21+e2iNpi21+eNi(pi+πn/N+pi)21+e2iπqi2\displaystyle\Pi_{i}\frac{1+e^{2ip^{i}_{-}}}{2}\frac{1+e^{2iNp_{i}}}{2}\frac{1+e^{Ni(p^{i}+\pi n/N+p_{-}^{i})}}{2}\frac{1+e^{2i\pi q^{i}}}{2}

for q𝒪2q\in{\cal O}^{2\prime}, p′′p\in{\cal M}^{\prime\prime}. One can see, however, that this symbol is not vanishing for q𝒪2q\in{\cal O}^{2}, pp\in{\cal M}^{\prime} only.

Here we express matrix elements of operator A^\hat{A} as follows:

p1|A^|p2\displaystyle\langle p_{1}|\hat{A}|p_{2}\rangle =\displaystyle= 1NDq1,q2𝒪q1|A^|q2eip2q2ip1q1\displaystyle\frac{1}{N^{D}}\sum_{q_{1},q_{2}\in{\cal O}}\langle q_{1}|\hat{A}|q_{2}\rangle e^{ip_{2}q_{2}-ip_{1}q_{1}} (84)
=\displaystyle= 1NDni=0,1;q1,q2𝒪1(ei(q2+n)p2i(q1+n)p1q1+n|A^|q2+n)\displaystyle\frac{1}{N^{D}}\sum_{n_{i}=0,1;q_{1},q_{2}\in{\cal O}_{1}}\Big{(}e^{i(q_{2}+n)p_{2}-i(q_{1}+n)p_{1}}\langle q_{1}+n|\hat{A}|q_{2}+n\rangle\Big{)}
=\displaystyle= 2DNDni=0,1;q1,q2𝒪1eip2q2ip1q1q1|A^|q2Πi1+ei(p2ip1i)2\displaystyle\frac{2^{D}}{N^{D}}\sum_{n_{i}=0,1;q_{1},q_{2}\in{\cal O}_{1}}e^{ip_{2}q_{2}-ip_{1}q_{1}}\langle q_{1}|\hat{A}|q_{2}\rangle\Pi_{i}\frac{1+e^{i(p^{i}_{2}-p^{i}_{1})}}{2}
=\displaystyle= p1|A^1|p211Πi1+ei(p2ip1i)2{}^{1}\langle p_{1}|\hat{A}_{1}|p_{2}\rangle^{1}\Pi_{i}\frac{1+e^{i(p^{i}_{2}-p^{i}_{1})}}{2}

This definition may be easily extended to the whole range of real values of pp and qq as follows:

A𝔅(p,q)\displaystyle A_{\mathfrak{B}}(p,q) =\displaystyle= p1,p2′′;q1,q2𝒪21(16N2)De2i((p2p)(q1q)+(q2q)(pp1))A𝔅1(p1,q1)\displaystyle\sum_{p_{1},p_{2}\in{\cal M}^{\prime\prime};q_{1},q_{2}\in{\cal O}^{2\prime}}\frac{1}{(16N^{2})^{D}}e^{2i((p_{2}-p)(q_{1}-q)+(q_{2}-q)(p-p_{1}))}A^{1}_{{\mathfrak{B}}}(p_{1},q_{1}) (85)

With this extension we obtain the basic property of the modified Buot symbol that follows directly from the corresponding property of Buot symbol:

(A^B^)𝔅(p,q)|p′′,q𝒪2=A𝔅(p,q)ei2(qppq)B𝔅(p,q)\displaystyle(\hat{A}\hat{B})_{\mathfrak{B}}(p,q)\Big{|}_{p\in{\cal M}^{\prime\prime},q\in{\cal O}^{2\prime}}=A_{\mathfrak{B}}(p,q)e^{\frac{i}{2}(\overleftarrow{\partial_{q}}\overrightarrow{\partial_{p}}-\overleftarrow{\partial_{p}}\overrightarrow{\partial_{q}})}B_{\mathfrak{B}}(p,q) (86)

For the operator of translation to the two lattice spacings the modified Buot symbol is

Tj2(p,q)\displaystyle T^{2}_{j}(p,q) =\displaystyle= ni=0,1;p1/2′′p+πn/Np|e2ip^j|p+πn/N+p11e2ipq\displaystyle\sum_{n_{i}=0,1;p_{-}\in{\cal M}^{1/2\prime\prime}}\,{}_{1}\langle p+\pi n/N-p_{-}|e^{2i\hat{p}_{j}}|p+\pi n/N+p_{-}\rangle_{1}\,e^{2ip_{-}q} (87)
Πi1+e2ipi21+eNi(pi+πni/N+pi)21+e2iNpi21+e2πiqi2\displaystyle\Pi_{i}\frac{1+e^{2ip^{i}_{-}}}{2}\frac{1+e^{Ni(p^{i}+\pi n_{i}/N+p_{-}^{i})}}{2}\frac{1+e^{2iNp_{i}}}{2}\frac{1+e^{2\pi iq_{i}}}{2}
=\displaystyle= ni,mi=0,1;p1/2′′δ2p,πmei2(pj+πnj/N+pj,)e2ipq\displaystyle\sum_{n_{i},m_{i}=0,1;p_{-}\in{\cal M}^{1/2\prime\prime}}\,\delta_{2p_{-},\pi m}e^{i2(p_{j}+\pi n_{j}/N+p_{j,-})}\,e^{2ip_{-}q}
Πi1+e2ipi21+eNi(pi+πni/N+pi)21+e2iNpi21+e2πiqi2\displaystyle\Pi_{i}\frac{1+e^{2ip^{i}_{-}}}{2}\frac{1+e^{Ni(p^{i}+\pi n_{i}/N+p_{-}^{i})}}{2}\frac{1+e^{2iNp_{i}}}{2}\frac{1+e^{2\pi iq_{i}}}{2}
=\displaystyle= ni,mi=0,1ei(2pj+2πnj/N+πmj)eiπmq\displaystyle\sum_{n_{i},m_{i}=0,1}\,e^{i(2p_{j}+2\pi n_{j}/N+\pi m_{j})}\,e^{i\pi mq}
Πi1+eiπmi21+eNi(pi+πni/N+πmi/2)21+e2iNpi21+e2πiqi2\displaystyle\Pi_{i}\frac{1+e^{i\pi m_{i}}}{2}\frac{1+e^{Ni(p^{i}+\pi n_{i}/N+\pi m_{i}/2)}}{2}\frac{1+e^{2iNp_{i}}}{2}\frac{1+e^{2\pi iq_{i}}}{2}
=\displaystyle= ni=0,1ei(2pj+2πnj/N)Πi1+eNipi+iπni21+e2iNpi21+e2πiqi2\displaystyle\sum_{n_{i}=0,1}\,e^{i(2p_{j}+2\pi n_{j}/N)}\,\Pi_{i}\frac{1+e^{Nip^{i}+i\pi n_{i}}}{2}\frac{1+e^{2iNp_{i}}}{2}\frac{1+e^{2\pi iq_{i}}}{2}
=\displaystyle= (ei2pj1+eNipj2+ei(2pj+2π/N)1eNipj2)Πi1+e2iNpi21+e2πiqi2\displaystyle\Big{(}e^{i2p_{j}}\frac{1+e^{Nip_{j}}}{2}+e^{i(2p_{j}+2\pi/N)}\frac{1-e^{Nip_{j}}}{2}\Big{)}\Pi_{i}\frac{1+e^{2iNp_{i}}}{2}\frac{1+e^{2\pi iq_{i}}}{2}
=\displaystyle= ei2pj(1+ei2π/N2+eiNpj1ei2π/N2)Πi1+e2iNpi21+e2πiqi2\displaystyle e^{i2p_{j}}\Big{(}\frac{1+e^{i2\pi/N}}{2}+e^{iNp_{j}}\frac{1-e^{i2\pi/N}}{2}\Big{)}\Pi_{i}\frac{1+e^{2iNp_{i}}}{2}\frac{1+e^{2\pi iq_{i}}}{2}

We can also represent the doubly modified Buot symbol as

A𝔅1(p,q)\displaystyle A^{1}_{{\mathfrak{B}}}(p,q) =\displaystyle= 12Dv𝒪e2ipvqv|A^|q+vΠi(1+e2iviπ/N)1+ei2π(qi+vi)21+e2iNpi2\displaystyle\frac{1}{2^{D}}\sum_{v\in{\cal O}^{\prime}}e^{2ipv}\,\langle q-v|\hat{A}|q+v\rangle\Pi_{i}({1+e^{-2iv_{i}\pi/N}})\frac{1+e^{i2\pi(q_{i}+v_{i})}}{2}\frac{1+e^{2iNp_{i}}}{2} (88)
=\displaystyle= 12Dni=0,1;v𝒪e2ipvqv+n|A^|q+v+n11Πi(1+e2iviπ/N)1+ei2π(qi+vi)21+e2iNpi21+eπi(qivi+ni)2\displaystyle\frac{1}{2^{D}}\sum_{n_{i}=0,1;v\in{\cal O}^{\prime}}e^{2ipv}\,{}^{1}\langle q-v+n|\hat{A}|q+v+n\rangle^{1}\Pi_{i}({1+e^{-2iv_{i}\pi/N}})\frac{1+e^{i2\pi(q_{i}+v_{i})}}{2}\frac{1+e^{2iNp_{i}}}{2}\frac{1+e^{\pi i(q_{i}-v_{i}+n_{i})}}{2}
=\displaystyle= 12Dni=0,1;v𝒪e2ipvqv+n|A^|q+v+n11Πi(1+e2iviπ/N)1+ei2πqi21+e2iNpi21+eπi(qivi+ni)2\displaystyle\frac{1}{2^{D}}\sum_{n_{i}=0,1;v\in{\cal O}}e^{2ipv}\,{}^{1}\langle q-v+n|\hat{A}|q+v+n\rangle^{1}\Pi_{i}({1+e^{-2iv_{i}\pi/N}})\frac{1+e^{i2\pi q_{i}}}{2}\frac{1+e^{2iNp_{i}}}{2}\frac{1+e^{\pi i(q_{i}-v_{i}+n_{i})}}{2}

IV.4 Weyl symbol on the finite lattice defined through the doubly modified Buot symbol

The above given construction of the doubly modified Buot symbol of an operator was defined on the lattice with the sublattice of a lattice with the lattice spacing equal to 11. The distance between the adjacent lattice sites of this lattice is 22, while the number of the lattice sites within this sublattice is (N/2)D(N/2)^{D}. In order to build the modified Buot symbol for the lattice with unit lattice spacing and the number of lattice sites equal to NDN^{D}, let us first rewrite the above expression for the doubly modified Buot symbol in case of arbitrary lattice spacing aa:

A𝔅1(p,q)\displaystyle A^{1}_{{\mathfrak{B}}}(p,q) =\displaystyle= ni=0,1;p1/2′′1p+πn/(aN)p|A^|p+πn/(aN)+p1e2ipq\displaystyle\sum_{n_{i}=0,1;p_{-}\in{\cal M}^{1/2\prime\prime}}\,^{1}\langle p+\pi n/(aN)-p_{-}|\hat{A}|p+\pi n/(aN)+p_{-}\rangle^{1}\,e^{-2ip_{-}q} (89)
Πi1+e2ipia21+e2iNa(pi+pi)21+eNai(pi+πni/(aN)+pi)21+e2iNapi21+e2πiqi/a2\displaystyle\Pi_{i}\frac{1+e^{2ip^{i}_{-}a}}{2}\frac{1+e^{2iNa(p_{i}+p_{-}^{i})}}{2}\frac{1+e^{Nai(p^{i}+\pi n_{i}/(aN)+p_{-}^{i})}}{2}\frac{1+e^{2iNap_{i}}}{2}\frac{1+e^{2\pi iq_{i}/a}}{2}

and

A𝔅1(p,q)\displaystyle A^{1}_{{\mathfrak{B}}}(p,q) =\displaystyle= 12Dni=0,1;v𝒪e2ipvqv+na|A^|q+v+na11\displaystyle\frac{1}{2^{D}}\sum_{n_{i}=0,1;v\in{\cal O}^{\prime}}e^{2ipv}\,{}^{1}\langle q-v+na|\hat{A}|q+v+na\rangle^{1} (90)
Πi(1+e2iviπ/(aN))1+ei2π(qi+vi)/a21+e2iNapi21+eπi(qivi+ani)/a2\displaystyle\Pi_{i}({1+e^{-2iv_{i}\pi/(aN)}})\frac{1+e^{i2\pi(q_{i}+v_{i})/a}}{2}\frac{1+e^{2iNap_{i}}}{2}\frac{1+e^{\pi i(q_{i}-v_{i}+an_{i})/a}}{2}

for q𝒪2q\in{\cal O}^{2\prime}, p′′p\in{\cal M}^{\prime\prime} with

={(m12πNa,,mD2πNa)|mi{0,1,2,,N1}}{\cal M}=\{(m_{1}\frac{2\pi}{Na},...,m_{D}\frac{2\pi}{Na})|m_{i}\in\{0,1,2,...,N-1\}\}

while coordinate space is

𝒪={(m1a,,mDa)|mi{0,1,2,,N1}}{\cal O}=\{(m_{1}a,...,m_{D}a)|m_{i}\in\{0,1,2,...,N-1\}\}

We also define:

={(m12πNa,,mD2πNa)|mi{0,1/2,1,,N1/2}}{\cal M}^{\prime}=\{(m_{1}\frac{2\pi}{Na},...,m_{D}\frac{2\pi}{Na})|m_{i}\in\{0,1/2,1,...,N-1/2\}\}

and

𝒪1={(m1a,,mDa)|mi{0,2,4,,N2}}{\cal O}_{1}=\{(m_{1}a,...,m_{D}a)|m_{i}\in\{0,2,4,...,N-2\}\}

𝒪\cal O may be divided into the two pieces 𝒪=𝒪1𝒪2{\cal O}={\cal O}_{1}\cup{\cal O}_{2}. Here 𝒪2{\cal O}_{2} is the remaining piece of 𝒪\cal O. By A^1\hat{A}^{1} we denote restriction of operator A^\hat{A} to space spanned on vectors |q|q\rangle with q𝒪1q\in{\cal O}_{1}.

