This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Dimension formulas for modular form spaces of rational weights, the classification of eta-quotient characters and an extension of Martin’s theorem

Xiao-Jie Zhu School of Mathematical Sciences
Key Laboratory of MEA (Ministry of Education) & Shanghai Key Laboratory of PMMP
East China Normal University
500 Dongchuan Road, 200241
Shanghai, P. R. China
[email protected] https://orcid.org/0000-0002-6733-0755
Abstract.

We give an explicit formula for dimensions of spaces of rational-weight modular forms whose multiplier systems are induced by eta-quotients of fractional exponents. As the first application, we give series expressions of Fourier coefficients of the nn-th root of certain infinite qq-products. As the second application, we extend Yves Martin’s list of multiplicative holomorphic eta-quotients of integral weights by first extending the meaning of multiplicativity, then identifying one-dimensional spaces, and finally applying Wohlfahrt’s extension of Hecke operators. A table containing 22772277 of such eta-quotients is presented. As a related result, we completely classify the multiplier systems induced by eta-quotients of integral exponents. For instance, there are totally 384384 such multiplier systems on Γ0(4)\Gamma_{0}(4) for any fixed weight. We also provide SageMath programs on checking the theorems and generating the tables.

Key words and phrases:
modular form, dimension formula, rational weight, Dedekind eta function, Hecke operator, multiplicative eta-quotient
2020 Mathematics Subject Classification:
Primary 11F12; Secondary 11F20, 11F25, 11F30, 11L05, 30F10
This work is supported in part by Science and Technology Commission of Shanghai Municipality (No. 22DZ2229014).

1. Introduction

1.1. Dimension formulas

A holomorphic function ff defined on the upper half plane \mathfrak{H} is called a modular form if it satisfies two conditions: first f(aτ+bcτ+d)=(cτ+d)kχ(abcd)f(τ),τf\left(\frac{a\tau+b}{c\tau+d}\right)=(c\tau+d)^{k}\chi\left(\begin{smallmatrix}{a}&{b}\\ {c}&{d}\end{smallmatrix}\right)f(\tau),\,\tau\in\mathfrak{H} for all (abcd)\left(\begin{smallmatrix}{a}&{b}\\ {c}&{d}\end{smallmatrix}\right) in some discrete matrix group GG, kk being an integer or half integer, called the weight, and χ\chi being a multiplier system of GG; second ff is holomorphic at all cusps of GG, the meaning of which will be clarified in Definition 2.1. Let the space of all modular forms with given GG, kk and χ\chi be denoted by Mk(G,χ)M_{k}(G,\chi).

Modular forms, spaces of modular forms and their variants play important roles in mathematics. In the study of these topics, having an explicit formula for the dimension of the complex vector space Mk(G,χ)M_{k}(G,\chi) is crucial to some applications. For instance, dimMk(G,χ)=1\dim_{\mathbb{C}}M_{k}(G,\chi)=1 would imply that any function ff in Mk(G,χ)M_{k}(G,\chi) is an eigenfunction for a family of operators called the Hecke operators and hence we obtain nontrivial relations among the Fourier coefficients of ff.

A natural and elegant way for computing dimMk(G,χ)\dim_{\mathbb{C}}M_{k}(G,\chi) is to use the Riemann-Roch theorem and the Riemann-Hurwitz formula. Petersson [1, p. 194] applied this method and gave a dimension formula which he called the generalized Riemann-Roch theorem. Petersson’s formula concerns arbitrary Fuchsian group GG of the first kind, arbitrary complex weight kk and arbitrary multiplier system χ\chi while this formula is not so explicit in the sense one can not directly compute the dimension using elementary operations and numerical information about GG and χ\chi. To our best knowledge, Shimura [2, Section 2.4] gave explicit formulas for GG arbitrary, kk being an integer and χ\chi trivial first. Another way for computing dimMk(G,χ)\dim_{\mathbb{C}}M_{k}(G,\chi) is to use the Eichler-Selberg trace formula for Hecke operators; c.f. [3, 4] for the case GG being the full modular group, χ\chi trivial and [5] for the case G=Γ0(N)G=\Gamma_{0}(N) and χ\chi induced by a Dirichlet character modulo NN, both dealing with integral weights. See also [6]. For the half-integral weights, Cohen and Oesterlé [7] gave an explicit dimension formula for the case G=Γ0(4N)G=\Gamma_{0}(4N), χ\chi being the product of the multiplier system of the theta series ne2πin2τ\sum_{n\in\mathbb{Z}}\mathrm{e}^{2\uppi\mathrm{i}n^{2}\tau} and that of a Dirichlet character modulo 4N4N. Since then, there appear many excellent works on computing dimMk(G,χ)\dim_{\mathbb{C}}M_{k}(G,\chi) for certain special GG or special χ\chi, or computing the dimensions of certain subspaces; c.f. [8], [9], [10] and [11].

Modular forms of rational weights are less attractive to mathematicians than those of integral or half-integral weights. We know little about them. For instance, it seems no Hecke theory has been attempted. (Maybe there is no such theory.) However, there actually exist many such forms and more importantly, there are interesting applications, e.g., to noncongruence modular forms. Explicit dimension formulas for spaces of rational weights have been obtained by Ibukiyama [12, Lemma 1.7], [13, p. 5] in some special cases, using essentially the method of Petersson [1], but no proof is given.

As our main result, we give explicit formulas for dimMk(Γ0(N),χ)\dim_{\mathbb{C}}M_{k}(\Gamma_{0}(N),\chi) where kk is any rational number, χ\chi is the multiplier system of any level NN eta-quotient nNη(nτ)rn\prod_{n\mid N}\eta(n\tau)^{r_{n}} of fractional exponents rnr_{n}. See Definition 2.1 for the exact meaning of Mk(Γ0(N),χ)M_{k}(\Gamma_{0}(N),\chi) and (6) for that of χ\chi. The proof is based on Petersson’s method [1] and we provide the full details. The following theorem is a special case of Theorem 4.2, which is our main theorem.

A special case of the Main Theorem.

If k>26mε28mε312mcNϕ(c,N/c)(1{xc24})k>2-\frac{6}{m}\varepsilon_{2}-\frac{8}{m}\varepsilon_{3}-\frac{12}{m}\sum_{c\mid N}\phi(c,N/c)\cdot\left(1-\left\{\frac{x_{c}}{24}\right\}\right), then

(1) dimMk(Γ0(N),χ)=k112m+14ε2+13ε3+cNϕ(c,N/c)(12{xc24}),\dim_{\mathbb{C}}M_{k}(\Gamma_{0}(N),\chi)=\frac{k-1}{12}m+\frac{1}{4}\varepsilon_{2}+\frac{1}{3}\varepsilon_{3}+\sum_{c\mid N}\phi(c,N/c)\cdot\left(\frac{1}{2}-\left\{\frac{x_{c}}{24}\right\}\right),

where mm, ε2\varepsilon_{2} and ε3\varepsilon_{3}, depending on NN, are given in (9), (10) and (11) respectively and

k=12nNrn,xc=nNN(N,c2)(n,c)2nrn for cN.k=\frac{1}{2}\sum_{n\mid N}r_{n},\quad x_{c}=\sum_{n\mid N}\frac{N}{(N,c^{2})}\cdot\frac{(n,c)^{2}}{n}r_{n}\quad\text{ for }c\mid N.

Note that the notation ϕ(c,N/c)\phi(c,N/c) refers to the Euler totient ϕ\phi of the greatest common divisor of cc and N/cN/c.

In particular, if k2k\geq 2, then (1) always holds. For any rational kk with 0<k<20<k<2, there are also infinitely many pairs (N,χ)(N,\chi) such that dimMk(Γ0(N),χ)\dim_{\mathbb{C}}M_{k}(\Gamma_{0}(N),\chi) can be computed using (1). See Section 7 for complete lists of such pairs (N,χ)(N,\chi) for k=1/2, 1, 3/2k=1/2,\,1,\,3/2 and rnr_{n} being integers. The dimensions for k=1/2k=1/2 and k=3/2k=3/2 in the case G=Γ0(4N)G=\Gamma_{0}(4N) and χ\chi is the product of the multiplier system of the theta series ne2πin2τ\sum_{n\in\mathbb{Z}}\mathrm{e}^{2\uppi\mathrm{i}n^{2}\tau} and that of a Dirichlet character modulo 4N4N are previously known: Serre and Starks [14] gave explicit bases of the spaces of weight 1/21/2; Cohen and Oesterlé [7] established relations between spaces of weight 1/21/2 and those of weight 3/23/2. The important and interesting problem of computing dimensions in weight 11 is difficult and the most complete result about this was obtained by Deligne and Serre [15]. Using their theory, one can compute dimM1(Γ0(N),χ)\dim_{\mathbb{C}}M_{1}(\Gamma_{0}(N),\chi) for any N1N\in\mathbb{Z}_{\geq 1} and χ\chi induced by any Dirichlet character modulo NN although there is no explicit formula.

The difference between our formulas for dimMk(Γ0(N),χ)\dim_{\mathbb{C}}M_{k}(\Gamma_{0}(N),\chi) with k12k\in\frac{1}{2}\mathbb{Z} and others’ is that we deal with those χ\chi induced by eta-quotients while the existing formulas are about those χ\chi induced by Dirichlet characters or the multiplier system of ne2πin2τ\sum_{n\in\mathbb{Z}}\mathrm{e}^{2\uppi\mathrm{i}n^{2}\tau}. Moreover, when k12k\in\mathbb{Q}\setminus\frac{1}{2}\mathbb{Z}, our formulas include the one in [12, Lemma 1.7] and [13, p. 5] as special cases.

After preparing, stating and proving the main theorem and establishing some related tools (Proposition 5.1, Theorem 6.8, Tables 1, LABEL:table:wt1 and Section 7.3), we will give mainly two applications, both of which are based on identifying one-dimensional spaces. The first application concerns rational-weight modular forms and the second concerns ordinary eta-quotients whose exponents rnr_{n} are all integers.

1.2. Application I

We give a series expression of the Fourier coefficients of the nn-th root of certain infinite qq-products. See Corollary 8.8 for the details. To avoid overlapping with the main text, here we give a randomly chosen example which is different from Examples 8.9 and 8.10.

Proposition 1.1.

We have

n1(1qn)3n1(1q2n)29n1(1q4n)223=1+e15πi8(2π)154Γ(154)n1n114(c11(4c)1540d<4c(d,4c)=1𝔢(dn4c124P(4c,d;292,223)))qn,\frac{\sqrt[3]{\prod_{n\in\mathbb{Z}_{\geq 1}}(1-q^{n})}\cdot\sqrt{\prod_{n\in\mathbb{Z}_{\geq 1}}(1-q^{2n})^{29}}}{\sqrt[3]{\prod_{n\in\mathbb{Z}_{\geq 1}}(1-q^{4n})^{22}}}=1+\mathrm{e}^{-\frac{15\uppi\mathrm{i}}{8}}\frac{(2\uppi)^{\frac{15}{4}}}{\Gamma(\frac{15}{4})}\\ \cdot\sum_{n\in\mathbb{Z}_{\geq 1}}n^{\frac{11}{4}}\left(\sum_{c\in\mathbb{Z}_{\geq 1}}\frac{1}{(4c)^{\frac{15}{4}}}\sum_{\begin{subarray}{c}{0\leq d<4c}\\ {(d,4c)=1}\end{subarray}}\mathfrak{e}\left(\frac{dn}{4c}-\frac{1}{24}P(4c,d;\frac{29}{2},-\frac{22}{3})\right)\right)\cdot q^{n},

where q=e2πiτq=\mathrm{e}^{2\uppi\mathrm{i}\tau} throughout the paper, τ\tau\in\mathfrak{H} and

P(4c,d;292,223)=88(d,c)+174(d,2c)+4s(d,4c)452,\displaystyle P(4c,d;\frac{29}{2},-\frac{22}{3})=-88(-d,c)+174(-d,2c)+4s(-d,4c)-\frac{45}{2},
s(d,c)=r=1c1rc({drc}12).\displaystyle s(-d,c)=\sum_{r=1}^{c-1}\frac{r}{c}\left(\left\{\frac{-dr}{c}\right\}-\frac{1}{2}\right).

Corollary 8.8 contains infinitely many such identities of level 44, extending a previous result of the author [16, Theorem 7.1] which concerns levels 22 and 33. For the outline of the proof, say of Proposition 1.1, let the infinite product be ff, which is an eta-quotient of fractional exponents. Then fM15/4(Γ0(4),χ)f\in M_{15/4}(\Gamma_{0}(4),\chi) where χ\chi is the multiplier system of ff. There is as well an Eisenstein series gg in M15/4(Γ0(4),χ)M_{15/4}(\Gamma_{0}(4),\chi); c.f. Definition 8.3. Now we apply Theorem 4.2 and find that dimM15/4(Γ0(4),χ)=1\dim_{\mathbb{C}}M_{15/4}(\Gamma_{0}(4),\chi)=1. Hence ff and gg are proportional. The identity thus follows by figuring out the Fourier coefficients of gg.

1.3. Application II

This is the major application. In 1996, Martin [17] obtained the complete list111There is a misprint in [17, p. 4853]. The entry 21446181124242^{-1}\cdot 4^{4}\cdot 6^{-1}\cdot 8^{-1}\cdot 12^{4}\cdot 24 should be corrected to 214461811242412^{-1}\cdot 4^{4}\cdot 6^{-1}\cdot 8^{-1}\cdot 12^{4}\cdot 24^{-1}. of integral-weight holomorphic eta-quotients ff (with integral exponents) satisfying that

  1. (a)

    the multiplier system of ff is induced by some Dirichlet character,

  2. (b)

    if we write f=n0cf(n)qnf=\sum_{n\in\mathbb{Z}_{\geq 0}}c_{f}(n)q^{n}, then cf(n1)cf(n2)=cf(n1n2)cf(1)c_{f}(n_{1})c_{f}(n_{2})=c_{f}(n_{1}n_{2})c_{f}(1) for any coprime positive integers.

We will discard condition (a) and seek for arbitrary holomorphic eta-quotients (with integral exponents) satisfying a multiplicativity property similar to the one in condition (b). We will also give many interesting new identities involving Fourier coefficients of these eta-quotients. Let us first present some randomly chosen examples. For the basic knowledge about Dedekind eta function η(τ)\eta(\tau) and eta-quotients, see the second half of Section 2.

Example.

Let f(τ)=η(τ)7η(2τ)17η(4τ)3=n58+0cf(n)qnf(\tau)=\eta(\tau)^{-7}\eta(2\tau)^{17}\eta(4\tau)^{-3}=\sum_{n\in\frac{5}{8}+\mathbb{Z}_{\geq 0}}c_{f}(n)q^{n}. Let l1,l2l_{1},l_{2} be coprime odd square-free integers. Then

cf(5l128)cf(5l228)=cf(5l12l228).c_{f}\left(\frac{5l_{1}^{2}}{8}\right)c_{f}\left(\frac{5l_{2}^{2}}{8}\right)=c_{f}\left(\frac{5l_{1}^{2}l_{2}^{2}}{8}\right).

See Proposition 9.33 for details and the proof.

Example.

Let f(τ)=η(3τ)2η(9τ)1η(27τ)=n1cf(n)qnf(\tau)=\eta(3\tau)^{2}\eta(9\tau)^{-1}\eta(27\tau)=\sum_{n\in\mathbb{Z}_{\geq 1}}c_{f}(n)q^{n}. Then cf(l1)cf(l2)=cf(l1l2)c_{f}(l_{1})c_{f}(l_{2})=c_{f}(l_{1}l_{2}) whenever l1,l21mod3l_{1},l_{2}\equiv 1\bmod{3} are square-free positive integers with (l1,l2)=1(l_{1},l_{2})=1. See Example 9.29 for details.

Example.

Let f(τ)=η(τ)1η(2τ)1η(3τ)1η(4τ)1η(6τ)4η(12τ)2=n0cf(n)qnf(\tau)=\eta(\tau)^{1}\eta(2\tau)^{-1}\eta(3\tau)^{-1}\eta(4\tau)^{1}\eta(6\tau)^{4}\eta(12\tau)^{-2}=\sum_{n\in\mathbb{Z}_{\geq 0}}c_{f}(n)q^{n}. Then

cf(l)=al(a6)=pl(1+(p6))c_{f}(l)=-\sum_{a\mid l}\genfrac{(}{)}{}{}{a}{6}=-\prod_{p\mid l}\left(1+\genfrac{(}{)}{}{}{p}{6}\right)

where 1l1mod241\leq l\equiv 1\bmod{24} is square-free. Note that (a6)\genfrac{(}{)}{}{}{a}{6} refers to the Kronecker-Jacobi symbol. See Example 9.23 for details.

Martin [17] proved his results using Hecke operators in the sense of [18] while we prove our results using Wohlfahrt’s extension of Hecke operators [19]. See also [20, Section 3] for a theory of the double coset version of these operators. These operators are denoted by TlT_{l}, where ll runs through a multiplicative submonoid LL of the positive integers; c.f. Corollary 9.13. As a prerequisite, we give an explicit formula for the action on Fourier coefficients; c.f. Theorem 9.15. Then we aim to find holomorphic eta-quotient ff such that Tlf=clfT_{l}f=c_{l}\cdot f with clc_{l}\in\mathbb{C}. At this point Theorem 4.2 enters into play. If ff, whose level is NN and character is χ\chi, lies in a one-dimensional space Mk(Γ0(N),χ)M_{k}(\Gamma_{0}(N),\chi) or Sk(Γ0(N),χ)S_{k}(\Gamma_{0}(N),\chi), the subspace of cusp forms, then we will have Tlf=clfT_{l}f=c_{l}\cdot f for all lLl\in L. (LL depends on ff.) This fact, which is stated in Theorem 9.19, is the main theorem of this application.

It seems that there are more than 10000 eta-quotients that are Hecke eigenforms (in the sense of (83)) for infinitely many ll. We list 2277 of them in Table LABEL:table:admissibleTypeI. They are what we call admissible eta-quotients of type I with levels

N=1,2,3,4,5,6,7,8,9,10,11,13,14,15,17,19,21,27.N=1,2,3,4,5,6,7,8,9,10,11,13,14,15,17,19,21,27.

For the meaning of admissible eta-quotients of type I, see the beginning part of Section 9. For other levels, either there is no admissible eta-quotient of type I, or there are too many so it is not appropriate to list them in the paper. One can find the SageMath code that generates admissible eta-quotients of type I or II with any given level in Appendix A.

Besides Theorem 9.19, another important result is Theorem 9.24, which says that

cl1cl2=cl1l2,l1,l2L,(l1,l2)=1.c_{l_{1}}\cdot c_{l_{2}}=c_{l_{1}l_{2}},\quad l_{1},l_{2}\in L,\quad(l_{1},l_{2})=1.

Here cl=Tlf/fc_{l}=T_{l}f/f. This is the genuine multiplicativity property that is satisfied by all admissible eta-quotients and reduces to the relation cf(n1)cf(n2)=cf(n1n2)cf(1)c_{f}(n_{1})c_{f}(n_{2})=c_{f}(n_{1}n_{2})c_{f}(1) for ordinary multiplicative eta-quotients in [17].

All identities in the above three examples are immediate consequences of Theorems 9.19 and 9.24.

1.4. Other results, structure of the paper and notations

As a related result, we give the complete classification of linear characters that are induced by eta-quotients nNη(nτ)rn\prod_{n\mid N}\eta(n\tau)^{r_{n}} with rnr_{n}\in\mathbb{Z} on the double cover of Γ0(N)\Gamma_{0}(N). See Corollary 6.9 for the conclusion and Examples 6.10, 6.11, 6.12, 6.13, 6.14 for examples. For instance, for each k12k\in\frac{1}{2}\mathbb{Z}, there are totally 384384 linear characters of the double cover of Γ0(4)\Gamma_{0}(4) that are induced by η(τ)r1η(2τ)r2η(4τ)rn\eta(\tau)^{r_{1}}\eta(2\tau)^{r_{2}}\eta(4\tau)^{r_{n}} of weight kk. As a comparison, there are only two characters of Γ0(4)\Gamma_{0}(4) that are induced by Dirichlet characters modulo 44 and these two characters are also contained in the above 384384 characters with any fixed kk\in\mathbb{Z}.

The structure of the paper is as follows. We review some elements of rational-weight modular forms in Section 2. The second half of this section contains elements of Dedekind eta function and eta-quotients of fractional exponents. In Section 3 we associate a divisor on certain compact Riemann surface with any rational-weight meromorphic modular form and in addition, we give a detailed proof of the valence formula in the case of rational weights. In Section 4 we state and prove the main theorem via Petersson’s method [1]. The following three sections contain some tools which are needed by the following two applications: Section 5 contains a formula that relates the orders at cusps and the exponents (or the character) of an eta-quotient. This formula is due to Bhattacharya (cf. [21, eq. (5.13)]). Here we give more details on the proof. In Section 6 we classify all linear characters that are induced by eta-quotients nNη(nτ)rn\prod_{n\mid N}\eta(n\tau)^{r_{n}} with rnr_{n}\in\mathbb{Z} on the double cover of Γ0(N)\Gamma_{0}(N), as is described in the last paragraph. Section 7, which is subdivided into three subsections, contains tables of dimensions of modular form spaces of weight 1/21/2, 11 and 3/23/2 that can be computed by our main theorem. In Sections 8 and 9 we carry out the first and second applications, which has been described in Sections 1.2 and 1.3, respectively. Section 10 contains some comments, open problems and conjectures. Finally, many formulas in this paper have been verified and many tables are generated by SageMath [22] programs. Appendix A contains the usage of the code.

We collect some notations. For a set AA, the symbols |A|\lvert A\rvert and #A\mathop{\mathrm{\#}}A both denote its cardinality. The notation A\mathbb{Q}^{A} denotes the \mathbb{Q}-vector space of functions from AA into \mathbb{Q}. A multiset {xi:iI}\{x_{i}\colon i\in I\} is defined to be the ordinary set {(y,n):n=#{iI:xi=y},n0}\{(y,n)\colon n=\mathop{\mathrm{\#}}\{i\in I\colon x_{i}=y\},\,n\neq 0\}. Its underlying (ordinary) set is still denoted by {xi:iI}\{x_{i}\colon i\in I\}. If f:XYf\colon X\rightarrow Y is a function, then f|Af|_{A} is its restriction to AA where AA is a subset of XX. If f,gf,g are functions then fgf\circ g is their composition: fg(x)=f(g(x))f\circ g(x)=f(g(x)). For a family of sets AiA_{i}, iIi\in I, the notation iIAi\bigsqcup_{i\in I}A_{i} denotes the union and only when the family AiA_{i} are disjoint can one use this notation.

For a group GG, X\langle X\rangle denotes the subgroup generated by XX where XX is a subset of GG. If HH is a subgroup of GG then [G:H]=#G/H=#H\G[G\colon H]=\mathop{\mathrm{\#}}G/H=\mathop{\mathrm{\#}}H\backslash G is the index. If GG acts on the left (right resp.) on a set XX, then G\XG\backslash X (X/GX/G resp.) denotes the set of orbits GxG\cdot x (xGx\cdot G resp.) where xXx\in X. If X is itself a group, GG is a subgroup of XX and the action is the group operation, then G\XG\backslash X (X/GX/G resp.) is called the left coset space (right coset space resp.) For xXx\in X, GxG_{x} denotes the stabilizer, that is, the subgroup of gGg\in G such that gx=xgx=x (or xg=xxg=x). A character χ\chi of GG is a complex linear character, that is, a group homomorphism from GG to ×\mathbb{C}^{\times}, the multiplicative group of nonzero complex numbers. If |χ(g)|=1\lvert\chi(g)\rvert=1 for all gGg\in G, then χ\chi is called unitary. If GG^{\prime} is another group and π:GG\pi\colon G\rightarrow G^{\prime} is a group surjection, then we say the character χ\chi descends to a character on GG^{\prime} if there is a character χ\chi^{\prime} of GG^{\prime} such that χ=χπ\chi=\chi^{\prime}\circ\pi.

The symbol ϕ\phi refers to the Euler totient function. For integers a,b,a,b,\dots, the notation (a,b,)(a,b,\dots) denotes the greatest common divisor and ϕ(a,b,)\phi(a,b,\dots) denotes the value of ϕ\phi at (a,b,)(a,b,\dots). Let N1N\in\mathbb{Z}_{\geq 1}; the summation range of nN\sum_{n\mid N} is implicitly understood to be the positive divisors of NN. Let pp be a prime and α0\alpha\in\mathbb{Z}_{\geq 0}; then pαNp^{\alpha}\parallel N means pαNp^{\alpha}\mid N but pα+1Np^{\alpha+1}\nmid N. The pp-adic exponential valuation, vp(N)v_{p}(N), is the largest α\alpha such that pαNp^{\alpha}\parallel N. An empty sum is understood to be 0 and an empty product be 11. For a real number xx, the notation [x][x] means the largest integer not exceeding xx and {x}=x[x]\{x\}=x-[x]. The functions Γ(s)\Gamma(s) and ζ(s)\zeta(s) are the usual Euler Gamma function and Riemann zeta function respectively.

Let m,nm,n\in\mathbb{Z}; the Kronecker-Jacobi symbol (mn)\genfrac{(}{)}{}{}{m}{n} is defined as follows:

  • (mp)\genfrac{(}{)}{}{}{m}{p} is the usual Legendre symbol if pp is an odd prime.

  • (m2)\genfrac{(}{)}{}{}{m}{2} equals 0 if 2m2\mid m, and equals (1)(m21)/8(-1)^{(m^{2}-1)/8} if 2m2\nmid m.

  • (m1)\genfrac{(}{)}{}{}{m}{-1} equals 11 if m0m\geq 0, and equals 1-1 otherwise.

