This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

{psinputs}

Dirac points for the honeycomb lattice with impenetrable obstacles

Wei Li   Junshan Lin   and Hai Zhang Department of Mathematical Sciences, DePaul University, Chicago, IL 60614. Email: [email protected].Department of Mathematics and Statistics, Auburn University, Auburn, AL 36849. Email: jzl0097@ auburn.edu. Junshan Lin was partially supported by the NSF grant DMS-2011148.Department of Mathematics, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China. Email: [email protected]. Hai Zhang is partially supported by Hong Kong RGC grant GRF 16305419 and GRF 16304621.
Abstract

This work is concerned with the Dirac points for the honeycomb lattice with impenetrable obstacles arranged periodically in a homogeneous medium. We consider both the Dirichlet and Neumann eigenvalue problems and prove the existence of Dirac points for both eigenvalue problems at crossing of the lower band surfaces as well as higher band surfaces. Furthermore, we perform quantitative analysis for the eigenvalues and the slopes of two conical dispersion surfaces near each Dirac point based on a combination of the layer potential technique and asymptotic analysis. It is shown that the eigenvalues are in the neighborhood of the singular frequencies associated with the Green’s function for the honeycomb lattice, and the slopes of the dispersion surfaces are reciprocal to the eigenvalues.

Key words Honeycomb lattice, Dirac points, Helmholtz equation, eigenvalue problem.

AMS subject classifications 35C20, 35J05, 35P20

1 Introduction

Inspired from the discovery of the quantum Hall effects and topological insulators in condensed matter, there has been increasing interest in the exploration of topological photonic/phononic materials recently to manipulate photons/phonons the same way as solids modulating electrons [HR-08, Khanikaev-12, Lu-14, Ozawa-19, Rechtsman-13, Yang-15]. These topological materials allow for the propagation of robust waveguide modes (or so-called edge modes) along the material interfaces without backscattering and even at the presence of large disorder, which could provide revolutionary applications for the design of novel optical/acoustic devices.

Typically the topological photonic/phononic materials are periodic band-gap media with the topological phases associated with the band structures of the underlying differential operators. The band gap is opened at certain special conical vertex of the band structure by breaking the time-reversal symmetry or the space-inversion symmetry of the periodic media [Fefferman-Thorp-Weinsein-16, Fefferman-Lee-Thorp-Weinsein-17, Lee-Thorp-Weinstein-Zhu-19, LZ21-2, ma-shvets, makwana-19, wang-08, wu-hu-15]. Such vertices in the dispersion relation are called Dirac points, which emerge from the touching of two bands of the spectrum in a linear conical fashion, and their investigations play an important role in the design of novel topological materials.

The mathematical analysis of Dirac point dates back to the study of the tight-binding approximation model for graphene in [slonczewski-weiss-58, wallace-47] by Wallace, Slonczewski and Weiss, and more recently for a more generalized quantum graph model with potential on the edges of the honeycomb lattice in [Kuchment-Post-07] by Kuchment and Post. Dirac points for the Schrödinger equation model of graphene were considered in [grushin-09] by Grushin over the honeycomb lattice with a weak potential and later thoroughly studied in [Fefferman-Weinsein-12] by Fefferman and Weinstein for potentials that are not necessarily weak; See also [berkokaiko-comech] for an alternative proof of the existence and stability of Dirac points for the Schrödinger operator. These results are then generalized to a broad class of elliptic operator defined over the honeycomb lattice, including the configurations with point scatterers, high-contrast medium, resonant bubbles, etc [ammari-20-4, Cassier-Weinstein-21, Fefferman-Thorp-Weinsein-18, Lee-16, Lee-Thorp-Weinstein-Zhu-19]. We also refer the readers to [ochiai-09, torrent-12, wang-08] for the numerical and experimental investigation of Dirac points in other acoustic and electromagnetic media.

In this paper we study the Dirac points for the honeycomb lattice with impenetrable obstacles embedded in a homogeneous medium. The setup arises naturally in photonic/phononic materials when the inhomogeneities are sound soft/hard in acoustic media or perfect electric/magnetic conducting in electromagnetic media. More precisely, we consider the honeycomb lattice in 2\mathbb{R}^{2} given by

Λ:=𝐞1𝐞2:={1𝐞1+2𝐞2:1,2},\Lambda:=\mathbb{Z}\mathbf{e}_{1}\oplus\mathbb{Z}\mathbf{e}_{2}:=\{\ell_{1}\mathbf{e}_{1}+\ell_{2}\mathbf{e}_{2}:\ell_{1},\ell_{2}\in\mathbb{Z}\},

where the lattice vectors 𝐞1=a(32,12)T\mathbf{e}_{1}=a\left(\frac{\sqrt{3}}{2},\frac{1}{2}\right)^{T}, 𝐞2=a(32,12)T\mathbf{e}_{2}=a\left(\frac{\sqrt{3}}{2},-\frac{1}{2}\right)^{T}, and the lattice constant is aa. Let Y:={t1𝐞1+t2𝐞2| 0t1,t21}Y:=\{t_{1}\mathbf{e}_{1}+t_{2}\mathbf{e}_{2}\,|\,0\leq t_{1},t_{2}\leq 1\} be the fundamental cell of the lattice, which contains a circular shape impenetrable obstacle DεD_{\varepsilon} with radius ε\varepsilon centered at xc=12(𝐞1+𝐞2)x_{c}=\frac{1}{2}(\mathbf{e}_{1}+\mathbf{e}_{2}) (see Figure 1, left). Yε:=Y\DεY_{\varepsilon}:=Y\backslash D_{\varepsilon} denotes the domain exterior to the obstacle in the fundamental cell. The reciprocal lattice vectors 𝜿1{\boldsymbol{\kappa}}_{1} and 𝜿2{\boldsymbol{\kappa}}_{2} are 𝜿1=2πa(33,1)T{\boldsymbol{\kappa}}_{1}=\frac{2\pi}{a}\left(\frac{\sqrt{3}}{3},1\right)^{T} and 𝜿2=2πa(33,1)T{\boldsymbol{\kappa}}_{2}=\frac{2\pi}{a}\left(\frac{\sqrt{3}}{3},-1\right)^{T}, which satisfy 𝐞i𝜿j=2πδij\mathbf{e}_{i}\cdot{\boldsymbol{\kappa}}_{j}=2\pi\delta_{ij} for i,j=1,2i,j=1,2. The reciprocal lattice is given by

Λ=𝜿1𝜿2:={1𝜿1+2𝜿2:1,2}.\Lambda^{*}=\mathbb{Z}{\boldsymbol{\kappa}}_{1}\oplus\mathbb{Z}{\boldsymbol{\kappa}}_{2}:=\left\{\ell_{1}{\boldsymbol{\kappa}}_{1}+\ell_{2}{\boldsymbol{\kappa}}_{2}:\ell_{1},\ell_{2}\in\mathbb{Z}\right\}.

The hexagon shape of the fundamental cell in Λ\Lambda^{*}, or the Brillouin zone, is denoted by \mathcal{B} and shown in Figure 1 (right).

Refer to caption
Refer to caption
Figure 1: Left: Honeycomb lattice with impenetrable obstacles located in the cell centers. The lattice vectors 𝐞1=a(32,12)T\mathbf{e}_{1}=a\left(\frac{\sqrt{3}}{2},\frac{1}{2}\right)^{T} and 𝐞2=a(32,12)T\mathbf{e}_{2}=a\left(\frac{\sqrt{3}}{2},-\frac{1}{2}\right)^{T}. The lattice constant is aa and the size of each obstacle is ε\varepsilon. Right: Brillouin zone generated by the reciprocal lattice vectors 𝜿1=2πa(33,1)T{\boldsymbol{\kappa}}_{1}=\frac{2\pi}{a}\left(\frac{\sqrt{3}}{3},1\right)^{T} and 𝜿2=2πa(33,1)T{\boldsymbol{\kappa}}_{2}=\frac{2\pi}{a}\left(\frac{\sqrt{3}}{3},-1\right)^{T}. The high symmetry vertices K=2πa(13,13)TK=\frac{2\pi}{a}(\frac{1}{\sqrt{3}},\frac{1}{3})^{T} and K=KK^{\prime}=-K, and the vertices Γ=(0,0)T\Gamma=(0,0)^{T}, M=2πa(13,0)TM=\frac{2\pi}{a}(\frac{1}{\sqrt{3}},0)^{T}.

For each Bloch wave vector 𝜿{\boldsymbol{\kappa}}\in\mathcal{B}, we consider the following eigenvalue problem with the frequency ω\omega\in\mathbb{R}:

Δψ(𝐱)+ω2ψ(𝐱)=0,\displaystyle\Delta\psi(\mathbf{x})+\omega^{2}\psi(\mathbf{x})=0,\quad 𝐱Yε+Λ,\displaystyle\mathbf{x}\in Y_{\varepsilon}+\Lambda, (1)
ψ(𝐱+𝐞)=ei𝜿𝐞ψ(𝐱),\displaystyle\psi(\mathbf{x}+\mathbf{e})=e^{i{\boldsymbol{\kappa}}\cdot\mathbf{e}}\psi(\mathbf{x}), for𝐞Λ.\displaystyle\mbox{for}\;\mathbf{e}\in\Lambda.

The eigenfunction ψ\psi is called the Bloch mode, which can be written as ψ=ei𝜿𝐱u(𝐱)\psi=e^{i{\boldsymbol{\kappa}}\cdot\mathbf{x}}u(\mathbf{x}), wherein uu is a periodic function satisfying u(𝐱+𝐞)=u(𝐱)u(\mathbf{x}+\mathbf{e})=u(\mathbf{x}) for any 𝐞Λ\mathbf{e}\in\Lambda. Along the boundary of the obstacles, we impose the Dirichlet boundary condition

ψ(𝐱)=0,𝐱Dε+Λ,\psi(\mathbf{x})=0,\quad\mathbf{x}\in\partial D_{\varepsilon}+\Lambda, (2)

or the Neumann boundary condition

νψ(𝐱)=0,𝐱Dε+Λ.\partial_{\nu}\psi(\mathbf{x})=0,\quad\mathbf{x}\in\partial D_{\varepsilon}+\Lambda. (3)

Here ν\nu denotes the unit normal direction pointing to the exterior of the obstacle. We call (1)(2) and (1)(3) the Dirichlet and Neumann eigenvalue problem respectively.

Let K=23𝜿1+13𝜿2=2πa(13,13)TK=\frac{2}{3}{\boldsymbol{\kappa}}_{1}+\frac{1}{3}{\boldsymbol{\kappa}}_{2}=\frac{2\pi}{a}(\frac{1}{\sqrt{3}},\frac{1}{3})^{T}\in\mathcal{B} and K=KK^{\prime}=-K be two vertices of the Brillouin zone shown in Figure 1 (right). The matrix

R=(1/23/23/21/2)R=\begin{pmatrix}-1/2&\sqrt{3}/2\\ -\sqrt{3}/2&-1/2\end{pmatrix}

is a rotation matrix such that R𝐱R\mathbf{x} rotates the vector 𝐱\mathbf{x} by 2π/32\pi/3 clockwise on the plane. Then all vertices of the Brillouin zone \mathcal{B} are given by {K,RK,R2K,K,RKR2K}\{K,RK,R^{2}K,K^{\prime},RK^{\prime}R^{2}K^{\prime}\}. In addition, the following relations hold for the reciprocal lattice vectors:

R𝜿1=𝜿2,R𝜿2=(𝜿1+𝜿2),R(𝜿1+𝜿2)=𝜿1.R{\boldsymbol{\kappa}}_{1}={\boldsymbol{\kappa}}_{2},\quad R{\boldsymbol{\kappa}}_{2}=-({\boldsymbol{\kappa}}_{1}+{\boldsymbol{\kappa}}_{2}),\quad R({\boldsymbol{\kappa}}_{1}+{\boldsymbol{\kappa}}_{2})=-{\boldsymbol{\kappa}}_{1}.
Refer to caption
Refer to caption
Figure 2: Left: the dispersion curves along the segments MΓKMM\to\Gamma\to K\to M over the Brillouin zone for the Dirichlet eigenvalue problem. The lattice constant a=1a=1 and the obstacle size is ε=0.05\varepsilon=0.05; Right: the first two dispersion surfaces for the honeycomb lattice, which shows the conical singularity at the crossing of the first two band surfaces at the high symmetry vertices of the Brillouin zone. For both the Dirichlet and Neumann eigenvalue problems, Dirac points can be formed by the crossing of the first two band surfaces or other higher band surfaces as shown on the left panel and in Section 5.