Hilbert space 1{\cal H}^{1} of one - particle states on the reduced momentum lattice 𝒪1{\cal O}_{1} is spanned on ket vectors

|q1,q𝒪1|q\rangle^{1},q\in{\cal O}_{1}

Another set of basis vectors is

|p1,p1/2|p\rangle^{1},p\in{\cal M}^{1/2}

with

1/2={(2πm1/(Na),,2πmD/(Na))|mi{0,1,2,,N/21}}{\cal M}^{1/2}=\{(2\pi m_{1}/(Na),...,2\pi m_{D}/(Na))|m_{i}\in\{0,1,2,...,N/2-1\}\}

We also denote

1/2={(2πm1/(Na),,2πmD/(Na))|mi{0,1/2,1,,N/21/2}}{\cal M}^{1/2\prime}=\{(2\pi m_{1}/(Na),...,2\pi m_{D}/(Na))|m_{i}\in\{0,1/2,1,...,N/2-1/2\}\}

and

1/2′′={(2πm1/(Na),,2πmD/(Na))|mi{0,1/4,1/2,3/4,1,,N/21/4}}{\cal M}^{1/2\prime\prime}=\{(2\pi m_{1}/(Na),...,2\pi m_{D}/(Na))|m_{i}\in\{0,1/4,1/2,3/4,1,...,N/2-1/4\}\}

Now we replace aa by 1/21/2 and NN by 2N2N. This leads us to the definition of the doubly modified Buot symbol for the lattice with NDN^{D} lattice sites and unit lattice spacing:

A𝔅(p,q)\displaystyle A_{{\mathfrak{B}}}(p,q) =\displaystyle= ni=0,1;p′′p+πn/(N)p|A^|p+πn/(N)+pe2ipq\displaystyle\sum_{n_{i}=0,1;p_{-}\in{\cal M}^{\prime\prime}}\,\langle p+\pi n/(N)-p_{-}|\hat{A}|p+\pi n/(N)+p_{-}\rangle\,e^{-2ip_{-}q} (91)
Πi1+eipi21+e2iN(pi+pi)21+eNi(pi+πni/(N)+pi)21+e2iNpi21+e4πiqi2\displaystyle\Pi_{i}\frac{1+e^{ip^{i}_{-}}}{2}\frac{1+e^{2iN(p_{i}+p_{-}^{i})}}{2}\frac{1+e^{Ni(p^{i}+\pi n_{i}/(N)+p_{-}^{i})}}{2}\frac{1+e^{2iNp_{i}}}{2}\frac{1+e^{4\pi iq_{i}}}{2}
=\displaystyle= ni=0,1;pp+πn/(N)p|A^|p+πn/(N)+pe2ipq\displaystyle\sum_{n_{i}=0,1;p_{-}\in{\cal M}^{\prime}}\,\langle p+\pi n/(N)-p_{-}|\hat{A}|p+\pi n/(N)+p_{-}\rangle\,e^{-2ip_{-}q}
Πi1+eipi21+eNi(pi+pi)+iniπ21+e2iNpi21+e4πiqi2\displaystyle\Pi_{i}\frac{1+e^{ip^{i}_{-}}}{2}\frac{1+e^{Ni(p^{i}+p_{-}^{i})+in_{i}\pi}}{2}\frac{1+e^{2iNp_{i}}}{2}\frac{1+e^{4\pi iq_{i}}}{2}

and

A𝔅(p,q)\displaystyle A_{{\mathfrak{B}}}(p,q) =\displaystyle= ni=0,1;v𝒪′′e2ipvqv+n/2|A^|q+v+n/2\displaystyle\sum_{n_{i}=0,1;v\in{\cal O}^{\prime\prime}}e^{2ipv}\,\langle q-v+n/2|\hat{A}|q+v+n/2\rangle (92)
Πi1+e2iviπ/(N)21+ei4π(qi+vi)21+e2iNpi21+e4πiqi21+e2πi(qivi+ni/2)2\displaystyle\Pi_{i}\frac{{1+e^{-2iv_{i}\pi/(N)}}}{2}\frac{1+e^{i4\pi(q_{i}+v_{i})}}{2}\frac{1+e^{2iNp_{i}}}{2}\frac{1+e^{4\pi iq_{i}}}{2}\frac{1+e^{2\pi i(q_{i}-v_{i}+n_{i}/2)}}{2}

Here

′′={(2πm1/N,,2πmD/N)|mi{0,1/4,1/2,3/4,1,,N1/4}}{\cal M}^{\prime\prime}=\{(2\pi m_{1}/N,...,2\pi m_{D}/N)|m_{i}\in\{0,1/4,1/2,3/4,1,...,N-1/4\}\}
𝒪′′={(m1,,mD)|mi{0,1/4,1/2,3/4,1,,N1/4}}{\cal O}^{\prime\prime}=\{(m_{1},...,m_{D})|m_{i}\in\{0,1/4,1/2,3/4,1,...,N-1/4\}\}

This definition may be easily extended to the whole range of real values of pp and qq as follows:

A𝔅(p,q)\displaystyle A_{{\mathfrak{B}}}(p,q) =\displaystyle= p1,p22′′;q1,q2𝒪2′′1(64N2)De2i((p2p)(q1q)+(q2q)(pp1))A𝔅(p1,q1)\displaystyle\sum_{p_{1},p_{2}\in{\cal M}^{2\prime\prime};q_{1},q_{2}\in{\cal O}^{2\prime\prime}}\frac{1}{(64N^{2})^{D}}e^{2i((p_{2}-p)(q_{1}-q)+(q_{2}-q)(p-p_{1}))}A_{{{\mathfrak{B}}}}(p_{1},q_{1}) (93)

Here

2′′={(2πm1/(N),,2πmD/(N))|mi{0,1/4,1/2,3/4,1,,2N1/4}}{\cal M}^{2\prime\prime}=\{(2\pi m_{1}/(N),...,2\pi m_{D}/(N))|m_{i}\in\{0,1/4,1/2,3/4,1,...,2N-1/4\}\}

and

𝒪2′′={(m1,,mD)|mi{0,1/4,1/2,3/4,1,,2N1/4}}{\cal O}^{2\prime\prime}=\{(m_{1},...,m_{D})|m_{i}\in\{0,1/4,1/2,3/4,1,...,2N-1/4\}\}

Now we are in a position to define the lattice Weyl symbol on the refined phase space 𝒪{\cal O}^{\prime}\otimes{\cal M}^{\prime} as

AW(p,q)\displaystyle A_{{W}}(p,q) =\displaystyle= ni=0,1;up+πn/Nu|A^|p+πn/N+ue2iuq\displaystyle\sum_{n_{i}=0,1;u\in{\cal M}^{\prime}}\,\langle p+\pi n/N-u|\hat{A}|p+\pi n/N+u\rangle\,e^{-2iuq} (94)
Πi1+eiui21+eNi(pi+ui)+iniπ2\displaystyle\Pi_{i}\frac{1+e^{iu^{i}}}{2}\frac{1+e^{Ni(p^{i}+u^{i})+in_{i}\pi}}{2}
=\displaystyle= ni=0,1;v𝒪e2ipvqv+n/2|A^|q+v+n/2\displaystyle\sum_{n_{i}=0,1;v\in{\cal O}^{\prime}}e^{2ipv}\,\langle q-v+n/2|\hat{A}|q+v+n/2\rangle
Πi1+e2iviπ/N21+e2πi(qivi+ni/2)2\displaystyle\Pi_{i}\frac{{1+e^{-2iv_{i}\pi/N}}}{2}\frac{1+e^{2\pi i(q_{i}-v_{i}+n_{i}/2)}}{2}

We can also say that

A𝔅(p,q)\displaystyle A_{{\mathfrak{B}}}(p,q) =\displaystyle= AW(p,q)Πi1+e2iNpi21+e4πiqi2\displaystyle A_{{W}}(p,q)\,\Pi_{i}\frac{1+e^{2iNp_{i}}}{2}\frac{1+e^{4\pi iq_{i}}}{2} (95)

for the argument of A𝔅(p,q)A_{{\mathfrak{B}}}(p,q) from 𝒪′′′′{\cal O}^{\prime\prime}\otimes{\cal M}^{\prime\prime} and

A𝔅(p,q)\displaystyle A_{{\mathfrak{B}}}(p,q) =\displaystyle= AW(p,q)\displaystyle A_{{W}}(p,q)\, (96)

for (q,p)𝒪(q,p)\in{\cal O}^{\prime}\otimes{\cal M}^{\prime}. Similar to the definition of Buot symbol this definition is extended to the continuous values of pp and qq as

AW(p,q)\displaystyle A_{{W}}(p,q) =\displaystyle= p1;q1𝒪;p2;q2𝒪1(4N2)De2i((p2p)(q1q)+(q2q)(pp1))AW(p1,q1)\displaystyle\sum_{p_{1}\in{\cal M}^{\prime};q_{1}\in{\cal O}^{\prime};p_{2}\in{\cal M}^{\prime};q_{2}\in{\cal O}^{\prime}}\frac{1}{(4N^{2})^{D}}e^{2i((p_{2}-p)(q_{1}-q)+(q_{2}-q)(p-p_{1}))}A_{{{W}}}(p_{1},q_{1}) (97)

Weyl symbol of translation to one lattice spacing is given by

Tj(p,q)\displaystyle T_{j}(p,q) =\displaystyle= eipj(1+e2iπ/N2+eiNpj1e2iπ/N2)\displaystyle e^{ip_{j}}\Big{(}\frac{1+e^{2i\pi/N}}{2}+e^{iNp_{j}}\frac{1-e^{2i\pi/N}}{2}\Big{)} (98)

IV.5 Basic properties of Weyl symbol

Basic properties of Weyl symbol follow from the properties of the modified Buot symbols.

Operator A^\hat{A} defined on the ordinary lattice 𝒪\cal O is to be extended to the lattice 𝒪2{\cal O}^{2\prime}. Correspondingly, momentum space is extended to 2{\cal M}^{2\prime}. In the present subsection we denote the basis vectors of these extended spaces by

|q),|p),q𝒪2,p2|q{)},\quad|p{)},\quad q\in{\cal O}^{2\prime},p\in{\cal M}^{2\prime}

Here

(q|p)=1(4N)Deipq{(}q|p{)}=\frac{1}{\sqrt{(4N)^{D}}}e^{ipq}

while

q|p=1NDeipq,q𝒪,p{\langle q|p\rangle}=\frac{1}{\sqrt{N^{D}}}e^{ipq},\quad q\in{\cal O},p\in{\cal M}

For operator A^\hat{A} extended to 𝒪2{\cal O}^{2\prime} we impose constraints

(q1+ej/2|A^|q2+ej/2)=(q1|A^|q2)=q1|A^1|q21+ei(q2q1)π/N2,(q1|A^|q2+ej/2)=0,q1,q2𝒪2{(q_{1}}+e_{j}/2|\hat{A}|q_{2}+e_{j}/2{)}={(q_{1}}|\hat{A}|q_{2}{)}=\langle q_{1}|\hat{A}_{1}|q_{2}\rangle\frac{1+e^{-i(q_{2}-q_{1})\pi/N}}{2},\quad{(q_{1}}|\hat{A}|q_{2}+e_{j}/2{)}=0,\quad q_{1},q_{2}\in{\cal O}^{2}

(we assume here |q+Nej=|q|q+Ne_{j}\rangle=|q\rangle), and

(p1+ejπ/N|A^|p2+ejπ/N)=(p1|A^|p2)=p1|A^1|p21+ei(p2p1)/22,(p1|A^|p2+ejπ/N)=0,p1,p22{(p_{1}}+e_{j}\pi/N|\hat{A}|p_{2}+e_{j}\pi/N{)}={(p_{1}}|\hat{A}|p_{2}{)}=\langle p_{1}|\hat{A}_{1}|p_{2}\rangle\frac{1+e^{i(p_{2}-p_{1})/2}}{2},\quad{(p_{1}}|\hat{A}|p_{2}+e_{j}\pi/N{)}=0,\quad p_{1},p_{2}\in{\cal M}^{2}

(we assume here |p+2πej=|p|p+2\pi e_{j}\rangle=|p\rangle).

We have the following representation for A^\hat{A}:

A^=1(2×4N)Dp2′′;q𝒪2′′Δ~(p,q)A𝔅(p,q)\hat{A}=\frac{1}{(2\times 4N)^{D}}\sum_{p\in{\cal M}^{2\prime\prime};q\in{\cal O}^{2\prime\prime}}\tilde{\Delta}(p,q)A_{{\mathfrak{B}}}(p,q) (99)

where

A𝔅(p,q)\displaystyle A_{\mathfrak{B}}(p,q) =\displaystyle= 12Dv𝒪2′′e2ipv(qv|A^|q+v)Πi1+ei4π(qi+vi)2\displaystyle\frac{1}{2^{D}}\sum_{v\in{\cal O}^{2\prime\prime}}e^{2ipv}(q-v|\hat{A}|q+v)\Pi_{i}\frac{1+e^{i4\pi(q_{i}+v_{i})}}{2} (100)
=\displaystyle= 12Dv𝒪2′′e2iqu(pu|A^|p+u)Πi1+e2iN(pi+ui)2\displaystyle\frac{1}{2^{D}}\sum_{v\in{\cal O}^{2\prime\prime}}e^{-2iqu}(p-u|\hat{A}|p+u)\Pi_{i}\frac{1+e^{2iN(p_{i}+u_{i})}}{2}

while

Δ~(p,q)=u2′′e2iqu|pu)(p+u|Πi1+e2iN(pi+ui)2\tilde{\Delta}(p,q)=\sum_{u\in{\cal M}^{2\prime\prime}}e^{2iqu}|p-u)(p+u|\Pi_{i}\frac{1+e^{2iN(p_{i}+u_{i})}}{2} (101)

In order to derive the star property we start from expression for the Buot symbol of the product of two operators (defined for q𝒪q\in{\cal O}^{\prime}, pp\in{\cal M}^{\prime} ):