  • (m1)=1\genfrac{(}{)}{}{}{m}{1}=1 by convention.

  • (mn)\genfrac{(}{)}{}{}{m}{n} is defined to make it a complete multiplicative function of n{0}n\in\mathbb{Z}-\{0\}.

  • (m0)=0\genfrac{(}{)}{}{}{m}{0}=0 if m±1m\neq\pm 1, and (±10)=1\genfrac{(}{)}{}{}{\pm 1}{0}=1.

We shall freely use the following properties, especially in the proof of Theorem 9.15.

  • (mn1n2)=(mn1)(mn2)\genfrac{(}{)}{}{}{m}{n_{1}n_{2}}=\genfrac{(}{)}{}{}{m}{n_{1}}\genfrac{(}{)}{}{}{m}{n_{2}}. When m=1m=-1, it is required that n1,n20n_{1},n_{2}\neq 0.

  • (m1m2n)=(m1n)(m2n)\genfrac{(}{)}{}{}{m_{1}m_{2}}{n}=\genfrac{(}{)}{}{}{m_{1}}{n}\genfrac{(}{)}{}{}{m_{2}}{n}. When n=1n=-1, it is required that either m1,m20m_{1},m_{2}\neq 0, or one of m1m_{1}, m2m_{2} is 0 and the other is nonnegative.

  • (mn)(nm)=ε(m,n)(1)n12m12\genfrac{(}{)}{}{}{m}{n}\genfrac{(}{)}{}{}{n}{m}=\varepsilon(m,n)\cdot(-1)^{\frac{n-1}{2}\cdot\frac{m-1}{2}} where m,nm,n are coprime odd integers, ε(m,n)=1\varepsilon(m,n)=-1 if n,m<0n,m<0 and ε(m,n)=1\varepsilon(m,n)=1 otherwise.

  • (1n)=(1)n12\genfrac{(}{)}{}{}{-1}{n}=(-1)^{\frac{n-1}{2}} and (2n)=(1)n218\genfrac{(}{)}{}{}{2}{n}=(-1)^{\frac{n^{2}-1}{8}} where nn is odd.

  • The function n(mn)n\mapsto\genfrac{(}{)}{}{}{m}{n} is |m|\lvert m\rvert-periodic if m0,1mod4m\equiv 0,1\bmod{4}; it is |4m|\lvert 4m\rvert-periodic if m2mod4m\equiv 2\bmod{4}.

  • The function m(mn)m\mapsto\genfrac{(}{)}{}{}{m}{n} is nn-periodic if nn is odd and positive.

For the proofs, see [23, Section 2.2.2].

2. Modular forms of rational weight

In this section, we review some elements of the theory of modular forms of rational weight (cf. [16, 13, 24, 25, 12, 1]). The concept of modular forms of rational weight is a special case of that of generalized modular forms which was initiated by Knopp and Mason [25]. The multiplier system of a generalized modular form is not required to be unitary or to have finite order, while in this paper, the multiplier systems of all modular forms that occur are unitary and have finite orders. In addition, it seems that the modular forms of rational weights that occur in this paper can only be regarded as modular forms on non-congruence subgroups of SL2()\mathrm{SL}_{2}(\mathbb{Z}) with trivial character. As a comparison, Freitag and Hill [26] have recently constructed modular forms of weight 1/31/3 on SU(2,1)\mathrm{SU}(2,1) whose levels are certain congruence subgroups of SU(2,1)\mathrm{SU}(2,1). Furthermore, see [27, Section 2] for harmonic weak Maass forms of real weight and their relations with weakly holomorphic modular forms.

First some notations. Let GL2+()\mathrm{GL}_{2}^{+}(\mathbb{R}) be the group of all 2×22\times 2 real matrices with positive determinants and SL2()\mathrm{SL}_{2}(\mathbb{R}) be the subgroup of GL2+()\mathrm{GL}_{2}^{+}(\mathbb{R}) whose elements have determinant 11. Let DD be a positive integer. Then we define the DD-cover of GL2+()\mathrm{GL}_{2}^{+}(\mathbb{R}) by

GL2+()D~={((abcd),ε(cτ+d)1D):(abcd)GL2+(),εD=1},\widetilde{\mathrm{GL}_{2}^{+}(\mathbb{R})^{D}}=\left\{\left(\left(\begin{smallmatrix}{a}&{b}\\ {c}&{d}\end{smallmatrix}\right),{\varepsilon}\left({c}^{\prime}\tau+{d}^{\prime}\right)^{\frac{1}{D}}\right)\colon\left(\begin{smallmatrix}{a}&{b}\\ {c}&{d}\end{smallmatrix}\right)\in\mathrm{GL}_{2}^{+}(\mathbb{R}),\,\varepsilon^{D}=1\right\},

where (abcd)\left(\begin{smallmatrix}{a^{\prime}}&{b^{\prime}}\\ {c^{\prime}}&{d^{\prime}}\end{smallmatrix}\right) is the matrix in SL2()\mathrm{SL}_{2}(\mathbb{R}) proportional to (abcd)\left(\begin{smallmatrix}{a}&{b}\\ {c}&{d}\end{smallmatrix}\right) and (cτ+d)1D\left(c^{\prime}\tau+d^{\prime}\right)^{\frac{1}{D}} means a function of τ={z:(z)>0}\tau\in\mathfrak{H}=\{z\in\mathbb{C}\colon\Im(z)>0\}. The notation ((abcd),ε(cτ+d)1D)\left(\left(\begin{smallmatrix}{a}&{b}\\ {c}&{d}\end{smallmatrix}\right),{\varepsilon}\left({c}^{\prime}\tau+{d}^{\prime}\right)^{\frac{1}{D}}\right) is sometimes abbreviated to ((abcd),ε)\left(\left(\begin{smallmatrix}{a}&{b}\\ {c}&{d}\end{smallmatrix}\right),{\varepsilon}\right) when DD is understood. The composition is given by

((a1b1c1d1),ε1(c1τ+d1)1D)((a2b2c2d2),ε2(c2τ+d2)1D)=((a1b1c1d1)(a2b2c2d2),ε1ε2(c1a2τ+b2c2τ+d2+d1)1D(c2τ+d2)1D).\left(\left(\begin{smallmatrix}{a_{1}}&{b_{1}}\\ {c_{1}}&{d_{1}}\end{smallmatrix}\right),{\varepsilon_{1}}\left({c_{1}}^{\prime}\tau+{d_{1}}^{\prime}\right)^{\frac{1}{D}}\right)\cdot\left(\left(\begin{smallmatrix}{a_{2}}&{b_{2}}\\ {c_{2}}&{d_{2}}\end{smallmatrix}\right),{\varepsilon_{2}}\left({c_{2}}^{\prime}\tau+{d_{2}}^{\prime}\right)^{\frac{1}{D}}\right)\\ =\left(\left(\begin{smallmatrix}a_{1}&b_{1}\\ c_{1}&d_{1}\end{smallmatrix}\right)\left(\begin{smallmatrix}a_{2}&b_{2}\\ c_{2}&d_{2}\end{smallmatrix}\right),\varepsilon_{1}\varepsilon_{2}\left(c_{1}^{\prime}\frac{a_{2}^{\prime}\tau+b_{2}^{\prime}}{c_{2}^{\prime}\tau+d_{2}^{\prime}}+d_{1}^{\prime}\right)^{\frac{1}{D}}\left(c_{2}^{\prime}\tau+d_{2}^{\prime}\right)^{\frac{1}{D}}\right).

It can be verified straightforwardly that GL2+()D~\widetilde{\mathrm{GL}_{2}^{+}(\mathbb{R})^{D}} with this composition is a group. One should note that different choices of holomorphic branches of (cτ+d)1D\left(c^{\prime}\tau+d^{\prime}\right)^{\frac{1}{D}} lead to different DD-covers. We choose the following branch throughout:

zr=exp(rlogz),π<(logz)π.z^{r}=\exp\left(r\log z\right),\quad-\uppi<\Im(\log z)\leq\uppi.

It is possible to make GL2+()D~\widetilde{\mathrm{GL}_{2}^{+}(\mathbb{R})^{D}} a topological covering of GL2+()\mathrm{GL}_{2}^{+}(\mathbb{R}) and hence GL2+()D~\widetilde{\mathrm{GL}_{2}^{+}(\mathbb{R})^{D}} becomes a Lie group whose smooth structure is transposed from GL2+()\mathrm{GL}_{2}^{+}(\mathbb{R}) using the above covering map (cf. [28]). The motivation for using DD-covers is that when dealing with modular forms of weight k1Dk\in\frac{1}{D}\mathbb{Z}, the multiplier systems become group characters on DD-covers.

Let GG be a subgroup of GL2+()\mathrm{GL}_{2}^{+}(\mathbb{R}); then by GD~\widetilde{G^{D}} we understand the preimage of GG under the natural projection GL2+()D~GL2+()\widetilde{\mathrm{GL}_{2}^{+}(\mathbb{R})^{D}}\rightarrow\mathrm{GL}_{2}^{+}(\mathbb{R}), ((abcd),ε)(abcd)\left(\left(\begin{smallmatrix}{a}&{b}\\ {c}&{d}\end{smallmatrix}\right),{\varepsilon}\right)\mapsto\left(\begin{smallmatrix}{a}&{b}\\ {c}&{d}\end{smallmatrix}\right). For γGL2+()\gamma\in\mathrm{GL}_{2}^{+}(\mathbb{R}), let γ~\widetilde{\gamma} denote (γ,1)GL2+()D~(\gamma,1)\in\widetilde{\mathrm{GL}_{2}^{+}(\mathbb{R})^{D}}. (The cover index DD should be inferred from the context.) In addition, we set G¯={g{±(1001)}:gG}\overline{G}=\left\{g\cdot\{\pm\left(\begin{smallmatrix}{1}&{0}\\ {0}&{1}\end{smallmatrix}\right)\}\colon g\in G\right\}, which is a subgroup of GL2+()¯=GL2+()/{±(1001)}\overline{\mathrm{GL}_{2}^{+}(\mathbb{R})}=\mathrm{GL}_{2}^{+}(\mathbb{R})/\{\pm\left(\begin{smallmatrix}{1}&{0}\\ {0}&{1}\end{smallmatrix}\right)\}.

The group SL2()\mathrm{SL}_{2}(\mathbb{Z}) is the set of 2×22\times 2 integral matrices of determinant 11 and is known as the full modular group. We also need the congruence subgroup

Γ0(N)={(abcd)SL2():c0modN},\Gamma_{0}(N)=\left\{\left(\begin{smallmatrix}{a}&{b}\\ {c}&{d}\end{smallmatrix}\right)\in\mathrm{SL}_{2}(\mathbb{Z})\colon c\equiv 0\bmod N\right\},

where NN is a positive integer called the level. It is well known that the index [SL2():Γ0(N)]=NpN(1+1/p)[\mathrm{SL}_{2}(\mathbb{Z})\colon\Gamma_{0}(N)]=N\prod_{p\mid N}(1+1/p) where pp denotes a prime (cf. [29, Coro. 6.2.13]). The matrices (1001)\left(\begin{smallmatrix}{1}&{0}\\ {0}&{1}\end{smallmatrix}\right), (1101)\left(\begin{smallmatrix}{1}&{1}\\ {0}&{1}\end{smallmatrix}\right), (0110)\left(\begin{smallmatrix}{0}&{-1}\\ {1}&{0}\end{smallmatrix}\right) and (N001)\left(\begin{smallmatrix}{N}&{0}\\ {0}&{1}\end{smallmatrix}\right) are denoted by II, TT, SS, BNB_{N} respectively.

Let ()\mathscr{M}(\mathfrak{H}) denote the field of meromorphic functions on the upper half plane \mathfrak{H} and k1Dk\in\frac{1}{D}\mathbb{Z}. Define the slash operator of weight kk by

f|k((abcd),ε)(τ)=(εcτ+dD)Dkf(aτ+bcτ+d),f|_{k}\left(\left(\begin{smallmatrix}{a}&{b}\\ {c}&{d}\end{smallmatrix}\right),{\varepsilon}\right)(\tau)=\left(\varepsilon\sqrt[D]{c^{\prime}\tau+d^{\prime}}\right)^{-Dk}f\left(\frac{a\tau+b}{c\tau+d}\right),

where f()f\in\mathscr{M}(\mathfrak{H}), ((abcd),ε)GL2+()D~\left(\left(\begin{smallmatrix}{a}&{b}\\ {c}&{d}\end{smallmatrix}\right),{\varepsilon}\right)\in\widetilde{\mathrm{GL}_{2}^{+}(\mathbb{R})^{D}} and τ\tau\in\mathfrak{H}. It is immediate that GL2+()D~\widetilde{\mathrm{GL}_{2}^{+}(\mathbb{R})^{D}} acts on ()\mathscr{M}(\mathfrak{H}) on the right via the slash operator of weight kk. Let GG be a subgroup of SL2()\mathrm{SL}_{2}(\mathbb{Z}) and χ\chi be a character222A character always means a unitary linear character, that is, a group homomorphism to the group of complex numbers of absolute value 11. on GD~\widetilde{G^{D}}. We say ff transforms like a modular form of weight kk and with multiplier system (or with character) χ\chi if f|kγ=χ(γ)ff|_{k}\gamma=\chi(\gamma)f for any γGD~\gamma\in\widetilde{G^{D}}. If this is the case, and [SL2():G]<+[\mathrm{SL}_{2}(\mathbb{Z})\colon G]<+\infty and χ(γ)\chi(\gamma) has finite order for any γGD~\gamma\in\widetilde{G^{D}}, then for (abcd)SL2()\left(\begin{smallmatrix}{a}&{b}\\ {c}&{d}\end{smallmatrix}\right)\in\mathrm{SL}_{2}(\mathbb{Z}) we have

f|k(abcd)~(τ)=nm1cnqn,f|_{k}\widetilde{\left(\begin{smallmatrix}{a}&{b}\\ {c}&{d}\end{smallmatrix}\right)}(\tau)=\sum_{n\in m^{-1}\mathbb{Z}}c_{n}q^{n},

where q=𝔢(τ)=exp(2πiτ)q=\mathfrak{e}\left(\tau\right)=\exp(2\uppi\mathrm{i}\tau) and m1m\in\mathbb{Z}_{\geq 1} provided that there is Y0>0Y_{0}>0 (depending on (abcd)\left(\begin{smallmatrix}{a}&{b}\\ {c}&{d}\end{smallmatrix}\right)) such that f|k(abcd)~f|_{k}\widetilde{\left(\begin{smallmatrix}{a}&{b}\\ {c}&{d}\end{smallmatrix}\right)} has no poles on Y0={τ:(τ)>Y0}\mathfrak{H}_{Y_{0}}=\{\tau\in\mathfrak{H}\colon\Im(\tau)>Y_{0}\}. Moreover, the series converges normally on Y0\mathfrak{H}_{Y_{0}}. To see this, note that there exists m1m\in\mathbb{Z}_{\geq 1} such that χ((abcd)~T~m(abcd)~1)=1\chi\left(\widetilde{\left(\begin{smallmatrix}{a}&{b}\\ {c}&{d}\end{smallmatrix}\right)}\widetilde{T}^{m}\widetilde{\left(\begin{smallmatrix}{a}&{b}\\ {c}&{d}\end{smallmatrix}\right)}^{-1}\right)=1 and hence f|k(abcd)~(τ+m)=f|k(abcd)~(τ)f|_{k}\widetilde{\left(\begin{smallmatrix}{a}&{b}\\ {c}&{d}\end{smallmatrix}\right)}(\tau+m)=f|_{k}\widetilde{\left(\begin{smallmatrix}{a}&{b}\\ {c}&{d}\end{smallmatrix}\right)}(\tau). Therefore, the desired expansion follows from Fourier’s theorem or Laurent’s theorem. Define the order ordi(f|k((abcd),ε))\mathop{\mathrm{ord}}_{\mathrm{i}\infty}(f|_{k}(\left(\begin{smallmatrix}{a}&{b}\\ {c}&{d}\end{smallmatrix}\right),\varepsilon)) to be the least nn such that cn0c_{n}\neq 0. If the expansion does not exist (that is, f|k((abcd),ε)f|_{k}(\left(\begin{smallmatrix}{a}&{b}\\ {c}&{d}\end{smallmatrix}\right),\varepsilon) has a nonisolated singularity at infinity) then the order is undefined; if the expansion holds but for any n0n_{0}\in\mathbb{Z} there exists n<n0n<n_{0} such that cn0c_{n}\neq 0 then define ordi(f|k((abcd),ε))=\mathop{\mathrm{ord}}_{\mathrm{i}\infty}(f|_{k}(\left(\begin{smallmatrix}{a}&{b}\\ {c}&{d}\end{smallmatrix}\right),\varepsilon))=-\infty; if f|k((abcd),ε)f|_{k}(\left(\begin{smallmatrix}{a}&{b}\\ {c}&{d}\end{smallmatrix}\right),\varepsilon) is identically zero then define ordi(f|k((abcd),ε))=+\mathop{\mathrm{ord}}_{\mathrm{i}\infty}(f|_{k}(\left(\begin{smallmatrix}{a}&{b}\\ {c}&{d}\end{smallmatrix}\right),\varepsilon))=+\infty.

Definition 2.1.

Let D1D\in\mathbb{Z}_{\geq 1} and k1Dk\in\frac{1}{D}\mathbb{Z}. Let GG be a subgroup of SL2()\mathrm{SL}_{2}(\mathbb{Z}) of finite index and χ:GD~×\chi\colon\widetilde{G^{D}}\rightarrow\mathbb{C}^{\times} be a character of finite order333If χ\chi is not of finite order as considered by Knopp and Mason [25], this definition also makes sense. (that is, χ(γ)\chi(\gamma) has finite order for any γGD~\gamma\in\widetilde{G^{D}}). Let f()f\in\mathscr{M}(\mathfrak{H}). Then we say ff is a meromorphic modular form of weight kk for GG with character χ\chi if f|kγ=χ(γ)ff|_{k}\gamma=\chi(\gamma)f for any γGD~\gamma\in\widetilde{G^{D}} and ordi(f|kγ)>\mathop{\mathrm{ord}}_{\mathrm{i}\infty}(f|_{k}\gamma)>-\infty for any γSL2()D~\gamma\in\widetilde{\mathrm{SL}_{2}(\mathbb{Z})^{D}}. Suppose this is the case. Then we say ff is a weakly holomorphic modular form if it has no poles on \mathfrak{H}; it is a modular function if the weight k=0k=0; it is a modular form (cusp form respectively) if it is weakly holomorphic and ordi(f|kγ)0\mathop{\mathrm{ord}}_{\mathrm{i}\infty}(f|_{k}\gamma)\geq 0 (>0>0 respectively) for any γSL2()D~\gamma\in\widetilde{\mathrm{SL}_{2}(\mathbb{Z})^{D}}. The vector spaces (over \mathbb{C}) of modular forms and of cusp forms are denoted by Mk(G,χ)M_{k}(G,\chi) and Sk(G,χ)S_{k}(G,\chi) respectively. When χ\chi is trivial (which means k2k\in 2\mathbb{Z} and χ\chi always takes the value 11), we let Mk(G)=Mk(G,χ)M_{k}(G)=M_{k}(G,\chi) and Sk(G)=Sk(G,χ)S_{k}(G)=S_{k}(G,\chi).

Note that the cover index DD can be recovered from the domain of χ\chi and Mk(G,χ)M_{k}(G,\chi) is also denoted by Mk(GD~,χ)M_{k}(\widetilde{G^{D}},\chi) when needed.

Remark 2.2.

Suppose there exists a nonzero meromorphic modular form ff of weight kk for GG with character χ\chi. Then we have the following facts:

  • χ(I,𝔢(1/D))=𝔢(k)\chi\left(I,\mathfrak{e}\left(1/D\right)\right)=\mathfrak{e}\left(-k\right).

  • If IG-I\in G, then χ(I~)=𝔢(k/2)\chi\left(\widetilde{-I}\right)=\mathfrak{e}\left(-k/2\right).

  • If DD^{\prime} is another positive integer with k1Dk\in\frac{1}{D^{\prime}}\mathbb{Z} and DDD^{\prime}\mid D, then χ:GD~×\chi\colon\widetilde{G^{D}}\rightarrow\mathbb{C}^{\times} descends to a character on GD~\widetilde{G^{D^{\prime}}}, i.e., χ\chi can be factored as χ=χ1pD,D\chi=\chi_{1}p_{D,D^{\prime}} where pD,D:GD~GD~p_{D,D^{\prime}}\colon\widetilde{G^{D}}\rightarrow\widetilde{G^{D^{\prime}}} is the natural projection (γ,ε)(γ,εD/D)(\gamma,\varepsilon)\mapsto(\gamma,\varepsilon^{D/D^{\prime}}) and χ1\chi_{1} is a character on GD~\widetilde{G^{D^{\prime}}} (which is unique).

The proof is straightforward by considering slash operators acting on ff of which we omit the details. Motivated by the first two facts, we call a character χ\chi on GD~\widetilde{G^{D}} with the properties χ(I,𝔢(1/D))=𝔢(k)\chi\left(I,\mathfrak{e}\left(1/D\right)\right)=\mathfrak{e}\left(-k\right) and χ(I~)=𝔢(k/2)\chi\left(\widetilde{-I}\right)=\mathfrak{e}\left(-k/2\right) if IG-I\in G a multiplier system for GG of weight kk of cover index DD. Note that if IG-I\in G, then the second property implies the first one. Finally, note that the third fact still holds when we require that χ\chi is a multiplier system for GG of weight kk of cover index DD even if we can not find a nonzero form ff.

Remark 2.3.

If ff is a meromorphic modular form of weight kk for GG with character χ\chi, and gg is a meromorphic modular form of weight kk^{\prime} for GG with character χ\chi^{\prime} with k,k1Dk,k^{\prime}\in\frac{1}{D}\mathbb{Z}, then it is immediate that fgf\cdot g is a meromorphic modular form of weight k+kk+k^{\prime} for GG with character χχ\chi\cdot\chi^{\prime}. Moreover, if ff and gg are both modular forms (cusp forms respectively), then so is fgf\cdot g.

One of the aims of this paper is to give explicit formulas concerning dimMk(Γ0(N),χ)\dim_{\mathbb{C}}M_{k}(\Gamma_{0}(N),\chi) and dimSk(Γ0(N),χ)\dim_{\mathbb{C}}S_{k}(\Gamma_{0}(N),\chi) where kk\in\mathbb{Q} and χ\chi is a character on Γ0(N)D~\widetilde{\Gamma_{0}(N)^{D}} of some kind which we explain now.

We need the Dedekind eta function and its logarithm, which are defined by

η(τ)\displaystyle\eta(\tau) =q1/24n1(1qn),τ,\displaystyle=q^{1/24}\prod_{n\in\mathbb{Z}_{\geq 1}}\left(1-q^{n}\right),\quad\tau\in\mathfrak{H},
(2) logη(τ)\displaystyle\log\eta(\tau) =logη(i)+iτη(z)η(z)dz,\displaystyle=\log\eta(\mathrm{i})+\int_{\mathrm{i}}^{\tau}\frac{\eta^{\prime}(z)}{\eta(z)}\,\mathrm{d}z,

where logη(i)\log\eta(\mathrm{i}) is the real logarithm. The transformation equations of logη\log\eta under SL2()\mathrm{SL}_{2}(\mathbb{Z}) are obtained by Dedekind (cf. [30, Equation (12), Section 3.4]):

(3) logη(aτ+bcτ+d)logη(τ)=2πi(a+d24c+12s(d,c)18)+12log(cτ+d),\log\eta\left(\frac{a\tau+b}{c\tau+d}\right)-\log\eta(\tau)=2\uppi\mathrm{i}\left(\frac{a+d}{24c}+\frac{1}{2}s(-d,c)-\frac{1}{8}\right)+\frac{1}{2}\log(c\tau+d),

where (abcd)SL2()\left(\begin{smallmatrix}{a}&{b}\\ {c}&{d}\end{smallmatrix}\right)\in\mathrm{SL}_{2}(\mathbb{Z}) with c>0c>0 and s(d,c)s(-d,c) is the Dedekind sum

(4) s(h,k)=rmodk((rk))((hrk)),h,k1.s(h,k)=\sum_{r\bmod k}\Big{(}\Big{(}\frac{r}{k}\Big{)}\Big{)}\cdot\Big{(}\Big{(}\frac{hr}{k}\Big{)}\Big{)},\quad h\in\mathbb{Z},\,k\in\mathbb{Z}_{\geq 1}.

In the above definition, ((x))=x[x]1/2((x))=x-[x]-1/2 if xx\in\mathbb{R}\setminus\mathbb{Z} and ((x))=0((x))=0 if xx\in\mathbb{Z}. Set

(5) Ψ:SL2()\displaystyle\Psi\colon\mathrm{SL}_{2}(\mathbb{Z}) \displaystyle\rightarrow\mathbb{Z}
(abcd)\displaystyle\left(\begin{smallmatrix}{a}&{b}\\ {c}&{d}\end{smallmatrix}\right) {a+dc+12s(d,c)3,c>0;a+dc+12s(d,c)+3,c<0;b,c=0,a>0;b6,c=0,a<0.\displaystyle\mapsto\begin{dcases}\frac{a+d}{c}+12s(-d,c)-3,&c>0;\\ \frac{a+d}{c}+12s(d,-c)+3,&c<0;\\ b,&c=0,a>0;\\ -b-6,&c=0,a<0.\end{dcases}

Fix a positive integer DD. Then the transformation equations of η\eta follow from that of logη\log\eta and can be expressed as η|1/2(γ,ε)=χη(γ,ε)η\eta|_{1/2}(\gamma,\varepsilon)=\chi_{\eta}(\gamma,\varepsilon)\eta, where χη\chi_{\eta} is the multiplier system for SL2()\mathrm{SL}_{2}(\mathbb{Z}) of weight 1/21/2 of cover index 2D2D defined by

χη(γ,ε)=εD𝔢(Ψ(γ)24),(γ,ε)SL2()2D~.\chi_{\eta}(\gamma,\varepsilon)=\varepsilon^{-D}\mathfrak{e}\left(\frac{\Psi(\gamma)}{24}\right),\quad(\gamma,\varepsilon)\in\widetilde{\mathrm{SL}_{2}(\mathbb{Z})^{2D}}.