In the sequel, we set the Bloch wave vector 𝜿=K{\boldsymbol{\kappa}}^{*}=K and investigate Dirac points at 𝜿{\boldsymbol{\kappa}}^{*}. Dirac points located at other Bloch wave vectors are reported in Section 5, but their mathematical studies will be our future endeavors. Figure 2 shows the occurrence of the Dirac points formed by the first and second, and the fourth and fifth band surfaces respectively for the Dirichlet eigenvalue problem. Note that due to the symmetry of the honeycomb structure, the same Dirac points also appear at other vertices of the Brillouin zone \mathcal{B}. In this paper we prove the existence of Dirac points (𝜿,ω)({\boldsymbol{\kappa}}^{*},\omega^{*}) for both Dirichlet and Neumann eigenvalue problems and show that Dirac points appear at the crossing of lower band surfaces as well as higher band surfaces. In addition, we carry out quantitative analysis for the eigenvalues and the slopes of the conical dispersion surfaces near each Dirac point. It is shown that each eigenvalue ω\omega^{*} is near a singular frequency associated with the Green’s function for the honeycomb lattice. These singular frequencies also correspond to the eigenvalues of the homogeneous medium over the honeycomb lattice when the obstacles are absent. In addition, the slopes of the dispersion surfaces are reciprocal to the eigenvalue ω\omega^{*}. We apply the layer potential technique to formulate the eigenvalue problem and reduce the integral equation to a set of characteristic equations at 𝜿{\boldsymbol{\kappa}}^{*} from the symmetry of the integral kernel and by the asymptotic analysis for the integral operator. The eigenvalues are roots of the nonlinear characteristic equations and we derive their asymptotic expansions with respect to the size of the obstacles ε\varepsilon. We would like to point out that our work is closely related to [ammari-20-4, Cassier-Weinstein-21] in the sense that the limit of the high-contrast elliptic operators considered in [ammari-20-4, Cassier-Weinstein-21] are related to the Neumann problem investigated in Section 6, although the arrangements of inclusions considered here are different.

The rest of the paper is organized as follows. Sections 2-5 are devoted to the study of Dirac points for the Dirichlet eigenvalue problem and Section 6 discusses the Neumann eigenvalue problem. In Section 2 we formulate the eigenvalue problem by using the layer potential and set up an infinite linear system for the expansion coefficients of the density function over the obstacle boundary. The existence of the Dirac point at low frequency bands is proved and the asymptotic expansion of the corresponding eigenvalue is derived in Section 3. We establish the conical singularity of the Dirac point in Section 4 and carry out quantitative analysis for the slopes of the dispersion surfaces near this Dirac point. Finally, the Dirac points located at higher frequency bands are investigated in Section 5.

2 An infinite linear system for the Dirichlet eigenvalue problem

In this section, we formulate the Dirichlet eigenvalue problem by an integral equation over the obstacle boundary and set up an infinite linear system for the expansion coefficients of the density function. The Dirichlet eigenvalues reduce to the characteristic values of the infinite linear system.

2.1 Integral equation formulation for the eigenvalue problem

For a given Bloch wave vector 𝜿{\boldsymbol{\kappa}}\in\mathcal{B} and frequency ω\omega\in\mathbb{R}, we use G(𝜿,ω;𝐱)G({\boldsymbol{\kappa}},\omega;\mathbf{x}) to denote the corresponding quasi-periodic Green’s function that satisfies

(Δ+ω2)G(𝜿,ω;𝐱)=𝐞Λei𝜿𝐞δ(𝐱𝐞)𝐱,𝐲2.(\Delta+\omega^{2})G({\boldsymbol{\kappa}},\omega;\mathbf{x})=\sum_{\mathbf{e}\in\Lambda}e^{i{\boldsymbol{\kappa}}\cdot\mathbf{e}}\delta(\mathbf{x}-\mathbf{e})\quad\mathbf{x},\mathbf{y}\in\mathbb{R}^{2}. (4)

It can be shown that

G(𝜿,ω;𝐱)=i4𝐞Λei𝜿𝐞H0(1)(ω|𝐱𝐞|),G({\boldsymbol{\kappa}},\omega;\mathbf{x})=-\frac{i}{4}\sum_{\mathbf{e}\in\Lambda}e^{i{\boldsymbol{\kappa}}\cdot\mathbf{e}}H_{0}^{(1)}(\omega|\mathbf{x}-\mathbf{e}|), (5)

where H0(1)H_{0}^{(1)} is the zeroth-order Hankel function of the first kind. Alternatively, G(𝜿,ω;𝐱)G({\boldsymbol{\kappa}},\omega;\mathbf{x}) adopts the following spectral representation (cf. [ammari-book, ammari-kang-lee]):

G(𝜿,ω;𝐱)=1|Y|𝐪Λei(𝜿+𝐪)𝐱ω2|𝜿+𝐪|2.G({\boldsymbol{\kappa}},\omega;\mathbf{x})=\frac{1}{|Y|}\sum_{\mathbf{q}\in\Lambda^{*}}\frac{e^{i({\boldsymbol{\kappa}}+\mathbf{q})\cdot\mathbf{x}}}{\omega^{2}-|{\boldsymbol{\kappa}}+\mathbf{q}|^{2}}. (6)

Note the Green’s function is not well defined when the frequency satisfies |ω|=|𝜿+𝐪||\omega|=|{\boldsymbol{\kappa}}+\mathbf{q}| for certain qΛq\in\Lambda^{*}. We call such a frequency a singular frequency and denote the set of singular frequencies by

Ωsing(𝜿):={ω:|ω|=|𝜿+𝐪|for certain𝐪Λ}.\Omega_{\text{sing}}({\boldsymbol{\kappa}}):=\{\omega:|\omega|=|{\boldsymbol{\kappa}}+\mathbf{q}|\;\mbox{for certain}\;\mathbf{q}\in\Lambda^{*}\}.

For each 𝜿{\boldsymbol{\kappa}}\in\mathcal{B}, we arrange all the singular frequencies in Ωsing(𝜿)\Omega_{\text{sing}}({\boldsymbol{\kappa}}) in ascending order and denote them as

ω¯1(𝜿)<ω¯2(𝜿)<<ω¯n(𝜿)<ω¯n+1(𝜿)<.\bar{\omega}_{1}({\boldsymbol{\kappa}})<\bar{\omega}_{2}({\boldsymbol{\kappa}})<\cdots<\bar{\omega}_{n}({\boldsymbol{\kappa}})<\bar{\omega}_{n+1}({\boldsymbol{\kappa}})<\cdots.

First, the following lemma is straightforward from the expansion (6).

Lemma 2.1.

The Green’s function G(𝛋,ω;𝐱)G({\boldsymbol{\kappa}},\omega;\mathbf{x}) satisfies

G(𝜿,ω;𝐱)=G(𝜿,ω;𝐱)¯for𝐱2\{0}.G({\boldsymbol{\kappa}},\omega;\mathbf{x})=\overline{G({\boldsymbol{\kappa}},\omega;-\mathbf{x})}\quad\mbox{for}\;\mathbf{x}\in\mathbb{R}^{2}\backslash\{0\}. (7)
Lemma 2.2.

Let 𝛋=𝛋{\boldsymbol{\kappa}}={\boldsymbol{\kappa}}^{*}, then the Green’s function G(𝛋,ω;𝐱)G({\boldsymbol{\kappa}},\omega;\mathbf{x}) satisfies

G(𝜿,ω;𝐱)=G(𝜿,ω;R𝐱)for𝐱2\{0}.G({\boldsymbol{\kappa}},\omega;\mathbf{x})=G({\boldsymbol{\kappa}},\omega;R\mathbf{x})\quad\mbox{for}\;\mathbf{x}\in\mathbb{R}^{2}\backslash\{0\}. (8)
Proof.

For a Bloch wave vector 𝐪=1𝜿1+2𝜿2\mathbf{q}=\ell_{1}{\boldsymbol{\kappa}}_{1}+\ell_{2}{\boldsymbol{\kappa}}_{2}, using the relations R𝜿1=𝜿2R{\boldsymbol{\kappa}}_{1}={\boldsymbol{\kappa}}_{2}, R𝜿2=(𝜿1+𝜿2)R{\boldsymbol{\kappa}}_{2}=-({\boldsymbol{\kappa}}_{1}+{\boldsymbol{\kappa}}_{2}), and R𝜿=𝜿𝜿1R{\boldsymbol{\kappa}}^{*}={\boldsymbol{\kappa}}^{*}-{\boldsymbol{\kappa}}_{1}, it follows that R(𝜿+𝐪)=𝜿(1+2)𝜿1+(12)𝜿2=𝜿+𝐪~R({\boldsymbol{\kappa}}^{*}+\mathbf{q})={\boldsymbol{\kappa}}^{*}-(1+\ell_{2}){\boldsymbol{\kappa}}_{1}+(\ell_{1}-\ell_{2}){\boldsymbol{\kappa}}_{2}={\boldsymbol{\kappa}}^{*}+\tilde{\mathbf{q}} where 𝐪~:=(1+2)𝜿1+(12)𝜿2Λ\tilde{\mathbf{q}}:=(1+\ell_{2}){\boldsymbol{\kappa}}_{1}+(\ell_{1}-\ell_{2}){\boldsymbol{\kappa}}_{2}\in\Lambda^{*}. Note that the map from 𝐪\mathbf{q} to 𝐪~\tilde{\mathbf{q}} is a bijective map on Λ\Lambda^{*}. Therefore,

G(𝜿,ω;𝐱)\displaystyle G({\boldsymbol{\kappa}}^{*},\omega;\mathbf{x}) =1|Y|𝐪Λei(𝜿+𝐪)𝐱ω2|𝜿+𝐪|2=1|Y|𝐪ΛeiR(𝜿+𝐪)R𝐱ω2|R(𝜿+𝐪)|2\displaystyle=\frac{1}{|Y|}\sum_{\mathbf{q}\in\Lambda^{*}}\frac{e^{i({\boldsymbol{\kappa}}^{*}+\mathbf{q})\cdot\mathbf{x}}}{\omega^{2}-|{\boldsymbol{\kappa}}^{*}+\mathbf{q}|^{2}}=\frac{1}{|Y|}\sum_{\mathbf{q}\in\Lambda^{*}}\frac{e^{iR({\boldsymbol{\kappa}}^{*}+\mathbf{q})\cdot R\mathbf{x}}}{\omega^{2}-|R({\boldsymbol{\kappa}}^{*}+\mathbf{q})|^{2}}
=1|Y|𝐪~Λei(𝜿+𝐪~)R𝐱ω2|𝜿+𝐪~|2=G(𝜿,ω;R𝐱).\displaystyle=\frac{1}{|Y|}\sum_{\tilde{\mathbf{q}}\in\Lambda^{*}}\frac{e^{i({\boldsymbol{\kappa}}^{*}+\tilde{\mathbf{q}})\cdot R\mathbf{x}}}{\omega^{2}-|{\boldsymbol{\kappa}}^{*}+\tilde{\mathbf{q}}|^{2}}=G({\boldsymbol{\kappa}}^{*},\omega;R\mathbf{x}).

We now introduce the following single-layer potential

[𝒮𝜿,ωφ](𝐱):=𝐲DεG(𝜿,ω;𝐱𝐲)φ(𝐲)𝑑s𝐲,𝐱Yε+Λ,[\mathcal{S}^{{\boldsymbol{\kappa}},\omega}\varphi](\mathbf{x}):=\int_{\mathbf{y}\in\partial D_{\varepsilon}}G({\boldsymbol{\kappa}},\omega;\mathbf{x}-\mathbf{y})\varphi(\mathbf{y})\,ds_{\mathbf{y}},\quad\;\mathbf{x}\in Y_{\varepsilon}+\Lambda, (9)

where φ\varphi is a density function on Dε\partial D_{\varepsilon}. Let Hs(Dε)H^{s}(\partial D_{\varepsilon}) be the standard Sobolev space of order ss over the boundary of DεD_{\varepsilon}. It is well-known that 𝒮𝜿,ω\mathcal{S}^{{\boldsymbol{\kappa}},\omega} is bounded from H1/2(Dε)H^{-1/2}(\partial D_{\varepsilon}) to H1/2(Dε)H^{1/2}(\partial D_{\varepsilon}) [ammari-book, ammari-kang-lee]. We represent the Bloch mode ψ\psi for the eigenvalue problem (1)-(2) using the above defined layer potential. Using the Green’s identity, it is easy to check that (ω,ψ)(\omega,\psi) is an eigenpair for the Dirichlet problem (1)-(2) if and only if there exists a density function φH1/2(Dε)\varphi\in H^{-1/2}(\partial D_{\varepsilon}) such that

[𝒮𝜿,ωφ](𝐱)=0for𝐱Dε.[\mathcal{S}^{{\boldsymbol{\kappa}},\omega}\varphi](\mathbf{x})=0\quad\mbox{for}\;\mathbf{x}\in\partial D_{\varepsilon}. (10)

To facilitate the asymptotic analysis, we apply the change of variables to rewrite the above integral equation as

[𝒮ε𝜿,ωφ](𝐱)=0for𝐱D1,[\mathcal{S}_{\varepsilon}^{{\boldsymbol{\kappa}},\omega}\varphi](\mathbf{x})=0\quad\mbox{for}\;\mathbf{x}\in\partial D_{1}, (11)

where the integral operator 𝒮ε𝜿,ω\mathcal{S}_{\varepsilon}^{{\boldsymbol{\kappa}},\omega} takes the form

[𝒮ε𝜿,ωφ](𝐱):=𝐲D1G(𝜿,ω;ε(𝐱𝐲))φ(𝐲)𝑑s𝐲,𝐱D1.[\mathcal{S}_{\varepsilon}^{{\boldsymbol{\kappa}},\omega}\varphi](\mathbf{x}):=\int_{\mathbf{y}\in\partial D_{1}}G({\boldsymbol{\kappa}},\omega;\varepsilon(\mathbf{x}-\mathbf{y}))\varphi(\mathbf{y})\,ds_{\mathbf{y}},\quad\mathbf{x}\in\partial D_{1}. (12)

We seek for eigenpairs (ω,φ)(\omega,\varphi) such that (11) attains nontrivial solutions.