(A^B^)𝔅(p,q)\displaystyle(\hat{A}\hat{B})_{\mathfrak{B}}(p,q) =\displaystyle= 1(2(8N)2)Dp1,p2,u2′′;q1,q2𝒪2′′(pu|Δ~(p1,q1)Δ~(p2,q2)|p+u)\displaystyle\frac{1}{(2(8N)^{2})^{D}}\sum_{p_{1},p_{2},u\in{\cal M}^{2\prime\prime};q_{1},q_{2}\in{\cal O}^{2\prime\prime}}(p-u|\tilde{\Delta}(p_{1},q_{1})\tilde{\Delta}(p_{2},q_{2})|p+u) (102)
e2iuqA𝔅(p1,q1)B𝔅(p2,q2)Πi1+e2iN(pi+ui)2\displaystyle e^{-2iuq}A_{\mathfrak{B}}(p_{1},q_{1})B_{\mathfrak{B}}(p_{2},q_{2})\Pi_{i}\frac{1+e^{2iN(p_{i}+u_{i})}}{2}
=\displaystyle= 18Dni=0,1;p1,p2;q1,q2𝒪1(N)2De2i((p2p)(q1q)+(q2q)(pp1))\displaystyle\frac{1}{8^{D}}\sum_{n_{i}=0,1;p_{1},p_{2}\in{\cal M}^{\prime};q_{1},q_{2}\in{\cal O}^{\prime}}\frac{1}{(N)^{2D}}e^{2i((p_{2}-p)(q_{1}-q)+(q_{2}-q)(p-p_{1}))}
AW(p1,q1)BW(p2,q2)|(pp1p2+πn)2e2πin(q+q1+q2)\displaystyle A_{W}(p_{1},q_{1})B_{W}(p_{2},q_{2})\Big{|}_{(p-p_{1}-p_{2}+\pi n)\in{\cal M}^{2}}e^{2\pi in(-q+q_{1}+q_{2})}
=\displaystyle= 18Dp1,δp2;q1,δq2𝒪1N2De2i(δp2(q1q)+δq2(pp1))\displaystyle\frac{1}{8^{D}}\sum_{p_{1},\delta p_{2}\in{\cal M}^{\prime};q_{1},\delta q_{2}\in{\cal O}^{\prime}}\frac{1}{N^{2D}}e^{2i(\delta p_{2}(q_{1}-q)+\delta q_{2}(p-p_{1}))}
AW(p1,q1)eδp2p+δq2qBW(p,q)Πi(1+eiN(δp2ip1i)2+1+eiN(δp2ip1i+π)2ei2π(δq2iq1i))\displaystyle A_{W}(p_{1},q_{1})e^{\delta p_{2}\partial_{p}+\delta q_{2}\partial_{q}}B_{W}(p,q)\Pi_{i}\Big{(}\frac{1+e^{iN(\delta p^{i}_{2}-p^{i}_{1})}}{2}+\frac{1+e^{iN(\delta p^{i}_{2}-p^{i}_{1}+\pi)}}{2}e^{i2\pi(\delta q^{i}_{2}-q^{i}_{1})}\Big{)}
=\displaystyle= 18Dp1,δp2;q1,δq2𝒪1N2De2i(δp2(q1q)+δq2(pp1))\displaystyle\frac{1}{8^{D}}\sum_{p_{1},\delta p_{2}\in{\cal M}^{\prime};q_{1},\delta q_{2}\in{\cal O}^{\prime}}\frac{1}{N^{2D}}e^{2i(\delta p_{2}(q_{1}-q)+\delta q_{2}(p-p_{1}))}
Πi(1+eiN(δp2ip1i)2+1+eiN(δp2ip1i+π)2ei2π(δq2iq1i))\displaystyle\Pi_{i}\Big{(}\frac{1+e^{iN(\delta p^{i}_{2}-p^{i}_{1})}}{2}+\frac{1+e^{iN(\delta p^{i}_{2}-p^{i}_{1}+\pi)}}{2}e^{i2\pi(\delta q^{i}_{2}-q^{i}_{1})}\Big{)}
AW(p1,q1)ei2(qppq)BW(p,q)\displaystyle A_{W}(p_{1},q_{1})e^{\frac{i}{2}(\overleftarrow{\partial_{q}}\overrightarrow{\partial_{p}}-\overleftarrow{\partial_{p}}\overrightarrow{\partial_{q}})}B_{W}(p,q)
=\displaystyle= AW(p,q)ei2(qppq)BW(p,q)\displaystyle A_{W}(p,q)e^{\frac{i}{2}(\overleftarrow{\partial_{q}}\overrightarrow{\partial_{p}}-\overleftarrow{\partial_{p}}\overrightarrow{\partial_{q}})}B_{W}(p,q)

We come to the star identity

(A^B^)W(p,q)|p,q𝒪=AW(p,q)ei2(qppq)BW(p,q)(\hat{A}\hat{B})_{W}(p,q)|_{p\in{\cal M}^{\prime},q\in{\cal O}^{\prime}}=A_{W}(p,q)e^{\frac{i}{2}(\overleftarrow{\partial_{q}}\overrightarrow{\partial_{p}}-\overleftarrow{\partial_{p}}\overrightarrow{\partial_{q}})}B_{W}(p,q)

The trace identities and the other important algebraic properties of Weyl symbol follow trivially from the corresponding properties of the Buot symbol.

IV.6 Alternative derivation of star identity

Let us give the alternative derivation of the star identity for Weyl symbol. It is assumed that pp\in{\cal M}^{\prime} while q𝒪q\in{\cal O}^{\prime}. We start from the star product of Weyl symbols and come back to the Weyl symbol of the product as follows.

AW(p,q)ei2(qppq)BW(p,q)=p1,δp2;q1,δq2𝒪1(2N)2De2i(δp2(q1q)+δq2(pp1))\displaystyle A_{W}(p,q)e^{\frac{i}{2}(\overleftarrow{\partial_{q}}\overrightarrow{\partial_{p}}-\overleftarrow{\partial_{p}}\overrightarrow{\partial_{q}})}B_{W}(p,q)=\sum_{p_{1},\delta p_{2}\in{\cal M}^{\prime};q_{1},\delta q_{2}\in{\cal O}^{\prime}}\frac{1}{(2N)^{2D}}e^{2i(\delta p_{2}(q_{1}-q)+\delta q_{2}(p-p_{1}))} (103)
AW(p1,q1)ei2(qppq)BW(p,q)\displaystyle A_{W}(p_{1},q_{1})e^{\frac{i}{2}(\overleftarrow{\partial_{q}}\overrightarrow{\partial_{p}}-\overleftarrow{\partial_{p}}\overrightarrow{\partial_{q}})}B_{W}(p,q)
=\displaystyle= p1,p2;q1,q2𝒪1(2N)2De2i((p2p)(q1q)+(q2q)(pp1))\displaystyle\sum_{p_{1},p_{2}\in{\cal M}^{\prime};q_{1},q_{2}\in{\cal O}^{\prime}}\frac{1}{(2N)^{2D}}e^{2i((p_{2}-p)(q_{1}-q)+(q_{2}-q)(p-p_{1}))}
AW(p1,q1)BW(p2,q2)\displaystyle A_{W}(p_{1},q_{1})B_{W}(p_{2},q_{2})
=\displaystyle= p1,p2;n1i,n2i=0,1;v1,v2,q1,q2𝒪122D(2N)2De2i((p2p)(q1q)+(q2q)(pp1))\displaystyle\sum_{p_{1},p_{2}\in{\cal M}^{\prime};n_{1}^{i},n_{2}^{i}=0,1;v_{1},v_{2},q_{1},q_{2}\in{\cal O}^{\prime}}\frac{1}{2^{2D}(2N)^{2D}}e^{2i((p_{2}-p)(q_{1}-q)+(q_{2}-q)(p-p_{1}))}
e2ip1v1+2p2v2q1v1+n1/2|A^|q1+v1+n1/2q2v2+n2/2|B^|q2+v2+n2/2|q1+v1+n1/2,q2+v2+n2/2𝒪\displaystyle e^{2ip_{1}v_{1}+2p_{2}v_{2}}\langle q_{1}-v_{1}+n_{1}/2|\hat{A}|q_{1}+v_{1}+n_{1}/2\rangle\langle q_{2}-v_{2}+n_{2}/2|\hat{B}|q_{2}+v_{2}+n_{2}/2\rangle\Big{|}_{q_{1}+v_{1}+n_{1}/2,q_{2}+v_{2}+n_{2}/2\in{\cal O}}
Πi(1+e2iv1iπ/N)(1+e2iv2iπ/N)\displaystyle\Pi_{i}({1+e^{-2iv_{1}^{i}\pi/N}})({1+e^{-2iv_{2}^{i}\pi/N}})
=\displaystyle= n1i,n2i=0,1;v1,v2𝒪122De2ip(v1+v2)\displaystyle\sum_{n_{1}^{i},n_{2}^{i}=0,1;v_{1},v_{2}\in{\cal O}^{\prime}}\frac{1}{2^{2D}}e^{2ip(v_{1}+v_{2})}
qv1v2+n1/2|A^|q+v1v2+n1/2q+v1v2+n2/2|B^|q+v1+v2+n2/2|q+v1+v2+n1/2,q+v1v2+n2/2𝒪\displaystyle\langle q-v_{1}-v_{2}+n_{1}/2|\hat{A}|q+v_{1}-v_{2}+n_{1}/2\rangle\langle q+v_{1}-v_{2}+n_{2}/2|\hat{B}|q+v_{1}+v_{2}+n_{2}/2\rangle\Big{|}_{q+v_{1}+v_{2}+n_{1}/2,q+v_{1}-v_{2}+n_{2}/2\in{\cal O}}
Πi(1+e2iv1iπ/N)(1+e2iv2iπ/N)\displaystyle\Pi_{i}({1+e^{-2iv_{1}^{i}\pi/N}})({1+e^{-2iv_{2}^{i}\pi/N}})
=\displaystyle= ni=0,1;v+,v𝒪2123De2ipv+qv++n/2|A^|q+v+n/2q+v+n/2|B^|q+v++n/2|q+v++n/2,q+v+n/2,v++v𝒪\displaystyle\sum_{n^{i}=0,1;v_{+},v_{-}\in{\cal O}^{2\prime}}\frac{1}{2^{3D}}e^{2ipv_{+}}\langle q-v_{+}+n/2|\hat{A}|q+v_{-}+n/2\rangle\langle q+v_{-}+n/2|\hat{B}|q+v_{+}+n/2\rangle\Big{|}_{q+v_{+}+n/2,q+v_{-}+n/2,v_{+}+v_{-}\in{\cal O}}
Πi(1+e2iv+iπ/N)\displaystyle\Pi_{i}({1+e^{-2iv_{+}^{i}\pi/N}})
=\displaystyle= ni=0,1;v+,v𝒪12De2ipv+qv++n/2|A^|q+v+n/2q+v+n/2|B^|q+v++n/2|q+v++n/2,q+v+n/2,v++v𝒪\displaystyle\sum_{n^{i}=0,1;v_{+},v_{-}\in{\cal O}^{\prime}}\frac{1}{2^{D}}e^{2ipv_{+}}\langle q-v_{+}+n/2|\hat{A}|q+v_{-}+n/2\rangle\langle q+v_{-}+n/2|\hat{B}|q+v_{+}+n/2\rangle\Big{|}_{q+v_{+}+n/2,q+v_{-}+n/2,v_{+}+v_{-}\in{\cal O}}
Πi(1+e2iv+iπ/N)\displaystyle\Pi_{i}({1+e^{-2iv_{+}^{i}\pi/N}})
=\displaystyle= ni=0,1;mi=0,1;v+,v𝒪122De2ipv++2πim(v++v)\displaystyle\sum_{n_{i}=0,1;m^{i}=0,1;v_{+},v_{-}\in{\cal O}^{\prime}}\frac{1}{2^{2D}}e^{2ipv_{+}+2\pi im(v_{+}+v_{-})}
qv++n/2|A^|q+v+n/2q+v+n/2|B^|q+v++n/2|q+v++n/2,q+v+n/2𝒪\displaystyle\langle q-v_{+}+n/2|\hat{A}|q+v_{-}+n/2\rangle\langle q+v_{-}+n/2|\hat{B}|q+v_{+}+n/2\rangle\Big{|}_{q+v_{+}+n/2,q+v_{-}+n/2\in{\cal O}}
Πi(1+e2iv+iπ/N)\displaystyle\Pi_{i}({1+e^{-2iv_{+}^{i}\pi/N}})

One can see that for qi+ni/2Zq_{i}+n_{i}/2\in Z both v+iv_{+}^{i} and viv_{-}^{i} are integer. At the same time if qi+ni/2q_{i}+n_{i}/2 is half integer, both v+iv_{+}^{i} and viv_{-}^{i} are half integer. In both cases v++vv_{+}+v_{-} is integer. As a result

AW(p,q)ei2(qppq)BW(p,q)=\displaystyle A_{W}(p,q)e^{\frac{i}{2}(\overleftarrow{\partial_{q}}\overrightarrow{\partial_{p}}-\overleftarrow{\partial_{p}}\overrightarrow{\partial_{q}})}B_{W}(p,q)=
=ni=0,1;v+,v𝒪12De2ipv+qv++n/2|A^|q+v+n/2q+v+n/2|B^|q+v++n/2|q+v++n/2,q+v+n/2𝒪\displaystyle=\sum_{n_{i}=0,1;v_{+},v_{-}\in{\cal O}^{\prime}}\frac{1}{2^{D}}e^{2ipv_{+}}\langle q-v_{+}+n/2|\hat{A}|q+v_{-}+n/2\rangle\langle q+v_{-}+n/2|\hat{B}|q+v_{+}+n/2\rangle\Big{|}_{q+v_{+}+n/2,q+v_{-}+n/2\in{\cal O}}
Πi(1+e2iv+iπ/N)\displaystyle\Pi_{i}({1+e^{-2iv_{+}^{i}\pi/N}})
=v+𝒪12De2ipv+qv++n/2|A^B^|q+v++n/2Πi(1+e2iv+iπ/N)\displaystyle=\sum_{v_{+}\in{\cal O}^{\prime}}\frac{1}{2^{D}}e^{2ipv_{+}}\langle q-v_{+}+n/2|\hat{A}\hat{B}|q+v_{+}+n/2\rangle\Pi_{i}({1+e^{-2iv_{+}^{i}\pi/N}})
=(A^B^)W(p,q)\displaystyle=(\hat{A}\hat{B})_{W}(p,q) (104)

IV.7 Trace properties

Let us express trace of an operator A^\hat{A} through its Weyl symbol:

1(4N)Dp;q𝒪AW(p,q)=\displaystyle\frac{1}{(4N)^{D}}\sum_{p\in{\cal M}^{\prime};q\in{\cal O}^{\prime}}A_{W}(p,q)=
=12D(4N)Dni=0,1;p;v,q𝒪e2ipvqv+n/2|A^|q+v+n/2|q+v+n/2𝒪Πi(1+e2iviπ/N)\displaystyle=\frac{1}{2^{D}(4N)^{D}}\sum_{n^{i}=0,1;p\in{\cal M}^{\prime};v,q\in{\cal O}^{\prime}}e^{2ipv}\langle q-v+n/2|\hat{A}|q+v+n/2\rangle\Big{|}_{q+v+n/2\in{\cal O}}\Pi_{i}({1+e^{-2iv^{i}\pi/N}})
=12Dni=0,1;q𝒪q+n/2|A^|q+n/2|q+n/2𝒪\displaystyle=\frac{1}{2^{D}}\sum_{n^{i}=0,1;q\in{\cal O}^{\prime}}\langle q+n/2|\hat{A}|q+n/2\rangle\Big{|}_{q+n/2\in{\cal O}}
=r𝒪r|A^|r=TrA^\displaystyle=\sum_{r\in{\cal O}}\langle r|\hat{A}|r\rangle={\rm Tr}\,\hat{A} (105)