The fact that Ψ(SL2())\Psi(\mathrm{SL}_{2}(\mathbb{Z}))\subseteq\mathbb{Z} (when we give (5) this is tacitly assumed) follows from the above formula with D=1D=1, the fact SL2()\mathrm{SL}_{2}(\mathbb{Z}) is generated by TT and SS and the fact χη(T~)24=χη(S~)24=1\chi_{\eta}(\widetilde{T})^{24}=\chi_{\eta}(\widetilde{S})^{24}=1.

Let N,D1N,D\in\mathbb{Z}_{\geq 1}. By an eta-quotient of level NN and cover index DD we understand a product f(τ)=0<nNη(nτ)rnf(\tau)=\prod_{0<n\mid N}\eta(n\tau)^{r_{n}} with rnr_{n}\in\mathbb{Q} such that Drn2D\cdot r_{n}\in 2\mathbb{Z} for any nNn\mid N. Thus an eta-quotient of cover index 22 is just an ordinary eta-quotient whose exponents are integers. The fractional powers are defined by η(nτ)rn=exp(rnlogη(nτ))\eta(n\tau)^{r_{n}}=\exp\left(r_{n}\log\eta(n\tau)\right) (cf. (2)). Since η\eta has no poles on \mathfrak{H}, the eta-quotient ff is a weakly holomorphic modular form of weight k=12nNrnk=\frac{1}{2}\sum_{n\mid N}r_{n} for Γ0(N)D~\widetilde{\Gamma_{0}(N)^{D}} with character

(6) χ:Γ0(N)D~\displaystyle\chi\colon\widetilde{\Gamma_{0}(N)^{D}} ×\displaystyle\rightarrow\mathbb{C}^{\times}
((abcd),ε)\displaystyle\left(\left(\begin{smallmatrix}{a}&{b}\\ {c}&{d}\end{smallmatrix}\right),{\varepsilon}\right) εDk𝔢(124nNrnΨ(abnc/nd)).\displaystyle\mapsto\varepsilon^{-Dk}\mathfrak{e}\left(\frac{1}{24}\sum_{n\mid N}r_{n}\Psi\left(\begin{smallmatrix}{a}&{bn}\\ {c/n}&{d}\end{smallmatrix}\right)\right).

The above formula can be proved using (3), Remark 2.3 and the fact η(nτ)=n1/4η|1/2Bn~(τ)\eta(n\tau)=n^{-1/4}\eta|_{1/2}\widetilde{B_{n}}(\tau). Note that η\eta has no zeros on \mathfrak{H} according to its infinite product expansion. Therefore any eta-quotient has no zeros or poles on \mathfrak{H}. For the order at infinity, we have (cf. [16, Lemma 4.2])

(7) ordi(f|k(abcd)~)=124nN(n,c)2nrn,(abcd)SL2().\mathop{\mathrm{ord}}\nolimits_{\mathrm{i}\infty}(f|_{k}\widetilde{\left(\begin{smallmatrix}{a}&{b}\\ {c}&{d}\end{smallmatrix}\right)})=\frac{1}{24}\sum_{n\mid N}\frac{(n,c)^{2}}{n}r_{n},\quad\left(\begin{smallmatrix}{a}&{b}\\ {c}&{d}\end{smallmatrix}\right)\in\mathrm{SL}_{2}(\mathbb{Z}).

We recommend the reader to see [31, Section 2] or [21, Section 5] for more details on ordinary eta-quotients. If (7) are always nonnegative for all (abcd)SL2()\left(\begin{smallmatrix}{a}&{b}\\ {c}&{d}\end{smallmatrix}\right)\in\mathrm{SL}_{2}(\mathbb{Z}), we say ff is a holomorphic eta-quotient.

We will investigate the dimensions dimMk(Γ0(N),χ)\dim_{\mathbb{C}}M_{k}(\Gamma_{0}(N),\chi) and dimSk(Γ0(N),χ)\dim_{\mathbb{C}}S_{k}(\Gamma_{0}(N),\chi) where k1Dk\in\frac{1}{D}\mathbb{Z} and χ\chi is the character of an eta-quotient of weight kk, level NN and cover index DD in the next three sections.

Remark 2.4.

The reader should be warned that when dealing with half-integral weights, our notation may differ from other authors’, e.g. from the notation encountered in [32] and [14]. Let ψ\psi be a Dirichlet character modulo 4N4N and let 2k12k\in\mathbb{Z}_{\geq 1}. The space M0(4N,k,ψ)M_{0}(4N,k,\psi) in Serre and Stark’s notation is the same thing as Mk(Γ0(4N),χ1ψ1)M_{k}(\Gamma_{0}(4N),\chi_{1}\psi_{1}) in our notation where χ1\chi_{1} is the character of η(τ)4kη(2τ)10kη(4τ)4k\eta(\tau)^{-4k}\eta(2\tau)^{10k}\eta(4\tau)^{-4k} and ψ1\psi_{1} is the character that maps ((abcd),ε)\left(\left(\begin{smallmatrix}{a}&{b}\\ {c}&{d}\end{smallmatrix}\right),{\varepsilon}\right) to ψ(d)\psi(d). The character χ1\chi_{1} is hidden in many authors’ notation of spaces and it sometimes appears in their definitions of slash operators or modular transformations or automorphic factors.

3. Divisors of modular forms

Our method relies on the classical Riemann-Roch theorem, so we recall some elements here. By a compact Riemann surface XX, we understand a compact connected Hausdorff topological space equipped with a maximal atlas {(Ui,ϕi)}\{(U_{i},\phi_{i})\} (i.e., each UiU_{i} is open in XX and ϕi\phi_{i} is a homeomorphism from UiU_{i} onto an open set in \mathbb{C}) such that when (Ui,ϕi)(U_{i},\phi_{i}) and (Uj,ϕj)(U_{j},\phi_{j}) overlap, the transition map ϕjϕi1:ϕi(UiUj)ϕj(UiUj)\phi_{j}\circ\phi_{i}^{-1}\colon\phi_{i}(U_{i}\cap U_{j})\rightarrow\phi_{j}(U_{i}\cap U_{j}) is holomorphic. It can be shown that XX is second-countable (cf. [33, p. 88]). Therefore, according to the well known classification of compact connected topological surfaces (cf. eg. [34, Theorem 10.22]) and the fact that Riemann surfaces are oriented, XX is homeomorphic to the 22-sphere 𝕊2\mathbb{S}^{2} or to the connected sum of gg copies of the real projective plane 2\mathbb{P}^{2} with g1g\in\mathbb{Z}_{\geq 1}. The number gg is called the genus of XX. (If XX is a sphere, then its genus is defined to be 0.)

A meromorphic differential ω\omega on XX is by definition a holomorphic differential on XSX\setminus S where SS is a finite subset of XX such that if (U,ϕ:Uϕ(U))(U,\phi\colon U\rightarrow\phi(U)\subseteq\mathbb{C}) is any chart of XX, then ω\omega is of the form f(z)dzf(z)\,\mathrm{d}z on this chart where f(z)f(z) is a meromorphic function on ϕ(U)\phi(U) whose poles are exactly ϕ(US)\phi(U\cap S). The basic feature of a meromorphic differential is the transformation equation between different charts: if (V,ψ)(V,\psi) is another chart that overlaps (U,ϕ)(U,\phi) and ω=g(w)dw\omega=g(w)\,\mathrm{d}w on (V,ψ)(V,\psi), then we have

f(z)=g(ψϕ1(z))dψϕ1(z)dz,zϕ(UV).f(z)=g(\psi\circ\phi^{-1}(z))\frac{\,\mathrm{d}\psi\circ\phi^{-1}(z)}{\,\mathrm{d}z},\quad z\in\phi(U\cap V).

The set of all meromorphic differentials on XX is denoted by 𝒦(X)\mathscr{K}(X) which is obviously a complex vector space. Let (X)\mathscr{M}(X) denote the complex vector space of all meromorphic functions on XX as in Section 2. If there exists a nonzero ω0𝒦(X)\omega_{0}\in\mathscr{K}(X), then the map (X)𝒦(X)\mathscr{M}(X)\rightarrow\mathscr{K}(X) that sends ff to fω0f\cdot\omega_{0} is a \mathbb{C}-linear isomorphism. Such ω0\omega_{0} actually exists according to a fundamental result in the theory of Riemann surfaces (cf. [33, Theorem 1.10, Chapter IV]). As a consequence, nonzero meromorphic functions always exist on any compact Riemann surface.

By a (\mathbb{Q}-valued) divisor on XX, we understand a function XX\rightarrow\mathbb{Q} with finite support. We often write a divisor DD as a formal sum xXdx(x)\sum_{x\in X}d_{x}\cdot(x) where dx=D(x)d_{x}=D(x). The term “divisor” traditionally refers to a \mathbb{Z}-valued divisor but in this paper to a \mathbb{Q}-valued divisor. The sets of all \mathbb{Z}-valued divisors and of all \mathbb{Q}-valued divisors are denoted by 𝒟(X)\mathscr{D}(X) and 𝒟(X)\mathscr{D}_{\mathbb{Q}}(X) respectively. Equipped with the pointwise addition, they are abelian groups. We define the degree of D𝒟(X)D\in\mathscr{D}_{\mathbb{Q}}(X) by deg(D)=xXD(x)\deg(D)=\sum_{x\in X}D(x), which is well-defined since the sum is actually a finite sum. Moreover, define the floor function as follows: for D𝒟(X)D\in\mathscr{D}_{\mathbb{Q}}(X), set [D]=xX[dx](x)[D]=\sum_{x\in X}[d_{x}]\cdot(x), where [dx][d_{x}] is the greatest integer that does not exceed dxd_{x}. Finally, for two divisors D1D_{1} and D2D_{2}, we say D1D2D_{1}\geq D_{2} if D1(x)D2(x)D_{1}(x)\geq D_{2}(x) far any xXx\in X, and we say D1>D2D_{1}>D_{2} if D1D2D_{1}\geq D_{2} but D1D2D_{1}\neq D_{2}.

Generally speaking, with any meromorphic section of a holomorphic line bundle over XX one can associate a \mathbb{Z}-valued divisor. Specifically, if f(X)f\in\mathscr{M}(X), then define div(f)=xXdx(x)\mathop{\mathrm{div}}(f)=\sum_{x\in X}d_{x}\cdot(x) with dxd_{x} being the least exponent in the Laurent expansion of ff at xx in any chart. For ω𝒦(X)\omega\in\mathscr{K}(X) we define div(ω)\mathop{\mathrm{div}}(\omega) in a similar manner.

The compact Riemann surfaces we need are the modular curves XGX_{G} where GG is a finite index subgroup of SL2()\mathrm{SL}_{2}(\mathbb{Z}) which we describe now. Let =1()\mathfrak{H}^{*}=\mathfrak{H}\cup\mathbb{P}^{1}(\mathbb{Q}) where 1()\mathbb{P}^{1}(\mathbb{Q}) is the projective line over \mathbb{Q} which can be identified with \mathbb{Q} together with a point i=1/0\mathrm{i}\infty=1/0. The group SL2()\mathrm{SL}_{2}(\mathbb{Z}) acts on 1()\mathbb{P}^{1}(\mathbb{Q}) on the left via (abcd)(p/q)=ap+bqcp+dq\left(\begin{smallmatrix}{a}&{b}\\ {c}&{d}\end{smallmatrix}\right)\cdot(p/q)=\frac{ap+bq}{cp+dq}. We endow \mathfrak{H}^{*} with the topology generated by the usual topology of \mathfrak{H} and the sets

{γτ:τY0{i}},γSL2(),Y0>0,\{\gamma\tau\colon\tau\in\mathfrak{H}_{Y_{0}}\cup\{\mathrm{i}\infty\}\},\quad\gamma\in\mathrm{SL}_{2}(\mathbb{Z}),\,Y_{0}>0,

where Y0={τ:(τ)>Y0}\mathfrak{H}_{Y_{0}}=\{\tau\in\mathfrak{H}\colon\Im(\tau)>Y_{0}\}. It is immediate that \mathfrak{H}^{*} with this topology is a Hausdorff space444The space \mathfrak{H}^{*} is not locally compact and hence can not be a topological manifold., \mathfrak{H} is an open subset of \mathfrak{H}^{*} and GG acts on \mathfrak{H}^{*} (on the left) by homeomorphisms. Let G\G\backslash\mathfrak{H}^{*} be the orbit space (endowed with the quotient topology) and p:G\p\colon\mathfrak{H}^{*}\rightarrow G\backslash\mathfrak{H}^{*} be the quotient map. It can be shown that G\G\backslash\mathfrak{H}^{*} is Hausdorff (cf. eg. [35, Lemma 1.7.7]) and when [SL2():G]<+[\mathrm{SL}_{2}(\mathbb{Z})\colon G]<+\infty G\G\backslash\mathfrak{H}^{*} is compact (cf. eg. [33, Proposition 14.6, Chapter IV]). Hereafter we always assume that [SL2():G]<+[\mathrm{SL}_{2}(\mathbb{Z})\colon G]<+\infty. Write G\=G\G\1()G\backslash\mathfrak{H}^{*}=G\backslash\mathfrak{H}\cup G\backslash\mathbb{P}^{1}(\mathbb{Q}), a disjoint union. Then G\G\backslash\mathfrak{H} is open in G\G\backslash\mathfrak{H}^{*} and G\1()G\backslash\mathbb{P}^{1}(\mathbb{Q}) is a finite set since SL2()\mathrm{SL}_{2}(\mathbb{Z}) acts transitively on 1()\mathbb{P}^{1}(\mathbb{Q}) and hence |G\1()|[SL2():G]\lvert G\backslash\mathbb{P}^{1}(\mathbb{Q})\rvert\leq[\mathrm{SL}_{2}(\mathbb{Z})\colon G]. The orbits in G\1()G\backslash\mathbb{P}^{1}(\mathbb{Q}) are called cusps of G\G\backslash\mathfrak{H}^{*} and by abuse of language, the points in 1()\mathbb{P}^{1}(\mathbb{Q}) are also called cusps. The width of a cusp GxG\1()G\cdot x\in G\backslash\mathbb{P}^{1}(\mathbb{Q}) is defined by wGx=wx=[SL2()¯x:G¯x]w_{Gx}=w_{x}=[\overline{\mathrm{SL}_{2}(\mathbb{Z})}_{x}\colon\overline{G}_{x}] which is independent of the choice of the representative xx. We have (cf. [29, Proposition 6.3.8(b)])

[SL2()¯:G¯]=GxG\1()wGx.[\overline{\mathrm{SL}_{2}(\mathbb{Z})}\colon\overline{G}]=\sum_{Gx\in G\backslash\mathbb{P}^{1}(\mathbb{Q})}w_{Gx}.

We also need the notion of elliptic points. It is well known that the stabilizer of each point in {γi:γSL2()}\{\gamma\mathrm{i}\colon\gamma\in\mathrm{SL}_{2}(\mathbb{Z})\} under the action of SL2()/{±I}\mathrm{SL}_{2}(\mathbb{Z})/\{\pm I\} is a cyclic group of order 22, the stabilizer of each point in {γρ:γSL2()}\{\gamma\rho\colon\gamma\in\mathrm{SL}_{2}(\mathbb{Z})\} is a cyclic group of order 33 where ρ=1+3i2\rho=\frac{-1+\sqrt{3}\mathrm{i}}{2} and the stabilizer of any other point in \mathfrak{H} is trivial. Thus for τ\tau\in\mathfrak{H}, |G¯τ|=1\lvert\overline{G}_{\tau}\rvert=1, 22 or 33 since |G¯τ|\lvert\overline{G}_{\tau}\rvert divides |SL2()¯τ|\lvert\overline{\mathrm{SL}_{2}(\mathbb{Z})}_{\tau}\rvert. If |G¯τ|=2\lvert\overline{G}_{\tau}\rvert=2 (33 respectively) then we call p(τ)p(\tau) an elliptic point for G\G\backslash\mathfrak{H}^{*} of period 22 (33 respectively). By abuse of language, we also call the number τ\tau an elliptic point if p(τ)p(\tau) is.

The description and verification of the atlas on G\G\backslash\mathfrak{H}^{*} that turns it into a compact Riemann surface are rather technical and tedious but it is basic and well known (cf. eg. [35, Section 1.8]). Let XGX_{G} denote the resulting compact Riemann surface. We will mainly use XΓ0(N)X_{\Gamma_{0}(N)} hereafter so set X0(N)=XΓ0(N)X_{0}(N)=X_{\Gamma_{0}(N)} for simplicity. Let gg be the genus of XGX_{G}. Then by applying the Riemann-Hurwitz ramification formula to the holomorphic map XGXSL2()X_{G}\rightarrow X_{\mathrm{SL}_{2}(\mathbb{Z})}, GzSL2()zG\cdot z\mapsto\mathrm{SL}_{2}(\mathbb{Z})\cdot z, noticing that the degree of this map equals m=[SL2()¯:G¯]m=[\overline{\mathrm{SL}_{2}(\mathbb{Z})}\colon\overline{G}] and the genus of XSL2()X_{\mathrm{SL}_{2}(\mathbb{Z})} is 0, we obtain (cf. e.g. [36, Theorem 3.1.1] for the case GG is a congruence subgroup)

(8) g=1+m12ε24ε33ε2,g=1+\frac{m}{12}-\frac{\varepsilon_{2}}{4}-\frac{\varepsilon_{3}}{3}-\frac{\varepsilon_{\infty}}{2},

where ε2\varepsilon_{2} and ε3\varepsilon_{3} are the numbers of elliptic points of XGX_{G} of period 22 and 33 respectively and ε\varepsilon_{\infty} is the number of cusps of XGX_{G}. More formally,

ε2\displaystyle\varepsilon_{2} =#{GzG\SL2()i:|G¯z|=2},\displaystyle=\mathop{\mathrm{\#}}\{G\cdot z\in G\backslash\mathrm{SL}_{2}(\mathbb{Z})\mathrm{i}\colon\lvert\overline{G}_{z}\rvert=2\},
ε3\displaystyle\varepsilon_{3} =#{GzG\SL2()ρ:|G¯z|=3},ρ=1+3i2,\displaystyle=\mathop{\mathrm{\#}}\{G\cdot z\in G\backslash\mathrm{SL}_{2}(\mathbb{Z})\rho\colon\lvert\overline{G}_{z}\rvert=3\},\quad\rho=\frac{-1+\sqrt{3}\mathrm{i}}{2},
ε\displaystyle\varepsilon_{\infty} =#G\1().\displaystyle=\mathop{\mathrm{\#}}G\backslash\mathbb{P}^{1}(\mathbb{Q}).

For G=Γ0(N)G=\Gamma_{0}(N), it is known that

(9) m\displaystyle m =[SL2()¯:Γ0(N)¯]=[SL2():Γ0(N)]=NpN(1+1p),\displaystyle=[\overline{\mathrm{SL}_{2}(\mathbb{Z})}\colon\overline{\Gamma_{0}(N)}]=[\mathrm{SL}_{2}(\mathbb{Z})\colon\Gamma_{0}(N)]=N\prod_{p\mid N}\left(1+\frac{1}{p}\right),
(10) ε2\displaystyle\varepsilon_{2} ={pN(1+(4p)) if 4N,0 if 4N,\displaystyle=\begin{dcases}\prod_{p\mid N}\left(1+\genfrac{(}{)}{}{}{-4}{p}\right)&\text{ if }4\nmid N,\\ 0&\text{ if }4\mid N,\end{dcases}
(11) ε3\displaystyle\varepsilon_{3} ={pN(1+(3p)) if 9N,0 if 9N,\displaystyle=\begin{dcases}\prod_{p\mid N}\left(1+\genfrac{(}{)}{}{}{-3}{p}\right)&\text{ if }9\nmid N,\\ 0&\text{ if }9\mid N,\end{dcases}
(12) ε\displaystyle\varepsilon_{\infty} =dNϕ(d,N/d),\displaystyle=\sum_{d\mid N}\phi(d,N/d),

where pp denotes a prime, ϕ(d,N/d)=ϕ(gcd(d,N/d))\phi(d,N/d)=\phi(\gcd(d,N/d)), and ϕ\phi is the Euler function. For proofs, see [29, Corollary 6.2.13, Corollary 6.3.24(b)] and [36, Corollary 3.7.2].

Now let us associate a \mathbb{Q}-valued divisor to any meromorphic modular form of rational weight. For integral or half-integral weights, this association is the same as the ordinary one555But it is different from the one described in [33, p. 299] (cf. [36, eq. (3.2) and (3.3)]). Our treatment has the feature that one need not distinguish between regular and irregular cusps.

Definition 3.1.

Let GG be a subgroup of SL2()\mathrm{SL}_{2}(\mathbb{Z}) of finite index, D1D\in\mathbb{Z}_{\geq 1} and k1Dk\in\frac{1}{D}\mathbb{Z}. Let χ\chi be a multiplier system for GG of weight kk of cover index DD (not assumed to be of finite order). Let ff be a nonzero meromorphic modular form of weight kk for GG with character χ\chi. We define its divisor div(f)=xXGdivx(f)(x)𝒟(XG)\mathop{\mathrm{div}}(f)=\sum_{x\in X_{G}}\mathop{\mathrm{div}}_{x}(f)\cdot(x)\in\mathscr{D}_{\mathbb{Q}}(X_{G}) as follows:

  1. (a)

    If τ\tau\in\mathfrak{H}, then set divGτ(f)=n0/|G¯τ|\mathop{\mathrm{div}}_{G\tau}(f)=n_{0}/\lvert\overline{G}_{\tau}\rvert where n0n_{0} is the integer such that f(z)=nn0cn(zτ)nf(z)=\sum_{n\geq n_{0}}c_{n}(z-\tau)^{n}, cn00c_{n_{0}}\neq 0.

  2. (b)

    If x1()x\in\mathbb{P}^{1}(\mathbb{Q}) and γSL2()\gamma\in\mathrm{SL}_{2}(\mathbb{Z}) satisfying γ(i)=x\gamma(\mathrm{i}\infty)=x, then set divGx(f)=ordi(f|kγ~)wGx\mathop{\mathrm{div}}_{Gx}(f)=\mathop{\mathrm{ord}}_{\mathrm{i}\infty}(f|_{k}\widetilde{\gamma})\cdot w_{Gx}.

One can verify that div(f)\mathop{\mathrm{div}}(f) is well-defined, which is not totally trivial but straightforward. The usefulness of this notion relies on the following two simple facts:

  • If gg is another nonzero meromorphic modular form of weight k1Dk^{\prime}\in\frac{1}{D}\mathbb{Z} for GG with character χ\chi^{\prime}, then we have div(fg)=div(f)+div(g)\mathop{\mathrm{div}}(fg)=\mathop{\mathrm{div}}(f)+\mathop{\mathrm{div}}(g) in 𝒟(XG)\mathscr{D}_{\mathbb{Q}}(X_{G}) (cf. Remark 2.3).

  • If k=0k=0 and χ\chi is the trivial character, then ff descends to a meromorphic function f~\widetilde{f} on XGX_{G}. We have div(f)=div(f~)\mathop{\mathrm{div}}(f)=\mathop{\mathrm{div}}(\widetilde{f}) where div(f~)\mathop{\mathrm{div}}(\widetilde{f}) is the usual divisor of a meromorphic function.

Note that the factors 1/|G¯τ|1/\lvert\overline{G}_{\tau}\rvert and wGxw_{Gx} in Definition 3.1 are chosen to let the latter fact hold (to see this one must dive into the atlas of XGX_{G} which we have omitted). Also note that the former fact holds because the factors 1/|G¯τ|1/\lvert\overline{G}_{\tau}\rvert and wGxw_{Gx} remain unchanged for all kk.

Similarly, we have div(f/g)=div(f)div(g)\mathop{\mathrm{div}}(f/g)=\mathop{\mathrm{div}}(f)-\mathop{\mathrm{div}}(g) and in particular div(1/g)=div(g)\mathop{\mathrm{div}}(1/g)=-\mathop{\mathrm{div}}(g).

A fundamental theorem on modular forms of rational weight is the following one, which in cases of integral or half-integral weights is sometimes called the valence formula.

Theorem 3.2.

Let us use the notation of Definition 3.1 and set m=[SL2()¯:G¯]m=[\overline{\mathrm{SL}_{2}(\mathbb{Z})}\colon\overline{G}]. Then we have

deg(divf)=112mk.\deg(\mathop{\mathrm{div}}f)=\frac{1}{12}mk.
Proof.