2.2 Eigenvalues as the characteristic values of an infinite linear system

Let the boundary of D1D_{1} be parameterized by 𝐫(t)=(r1(t),r2(t))\mathbf{r}(t)=(r_{1}(t),r_{2}(t)) where r1()r_{1}(\cdot) and r2()r_{2}(\cdot) are two smooth periodic functions with period 2π2\pi. Then the linear operator 𝒮ε𝜿,ω\mathcal{S}_{\varepsilon}^{{\boldsymbol{\kappa}},\omega} induces a bounded operator from H1/2([0,2π])H^{-1/2}([0,2\pi]) to H1/2([0,2π])H^{1/2}([0,2\pi]) in the parameter space, which we still denote as 𝒮ε𝜿,ω\mathcal{S}_{\varepsilon}^{{\boldsymbol{\kappa}},\omega} for ease of notation. In what follows, we shall work exclusively when D1D_{1} is a unit disk and its parametric equation is given by 𝐫(t)=(cost,sint)\mathbf{r}(t)=(\cos t,\sin t).

We now solve the integral equation (11) with the above parameterization. Define

ϕn(t):=12πeint,t[0,2π],n.\phi_{n}(t):=\frac{1}{\sqrt{2\pi}}e^{int},\quad t\in[0,2\pi],\quad n\in\mathbb{Z}. (13)

Then {ϕn}n\{\phi_{n}\}_{n\in\mathbb{Z}} forms a complete orthogonal basis for H1/2([0,2π])H^{-1/2}([0,2\pi]). We expand φH1/2([0,2π])\varphi\in H^{-1/2}([0,2\pi]) as φ=n=cnϕn\displaystyle{\varphi=\sum_{n=-\infty}^{\infty}c_{n}\phi_{n}} where {cn}n1/2\{c_{n}\}_{n\in\mathbb{Z}}\in\mathbb{H}^{-1/2}. Here and thereafter, the space s\mathbb{H}^{s} is defined by

s:={{cn}n:n=(1+n2)s|cn|2<}.\mathbb{H}^{s}:=\Big{\{}\{c_{n}\}_{n\in\mathbb{Z}}:\sum_{n=-\infty}^{\infty}(1+n^{2})^{s}|c_{n}|^{2}<\infty\Big{\}}.

Then (11) reads

n=cn(𝒮ε𝜿,ωϕn)=0.\sum_{n=-\infty}^{\infty}c_{n}\,\left(\mathcal{S}_{\varepsilon}^{{\boldsymbol{\kappa}},\omega}\phi_{n}\right)=0.

Define an infinite matrix 𝒜=[am,n]m,n\mathcal{A}=[a_{m,n}]_{m,n\in\mathbb{Z}}, where

am,n(𝜿,ω)=(ϕm,𝒮ε𝜿,ωϕn):=02πϕm(t)¯[𝒮ε𝜿,ωϕn](t)𝑑t.a_{m,n}({\boldsymbol{\kappa}},\omega)=\left(\phi_{m},\mathcal{S}_{\varepsilon}^{{\boldsymbol{\kappa}},\omega}\phi_{n}\right):=\int_{0}^{2\pi}\overline{\phi_{m}(t)}\,[\mathcal{S}_{\varepsilon}^{{\boldsymbol{\kappa}},\omega}\phi_{n}](t)\,dt. (14)

We see that (11) holds if and only if there exists nonzero 𝐜={cn}n1/2\mathbf{c}=\{c_{n}\}_{n\in\mathbb{Z}}\in\mathbb{H}^{-1/2} such that the following infinite linear system holds:

𝒜(𝜿,ω)𝐜=𝟎.\mathcal{A}({\boldsymbol{\kappa}},\omega)\,\mathbf{c}={\mathbf{0}}. (15)

Such ω\omega is the called the characteristic values of the system. To study the eigenvalues ω\omega of the Dirichlet problem (1)-(2), we investigate the characteristic values of (15) in the rest of this paper. The matrix 𝒜\mathcal{A} inherits the symmetries of the Green’s function and the problem geometry as discussed below.

Lemma 2.3.

The following relations hold for the elements of the matrix 𝒜\mathcal{A}:

  • (i)

    am,n=an,m¯a_{m,n}=\overline{a_{n,m}};

  • (ii)

    am,n=(1)mnan,m=(1)mnam,n¯a_{m,n}=(-1)^{m-n}a_{-n,-m}=(-1)^{m-n}\overline{a_{-m,-n}};

  • (iii)

    If 𝜿=𝜿{\boldsymbol{\kappa}}={\boldsymbol{\kappa}}^{*}, then am,n0a_{m,n}\neq 0 only if mod(mn,3)=0\bmod(m-n,3)=0, where mod(,3)\bmod(\cdot,3) denotes the modulo operation with the divisor equals to 33.

Proof.

(i). A straightforward calculation yields

an,m¯=(ϕn,𝒮ε𝜿,ωϕm)¯\displaystyle\overline{a_{n,m}}=\overline{\left(\phi_{n},\mathcal{S}_{\varepsilon}^{{\boldsymbol{\kappa}},\omega}\phi_{m}\right)} =ππππG(𝜿,ω;ε(𝐫(t)𝐫(τ)))¯ϕm(τ)¯𝑑τϕn(t)𝑑t\displaystyle=\int_{-\pi}^{\pi}\int_{-\pi}^{\pi}\overline{G({\boldsymbol{\kappa}},\omega;\varepsilon(\mathbf{r}(t)-\mathbf{r}(\tau)))}\;\overline{\phi_{m}(\tau)}\,d\tau\;\phi_{n}(t)\,dt
=ππππG(𝜿,ω;ε(𝐫(τ)𝐫(t)))ϕn(t)𝑑tϕm(τ)¯𝑑τ=am,n.\displaystyle=\int_{-\pi}^{\pi}\int_{-\pi}^{\pi}G({\boldsymbol{\kappa}},\omega;\varepsilon(\mathbf{r}(\tau)-\mathbf{r}(t)))\;\phi_{n}(t)\,dt\;\overline{\phi_{m}(\tau)}\,d\tau=a_{m,n}.

(ii). Let t=tπt=t^{\prime}-\pi and τ=τπ\tau=\tau^{\prime}-\pi, it follows that

am,n\displaystyle a_{m,n} =ππππG(𝜿,ω;ε(𝐫(t)𝐫(τ)))ϕn(τ)𝑑τϕm(t)¯𝑑t\displaystyle=\int_{-\pi}^{\pi}\int_{-\pi}^{\pi}G({\boldsymbol{\kappa}},\omega;\varepsilon(\mathbf{r}(t)-\mathbf{r}(\tau)))\;\phi_{n}(\tau)\,d\tau\;\overline{\phi_{m}(t)}\,dt
=02π02πG(𝜿,ω;ε(𝐫(tπ)𝐫(τπ)))ϕn(τπ)𝑑τϕm(tπ)¯𝑑t\displaystyle=\int_{0}^{2\pi}\int_{0}^{2\pi}G\big{(}{\boldsymbol{\kappa}},\omega;\varepsilon(\mathbf{r}(t^{\prime}-\pi)-\mathbf{r}(\tau^{\prime}-\pi))\big{)}\;\phi_{n}(\tau^{\prime}-\pi)\,d\tau^{\prime}\;\overline{\phi_{m}(t^{\prime}-\pi)}\,dt^{\prime}
=ei(mn)π02π02πG(𝜿,ω;ε(𝐫(τ)𝐫(t)))ϕm(t)¯𝑑tϕn(τ)𝑑τ\displaystyle=e^{i(m-n)\pi}\int_{0}^{2\pi}\int_{0}^{2\pi}G\big{(}{\boldsymbol{\kappa}},\omega;\varepsilon(\mathbf{r}(\tau^{\prime})-\mathbf{r}(t^{\prime}))\big{)}\;\;\overline{\phi_{m}(t^{\prime})}\,dt^{\prime}\phi_{n}(\tau^{\prime})\,d\tau^{\prime}
=(1)mnan,m,\displaystyle=(-1)^{m-n}a_{-n,-m},

where we use ϕn(t)=ϕn(t)¯\phi_{-n}(t)=\overline{\phi_{n}(t)}.

(iii). For 𝜿=𝜿{\boldsymbol{\kappa}}={\boldsymbol{\kappa}}^{*}, using Lemma 2.2, the integral

u(𝐱):=𝒮ε𝜿,ωϕ=D1G(𝜿,ω;𝐱𝐲)ϕ(𝐲)𝑑s𝐲=D1G(𝜿,ω;R𝐱𝐲~)ϕ(RT𝐲~)𝑑s𝐲~,u(\mathbf{x}):=\mathcal{S}_{\varepsilon}^{{\boldsymbol{\kappa}}^{*},\omega}\phi=\int_{\partial D_{1}}G({\boldsymbol{\kappa}}^{*},\omega;\mathbf{x}-\mathbf{y})\,\phi(\mathbf{y})\,ds_{\mathbf{y}}=\int_{\partial D_{1}}G({\boldsymbol{\kappa}}^{*},\omega;R\mathbf{x}-\tilde{\mathbf{y}})\,\phi\left(R^{T}\tilde{\mathbf{y}}\right)\,ds_{\tilde{\mathbf{y}}},

where 𝐲~=R𝐲\tilde{\mathbf{y}}=R\mathbf{y}. Setting ϕ=ϕn\phi=\phi_{n} and u=unu=u_{n}, and using ϕn(RT𝐲~)=ei2nπ3ϕn(𝐲~)\phi_{n}\left(R^{T}\tilde{\mathbf{y}}\right)=e^{\frac{i2n\pi}{3}}\phi_{n}\left(\tilde{\mathbf{y}}\right), we obtain

un(𝐱):=𝒮ε𝜿,ωϕn=ei2nπ3D1G(𝜿,ω;R𝐱𝐲~)ϕn(𝐲~)𝑑s𝐲~=ei2nπ3un(R𝐱).u_{n}(\mathbf{x}):=\mathcal{S}_{\varepsilon}^{{\boldsymbol{\kappa}}^{*},\omega}\phi_{n}=e^{\frac{i2n\pi}{3}}\int_{\partial D_{1}}G({\boldsymbol{\kappa}}^{*},\omega;R\mathbf{x}-\tilde{\mathbf{y}})\,\phi_{n}\left(\tilde{\mathbf{y}}\right)\,ds_{\tilde{\mathbf{y}}}=e^{\frac{i2n\pi}{3}}u_{n}(R\mathbf{x}). (16)

On the other hand, unu_{n} attains the following expansion in the parameter space:

un(t)=m=(ϕm,𝒮ε𝜿,ωϕn)ϕm(t)=m=am,nϕm(t).u_{n}(t)=\sum_{m=-\infty}^{\infty}\left(\phi_{m},\mathcal{S}_{\varepsilon}^{{\boldsymbol{\kappa}}^{*},\omega}\phi_{n}\right)\phi_{m}(t)=\sum_{m=-\infty}^{\infty}a_{m,n}\phi_{m}(t). (17)

Substituting into (16) yields

m=am,nei(mt2nπ/3)=m=am,neim(t2π/3).\sum_{m=-\infty}^{\infty}a_{m,n}e^{i(mt-2n\pi/3)}=\sum_{m=-\infty}^{\infty}a_{m,n}e^{im(t-2\pi/3)}.

Thus am,n0a_{m,n}\neq 0 only if mt2nπ/3=m(t2π/3)+2mπmt-2n\pi/3=m(t-2\pi/3)+2m^{\prime}\pi for some mm^{\prime}\in\mathbb{Z}, or mn=3mm-n=3m^{\prime}.