Now let us consider the trace of the product of two operators

1(4N)Dp;q𝒪AW(p,q)BW(p,q)\displaystyle\frac{1}{(4N)^{D}}\sum_{p\in{\cal M}^{\prime};q\in{\cal O}^{\prime}}A_{W}(p,q)B_{W}(p,q) (106)
=\displaystyle= p;n1i,n2i=0,1;v1,v2,q𝒪122D(4N)De2ipv1+2pv2qv1+n1/2|A^|q+v1+n1/2\displaystyle\sum_{p\in{\cal M}^{\prime};n_{1}^{i},n_{2}^{i}=0,1;v_{1},v_{2},q\in{\cal O}^{\prime}}\frac{1}{2^{2D}(4N)^{D}}e^{2ipv_{1}+2pv_{2}}\langle q-v_{1}+n_{1}/2|\hat{A}|q+v_{1}+n_{1}/2\rangle
qv2+n2/2|B^|q+v2+n2/2|q+v1+n1/2,q+v2+n2/2𝒪Πi(1+e2iv1iπ/N)(1+e2iv2iπ/N)\displaystyle\langle q-v_{2}+n_{2}/2|\hat{B}|q+v_{2}+n_{2}/2\rangle\Big{|}_{q+v_{1}+n_{1}/2,q+v_{2}+n_{2}/2\in{\cal O}}\Pi_{i}({1+e^{-2iv_{1}^{i}\pi/N}})({1+e^{-2iv_{2}^{i}\pi/N}})
=\displaystyle= n1i,n2i=0,1;q,v𝒪123D\displaystyle\sum_{n_{1}^{i},n_{2}^{i}=0,1;q,v\in{\cal O}^{\prime}}\frac{1}{2^{3D}}
qv+n1/2|A^|q+v+n1/2q+v+n2/2|B^|qv+n2/2|q+v+n1/2,qv+n2/2𝒪\displaystyle\langle q-v+n_{1}/2|\hat{A}|q+v+n_{1}/2\rangle\langle q+v+n_{2}/2|\hat{B}|q-v+n_{2}/2\rangle\Big{|}_{q+v+n_{1}/2,q-v+n_{2}/2\in{\cal O}}
Πi(1+e2iviπ/N)(1+e2iviπ/N)\displaystyle\Pi_{i}({1+e^{-2iv^{i}\pi/N}})({1+e^{2iv^{i}\pi/N}})
=\displaystyle= ni=0,1;v+,v𝒪2123Dv+n/2|A^|v++n/2v++n/2|B^|v+n/2|v++n/2,v+n/2,v++v𝒪\displaystyle\sum_{n^{i}=0,1;v_{+},v_{-}\in{\cal O}^{2\prime}}\frac{1}{2^{3D}}\langle v_{-}+n/2|\hat{A}|v_{+}+n/2\rangle\langle v_{+}+n/2|\hat{B}|v_{-}+n/2\rangle\Big{|}_{v_{+}+n/2,v_{-}+n/2,v_{+}+v_{-}\in{\cal O}}
Πi(1+cos(v+ivi)π/N)\displaystyle\Pi_{i}({1+{\rm cos}\,(v_{+}^{i}-v_{-}^{i})\pi/N})
=\displaystyle= ni=0,1;v+,v𝒪12Dv+n/2|A^|v++n/2v++n/2|B^|v+n/2|v++n/2,v+n/2,v++v𝒪\displaystyle\sum_{n^{i}=0,1;v_{+},v_{-}\in{\cal O}^{\prime}}\frac{1}{2^{D}}\langle v_{-}+n/2|\hat{A}|v_{+}+n/2\rangle\langle v_{+}+n/2|\hat{B}|v_{-}+n/2\rangle\Big{|}_{v_{+}+n/2,v_{-}+n/2,v_{+}+v_{-}\in{\cal O}}
=\displaystyle= ni=0,1;mi=0,1;v+,v𝒪122De2πim(v++v)\displaystyle\sum_{n_{i}=0,1;m^{i}=0,1;v_{+},v_{-}\in{\cal O}^{\prime}}\frac{1}{2^{2D}}e^{2\pi im(v_{+}+v_{-})}
v+n/2|A^|v++n/2v++n/2|B^|v+n/2|v++n/2,v+n/2𝒪\displaystyle\langle v_{-}+n/2|\hat{A}|v_{+}+n/2\rangle\langle v_{+}+n/2|\hat{B}|v_{-}+n/2\rangle\Big{|}_{v_{+}+n/2,v_{-}+n/2\in{\cal O}}
=\displaystyle= v+,v𝒪v|A^|v+v+|B^|v=TrA^B^\displaystyle\sum_{v_{+},v_{-}\in{\cal O}}\langle v_{-}|\hat{A}|v_{+}\rangle\langle v_{+}|\hat{B}|v_{-}\rangle={\rm Tr}\,\hat{A}\hat{B}

IV.8 Limit of inifinitely large lattice

Let us consider the limit of infinitely large lattice (NN\to\infty). Then momentum space becomes continuous. Eq. (94) is reduced to the following expression for the Weyl symbol:

A𝒲(p,q)\displaystyle A_{{\cal W}}(p,q) \displaystyle\approx ppp|A^|p+pe2ipqΠi1+eipi2\displaystyle\sum_{p_{-}\in{\cal M}^{\prime}}\,\langle p-p_{-}|\hat{A}|p+p_{-}\rangle\,e^{2ip_{-}q}\Pi_{i}\frac{1+e^{ip^{i}_{-}}}{2} (107)

Because A𝒲(p,q)A_{\cal W}(p,q) as a function of pp is continuous for the operators that originate from the tight - binding models (i.e. those composed of T^j\hat{T}_{j} considered above), we obtain

A𝒲(p,q)\displaystyle A_{{\cal W}}(p,q) \displaystyle\approx ppp|A^|p+pe2ipqΠi1+eipi2\displaystyle\sum_{p_{-}\in{\cal M}^{\prime}}\,\langle p-p_{-}|\hat{A}|p+p_{-}\rangle\,e^{2ip_{-}q}\Pi_{i}\frac{1+e^{ip^{i}_{-}}}{2} (108)
\displaystyle\approx ND(2π)DdDppp|A^|p+pe2ipqΠi(1+eipi)\displaystyle\frac{N^{D}}{(2\pi)^{D}}\int_{{\cal M}}d^{D}p_{-}\,\langle p-p_{-}|\hat{A}|p+p_{-}\rangle\,e^{2ip_{-}q}\Pi_{i}(1+e^{ip^{i}_{-}})

Recall that basis vectors of Hilbert space corresponding to definite momentum are defined for finite NN as:

|p=1(N)Dq𝒪|qeipq|p\rangle=\frac{1}{\sqrt{(N)^{D}}}\sum_{q\in{\cal O}}|q\rangle e^{ipq}

Let us define the other set of basis vectors:

|p1(2π)Dq𝒪|qeipq|p\rangle\rangle\equiv\frac{1}{\sqrt{(2\pi)^{D}}}\sum_{q\in{\cal O}}|q\rangle e^{ipq}

In terms of these basis vectors Weyl symbol of operator is given by

A𝒲(p,q)\displaystyle A_{{\cal W}}(p,q) \displaystyle\approx dDppp|A^|p+pe2ipqΠi(1+eipi)\displaystyle\int_{{\cal M}}d^{D}p_{-}\,\langle\langle p-p_{-}|\hat{A}|p+p_{-}\rangle\rangle\,e^{2ip_{-}q}\Pi_{i}(1+e^{ip^{i}_{-}}) (109)

Extension to the real values of pp and qq in this limit obtains the form:

A𝒲(p,q)\displaystyle A_{\cal W}(p,q) =\displaystyle= p1,p2;q1,q2𝒪1(4N2)De2i((p2p)(q1q)+(q2q)(pp1))A𝒲(p1,q1)\displaystyle\sum_{p_{1},p_{2}\in{\cal M}^{\prime};q_{1},q_{2}\in{\cal O}^{\prime}}\frac{1}{(4N^{2})^{D}}e^{2i((p_{2}-p)(q_{1}-q)+(q_{2}-q)(p-p_{1}))}A_{{\cal W}}(p_{1},q_{1}) (110)
\displaystyle\approx dDp2dDp1q1,q2𝒪1((2π)2)De2i((p2p)(q1q)+(q2q)(pp1))A𝒲(p1,q1)\displaystyle\int_{{\cal M}}d^{D}p_{2}d^{D}p_{1}\sum_{q_{1},q_{2}\in{\cal O}^{\prime}}\frac{1}{((2\pi)^{2})^{D}}e^{2i((p_{2}-p)(q_{1}-q)+(q_{2}-q)(p-p_{1}))}A_{{\cal W}}(p_{1},q_{1})
\displaystyle\approx dDp2q1𝒪1(2π)De2i((p2p)(q1q))A𝒲(p,q1)\displaystyle\int_{{\cal M}}d^{D}p_{2}\sum_{q_{1}\in{\cal O}^{\prime}}\frac{1}{(2\pi)^{D}}e^{2i((p_{2}-p)(q_{1}-q))}A_{{\cal W}}(p,q_{1})
\displaystyle\approx 1dDp2q1𝒪1(2π)De2i((p2p)(q1q))dDppp|A^|p+pe2ipq1Πi(1+eipi)\displaystyle\int_{{\cal M}_{1}}d^{D}p_{2}\sum_{q_{1}\in{\cal O}^{\prime}}\frac{1}{(2\pi)^{D}}e^{2i((p_{2}-p)(q_{1}-q))}\int_{{\cal M}}d^{D}p_{-}\,\langle\langle p-p_{-}|\hat{A}|p+p_{-}\rangle\rangle\,e^{2ip_{-}q_{1}}\Pi_{i}(1+e^{ip^{i}_{-}})
\displaystyle\approx dDppp|A^|p+pe2ipqΠi(1+eipi)\displaystyle\int_{{\cal M}}d^{D}p_{-}\,\langle\langle p-p_{-}|\hat{A}|p+p_{-}\rangle\rangle\,e^{2ip_{-}q}\Pi_{i}(1+e^{ip^{i}_{-}})

One can see that our definition of Weyl symbol defined on the finite lattice is precisely reduced to the definition of [41] in the limit of infinite lattice.

V Dynamics of systems defined on finite lattice, and Hall conductivity

V.1 Keldysh technique of field theory

Here we follow closely the methodology of [83] and [43]. Let us consider the inhomogeneous system defined on the DD - dimensional lattice 𝒪\cal O. Time remains continuous. The complete field Hamiltonian is denoted by ^\hat{\mathcal{H}}. Let the operator O[ψ,ψ¯]O[\psi,\bar{\psi}] be a functional of field operators ψ^,ψ¯^\hat{\psi},\hat{\bar{\psi}}. We suppose that OO is a local, i.e. at the moment of time tt it is a function of ψ\psi and ψ¯\bar{\psi} defined at the same moment. Quantum average of this operator is given by

O=tr(ρ^(ti)eitit^dtO[ψ^,ψ¯^]eittf^dteititf^dt).\langle O\rangle={\mathop{\rm tr}\nolimits}\,\Bigl{(}\hat{\rho}(t_{i})\,e^{-i\int_{t_{i}}^{t}\hat{\mathcal{H}}dt}O[\hat{\psi},\hat{\bar{\psi}}]e^{-i\int_{t}^{t_{f}}\hat{\mathcal{H}}dt}e^{i\int_{t_{i}}^{t_{f}}\hat{\mathcal{H}}dt}\Bigr{)}.

Here ti<t<tft_{i}<t<t_{f}, and ρ^(ti)\hat{\rho}(t_{i}) is density matrix at tit_{i}. Using time ordering TT we rewrite it as

O=tr(T[ρ^(ti)eititf^dtO[ψ^,ψ¯^]]eititf^dt).\langle O\rangle={\mathop{\rm tr}\nolimits}\,\Bigl{(}T\,\Big{[}\hat{\rho}(t_{i})\,e^{-i\int_{t_{i}}^{t_{f}}\hat{\mathcal{H}}dt}O[\hat{\psi},\hat{\bar{\psi}}]\Big{]}e^{i\int_{t_{i}}^{t_{f}}\hat{\mathcal{H}}dt}\Bigr{)}.

For the lattice model an average of quantity OO is given by

O=𝒟ψ¯𝒟ψO[ψ,ψ¯]exp{iCdtxψ¯(t,x)Q^ψ(t,x)}.\langle O\rangle=\int{\cal D}\bar{\psi}{\cal D}\psi\,O[\psi,\bar{\psi}]\exp\left\{\mathrm{i}\int_{C}dt\sum_{x}\,\bar{\psi}(t,x)\hat{Q}\psi(t,x)\right\}.

Here ψ\psi and ψ¯\bar{\psi} are independent Grassmann variables, and by xx we understand here a DD-dimensional lattice point. In the absence of interactions Q^\hat{Q} is given by Q^=itH^\hat{Q}=i\partial_{t}-\hat{H}, where H^\hat{H} is one-particle Hamiltonian. Integration over time tt is along the Keldysh contour CC. The contour starts at the initial moment of time tit_{i}, goes to the final moment tft_{f}, and returns back from tft_{f} to tit_{i}. The whole dynamics is concentrated between tit_{i} and tft_{f}.

The forward part of the contour carries the fields ψ¯(t,x)\bar{\psi}_{-}(t,x) and ψ(t,x)\psi_{-}(t,x). The fields on the backward part are ψ¯+(t,x)\bar{\psi}_{+}(t,x) and ψ+(t,x)\psi_{+}(t,x).

Variables of the two parts of the Keldysh contour are independent of each other. However, there exist boundary conditions relating them to each other: ψ¯(tf,x)=ψ¯+(tf,x)\bar{\psi}_{-}(t_{f},x)=\bar{\psi}_{+}(t_{f},x) and ψ(tf,x)=ψ+(tf,x)\psi_{-}(t_{f},x)=\psi_{+}(t_{f},x). The integration measure 𝒟ψ¯𝒟ψ{\cal D}\bar{\psi}{\cal D}\psi contains ψ¯+(ti,x)\bar{\psi}_{+}(t_{i},x), ψ+(ti,x){\psi}_{+}(t_{i},x) and ψ¯(ti,x)\bar{\psi}_{-}(t_{i},x), ψ(ti,x){\psi}_{-}(t_{i},x) and a weight function responsible for the initial density matrix ρ^\hat{\rho}:

O\displaystyle\langle O\rangle =\displaystyle= 𝒟ψ¯±𝒟ψ±Det(1+ρ)O[ψ+,ψ¯+]\displaystyle\int\frac{{\cal D}\bar{\psi}_{\pm}{\cal D}\psi_{\pm}}{{\rm Det}\,(1+\rho)}\,O[\psi_{+},\bar{\psi}_{+}] (111)
exp{ititfdtx[ψ¯(t,x)Q^ψ(t,x)ψ¯+(t,x)Q^ψ+(t,x)]xψ¯(ti,x)ρψ+(ti,x)}.\displaystyle\qquad{\rm exp}\left\{\mathrm{i}\int_{t_{i}}^{t_{f}}dt\sum_{x}\left[\bar{\psi}_{-}(t,x)\hat{Q}\psi_{-}(t,x)-\bar{\psi}_{+}(t,x)\hat{Q}\psi_{+}(t,x)\right]-\sum_{x}\,\bar{\psi}_{-}(t_{i},x){\rho}\psi_{+}(t_{i},x)\right\}.