Suppose that SL2()¯=1jmG¯γj¯\overline{\mathrm{SL}_{2}(\mathbb{Z})}=\bigcup_{1\leq j\leq m}\overline{G}\overline{\gamma_{j}} is a disjoint union where γjSL2()\gamma_{j}\in\mathrm{SL}_{2}(\mathbb{Z}) and γj¯=γj{±I}\overline{\gamma_{j}}=\gamma_{j}\cdot\{\pm I\}. Set g=1jmf|kγj~g=\prod_{1\leq j\leq m}f|_{k}\widetilde{\gamma_{j}}. Then g|mkγ=cγgg|_{mk}\gamma=c_{\gamma}g for any γSL2()D~\gamma\in\widetilde{\mathrm{SL}_{2}(\mathbb{Z})^{D}} where cγ×c_{\gamma}\in\mathbb{C}^{\times}. Since gg is not identically zero, the map γcγ\gamma\mapsto c_{\gamma} is a linear character on SL2()D~\widetilde{\mathrm{SL}_{2}(\mathbb{Z})^{D}}. According to a presentation of SL2()D~\widetilde{\mathrm{SL}_{2}(\mathbb{Z})^{D}} (cf. [16, Lemma 5.2]) the order of this character divides 12D12D and hence g12Dg^{12D} transforms like a modular form of weight 12Dmk12Dmk for SL2()\mathrm{SL}_{2}(\mathbb{Z}) with trivial character. Since ff is meromorphic at cusps, so is g12Dg^{12D}. Therefore g12Dg^{12D} is a meromorphic modular form of weight 12Dmk12Dmk for SL2()\mathrm{SL}_{2}(\mathbb{Z}) with trivial character. Applying the usual valence formula for even weights (cf. [29, Theorem 5.6.1]) we obtain deg(divg12D)=Dmk\deg(\mathop{\mathrm{div}}g^{12D})=Dmk. It remains to prove that 12Ddeg(divf)=deg(divg12D)12D\deg(\mathop{\mathrm{div}}f)=\deg(\mathop{\mathrm{div}}g^{12D}), which is equivalent to deg(divf)=deg(divg)\deg(\mathop{\mathrm{div}}f)=\deg(\mathop{\mathrm{div}}g). We now prove a stronger assertion, i.e.

(13) divx(g)=yp1(x)divy(f)\mathop{\mathrm{div}}\nolimits_{x}(g)=\sum_{y\in p^{-1}(x)}\mathop{\mathrm{div}}\nolimits_{y}(f)

for any xXSL2()x\in X_{\mathrm{SL}_{2}(\mathbb{Z})}, where p:XGXSL2()p\colon X_{G}\rightarrow X_{\mathrm{SL}_{2}(\mathbb{Z})} is the natural projection GτSL2()τG\cdot\tau\mapsto\mathrm{SL}_{2}(\mathbb{Z})\cdot\tau. In the case that xSL2()\x\in\mathrm{SL}_{2}(\mathbb{Z})\backslash\mathfrak{H}, we write x=SL2()τx=\mathrm{SL}_{2}(\mathbb{Z})\cdot\tau and set wτ=[SL2()¯τ:G¯τ]w_{\tau}=[\overline{\mathrm{SL}_{2}(\mathbb{Z})}_{\tau}\colon\overline{G}_{\tau}] (similar to the notion of the width of a cusp in the group-theoretical aspect). Notice that ordτf|kγj~=ordγjτf\mathop{\mathrm{ord}}_{\tau}f|_{k}\widetilde{\gamma_{j}}=\mathop{\mathrm{ord}}_{\gamma_{j}\tau}f where ordτf\mathop{\mathrm{ord}}_{\tau}f is the integer n0n_{0} such that limzτf(z)(zτ)n0\lim_{z\to\tau}f(z)(z-\tau)^{-n_{0}} is nonzero. Thus we have

divx(g)=|SL2()¯τ|11jmordγjτf.\mathop{\mathrm{div}}\nolimits_{x}(g)=\lvert\overline{\mathrm{SL}_{2}(\mathbb{Z})}_{\tau}\rvert^{-1}\cdot\sum_{1\leq j\leq m}\mathop{\mathrm{ord}}\nolimits_{\gamma_{j}\tau}f.

The underlying set of the multiset {Gγjτ:1jm}\{G\cdot\gamma_{j}\tau\colon 1\leq j\leq m\} equals p1(x)p^{-1}(x) and the multiplicity of each element GγjτG\cdot\gamma_{j}\tau equals wγjτw_{\gamma_{j}\tau}. It follows that

divx(g)=|SL2()¯τ|1y=Gτp1(x)wτordτf=yp1(x)divy(f),\mathop{\mathrm{div}}\nolimits_{x}(g)=\lvert\overline{\mathrm{SL}_{2}(\mathbb{Z})}_{\tau}\rvert^{-1}\cdot\sum_{y=G\cdot\tau\in p^{-1}(x)}w_{\tau}\cdot\mathop{\mathrm{ord}}\nolimits_{\tau}f=\sum_{y\in p^{-1}(x)}\mathop{\mathrm{div}}\nolimits_{y}(f),

i.e., the desired assertion (13) holds. In the other case xSL2()\1()x\in\mathrm{SL}_{2}(\mathbb{Z})\backslash\mathbb{P}^{1}(\mathbb{Q}), we have x=SL2()ix=\mathrm{SL}_{2}(\mathbb{Z})\cdot\mathrm{i}\infty and its width is 11. Therefore

divx(g)=1jmordi(f|kγj~).\mathop{\mathrm{div}}\nolimits_{x}(g)=\sum_{1\leq j\leq m}\mathop{\mathrm{ord}}\nolimits_{\mathrm{i}\infty}(f|_{k}\widetilde{\gamma_{j}}).

The underlying set of the multiset {Gγji:1jm}\{G\cdot\gamma_{j}\mathrm{i}\infty\colon 1\leq j\leq m\} equals p1(x)p^{-1}(x) and the multiplicity of each element GγjiG\cdot\gamma_{j}\mathrm{i}\infty equals wγjiw_{\gamma_{j}\mathrm{i}\infty}. It follows that

divx(g)=y=Gγip1(x)wγiordi(f|kγ~)=yp1(x)divy(f),\mathop{\mathrm{div}}\nolimits_{x}(g)=\sum_{y=G\cdot\gamma\mathrm{i}\infty\in p^{-1}(x)}w_{\gamma\mathrm{i}\infty}\mathop{\mathrm{ord}}\nolimits_{\mathrm{i}\infty}(f|_{k}\widetilde{\gamma})=\sum_{y\in p^{-1}(x)}\mathop{\mathrm{div}}\nolimits_{y}(f),

i.e., the desired assertion (13) holds. This concludes the proof. ∎

Remark 3.3.

The above theorem holds even when χ\chi is non-unitary and the proof remains unchanged. For instance, one can apply it to the generalized modular forms constructed in [25].

In the rest we need to know information about the divisor of an eta-quotient times a product of Eisenstein series on SL2()\mathrm{SL}_{2}(\mathbb{Z}). We let

E4(τ)\displaystyle E_{4}(\tau) =1+240n1σ3(n)qn,\displaystyle=1+240\sum_{n\in\mathbb{Z}_{\geq 1}}\sigma_{3}(n)q^{n},
E6(τ)\displaystyle E_{6}(\tau) =1504n1σ5(n)qn,\displaystyle=1-504\sum_{n\in\mathbb{Z}_{\geq 1}}\sigma_{5}(n)q^{n},

where σk(n)=dndk\sigma_{k}(n)=\sum_{d\mid n}d^{k}. It is well known that E4M4(SL2())E_{4}\in M_{4}({\mathrm{SL}_{2}(\mathbb{Z})}) and E6M6(SL2())E_{6}\in M_{6}({\mathrm{SL}_{2}(\mathbb{Z})}).

Proposition 3.4.

Let N1N\in\mathbb{Z}_{\geq 1}, rnr_{n}\in\mathbb{Q} for any nNn\mid N and t1,t2t_{1},t_{2}\in\mathbb{Z}. Let χ\chi be the character (6) where D1D\in\mathbb{Z}_{\geq 1} is chosen so that Drn2Dr_{n}\in 2\mathbb{Z} for any nNn\mid N. Set

f(τ)=nNη(nτ)rnE4(τ)t1E6(τ)t2.f(\tau)=\prod_{n\mid N}\eta(n\tau)^{r_{n}}\cdot E_{4}(\tau)^{t_{1}}\cdot E_{6}(\tau)^{t_{2}}.

Then ff is a nonzero meromorphic modular form of weight k=12nrn+4t1+6t2k=\frac{1}{2}\sum_{n}r_{n}+4t_{1}+6t_{2} for Γ0(N)\Gamma_{0}(N) with character χ\chi and

deg([divf])=cNϕ(c,N/c)[N24(N,c2)nN(n,c)2nrn]+(t13+t22)m{t22}ε2{t13}ε3,\deg\left([\mathop{\mathrm{div}}f]\right)=\sum_{c\mid N}\phi(c,N/c)\cdot\left[\frac{N}{24(N,c^{2})}\sum_{n\mid N}\frac{(n,c)^{2}}{n}r_{n}\right]+\left(\frac{t_{1}}{3}+\frac{t_{2}}{2}\right)m-\left\{\frac{t_{2}}{2}\right\}\varepsilon_{2}-\left\{\frac{t_{1}}{3}\right\}\varepsilon_{3},

where m,ε2m,\varepsilon_{2} and ε3\varepsilon_{3} are given in (9), (10) and (11).

Proof.

The fact that ff is a nonzero meromorphic modular form follows from Remark 2.3. It remains to compute deg([divf])\deg\left([\mathop{\mathrm{div}}f]\right). The divisors of E4E_{4} and E6E_{6} on XΓ0(N)X_{\Gamma_{0}(N)} are known (cf. eg. [29, Proposition 5.6.5]) as follows:

divx(Eu)={1/eτ if x=Γ0(N)τΓ0(N)\SL2()τ0,0 otherwise,\mathop{\mathrm{div}}\nolimits_{x}(E_{u})=\begin{dcases}1/e_{\tau}&\text{ if }x=\Gamma_{0}(N)\cdot\tau\in\Gamma_{0}(N)\backslash\mathrm{SL}_{2}(\mathbb{Z})\cdot\tau_{0},\\ 0&\text{ otherwise},\end{dcases}

where u=4u=4 or 66, eτ=|Γ0(N)¯τ|e_{\tau}=\lvert\overline{\Gamma_{0}(N)}_{\tau}\rvert and τ0=ρ=1+3i2\tau_{0}=\rho=\frac{-1+\sqrt{3}\mathrm{i}}{2} if u=4u=4; τ0=i\tau_{0}=\mathrm{i} if u=6u=6. On the other hand, if we set f0(τ)=nNη(nτ)rnf_{0}(\tau)=\prod_{n\mid N}\eta(n\tau)^{r_{n}}, then divx(f0)=0\mathop{\mathrm{div}}_{x}(f_{0})=0 for xΓ0(N)\x\in\Gamma_{0}(N)\backslash\mathfrak{H} since f0f_{0} has no poles or zeros on \mathfrak{H}. For xΓ0(N)\1()x\in\Gamma_{0}(N)\backslash\mathbb{P}^{1}(\mathbb{Q}), we can find (abcd)SL2()\left(\begin{smallmatrix}{a}&{b}\\ {c}&{d}\end{smallmatrix}\right)\in\mathrm{SL}_{2}(\mathbb{Z}) such that x=Γ0(N)(abcd)ix=\Gamma_{0}(N)\cdot\left(\begin{smallmatrix}{a}&{b}\\ {c}&{d}\end{smallmatrix}\right)\mathrm{i}\infty. It is known that wx=N/(N,c2)w_{x}=N/(N,c^{2}) (cf. [29, Corollary 6.3.24(a)]). It follows from this and (7) that

(14) divx(f0)=N24(N,c2)nN(n,c)2nrn.\mathop{\mathrm{div}}\nolimits_{x}(f_{0})=\frac{N}{24(N,c^{2})}\sum_{n\mid N}\frac{(n,c)^{2}}{n}r_{n}.

Therefore

(15) deg([divf])=xΓ0(N)\SL2()ρ[t1divx(E4)]+xΓ0(N)\SL2()i[t2divx(E6)]+xΓ0(N)\1()[divx(f0)],\deg\left([\mathop{\mathrm{div}}f]\right)=\sum_{x\in\Gamma_{0}(N)\backslash\mathrm{SL}_{2}(\mathbb{Z})\rho}[t_{1}\cdot\mathop{\mathrm{div}}\nolimits_{x}(E_{4})]+\sum_{x\in\Gamma_{0}(N)\backslash\mathrm{SL}_{2}(\mathbb{Z})\mathrm{i}}[t_{2}\cdot\mathop{\mathrm{div}}\nolimits_{x}(E_{6})]+\sum_{x\in\Gamma_{0}(N)\backslash\mathbb{P}^{1}(\mathbb{Q})}[\mathop{\mathrm{div}}\nolimits_{x}(f_{0})],

where the three sums in the right-hand side are denoted by S1S_{1}, S2S_{2} and S3S_{3} respectively hereafter. To compute S1S_{1}, let SL2()=1jmΓ0(N)γj\mathrm{SL}_{2}(\mathbb{Z})=\cup_{1\leq j\leq m}\Gamma_{0}(N)\gamma_{j} be a disjoint union666Since IΓ0(N)-I\in\Gamma_{0}(N), this is equivalent to SL2()¯=1jmΓ0(N)¯γj¯\overline{\mathrm{SL}_{2}(\mathbb{Z})}=\cup_{1\leq j\leq m}\overline{\Gamma_{0}(N)}\overline{\gamma_{j}}, and as well to SL2()~=1jmΓ0(N)~γj~\widetilde{\mathrm{SL}_{2}(\mathbb{Z})}=\cup_{1\leq j\leq m}\widetilde{\Gamma_{0}(N)}\widetilde{\gamma_{j}} both of which are disjoint unions.. Then the underlying set of the multiset {Γ0(N)γjρ:1jm}\{\Gamma_{0}(N)\cdot\gamma_{j}\rho\colon 1\leq j\leq m\} equals Γ0(N)\SL2()ρ\Gamma_{0}(N)\backslash\mathrm{SL}_{2}(\mathbb{Z})\rho and the multiplicity of each element Γ0(N)γjρ\Gamma_{0}(N)\cdot\gamma_{j}\rho equals |SL2()¯γjρ|/|Γ0(N)¯γjρ|=3/eγjρ\lvert\overline{\mathrm{SL}_{2}(\mathbb{Z})}_{\gamma_{j}\rho}\rvert/\lvert\overline{\Gamma_{0}(N)}_{\gamma_{j}\rho}\rvert=3/e_{\gamma_{j}\rho}. Hence we have

S1=131jm:eγjρ=1[t1eγjρ]+1jm:eγjρ=3[t1eγjρ]=mt13{t13}ε3.S_{1}=\frac{1}{3}\sum_{1\leq j\leq m\colon e_{\gamma_{j}\rho}=1}\left[\frac{t_{1}}{e_{\gamma_{j}\rho}}\right]+\sum_{1\leq j\leq m\colon e_{\gamma_{j}\rho}=3}\left[\frac{t_{1}}{e_{\gamma_{j}\rho}}\right]=\frac{mt_{1}}{3}-\left\{\frac{t_{1}}{3}\right\}\varepsilon_{3}.

Similarly, S2=mt22{t22}ε2S_{2}=\frac{mt_{2}}{2}-\left\{\frac{t_{2}}{2}\right\}\varepsilon_{2}. For S3S_{3}, we need a complete set of representatives of Γ0(N)\1()\Gamma_{0}(N)\backslash\mathbb{P}^{1}(\mathbb{Q}), i.e., the set of a/c1()a/c\in\mathbb{P}^{1}(\mathbb{Q}) where cNc\mid N and for each a0a_{0} such that 0a0<(c,N/c)0\leq a_{0}<(c,N/c) with (a0,c,N/c)=1(a_{0},c,N/c)=1, aa is chosen to satisfy aa0mod(c,N/c)a\equiv a_{0}\bmod(c,N/c) and (a,c)=1(a,c)=1 (cf. [29, Corollary 6.3.23]). It follows from this and (14) that

S3=cNϕ(c,N/c)[N24(N,c2)nN(n,c)2nrn].S_{3}=\sum_{c\mid N}\phi(c,N/c)\cdot\left[\frac{N}{24(N,c^{2})}\sum_{n\mid N}\frac{(n,c)^{2}}{n}r_{n}\right].

Inserting the expressions for S1S_{1}, S2S_{2} and S3S_{3} into (15) gives the desired formula. ∎

4. The main theorem: Dimension formulas for rational weights

We recall the Riemann-Roch theorem here for proving the main theorem. Let XX be a compact Riemann surface of genus gg and D𝒟(X)D\in\mathscr{D}_{\mathbb{Q}}(X). Then the Riemann-Roch space is defined by (D)={f(X):div(f)D}\mathscr{L}(D)=\{f\in\mathscr{M}(X)\colon\mathop{\mathrm{div}}(f)\geq-D\} with the convention that 0(D)0\in\mathscr{L}(D). It is immediate that (D)\mathscr{L}(D) is a complex vector space and that (D)=([D])\mathscr{L}(D)=\mathscr{L}([D]). Similarly we define 𝒦(D)={ω𝒦(X):div(ω)D}{0}\mathscr{K}(D)=\{\omega\in\mathscr{K}(X)\colon\mathop{\mathrm{div}}(\omega)\geq D\}\cup\{0\}. Then the Riemann-Roch theorem states that

(16) dim(D)=dim𝒦(D)+deg(D)g+1,\dim_{\mathbb{C}}\mathscr{L}(D)=\dim_{\mathbb{C}}\mathscr{K}(D)+\deg(D)-g+1,

provided that DD is integral, i.e., D𝒟(X)D\in\mathscr{D}(X). Note that it is tacitly understood that dim(D)<+\dim_{\mathbb{C}}\mathscr{L}(D)<+\infty. For a proof based on the existence theorems for harmonic functions on Riemann surfaces, see [33, p. 249]. Set D=0D=0; we find that dim𝒦(0)=g\dim_{\mathbb{C}}\mathscr{K}(0)=g, that is, the dimension of the space of all holomorphic differentials is gg. Let ω0\omega_{0} be any nonzero meromorphic differential (necessarily exists) and K=div(ω0)K=\mathop{\mathrm{div}}(\omega_{0}). Then (KD)𝒦(D)\mathscr{L}(K-D)\to\mathscr{K}(D), ffω0f\mapsto f\cdot\omega_{0} is a \mathbb{C}-linear isomorphism. Now set D=KD=K in (16); we find that deg(K)=2g2\deg(K)=2g-2. Finally, if D𝒟(X)D\in\mathscr{D}(X) and deg(D)>2g2\deg(D)>2g-2, then deg(KD)<0\deg(K-D)<0 and hence (KD)=𝒦(D)={0}\mathscr{L}(K-D)=\mathscr{K}(D)=\{0\} since the degree of a nonzero meromorphic function is 0. It follows that

(17) dim(D)=deg(D)g+1,if D𝒟(X),deg(D)>2g2.\dim_{\mathbb{C}}\mathscr{L}(D)=\deg(D)-g+1,\quad\text{if }D\in\mathscr{D}(X),\,\deg(D)>2g-2.

Our proof of the main theorem rests on the following general lemma, which is the key point for using the Riemann-Roch theorem.

Lemma 4.1.

Let GG be a subgroup of SL2()\mathrm{SL}_{2}(\mathbb{Z}) of finite index, D1D\in\mathbb{Z}_{\geq 1}, k1Dk\in\frac{1}{D}\mathbb{Z} and v:G~D×v\colon\widetilde{G}^{D}\to\mathbb{C}^{\times} be a character. Let p:G\p\colon\mathfrak{H}\to G\backslash\mathfrak{H} be the natural projection. Suppose there exists a nonzero meromorphic modular form f0f_{0} of weight kk for group GG with character vv. Then the map

([divf0])\displaystyle\mathscr{L}([\mathop{\mathrm{div}}f_{0}]) Mk(G,v)\displaystyle\to M_{k}(G,v)
f\displaystyle f (f|G\)pf0\displaystyle\mapsto(f|_{G\backslash\mathfrak{H}})\circ p\cdot f_{0}

is a \mathbb{C}-linear isomorphism. Moreover, let

(18) R={xG\1():divx(f0)}.R=\{x\in G\backslash\mathbb{P}^{1}(\mathbb{Q})\colon\mathop{\mathrm{div}}\nolimits_{x}(f_{0})\in\mathbb{Z}\}.

Then the map

([divf0]xR(x))\displaystyle\mathscr{L}\left([\mathop{\mathrm{div}}f_{0}]-\sum\nolimits_{x\in R}(x)\right) Sk(G,v)\displaystyle\to S_{k}(G,v)
f\displaystyle f (f|G\)pf0\displaystyle\mapsto(f|_{G\backslash\mathfrak{H}})\circ p\cdot f_{0}

is also a \mathbb{C}-linear isomorphism.

Proof.

Let f([divf0])f\in\mathscr{L}([\mathop{\mathrm{div}}f_{0}]) be arbitrary. Since pp is holomorphic, (f|G\)p(f|_{G\backslash\mathfrak{H}})\circ p is a modular function for group GG with trivial character. Thus (f|G\)pf0(f|_{G\backslash\mathfrak{H}})\circ p\cdot f_{0} is a meromorphic modular form of weight kk for group GG with character vv by Remark 2.3. Now assume f0f\neq 0 and let xXGx\in X_{G} be arbitrary. Since f([divf0])f\in\mathscr{L}([\mathop{\mathrm{div}}f_{0}]) we have divx((f|G\)p)=divx(f)divx(f0)\mathop{\mathrm{div}}_{x}((f|_{G\backslash\mathfrak{H}})\circ p)=\mathop{\mathrm{div}}_{x}(f)\geq-\mathop{\mathrm{div}}_{x}(f_{0}). It follows that

divx((f|G\)pf0)=divx((f|G\)p)+divx(f0)0.\mathop{\mathrm{div}}\nolimits_{x}((f|_{G\backslash\mathfrak{H}})\circ p\cdot f_{0})=\mathop{\mathrm{div}}\nolimits_{x}((f|_{G\backslash\mathfrak{H}})\circ p)+\mathop{\mathrm{div}}\nolimits_{x}(f_{0})\geq 0.

Hence (f|G\)pf0Mk(G,v)(f|_{G\backslash\mathfrak{H}})\circ p\cdot f_{0}\in M_{k}(G,v). It is obvious that the considered map is a \mathbb{C}-linear injection. To prove the surjectivity, let 0gMk(G,v)0\neq g\in M_{k}(G,v) be arbitrary, then by Remark 2.3 g/f0g/f_{0} is a modular function for group GG with trivial character and hence it descends to some nonzero f(XG)f\in\mathscr{M}(X_{G}). For any xXGx\in X_{G} we have

divx(f)=divx(g/f0)=divx(g)divx(f0)divx(f0).\mathop{\mathrm{div}}\nolimits_{x}(f)=\mathop{\mathrm{div}}\nolimits_{x}(g/f_{0})=\mathop{\mathrm{div}}\nolimits_{x}(g)-\mathop{\mathrm{div}}\nolimits_{x}(f_{0})\geq-\mathop{\mathrm{div}}\nolimits_{x}(f_{0}).

Therefore f(divf0)=([divf0])f\in\mathscr{L}(\mathop{\mathrm{div}}f_{0})=\mathscr{L}([\mathop{\mathrm{div}}f_{0}]) and the image of ff is gg from which the surjectivity follows.

The assertion on the second map can be proved in a similar manner and the only thing that need to explain is that (f|G\)pf0Sk(G,v)(f|_{G\backslash\mathfrak{H}})\circ p\cdot f_{0}\in S_{k}(G,v) if and only if f([divf0]xR(x))f\in\mathscr{L}\left([\mathop{\mathrm{div}}f_{0}]-\sum\nolimits_{x\in R}(x)\right). If 0f([divf0]xR(x))0\neq f\in\mathscr{L}\left([\mathop{\mathrm{div}}f_{0}]-\sum\nolimits_{x\in R}(x)\right) and xRx\in R, then

divx((f|G\)pf0)=divx(f)+divx(f0)1[divx(f0)]+divx(f0)>0.\mathop{\mathrm{div}}\nolimits_{x}((f|_{G\backslash\mathfrak{H}})\circ p\cdot f_{0})=\mathop{\mathrm{div}}\nolimits_{x}(f)+\mathop{\mathrm{div}}\nolimits_{x}(f_{0})\geq 1-[\mathop{\mathrm{div}}\nolimits_{x}(f_{0})]+\mathop{\mathrm{div}}\nolimits_{x}(f_{0})>0.

On the other hand, if xRx\not\in R then [divx(f0)]+divx(f0)>0-[\mathop{\mathrm{div}}\nolimits_{x}(f_{0})]+\mathop{\mathrm{div}}\nolimits_{x}(f_{0})>0 and hence

divx((f|G\)pf0)=divx(f)+divx(f0)[divx(f0)]+divx(f0)>0.\mathop{\mathrm{div}}\nolimits_{x}((f|_{G\backslash\mathfrak{H}})\circ p\cdot f_{0})=\mathop{\mathrm{div}}\nolimits_{x}(f)+\mathop{\mathrm{div}}\nolimits_{x}(f_{0})\geq-[\mathop{\mathrm{div}}\nolimits_{x}(f_{0})]+\mathop{\mathrm{div}}\nolimits_{x}(f_{0})>0.

It follows that (f|G\)pf0Sk(G,v)(f|_{G\backslash\mathfrak{H}})\circ p\cdot f_{0}\in S_{k}(G,v). The converse can be proved similarly. ∎

Now we state and prove the main theorem.

Theorem 4.2.