By virtue of Lemma 2.3, when 𝜿=𝜿{\boldsymbol{\kappa}}={\boldsymbol{\kappa}}^{*}, the linear system (15) decouples into three subsystems as follows:

n=a3m,3n(𝜿,ω)c3n=0,m=0,±1,±2,;\displaystyle\sum_{n=-\infty}^{\infty}a_{3m,3n}({\boldsymbol{\kappa}}^{*},\omega)\,c_{3n}=0,\quad m=0,\pm 1,\pm 2,\cdots; (18)
n=a3m+1,3n+1(𝜿,ω)c3n+1=0,m=0,±1,±2,;\displaystyle\sum_{n=-\infty}^{\infty}a_{3m+1,3n+1}({\boldsymbol{\kappa}}^{*},\omega)\,c_{3n+1}=0,\quad m=0,\pm 1,\pm 2,\cdots; (19)
n=a3m1,3n1(𝜿,ω)c3n1=0,m=0,±1,±2,.\displaystyle\sum_{n=-\infty}^{\infty}a_{3m-1,3n-1}({\boldsymbol{\kappa}}^{*},\omega)\,c_{3n-1}=0,\quad m=0,\pm 1,\pm 2,\cdots. (20)

Correspondingly, we decompose the space s\mathbb{H}^{s} as the direct sum s=𝜿,0s𝜿,1s𝜿,1s\mathbb{H}^{s}=\mathbb{H}^{s}_{{\boldsymbol{\kappa}}*,0}\oplus\mathbb{H}^{s}_{{\boldsymbol{\kappa}}*,1}\oplus\mathbb{H}^{s}_{{\boldsymbol{\kappa}}*,-1}, in which

𝜿,js:={{cn}ns:cn=0 if mod(nj,3)0},j=0,1,1.\mathbb{H}^{s}_{{\boldsymbol{\kappa}}*,j}:=\Big{\{}\{c_{n}\}_{n\in\mathbb{Z}}\in\mathbb{H}^{s}:c_{n}=0\text{ if }\bmod(n-j,3)\neq 0\Big{\}},\quad j=0,1,-1.

Each subsystem above corresponds to restricting the full system (15) to the space 𝜿,j1/2\mathbb{H}_{{\boldsymbol{\kappa}}*,j}^{-1/2}. In connection with the eigenvalue problem (11), we decompose the function space Hs([0,2π])H^{s}([0,2\pi]) into

Hs([0,2π])=H𝜿,0s([0,2π])H𝜿,1s([0,2π])H𝜿,1s([0,2π]).H^{s}([0,2\pi])=H^{s}_{{\boldsymbol{\kappa}}*,0}([0,2\pi])\oplus H^{s}_{{\boldsymbol{\kappa}}*,1}([0,2\pi])\oplus H^{s}_{{\boldsymbol{\kappa}}*,-1}([0,2\pi]). (21)

Alternatively, the function space H𝜿,js([0,2π])H^{s}_{{\boldsymbol{\kappa}}^{*},j}([0,2\pi]) can be characterized as follows:

H𝜿,0s([0,2π])\displaystyle H^{s}_{{\boldsymbol{\kappa}}*,0}([0,2\pi]) ={ϕ(t)Hs([0,2π]):ϕ(t+2π3)=ϕ(t)},\displaystyle=\Big{\{}\phi(t)\in H^{s}([0,2\pi]):\phi\left(t+\frac{2\pi}{3}\right)=\phi(t)\Big{\}},
H𝜿,1s([0,2π])\displaystyle H^{s}_{{\boldsymbol{\kappa}}*,1}([0,2\pi]) ={ϕ(t)Hs([0,2π]):ϕ(t+2π3)=ei2π3ϕ(t)},\displaystyle=\Big{\{}\phi(t)\in H^{s}([0,2\pi]):\phi\left(t+\frac{2\pi}{3}\right)=e^{i\frac{2\pi}{3}}\phi(t)\Big{\}},
H𝜿,1s([0,2π])\displaystyle H^{s}_{{\boldsymbol{\kappa}}*,-1}([0,2\pi]) ={ϕ(t)Hs([0,2π]):ϕ(t+2π3)=ei2π3ϕ(t)}.\displaystyle=\Big{\{}\phi(t)\in H^{s}([0,2\pi]):\phi\left(t+\frac{2\pi}{3}\right)=e^{-i\frac{2\pi}{3}}\phi(t)\Big{\}}.

If {c3n+j}n1/2\{c_{3n+j}\}_{n\in\mathbb{Z}}\in\mathbb{H}^{-1/2} is an eigenvector for the corresponding system in (18)-(20), then the eigenfunction ϕ(t)=n=c3n+jϕ3n+j(t)\displaystyle{\phi(t)=\sum_{n=-\infty}^{\infty}c_{3n+j}\phi_{3n+j}(t)} for the eigenvalue problem (11) belongs to H𝜿,j1/2([0,2π])H^{-1/2}_{{\boldsymbol{\kappa}}*,j}([0,2\pi]).

In the sequel, we investigate the characteristic values ω\omega for each of (18)-(20) such that the system attains nontrivial solutions {c3n+j}n\{c_{3n+j}\}_{n\in\mathbb{Z}} for j=0,1j=0,1 or 1-1. As shown below, the systems (19) and (20) attain the same characteristic values.

Proposition 2.4.

ω\omega is a characteristic value of (19) with the corresponding solution {c3n+1}n\{c_{3n+1}\}_{n\in\mathbb{Z}} if and only if ω\omega is a characteristic value of (20) with the solution {c3n1}n\{c_{3n-1}\}_{n\in\mathbb{Z}} satisfying c3n1=(1)3nc3n+1¯c_{3n-1}=(-1)^{-3n}\overline{c_{-3n+1}} for each nn.

Proof.

Let ω\omega be a characteristic value of (19) and {c3n+1}n\{c_{3n+1}\}_{n\in\mathbb{Z}} be the corresponding solution such that

n=a3m+1,3n+1(𝜿,ω)c3n+1=0,m=0,±1,±2,.\sum_{n=-\infty}^{\infty}a_{3m+1,3n+1}({\boldsymbol{\kappa}}^{*},\omega)\,c_{3n+1}=0,\quad m=0,\pm 1,\pm 2,\cdots.

Choose c3n1=(1)3nc3n+1¯c_{3n-1}=(-1)^{-3n}\overline{c_{-3n+1}} for nn\in\mathbb{Z}. Then by Lemma 2.3 (ii), for each mm\in\mathbb{Z}, we have

n=a3m1,3n1(𝜿,ω)c3n1\displaystyle\sum_{n=-\infty}^{\infty}a_{3m-1,3n-1}({\boldsymbol{\kappa}}^{*},\omega)\,c_{3n-1} =n=a3m1,3n1(𝜿,ω)c3n1\displaystyle=\sum_{n=-\infty}^{\infty}a_{3m-1,-3n-1}({\boldsymbol{\kappa}}^{*},\omega)\,c_{-3n-1}
=n=(1)3m+3na3m+1,3n+1¯(𝜿,ω)(1)3nc3n+1¯=0,\displaystyle=\sum_{n=-\infty}^{\infty}(-1)^{3m+3n}\overline{a_{-3m+1,3n+1}}({\boldsymbol{\kappa}}^{*},\omega)\cdot(-1)^{3n}\overline{c_{3n+1}}=0,

and the system (20) holds. The converse can be shown similarly. ∎

3 Dirichlet eigenvalue at 𝜿=𝜿{\boldsymbol{\kappa}}={\boldsymbol{\kappa}}^{*} for the low-frequency bands

In this section, we focus on the lowest eigenvalue to the eigenvalue problem (1)-(2) when 𝜿=𝜿{\boldsymbol{\kappa}}={\boldsymbol{\kappa}}^{*}. Based on the decomposition of the quasi-periodic Green’s function G(𝜿,ω,𝐱)G({\boldsymbol{\kappa}},\omega,\mathbf{x}) and the integral operator 𝒮ε𝜿,ω\mathcal{S}_{\varepsilon}^{{\boldsymbol{\kappa}},\omega}, we decompose the matrix 𝒜\mathcal{A} as 𝒜=𝒟+ε\mathcal{A}=\mathcal{D}+\varepsilon\,\mathcal{E}, wherein 𝒟\mathcal{D} is a diagonal matrix. Such decomposition allows for reducing the subsystems (18)-(20) to three scalar nonlinear equations (characteristic equations). The eigenvalues are the roots of the characteristic equations and can be obtained by the asymptotic analysis.

3.1 Decomposition of the Green’s function and the single-layer operator 𝒮ε𝜿,ω\mathcal{S}_{\varepsilon}^{{\boldsymbol{\kappa}},\omega}

As we shall see, the lowest Dirichlet eigenvalue at 𝜿=𝜿{\boldsymbol{\kappa}}={\boldsymbol{\kappa}}^{*} lies in the neighborhood of the singular frequency ω¯1(𝜿):=|𝜿|\bar{\omega}_{1}({\boldsymbol{\kappa}}^{*}):=|{\boldsymbol{\kappa}}^{*}|. To this end, we consider the following small neighborhood of ω¯1(𝜿)\bar{\omega}_{1}({\boldsymbol{\kappa}}^{*}):

Ωε(𝜿):={ω+:1|2Y|(2πa)2ε2ω2|𝜿|24π|Y||lnε|}.\Omega_{\varepsilon}({\boldsymbol{\kappa}}^{*}):=\left\{\omega\in\mathbb{R}^{+}:\frac{1}{\left|2Y\right|}\left(\frac{2\pi}{a}\right)^{2}\varepsilon^{2}\leq\omega^{2}-\left|{\boldsymbol{\kappa}}^{*}\right|^{2}\leq\dfrac{4\pi}{\left|Y\right|\left|\ln\varepsilon\right|}\right\}. (22)

The lower and upper bounds are chosen such that there exist roots ω\omega for the systems (18)-(20) in Ωε(𝜿)\Omega_{\varepsilon}({\boldsymbol{\kappa}}^{*}). Let Ur:={𝐱:|𝐱|<r}U_{r}:=\left\{\mathbf{x}:|\mathbf{x}|<r\right\} be disk centered at the origin with the radius rr.

We denote

Λ0(ω¯1):={𝐪Λ:|𝜿+𝐪|=|𝜿|}.\Lambda^{*}_{0}(\bar{\omega}_{1}):=\left\{\mathbf{q}\in\Lambda^{*}:|{\boldsymbol{\kappa}}^{*}+\mathbf{q}|=|{\boldsymbol{\kappa}}^{*}|\right\}. (23)

It can be solved that Λ0(ω¯1)={𝐪1,𝐪2,𝐪3}\Lambda^{*}_{0}(\bar{\omega}_{1})=\left\{\mathbf{q}_{1},\mathbf{q}_{2},\mathbf{q}_{3}\right\}, where 𝐪1=(0,0)T\mathbf{q}_{1}=(0,0)^{T}, 𝐪2=2πa(23,0)T\mathbf{q}_{2}=\frac{2\pi}{a}(-\frac{2}{\sqrt{3}},0)^{T}, and 𝐪3=2πa(13,1)T\mathbf{q}_{3}=\frac{2\pi}{a}(-\frac{1}{\sqrt{3}},-1)^{T}. We decompose the Green’s function into the three parts as follows:

Definition 3.1 (Decomposition of the Green’s function).

Let

H0(ω;𝐱):=i4H0(1)(ω|𝐱|),𝐱0,H_{0}(\omega;\mathbf{x}):=-\frac{i}{4}H_{0}^{(1)}(\omega|\mathbf{x}|),\quad\mathbf{x}\neq 0, (24)
GΛ0(𝜿,ω;𝐱):=1|Y|𝐪Λ0(ω¯1)ei(𝜿+𝐪)𝐱ω2|𝜿+𝐪|2,G_{\Lambda^{*}_{0}}({\boldsymbol{\kappa}},\omega;\mathbf{x}):=\frac{1}{|Y|}\sum_{\mathbf{q}\in\Lambda_{0}^{*}(\bar{\omega}_{1})}\frac{e^{i({\boldsymbol{\kappa}}+\mathbf{q})\cdot\mathbf{x}}}{\omega^{2}-|{\boldsymbol{\kappa}}+\mathbf{q}|^{2}}, (25)

and

G~(𝜿,ω;𝐱)\displaystyle\tilde{G}({\boldsymbol{\kappa}},\omega;\mathbf{x}) :=\displaystyle:= G(𝜿,ω;𝐱)H0(ω;𝐱)GΛ0(𝜿,ω;𝐱),𝐱0,\displaystyle G({\boldsymbol{\kappa}},\omega;\mathbf{x})-H_{0}(\omega;\mathbf{x})-G_{\Lambda^{*}_{0}}({\boldsymbol{\kappa}},\omega;\mathbf{x}),\quad\mathbf{x}\neq 0, (26)
G~(𝜿,ω;0)\displaystyle\tilde{G}({\boldsymbol{\kappa}},\omega;0) :=\displaystyle:= lim𝐱0G~(𝜿,ω;𝐱).\displaystyle\lim_{\mathbf{x}\to 0}\tilde{G}({\boldsymbol{\kappa}},\omega;\mathbf{x}).
Remark 3.2.

H0(ω;𝐱)H_{0}(\omega;\mathbf{x}) is the free-space Green’s function that satisfies (Δ+ω2)H0(𝐱)=δ(𝐱)(\Delta+\omega^{2})H_{0}(\mathbf{x})=\delta(\mathbf{x}). Its asymptotic behavior for 0<|𝐱|10<|\mathbf{x}|\ll 1 is well known and is given in the next lemma. In particular, H0(ω;𝐱)12πln|𝐱|H_{0}(\omega;\mathbf{x})\approx\frac{1}{2\pi}\ln|\mathbf{x}| as |𝐱|0|\mathbf{x}|\to 0.