Here ρ\rho (without hat) is defined as an operator in one - particle Hilbert space. Let us denote its eigenstates by |λi|\lambda_{i}\rangle. Its matrix elements are: λi|ρ|λi1+λi|ρ|λi\frac{\langle\lambda_{i}|\rho|\lambda_{i}\rangle}{1+\langle\lambda_{i}|\rho|\lambda_{i}\rangle} is the probability that the one - particle state |λi|\lambda_{i}\rangle is occupied while 11+λi|ρ|λi\frac{1}{1+\langle\lambda_{i}|\rho|\lambda_{i}\rangle} is the probability that this state is vacant. Let us introduce Keldysh spinors

Ψ=(ψψ+),\Psi=\left(\begin{array}[]{c}\psi_{-}\\ \psi_{+}\end{array}\right), (112)

The expression for the average of an operator OO receives the form

O\displaystyle\langle O\rangle =\displaystyle= 1Det(1+ρ)𝒟Ψ¯𝒟ΨO[Ψ,Ψ¯]exp{ititfdtxΨ¯(t,x)𝐐^Ψ(t,x)}.\displaystyle\frac{1}{{\rm Det}\,(1+\rho)}\int{\cal D}\bar{\Psi}{\cal D}\Psi\,O[\Psi,\bar{\Psi}]\,{\rm exp}\Bigl{\{}\mathrm{i}\int_{t_{i}}^{t_{f}}dt\sum_{x}\bar{\Psi}(t,x)\hat{\bf Q}\Psi(t,x)\Bigr{\}}. (113)

Again, by xx we understand here a DD-dimensional vector. Here 𝑸^\bm{\hat{Q}} is in Keldysh representation

𝐐^=(QQ+Q+Q++).\displaystyle\hat{\bf Q}=\left(\begin{array}[]{cc}Q_{--}&Q_{-+}\\ Q_{+-}&Q_{++}\end{array}\right). (116)

The correct expressions for the components of this matrix may be obtained either as continuum limit of the lattice regularized expressions or using operator formalism. The result is

Q++\displaystyle Q_{++} =\displaystyle= (itH^iϵ1ρ1+ρ),\displaystyle-\Big{(}\mathrm{i}\partial_{t}-\hat{H}-\mathrm{i}\epsilon\frac{1-\rho}{1+\rho}\Big{)},
Q\displaystyle Q_{--} =\displaystyle= itH^+iϵ1ρ1+ρ,\displaystyle\mathrm{i}\partial_{t}-\hat{H}+\mathrm{i}\epsilon\frac{1-\rho}{1+\rho},
Q+\displaystyle Q_{+-} =\displaystyle= 2iϵ11+ρ,\displaystyle-2\mathrm{i}\epsilon\frac{1}{1+\rho},
Q+\displaystyle Q_{-+} =\displaystyle= 2iϵρ1+ρ.\displaystyle 2\mathrm{i}\epsilon\frac{\rho}{1+\rho}. (117)

Here ρ\rho is matrix that gives rise to initial one - particle distribution f=ρ(1+ρ)1f=\rho(1+\rho)^{-1}. In case of the distribution depending only on energy (and, in particular for thermal distribution of non - interacting particles) ρ=ρ(H^)\rho=\rho(\hat{H}) is a function of the one - particle Hamiltonian. The infinitely small contributions proportional to parameter ϵ0\epsilon\to 0 symbolize the way those functions are understood as the so - called generalized functions (tempered distributions), for details see Sect. 5.1 of [84].

The Green’s function 𝐆^\hat{\bf G} is defined as

Gα1α2(t,x|t,x)\displaystyle G_{\alpha_{1}\alpha_{2}}(t,x|t^{\prime},x^{\prime}) =\displaystyle= 𝒟Ψ¯𝒟ΨiDet(1+ρ)Ψα1(t,x)Ψ¯α2(t,x)exp{ititfdtxΨ¯(t,x)𝐐^Ψ(t,x)}.\displaystyle\int\frac{{\cal D}\bar{\Psi}{\cal D}\Psi}{\mathrm{i}{\rm Det}\,(1+\rho)}\Psi_{\alpha_{1}}(t,x)\bar{\Psi}_{\alpha_{2}}(t^{\prime},x^{\prime})\,\exp\left\{\mathrm{i}\int_{t_{i}}^{t_{f}}dt\sum_{x}\,\bar{\Psi}(t,x)\hat{\bf Q}\Psi(t,x)\right\}. (118)

Here index α\alpha corresponds to components of Keldysh spinor (112). The Green function obeys equation

𝐐^𝐆^=1.\hat{\bf Q}\hat{\bf G}=1.

For the components of 𝐆^\hat{\bf G} we have the following relation

G+G++G+G+=0G_{--}+G_{++}-G_{-+}-G_{+-}=0 (119)

while

Q+Q+++Q++Q+=0.Q_{--}+Q_{++}+Q_{-+}+Q_{+-}=0. (120)

Sometimes the new representation of Keldysh spinors is used that is related to the spinors defined above as follows

(ψ1ψ2)=12(1111)(ψψ+),(ψ¯1ψ¯2)=12(ψ¯ψ¯+)(1111).\begin{pmatrix}\psi_{1}\\ \psi_{2}\end{pmatrix}=\frac{1}{\sqrt{2}}\begin{pmatrix}1&1\\ 1&-1\end{pmatrix}\begin{pmatrix}\psi_{-}\\ \psi_{+}\end{pmatrix},\quad\begin{pmatrix}\bar{\psi}_{1}&\bar{\psi}_{2}\end{pmatrix}=\frac{1}{\sqrt{2}}\begin{pmatrix}\bar{\psi}_{-}&\bar{\psi}_{+}\end{pmatrix}\begin{pmatrix}1&1\\ -1&1\end{pmatrix}.

Green function in the new representation receives the triangle form

𝐆^(K)\displaystyle\hat{\bf G}^{(K)} =\displaystyle= i(ψ1ψ2)(ψ¯1ψ¯2)\displaystyle-i\langle\begin{pmatrix}\psi_{1}\\ \psi_{2}\end{pmatrix}\otimes\begin{pmatrix}\bar{\psi}_{1}&\bar{\psi}_{2}\end{pmatrix}\rangle
=\displaystyle= 12(1111)(GG+G+G++)(1111)\displaystyle\frac{1}{2}\begin{pmatrix}1&1\\ 1&-1\end{pmatrix}\begin{pmatrix}G^{--}&G^{-+}\\ G^{+-}&G^{++}\end{pmatrix}\begin{pmatrix}1&1\\ -1&1\end{pmatrix}
=\displaystyle= (GRGK0GA).\displaystyle\begin{pmatrix}G^{\rm R}&G^{\rm K}\\ 0&G^{\rm A}\end{pmatrix}.

Here the Keldysh, Advanced and Retarded Green functions are introduced:

GK=G++G+=G+G++,GA=GG+=G+G++,GR=GG+=G+G++.\begin{split}G^{\rm K}&=G^{-+}+G^{+-}=G^{--}+G^{++},\\ G^{\rm A}&=G^{--}-G^{+-}=G^{-+}-G^{++},\\ G^{\rm R}&=G^{--}-G^{-+}=G^{+-}-G^{++}.\end{split} (122)

In our paper we will use yet another representation

𝐆^(<)=(1101)(GRGK0GA)(1101)=(GR2G<0GA).\begin{split}\hat{\bf G}^{(<)}&=\begin{pmatrix}1&1\\ 0&1\end{pmatrix}\begin{pmatrix}G^{\rm R}&G^{\rm K}\\ 0&G^{\rm A}\end{pmatrix}\begin{pmatrix}1&-1\\ 0&1\end{pmatrix}\\ &=\begin{pmatrix}G^{\rm R}&2G^{<}\\ 0&G^{\rm A}\end{pmatrix}.\end{split} (123)

It is related to the Green function defined by Eq. (118) as follows

𝐆^(<)=U𝐆^V,\hat{\bf G}^{(<)}=U\hat{\bf G}V, (124)

where

U=12(1101)(1111)=12(2011)U=\frac{1}{\sqrt{2}}\begin{pmatrix}1&1\\ 0&1\end{pmatrix}\begin{pmatrix}1&1\\ 1&-1\end{pmatrix}=\frac{1}{\sqrt{2}}\begin{pmatrix}2&0\\ 1&-1\end{pmatrix}

and

V=12(1111)(1101)=12(1012).V=\frac{1}{\sqrt{2}}\begin{pmatrix}1&1\\ -1&1\end{pmatrix}\begin{pmatrix}1&-1\\ 0&1\end{pmatrix}=\frac{1}{\sqrt{2}}\begin{pmatrix}1&0\\ -1&2\end{pmatrix}.

In addition, we have

𝐐^(<)\displaystyle\hat{\bf Q}^{(<)} =\displaystyle= V1𝐐^U1\displaystyle V^{-1}\hat{\bf Q}U^{-1}
=\displaystyle= 12(2011)(QQ+Q+Q++)(1012)\displaystyle\frac{1}{2}\begin{pmatrix}2&0\\ 1&1\end{pmatrix}\begin{pmatrix}Q^{--}&Q^{-+}\\ Q^{+-}&Q^{++}\end{pmatrix}\begin{pmatrix}1&0\\ 1&-2\end{pmatrix}
=\displaystyle= (Q+Q+2Q+Q+Q++Q++Q++2Q+Q++)\displaystyle\begin{pmatrix}Q^{--}+Q^{-+}&-2Q^{-+}\\ \frac{Q^{--}+Q^{+-}+Q^{-+}+Q^{++}}{2}&-Q^{-+}-Q^{++}\end{pmatrix}
=\displaystyle= (QR2Q<0QA),\displaystyle\begin{pmatrix}Q^{\rm R}&2Q^{<}\\ 0&Q^{\rm A}\end{pmatrix},

Here we denote

QR=Q+Q+,QA=Q+Q++,Q<=Q+,Q^{\rm R}=Q^{--}+Q^{-+},\qquad Q^{\rm A}=-Q^{-+}-Q^{++},\qquad Q^{<}=-Q^{-+}, (126)

As a result

GA=(QA)1,GR=(QA)1,G<=GRQ<GA.G^{\rm A}=(Q^{\rm A})^{-1},\qquad G^{\rm R}=(Q^{\rm A})^{-1},\qquad G^{<}=-G^{\rm R}Q^{<}G^{\rm A}. (127)

with

GR=(itH^e+ϵt)1=(itH^+iϵ)1,GA=(itH^eϵt)1=(itH^iϵ)1,G<=(GAGR)ρρ+1.\begin{split}G^{\rm R}&=(\mathrm{i}\partial_{t}-\hat{H}e^{+\epsilon\partial_{t}})^{-1}=(\mathrm{i}\partial_{t}-\hat{H}+\mathrm{i}\epsilon)^{-1},\\ G^{\rm A}&=(\mathrm{i}\partial_{t}-\hat{H}e^{-\epsilon\partial_{t}})^{-1}=(\mathrm{i}\partial_{t}-\hat{H}-\mathrm{i}\epsilon)^{-1},\\ G^{<}&=(G^{\rm A}-G^{\rm R})\frac{\rho}{\rho+1}.\end{split} (128)

The elements of 𝐐^<\hat{\bf Q}^{<} (which is inverse to 𝐆^<\hat{\bf G}^{<}) are:

Q<=(QAQR)ρρ+1=2iϵρρ+1,QR=itH^+iϵ,QA=itH^iϵ.\begin{split}Q^{<}&=(Q^{\rm A}-Q^{\rm R})\frac{\rho}{\rho+1}=-2\mathrm{i}\epsilon\frac{\rho}{\rho+1},\\ Q^{\rm R}&=\mathrm{i}\partial_{t}-\hat{H}+\mathrm{i}\epsilon,\\ Q^{\rm A}&=\mathrm{i}\partial_{t}-\hat{H}-\mathrm{i}\epsilon.\end{split} (129)

For more details on the basics of Keldysh technique briefly reviewed above the reader is advised to consult [85, 84].

V.2 Keldysh technique in terms of Weyl symbol, and conductivity

Basic notions of Wigner - Weyl calculus may be found, for example, in [33, 80]. Here we adopt them to the models defined on finite lattice. In the following the D+1D+1 dimensional vectors (with space and time components) are denoted by large Latin letters. We denote matrix element of an operator A^\hat{A} by A(X1,X2)=X1|A^|X2A(X_{1},X_{2})=\langle X_{1}|\hat{A}|X_{2}\rangle. Since we deal with the lattice models the space components of D+1D+1 - vectors are discrete while the time components are continuous. We then define the Weyl symbol of an operator A^\hat{A} as the mixture of Weyl symbol (with respect to discrete space components) defined above, and the standard Wigner transformation with respect to the time component:

AW(X|P)\displaystyle A_{W}(X|P) =\displaystyle= 2dY0ni=0,1;Y𝒪e2iYμPμA(X+Y+n/2,XY+n/2)Πi=1D1+e2iYiπ/N21+e2πi(Xi+Yi+ni/2)2\displaystyle 2\int dY^{0}\,\sum_{n_{i}=0,1;\vec{Y}\in{\cal O}^{\prime}}e^{2\mathrm{i}Y^{\mu}P_{\mu}}A(X+Y+n/2,X-Y+n/2)\Pi_{i=1...D}\frac{{1+e^{2iY_{i}\pi/N}}}{2}\frac{1+e^{2\pi i(X_{i}+Y_{i}+n_{i}/2)}}{2}
μ=0,1,,D\displaystyle\quad\mu=0,1,...,D

D+1D+1 momentum is denoted by Pμ=(P0,p)P^{\mu}=(P^{0},p), and Pμ=(P0,p)P_{\mu}=(P^{0},-p). Here pp is spatial momentum with DD components. Below Weyl symbol of Keldysh Green function 𝐆^\hat{\bf G} is denoted by G^\hat{G}, while Weyl symbol of Keldysh 𝐐^\hat{\bf Q} is Q^\hat{Q}. We omit the subscript WW for brevity in this section.

Weyl symbols G^\hat{G} and Q^\hat{Q} obey Groenewold equation

Q^G^=1W.\hat{Q}*\hat{G}=1_{W}. (131)

Here the Moyal product * is defined as

(AB)(X|P)=A(X|P)ei(XμPμPμXμ)/2B(X|P).\left(A*B\right)(X|P)=A(X|P)\,e^{{-}\mathrm{i}(\overleftarrow{\partial}_{X^{\mu}}\overrightarrow{\partial}_{P_{\mu}}-\overleftarrow{\partial}_{P_{\mu}}\overrightarrow{\partial}_{X^{\mu}})/2}B(X|P). (132)

In the present paper we consider the situation when electromagnetic potential AA corresponds to constant components of field strength μν{\cal F}^{\mu\nu}. Moreover, the gauge is chosen, in which the spatial part of potential is proportional to time but does not depend on spatial coordinates. Expansion in powers of μν{\cal F}^{\mu\nu} will be used up to the leading order, proportional to electric field. Introduction of such a form of external gauge potential results in Peierls substitution Pπ=PAP\to\pi=P-A. Here πμ\pi^{\mu} is D+1D+1 - dimensional vector similar to PμP^{\mu}. When index is lowered, its spatial components change the sign. The Moyal product may be decomposed as

=eiμνπμπν/2.*=\star~{}e^{{-}\mathrm{i}\mathcal{F}^{\mu\nu}\overleftarrow{\partial}_{\pi^{\mu}}\overrightarrow{\partial}_{\pi^{\nu}}/2}. (133)

with

(AB)(X|π)=A(X|π)ei(XμπμπμXμ)/2B(X|π).\left(A\star B\right)(X|\pi)=A(X|\pi)\,e^{{-\mathrm{i}(\overleftarrow{\partial}_{X^{\mu}}\overrightarrow{\partial}_{\pi_{\mu}}-\overleftarrow{\partial}_{\pi_{\mu}}\overrightarrow{\partial}_{X^{\mu}})/2}}B(X|\pi). (134)

This expression remains valid specifically for the case of the given external field AA that does not depend on spatial coordinates, but depends on time giving rise to external electric field. The case of the external field depending on spatial coordinates would be more involved due to the presence of spatial lattice.