Let N1N\in\mathbb{Z}_{\geq 1}, rnr_{n}\in\mathbb{Q} for any nNn\mid N and t0t\in\mathbb{Z}_{\geq 0}. Let DD be a positive integer such that Drn2Dr_{n}\in 2\mathbb{Z} for any nNn\mid N. Let χ:Γ0(N)D~×\chi\colon\widetilde{\Gamma_{0}(N)^{D}}\to\mathbb{C}^{\times} be the character (6) and mm, ε2\varepsilon_{2}, ε3\varepsilon_{3} are given by (9), (10), (11) respectively. Set k=12nrn+2tk=\frac{1}{2}\sum_{n}r_{n}+2t and

(19) xc=nNN(N,c2)(n,c)2nrnx_{c}=\sum_{n\mid N}\frac{N}{(N,c^{2})}\cdot\frac{(n,c)^{2}}{n}r_{n}

with cNc\mid N. Suppose either

(20) cNϕ(c,N/c)([xc24]+1)>0,t1\sum_{c\mid N}\phi(c,N/c)\cdot\left(\left[\frac{x_{c}}{24}\right]+1\right)>0,\,t\geq 1

or

(21) k>26mε28mε312mcNϕ(c,N/c)(1{xc24}),t=0.k>2-\frac{6}{m}\varepsilon_{2}-\frac{8}{m}\varepsilon_{3}-\frac{12}{m}\sum_{c\mid N}\phi(c,N/c)\cdot\left(1-\left\{\frac{x_{c}}{24}\right\}\right),\,t=0.

Then we have

(22) dimMk(Γ0(N),χ)=k112m+(14{t2})ε2+(13{t3})ε3+cNϕ(c,N/c)(12{xc24}).\dim_{\mathbb{C}}M_{k}(\Gamma_{0}(N),\chi)=\frac{k-1}{12}m+\left(\frac{1}{4}-\left\{\frac{t}{2}\right\}\right)\varepsilon_{2}+\left(\frac{1}{3}-\left\{-\frac{t}{3}\right\}\right)\varepsilon_{3}\\ +\sum_{c\mid N}\phi(c,N/c)\cdot\left(\frac{1}{2}-\left\{\frac{x_{c}}{24}\right\}\right).
Proof.

Set

f0(τ)=nNη(nτ)rnE4(τ)tE6(τ)t.f_{0}(\tau)=\prod_{n\mid N}\eta(n\tau)^{r_{n}}\cdot E_{4}(\tau)^{-t}\cdot E_{6}(\tau)^{t}.

According to Proposition 3.4 f0f_{0} is a nonzero meromorphic modular form of weight kk for group Γ0(N)\Gamma_{0}(N) with character χ\chi. Hence dimMk(Γ0(N),χ)=dim([divf0])\dim_{\mathbb{C}}M_{k}(\Gamma_{0}(N),\chi)=\dim_{\mathbb{C}}\mathscr{L}([\mathop{\mathrm{div}}f_{0}]) by Lemma 4.1. Using Proposition 3.4 again we find that

(23) deg([divf0])=cNϕ(c,N/c)[xc24]+t6m{t2}ε2{t3}ε3.\deg\left([\mathop{\mathrm{div}}f_{0}]\right)=\sum_{c\mid N}\phi(c,N/c)\cdot\left[\frac{x_{c}}{24}\right]+\frac{t}{6}m-\left\{\frac{t}{2}\right\}\varepsilon_{2}-\left\{-\frac{t}{3}\right\}\varepsilon_{3}.

We now prove either (20) or (21) implies that deg([divf0])>2g2\deg\left([\mathop{\mathrm{div}}f_{0}]\right)>2g-2 where gg is the genus of XΓ0(N)X_{\Gamma_{0}(N)} (cf. (8)). First suppose (20) holds. If N=1N=1, then g=0g=0, r10r_{1}\geq 0 and hence

deg([divf0])=[r124]+t6{t2}{t3}>2=2g2.\deg\left([\mathop{\mathrm{div}}f_{0}]\right)=\left[\frac{r_{1}}{24}\right]+\frac{t}{6}-\left\{\frac{t}{2}\right\}-\left\{-\frac{t}{3}\right\}>-2=2g-2.

If N2N\geq 2, set

γ(t)=t6m{t2}ε2{t3}ε3.\gamma(t)=\frac{t}{6}m-\left\{\frac{t}{2}\right\}\varepsilon_{2}-\left\{-\frac{t}{3}\right\}\varepsilon_{3}.

We have

γ(t+1)γ(t)16m12ε223ε3=2g2+ε\gamma(t+1)-\gamma(t)\geq\frac{1}{6}m-\frac{1}{2}\varepsilon_{2}-\frac{2}{3}\varepsilon_{3}=2g-2+\varepsilon_{\infty}

for t1t\geq 1. Since N2N\geq 2 we have ε2\varepsilon_{\infty}\geq 2 and hence γ(t+1)γ(t)0\gamma(t+1)-\gamma(t)\geq 0. Therefore deg([divf0])\deg\left([\mathop{\mathrm{div}}f_{0}]\right) as a function of t1t\in\mathbb{Z}_{\geq 1} is increasing which means we need only to prove

cNϕ(c,N/c)[xc24]+16m12ε223ε3>2g2.\sum_{c\mid N}\phi(c,N/c)\cdot\left[\frac{x_{c}}{24}\right]+\frac{1}{6}m-\frac{1}{2}\varepsilon_{2}-\frac{2}{3}\varepsilon_{3}>2g-2.

This is actually equivalent to (20) according to (8) and (12). Thereby we have shown that (20) implies deg([divf0])>2g2\deg\left([\mathop{\mathrm{div}}f_{0}]\right)>2g-2. Next suppose (21) holds, which is equivalent to

(24) 112mk>16m12ε223ε3ε+cNϕ(c,N/c){xc24}=2g2+cNϕ(c,N/c){xc24}.\frac{1}{12}mk>\frac{1}{6}m-\frac{1}{2}\varepsilon_{2}-\frac{2}{3}\varepsilon_{3}-\varepsilon_{\infty}+\sum_{c\mid N}\phi(c,N/c)\left\{\frac{x_{c}}{24}\right\}=2g-2+\sum_{c\mid N}\phi(c,N/c)\left\{\frac{x_{c}}{24}\right\}.

Applying Theorem 3.2 and (14) to f0f_{0} (noting t=0t=0 here) and using the complete set of representatives of Γ0(N)\1()\Gamma_{0}(N)\backslash\mathbb{P}^{1}(\mathbb{Q}) described in the proof of Proposition 3.4 we find that

(25) 112m12nrn=deg(divf0)=cNϕ(c,N/c)xc24.\frac{1}{12}m\cdot\frac{1}{2}\sum_{n}r_{n}=\deg(\mathop{\mathrm{div}}f_{0})=\sum_{c\mid N}\phi(c,N/c)\cdot\frac{x_{c}}{24}.

Inserting this into (24) we obtain deg([divf0])>2g2\deg\left([\mathop{\mathrm{div}}f_{0}]\right)>2g-2 as required.

Thus, in both cases we can apply (17) to D=[divf0]D=[\mathop{\mathrm{div}}f_{0}], X=XΓ0(N)X=X_{\Gamma_{0}(N)}. It follows that

dimMk(Γ0(N),χ)=dim([divf0])=deg([divf0])g+1.\dim_{\mathbb{C}}M_{k}(\Gamma_{0}(N),\chi)=\dim_{\mathbb{C}}\mathscr{L}([\mathop{\mathrm{div}}f_{0}])=\deg([\mathop{\mathrm{div}}f_{0}])-g+1.

Inserting (23), (8) and (25) into the above identity gives the desired formula. ∎

Remark 4.3.

If neither (20) nor (21) holds, then the difference between the left-hand side and the right-hand side of (22)\eqref{eq:dimFormula} equals dim𝒦([divf0])\dim_{\mathbb{C}}\mathscr{K}([\mathop{\mathrm{div}}f_{0}]) according to (16). It follows that in all cases we have

dimMk(Γ0(N),χ)k112m+(14{t2})ε2+(13{t3})ε3+cNϕ(c,N/c)(12{xc24}),\dim_{\mathbb{C}}M_{k}(\Gamma_{0}(N),\chi)\geq\frac{k-1}{12}m+\left(\frac{1}{4}-\left\{\frac{t}{2}\right\}\right)\varepsilon_{2}+\left(\frac{1}{3}-\left\{-\frac{t}{3}\right\}\right)\varepsilon_{3}\\ +\sum_{c\mid N}\phi(c,N/c)\cdot\left(\frac{1}{2}-\left\{\frac{x_{c}}{24}\right\}\right),

where the right-hand side is always an integer. We can derive an upper bound777This upper bound is still valid if Γ0(N)\Gamma_{0}(N) is replaced by any subgroup GG of finite index in SL2()\mathrm{SL}_{2}(\mathbb{Z}). for dimMk(Γ0(N),χ)\dim_{\mathbb{C}}M_{k}(\Gamma_{0}(N),\chi) as well. Suppose that k0k\geq 0. (When k<0k<0 Mk(Γ0(N),χ)={0}M_{k}(\Gamma_{0}(N),\chi)=\{0\} by Theorem 3.2.) Then

dimMk(Γ0(N),χ)[112mk]+1,\dim_{\mathbb{C}}M_{k}(\Gamma_{0}(N),\chi)\leq\left[\frac{1}{12}mk\right]+1,

for if f1,,fjMk(Γ0(N),χ)f_{1},\dots,f_{j}\in M_{k}(\Gamma_{0}(N),\chi) with j>[112mk]+1j>\left[\frac{1}{12}mk\right]+1, then by linear algebra we can find a nontrivial linear combination g=ncnfng=\sum_{n}c_{n}f_{n} such that divx(g)[112mk]+1\mathop{\mathrm{div}}_{x}(g)\geq\left[\frac{1}{12}mk\right]+1 where xΓ0(N)\x\in\Gamma_{0}(N)\backslash\mathfrak{H} is not an elliptic point. If g0g\neq 0 then applying Theorem 3.2 to gg we reach a contradiction. Hence g=0g=0 which means f1,,fjf_{1},\dots,f_{j} are linearly dependent.

Remark 4.4.

We can derive a formula for dimSk(Γ0(N),χ)\dim_{\mathbb{C}}S_{k}(\Gamma_{0}(N),\chi) as well, using the second map in Lemma 4.1. However, it may happen that for certain rnr_{n} and tt (22) holds while the corresponding formula for dimSk(Γ0(N),χ)\dim_{\mathbb{C}}S_{k}(\Gamma_{0}(N),\chi) is not applicable. This happens precisely when deg([divf0])>2g2\deg\left([\mathop{\mathrm{div}}f_{0}]\right)>2g-2 but deg([divf0])|R|2g2\deg\left([\mathop{\mathrm{div}}f_{0}]\right)-\lvert R\rvert\leq 2g-2. Besides, when k>2k>2, we always have dimSk(Γ0(N),χ)=dimMk(Γ0(N),χ)|R|\dim_{\mathbb{C}}S_{k}(\Gamma_{0}(N),\chi)=\dim_{\mathbb{C}}M_{k}(\Gamma_{0}(N),\chi)-\lvert R\rvert which is a well known fact when kk is integral and χ\chi is induced by a Dirichlet character. In the rational weight and arbitrary multiplier system case, this holds as well since the Petersson inner product can also be defined. The details are omitted here.

5. Order-character relations

Let us assume (21) holds and consider Theorem 4.2. The sequence (xc)cN(x_{c})_{c\mid N} occurs in the formula for dimMk(Γ0(N),χ)\dim_{\mathbb{C}}M_{k}(\Gamma_{0}(N),\chi) and is determined by the sequence (rn)nN(r_{n})_{n\mid N} via (19). Note that (rn)nN(r_{n})_{n\mid N} represents an eta-quotient (or its character) and (xc)cN(x_{c})_{c\mid N} represents the orders of this eta-quotient at cusps (or its divisor). Therefore (19) can be regarded as a map that sends the character represented by (rn)nN(r_{n})_{n\mid N} to the orders at cusps (xc)cN(x_{c})_{c\mid N}. In some potential applications, the sequence of orders (xc)cN(x_{c})_{c\mid N} is first given, e.g., when one want to known dimMk(Γ0(N),χ)\dim_{\mathbb{C}}M_{k}(\Gamma_{0}(N),\chi) for fixed NN and kk, and then one works out (rn)nN(r_{n})_{n\mid N} via (19). Motivated by this, we need an inverse formula of (19). This formula is an enhancement of a statement in [37, p. 129] and is equivalent to [21, eq. (5.13)].

Let us fix some notations in linear algebra. For N1N\in\mathbb{Z}_{\geq 1}, 𝒟(N)\mathscr{D}(N) denotes the set of positive divisors of NN and σ0(N)=|𝒟(N)|\sigma_{0}(N)=\lvert\mathscr{D}(N)\rvert. Let VV be a \mathbb{Q}-vector space of dimension σ0(N)\sigma_{0}(N), then a 𝒟(N)\mathscr{D}(N)-indexed basis of VV is a sequence (𝐛n)n𝒟(N)(\mathbf{b}_{n})_{n\in\mathscr{D}(N)} so that {𝐛n}\{\mathbf{b}_{n}\} is a basis of VV. Let WW be a \mathbb{Q}-vector space of dimension σ0(M)\sigma_{0}(M) with a 𝒟(M)\mathscr{D}(M)-indexed basis (𝐛m)mM(\mathbf{b}^{\prime}_{m})_{m\mid M} where MM is another positive integer and let f:VWf\colon V\to W be a linear map. The matrix of ff with respect to the pair ((𝐛n),(𝐛m))((\mathbf{b}_{n}),(\mathbf{b}^{\prime}_{m})) is the 𝒟(M)×𝒟(N)\mathscr{D}(M)\times\mathscr{D}(N)-indexed sequence (am,n)mM,nN(a_{m,n})_{m\mid M,n\mid N} with the property f(𝐛n)=mMam,n𝐛mf(\mathbf{b}_{n})=\sum_{m\mid M}a_{m,n}\mathbf{b}^{\prime}_{m}. All linear algebra machinery works for such kind of matrices. The difference is just the underlying index sets: we use 𝒟(N)\mathscr{D}(N) and the ordinary one is {1,2,,σ0(N)}\{1,2,\dots,\sigma_{0}(N)\}. We call the matrix (am,n)mM,nN(a_{m,n})_{m\mid M,n\mid N} a 𝒟(M)×𝒟(N)\mathscr{D}(M)\times\mathscr{D}(N)-indexed matrix and when M=NM=N a 𝒟(N)\mathscr{D}(N)-indexed matrix.

Let N1,N21N_{1},N_{2}\in\mathbb{Z}_{\geq 1} such that gcd(N1,N2)=1\gcd(N_{1},N_{2})=1 and let (ac1,n1)c1,n1N1(a_{c_{1},n_{1}})_{c_{1},n_{1}\mid N_{1}}, (bc2,n2)c2,n2N2(b_{c_{2},n_{2}})_{c_{2},n_{2}\mid N_{2}} be 𝒟(N1)\mathscr{D}(N_{1})-indexed and 𝒟(N2)\mathscr{D}(N_{2})-indexed matrices respectively. Define

(ac1,n1)c1,n1N1(bc2,n2)c2,n2N2=(ac1,n1bc2,n2)c1c2,n1n2N1N2.(a_{c_{1},n_{1}})_{c_{1},n_{1}\mid N_{1}}\otimes(b_{c_{2},n_{2}})_{c_{2},n_{2}\mid N_{2}}=(a_{c_{1},n_{1}}\cdot b_{c_{2},n_{2}})_{c_{1}c_{2},n_{1}n_{2}\mid N_{1}N_{2}}.

It is immediate that this is a well defined \mathbb{Q}-bilinear map from 𝒟(N1)×𝒟(N1)×𝒟(N2)×𝒟(N2)\mathbb{Q}^{\mathscr{D}(N_{1})\times\mathscr{D}(N_{1})}\times\mathbb{Q}^{\mathscr{D}(N_{2})\times\mathscr{D}(N_{2})} to 𝒟(N1N2)×𝒟(N1N2)\mathbb{Q}^{\mathscr{D}(N_{1}N_{2})\times\mathscr{D}(N_{1}N_{2})}. Moreover it is universal among all bilinear maps on 𝒟(N1)×𝒟(N1)×𝒟(N2)×𝒟(N2)\mathbb{Q}^{\mathscr{D}(N_{1})\times\mathscr{D}(N_{1})}\times\mathbb{Q}^{\mathscr{D}(N_{2})\times\mathscr{D}(N_{2})} and hence is a tensor product. We call it the Kronecker product.

Following Bhattacharya [21] we define AN=(N(N,c2)(n,c)2n)c,nNA_{N}=\left(\frac{N}{(N,c^{2})}\cdot\frac{(n,c)^{2}}{n}\right)_{c,n\mid N} so that (19) becomes xc=nNAN(c,n)rnx_{c}=\sum_{n\mid N}A_{N}(c,n)r_{n}. It is immediate that AN1N2=AN1AN2A_{N_{1}N_{2}}=A_{N_{1}}\otimes A_{N_{2}} whenever gcd(N1,N2)=1\gcd(N_{1},N_{2})=1.

Proposition 5.1.

Let N1N\in\mathbb{Z}_{\geq 1}, (xc)cN(x_{c})_{c\mid N} and (rn)nN(r_{n})_{n\mid N} be in 𝒟(N)\mathbb{Q}^{\mathscr{D}(N)}. Then the following two relations are equivalent:

(26) xc\displaystyle x_{c} =nNN(N,c2)(n,c)2nrn,cN,\displaystyle=\sum_{n\mid N}\frac{N}{(N,c^{2})}\cdot\frac{(n,c)^{2}}{n}r_{n},\quad\forall c\mid N,
(27) rn\displaystyle r_{n} =1NpNpp21cN(pαNbp,α(vp(n),vp(c)))xc,nN,\displaystyle=\frac{1}{N}\prod_{p\mid N}\frac{p}{p^{2}-1}\cdot\sum_{c\mid N}\left(\prod_{p^{\alpha}\parallel N}b_{p,\alpha}(v_{p}(n),v_{p}(c))\right)x_{c},\quad\forall n\mid N,

where pp denotes a prime, vp(n)v_{p}(n) is the integer β\beta such that pβnp^{\beta}\parallel n and

bp,α(i,j)={pif i=j=0 or α,(p2+1)pmin(i,αi)1if 0<i=j<α,pmin(j,αj)if |ij|=1,0otherwise.b_{p,\alpha}(i,j)=\begin{dcases}p&\text{if }i=j=0\text{ or }\alpha,\\ (p^{2}+1)p^{\min(i,\alpha-i)-1}&\text{if }0<i=j<\alpha,\\ -p^{\min(j,\alpha-j)}&\text{if }\lvert i-j\rvert=1,\\ 0&\text{otherwise}.\end{dcases}

In another words, we have

AN1(n,c)=1NpNpp21pαNbp,α(vp(n),vp(c)).A_{N}^{-1}(n,c)=\frac{1}{N}\prod_{p\mid N}\frac{p}{p^{2}-1}\cdot\prod_{p^{\alpha}\parallel N}b_{p,\alpha}(v_{p}(n),v_{p}(c)).

This proposition is due to Bhattacharya (cf. [21, eq. (5.13)]).

Proof.

Suppose N1,N21N_{1},N_{2}\in\mathbb{Z}_{\geq 1} such that gcd(N1,N2)=1\gcd(N_{1},N_{2})=1. Then AN1A_{N_{1}} and AN2A_{N_{2}} are both invertible if and only if AN1AN2A_{N_{1}}\otimes A_{N_{2}} is and in this case (AN1AN2)1=AN11AN21(A_{N_{1}}\otimes A_{N_{2}})^{-1}=A_{N_{1}}^{-1}\otimes A_{N_{2}}^{-1} by basic properties of the Kronecker product. Therefore it is sufficient to prove that

Apα1(pi,pj)=1pα1(p21)bp,α(i,j),A_{p^{\alpha}}^{-1}(p^{i},p^{j})=\frac{1}{p^{\alpha-1}(p^{2}-1)}\cdot b_{p,\alpha}(i,j),

where pp is a prime, α1\alpha\in\mathbb{Z}_{\geq 1} and 0i,jα0\leq i,j\leq\alpha. This is equivalent to

(28) j=0αApα(pi,pj)bp,α(j,i)=(p21)pα1,\displaystyle\sum_{j=0}^{\alpha}A_{p^{\alpha}}(p^{i},p^{j})\cdot b_{p,\alpha}(j,i)=(p^{2}-1)p^{\alpha-1},
(29) j=0αApα(pi1,pj)bp,α(j,i2)=0 if i1i2.\displaystyle\sum_{j=0}^{\alpha}A_{p^{\alpha}}(p^{i_{1}},p^{j})\cdot b_{p,\alpha}(j,i_{2})=0\text{ if }i_{1}\neq i_{2}.

Note that

Apα(pi,pj)=pα(pα,p2i)(pj,pi)2pj={pαj if ij and iα/2,p2ij if ij and i>α/2,pα2i+j if ij and iα/2,pj if ij and i>α/2.A_{p^{\alpha}}(p^{i},p^{j})=\frac{p^{\alpha}}{(p^{\alpha},p^{2i})}\cdot\frac{(p^{j},p^{i})^{2}}{p^{j}}=\begin{dcases}p^{\alpha-j}&\text{ if }i\leq j\text{ and }i\leq\alpha/2,\\ p^{2i-j}&\text{ if }i\leq j\text{ and }i>\alpha/2,\\ p^{\alpha-2i+j}&\text{ if }i\geq j\text{ and }i\leq\alpha/2,\\ p^{j}&\text{ if }i\geq j\text{ and }i>\alpha/2.\end{dcases}

Now we begin to prove (28). In the case i=0i=0, we have

j=0αApα(pi,pj)bp,α(j,i)\displaystyle\sum_{j=0}^{\alpha}A_{p^{\alpha}}(p^{i},p^{j})\cdot b_{p,\alpha}(j,i) =Apα(p0,p0)bp,α(0,0)+Apα(p0,p1)bp,α(1,0)\displaystyle=A_{p^{\alpha}}(p^{0},p^{0})\cdot b_{p,\alpha}(0,0)+A_{p^{\alpha}}(p^{0},p^{1})\cdot b_{p,\alpha}(1,0)
=pαp+pα1(1)=(p21)pα1\displaystyle=p^{\alpha}\cdot p+p^{\alpha-1}\cdot(-1)=(p^{2}-1)p^{\alpha-1}

as required. In the case i=αi=\alpha, we have

j=0αApα(pi,pj)bp,α(j,i)\displaystyle\sum_{j=0}^{\alpha}A_{p^{\alpha}}(p^{i},p^{j})\cdot b_{p,\alpha}(j,i) =Apα(pα,pα1)bp,α(α1,α)+Apα(pα,pα)bp,α(α,α)\displaystyle=A_{p^{\alpha}}(p^{\alpha},p^{\alpha-1})\cdot b_{p,\alpha}(\alpha-1,\alpha)+A_{p^{\alpha}}(p^{\alpha},p^{\alpha})\cdot b_{p,\alpha}(\alpha,\alpha)
=pα1(1)+pαp=(p21)pα1\displaystyle=p^{\alpha-1}\cdot(-1)+p^{\alpha}\cdot p=(p^{2}-1)p^{\alpha-1}

as required. In the case 0<iα/20<i\leq\alpha/2 we have

j=0αApα(pi,pj)bp,α(j,i)\displaystyle\sum_{j=0}^{\alpha}A_{p^{\alpha}}(p^{i},p^{j})\cdot b_{p,\alpha}(j,i)
=\displaystyle= Apα(pi,pi1)bp,α(i1,i)+Apα(pi,pi)bp,α(i,i)+Apα(pi,pi+1)bp,α(i+1,i)\displaystyle A_{p^{\alpha}}(p^{i},p^{i-1})\cdot b_{p,\alpha}(i-1,i)+A_{p^{\alpha}}(p^{i},p^{i})\cdot b_{p,\alpha}(i,i)+A_{p^{\alpha}}(p^{i},p^{i+1})\cdot b_{p,\alpha}(i+1,i)
=\displaystyle= pαi1(pmin(i,αi))+pαi(p2+1)pmin(i,αi)1+pαi1(pmin(i,αi))\displaystyle p^{\alpha-i-1}\cdot(-p^{\min(i,\alpha-i)})+p^{\alpha-i}\cdot(p^{2}+1)p^{\min(i,\alpha-i)-1}+p^{\alpha-i-1}\cdot(-p^{\min(i,\alpha-i)})
=\displaystyle= (p21)pα1\displaystyle(p^{2}-1)p^{\alpha-1}

as required. In the remaining case α/2<i<α\alpha/2<i<\alpha we have

j=0αApα(pi,pj)bp,α(j,i)\displaystyle\sum_{j=0}^{\alpha}A_{p^{\alpha}}(p^{i},p^{j})\cdot b_{p,\alpha}(j,i)
=\displaystyle= Apα(pi,pi1)bp,α(i1,i)+Apα(pi,pi)bp,α(i,i)+Apα(pi,pi+1)bp,α(i+1,i)\displaystyle A_{p^{\alpha}}(p^{i},p^{i-1})\cdot b_{p,\alpha}(i-1,i)+A_{p^{\alpha}}(p^{i},p^{i})\cdot b_{p,\alpha}(i,i)+A_{p^{\alpha}}(p^{i},p^{i+1})\cdot b_{p,\alpha}(i+1,i)
=\displaystyle= pi1(pmin(i,αi))+pi(p2+1)pmin(i,αi)1+pi1(pmin(i,αi))\displaystyle p^{i-1}\cdot(-p^{\min(i,\alpha-i)})+p^{i}\cdot(p^{2}+1)p^{\min(i,\alpha-i)-1}+p^{i-1}\cdot(-p^{\min(i,\alpha-i)})
=\displaystyle= (p21)pα1\displaystyle(p^{2}-1)p^{\alpha-1}

which concludes the proof of (28). We can prove (29) in a similar manner which is tedious (there are so many cases) so we omit the details. ∎

Remark 5.2.