Remark 3.3.

Given non-singular frequency ωΩsing(𝛋)\omega\notin\Omega_{\text{sing}}({\boldsymbol{\kappa}}), both GΛ0(𝛋,ω;𝐱)G_{\Lambda^{*}_{0}}({\boldsymbol{\kappa}},\omega;\mathbf{x}) and G~(𝛋,ω;𝐱)\tilde{G}({\boldsymbol{\kappa}},\omega;\mathbf{x}) are smooth functions in the neighborhood of 𝐱=0\mathbf{x}=0. However, their asymptotic behaviors are very different as ω\omega approaches the singular frequency ω¯1(𝛋)=|𝛋|\bar{\omega}_{1}({\boldsymbol{\kappa}}^{*})=|{\boldsymbol{\kappa}}^{*}|. More precisely, in this region, the finite-sum GΛ0(𝛋,ω;𝐱)G_{\Lambda^{*}_{0}}({\boldsymbol{\kappa}}^{*},\omega;\mathbf{x}) attains the order 1ω2|𝛋|2\frac{1}{\omega^{2}-|{\boldsymbol{\kappa}}^{*}|^{2}} and its value blows up as ωω¯1(𝛋)\omega\to\bar{\omega}_{1}({\boldsymbol{\kappa}}^{*}), while G~(𝛋,ω;𝐱)\tilde{G}({\boldsymbol{\kappa}}^{*},\omega;\mathbf{x}) remains order O(1)O(1) in the neighborhood of 𝐱=0\mathbf{x}=0 as ωω¯1\omega\to\bar{\omega}_{1}. In the decomposition, we introduce GΛ0G_{\Lambda^{*}_{0}} to extract the singular behavior of the Green’s function when ω\omega is close to the singular frequency.

Lemma 3.4 ([hsiao-wendland], Section 2.1.1).

If 0<|𝐱|10<|\mathbf{x}|\ll 1, then

H0(ω;𝐱)=12π[ln|𝐱|+lnω+γ0+ln(ω|𝐱|)p1bp,1(ω|𝐱|)2p+p1bp,2(ω|𝐱|)2p],H_{0}(\omega;\mathbf{x})=\frac{1}{2\pi}\left[\ln|\mathbf{x}|+\ln\omega+\gamma_{0}+\ln(\omega|\mathbf{x}|)\sum_{p\geq 1}b_{p,1}(\omega|\mathbf{x}|)^{2p}+\sum_{p\geq 1}b_{p,2}(\omega|\mathbf{x}|)^{2p}\right], (27)

where

bp,1=(1)p22p(p!)2,bp,2=(γ0s=1p1s)bp,1,γ0=E0ln2iπ2.b_{p,1}=\frac{(-1)^{p}}{2^{2p}(p!)^{2}},\;b_{p,2}=\left(\gamma_{0}-\sum_{s=1}^{p}\frac{1}{s}\right)b_{p,1},\;\gamma_{0}=E_{0}-\ln 2-\frac{i\pi}{2}. (28)

From the Taylor expansion of the finite-sum GΛ0(𝐱)G_{\Lambda^{*}_{0}}(\mathbf{x}), we also have the following lemma.

Lemma 3.5.

For each ωΩε(𝛋)\omega\in\Omega_{\varepsilon}({\boldsymbol{\kappa}}^{*}), GΛ0(𝛋,ω;𝐱)G_{\Lambda^{*}_{0}}({\boldsymbol{\kappa}}^{*},\omega;\mathbf{x}) is analytic for 𝐱U2ε\mathbf{x}\in U_{2\varepsilon} and it possesses the Taylor expansion

GΛ0(𝜿,ω;𝐱)=1|Y|1ω2|𝜿|2(313(2πa)2|𝐱|2)+GΛ0(𝜿,ω;𝐱),G_{\Lambda^{*}_{0}}({\boldsymbol{\kappa}}^{*},\omega;\mathbf{x})=\frac{1}{|Y|}\frac{1}{\omega^{2}-|{\boldsymbol{\kappa}}^{*}|^{2}}\left(3-\frac{1}{3}\left(\frac{2\pi}{a}\right)^{2}|\mathbf{x}|^{2}\right)+G_{\Lambda^{*}_{0}}^{\infty}({\boldsymbol{\kappa}}^{*},\omega;\mathbf{x}), (29)

where

GΛ0(𝜿,ω;𝐱)=1|Y|1ω2|𝜿|2|α|3cα(ω)x1α1x2α2,G_{\Lambda^{*}_{0}}^{\infty}({\boldsymbol{\kappa}}^{*},\omega;\mathbf{x})=\frac{1}{|Y|}\frac{1}{\omega^{2}-|{\boldsymbol{\kappa}}^{*}|^{2}}\sum_{|\alpha|\geq 3}c_{\alpha}(\omega)x_{1}^{\alpha_{1}}x_{2}^{\alpha_{2}}, (30)

α=(α1,α2)\alpha=(\alpha_{1},\alpha_{2}) and |cα|<C|α||c_{\alpha}|<C^{|\alpha|} for certain constant CC independent of ω\omega, ε\varepsilon and α\alpha.

Lemma 3.6.

For each ωΩε(𝛋)\omega\in\Omega_{\varepsilon}({\boldsymbol{\kappa}}^{*}), G~(𝛋,ω;𝐱)\tilde{G}({\boldsymbol{\kappa}}^{*},\omega;\mathbf{x}) is smooth for 𝐱U2ε\mathbf{x}\in U_{2\varepsilon}. In addition,

supωΩε(𝜿)|x1α1x2α2G~(𝜿,ω;0)|C,0α1+α22,\sup_{\omega\in\Omega_{\varepsilon}({\boldsymbol{\kappa}}^{*})}\left|\partial^{\alpha_{1}}_{x_{1}}\partial^{\alpha_{2}}_{x_{2}}\tilde{G}({\boldsymbol{\kappa}}^{*},\omega;0)\right|\leq C,\quad 0\leq\alpha_{1}+\alpha_{2}\leq 2, (31)

wherein the constant CC is independent of ω\omega, ε\varepsilon.

Proof.

For fixed 𝜿{\boldsymbol{\kappa}}^{*}, from the spectral representation of the Green’s function (6), we see that G(𝜿,ω;)GΛ0(𝜿,ω;)G({\boldsymbol{\kappa}}^{*},\omega;\cdot)-G_{\Lambda^{*}_{0}}({\boldsymbol{\kappa}}^{*},\omega;\cdot) is a family of distribution that depends on ω\omega analytically for ωΩε(𝜿)\omega\in\Omega_{\varepsilon}({\boldsymbol{\kappa}}^{*}). So is the distribution G~(𝜿,ω,)=G(𝜿,ω,)GΛ0(𝜿,ω,)H0()\tilde{G}({\boldsymbol{\kappa}}^{*},\omega,\cdot)=G({\boldsymbol{\kappa}}^{*},\omega,\cdot)-G_{\Lambda^{*}_{0}}({\boldsymbol{\kappa}}^{*},\omega,\cdot)-H_{0}(\cdot). On the other hand, in view of (4), there holds (Δ+ω2)G~(𝜿,ω,𝐱)=3|Y|(\Delta+\omega^{2})\tilde{G}({\boldsymbol{\kappa}}^{*},\omega,\mathbf{x})=-\frac{3}{|Y|} for 𝐱U2ε\mathbf{x}\in U_{2\varepsilon} and ωΩε(𝜿)\omega\in\Omega_{\varepsilon}({\boldsymbol{\kappa}}^{*}), where we used the fact that there are three elments in the set Λ0(ω¯1)\Lambda^{*}_{0}(\bar{\omega}_{1}). From the regularity theory for the solutions to the Helmholtz equation, we deduce that the distribution G~(𝜿,ω;𝐱)\tilde{G}({\boldsymbol{\kappa}}^{*},\omega;\mathbf{x}) is smooth in the domain U2εU_{2\varepsilon}. Hence G~(𝜿,ω;𝐱)\tilde{G}({\boldsymbol{\kappa}}^{*},\omega;\mathbf{x}) can be viewed as a family of smooth functions for 𝐱U2ε\mathbf{x}\in U_{2\varepsilon} that depends on the parameter ω\omega analytically. This completes the proof of the lemma. ∎

Definition 3.7 (Decomposition of the single-layer operator 𝒮ε𝜿,ω\mathcal{S}_{\varepsilon}^{{\boldsymbol{\kappa}},\omega}).

Let 𝒮H0,ε\mathcal{S}_{H_{0},\varepsilon}, 𝒮Λ0,ε\mathcal{S}_{\Lambda^{*}_{0},\varepsilon} and 𝒮~ε\tilde{\mathcal{S}}_{\varepsilon} be the integral operators with the kernel H0H_{0}, GΛ0G_{\Lambda^{*}_{0}} and G~\tilde{G} given in (24)-(26):

(𝐱):=\displaystyle(\mathbf{x}):= 𝐲D1H0(ω;ε(𝐱𝐲))φ(𝐲)𝑑s𝐲,𝐱D1,\displaystyle\int_{\mathbf{y}\in\partial D_{1}}H_{0}(\omega;\varepsilon(\mathbf{x}-\mathbf{y}))\varphi(\mathbf{y})\,ds_{\mathbf{y}},\quad\mathbf{x}\in\partial D_{1},
[𝒮Λ0,εφ](𝐱):=\displaystyle[\mathcal{S}_{\Lambda^{*}_{0},\varepsilon}\varphi](\mathbf{x}):= 𝐲D1GΛ0(𝜿,ω;ε(𝐱𝐲))φ(𝐲)𝑑s𝐲,𝐱D1,\displaystyle\int_{\mathbf{y}\in\partial D_{1}}G_{\Lambda^{*}_{0}}({\boldsymbol{\kappa}},\omega;\varepsilon(\mathbf{x}-\mathbf{y}))\varphi(\mathbf{y})\,ds_{\mathbf{y}},\quad\mathbf{x}\in\partial D_{1},
[𝒮~εφ](𝐱):=\displaystyle[\tilde{\mathcal{S}}_{\varepsilon}\varphi](\mathbf{x}):= 𝐲D1G~(𝜿,ω;ε(𝐱𝐲))φ(𝐲)𝑑s𝐲,𝐱D1.\displaystyle\int_{\mathbf{y}\in\partial D_{1}}\tilde{G}({\boldsymbol{\kappa}},\omega;\varepsilon(\mathbf{x}-\mathbf{y}))\varphi(\mathbf{y})\,ds_{\mathbf{y}},\quad\mathbf{x}\in\partial D_{1}.

3.2 Decomposition of the matrix 𝒜\mathcal{A}

Recall that am,n=(ϕm,𝒮ε𝜿,ωϕn)a_{m,n}=\left(\phi_{m},\mathcal{S}_{\varepsilon}^{{\boldsymbol{\kappa}},\omega}\phi_{n}\right), using the decomposition of the integral operator 𝒮ε𝜿,ω\mathcal{S}_{\varepsilon}^{{\boldsymbol{\kappa}},\omega}, we express am,na_{m,n} as the sum of the following three terms:

(𝒮H0,ε)m,n:=\displaystyle(\mathcal{S}_{H_{0},\varepsilon})_{m,n}:= (ϕm,𝒮H0,εϕn),\displaystyle\left(\phi_{m},\mathcal{S}_{H_{0},\varepsilon}\phi_{n}\right), (32)
(𝒮Λ0,ε)m,n:=\displaystyle(\mathcal{S}_{\Lambda^{*}_{0},\varepsilon})_{m,n}:= (ϕm,𝒮Λ0,εϕn),\displaystyle\left(\phi_{m},\mathcal{S}_{\Lambda^{*}_{0},\varepsilon}\phi_{n}\right),
(𝒮~ε)m,n:=\displaystyle(\tilde{\mathcal{S}}_{\varepsilon})_{m,n}:= (ϕm,𝒮~εϕn).\displaystyle\left(\phi_{m},\tilde{\mathcal{S}}_{\varepsilon}\phi_{n}\right).

In what follows, we obtain the asymptotic expansion of (𝒮H0,ε)m,n(\mathcal{S}_{H_{0},\varepsilon})_{m,n}, (𝒮Λ0,ε)m,n(\mathcal{S}_{\Lambda^{*}_{0},\varepsilon})_{m,n}, and (𝒮~ε)m,n(\tilde{\mathcal{S}}_{\varepsilon})_{m,n} to obtain a decomposition of the matrix 𝒜\mathcal{A}.

Define

𝒮0φ(𝐱):=12π𝐲D1ln|𝐱𝐲|φ(𝐲)𝑑s𝐲,𝐱D1.\mathcal{S}_{0}\varphi(\mathbf{x}):=\frac{1}{2\pi}\int_{\mathbf{y}\in\partial D_{1}}\ln|\mathbf{x}-\mathbf{y}|\,\varphi(\mathbf{y})\,ds_{\mathbf{y}},\quad\mathbf{x}\in\partial D_{1}. (33)
Lemma 3.8.