Next, we use expansion of Q^\hat{Q} and G^\hat{G} in powers of μν\mathcal{F}^{\mu\nu} and keep the terms up to the linear

Q^=Q^(0)+12μνQ^μν(1),G^=G^(0)+12μνG^μν(1).\hat{Q}=\hat{Q}^{(0)}+\frac{1}{2}\mathcal{F}^{\mu\nu}\hat{Q}_{\mu\nu}^{(1)},\quad\hat{G}=\hat{G}^{(0)}+\frac{1}{2}\mathcal{F}^{\mu\nu}\hat{G}_{\mu\nu}^{(1)}. (135)

Besides, below we omit for simplicity the superscript (0) of the zeroth order contribution to both GG and QQ. For the case of Hamiltonian that does not depend on time and initial distribution f(π0)f(\pi_{0}) depending on energy only we have

GR=(π0H^(π,x)+iϵ)1,GA=(π0H^(π,x)iϵ)1,G<=(GAGR)f(π0)=2πiδ(π0H^(π))f(π0).\begin{split}G^{\rm R}&=(\pi_{0}-\hat{H}(\vec{\pi},x)+\mathrm{i}\epsilon)^{-1},\\ G^{\rm A}&=(\pi_{0}-\hat{H}(\vec{\pi},x)-\mathrm{i}\epsilon)^{-1},\\ G^{<}&=(G^{\rm A}-G^{\rm R})f(\pi_{0})=2\pi i\delta(\pi_{0}-\hat{H}(\vec{\pi}))f(\pi_{0}).\end{split} (136)

Matrix 𝐐^<\hat{\bf Q}^{<} is inverse to 𝐆^<\hat{\bf G}^{<} (with respect to the Moyal product):

Q<=(QAQR)f(π0)=2iϵf(π0),QR=π0H^(π,x)+iϵ,QA=π0H^(π,x)iϵ.\begin{split}Q^{<}&=(Q^{\rm A}-Q^{\rm R})f(\pi_{0})=-2\mathrm{i}\epsilon f(\pi_{0}),\\ Q^{\rm R}&=\pi_{0}-\hat{H}(\vec{\pi},x)+\mathrm{i}\epsilon,\\ Q^{\rm A}&=\pi_{0}-\hat{H}(\vec{\pi},x)-\mathrm{i}\epsilon.\end{split} (137)

The Groenewold equation can be written as

(Q^+12μνQ^μν(1))eiμνπμπν/2(G^+12μνG^μν(1))=1W.\left(\hat{Q}+\frac{1}{2}\mathcal{F}^{\mu\nu}\hat{Q}_{\mu\nu}^{(1)}\right)\star~{}e^{{-}i\mathcal{F}^{\mu\nu}\overleftarrow{\partial}_{\pi^{\mu}}\overrightarrow{\partial}_{\pi^{\nu}}/2}\left(\hat{G}+\frac{1}{2}\mathcal{F}^{\mu\nu}\hat{G}_{\mu\nu}^{(1)}\right)=1_{W}. (138)

In the zeroth order in \cal F the Groenewold equation is reduced to Q^G^=1W\hat{Q}\star\hat{G}=1_{W}, while the first order reads Q^G^(1)+Q^(1)G^iQ^πμπνG^=0\hat{Q}\star\hat{G}^{(1)}+\hat{Q}^{(1)}\star\hat{G}{-}\mathrm{i}\hat{Q}\star\overleftarrow{\partial}_{\pi^{\mu}}\overrightarrow{\partial}_{\pi^{\nu}}\hat{G}=0. We come to

G^μν(1)=G^Q^μν(1)G^i(G^πμQ^G^πνQ^G^(μν))/2.\hat{G}_{\mu\nu}^{(1)}=-\hat{G}\star\hat{Q}_{\mu\nu}^{(1)}\star\hat{G}{-}\mathrm{i}\left(\hat{G}\star\partial_{\pi^{\mu}}\hat{Q}\star\hat{G}\star\partial_{\pi^{\nu}}\hat{Q}\star\hat{G}-(\mu\leftrightarrow\nu)\right)/{2}. (139)

The derivation presented here is similar to the one of [80]. However, it differs essentially because we consider the model defined on the finite lattice. In the case of a uniform system Weyl symbol of operator Q^\hat{Q} does not depend on x𝒪x\in{\cal O}^{\prime}. It may depend on P0P^{0} and X0X^{0} and on pp\in{\cal M}^{\prime}. Electric current density on the lattice may be calculated as

ji^=ψ¯^Q^piψ^,i=1,2,D.\hat{j^{i}}=-\hat{\bar{\psi}}\frac{\partial\hat{Q}}{\partial p_{i}}\hat{\psi},\quad i=1,2,\ldots D.

Spatial components of momentum are pi=pi=Pi=Pip^{i}=p_{i}=P^{i}=-P_{i}.

ji(t,x)\displaystyle\langle j^{i}(t,x)\rangle =\displaystyle= i2tr[𝐆^𝐯^i].\displaystyle-\frac{\mathrm{i}}{2}{\mathop{\rm tr}\nolimits}\left[\hat{\bf G}\hat{{\bf v}}^{i}\right]. (140)

Velocity operator is given by

𝐯^i=pi(Q00Q++).\hat{\bf v}^{i}=\partial_{p_{i}}\begin{pmatrix}-Q^{--}&0\\ 0&Q^{++}\end{pmatrix}.

In the presence of inhomogeneity the given expression for electric current density is already not valid. However, we can still calculate the response of the partition function to constant in space variation of electromagnetic potential. Such a variation gives expression for the electric current averaged over the whole lattice as

Ji(t)\displaystyle\langle J^{i}(t)\rangle =\displaystyle= i2dP02π1(2N)2Dp,x𝒪tr𝐆(X|P)i(Q(X|P)00Q++(X|P))\displaystyle-\frac{\mathrm{i}}{2}\int\frac{dP^{0}}{2\pi}\frac{1}{(2N)^{2D}}\sum_{p\in{\cal M}^{\prime},x\in{\cal O}^{\prime}}{\mathop{\rm tr}\nolimits}\,{\bf G}(X|P)\partial_{i}\begin{pmatrix}-Q^{--}(X|P)&0\\ 0&Q^{++}(X|P)\end{pmatrix} (141)

In the last expression we already deal with the Weyl symbols of operators.

The following quantity defined in phase space

𝐯^i=pi(Q(P|X)00Q++(P|X)).\hat{\bf v}^{i}=\partial_{p_{i}}\begin{pmatrix}-Q^{--}(P|X)&0\\ 0&Q^{++}(P|X)\end{pmatrix}.

may be considered as Weyl symbol of velocity operator. Therefore, we can write

Ji(t)\displaystyle\langle J^{i}(t)\rangle =\displaystyle= i2NDdP02πTr[𝐆^𝐯^i].\displaystyle-\frac{\mathrm{i}}{2N^{D}}\int\frac{dP^{0}}{2\pi}{\mathop{{\rm Tr}}\nolimits}\left[\hat{\bf G}\hat{{\bf v}}^{i}\right]. (142)

Here Tr\mathop{{\rm Tr}}\nolimits contains trace over the Keldysh indexes as well as trace over spatial discrete coordinates.

Let us express average current JJ through the Keldysh Green function written in triangle representation of Eq. (123).

𝐯^i(<)\displaystyle\hat{\bf v}_{i}^{(<)} =\displaystyle= pi12(2011)(Q00Q++)(1012)\displaystyle\partial_{p_{i}}\frac{1}{2}\begin{pmatrix}2&0\\ 1&1\end{pmatrix}\begin{pmatrix}-Q^{--}&0\\ 0&Q^{++}\end{pmatrix}\begin{pmatrix}1&0\\ 1&-2\end{pmatrix}
=\displaystyle= pi(Q0Q+Q++2Q++)\displaystyle\partial_{p_{i}}\begin{pmatrix}-Q^{--}&0\\ \frac{-Q^{--}+Q^{++}}{2}&-Q^{++}\end{pmatrix}

Using Eq. (126) (Q=QR+Q<Q^{--}=Q^{\rm R}+Q^{<}, Q+=Q<Q^{-+}=-Q^{<}, Q+=QR+QAQ<Q^{+-}=-Q^{\rm R}+Q^{\rm A}-Q^{<}, and Q++=Q<QAQ^{++}=Q^{<}-Q^{\rm A}) we represent current density as

Ji\displaystyle\langle J^{i}\rangle =\displaystyle= i2NDdP02πTr[𝐆^𝐯^i]=i2NDdP02πTr[(GR2G<0GA)pi(QRQ<0QR+QA2Q<+QA)]\displaystyle-\frac{\mathrm{i}}{2N^{D}}\int\frac{dP^{0}}{2\pi}\mathop{{\rm Tr}}\nolimits\left[\hat{\bf G}\hat{\bf v}^{i}\right]=-\frac{\mathrm{i}}{2N^{D}}\int\frac{dP^{0}}{2\pi}\mathop{{\rm Tr}}\nolimits\left[\begin{pmatrix}G^{\rm R}&2G^{<}\\ 0&G^{\rm A}\end{pmatrix}\partial_{p_{i}}\begin{pmatrix}-Q^{\rm R}-Q^{<}&0\\ -\frac{Q^{\rm R}+Q^{\rm A}}{2}&-Q^{<}+Q^{\rm A}\end{pmatrix}\right] (145)
=\displaystyle= i2NDdP02πTr(GRpiQRGApiQA)+i2NDdP02πTr(GRpiQ<+G<piQA)\displaystyle\frac{\mathrm{i}}{2N^{D}}\int\frac{dP^{0}}{2\pi}\mathop{{\rm Tr}}\nolimits\left(G^{\rm R}\partial_{p_{i}}Q^{\rm R}-G^{\rm A}\partial_{p_{i}}Q^{\rm A}\right)+\frac{\mathrm{i}}{2N^{D}}\int\frac{dP^{0}}{2\pi}\mathop{{\rm Tr}}\nolimits\left(G^{\rm R}\partial_{p_{i}}Q^{<}+G^{<}\partial_{p_{i}}Q^{\rm A}\right)
+i2NDdP02πTr(GApiQ<+G<piQR)\displaystyle+\frac{\mathrm{i}}{2N^{D}}\int\frac{dP^{0}}{2\pi}\mathop{{\rm Tr}}\nolimits\left(G^{\rm A}\partial_{p_{i}}Q^{<}+G^{<}\partial_{p_{i}}Q^{\rm R}\right)

The second term here is expressed through i2Tr(GpiQ)<\frac{\mathrm{i}}{2}\mathop{{\rm Tr}}\nolimits\left({G}\partial_{p_{i}}{Q}\right)^{<}. At the same time the third term is its complex conjugate. We obtain

Ji=i2NDdP02πTr(𝐆^pi𝐐^)R+i2NDdP02πTr(𝐆^pi𝐐^)<+c.c.\langle J^{i}\rangle=\frac{\mathrm{i}}{2N^{D}}\int\frac{dP^{0}}{2\pi}\mathop{{\rm Tr}}\nolimits\left(\hat{\bf G}\partial_{p_{i}}\hat{\bf Q}\right)^{\rm R}+\frac{\mathrm{i}}{2N^{D}}\int\frac{dP^{0}}{2\pi}\mathop{{\rm Tr}}\nolimits\left(\hat{\bf G}\partial_{p_{i}}\hat{\bf Q}\right)^{<}+{\rm c.c.} (146)

We represent electric current as

Ji(t)=i21(2N)2DdP02πp,x𝒪tr(G^(πiQ^))Ri21(2N)2DdP02πp,x𝒪tr(G^(πiQ^))Ai21(2N)2DdP02πp,x𝒪tr(G^(πiQ^))<i21(2N)2DdP02πp,x𝒪tr((πiQ^)G^)<.\begin{split}\langle J^{i}(t)\rangle&={-}\frac{\mathrm{i}}{2}\frac{1}{(2N)^{2D}}\int\frac{dP^{0}}{2\pi}\sum_{p\in{\cal M}^{\prime},x\in{\cal O}^{\prime}}\mathop{\rm tr}\nolimits\left(\hat{G}(\partial_{\pi_{i}}\hat{Q})\right)^{{\rm R}}{-}\frac{\mathrm{i}}{2}\frac{1}{(2N)^{2D}}\int\frac{dP^{0}}{2\pi}\sum_{p\in{\cal M}^{\prime},x\in{\cal O}^{\prime}}\mathop{\rm tr}\nolimits\left(\hat{G}(\partial_{\pi_{i}}\hat{Q})\right)^{{\rm A}}\\ &\qquad{-}\frac{\mathrm{i}}{2}\frac{1}{(2N)^{2D}}\int\frac{dP^{0}}{2\pi}\sum_{p\in{\cal M}^{\prime},x\in{\cal O}^{\prime}}\mathop{\rm tr}\nolimits\left(\hat{G}(\partial_{\pi_{i}}\hat{Q})\right)^{<}{-}\frac{\mathrm{i}}{2}\frac{1}{(2N)^{2D}}\int\frac{dP^{0}}{2\pi}\sum_{p\in{\cal M}^{\prime},x\in{\cal O}^{\prime}}\mathop{\rm tr}\nolimits\left((\partial_{\pi_{i}}\hat{Q})\hat{G}\right)^{<}.\end{split} (147)

Due to the term proportional to ±iϵ\pm\mathrm{i}\epsilon the poles of GRG^{{\rm R}} (GAG^{{\rm A}}) are shifted out of the real axis of ω\omega. The integration contour may be closed at infinity. For that we need to use lattice regularization of time. The lattice regularization adds the factor that suppresses expressions inside the integral over (complex - valued) ω\omega for |ω||\omega|\to\infty. This results in vanishing of the sum of the first two terms in the above expression. We obtain

Ji(t)=i21(2N)2DdP02πp,x𝒪tr(G^(πiQ^))<i21(2N)2DdP02πp,x𝒪tr((πiQ^)G^)<.J^{i}(t)={-}\frac{\mathrm{i}}{2}\frac{1}{(2N)^{2D}}\int\frac{dP^{0}}{2\pi}\sum_{p\in{\cal M}^{\prime},x\in{\cal O}^{\prime}}\mathop{\rm tr}\nolimits\left(\hat{G}(\partial_{\pi_{i}}\hat{Q})\right)^{<}{-}\frac{\mathrm{i}}{2}\frac{1}{(2N)^{2D}}\int\frac{dP^{0}}{2\pi}\sum_{p\in{\cal M}^{\prime},x\in{\cal O}^{\prime}}\mathop{\rm tr}\nolimits\left((\partial_{\pi_{i}}\hat{Q})\hat{G}\right)^{<}. (148)

Applying Eqs. (135)-(139) we calculate the contribution to electric current proportional to external field strength μν\mathcal{F}^{\mu\nu}:

Ji\displaystyle{J}^{i} =\displaystyle= 141(2N)2DdP02πp,x𝒪tr(G^πμQ^G^πνQ^G^πiQ^)<μν\displaystyle-\frac{1}{4}\frac{1}{(2N)^{2D}}\int\frac{dP^{0}}{2\pi}\sum_{p\in{\cal M}^{\prime},x\in{\cal O}^{\prime}}\mathop{\rm tr}\nolimits\Bigl{(}\hat{G}\star\partial_{\pi^{\mu}}\hat{Q}\star\hat{G}\star\partial_{\pi^{\nu}}\hat{Q}\star\hat{G}\partial_{\pi_{i}}\hat{Q}\Bigr{)}^{<}\mathcal{F}^{\mu\nu} (149)
141(2N)2DdP02πp,x𝒪tr(πiQ^G^πμQ^G^πνQ^G^)<μν.\displaystyle-\frac{1}{4}\frac{1}{(2N)^{2D}}\int\frac{dP^{0}}{2\pi}\sum_{p\in{\cal M}^{\prime},x\in{\cal O}^{\prime}}\mathop{\rm tr}\nolimits\Bigl{(}\partial_{\pi_{i}}\hat{Q}\hat{G}\star\partial_{\pi^{\mu}}\hat{Q}\star\hat{G}\star\partial_{\pi^{\nu}}\hat{Q}\star\hat{G}\Bigr{)}^{<}\mathcal{F}^{\mu\nu}.