There is another useful formula concerning the matrix ANA_{N}:

cNϕ(c,N/c)N(N,c2)(n,c)2n=NpN(1+1p).\sum_{c\mid N}\phi(c,N/c)\frac{N}{(N,c^{2})}\frac{(n,c)^{2}}{n}=N\prod_{p\mid N}\left(1+\frac{1}{p}\right).

In another words, the Euclidean inner product of each column of ANA_{N} and (ϕ(c,N/c))cN(\phi(c,N/c))_{c\mid N} is equal to NpN(1+1p)N\prod_{p\mid N}\left(1+\frac{1}{p}\right). This can be proved by applying Theorem 3.2 to η(nτ)\eta(n\tau). As a consequence, cNϕ(c,N/c)xc=NpN(1+1p)nNrn\sum_{c\mid N}\phi(c,N/c)x_{c}=N\prod_{p\mid N}\left(1+\frac{1}{p}\right)\cdot\sum_{n\mid N}r_{n}.

Example 5.3.

We present some examples concerning dimensions of spaces of weight 22 for infinite many unitary characters. Suppose that NN is square-free for simplicity. Let 𝐱=(xc)cN𝒟(N)\mathbf{x}=(x_{c})_{c\mid N}\in\mathbb{Q}^{\mathscr{D}(N)} such that cNxc=0\sum_{c\mid N}x_{c}=0. Then (20) with t=1t=1 holds since ϕ(c,N/c)=1\phi(c,N/c)=1 in the current case. Thus (22) holds. According to the above remark we have nNrn=m1cNxc=0\sum_{n\mid N}r_{n}=m^{-1}\sum_{c\mid N}x_{c}=0 and hence k=2k=2. Therefore (22) is equivalent to

(30) dimM2(Γ0(N),χ)=g1+σ0(N)+cN[xc24],\dim_{\mathbb{C}}M_{2}(\Gamma_{0}(N),\chi)=g-1+\sigma_{0}(N)+\sum_{c\mid N}\left[\frac{x_{c}}{24}\right],

where gg is the genus of XΓ0(N)X_{\Gamma_{0}(N)}. The multiplier system χ\chi is the character (6) where (rn)nN(r_{n})_{n\mid N} is determined by 𝐱\mathbf{x} via (27) which in the current case is

(31) rn=pN(p21)1cN((1)#{pN:vp(n)vp(c)}pN,vp(n)=vp(c)p)xc.r_{n}=\prod_{p\mid N}(p^{2}-1)^{-1}\cdot\sum_{c\mid N}\left((-1)^{\mathop{\mathrm{\#}}\{p\mid N\colon v_{p}(n)\neq v_{p}(c)\}}\cdot\prod_{p\mid N,\,v_{p}(n)=v_{p}(c)}p\right)x_{c}.

More generally, if N1N\in\mathbb{Z}_{\geq 1} is not divisible by 1616 and has no odd square factor except 11, then we have ϕ(c,N/c)=1\phi(c,N/c)=1 for any cNc\mid N as well and hence (30) is still valid. However in this case, (31) should be modified slightly at the prime factor 22.

Now we try to find out one-dimensional spaces among the above spaces. Note that

g1<dimM2(Γ0(N),χ)g1+σ0(N),g-1<\dim_{\mathbb{C}}M_{2}(\Gamma_{0}(N),\chi)\leq g-1+\sigma_{0}(N),

so it is necessary g=0g=0 or 11 and N>1N>1. When g=0g=0, since N2N\in\mathbb{Z}_{\geq 2} is not divisible by 1616 and has no odd square factor except 11, then N{2,3,4,5,6,7,8,10,12,13}N\in\{2,3,4,5,6,7,8,10,12,13\}. For such NN dimM2(Γ0(N),χ)=1\dim_{\mathbb{C}}M_{2}(\Gamma_{0}(N),\chi)=1 if 𝐱\mathbf{x} satisfies

cNxc=0,cN[xc24]=2σ0(N).\sum_{c\mid N}x_{c}=0,\quad\sum_{c\mid N}\left[\frac{x_{c}}{24}\right]=2-\sigma_{0}(N).

When g=1g=1, we have N{11,14,15,17,19,20,21,24}N\in\{11,14,15,17,19,20,21,24\}. For such NN, dimM2(Γ0(N),χ)=1\dim_{\mathbb{C}}M_{2}(\Gamma_{0}(N),\chi)=1 if 𝐱\mathbf{x} satisfies

cNxc=0,cN[xc24]=1σ0(N).\sum_{c\mid N}x_{c}=0,\quad\sum_{c\mid N}\left[\frac{x_{c}}{24}\right]=1-\sigma_{0}(N).

Let us look at a very simple case N=11N=11. Since σ0(11)=2\sigma_{0}(11)=2, dimM2(Γ0(11),χ)=1\dim_{\mathbb{C}}M_{2}(\Gamma_{0}(11),\chi)=1 if and only if x124x_{1}\not\in 24\mathbb{Z} (of course x11=x1x_{11}=-x_{1}). We have r1=r11=x1/10r_{1}=-r_{11}=x_{1}/10 so χ\chi is the multiplier system of (η(τ)/η(11τ))x1/10\left(\eta(\tau)/\eta(11\tau)\right)^{x_{1}/10} which descends to a unitary character on Γ0(11)\Gamma_{0}(11). If x124x_{1}\in 24\mathbb{Z}, then dimM2(Γ0(11),χ)=2\dim_{\mathbb{C}}M_{2}(\Gamma_{0}(11),\chi)=2. There are two completely different subcases in this case: x1120x_{1}\in 120\mathbb{Z} and x1120x_{1}\not\in 120\mathbb{Z}. If x1120x_{1}\in 120\mathbb{Z}, then χ\chi is trivial and the formula reads dimM2(Γ0(11))=2\dim_{\mathbb{C}}M_{2}(\Gamma_{0}(11))=2 which is well known (cf. [29, Corollary 7.4.3]). Otherwise, if x1120x_{1}\not\in 120\mathbb{Z} then x110x_{1}\not\in 10\mathbb{Z}, which implies that χ\chi is the character of an eta-quotient of rational exponents. To our best knowledge, the dimension formulas in such situation are new. Moreover, it seems that kerχ\ker\chi is a noncongruence subgroup of SL2()\mathrm{SL}_{2}(\mathbb{Z}) so that our formulas may be applied to the theory of noncongruence modular forms.

6. The classification of characters induced by eta-quotients

In this section we give a complete classification of the characters of eta-quotients of level NN and cover index 22 for any N1N\in\mathbb{Z}_{\geq 1}. The motivation is that, with this classification in hand, we can know exactly the set of χ\chi for which dimMk(Γ0(N),χ)\dim_{\mathbb{C}}M_{k}(\Gamma_{0}(N),\chi) can be calculated using Theorem 4.2. Since we only deal with the cover index D=2D=2, set Γ0(N)~=Γ0(N)2~\widetilde{\Gamma_{0}(N)}=\widetilde{\Gamma_{0}(N)^{2}} in this section.

Now we establish some notations. Each (rn)nN𝒟(N)(r_{n})_{n\mid N}\in\mathbb{Z}^{\mathscr{D}(N)} represents an eta-quotient nNη(nτ)rn\prod_{n\mid N}\eta(n\tau)^{r_{n}} of level NN and cover index 22 bijectively and (rn)nN(r_{n})_{n\mid N} with nrn=2k\sum_{n}r_{n}=2k represents an eta-quotient of weight kk. Thus, set

S(N,k)={(rn)nN𝒟(N):nNrn=2k},N1,k12,S(N,k)=\left\{(r_{n})_{n\mid N}\in\mathbb{Z}^{\mathscr{D}(N)}\colon\sum\nolimits_{n\mid N}r_{n}=2k\right\},\quad N\in\mathbb{Z}_{\geq 1},\,k\in\frac{1}{2}\mathbb{Z},

and S(N)=S(N,0)S(N)=S(N,0). Then 𝒟(N)=2kS(N,k)\mathbb{Z}^{\mathscr{D}(N)}=\cup_{2k\in\mathbb{Z}}S(N,k) which is a disjoint union. In fact, S(N)S(N) is a submodule of 𝒟(N)\mathbb{Z}^{\mathscr{D}(N)} and each S(N,k)S(N,k) is a coset in 𝒟(N)/S(N)\mathbb{Z}^{\mathscr{D}(N)}/S(N). The element (rn)nN(r_{n})_{n\mid N} in 𝒟(N)\mathbb{Z}^{\mathscr{D}(N)} is customary to be written as 𝐫=nNrnen\mathbf{r}=\sum_{n\mid N}r_{n}e_{n} where {en:nN}\{e_{n}\colon n\mid N\} is the standard basis of 𝒟(N)\mathbb{Z}^{\mathscr{D}(N)}. Moreover, the character (6) with D=2D=2 is denoted by χ𝐫\chi_{\mathbf{r}} to emphasize its dependence upon 𝐫S(N,k)\mathbf{r}\in S(N,k).

Two different vectors 𝐫\mathbf{r}, 𝐫\mathbf{r}^{\prime} in S(N,k)S(N,k) may correspond to the same character χ𝐫=χ𝐫\chi_{\mathbf{r}}=\chi_{\mathbf{r}^{\prime}}. The following lemma of Newman [38] tells us precisely when this happens.

Lemma 6.1.

Let N1N\in\mathbb{Z}_{\geq 1}, k12k\in\frac{1}{2}\mathbb{Z}. Let 𝐫=(rn)nN\mathbf{r}=(r_{n})_{n\mid N} and 𝐫=(rn)nN\mathbf{r}^{\prime}=(r^{\prime}_{n})_{n\mid N} be vectors in S(N,k)S(N,k). Then χ𝐫=χ𝐫\chi_{\mathbf{r}}=\chi_{\mathbf{r}^{\prime}} if and only if

nNn(rnrn)0(mod24),\displaystyle\sum_{n\mid N}n\cdot(r_{n}-r^{\prime}_{n})\equiv 0\pmod{24},
nNNn(rnrn)0(mod24),\displaystyle\sum_{n\mid N}\frac{N}{n}\cdot(r_{n}-r^{\prime}_{n})\equiv 0\pmod{24},
2rnrnn is a perfect square.\displaystyle\prod_{2\nmid r_{n}-r^{\prime}_{n}}n\text{ is a perfect square}.
Proof.

This is a special case of the last assertion of [20, Theorem 3.9]. Setting l=1l=1 in that assertion and noting that χ𝐫=χ𝐫\chi_{\mathbf{r}}=\chi_{\mathbf{r}^{\prime}} if and only if they are I~\widetilde{I}-compatible give the desired equivalence. ∎

Remark 6.2.

It seems that this method does not work in the case D3D\geq 3 since we can not find any generalized double coset operator (cf. [20, Definition 1]) between characters of eta-quotients of cover index D3D\geq 3.

As a corollary, for 𝐫=(rn)nNS(N)\mathbf{r}=(r_{n})_{n\mid N}\in S(N), χ𝐫\chi_{\mathbf{r}} is trivial if and only if nnrn0mod24\sum_{n}n\cdot r_{n}\equiv 0\bmod{24}, nNnrn0mod24\sum_{n}\frac{N}{n}\cdot r_{n}\equiv 0\bmod{24} and 2rnn\prod_{2\nmid r_{n}}n is a perfect square. The set of all such 𝐫\mathbf{r} is denoted by Z(N)Z(N) which is a subgroup of S(N)S(N). We define

𝒮(N,k)=S(N,k)/Z(N)={𝐫+Z(N):𝐫S(N,k)},\mathscr{S}(N,k)=S(N,k)/Z(N)=\left\{\mathbf{r}+Z(N)\colon\mathbf{r}\in S(N,k)\right\},

and 𝒮(N)=𝒮(N,0)\mathscr{S}(N)=\mathscr{S}(N,0). Thus 𝒟(N)/Z(N)=2k𝒮(N,k)\mathbb{Z}^{\mathscr{D}(N)}/Z(N)=\cup_{2k\in\mathbb{Z}}\mathscr{S}(N,k), which is a disjoint union. Note that elements of 𝒮(N,k)\mathscr{S}(N,k) are in one-to-one correspondence with characters of eta-quotients of level NN, cover index 22 and weight kk according to Lemma 6.1, so to classify such characters we need only to obtain a complete system of representatives of 𝒮(N,k)\mathscr{S}(N,k). Moreover, the map 𝒮(N)𝒮(N,k)\mathscr{S}(N)\to\mathscr{S}(N,k) that sends nNrnen+Z(N)\sum_{n\mid N}r_{n}e_{n}+Z(N) to 2ke1+nNrnen+Z(N)2ke_{1}+\sum_{n\mid N}r_{n}e_{n}+Z(N) is a bijection. Therefore, we have reduced our task to the study of 𝒮(N)\mathscr{S}(N). (For the result, see Theorem 6.8.)

Remark 6.3.

Let χ𝐫:Γ0(N)~×\chi_{\mathbf{r}}\colon\widetilde{\Gamma_{0}(N)}\to\mathbb{C}^{\times} be a character given by (6) where 𝐫S(N)\mathbf{r}\in S(N). Then χ𝐫\chi_{\mathbf{r}} is the multiplier system of an eta-quotient of weight 0 and cover index 22. According to the third property in Remark 2.2, χ𝐫\chi_{\mathbf{r}} descends to a character on Γ0(N)\Gamma_{0}(N). Thus 𝒮(N)\mathscr{S}(N) can be regarded as a subgroup of the group of unitary linear characters of Γ0(N)\Gamma_{0}(N).

The sets given in the following definition are subsets of 𝒟(N)\mathscr{D}(N) that occur in the complete system of representatives of 𝒮(N)\mathscr{S}(N).

Definition 6.4.

Let NN be a positive integer and pp be a prime divisor of NN. If p2,3p\neq 2,3 then define Np={p}\mathscr{B}_{N}^{p}=\{p\}. For p=2p=2, we define

N2={{21} if v2(N)=1,{21,22} if v2(N)=2,{2α2,2α1,2α} if v2(N)=α3.\mathscr{B}_{N}^{2}=\begin{dcases}\{2^{1}\}&\text{ if }v_{2}(N)=1,\\ \{2^{1},2^{2}\}&\text{ if }v_{2}(N)=2,\\ \{2^{\alpha-2},2^{\alpha-1},2^{\alpha}\}&\text{ if }v_{2}(N)=\alpha\geq 3.\\ \end{dcases}

For p=3p=3, we define

N3={{31} if v3(N)=1,{3α1,3α} if v3(N)=α2.\mathscr{B}_{N}^{3}=\begin{dcases}\{3^{1}\}&\text{ if }v_{3}(N)=1,\\ \{3^{\alpha-1},3^{\alpha}\}&\text{ if }v_{3}(N)=\alpha\geq 2.\\ \end{dcases}

Finally, set N=pNNp\mathscr{B}_{N}=\cup_{p\mid N}\mathscr{B}_{N}^{p}. Note that 1=\mathscr{B}_{1}=\emptyset.

We introduce a useful notation which will be used in the proofs below: if 𝐫1,𝐫2S(N)\mathbf{r}_{1},\mathbf{r}_{2}\in S(N), then 𝐫1N𝐫2\mathbf{r}_{1}\sim_{N}\mathbf{r}_{2}, or simply 𝐫1𝐫2\mathbf{r}_{1}\sim\mathbf{r}_{2}, means 𝐫1𝐫2Z(N)\mathbf{r}_{1}-\mathbf{r}_{2}\in Z(N). This is an equivalence relation compatible with the addition of S(N)S(N).

Lemma 6.5.

Let N=2α03α1N1N=2^{\alpha_{0}}\cdot 3^{\alpha_{1}}\cdot N_{1} with gcd(N1,6)=1\gcd(N_{1},6)=1 and α0,α10\alpha_{0},\alpha_{1}\in\mathbb{Z}_{\geq 0}.

  • For any 0β0α00\leq\beta_{0}\leq\alpha_{0}, 0β1α10\leq\beta_{1}\leq\alpha_{1} and n1,n2N1n_{1},n_{2}\mid N_{1} with gcd(n1,n2)=1\gcd(n_{1},n_{2})=1, there exist x,y,z1mod2x,y,z\equiv 1\bmod 2 such that

    (32) e2β03β1n1n2xe2β03β1n1+ye2β03β1n2+ze2β03β1.e_{2^{\beta_{0}}3^{\beta_{1}}n_{1}n_{2}}\sim xe_{2^{\beta_{0}}3^{\beta_{1}}n_{1}}+ye_{2^{\beta_{0}}3^{\beta_{1}}n_{2}}+ze_{2^{\beta_{0}}3^{\beta_{1}}}.
  • For any 0β0α00\leq\beta_{0}\leq\alpha_{0}, 0β1α10\leq\beta_{1}\leq\alpha_{1} and nN1n\mid N_{1}, there exist x,y1mod2x,y\equiv 1\bmod 2 and zz\in\mathbb{Z} such that

    (33) e2β03β1nxe2β03β1+yen+ze1.e_{2^{\beta_{0}}3^{\beta_{1}}n}\sim xe_{2^{\beta_{0}}3^{\beta_{1}}}+ye_{n}+ze_{1}.
  • For any 0β0α00\leq\beta_{0}\leq\alpha_{0}, 0β1α10\leq\beta_{1}\leq\alpha_{1} , there exist x,y,zx,y,z\in\mathbb{Z} such that

    (34) e2β03β1xe2β0+ye3β1+ze1.e_{2^{\beta_{0}}3^{\beta_{1}}}\sim xe_{2^{\beta_{0}}}+ye_{3^{\beta_{1}}}+ze_{1}.
Proof.

First we prove (32). If n1=1n_{1}=1 or n2=1n_{2}=1 then (32) is immediate. Thus assume that n1,n2>1n_{1},n_{2}>1. By the definition of Z(N)Z(N), a solution (x,y,z)3(x,y,z)\in\mathbb{Z}^{3} of the system

(35) {2β03β1n1x+2β03β1n2y+2β03β1z2β03β1n1n2(mod24)N2β03β1n1x+N2β03β1n2y+N2β03β1zN2β03β1n1n2(mod24)x,y,z1(mod2)\begin{dcases}2^{\beta_{0}}3^{\beta_{1}}n_{1}x+2^{\beta_{0}}3^{\beta_{1}}n_{2}y+2^{\beta_{0}}3^{\beta_{1}}z\equiv 2^{\beta_{0}}3^{\beta_{1}}n_{1}n_{2}\pmod{24}\\ \frac{N}{2^{\beta_{0}}3^{\beta_{1}}n_{1}}x+\frac{N}{2^{\beta_{0}}3^{\beta_{1}}n_{2}}y+\frac{N}{2^{\beta_{0}}3^{\beta_{1}}}z\equiv\frac{N}{2^{\beta_{0}}3^{\beta_{1}}n_{1}n_{2}}\pmod{24}\\ x,y,z\equiv 1\pmod{2}\end{dcases}

is also a solution of (32). Moreover, a solution of the system

(36) {n1x+n2y+zn1n2(mod24)n2x+n1y+n1n2z1(mod24)x,y,z1(mod2)\begin{dcases}n_{1}x+n_{2}y+z\equiv n_{1}n_{2}\pmod{24}\\ n_{2}x+n_{1}y+n_{1}n_{2}z\equiv 1\pmod{24}\\ x,y,z\equiv 1\pmod{2}\end{dcases}

is a solution of (35). Since 2,3n1,n22,3\nmid n_{1},n_{2} we have n121mod24n_{1}^{2}\equiv 1\bmod 24 and n221mod24n_{2}^{2}\equiv 1\bmod 24. Thus the first equation of (36) is equivalent to the second one. Therefore let x,y1mod2x,y\equiv 1\bmod 2 be arbitrary and set zn1n2n1xn2yz\equiv n_{1}n_{2}-n_{1}x-n_{2}y; we obtain a solution of (36) and hence of (32).

The proofs of (33) and (34) are similar of which we omit the details. ∎

Lemma 6.6.

Any element in 𝒮(N)\mathscr{S}(N) can be represented as

(37) nNcnen(nNcn)e1+Z(N),\sum_{n\in\mathscr{B}_{N}}c_{n}e_{n}-\left(\sum_{n\in\mathscr{B}_{N}}c_{n}\right)e_{1}+Z(N),

where cnc_{n}\in\mathbb{Z} and 0cn<240\leq c_{n}<24 for any nNn\in\mathscr{B}_{N}.

As a consequence, 𝒮(N)\mathscr{S}(N) is a finite group and |𝒮(N)|24|N|\lvert\mathscr{S}(N)\rvert\leq 24^{\lvert\mathscr{B}_{N}\rvert}.

Proof.

Let 𝐫+Z(N)=rnen+Z(N)𝒮(N)\mathbf{r}+Z(N)=\sum r_{n}e_{n}+Z(N)\in\mathscr{S}(N) be arbitrary. According to Lemma 6.5 we can assume that rn=0r_{n}=0 unless nn is a prime power or n=1n=1. Therefore there exist 𝐫(p)+Z(N)=0βvp(N)rpβ(p)epβ+Z(N)𝒮(N)\mathbf{r}^{(p)}+Z(N)=\sum_{0\leq\beta\leq v_{p}(N)}r^{(p)}_{p^{\beta}}e_{p^{\beta}}+Z(N)\in\mathscr{S}(N) such that 𝐫pN𝐫(p)\mathbf{r}\sim\sum_{p\mid N}\mathbf{r}^{(p)}. (Explicitly, let rpβ(p)=rpβr^{(p)}_{p^{\beta}}=r_{p^{\beta}} for β>0\beta>0 and rp0(p)=β>0rpβr^{(p)}_{p^{0}}=-\sum_{\beta>0}r_{p^{\beta}}.) It remains to find cnc_{n}\in\mathbb{Z} such that

(38) 𝐫(p)nNpcnen(nNpcn)e1\mathbf{r}^{(p)}\sim\sum_{n\in\mathscr{B}_{N}^{p}}c_{n}e_{n}-\left(\sum_{n\in\mathscr{B}_{N}^{p}}c_{n}\right)e_{1}

and 0cn<240\leq c_{n}<24 for each pNp\mid N. If p2,3p\neq 2,3 then (38) is equivalent to

{1βvp(N)(pβ1)rpβ(p)(p1)cp(mod24)1βvp(N)(NpβN)rpβ(p)(Np1N)cp(mod24)cpβ1,rpβ(p)1mod2β(mod2).\begin{dcases}\sum_{1\leq\beta\leq v_{p}(N)}(p^{\beta}-1)r^{(p)}_{p^{\beta}}\equiv(p-1)c_{p}\pmod{24}\\ \sum_{1\leq\beta\leq v_{p}(N)}(Np^{-\beta}-N)r^{(p)}_{p^{\beta}}\equiv(Np^{-1}-N)c_{p}\pmod{24}\\ c_{p}\equiv\sum_{\beta\geq 1,\,r^{(p)}_{p^{\beta}}\equiv 1\bmod 2}\beta\pmod{2}.\end{dcases}

Since p21mod24p^{2}\equiv 1\bmod{24}, the solution of this system is cp2βrpβ(p)mod24/(12,p1)c_{p}\equiv\sum_{2\nmid\beta}r^{(p)}_{p^{\beta}}\bmod{24/(12,p-1)}. If p=2p=2 and v2(N)=α3v_{2}(N)=\alpha\geq 3, then (38) is equivalent to

{1βα(2β1)r2β(2)(2α1)c2α+(2α11)c2α1+(2α21)c2α2(mod24)1βα(N2βN)r2β(2)(N2αN)c2α+(N2α+1N)c2α1+(N2α+2N)c2α2(mod24)β{α2,α1,α}c2βr2β(2)+1mod2β1β<α2,r2β(2)1mod2β(mod2).\begin{dcases}\sum_{1\leq\beta\leq\alpha}(2^{\beta}-1)r^{(2)}_{2^{\beta}}\equiv(2^{\alpha}-1)c_{2^{\alpha}}+(2^{\alpha-1}-1)c_{2^{\alpha-1}}+(2^{\alpha-2}-1)c_{2^{\alpha-2}}\pmod{24}\\ \sum_{1\leq\beta\leq\alpha}(N2^{-\beta}-N)r^{(2)}_{2^{\beta}}\equiv(N2^{-\alpha}-N)c_{2^{\alpha}}+(N2^{-\alpha+1}-N)c_{2^{\alpha-1}}+(N2^{-\alpha+2}-N)c_{2^{\alpha-2}}\pmod{24}\\ \sum_{\begin{subarray}{c}{\beta\in\{\alpha-2,\alpha-1,\alpha\}}\\ {c_{2^{\beta}}\equiv r^{(2)}_{2^{\beta}}+1\bmod 2}\end{subarray}}\beta\equiv\sum_{1\leq\beta<\alpha-2,\,r^{(2)}_{2^{\beta}}\equiv 1\bmod 2}\beta\pmod{2}.\end{dcases}

By considering the subcases 2α62\mid\alpha\geq 6, 2α52\nmid\alpha\geq 5 and α=3,4\alpha=3,4 separately and splitting the congruences modulo 2424 to congruences modulo 33 and 88, one can verify that this system is solvable. We omit the proof of the case p=2p=2, v2(N)=1,2v_{2}(N)=1,2. If p=3p=3 and v3(N)=α2v_{3}(N)=\alpha\geq 2, then (38) is equivalent to

{1βα(3β1)r3β(3)(3α1)c3α+(3α11)c3α1(mod24)1βα(N3βN)r3β(3)(N3αN)c3α+(N3α+1N)c3α1(mod24)β{α1,α}c3βr3β(3)+1mod2β1β<α1,r3β(3)1mod2β(mod2).\begin{dcases}\sum_{1\leq\beta\leq\alpha}(3^{\beta}-1)r^{(3)}_{3^{\beta}}\equiv(3^{\alpha}-1)c_{3^{\alpha}}+(3^{\alpha-1}-1)c_{3^{\alpha-1}}\pmod{24}\\ \sum_{1\leq\beta\leq\alpha}(N3^{-\beta}-N)r^{(3)}_{3^{\beta}}\equiv(N3^{-\alpha}-N)c_{3^{\alpha}}+(N3^{-\alpha+1}-N)c_{3^{\alpha-1}}\pmod{24}\\ \sum_{\begin{subarray}{c}{\beta\in\{\alpha-1,\alpha\}}\\ {c_{3^{\beta}}\equiv r^{(3)}_{3^{\beta}}+1\bmod 2}\end{subarray}}\beta\equiv\sum_{1\leq\beta<\alpha-1,\,r^{(3)}_{3^{\beta}}\equiv 1\bmod 2}\beta\pmod{2}.\end{dcases}

As in the above case, by considering the subcases 2α2\mid\alpha and 2α2\nmid\alpha separately and splitting the congruences modulo 2424 to congruences modulo 33 and 88, one can verify that this system is solvable. The case p=3p=3, v3(N)=1v_{3}(N)=1 is obvious. Thereby we have shown (38) which concludes the proof. ∎

To state the main theorem of this section, let us introduce the system of congruences

(39) {nN(n1)cn0(mod24)nN(Nn1N)cn0(mod24)cp0(mod2),pN,p2,32βN:c2β1mod2β0(mod2),3βN:c3β1mod2β0(mod2).\begin{dcases}\sum_{n\in\mathscr{B}_{N}}(n-1)c_{n}\equiv 0\pmod{24}\\ \sum_{n\in\mathscr{B}_{N}}(Nn^{-1}-N)c_{n}\equiv 0\pmod{24}\\ c_{p}\equiv 0\pmod{2},\,\forall p\mid N,p\neq 2,3\\ \sum_{2^{\beta}\in\mathscr{B}_{N}\colon c_{2^{\beta}}\equiv 1\bmod 2}\beta\equiv 0\pmod{2},\quad\sum_{3^{\beta}\in\mathscr{B}_{N}\colon c_{3^{\beta}}\equiv 1\bmod 2}\beta\equiv 0\pmod{2}.\end{dcases}

Then the element (37) is the zero in 𝒮(N)\mathscr{S}(N) if and only if (cn)nN(c_{n})_{n\in\mathscr{B}_{N}} satisfies (39) according to the definition of Z(N)Z(N).