The operator 𝒮0\mathcal{S}_{0} is bounded from H1/2([0,2π])H^{-1/2}([0,2\pi]) to H1/2([0,2π])H^{1/2}([0,2\pi]), and attains the eigenvalues {ηn}n=\{\eta_{n}\}_{n=-\infty}^{\infty} and the eigenfunctions {ϕn}n=\{\phi_{n}\}_{n=-\infty}^{\infty} given by

ηn={0,n=0;12|n|,n0;andϕn=12πeint.\eta_{n}=\left\{\begin{array}[]{cc}0,&n=0;\\ -\frac{1}{2|n|},&n\neq 0;\end{array}\right.\quad\mbox{and}\quad\phi_{n}=\frac{1}{\sqrt{2\pi}}e^{int}.
Proof.

On the unit circle, there holds |𝐫(t)𝐫(τ)|2=22cos(tτ)=4sin2(tτ2)\left|\mathbf{r}(t)-\mathbf{r}(\tau)\right|^{2}=2-2\cos(t-\tau)=4\sin^{2}\left(\frac{t-\tau}{2}\right). As such

[𝒮0ϕn](t)=14π02πln(4sin2(tτ2))ϕn(τ)𝑑τ=ηnϕn(t),[\mathcal{S}_{0}\phi_{n}](t)=\frac{1}{4\pi}\int_{0}^{2\pi}\ln\left(4\sin^{2}\left(\frac{t-\tau}{2}\right)\right)\phi_{n}(\tau)\,d\tau=\eta_{n}\phi_{n}(t),

where we use Lemma 8.23 in [kress]. ∎

Lemma 3.9.

For ε1\varepsilon\ll 1, there holds

(𝒮H0,ε)m,n={12π(lnε+lnω+γ0)+O(ε2lnε)m=n=0,12|n|(1+O(ε2lnε))m=n0,0mn.(\mathcal{S}_{H_{0},\varepsilon})_{m,n}=\begin{cases}\dfrac{1}{2\pi}(\ln\varepsilon+\ln\omega+\gamma_{0})+O(\varepsilon^{2}\ln\varepsilon)\quad&m=n=0,\\ -\dfrac{1}{2|n|}\left(1+O(\varepsilon^{2}\ln\varepsilon)\right)\quad&m=n\neq 0,\\ 0\quad&m\neq n.\end{cases} (34)
Proof.

Using the expansion (27), we have

H0(ω,ε(𝐱𝐲))=12π(lnε+lnω+γ0+ln|𝐱𝐲|)+H0(ω;ε(𝐱𝐲)),H_{0}(\omega,\varepsilon(\mathbf{x}-\mathbf{y}))=\frac{1}{2\pi}\left(\ln\varepsilon+\ln\omega+\gamma_{0}+\ln|\mathbf{x}-\mathbf{y}|\right)+H_{0}^{\infty}(\omega;\varepsilon(\mathbf{x}-\mathbf{y})),

wherein

H0(ω;ε(𝐱𝐲)):=12π[ln(ωε|𝐱𝐲|)p1bp,1(ωε|𝐱𝐲|)2p+p1bp,2(ωε|𝐱𝐲|)2p].H_{0}^{\infty}(\omega;\varepsilon(\mathbf{x}-\mathbf{y})):=\frac{1}{2\pi}\left[\ln(\omega\varepsilon|\mathbf{x}-\mathbf{y}|)\sum_{p\geq 1}b_{p,1}(\omega\varepsilon|\mathbf{x}-\mathbf{y}|)^{2p}+\sum_{p\geq 1}b_{p,2}(\omega\varepsilon|\mathbf{x}-\mathbf{y}|)^{2p}\right]. (35)

Note that |𝐫(t)𝐫(τ)|2=4sin2(tτ2)|\mathbf{r}(t)-\mathbf{r}(\tau)|^{2}=4\sin^{2}\left(\frac{t-\tau}{2}\right), we obtain (𝒮H0,ε)m,n=0(\mathcal{S}_{H_{0},\varepsilon})_{m,n}=0 for mnm\neq n.

To estimate (𝒮H0,ε)n,n(\mathcal{S}_{H_{0},\varepsilon})_{n,n}, from Lemma 3.8 it is straightforward that

12π02π02πϕn(t)¯ln|𝐫(t)𝐫(τ)|ϕn(τ)𝑑τ𝑑t=ηn.\frac{1}{2\pi}\int_{0}^{2\pi}\int_{0}^{2\pi}\overline{\phi_{n}(t)}\ln|\mathbf{r}(t)-\mathbf{r}(\tau)|\phi_{n}(\tau)d\tau dt=\eta_{n}. (36)

Now consider the following two integrals for p1p\geq 1:

I1,p,n:=\displaystyle I_{1,p,n}:= 02π02πϕn(t)¯|𝐫(t)𝐫(τ)|2pln|𝐫(t)𝐫(τ)|ϕn(τ)𝑑τ𝑑t\displaystyle\int_{0}^{2\pi}\int_{0}^{2\pi}\overline{\phi_{n}(t)}|\mathbf{r}(t)-\mathbf{r}(\tau)|^{2p}\ln|\mathbf{r}(t)-\mathbf{r}(\tau)|\phi_{n}(\tau)d\tau dt (37)
=\displaystyle= 02π12(22cost)pln(22cost)eintdt2π;\displaystyle\int_{0}^{2\pi}\frac{1}{2}\left(2-2\cos t\right)^{p}\ln\left(2-2\cos t\right)e^{int}\frac{dt}{2\pi};
I2,p,n:=\displaystyle I_{2,p,n}:= 02π02πϕn(t)¯|𝐫(t)𝐫(τ)|2pϕn(τ)𝑑τ𝑑t=02π(22cost)peintdt2π.\displaystyle\int_{0}^{2\pi}\int_{0}^{2\pi}\overline{\phi_{n}(t)}|\mathbf{r}(t)-\mathbf{r}(\tau)|^{2p}\phi_{n}(\tau)d\tau dt=\int_{0}^{2\pi}\left(2-2\cos t\right)^{p}e^{int}\frac{dt}{2\pi}.

When n=0n=0, there holds

|I1,p,0|4p202π|ln(22cost)|dt2π=C14p2,|I2,p,0|4p.|I_{1,p,0}|\leq\frac{4^{p}}{2}\int_{0}^{2\pi}|\ln\left(2-2\cos t\right)|\frac{dt}{2\pi}=C_{1}\frac{4^{p}}{2},\quad|I_{2,p,0}|\leq 4^{p}.

Here C1:=02π|ln(22cost))|dt2π\displaystyle{C_{1}:=\int_{0}^{2\pi}|\ln\left(2-2\cos t)\right)|\frac{dt}{2\pi}} is a finite constant. When n0n\neq 0, integrating by parts yields

I1,p,n\displaystyle I_{1,p,n} =12in02π[2psint(22cost)p1ln(22cost)+2sint(22cost)p1]eintdt2π,\displaystyle=-\frac{1}{2in}\int_{0}^{2\pi}[2p\sin t\left(2-2\cos t\right)^{p-1}\ln\left(2-2\cos t\right)+2\sin t\left(2-2\cos t\right)^{p-1}]e^{int}\frac{dt}{2\pi},
I2,p,n\displaystyle I_{2,p,n} =1in02π2psint(22cost)p1eintdt2π.\displaystyle=-\frac{1}{in}\int_{0}^{2\pi}2p\sin t\left(2-2\cos t\right)^{p-1}e^{int}\frac{dt}{2\pi}.

It follows that

|I1,p,n|12|n|(2C1p+2)4p1,|I2,p,n|p2|n|4p.|I_{1,p,n}|\leq\frac{1}{2|n|}(2C_{1}p+2)4^{p-1},\quad|I_{2,p,n}|\leq\frac{p}{2|n|}4^{p}.

Thus there exists a constant C2>0C_{2}>0 such that for all 0<ε<min(a4,34|𝜿|)0<\varepsilon<\min(\frac{a}{4},\frac{3}{4|{\boldsymbol{\kappa}}^{*}|}) and all ωΩε(𝜿)\omega\in\Omega_{\varepsilon}({\boldsymbol{\kappa}}^{*}),

|(ϕm,H0ϕn)|\displaystyle\left|(\phi_{m},H_{0}^{\infty}\phi_{n})\right| =|12πp1(εω)2pb1,pI1,p,n+12πp1[ln(εω)+γ0s=1p1s](εω)2pb1,pI2,p,n|\displaystyle=\left|\frac{1}{2\pi}\sum_{p\geq 1}(\varepsilon\omega)^{2p}b_{1,p}I_{1,p,n}+\frac{1}{2\pi}\sum_{p\geq 1}\left[\ln(\varepsilon\omega)+\gamma_{0}-\sum_{s=1}^{p}\frac{1}{s}\right](\varepsilon\omega)^{2p}b_{1,p}I_{2,p,n}\right| (38)
{C2ε2lnεn=0,12|n|C2ε2lnε|n|0.\displaystyle\leq\begin{cases}C_{2}\varepsilon^{2}\ln\varepsilon\quad&n=0,\\ \frac{1}{2|n|}C_{2}\varepsilon^{2}\ln\varepsilon\quad&|n|\neq 0.\end{cases}

The proof is complete by combining (36) and (38). ∎

Lemma 3.10.

Let 𝛋=𝛋{\boldsymbol{\kappa}}={\boldsymbol{\kappa}}^{*}. For ε1\varepsilon\ll 1 and ωΩε(𝛋)\omega\in\Omega_{\varepsilon}({\boldsymbol{\kappa}}^{*}), there holds

(𝒮Λ0,ε)m,n={1|Y|1ω2|𝜿|2(34πε23(2πa)2+O(ε3))m=n=0,1|Y|1ω2|𝜿|2(2πε23(2πa)2+O(ε3))m=n=±11|Y|1ω2|𝜿|2O(εmax(3,|m|,|n|))otherwise.,(\mathcal{S}_{\Lambda^{*}_{0},\varepsilon})_{m,n}=\begin{cases}\dfrac{1}{|Y|}\dfrac{1}{\omega^{2}-|{\boldsymbol{\kappa}}^{*}|^{2}}\left(3-\dfrac{4\pi\varepsilon^{2}}{3}\left(\dfrac{2\pi}{a}\right)^{2}+O(\varepsilon^{3})\right)\quad&m=n=0,\\ \dfrac{1}{|Y|}\dfrac{1}{\omega^{2}-|{\boldsymbol{\kappa}}^{*}|^{2}}\left(\dfrac{2\pi\varepsilon^{2}}{3}\left(\dfrac{2\pi}{a}\right)^{2}+O(\varepsilon^{3})\right)\quad&m=n=\pm 1\\ \dfrac{1}{|Y|}\dfrac{1}{\omega^{2}-|{\boldsymbol{\kappa}}^{*}|^{2}}\,O\left(\varepsilon^{\max(3,|m|,|n|)}\right)\quad&\text{otherwise}.\end{cases}, (39)
Proof.

Using the expansion (29), there holds

GΛ0(𝜿,ω;ε(𝐱𝐲))=1|Y|1ω2|𝜿|2(3ε23(2πa)2|𝐱𝐲|2)+GΛ0(𝜿,ω;ε(𝐱𝐲)).G_{\Lambda^{*}_{0}}({\boldsymbol{\kappa}}^{*},\omega;\varepsilon(\mathbf{x}-\mathbf{y}))=\frac{1}{|Y|}\frac{1}{\omega^{2}-|{\boldsymbol{\kappa}}^{*}|^{2}}\left(3-\frac{\varepsilon^{2}}{3}\left(\frac{2\pi}{a}\right)^{2}|\mathbf{x}-\mathbf{y}|^{2}\right)+G_{\Lambda^{*}_{0}}^{\infty}({\boldsymbol{\kappa}}^{*},\omega;\varepsilon(\mathbf{x}-\mathbf{y})).

Then (39) follows by using the relation |𝐫(t)𝐫(τ)|2=22cos(tτ)|\mathbf{r}(t)-\mathbf{r}(\tau)|^{2}=2-2\cos(t-\tau) and the fact

|02π02πϕm(τ)¯(sintsinτ)α1(costcosτ)α2ϕn(t)𝑑τ𝑑t|{0|m||α| or |n||α|,2π4|α|otherwise.\left|\int_{0}^{2\pi}\int_{0}^{2\pi}\overline{\phi_{m}(\tau)}(\sin t-\sin\tau)^{\alpha_{1}}(\cos t-\cos\tau)^{\alpha_{2}}\phi_{n}(t)d\tau dt\right|\leq\begin{cases}0\;&|m|\geq|\alpha|\text{ or }|n|\geq|\alpha|,\\ 2\pi\cdot 4^{|\alpha|}\;&\text{otherwise}.\end{cases}

Lemma 3.11.