Assuming that \cal F includes only electric field, we represent this expression in two-dimensional systems as:

Ji=σij0j,{J}^{i}=\sigma^{ij}\mathcal{F}_{0j},

where the conductivity tensor σij\sigma^{ij} may be given as follows:

σij=141(2N)2DdP02πp,x𝒪tr(πiQ^W[G^Wπ[0Q^Wπj]G^W])<+c.c.\sigma^{ij}={\frac{1}{4}}\frac{1}{(2N)^{2D}}\int\frac{dP^{0}}{2\pi}\sum_{p\in{\cal M}^{\prime},x\in{\cal O}^{\prime}}\mathop{\rm tr}\nolimits\left(\partial_{\pi_{i}}\hat{Q}_{W}\left[\hat{G}_{W}\star\partial_{{\pi_{[0}}}\hat{Q}_{W}\star\partial_{{\pi_{j]}}}\hat{G}_{W}\right]\right)^{<}+{\rm c.c.} (150)

In this expression we restore subscript index WW for the Weyl symbols. Here ()[0()j]=()0()j()j()0(...)_{[0}(...)_{j]}=(...)_{0}(...)_{j}-(...)_{j}(...)_{0} means anti-symmetrization. Conductivity may be expressed as a sum of symmetric and anti-symmetric parts σij=σijH+σijS\sigma^{ij}=\sigma^{ij}_{H}+\sigma^{ij}_{S}. Here asymmetric part σijH=(σijσji)/2\sigma^{ij}_{H}=(\sigma^{ij}-\sigma^{ji})/2 is the Hall conductivity while σijS=(σij+σji)/2\sigma^{ij}_{S}=(\sigma^{ij}+\sigma^{ji})/2 is the conventional conductivity.

V.3 Equilibrium limit of Hall conductivity

One of the basic properties of Weyl symbol is that the star may be inserted between the two Weyl symbols standing under the trace if the sum over the whole phase space is added (150). Our lattice version of Weyl symbol also obeys this property. Therefore, after averaging the conductivity over the whole volume of the system and over the overall time of the process, we obtain

σ¯ij=141(2N)2DdP0dX02π(tfti)p,x𝒪tr(πiQ^WG^Wπ[0Q^WG^Wπj]Q^WG^W)<+c.c.\bar{\sigma}^{ij}={-}{\frac{1}{4}}\frac{1}{(2N)^{2D}}\int\frac{dP^{0}dX^{0}}{2\pi(t_{f}-t_{i})}\sum_{p\in{\cal M}^{\prime},x\in{\cal O}^{\prime}}\mathop{\rm tr}\nolimits\left(\partial_{\pi_{i}}\hat{Q}_{W}\star\hat{G}_{W}\star\partial_{\pi_{[0}}\hat{Q}_{W}\star\hat{G}_{W}\star\partial_{\pi_{j]}}\hat{Q}_{W}\star\hat{G}_{W}\right)^{<}+{\rm c.c.} (151)

The next step is to assume that Q^\hat{Q} entering the above expression does not depend on time. Recall that the external electromagnetic potential depends on time giving rise to electric field. But after we performed expansion in powers of electric field, this time dependence disappears from our expressions. For the initial thermal distribution we are able to represent the integral over the frequency as a sum over Matsubara frequencies. By Π\Pi we denote Euclidean D+1D+1 - momentum, i.e. ΠD+1=ω\Pi^{D+1}=\omega is Matsubara frequency, while Πi=πi\Pi^{i}=\pi^{i} for i=1,,Di=1,...,D. Notice that π0=iΠD+1\partial_{\pi^{0}}=-\mathrm{i}\partial_{\Pi^{D+1}}. Substituting iωi\omega instead of π0\pi^{0} we obtain the Matsubara Green function GMG^{M} instead of the advanced or retarded Green function.

More specifically, for the system with the one - particle Hamiltonian H^\hat{H} one can define the real time Green function as

G(x1,x2,ω)x1|(ωH^)1|x2G(x_{1},x_{2},\omega)\equiv\langle x_{1}|(\omega-\hat{H})^{-1}|x_{2}\rangle

This Green function gives rise to Advanced, Retarded or time ordered Green function when the integration contour in plane of complex ω\omega is shifted in a specific way. Namely, the time ordered Green’s function (Feynman propagator) is

GT(x,x,ω)=limη0G(x,x,ω+iηsignω).G^{\rm T}(x,x^{\prime},\omega)=\lim\limits_{\eta\rightarrow 0}G(x,x^{\prime},\omega+\mathrm{i}\eta\,{\rm sign}\,\omega). (152)

The retarded Green’s function is defined as

GR(x,x,ω)=limη0G(x,x,ω+iη),G^{\rm R}(x,x^{\prime},\omega)=\lim\limits_{\eta\rightarrow 0}G(x,x^{\prime},\omega+\mathrm{i}\eta), (153)

The advanced Green’s function is given by

GA(x,x,ω)=limη0G(x,x,ωiη).G^{\rm A}(x,x^{\prime},\omega)=\lim\limits_{\eta\rightarrow 0}G(x,x^{\prime},\omega-\mathrm{i}\eta). (154)

The Matsubara Green’s function GMG^{\rm M} is then defined as

GM(x,x,ωn)=G(x,x,iωn),G^{\rm M}(x,x^{\prime},\omega_{n})=G(x,x^{\prime},\mathrm{i}\omega_{n}), (155)

We may write it in terms of imaginary time τ\tau:

GM(x,x,τ)=1βn=eiωnτG(x,x,iωn).G^{\rm M}(x,x^{\prime},\tau)=\frac{1}{\beta}\sum\limits_{n=-\infty}^{\infty}e^{-\mathrm{i}\omega_{n}\tau}G(x,x^{\prime},\mathrm{i}\omega_{n}). (156)

Here ωn=(2n+1)π/β\omega_{n}=(2n+1)\pi/{\beta} is the Matsubara frequency while β=1/T\beta=1/T is the inverse of temperature.

The conductivity of the 22 - dimensional system (averaged over the system area) is given by

σ¯ij=𝒩2πϵij,\bar{\sigma}^{ij}=\frac{{\cal N}}{2\pi}\epsilon^{ij},

where

𝒩\displaystyle{\cal N} =\displaystyle= 2πT13!ϵμνρ1(2N)2Dp,x𝒪ωn=2πT(n+1/2)tr(ΠμQ^WMG^WMΠνQ^WMG^WMΠρQ^WMG^WM).\displaystyle 2\pi\,T\,\frac{1}{3!\,}\epsilon^{\mu\nu\rho}\frac{1}{(2N)^{2D}}\sum_{p\in{\cal M}^{\prime},x\in{\cal O}^{\prime}}\sum_{\omega_{n}=2\pi T(n+1/2)}\mathop{\rm tr}\nolimits\left(\partial_{{\Pi^{\mu}}}\hat{Q}_{W}^{\rm M}\star\hat{G}_{W}^{\rm M}\star\partial_{{\Pi^{\nu}}}\hat{Q}_{W}^{\rm M}\star\hat{G}_{W}^{\rm M}\star\partial_{{\Pi^{\rho}}}\hat{Q}_{W}^{\rm M}\star\hat{G}_{W}^{\rm M}\right). (157)

Here ϵij\epsilon^{ij} and ϵμνρ\epsilon^{\mu\nu\rho} are standard antisymmetric tensors. QWMQ_{W}^{M} is inverse to Matsubara Green function GWMG_{W}^{M}:

QWMGWM=1W=1Q_{W}^{M}\star G_{W}^{M}=1_{W}=1

In case of small temperatures the sum over Matsubara frequencies is reduced to an integral, which gives

𝒩\displaystyle{\cal N} =\displaystyle= 13!ϵμνρ1(2N)2DdΠ3p,x𝒪tr(ΠμQ^WMG^WMΠνQ^WMG^WMΠρQ^WMG^WM).\displaystyle\frac{1}{3!\,}\epsilon^{\mu\nu\rho}\frac{1}{(2N)^{2D}}\int{d\Pi^{3}}\sum_{p\in{\cal M}^{\prime},x\in{\cal O}^{\prime}}\mathop{\rm tr}\nolimits\left(\partial_{{\Pi^{\mu}}}\hat{Q}_{W}^{\rm M}\star\hat{G}_{W}^{\rm M}\star\partial_{{\Pi^{\nu}}}\hat{Q}_{W}^{\rm M}\star\hat{G}_{W}^{\rm M}\star\partial_{{\Pi^{\rho}}}\hat{Q}_{W}^{\rm M}\star\hat{G}_{W}^{\rm M}\right). (158)

(Here D=2D=2.) At any give finite value of NN the given expression is not robust to smooth variations of the system. However, when we increase the lattice size in such a way that it becomes much larger than any correlation length existing in the given system, then effectively the sum over momenta in the above expression may be replaced by an integral. In this case NN is very large but still finite. Eq. (158) remains well defined and finite and becomes topological invariant due to the presence of an integral over pp. Notice, that the sum over xx is important for the topological invariance of this quantity.

VI Conclusions

In the present paper we construct the Wigner - Weyl calculus for the tight - binding models defined on the finite lattices. Our starting point was the formalism proposed long time ago by Felix Buot. On the intuitive level his construction gives the hint on how to construct the formalism that allows to describe effectively dynamics of those models. However, the very definition of the symbol of operator proposed by Buot fails to reproduce relations obeyed by the Weyl symbol of operator defined in continuous theory. We, therefore, correct the Buot’s definition and define the symbol of operator that is defined not only for the momenta and coordinates that belong to the original discrete phase space 𝒪{\cal O}\otimes{\cal M}. Our first symbol of operator is defined on the refined discrete momentum space 𝒪{\cal O}^{\prime}\otimes{\cal M}^{\prime} that contains 22D2^{2D} larger number of points. Moreover, the explicit formula for the extension of this definition to the continuous values of momenta and coordinates is given. The resulting symbol of operator obeys some of the basic properties that repeat those of the continuous Weyl symbol. We feel this appropriate to call this symbol the Buot symbol of operator defined on a finite lattice.

Although the Buot symbol of operator obeys several beautiful properties, it has certain disadvantages. Namely, for the simplest tight - binding models the Buot symbol of an elementary translation to one lattice spacing appears to oscillate fast both as a function of momenta and as a function of coordinates. The limit of this quantity is not regular, when the lattice size tends to infinity. The same refers to Buot symbol of unity operator. In principle, it might be possible to build the Wigner - Weyl field theory based on the Buot symbol. Then all quantities may be expressed through the Buot symbols of operators using the Moyal products. However, the limit of large lattice volume of the obtained expressions cannot be taken. For example, we cannot demonstrate in a transparent way how the Hall conductivity tends to a topological quantity in the limit of infinitely large lattice for the thermal equilibrium at small temperatures.

One of the purposes of the present construction (as mentioned in the Introduction) is to build the finite volume regularization of the lattice Wigner - Weyl calculus defined on the inifinite lattice proposed in [41]. The latter construction admits the topological expression for the Hall conductivity. However, the averaging over the lattice volume remains badly defined. We need the definition of Weyl symbol of operator for the finite lattice that tends in a regular way to the one of [41] in the limit of infinite lattice. Correspondingly, we need the rigorous finite volume regularization of the topological expressions for Hall conductivity proposed in [41]. To achive this purpose we construct here the modified Buot symbols, and arrive finally at the needed definition of the finite lattice Weyl symbol. This construction is performed in three steps. At the first step we refine momentum space, i.e. consider the auxiliary momentum lattice with 2D2^{D} times larger number of points. The modified Buot symbol for the given lattice is defined as the Buot symbol for the refined auxiliary one. The second step is the same procedure performed with respect to coordinate space. The resulting symbol of operator is called the doubly modified Buot symbol. It appears that this symbol contains the oscillating factors in momentum space and in coordinate space. Those factors are common for all operators. Our third step, therefore, is to omit these oscillating factors. The resulting construction is the needed Weyl symbol defined on finite lattice. Fortunately, this symbol obeys all needed properties listed in Sect. II.1. In particular, the elementary function of lattice momentum operator turns into the same function of discrete momentum, the Weyl symbol of unity is equal to real unity, etc. As a result, the limit of infinite lattice is regular, and expression for Hall conductivity approaches smoothly to the topological expression.

Using the constructed lattice Wigner - Weyl calculus we build the lattice version of Keldysh field theory for the description of the non - equilibrium processes. This theory is used to derive in a straightforward way the simple expression for the electric conductivity written in terms of the Weyl symbols of the two - point Keldysh Green function, and the Moyal products. In case of the thermal equilibrium we come to the needed expression that tends to the topological one of [41] in the limit of large lattice and small temperature. This way we achieve our purpose to build the finite volume regularization of the theory described in [41].

It is worth mentioning that our expressions were derived for the case of non - interacting nonhomogeneous systems. However, we expect that, at least, for the case of thermal equilibrium at small temperature the technique developed in [42] may be extended to the systems defined on finite lattice. As a result our expression for Hall conductivity may be, possibly, replaced by the one, in which the non - interacting Green function is replaced by the complete interacting one. The direct consideration of this possibility, however, remains out of the scope of the present paper.

Another possible extension of our results is related to rigorous description of the other non - dissipative transport phenomena. Namely, the proposed technique may be useful for the consideration of the finite volume (infrared) regularization and the consideration of the finite volume effects in Chiral Separation Effect, Chiral Torsional Effect, Spin Hall Effect, and so on. Recall that previously these effects were mainly considered for the homogeneous weak fields. Precise Wigner-Weyl calculus for the lattice models (including the models defined on finite lattices) may be useful for the rigorous description of various non - dissipative conductivities.

Acknowledgements.
The author is grateful for useful discussions of various issues related to Wigner - Weyl calculus and Keldysh technique to I.Fialkovsky, M.Suleymanov, C.Zhang, M. Lewkowicz, and C.Banerjee.