Definition 6.7.

Let N2N\in\mathbb{Z}_{\geq 2}. For any ordering b1,b2,,btb_{1},b_{2},\dots,b_{t} of N\mathscr{B}_{N} (which means N={b1,b2,,bt}\mathscr{B}_{N}=\{b_{1},b_{2},\dots,b_{t}\} and bibjb_{i}\neq b_{j} for iji\neq j), we define a sequence of positive integers Δ1,Δ2,,Δt\Delta_{1},\Delta_{2},\dots,\Delta_{t} as follows:

Δi=min{1m24:(cn)nN s.t. (39) holds and cbj=0(j<i),cbi=m}.\Delta_{i}=\min\{1\leq m\leq 24\colon\exists(c_{n})_{n\in\mathscr{B}_{N}}\text{ s.t. \eqref{eq:congruencesZN} holds and }c_{b_{j}}=0\,(j<i),\,c_{b_{i}}=m\}.

Note that Δi\Delta_{i} is well defined since the set in the right-hand side always contains 2424. In addition, be careful that the definition does not imply 1jtΔjej(1jtΔj)e1Z(N)\sum_{1\leq j\leq t}\Delta_{j}e_{j}-\left(\sum_{1\leq j\leq t}\Delta_{j}\right)e_{1}\in Z(N) unless |N|=1\lvert\mathscr{B}_{N}\rvert=1.

Theorem 6.8.

With the notation of Definition 6.7, a complete system of representatives of 𝒮(N)\mathscr{S}(N) is given by

(40) 1jtcbjebj(1jtcbj)e1,0cbj<Δj.\sum_{1\leq j\leq t}c_{b_{j}}e_{b_{j}}-\left(\sum_{1\leq j\leq t}c_{b_{j}}\right)e_{1},\quad 0\leq c_{b_{j}}<\Delta_{j}.
Proof.

Let 𝐫+Z(N)𝒮(N)\mathbf{r}+Z(N)\in\mathscr{S}(N) be arbitrary. According to Lemma 6.6 we can assume that 𝐫=nNrnen(nNrn)e1\mathbf{r}=\sum_{n\in\mathscr{B}_{N}}r_{n}e_{n}-\left(\sum_{n\in\mathscr{B}_{N}}r_{n}\right)e_{1} with rnr_{n}\in\mathbb{Z}. By the definition of Δ1\Delta_{1}, there exists 𝐝1=nNdnen(nNdn)e1Z(N)\mathbf{d}_{1}=\sum_{n\in\mathscr{B}_{N}}d_{n}e_{n}-\left(\sum_{n\in\mathscr{B}_{N}}d_{n}\right)e_{1}\in Z(N) with db1=Δ1d_{b_{1}}=\Delta_{1}. Hence subtracting a multiple of 𝐝1\mathbf{d}_{1} from 𝐫\mathbf{r} we may assume that 0rb1<Δ10\leq r_{b_{1}}<\Delta_{1}. Inductively, suppose we have adjusted 𝐫\mathbf{r} such that 0rbj<Δj0\leq r_{b_{j}}<\Delta_{j} for j=1,2,,Jj=1,2,\dots,J. Let 𝐝J+1=nNdnen(nNdn)e1Z(N)\mathbf{d}_{J+1}=\sum_{n\in\mathscr{B}_{N}}d_{n}e_{n}-\left(\sum_{n\in\mathscr{B}_{N}}d_{n}\right)e_{1}\in Z(N) with dbj=0d_{b_{j}}=0 (jJj\leq J) and dbJ+1=ΔJ+1d_{b_{J+1}}=\Delta_{J+1}. This exists by the definition of ΔJ+1\Delta_{J+1}. Subtracting a multiple of 𝐝J+1\mathbf{d}_{J+1} from 𝐫\mathbf{r} we can assume that 0rbj<Δj0\leq r_{b_{j}}<\Delta_{j} for j=1,2,,J+1j=1,2,\dots,J+1. Therefore by induction 𝐫\mathbf{r} takes the form of (40) modulo Z(N)Z(N). We have proved that each coset in 𝒮(N)\mathscr{S}(N) can be represented by an element in (40).

Let 𝐫1=1jtcbjebj(1jtcbj)e1\mathbf{r}_{1}=\sum_{1\leq j\leq t}c_{b_{j}}e_{b_{j}}-\left(\sum_{1\leq j\leq t}c_{b_{j}}\right)e_{1} and 𝐫2=1jtdbjebj(1jtdbj)e1\mathbf{r}_{2}=\sum_{1\leq j\leq t}d_{b_{j}}e_{b_{j}}-\left(\sum_{1\leq j\leq t}d_{b_{j}}\right)e_{1} be two different representatives of the form (40). Let 1Jt1\leq J\leq t satisfy cbj=dbjc_{b_{j}}=d_{b_{j}} for j<Jj<J and cbJdbJc_{b_{J}}\neq d_{b_{J}}. Without loss of generality assume that cbJ<dbJc_{b_{J}}<d_{b_{J}}. It follows that 0<dbJcbJ<ΔJ0<d_{b_{J}}-c_{b_{J}}<\Delta_{J}. Then 𝐫2𝐫1Z(N)\mathbf{r}_{2}-\mathbf{r}_{1}\not\in Z(N) by the definition of ΔJ\Delta_{J}. We have proved that the vectors in (40) are pairwise inequivalent modulo Z(N)Z(N), which concludes the whole proof. ∎

Corollary 6.9.

Let N1N\in\mathbb{Z}_{\geq 1} and k12k\in\frac{1}{2}\mathbb{Z}. Then the characters (6) of eta-quotients of level NN, weight kk and cover index 22 are in one-to-one correspondence with the vectors

1jtrbjebj+(2k1jtrbj)e1,0rbj<Δj.\sum_{1\leq j\leq t}r_{b_{j}}e_{b_{j}}+\left(2k-\sum_{1\leq j\leq t}r_{b_{j}}\right)e_{1},\quad 0\leq r_{b_{j}}<\Delta_{j}.
Proof.

According to the discussion followed by Remark 6.3, the characters of eta-quotients of level NN, weight kk and cover index 22 can be regarded as the set 𝒮(N,k)\mathscr{S}(N,k) and the map 𝒮(N)𝒮(N,k)\mathscr{S}(N)\to\mathscr{S}(N,k), 𝐫+Z(N)𝐫+2ke1+Z(N)\mathbf{r}+Z(N)\mapsto\mathbf{r}+2ke_{1}+Z(N) is a bijection. The corollary follows from this and Theorem 6.8. ∎

In the remainder of this section, we give examples of concrete sequences (Δi)1it(\Delta_{i})_{1\leq i\leq t} (t=|N|t=\lvert\mathscr{B}_{N}\rvert) for some special NN.

Example 6.10.

Let N=pαN=p^{\alpha} where p5p\geq 5 is a prime and α1\alpha\in\mathbb{Z}_{\geq 1}. Then N={p}\mathscr{B}_{N}=\{p\} and the sequence (Δi)1it(\Delta_{i})_{1\leq i\leq t} (t=|N|t=\lvert\mathscr{B}_{N}\rvert) contains a single element Δ1\Delta_{1}. The system of congruences (39) is equivalent to (p1)cp0mod24(p-1)c_{p}\equiv 0\bmod{24} and cp0mod2c_{p}\equiv 0\bmod{2} in this case. Thus, Δ1=24(12,p1)\Delta_{1}=\frac{24}{(12,p-1)} and a complete system of representatives of 𝒮(pα)\mathscr{S}(p^{\alpha}) is given by

rp(epe1),0rp<24(12,p1).r_{p}(e_{p}-e_{1}),\quad 0\leq r_{p}<\frac{24}{(12,p-1)}.

As a consequence, for any k12k\in\frac{1}{2}\mathbb{Z} there are exactly 24(12,p1)\frac{24}{(12,p-1)} characters χ:Γ0(pα)~×\chi\colon\widetilde{\Gamma_{0}(p^{\alpha})}\to\mathbb{C}^{\times} of eta-quotients of level pαp^{\alpha}, weight kk and cover index 22. It should be noted that, the character of an eta-quotient, say, of cover index 44 may also be regarded as a character on Γ0(pα)~\widetilde{\Gamma_{0}(p^{\alpha})} (cf. the third fact of Remark 2.2). For instance, the character χ:Γ0(pα)8~×\chi\colon\widetilde{\Gamma_{0}(p^{\alpha})^{8}}\to\mathbb{C}^{\times} of η(τ)1/4η(pτ)3/4\eta(\tau)^{1/4}\eta(p\tau)^{3/4} descends to a character on Γ0(pα)~=Γ0(pα)2~\widetilde{\Gamma_{0}(p^{\alpha})}=\widetilde{\Gamma_{0}(p^{\alpha})^{2}}. Such characters are not in the list above.

Example 6.11.

Let N=2αN=2^{\alpha} with α3\alpha\geq 3. Then N={2α2,2α1,2α}\mathscr{B}_{N}=\{2^{\alpha-2},2^{\alpha-1},2^{\alpha}\} which is arranged in the increasing order. We need to calculate the sequence Δ1,Δ2,Δ3\Delta_{1},\Delta_{2},\Delta_{3}. The system of congruences (39) is equivalent to

{(2α21)c2α2+(2α11)c2α1+(2α1)c2α0(mod24)(42α)c2α2+(22α)c2α1+(12α)c2α0(mod24)β{α2,α1,α}c2β1mod2β0(mod2).\begin{dcases}(2^{\alpha-2}-1)c_{2^{\alpha-2}}+(2^{\alpha-1}-1)c_{2^{\alpha-1}}+(2^{\alpha}-1)c_{2^{\alpha}}\equiv 0\pmod{24}\\ (4-2^{\alpha})c_{2^{\alpha-2}}+(2-2^{\alpha})c_{2^{\alpha-1}}+(1-2^{\alpha})c_{2^{\alpha}}\equiv 0\pmod{24}\\ \sum_{\begin{subarray}{c}{\beta\in\{\alpha-2,\alpha-1,\alpha\}}\\ {c_{2^{\beta}}\equiv 1\bmod 2}\end{subarray}}\beta\equiv 0\pmod{2}.\end{dcases}

One can verify directly that

(Δ1,Δ2,Δ3)={(2,24,8) if α3 and 2α(2,8,24) if α3 and 2α.(\Delta_{1},\Delta_{2},\Delta_{3})=\begin{dcases}(2,24,8)&\text{ if }\alpha\geq 3\text{ and }2\mid\alpha\\ (2,8,24)&\text{ if }\alpha\geq 3\text{ and }2\nmid\alpha.\end{dcases}

Therefore, a complete system of representatives of 𝒮(2α)\mathscr{S}(2^{\alpha}) with α3\alpha\geq 3 is given by

r2α2e2α2+r2α1e2α1+r2αe2α(r2α2+r2α1+r2α)e1,r_{2^{\alpha-2}}e_{2^{\alpha-2}}+r_{2^{\alpha-1}}e_{2^{\alpha-1}}+r_{2^{\alpha}}e_{2^{\alpha}}-(r_{2^{\alpha-2}}+r_{2^{\alpha-1}}+r_{2^{\alpha}})e_{1},

where rα2{0,1}r_{\alpha-2}\in\{0,1\} and 0r2α1<240\leq r_{2^{\alpha-1}}<24, 0r2α<80\leq r_{2^{\alpha}}<8 if 2α2\mid\alpha; 0r2α1<80\leq r_{2^{\alpha-1}}<8, 0r2α<240\leq r_{2^{\alpha}}<24 if 2α2\nmid\alpha. As a consequence, for any k12k\in\frac{1}{2}\mathbb{Z} there are exactly 384384 characters χ:Γ0(2α)~×\chi\colon\widetilde{\Gamma_{0}(2^{\alpha})}\to\mathbb{C}^{\times} of eta-quotients of level 2α2^{\alpha}, weight kk and cover index 22 when α3\alpha\geq 3. In addition, it is immediate that for N=22N=2^{2} we have 4={21,22}\mathscr{B}_{4}=\{2^{1},2^{2}\} and (Δ1,Δ2)=(24,8)(\Delta_{1},\Delta_{2})=(24,8) and for N=21N=2^{1} we have 2={21}\mathscr{B}_{2}=\{2^{1}\} and Δ1=24\Delta_{1}=24. Thus, there are exactly 192192 (2424 respectively) characters of eta-quotients of level 44 (22 respectively), cover index 22 and any fixed weight 12\in\frac{1}{2}\mathbb{Z}.

Example 6.12.

Let N=3αN=3^{\alpha} with α2\alpha\geq 2. Then N={3α1,3α}\mathscr{B}_{N}=\{3^{\alpha-1},3^{\alpha}\} which is arranged in the increasing order. We need to calculate the sequence Δ1,Δ2\Delta_{1},\Delta_{2}. The system of congruences (39) is equivalent to

{(3α11)c3α1+(3α1)c3α0(mod24)(33α)c3α1+(13α)c3α0(mod24)β{α1,α}c3β1mod2β0(mod2).\begin{dcases}(3^{\alpha-1}-1)c_{3^{\alpha-1}}+(3^{\alpha}-1)c_{3^{\alpha}}\equiv 0\pmod{24}\\ (3-3^{\alpha})c_{3^{\alpha-1}}+(1-3^{\alpha})c_{3^{\alpha}}\equiv 0\pmod{24}\\ \sum_{\begin{subarray}{c}{\beta\in\{\alpha-1,\alpha\}}\\ {c_{3^{\beta}}\equiv 1\bmod 2}\end{subarray}}\beta\equiv 0\pmod{2}.\end{dcases}

One can verify directly that

(Δ1,Δ2)={(12,3) if α2 and 2α(3,12) if α2 and 2α.(\Delta_{1},\Delta_{2})=\begin{dcases}(12,3)&\text{ if }\alpha\geq 2\text{ and }2\mid\alpha\\ (3,12)&\text{ if }\alpha\geq 2\text{ and }2\nmid\alpha.\end{dcases}

Therefore, a complete system of representatives of 𝒮(3α)\mathscr{S}(3^{\alpha}) with α2\alpha\geq 2 is given by

r3α1e3α1+r3αe3α(r3α1+r3α)e1,r_{3^{\alpha-1}}e_{3^{\alpha-1}}+r_{3^{\alpha}}e_{3^{\alpha}}-(r_{3^{\alpha-1}}+r_{3^{\alpha}})e_{1},

where 0r3α1<120\leq r_{3^{\alpha-1}}<12, 0r3α<30\leq r_{3^{\alpha}}<3 if 2α2\mid\alpha; 0r3α1<30\leq r_{3^{\alpha-1}}<3, 0r3α<120\leq r_{3^{\alpha}}<12 if 2α2\nmid\alpha. As a consequence, for any k12k\in\frac{1}{2}\mathbb{Z} there are exactly 3636 characters χ:Γ0(3α)~×\chi\colon\widetilde{\Gamma_{0}(3^{\alpha})}\to\mathbb{C}^{\times} of eta-quotients of level 3α3^{\alpha}, weight kk and cover index 22 when α2\alpha\geq 2. In addition, it is direct that for N=31N=3^{1} we have 3={31}\mathscr{B}_{3}=\{3^{1}\} and Δ1=12\Delta_{1}=12. Thus, there are exactly 1212 characters of eta-quotients of level 33, cover index 22 and any fixed weight 12\in\frac{1}{2}\mathbb{Z}.

Example 6.13.

Let N=4pαN=4p^{\alpha} where p5p\geq 5 is a prime and α1\alpha\in\mathbb{Z}_{\geq 1}. Then N={21,22,p}\mathscr{B}_{N}=\{2^{1},2^{2},p\} which is arranged in the increasing order. We need to calculate the sequence Δ1,Δ2,Δ3\Delta_{1},\Delta_{2},\Delta_{3}. The system of congruences (39) is equivalent to

{c2+3c4+(p1)cp0(mod24)2pαc23pαc4+(4pα14pα)cp0(mod24)c2,cp0(mod2).\begin{dcases}c_{2}+3c_{4}+(p-1)c_{p}\equiv 0\pmod{24}\\ -2p^{\alpha}c_{2}-3p^{\alpha}c_{4}+(4p^{\alpha-1}-4p^{\alpha})c_{p}\equiv 0\pmod{24}\\ c_{2},\,c_{p}\equiv 0\pmod{2}.\end{dcases}

Using elementary number theory one can show that

Δ1=2(12,p1),Δ2=8,Δ3=24(12,p1).\Delta_{1}=2\cdot(12,p-1),\quad\Delta_{2}=8,\quad\Delta_{3}=\frac{24}{(12,p-1)}.

Therefore, a complete system of representatives of 𝒮(4pα)\mathscr{S}(4p^{\alpha}) with p5p\geq 5 and α1\alpha\geq 1 is given by

r2e2+r4e4+rpep(r2+r4+rp)e1r_{2}e_{2}+r_{4}e_{4}+r_{p}e_{p}-(r_{2}+r_{4}+r_{p})e_{1}

with

0r2<2(12,p1),0r4<8,0rp<24(12,p1).0\leq r_{2}<2\cdot(12,p-1),\quad 0\leq r_{4}<8,\quad 0\leq r_{p}<\frac{24}{(12,p-1)}.

As a consequence, for any k12k\in\frac{1}{2}\mathbb{Z} there are exactly 384384 characters χ:Γ0(4pα)~×\chi\colon\widetilde{\Gamma_{0}(4p^{\alpha})}\to\mathbb{C}^{\times} of eta-quotients of level 4pα4p^{\alpha}, weight kk and cover index 22 when p5p\geq 5 and α1\alpha\geq 1.

Example 6.14.

Let N=p1α1p2α2N=p_{1}^{\alpha_{1}}p_{2}^{\alpha_{2}} where p1,p25p_{1},p_{2}\geq 5 are distinct primes and α1,α21\alpha_{1},\alpha_{2}\in\mathbb{Z}_{\geq 1}. Then N={p1,p2}\mathscr{B}_{N}=\{p_{1},p_{2}\}. We need to calculate the sequence Δ1,Δ2\Delta_{1},\Delta_{2}. The system of congruences (39) is equivalent to

{(p11)cp1+(p21)cp20(mod24)(p1α11p2α2p1α1p2α2)cp1+(p1α1p2α21p1α1p2α2)cp20(mod24)cp1,cp20(mod2).\begin{dcases}(p_{1}-1)c_{p_{1}}+(p_{2}-1)c_{p_{2}}\equiv 0\pmod{24}\\ (p_{1}^{\alpha_{1}-1}p_{2}^{\alpha_{2}}-p_{1}^{\alpha_{1}}p_{2}^{\alpha_{2}})c_{p_{1}}+(p_{1}^{\alpha_{1}}p_{2}^{\alpha_{2}-1}-p_{1}^{\alpha_{1}}p_{2}^{\alpha_{2}})c_{p_{2}}\equiv 0\pmod{24}\\ c_{p_{1}},\,c_{p_{2}}\equiv 0\pmod{2}.\end{dcases}

Using elementary number theory one can show that

Δ1\displaystyle\Delta_{1} =24(12,p21)(12,(p11)(p21))(12(12,p21)(12,(p11)(p21)),p1p2)1,\displaystyle=\frac{24\cdot(12,p_{2}-1)}{(12,(p_{1}-1)(p_{2}-1))}\cdot\left(\frac{12\cdot(12,p_{2}-1)}{(12,(p_{1}-1)(p_{2}-1))},p_{1}-p_{2}\right)^{-1},
Δ2\displaystyle\Delta_{2} =24(12,p21).\displaystyle=\frac{24}{(12,p_{2}-1)}.

The expression for Δ1\Delta_{1} seems to be complicated but it actually depends only on p1mod12p_{1}\bmod{12} and p2mod12p_{2}\bmod{12}. For instance, if p21mod12p_{2}\equiv 1\bmod{12}, then Δ1\Delta_{1} is simplified to 24(12,p11)\frac{24}{(12,p_{1}-1)}. A complete system of representatives of 𝒮(p1α1p2α2)\mathscr{S}(p_{1}^{\alpha_{1}}p_{2}^{\alpha_{2}}) is given by

rp1ep1+rp2ep2(rp1+rp2)e1r_{p_{1}}e_{p_{1}}+r_{p_{2}}e_{p_{2}}-(r_{p_{1}}+r_{p_{2}})e_{1}

with

0rp1<Δ1,0rp2<Δ2.0\leq r_{p_{1}}<\Delta_{1},\quad 0\leq r_{p_{2}}<\Delta_{2}.

As a consequence, for any k12k\in\frac{1}{2}\mathbb{Z} there are exactly Δ1Δ2\Delta_{1}\Delta_{2} characters χ:Γ0(p1α1p2α2)~×\chi\colon\widetilde{\Gamma_{0}(p_{1}^{\alpha_{1}}p_{2}^{\alpha_{2}})}\to\mathbb{C}^{\times} of eta-quotients of level p1α1p2α2p_{1}^{\alpha_{1}}p_{2}^{\alpha_{2}}, weight kk and cover index 22 when p1,p25p_{1},p_{2}\geq 5 are distinct primes and α1,α21\alpha_{1},\alpha_{2}\geq 1.

7. Dimension formulas for weights 1/21/2, 11, 3/23/2 and small levels

In this section, we give values of all dimMk(Γ0(N),χ)\dim_{\mathbb{C}}M_{k}(\Gamma_{0}(N),\chi) that can be calculated by Theorem 4.2 (throughout this section, tt in this theorem always takes the value 0) for k=1/2k=1/2, 11 and 3/23/2, N1N\in\mathbb{Z}_{\geq 1} and χ\chi being the character of an eta-quotient of level NN, weight kk and cover index 22. There are only finitely many such formulas since the right-hand side of (21) tends to 22 when N+N\to+\infty and the set of χ\chi is finite for each NN and kk (cf. Corollary 6.9). The following lemma gives an upper bound of NN that should be considered.

Lemma 7.1.

Let NN be a positive integer and let mm, ε2\varepsilon_{2}, ε3\varepsilon_{3} and ε\varepsilon_{\infty} be defined in (9), (10), (11) and (12) respectively. If N1024N\geq 1024, we have

ε2<m96,ε3<m128,εm32.\varepsilon_{2}<\frac{m}{96},\quad\varepsilon_{3}<\frac{m}{128},\quad\varepsilon_{\infty}\leq\frac{m}{32}.

Consequently, in Theorem 4.2, if k3/2k\leq 3/2, t=0t=0 and N1024N\geq 1024, then (21) does not hold.

For ε\varepsilon_{\infty}, a stronger estimate888This is the best estimate if we want it to hold for all NN since it becomes equality when NN is a square. is εmN1/2\varepsilon_{\infty}\leq m\cdot N^{-1/2} with N1N\in\mathbb{Z}_{\geq 1} which we will prove below.

Proof.