Let 𝛋=𝛋{\boldsymbol{\kappa}}={\boldsymbol{\kappa}}^{*}. For ε1\varepsilon\ll 1 and ωΩε(𝛋)\omega\in\Omega_{\varepsilon}({\boldsymbol{\kappa}}^{*}), (𝒮~ε)m,n(\tilde{\mathcal{S}}_{\varepsilon})_{m,n} can be expressed as

(𝒮~ε)m,n={G~(𝜿,ω;𝟎)+εa~0,0m=n=0,εa~m,notherwise,(\tilde{\mathcal{S}}_{\varepsilon})_{m,n}=\begin{cases}\tilde{G}({\boldsymbol{\kappa}}^{*},\omega;\mathbf{0})+\varepsilon\cdot\tilde{a}_{0,0}\quad&m=n=0,\\ \varepsilon\cdot\tilde{a}_{m,n}\quad&\text{otherwise},\end{cases} (40)

where the operator 𝒜~=[a~m,n]\tilde{\mathcal{A}}=[\tilde{a}_{m,n}] is bounded from 1/2\mathbb{H}^{-1/2} to 1/2\mathbb{H}^{1/2}, and the operator norm 𝒜~C\|\tilde{\mathcal{A}}\|\leq C with CC independent of ε\varepsilon and ω\omega.

Proof.

From the analyticity of G~(𝜿,ω;𝐱)\tilde{G}({\boldsymbol{\kappa}}^{*},\omega;\mathbf{x}), for each ωΩε(𝜿)\omega\in\Omega_{\varepsilon}({\boldsymbol{\kappa}}^{*}), we can write G~(𝜿,ω;ε(𝐱𝐲))\tilde{G}({\boldsymbol{\kappa}}^{*},\omega;\varepsilon(\mathbf{x}-\mathbf{y})) as

G~(𝜿,ω;ε(𝐱𝐲))=G~(𝜿,ω;𝟎)+εG~(𝜿,ω;ε(𝐱𝐲))\tilde{G}({\boldsymbol{\kappa}}^{*},\omega;\varepsilon(\mathbf{x}-\mathbf{y}))=\tilde{G}({\boldsymbol{\kappa}}^{*},\omega;\mathbf{0})+\varepsilon\cdot\tilde{G}_{\infty}({\boldsymbol{\kappa}}^{*},\omega;\varepsilon(\mathbf{x}-\mathbf{y}))

for certain function G~(𝜿,ω;ε(𝐱𝐲))\tilde{G}_{\infty}({\boldsymbol{\kappa}}^{*},\omega;\varepsilon(\mathbf{x}-\mathbf{y})) that is smooth for 𝐱,𝐲D1\mathbf{x},\mathbf{y}\in\partial D_{1}. In addition, from (31), G~(𝜿,ω;ε(𝐱𝐲))\tilde{G}_{\infty}({\boldsymbol{\kappa}}^{*},\omega;\varepsilon(\mathbf{x}-\mathbf{y})) together with its first order partial derivatives with respect to 𝐱\mathbf{x}, 𝐲\mathbf{y} are all uniformly bounded for ωΩε(𝜿)\omega\in\Omega_{\varepsilon}({\boldsymbol{\kappa}}^{*}). Therefore the following operator

𝒮~ε,φ(𝐱):=𝐲D1G~(𝜿,ω;ε(𝐱𝐲))φ(𝐲)𝑑s𝐲,𝐱D1,\displaystyle\tilde{\mathcal{S}}_{\varepsilon,\infty}\varphi(\mathbf{x}):=\int_{\mathbf{y}\in\partial D_{1}}\tilde{G}_{\infty}({\boldsymbol{\kappa}},\omega;\varepsilon(\mathbf{x}-\mathbf{y}))\varphi(\mathbf{y})\,ds_{\mathbf{y}},\quad\mathbf{x}\in\partial D_{1},

is bounded from H1/2(D1)H^{-1/2}(\partial D_{1}) to H1/2(D1)H^{1/2}(\partial D_{1}). Let a~m,n:=(ϕm,𝒮~ε,ϕn)\tilde{a}_{m,n}:=\left(\phi_{m},\tilde{\mathcal{S}}_{\varepsilon,\infty}\phi_{n}\right), with 𝒮~ε,\tilde{\mathcal{S}}_{\varepsilon,\infty} being the operator above in the parameter space. Then A~=[a~m,n]\tilde{A}=[\tilde{a}_{m,n}] is bounded from 1/2\mathbb{H}^{-1/2} to 1/2\mathbb{H}^{1/2}. This completes the proof of the lemma. ∎

Note that for ωΩε(𝜿)\omega\in\Omega_{\varepsilon}({\boldsymbol{\kappa}}^{*}),

C1|lnε|1ω2|𝜿|2C21ε2.C_{1}|\ln\varepsilon|\leq\frac{1}{\omega^{2}-|{\boldsymbol{\kappa}}^{*}|^{2}}\leq C_{2}\frac{1}{\varepsilon^{2}}.

Therefore, by virtue of Lemmas 3.9 - 3.11, we obtain the following decomposition for the matrix 𝒜\mathcal{A}:

Proposition 3.12 (Decomposition of 𝒜\mathcal{A}).

Let 𝛋=𝛋{\boldsymbol{\kappa}}={\boldsymbol{\kappa}}^{*}. There exists a constant 𝖼>0\mathsf{c}>0 such that for ε(0,𝖼)\varepsilon\in(0,\mathsf{c}) and ωΩε(𝛋)\omega\in\Omega_{\varepsilon}({\boldsymbol{\kappa}}^{*}), the matrix 𝒜\mathcal{A} can be decomposed as 𝒜=𝒟+ε\mathcal{A}=\mathcal{D}+\varepsilon\,\mathcal{E}, where 𝒟:=diag(dn)n\mathcal{D}:={\rm diag}(d_{n})_{n\in\mathbb{Z}} with

dn={12π(lnε+lnω+γ0))+1|Y|1ω2|𝜿|2(34πε23(2πa)2)+G~(𝜿,ω;𝟎)n=0,12+1|Y|1ω2|𝜿|22πε23(2πa)2,n=±1,12|n|,|n|>1,d_{n}=\begin{cases}\dfrac{1}{2\pi}(\ln\varepsilon+\ln\omega+\gamma_{0}))+\dfrac{1}{|Y|}\dfrac{1}{\omega^{2}-|{\boldsymbol{\kappa}}^{*}|^{2}}\left(3-\dfrac{4\pi\varepsilon^{2}}{3}\left(\dfrac{2\pi}{a}\right)^{2}\right)+\tilde{G}({\boldsymbol{\kappa}}^{*},\omega;\mathbf{0})&n=0,\\ -\dfrac{1}{2}+\dfrac{1}{|Y|}\dfrac{1}{\omega^{2}-|{\boldsymbol{\kappa}}^{*}|^{2}}\dfrac{2\pi\varepsilon^{2}}{3}\left(\dfrac{2\pi}{a}\right)^{2},&n=\pm 1,\\ -\dfrac{1}{2|n|},&|n|>1,\end{cases}

and =[em,n]\mathcal{E}=[e_{m,n}]. In addition, \mathcal{E} is bounded from 1/2\mathbb{H}^{-1/2} to 1/2\mathbb{H}^{1/2} and C\|\mathcal{E}\|\leq C for certain constant CC independent of ε\varepsilon and ω\omega.

3.3 Characteristic equations

We reduce the subsystems (18)-(20) to the nonlinear characteristic equations for ω\omega by using the decomposition of the matrix 𝒜\mathcal{A} in Proposition 3.12. To this end, we denote =\{0}\mathbb{Z}^{*}=\mathbb{Z}\backslash\{0\} and define the vectors

𝐚^0:={a3m,0}m,𝐚^1:={a3m+1,1}m,𝐚^1:={a3m1,1}m,\displaystyle\hat{\mathbf{a}}_{0}:=\{a_{3m,0}\}_{m\in\mathbb{Z}^{*}},\;\hat{\mathbf{a}}_{1}:=\{a_{3m+1,1}\}_{m\in\mathbb{Z}^{*}},\;\hat{\mathbf{a}}_{-1}:=\{a_{3m-1,-1}\}_{m\in\mathbb{Z}^{*}}, (41)
𝐜^0:={c3m}m,𝐜^1:={c3m+1}m,𝐜^1:={c3m1}m,\displaystyle\hat{\mathbf{c}}_{0}:=\{c_{3m}\}_{m\in\mathbb{Z}^{*}},\;\hat{\mathbf{c}}_{1}:=\{c_{3m+1}\}_{m\in\mathbb{Z}^{*}},\;\hat{\mathbf{c}}_{-1}:=\{c_{3m-1}\}_{m\in\mathbb{Z}^{*}}, (42)

and matrices

𝒜^0:=[a3m,3n]m,n,𝒜^1:=[a3m+1,3n+1]m,n,and𝒜^1:=[a3m1,3n1]m,n.\hat{\mathcal{A}}_{0}:=[a_{3m,3n}]_{m\in\mathbb{Z}^{*},n\in\mathbb{Z}^{*}},\;\hat{\mathcal{A}}_{1}:=[a_{3m+1,3n+1}]_{m\in\mathbb{Z}^{*},n\in\mathbb{Z}^{*}},\mbox{and}\;\hat{\mathcal{A}}_{-1}:=[a_{3m-1,3n-1}]_{m\in\mathbb{Z}^{*},n\in\mathbb{Z}^{*}}. (43)

Then using Lemma 2.3 (i), each system in (18)-(20) can be split into the following two equations:

aj,jcj+𝐜^j,𝐚^j=0,𝒜^j𝐜^j+cj𝐚^j=𝟎,j=0,1,1,a_{j,j}\,c_{j}+\left\langle\hat{\mathbf{c}}_{j},\hat{\mathbf{a}}_{j}\right\rangle\,=0,\quad\hat{\mathcal{A}}_{j}\hat{\mathbf{c}}_{j}+c_{j}\hat{\mathbf{a}}_{j}={\mathbf{0}},\quad j=0,1,-1, (44)

where the equation for m=0m=0 and m=±1,±2,m=\pm 1,\pm 2,\cdots are treated separately. Here and thereafter, the inner product 𝐚,𝐛:=m=amb¯m\displaystyle{\langle\mathbf{a},\mathbf{b}\rangle:=\sum_{m=-\infty}^{\infty}a_{m}\bar{b}_{m}} for the vectors 𝐚:={am}m\mathbf{a}:=\{a_{m}\}_{m\in\mathbb{Z}} and 𝐛:={bm}m\mathbf{b}:=\{b_{m}\}_{m\in\mathbb{Z}}.

Theorem 3.13.

For 𝛋=𝛋{\boldsymbol{\kappa}}={\boldsymbol{\kappa}}^{*}, ωΩε(𝛋)\omega\in\Omega_{\varepsilon}({\boldsymbol{\kappa}}^{*}) and sufficiently small ε\varepsilon, the operator 𝒜^j:1/21/2\hat{\mathcal{A}}_{j}:\mathbb{H}^{-1/2}\to\mathbb{H}^{1/2} is invertible and the operator norm 𝒜^j1<1/2\|\hat{\mathcal{A}}_{j}^{-1}\|<1/2.

Proof.

For each ωΩε(𝜿)\omega\in\Omega_{\varepsilon}({\boldsymbol{\kappa}}^{*}), let 𝒜\mathcal{A} be decomposed as 𝒜=𝒟+ε\mathcal{A}=\mathcal{D}+\varepsilon\mathcal{E} as in Proposition 3.12. Similarly, we decompose 𝒜^j\hat{\mathcal{A}}_{j} as 𝒜^j=𝒟^j+ε^j\hat{\mathcal{A}}_{j}=\hat{\mathcal{D}}_{j}+\varepsilon\hat{\mathcal{E}}_{j}, in which 𝒟^j:=diag(d3n+j)n0\hat{\mathcal{D}}_{j}:={\rm diag}(d_{3n+j})_{n\neq 0} is a diagonal matrix and the matrix ^j=[e3m+j,3n+j]\hat{\mathcal{E}}_{j}=[e_{3m+j,3n+j}] is bounded from 1/2\mathbb{H}^{-1/2} to 1/2\mathbb{H}^{1/2}.

It is obvious that 𝒟^j\hat{\mathcal{D}}_{j} is bounded from 1/2\mathbb{H}^{-1/2} to 1/2\mathbb{H}^{1/2}. In addition, the inverse of 𝒟^j\hat{\mathcal{D}}_{j} exists and 𝒟^j1:=diag(1/d3n+j)n0\hat{\mathcal{D}}_{j}^{-1}:={\rm diag}(1/d_{3n+j})_{n\neq 0} is bounded from 1/2\mathbb{H}^{1/2} to 1/2\mathbb{H}^{-1/2}, with the operator norm bounded by 44. Let us express 𝒜^j\hat{\mathcal{A}}_{j} as

𝒜^j=𝒟^j(I+ε𝒟^j1^j).\hat{\mathcal{A}}_{j}=\hat{\mathcal{D}}_{j}(I+\varepsilon\hat{\mathcal{D}}_{j}^{-1}\hat{\mathcal{E}}_{j}).