References

  • Groenewold [1946] H. J. Groenewold, On the Principles of elementary quantum mechanics, Physica 12, 405 (1946).
  • Moyal [1949] J. E. Moyal, Quantum mechanics as a statistical theory, in Proceedings of the Philosophical Society, 45 (1949) pp. 99–124.
  • Weyl [1927] H. Weyl, Quantenmechanik und Gruppentheorie, Zeitschrift fur Physik 46, 1 (1927).
  • Wigner [1932] E. P. Wigner, On the quantum correction for thermodynamic equilibrium, Phys. Rev 40, 749 (1932).
  • Ali and Englis [2005] S. T. Ali and M. Englis, Quantization Methods: A Guide for Physicists and Analysts, Rev. Math. Phys. 17, 391 (2005).
  • Berezin and Shubin [1972] F. A. Berezin and M. A. Shubin, in: Colloquia Mathematica Societatis Janos Bolyai (North-Holland Amsterdam),  , 21 (1972).
  • Curtright and Zachos [2012] T. L. Curtright and C. K. Zachos, Quantum Mechanics in Phase Space, Asia Pacific Physics Newsletter 1, 37 (2012)arXiv:1104.5269 .
  • Zachos et al. [2005] C. Zachos, D. Fairlie, and T. Curtright, Quantum Mechanics in Phase Space (World Scientific, Singapore, 2005).
  • Cohen [1966] L. Cohen, Generalized phase-space distribution functions, Journal of Mathematical Physics 7, 781 (1966).
  • Agarwal and Wolf [1970] G. S. Agarwal and E. Wolf, Calculus for functions of noncommuting operators and general phase-space methods in quantum mechanics. i. mapping theorems and ordering of functions of noncommuting operators, Phys. Rev. D 2, 2161 (1970).
  • G. [1963] E. C. G., Sudarshan Equivalence of Semiclassical and Quantum Mechanical Descriptions of Statistical Light Beams, Phys. Rev. Lett. 10, 277 (1963).
  • Glauber [1963] R. J. Glauber, Coherent and Incoherent States of the Radiation Field, Phys. Rev 131, 2766 (1963).
  • Husimi [1940] K. Husimi, Some formal properties of the density matrix, in Proc. Phys. Math. Soc. Jpn. 22 (1940) pp. 264–314.
  • Cahill and J. [1969] K. E. Cahill and R. J., Glauber ordered expansions in boson amplitude operators, Phys. Rev. 177, 1882 (1969).
  • Buot [2009] F. A. Buot, Nonequilibrium Quantum Transport Physics in Nanosystems (World Scientific, 2009).
  • Lorce and Pasquini [2011] C. Lorce and B. Pasquini, Quark Wigner distributions and orbital angular momentum, Phys.Rev. D 84, 014015 (2011), arXiv:1106.0139 .
  • Elze et al. [1986] H. T. Elze, M. Gyulassy, and D. Vasak, Transport equations for the QCD Quark Wigner Operator, Nucl. Phys. B 706, 276 (1986).
  • Hebenstreit et al. [2010] F. Hebenstreit, R. Alkofer, and H. Gies, Schwinger pair production in space and time-dependent electric fields: relating the Wigner formalism to quantum kinetic theory, Phys. Rev. D 82, 105026 (2010)arXiv:1007.1099 .
  • Calzetta et al. [1988] E. Calzetta, S. Habib, and B. L. Hu, Quantum Kinetic Field Theory in curved space-time: covariant Wigner function and Liouville-Vlasov equation, Phys. Rev. D 37, 2901 (1988).
  • Bastos et al. [2008] C. Bastos, O. Bertolami, N. C. Dias, and J. N. Prata, Weyl-Wigner formulation of noncommutative quantum mechanics, J. Math. Phys. 49, 072101 (2008)[hep-th/0611257] .
  • Dayi and Kelleyane [2002] O. F. Dayi and L. T. Kelleyane, Wigner functions for the Landau problem in noncommutative spaces, Mod. Phys. Lett. A 17, 1937 (2002)[hep-th/0202062] .
  • Schwinger [1960] J. Schwinger, Unitary operator bases, Proceedings of the National Academy of Sciences 46, 570 (1960).
  • Buot [1974] F. A. Buot, Method for calculating TrHnTrH^{n} in solid-state theory, Phys.Rev. B 10, 3700 (1974).
  • Buot [2013] F. A. Buot, Quantum Superfield Theory and Lattice Weyl Transform in Nonequilibrium Quantum Transport Physics, Quantum Matter 2, 247 (2013).
  • Wootters [1987] W. K. Wootters, A wigner-function formulation of finite-state quantum mechanics, Annals of Physics 176, 1 (1987).
  • Leonhardt [1995] U. Leonhardt, Quantum-state tomography and discrete wigner function, Phys. Rev. Lett. 74, 4101 (1995).
  • Kasperkovitz and Peev [1994] P. Kasperkovitz and M. Peev, Wigner-weyl formalisms for toroidal geometries, Annals of Physics 230, 21 (1994).
  • Ligabò [2016] M. Ligabò, Torus as phase space: Weyl quantization, dequantization, and wigner formalism, Journal of Mathematical Physics 57, 082110 (2016).
  • Bayen et al. [1978] F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, and D. Sternheimer, Deformation theory and quantization. i. deformations of symplectic structures, Annals of Physics 111, 61 (1978).
  • Kontsevich [2003] M. Kontsevich, Deformation quantization of poisson manifolds, Letters in Mathematical Physics 66, 157 (2003).
  • Felder and Shoikhet [2000] G. Felder and B. Shoikhet, Deformation quantization with traces, Letters in Mathematical Physics 53, 75 (2000).
  • Kupriyanov and Vassilevich [2008] V. G. Kupriyanov and D. V. Vassilevich, Star products made (somewhat) easier, The European Physical Journal C 58, 627 (2008).
  • Zubkov and Wu [2019] M. A. Zubkov and X. Wu, Topological invariant in terms of the Green functions for the Quantum Hall Effect in the presence of varying magnetic field (2019), arXiv:arXiv:1901.06661 [cond-mat.mes-hall] .
  • Zubkov and Khaidukov [2017] M. A. Zubkov and Z. V. Khaidukov, Topology of the momentum space, Wigner transformations, and a chiral anomaly in lattice models, JETP Lett. 106, 166 (2017), [Pisma Zh. Eksp. Teor. Fiz. 106 no.3, 166].
  • Chernodub and Zubkov [2017] M. N. Chernodub and M. A. Zubkov, Scale magnetic effect in Quantum Electrodynamics and the Wigner-Weyl formalism, Phys. Rev. D 96, 056006 (2017)arXiv:1703.06516 .
  • Khaidukov and Zubkov [2017] Z. V. Khaidukov and M. A. Zubkov, Chiral Separation Effect in lattice regularization, Phys. Rev. D 95, 074502 (2017)arXiv:1701.03368 .
  • Zubkov [2018] M. A. Zubkov, Momentum space topology of QCD, Annals Phys 393, 264 (2018)arXiv:1610.08041 .
  • Zubkov [2016a] M. A. Zubkov, Absence of equilibrium chiral magnetic effect, Phys. Rev. D 93, 105036 (2016a)arXiv:1605.08724 .
  • Zubkov [2016b] M. A. Zubkov, Wigner transformation, momentum space topology, and anomalous transport, Annals Phys 373, 298 (2016b)arXiv:1603.03665 .
  • Chernodub [2016] M. N. Chernodub, Anomalous transport due to the conformal anomaly, Phys. Rev. Lett 117, 141601 (2016), arXiv:1603.07993 .
  • Fialkovsky and Zubkov [2020] I. Fialkovsky and M. Zubkov, Precise wigner-weyl calculus for lattice models, Nuclear Physics B 954, 114999 (2020).
  • Zhang and Zubkov [2021] C. X. Zhang and M. A. Zubkov, Influence of interactions on integer quantum hall effect (2021), arXiv:2011.04030 [cond-mat.mes-hall] .
  • Banerjee et al. [2021] C. Banerjee, I. V. Fialkovsky, M. Lewkowicz, et al., Wigner-weyl calculus in keldysh technique, J Comput Electron 20, 2255 (2021).
  • Thouless et al. [1982] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Quantized Hall Conductance in a Two-Dimensional Periodic Potential, Phys. Rev. Lett. 49, 405 (1982).
  • Avron et al. [1983] J. E. Avron, R. Seiler, and B. Simon, Homotopy and quantization in condensed matter physics, Phys. Rev. Lett. 51, 51 (1983).
  • Fradkin [1991] E. Fradkin, Field Theories of Condensed Matter Physics (Addison Wesley Publishing Company, 1991).
  • Hatsugai [1997] Y. Hatsugai, Topological aspects of the quantum Hall effect, J. Phys. Condens. Matter 9, 2507 (1997).
  • Qi et al. [2008] X.-L. Qi, T. L. Hughes, and S.-C. Zhang, Topological field theory of time-reversal invariant insulators, Phys. Rev. B 78, 195424 (2008).
  • Kaufmann et al. [2016] R. M. Kaufmann, D. Li, and B. Wehefritz-Kaufmann, Notes on topological insulators, Rev. Math. Phys. 28, 1630003 (2016)arXiv:1501.02874 [math-ph] .
  • Tong [2016] D. Tong, Lectures on the quantum hall effect (2016), arXiv:1606.06687 [hep-th] .
  • Ishikawa and Matsuyama [1986] K. Ishikawa and T. Matsuyama, Magnetic field induced multi component QED in three-dimensions and quantum Hall effect, Z. Phys. C 33, 41 (1986).
  • Volovik [1988] G. E. Volovik, An analog of the quantum Hall effect in a superfluid 3He film, JETP 67, 9 (1988), zhETF, Vol. 94, No. 3(9), 123.
  • Volovik [2003] G. E. Volovik, The Universe in a Helium Droplet (Clarendon Press, Oxford, 2003).
  • Matsuyama [1987] T. Matsuyama, Quantization of Conductivity Induced by Topological Structure of Energy Momentum Space in Generalized QED in Three-dimensions, Prog. Theor. Phys 77, 711 (1987).
  • Hasan and Kane [2010] M. Z. Hasan and C. L. Kane, Topological insulators, Rev. Mod. Phys. 82, 3045 (2010).
  • Qi and Zhang [2011] X.-L. Qi and S.-C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys 83, 1057 (2011).
  • Volovik [2011] G. E. Volovik, Topology of quantum vacuum (2011), arXiv:arXiv:1111.4627 .
  • Volovik [2007] G. E. Volovik, Quantum phase transitions from topology in momentum space, in: Quantum Analogues: From Phase Transitions to Black Holes and Cosmology, in Springer Lecture Notes in Physics 718/2007, edited by W. G. Unruh and R. Schutzhold (Springer, 2007) pp. 31–73, cond-mat/0601372 .
  • Volovik [2010] G. E. Volovik, Topological invariants for standard model: from semi-metal to topological insulator, JETP Lett. 91, 55 (2010)arXiv:0912.0502 .
  • Gurarie [2011] V. Gurarie, Single-particle Green’s functions and interacting topological insulators, Phys. Rev. B 83, 085426 (2011).
  • Essin and Gurarie [2011] A. M. Essin and V. Gurarie, Bulk-boundary correspondence of topological insulators from their Green’s functions, Phys. Rev. B 84, 125132 (2011).
  • [62] G. E. Volovik, Topological Superfluids, arXiv:arXiv:1602.02595 .
  • Nielsen and Ninomiya [1981a] H. Nielsen and M. Ninomiya, Absence of neutrinos on a lattice: (ii). intuitive topological proof, Nuclear Physics B 193, 173 (1981a).
  • Nielsen and Ninomiya [1981b] H. Nielsen and M. Ninomiya, Absence of neutrinos on a lattice: (i). proof by homotopy theory, Nuclear Physics B 185, 20 (1981b).
  • So [1985] H. So, Induced topological invariants by lattice fermions in odd dimensions, Prog. Theor. Phys 74, 585 (1985).
  • Kaplan [1992] D. B. Kaplan, Method for simulating chiral fermions on the lattice, Phys. Lett. B 288, 342 (1992), arXiv:hep-lat/9206013 .
  • Golterman et al. [1993] M. F. L. Golterman, K. Jansen, and D. B. Kaplan, Chern-Simons currents and chiral fermions on the lattice, Phys. Lett. B 301, 219 (1993), arXiv:hep-lat/9209003 .
  • Hořava [2005] P. Hořava, Stability of Fermi surfaces and KK-theory, Phys. Rev. Lett. 95, 016405 (2005).
  • Creutz [2008] M. Creutz, Four-dimensional graphene and chiral fermions, JETP 2008, 017 (2008).
  • Kaplan and Sun [2012] D. B. Kaplan and S. Sun, Spacetime as a topological insulator: Mechanism for the origin of the fermion generations, Phys. Rev. Lett. 108, 181807 (2012).
  • Coleman and Hill [1985] S. Coleman and B. Hill, Phys. Lett. B 159, 184 (1985).
  • Lee [1986] T. Lee, Phys. Lett. B 171, 247 (1986).
  • Zhang and Zubkov [2019a] C. X. Zhang and M. A. Zubkov, Influence of interactions on the anomalous quantum Hall effect (2019a), arXiv:arXiv:1902.06545 [cond-mat.mes-hall] .
  • Kubo et al. [1959] R. Kubo, H. Hasegawa, and N. Hashitsume, Journal of the Physical Society of Japan 14, 56 (1959).
  • Niu et al. [1985] Q. Niu, D. J. Thouless, and Y.-S. Wu, Quantized Hall conductance as a topological invariant, Phys. Rev. B 31, 3372 (1985).
  • Altshuler et al. [1980] B. L. Altshuler, D. Khmel’nitzkii, A. I. Larkin, and P. A. Lee, Phys.Rev.B , 5142 (1980).
  • Altshuler and Aronov [1985] B. L. Altshuler and A. G. Aronov, Electron-electron inter-action in disordered systems (Editors: A (L. Efros, M. Pollak, Elsevier, North Holland, Amsterdam, 1985).
  • Zhang and Zubkov [2019b] C. X. Zhang and M. A. Zubkov, Hall conductivity as the topological invariant in phase space in the presence of interactions and non-uniform magnetic field, JETP letters  (2019b), arXiv:arXiv:1908.04138 .
  • Suleymanov and Zubkov [2019] M. Suleymanov and M. A. Zubkov, Wigner-Weyl formalism and the propagator of Wilson fermions in the presence of varying external electromagnetic field, Nucl. Phys. B 938, 171 (2019)arXiv:1811.08233 .
  • Onoda et al. [2006a] S. Onoda, N. Sugimoto, and N. Nagaosa, Prog, Theor.Phys. 116, 61 (2006a).
  • Onoda et al. [2006b] S. Onoda, N. Sugimoto, and N. Nagaosa, Phys, Rev. Lett. 97, 2 (2006b).
  • Sugimoto et al. [2007] N. Sugimoto, S. Onoda, and N. Nagaosa, Prog, Theor.Phys. 117, 415 (2007).
  • Onoda et al. [2008] S. Onoda, N. Sugimoto, and N. Nagaosa, Phys, Rev. B 77, 3 (2008).
  • [84] A. Kamenev, Many-body theory of non-equilibrium systems ([cond-mat.dis-nn]) arXiv:cond-mat/0412296 .
  • Kamenev [2011] A. Kamenev, Field theory of non-equilibrium systems, by alex kamenev, cambridge, uk: Cambridge university press,  2011 (2011).