For sufficiently small ε\varepsilon, ε𝒟^j1^j\varepsilon\,\hat{\mathcal{D}}_{j}^{-1}\hat{\mathcal{E}}_{j} is bounded on 1/2\mathbb{H}^{-1/2}, with the operator norm bounded by 1/21/2. Hence I+𝒟^j1^jI+\hat{\mathcal{D}}_{j}^{-1}\hat{\mathcal{E}}_{j} is an invertible operator on 1/2\mathbb{H}^{-1/2}, with norm bounded by 1/21/2. We conclude that 𝒜^j\hat{\mathcal{A}}_{j} attains the inverse 𝒜^j1=(I+ε𝒟^j1^j)1𝒟^j1\hat{\mathcal{A}}_{j}^{-1}=(I+\varepsilon\hat{\mathcal{D}}_{j}^{-1}\hat{\mathcal{E}}_{j})^{-1}\hat{\mathcal{D}}_{j}^{-1}, with 𝒜^j1<1/2\|\hat{\mathcal{A}}_{j}^{-1}\|<1/2 for ωΩε(𝜿)\omega\in\Omega_{\varepsilon}({\boldsymbol{\kappa}}^{*}). ∎

Now by Theorem 3.13, we can express 𝐜^j\hat{\mathbf{c}}_{j} as

𝐜^j=cj(𝒜^j1𝐚^j),j=0,1,1.\hat{\mathbf{c}}_{j}=-c_{j}(\hat{\mathcal{A}}_{j}^{-1}\hat{\mathbf{a}}_{j}),\quad j=0,1,-1. (45)

Substituting into the equation for m=0m=0 in (44), we obtain the following three equations for cjc_{j}:

aj,j(𝜿,ω)cj𝒜^j1𝐚^j(𝜿,ω),𝐚^j(𝜿,ω)cj=0,j=0,1,1.a_{j,j}({\boldsymbol{\kappa}}^{*},\omega)\,c_{j}-\left\langle\hat{\mathcal{A}}_{j}^{-1}\hat{\mathbf{a}}_{j}({\boldsymbol{\kappa}}^{*},\omega),\hat{\mathbf{a}}_{j}({\boldsymbol{\kappa}}^{*},\omega)\right\rangle\,c_{j}=0,\quad j=0,1,-1. (46)

To obtain the eigenvalues for 𝜿=𝜿{\boldsymbol{\kappa}}={\boldsymbol{\kappa}}^{*}, we solve for ω\omega such that (46) attains nontrivial solutions, or equivalently, we find ω\omega that is a root of one of the characteristic equations:

aj,j(𝜿,ω)𝒜^j1𝐚^j(𝜿,ω),𝐚^j(𝜿,ω)=0,j=0,1,1.a_{j,j}({\boldsymbol{\kappa}}^{*},\omega)-\left\langle\hat{\mathcal{A}}_{j}^{-1}\hat{\mathbf{a}}_{j}({\boldsymbol{\kappa}}^{*},\omega),\hat{\mathbf{a}}_{j}({\boldsymbol{\kappa}}^{*},\omega)\right\rangle=0,\quad j=0,1,-1. (47)

In summary, we have the following proposition for the characteristic values of (18)-(20).

Proposition 3.14.

ω\omega is a characteristic value of the system (44) if and only if ω\omega is a root of the characteristic equation (47). In addition, the dimension of the solution space for each system in (44) is 1.

3.4 Asymptotic expansion of the eigenvalues and eigenfunctions for 𝜿=𝜿{\boldsymbol{\kappa}}={\boldsymbol{\kappa}}^{*}

In view of Propositions 2.4 and 3.14, let us solve the characteristic equation (47) in Ωε(𝜿)\Omega_{\varepsilon}({\boldsymbol{\kappa}}^{*}) for j=0,1j=0,1 to obtain the eigenvalues. When j=0j=0, (47) reads

a0,0(𝜿,ω)𝒜^01𝐚^0(𝜿,ω),𝐚^0(𝜿,ω)=0.a_{0,0}({\boldsymbol{\kappa}}^{*},\omega)-\left\langle\hat{\mathcal{A}}_{0}^{-1}\hat{\mathbf{a}}_{0}({\boldsymbol{\kappa}}^{*},\omega),\hat{\mathbf{a}}_{0}({\boldsymbol{\kappa}}^{*},\omega)\right\rangle=0. (48)

From Proposition 3.12, we have

a0,0(𝜿,ω)\displaystyle a_{0,0}({\boldsymbol{\kappa}}^{*},\omega) =1|Y|1ω2|𝜿|2(34πε23(2πa)2)+β1+12πlnε+O(ε);\displaystyle=\frac{1}{|Y|}\frac{1}{\omega^{2}-|{\boldsymbol{\kappa}}^{*}|^{2}}\left(3-\frac{4\pi\varepsilon^{2}}{3}\left(\frac{2\pi}{a}\right)^{2}\right)+\beta_{1}+\frac{1}{2\pi}\ln\varepsilon+O(\varepsilon);
a3m,0\displaystyle a_{3m,0} =O(ε),m0.\displaystyle=O\left(\varepsilon\right),\quad m\neq 0.

Here β1(ω):=12π(lnω+γ0)+G~(𝜿,ω;𝟎)\beta_{1}(\omega):=\dfrac{1}{2\pi}(\ln\omega+\gamma_{0})+\tilde{G}({\boldsymbol{\kappa}}^{*},\omega;\mathbf{0}). Hence (48) attains the expansion

1|Y|1ω2|𝜿|2(34πε23(2πa)2)+β1+12πlnε+O(ε)=0,\frac{1}{|Y|}\frac{1}{\omega^{2}-|{\boldsymbol{\kappa}}^{*}|^{2}}\left(3-\frac{4\pi\varepsilon^{2}}{3}\left(\frac{2\pi}{a}\right)^{2}\right)+\beta_{1}+\frac{1}{2\pi}\ln\varepsilon+O(\varepsilon)=0,

which can be written as

ω2|𝜿|2=1|Y|(34πε23(2πa)2)(12πlnε+β1+O(ε))1.\omega^{2}-\left|{\boldsymbol{\kappa}}^{*}\right|^{2}=-\frac{1}{\left|Y\right|}\left(3-\frac{4\pi\varepsilon^{2}}{3}\left(\frac{2\pi}{a}\right)^{2}\right)\left(\frac{1}{2\pi}\ln\varepsilon+\beta_{1}+O(\varepsilon)\right)^{-1}. (49)

Similarly, when j=1j=1, it follows from Proposition 3.12 that

a1,1(𝜿,ω)\displaystyle a_{1,1}({\boldsymbol{\kappa}},\omega) =12+αε2ω2|𝜿|2+O(ε).\displaystyle=-\frac{1}{2}+\frac{\alpha\varepsilon^{2}}{\omega^{2}-|{\boldsymbol{\kappa}}^{*}|^{2}}+O(\varepsilon).
a3m+1,1\displaystyle a_{3m+1,1} =O(ε),m0.\displaystyle=O(\varepsilon),\quad m\neq 0.

Here α:=2π3|Y|(2πa)2\alpha:=\frac{2\pi}{3|Y|}\left(\frac{2\pi}{a}\right)^{2}. Therefore, the characteristic equation

a1,1(𝜿,ω)𝒜^11𝐚^1(𝜿,ω),𝐚^1(𝜿,ω)=0a_{1,1}({\boldsymbol{\kappa}}^{*},\omega)-\left\langle\hat{\mathcal{A}}_{1}^{-1}\hat{\mathbf{a}}_{1}({\boldsymbol{\kappa}}^{*},\omega),\hat{\mathbf{a}}_{1}({\boldsymbol{\kappa}}^{*},\omega)\right\rangle=0

attains the expansion

12+αε2ω2|𝜿|2+O(ε)=0,-\frac{1}{2}+\frac{\alpha\varepsilon^{2}}{\omega^{2}-|{\boldsymbol{\kappa}}^{*}|^{2}}+O(\varepsilon)=0,

or equivalently,

ω2|𝜿|2=11+O(ε)2αε2.\omega^{2}-\left|{\boldsymbol{\kappa}}^{*}\right|^{2}=\frac{1}{1+O(\varepsilon)}\cdot 2\alpha\cdot\varepsilon^{2}. (50)

It follows from Proposition 2.4 that ω\omega satisfying (50) is also a characteristic value of (47) for j=1j=-1.

Note that the ω\omega values satisfying (49) and (50) lie in the region Ωε(𝜿)\Omega_{\varepsilon}({\boldsymbol{\kappa}}^{*}). We arrive at the following theorem for the eigenvalues in Ωε(𝜿)\Omega_{\varepsilon}({\boldsymbol{\kappa}}^{*}) and the corresponding eigenfunctions for 𝜿=𝜿{\boldsymbol{\kappa}}={\boldsymbol{\kappa}}^{*}.

Theorem 3.15.

If 𝛋=𝛋{\boldsymbol{\kappa}}={\boldsymbol{\kappa}}^{*}, the Dirichlet problem (1)-(2) attains two eigenvalues in Ωε(𝛋)\Omega_{\varepsilon}({\boldsymbol{\kappa}}^{*}) for ε1\varepsilon\ll 1:

ω1\displaystyle\omega_{1}^{*} =|𝜿|+α|𝜿|ε2+O(ε3),\displaystyle=\left|{\boldsymbol{\kappa}}^{*}\right|+\frac{\alpha}{\left|{\boldsymbol{\kappa}}^{*}\right|}\cdot\varepsilon^{2}+O\left(\varepsilon^{3}\right),
ω1\displaystyle\omega_{1}^{**} =|𝜿|3π|Y||𝜿|1lnε+O(1ln2ε).\displaystyle=\left|{\boldsymbol{\kappa}}^{*}\right|-\frac{3\pi}{\left|Y\right|\left|{\boldsymbol{\kappa}}^{*}\right|}\cdot\frac{1}{\ln\varepsilon}+O\left(\frac{1}{\ln^{2}\varepsilon}\right).

The corresponding eigenspaces are given by

V:=span{𝒮ε𝜿,ωφ1,𝒮ε𝜿,ωφ1}andV:=span{𝒮ε𝜿,ωφ0},V^{*}:=\mbox{span}\left\{\mathcal{S}_{\varepsilon}^{{\boldsymbol{\kappa}},\omega}\varphi_{1},\mathcal{S}_{\varepsilon}^{{\boldsymbol{\kappa}},\omega}\varphi_{-1}\right\}\quad\mbox{and}\quad V^{**}:=\mbox{span}\left\{\mathcal{S}_{\varepsilon}^{{\boldsymbol{\kappa}},\omega}\varphi_{0}\right\},

where 𝒮ε𝛋,ω\mathcal{S}_{\varepsilon}^{{\boldsymbol{\kappa}},\omega} is the single-layer potential, and φjH𝛋,j1/2([0,2π])\varphi_{j}\in H_{{\boldsymbol{\kappa}}^{*},j}^{-1/2}([0,2\pi]) with φj(t)=eijt+O(ε)\varphi_{j}(t)=e^{ijt}+O(\varepsilon) in the parameter space for j=0,±1j=0,\pm 1.

Proof.

The existence of roots for the characteristic equations (49) and (50) in the region Ωε(𝜿)\Omega_{\varepsilon}({\boldsymbol{\kappa}}^{*}) follows directly from Rouche theorem, and the asymptotic expansions of roots ω1\omega_{1}^{**} and ω1\omega_{1}^{*} are obtained from the expansions of (49) and (50). The expansions of the eigenfunctions φ0\varphi_{0}, φ±1\varphi_{\pm 1} for the integral equation (11) in the parameter space are obtained by (45)-(46), where we use Theorem 3.13. Hence we obtain the eigenvalues and eigenspaces for the Dirichlet problem (1)-(2). ∎

Remark 3.16.

ω1\omega_{1}^{*} is an eigenvalue of multiplicity two. The accuracy of its asymptotic formula is demonstrated in Table LABEL:tab:omega_1. As to be shown in the next section, the dispersion surfaces (𝛋,ω)({\boldsymbol{\kappa}},\omega) near (𝛋,ω1)({\boldsymbol{\kappa}}^{*},\omega_{1}^{*}) possess conical singularity. Thus the pair (𝛋,ω1)({\boldsymbol{\kappa}}^{*},\omega_{1}^{*}) is a Dirac point, which is formed by the crossing of the first two band surfaces. ω1\omega_{1}^{**} is an eigenvalue of multiplicity one that is located on the third band.

\@tabular@row@before@xcolor   \@xcolor@tabular@before ε\varepsilon 1/40 1/20 1/10 1/5
\@tabular@row@before@xcolor   \@xcolor@row@after              ω1a2π\omega_{1}^{*}\cdot\frac{a}{2\pi} 0.66896 0.67559 0.70172 0.81715
\@tabular@row@before@xcolor   \@xcolor@row@afterω1,0a2π\omega_{1,0}^{*}\cdot\frac{a}{2\pi} 0.66893 0.67573 0.70294 0.81177
\@tabular@row@before@xcolor   \@xcolor@row@aftererror 3e-5 1.4e-4 1.2e-3 5.4e-3
\@tabular@row@before@xcolor   \@xcolor@row@after