Suppose N=1jspjαjN=\prod_{1\leq j\leq s}p_{j}^{\alpha_{j}} where p1<p2<<psp_{1}<p_{2}<\dots<p_{s} are primes, s0s\in\mathbb{Z}_{\geq 0} and αj1\alpha_{j}\in\mathbb{Z}_{\geq 1}. Note that for p=pjp=p_{j}, α=αj\alpha=\alpha_{j} we have

p[α/2]+p[α/21/2]pα+pα1={2pα/2(p1/2+p1/2) if 2α,1pα/2 if 2α.\frac{p^{[\alpha/2]}+p^{[\alpha/2-1/2]}}{p^{\alpha}+p^{\alpha-1}}=\begin{dcases}\frac{2}{p^{\alpha/2}(p^{1/2}+p^{-1/2})}&\text{ if }2\nmid\alpha,\\ \frac{1}{p^{\alpha/2}}&\text{ if }2\mid\alpha.\end{dcases}

Thereby, according to [29, Corollary 6.3.24(b)]

(41) εm=1jspj[αj/2]+pj[αj/21/2]pjαj+pjαj11js1pjαj/2=N1/2.\frac{\varepsilon_{\infty}}{m}=\prod_{1\leq j\leq s}\frac{p_{j}^{[\alpha_{j}/2]}+p_{j}^{[\alpha_{j}/2-1/2]}}{p_{j}^{\alpha_{j}}+p_{j}^{\alpha_{j}-1}}\leq\prod_{1\leq j\leq s}\frac{1}{p_{j}^{\alpha_{j}/2}}=N^{-1/2}.

Now we begin to prove the inequalities for ε2\varepsilon_{2} and ε3\varepsilon_{3}, so suppose N1024N\geq 1024. If s=1,2,3s=1,2,3, then ε2/m23/1025<1/96\varepsilon_{2}/m\leq 2^{3}/1025<1/96, ε3/m23/1025<1/128\varepsilon_{3}/m\leq 2^{3}/1025<1/128. If s4s\geq 4, we consider two subcases: ε2=0\varepsilon_{2}=0 and ε20\varepsilon_{2}\neq 0. If ε2=0\varepsilon_{2}=0, obviously ε2/m<1/96\varepsilon_{2}/m<1/96. If ε20\varepsilon_{2}\neq 0, then (4pj)1\genfrac{(}{)}{}{}{-4}{p_{j}}\neq-1 and hence pj=2p_{j}=2 or pj1mod4p_{j}\equiv 1\bmod 4 for 1js1\leq j\leq s. If p12p_{1}\neq 2, then p1α15p_{1}^{\alpha_{1}}\geq 5, p2α213p_{2}^{\alpha_{2}}\geq 13 and pjαj17p_{j}^{\alpha_{j}}\geq 17 for j3j\geq 3. Therefore

ε2m25+1213+1(217+1)s2<196.\frac{\varepsilon_{2}}{m}\leq\frac{2}{5+1}\cdot\frac{2}{13+1}\cdot\left(\frac{2}{17+1}\right)^{s-2}<\frac{1}{96}.

If p1=2p_{1}=2, then p2α25p_{2}^{\alpha_{2}}\geq 5, p3α313p_{3}^{\alpha_{3}}\geq 13 and pjαj17p_{j}^{\alpha_{j}}\geq 17 for j4j\geq 4. Therefore

ε2m12+125+1213+1(217+1)s3<196.\frac{\varepsilon_{2}}{m}\leq\frac{1}{2+1}\cdot\frac{2}{5+1}\cdot\frac{2}{13+1}\cdot\left(\frac{2}{17+1}\right)^{s-3}<\frac{1}{96}.

This proves the inequality for ε2\varepsilon_{2}. To prove the inequality for ε3\varepsilon_{3} when s4s\geq 4, we consider the subcases ε3=0\varepsilon_{3}=0 and ε30\varepsilon_{3}\neq 0 separately and proceed as in the proof for ε2\varepsilon_{2}.

Finally, with the notation of Theorem 4.2 suppose that k3/2k\leq 3/2, t=0t=0 and N1024N\geq 1024. Assume by contradiction that (21) holds, then

32k>26mε28mε312mε>269681281232\frac{3}{2}\geq k>2-\frac{6}{m}\varepsilon_{2}-\frac{8}{m}\varepsilon_{3}-\frac{12}{m}\varepsilon_{\infty}>2-\frac{6}{96}-\frac{8}{128}-\frac{12}{32}

which is absurd. Hence (21) does not hold. ∎

The algorithm for presenting all dimMk(Γ0(N),χ)\dim_{\mathbb{C}}M_{k}(\Gamma_{0}(N),\chi) described above is as follows:

  1. (a)

    Let kk range over {1/2,1,3/2}\{1/2,1,3/2\} and let NN range over the positive integers 1023\leq 1023. We do not miss anything according to Lemma 7.1.

  2. (b)

    Given k,Nk,N, we arrange N\mathscr{B}_{N} in any order and calculate the sequence Δ1,,Δt\Delta_{1},\dots,\Delta_{t} (cf. Definition 6.7).

  3. (c)

    Let 𝐫=(rn)nN\mathbf{r}=(r_{n})_{n\mid N} range over the vectors described in Corollary 6.9. According to this corollary, the corresponding χ𝐫\chi_{\mathbf{r}} ranges over exactly all characters of eta-quotients of level NN, weight kk and cover index 22.

  4. (d)

    Given k,Nk,N and 𝐫\mathbf{r}, we calculate 𝐱=(xc)cN\mathbf{x}=(x_{c})_{c\mid N} via (19).

  5. (e)

    We determine whether (21) holds. If it holds, then we calculate dimMk(Γ0(N),χ𝐫)\dim_{\mathbb{C}}M_{k}(\Gamma_{0}(N),\chi_{\mathbf{r}}) by (22) where t=0t=0. If it does not hold, dimMk(Γ0(N),χ𝐫)\dim_{\mathbb{C}}M_{k}(\Gamma_{0}(N),\chi_{\mathbf{r}}) can not be calculated by Theorem 4.2. Nevertheless we can obtain an upper bound and a lower bound of dimMk(Γ0(N),χ𝐫)\dim_{\mathbb{C}}M_{k}(\Gamma_{0}(N),\chi_{\mathbf{r}}) (cf. Remark 4.3).

Remark 7.2.

For a fixed kk, one can shrink the range of NN by picking out those N1023N\leq 1023 such that k>26mε28mε312mεk>2-\frac{6}{m}\varepsilon_{2}-\frac{8}{m}\varepsilon_{3}-\frac{12}{m}\varepsilon_{\infty}. Hence, for k=1/2k=1/2, NN need only to range over {1N21}{24,25,27,32,36,49,50}\{1\leq N\leq 21\}\cup\{24,25,27,32,36,49,50\}; for k=1k=1, NN need only to range over {1N22}{24N32}{34,36,37,39,40,45,48,49,50,54,64,72,75,81,98,100,121,169}\{1\leq N\leq 22\}\cup\{24\leq N\leq 32\}\cup\{34,36,37,39,40,45,48,49,50,54,64,72,75,81,98,100,121,169\}; for k=3/2k=3/2, NN need only to range over a subset of {1N529}\{1\leq N\leq 529\}.

All the above steps can be easily implemented in any computer algebra system. We program them using SageMath. See Appendix A for the usage of the code.

7.1. The weight 1/21/2

The dimensions obtained by the above algorithm are summarized in Table 1.

Table 1. For each NN, aa means the total number of characters (cf. Corollary 6.9) and vv means the number of characters χ\chi such that dimM1/2(Γ0(N),χ)\dim_{\mathbb{C}}M_{1/2}(\Gamma_{0}(N),\chi) can be computed using Theorem 4.2, djd_{j} means the number of spaces of dimension jj for j=0,1,2j=0,1,2.
NN aa vv d0d_{0} d1d_{1} d2d_{2} NN aa vv d0d_{0} d1d_{1} d2d_{2}
11 11 11 0 11 0 22 2424 2424 2020 44 0
33 1212 1212 1010 22 0 44 192192 146146 136136 1010 0
55 66 66 44 22 0 66 288288 160160 148148 1212 0
77 44 44 22 22 0 88 384384 214214 198198 1616 0
99 3636 1818 1515 33 0 1010 4848 3232 2424 88 0
1212 11521152 318318 286286 3232 0 1313 22 22 0 22 0
1616 384384 127127 108108 1818 11 1818 288288 5656 4242 1212 22
2020 384384 66 0 66 0 2424 23042304 2424 0 2424 0
2525 66 33 11 11 11 2727 3636 22 0 22 0
3232 384384 1010 0 88 22 3636 11521152 1212 0 66 66
4949 44 11 0 0 11 5050 4848 44 0 0 44
Example 7.3.

Let us consider the case N=50N=50. We have 50={2,5}\mathscr{B}_{50}=\{2,5\} and (Δ1,Δ2)=(8,6)(\Delta_{1},\Delta_{2})=(8,6) as one can verify directly. Thus, there are totally 4848 characters of eta-quotients of level 5050, weight 1/21/2 and cover index 22. They are exactly the characters on Γ0(50)2~\widetilde{\Gamma_{0}(50)^{2}} of the following eta-quotients:

η(τ)1r2r5η(2τ)r2η(5τ)r5,0r2<8, 0r5<6.\eta(\tau)^{1-r_{2}-r_{5}}\eta(2\tau)^{r_{2}}\eta(5\tau)^{r_{5}},\quad 0\leq r_{2}<8,\,0\leq r_{5}<6.

Among the 4848 characters, for precisely the four characters χ\chi given by

(42) (r2,r5)=(0,0),(1,0),(2,0),(7,4)(r_{2},r_{5})=(0,0),\,(1,0),\,(2,0),\,(7,4)

one can compute dimM1/2(Γ0(50),χ)\dim_{\mathbb{C}}M_{1/2}(\Gamma_{0}(50),\chi) using Theorem 4.2 (that is, (21) holds with t=0t=0) and the four dimensions all equal 22. For the other 4444 characters χ\chi our method only gives that 0dimM1/2(Γ0(50),χ)40\leq\dim_{\mathbb{C}}M_{1/2}(\Gamma_{0}(50),\chi)\leq 4 (cf. Remark 4.3). Let χ1,χ2,χ3,χ4\chi_{1},\chi_{2},\chi_{3},\chi_{4} denote respectively the characters given by (42). Then according to (14) and Lemma 6.1 we have

M1/2(Γ0(50),χ1)\displaystyle M_{1/2}(\Gamma_{0}(50),\chi_{1}) =η(τ)η(25τ),\displaystyle=\mathbb{C}\eta(\tau)\oplus\mathbb{C}\eta(25\tau),
M1/2(Γ0(50),χ2)\displaystyle M_{1/2}(\Gamma_{0}(50),\chi_{2}) =η(2τ)η(50τ),\displaystyle=\mathbb{C}\eta(2\tau)\oplus\mathbb{C}\eta(50\tau),
M1/2(Γ0(50),χ3)\displaystyle M_{1/2}(\Gamma_{0}(50),\chi_{3}) =η(τ)1η(2τ)2η(25τ)1η(50τ)2.\displaystyle=\mathbb{C}\eta(\tau)^{-1}\eta(2\tau)^{2}\oplus\mathbb{C}\eta(25\tau)^{-1}\eta(50\tau)^{2}.

Finding explicit generators of M1/2(Γ0(50),χ4)M_{1/2}(\Gamma_{0}(50),\chi_{4}) seems to be a bit harder since η(τ)10η(2τ)7η(5τ)4\eta(\tau)^{-10}\eta(2\tau)^{7}\eta(5\tau)^{4} is only a weakly holomorphic modular form. However, we have 7e2+4e511e1e2+e17e_{2}+4e_{5}-11e_{1}\sim-e_{2}+e_{1} module Z(50)Z(50) which can be verified by (39). It follows that

M1/2(Γ0(50),χ4)=η(τ)2η(2τ)1η(25τ)2η(50τ)1.M_{1/2}(\Gamma_{0}(50),\chi_{4})=\mathbb{C}\eta(\tau)^{2}\eta(2\tau)^{-1}\oplus\mathbb{C}\eta(25\tau)^{2}\eta(50\tau)^{-1}.

Finally note that M1/2(Γ0(50),χj)=S1/2(Γ0(50),χj)M_{1/2}(\Gamma_{0}(50),\chi_{j})=S_{1/2}(\Gamma_{0}(50),\chi_{j}) for j=1,2j=1,2, while the Eisenstein subspace of M1/2(Γ0(50),χj)M_{1/2}(\Gamma_{0}(50),\chi_{j}) is nontrivial for j=3,4j=3,4.

Example 7.4.

We consider another example N=20N=20 in which there are totally 384384 characters. They have been described in Example 6.13 with p=5p=5, α=1\alpha=1. We have 20={2,4,5}\mathscr{B}_{20}=\{2,4,5\} and (Δ1,Δ2,Δ3)=(8,8,6)(\Delta_{1},\Delta_{2},\Delta_{3})=(8,8,6). Therefore the characters are exactly those on Γ0(20)2~\widetilde{\Gamma_{0}(20)^{2}} of the following eta-quotients:

η(τ)1r2r4r5η(2τ)r2η(4τ)r4η(5τ)r5,0r2<8, 0r4<8, 0r5<6.\eta(\tau)^{1-r_{2}-r_{4}-r_{5}}\eta(2\tau)^{r_{2}}\eta(4\tau)^{r_{4}}\eta(5\tau)^{r_{5}},\quad 0\leq r_{2}<8,\,0\leq r_{4}<8,\,0\leq r_{5}<6.

Among the 384384 characters, for precisely the six characters χ\chi given by

(43) (r2,r4,r5)=(1,6,1),(3,0,5),(3,2,5),(5,6,0),(7,0,4),(7,2,4)(r_{2},r_{4},r_{5})=(1,6,1),\,(3,0,5),\,(3,2,5),\,(5,6,0),\,(7,0,4),\,(7,2,4)

one can compute dimM1/2(Γ0(20),χ)\dim_{\mathbb{C}}M_{1/2}(\Gamma_{0}(20),\chi) using Theorem 4.2 and the six dimensions all equal 11. For the other 378378 characters χ\chi our method only gives that 0dimM1/2(Γ0(20),χ)20\leq\dim_{\mathbb{C}}M_{1/2}(\Gamma_{0}(20),\chi)\leq 2 (cf. Remark 4.3). Let χ1,χ2,χ3,χ4,χ5,χ6\chi_{1},\chi_{2},\chi_{3},\chi_{4},\chi_{5},\chi_{6} denote respectively the characters given by (43). One can verify using (14) and Lemma 6.1 that

M1/2(Γ0(20),χ1)\displaystyle M_{1/2}(\Gamma_{0}(20),\chi_{1}) =η(5τ)2η(10τ)5η(20τ)2,\displaystyle=\mathbb{C}\eta(5\tau)^{-2}\eta(10\tau)^{5}\eta(20\tau)^{-2},\quad M1/2(Γ0(20),χ2)\displaystyle M_{1/2}(\Gamma_{0}(20),\chi_{2}) =η(5τ)2η(10τ)1,\displaystyle=\mathbb{C}\eta(5\tau)^{2}\eta(10\tau)^{-1},
M1/2(Γ0(20),χ3)\displaystyle M_{1/2}(\Gamma_{0}(20),\chi_{3}) =η(10τ)1η(20τ)2,\displaystyle=\mathbb{C}\eta(10\tau)^{-1}\eta(20\tau)^{2},\quad M1/2(Γ0(20),χ4)\displaystyle M_{1/2}(\Gamma_{0}(20),\chi_{4}) =η(τ)2η(2τ)5η(4τ)2,\displaystyle=\mathbb{C}\eta(\tau)^{-2}\eta(2\tau)^{5}\eta(4\tau)^{-2},
M1/2(Γ0(20),χ5)\displaystyle M_{1/2}(\Gamma_{0}(20),\chi_{5}) =η(τ)2η(2τ)1,\displaystyle=\mathbb{C}\eta(\tau)^{2}\eta(2\tau)^{-1},\quad M1/2(Γ0(20),χ6)\displaystyle M_{1/2}(\Gamma_{0}(20),\chi_{6}) =η(2τ)1η(4τ)2.\displaystyle=\mathbb{C}\eta(2\tau)^{-1}\eta(4\tau)^{2}.
Remark 7.5.

There are totally 188188 nonzero spaces M1/2(Γ0(N),χ)M_{1/2}(\Gamma_{0}(N),\chi) whose dimensions can be computed by Theorem 4.2 according to Table 1. Note that we restrict ourselves to the characters χ\chi of eta-quotients of cover index 22, so the dimension formulas summarized in Table 1 are not direct consequences of the well known theorem of Serre and Stark [14] that gives an explicit basis of M1/2(Γ0(N),χ1χ)M_{1/2}(\Gamma_{0}(N),\chi_{1}\chi) where 4N4\mid N, χ1\chi_{1} is the character of Euler theta function θ(τ)=η(τ)2η(2τ)5η(4τ)2\theta(\tau)=\eta(\tau)^{-2}\eta(2\tau)^{5}\eta(4\tau)^{-2} and χ\chi is the character induced by any even Dirichlet character (/N)××(\mathbb{Z}/N\mathbb{Z})^{\times}\to\mathbb{C}^{\times}. For instance, when N=12N=12, there are two even Dirichlet characters and hence the theorem of Serre and Stark gives explicit bases of two spaces M1/2(Γ0(12),χ)M_{1/2}(\Gamma_{0}(12),\chi). As a comparison, there are totally 11521152 characters of eta-quotients of weight 1/21/2, level 1212 and cover index 22 among which the dimensions of 318318 spaces can be computed by Theorem 4.2286286 spaces are zero-dimensional and 3232 spaces are one-dimensional.

Remark 7.6.

Zagier observed that there are exactly 1414 primitive (which means the greatest common divisor of all the nn with rn0r_{n}\neq 0 is equal to 11) eta-quotients of integral exponents that are modular forms of weight 1/21/2. This and the similar conjectures on higher weights were proved by Mersmann in his Master’s thesis. See [21] for a simpler proof. It seems that all the generators of the 188188 nonzero spaces M1/2(Γ0(N),χ)M_{1/2}(\Gamma_{0}(N),\chi) whose dimensions can be computed by Theorem 4.2 (cf. Table 1) take the form f(mτ)f(m\tau) where ff is one of the 1414 primitive eta-quotients and mm is a suitable positive integer. This is verified by the SageMath program for N=4,20,50N=4,20,50. See Appendix A for how to find the code doing this.

7.2. The weight 11

The dimensions obtained by the algorithm described above are summarized in Table LABEL:table:wt1. See Appendix A for the SageMath code that generates this kind of tables. Note that the characters are originally defined on Γ0(N)2~\widetilde{\Gamma_{0}(N)^{2}} since we are considering eta-quotients of cover index 22 but they actually descend to characters on the matrix groups Γ0(N)\Gamma_{0}(N) since the weight is 11.

Table 2. For each NN, aa means the total number of characters (cf. Corollary 6.9) and vv means the number of characters χ\chi such that dimM1(Γ0(N),χ)\dim_{\mathbb{C}}M_{1}(\Gamma_{0}(N),\chi) can be computed using Theorem 4.2, djd_{j} means the number of spaces of dimension jj for 0j80\leq j\leq 8.
NN aa vv d0d_{0} d1d_{1} d2d_{2} d3d_{3} d4d_{4} d5d_{5} d6d_{6} d7d_{7} d8d_{8}
11 11 11 0 11 0 0 0 0 0 0 0
22 2424 2424 1717 77 0 0 0 0 0 0 0
33 1212 1212 77 55 0 0 0 0 0 0 0
44 192192 173173 142142 3131 0 0 0 0 0 0 0
55 66 66 33 33 0 0 0 0 0 0 0
66 288288 250250 189189 6060 11 0 0 0 0 0 0
77 44 44 11 33 0 0 0 0 0 0 0
88 384384 331331 247247 8383 11 0 0 0 0 0 0
99 3636 2929 1717 1111 11 0 0 0 0 0 0
1010 4848 4646 2020 2222 44 0 0 0 0 0 0
1111 1212 11 0 11 0 0 0 0 0 0 0
1212 11521152 947947 617617 305305 2424 11 0 0 0 0 0
1313 22 22 0 11 11 0 0 0 0 0 0
1414 9696 2121 0 2020 11 0 0 0 0 0 0
1515 7272 1818 0 1616 22 0 0 0 0 0 0
1616 384384 293293 166166 108108 1818 11 0 0 0 0 0
1717 66 44 0 44 0 0 0 0 0 0 0
1818 288288 217217 113113 7575 2525 33 11 0 0 0 0
1919 44 33 0 33 0 0 0 0 0 0 0
2020 384384 9696 0 7272 2424 0 0 0 0 0 0
2121 2424 1414 0 88 66 0 0 0 0 0 0
2222 9696 11 0 0 11 0 0 0 0 0 0
2424 23042304 658658 0 480480 176176 0 22 0 0 0 0
2525 66 44 11 11 11 11 0 0 0 0 0
2626 4848 44 0 0 44 0 0 0 0 0 0
2727 3636 1515 0 99 55 11 0 0 0 0 0
2828 384384 1111 0 0 1010 11 0 0 0 0 0
3030 576576 22 0 0 0 0 22 0 0 0 0
3232 384384 146146 0 100100 3636 88 22 0 0 0 0
3636 11521152 412412 0 198198 168168 3030 1515 0 11 0 0
3737 22 11 0 0 11 0 0 0 0 0 0
4040 768768 22 0 0 0 0 22 0 0 0 0
4545 7272 22 0 0 0 0 22 0 0 0 0
4848 23042304 5858 0 0 0 1616 4040 0 22 0 0
4949 44 22 0 0 11 0 11 0 0 0 0
5050 4848 2626 0 0 1919 0 0 77 0 0 0
5454 288288 11 0 0 0 0 0 0 11 0 0
6464 384384 1818 0 0 0 0 1616 0 22 0 0
7272 23042304 22 0 0 0 0 0 0 0 0 22
7575 7272 22 0 0 0 0 0 0 22 0 0
8181 3636 11 0 0 0 0 0 0 11 0 0
9898 9696 11 0 0 0 0 0 0 0 0 11
121121 1212 11 0 0 0 0 0 0 11 0 0

We focus on the level 9898 in the rest of this subsection. According to Table LABEL:table:wt1, there are totally 9696 characters χ\chi of eta-quotients of weight 11, level 9898 and cover index 22. They correspond to 9696 independent spaces M1(Γ0(98),χ)M_{1}(\Gamma_{0}(98),\chi) among which the dimension of exactly one space can be computed by Theorem 4.2, namely, the space where χ\chi is the character of η(τ)15η(2τ)16η(7τ)\eta(\tau)^{-15}\eta(2\tau)^{16}\eta(7\tau). For this χ\chi we have dimM1(Γ0(98),χ)=8\dim_{\mathbb{C}}M_{1}(\Gamma_{0}(98),\chi)=8. One can show that χ(abcd)=(7d)\chi\left(\begin{smallmatrix}{a}&{b}\\ {c}&{d}\end{smallmatrix}\right)=\genfrac{(}{)}{}{}{-7}{d} by, for instance, a result of Gordon, Hughes and Newman (cf. [39, Theorem 1.64]) or by checking directly for (abcd)\left(\begin{smallmatrix}{a}&{b}\\ {c}&{d}\end{smallmatrix}\right) being in a set of generators of Γ0(98)\Gamma_{0}(98). Thus, an explicit basis can be given using Eisenstein series constructed by Weisinger [40]. See also [29, Theorem 8.5.23]. This shows there is no cusp form in M1(Γ0(98),χ)M_{1}(\Gamma_{0}(98),\chi), which can also be proved using the tools developed in [15].

One may ask: is the space M1(Γ0(98),χ)M_{1}(\Gamma_{0}(98),\chi) generated by holomorphic eta-quotients? The answer is no. According to (14), the functions

η(τ)1η(2τ)2η(7τ)1η(14τ)2\displaystyle\eta(\tau)^{-1}\eta(2\tau)^{2}\eta(7\tau)^{-1}\eta(14\tau)^{2} =q+q2+q4+q7+q8+q9+2q11+q14+\displaystyle=q+q^{2}+q^{4}+q^{7}+q^{8}+q^{9}+2q^{11}+q^{14}+\dots
η(τ)2η(2τ)1η(7τ)2η(14τ)1\displaystyle\eta(\tau)^{2}\eta(2\tau)^{-1}\eta(7\tau)^{2}\eta(14\tau)^{-1} =12q+2q42q7+4q82q94q11+6q16+\displaystyle=1-2q+2q^{4}-2q^{7}+4q^{8}-2q^{9}-4q^{11}+6q^{16}+\dots
η(7τ)1η(14τ)2η(49τ)1η(98τ)2\displaystyle\eta(7\tau)^{-1}\eta(14\tau)^{2}\eta(49\tau)^{-1}\eta(98\tau)^{2} =q7+q14+q28+q49+q56+q63+2q77+q98+\displaystyle=q^{7}+q^{14}+q^{28}+q^{49}+q^{56}+q^{63}+2q^{77}+q^{98}+\dots
η(7τ)2η(14τ)1η(49τ)2η(98τ)1\displaystyle\eta(7\tau)^{2}\eta(14\tau)^{-1}\eta(49\tau)^{2}\eta(98\tau)^{-1} =12q7+2q282q49+4q562q634q77+6q112+\displaystyle=1-2q^{7}+2q^{28}-2q^{49}+4q^{56}-2q^{63}-4q^{77}+6q^{112}+\dots

are holomorphic eta-quotients of level 9898. Using Lemma 6.1 the characters of these four modular forms are equal to χ\chi and hence they belong to M1(Γ0(98),χ)M_{1}(\Gamma_{0}(98),\chi). By their qq-coefficients these four functions are linearly independent. However there are no other holomorphic eta-quotients of cover index 22 in M1(Γ0(98),χ)M_{1}(\Gamma_{0}(98),\chi) so this space can not be generated by a set consisting of all eta-quotients. This can be seen as follows. Let f(τ)=n98η(nτ)rnf(\tau)=\prod_{n\mid 98}\eta(n\tau)^{r_{n}} be in M1(Γ0(98),χ)M_{1}(\Gamma_{0}(98),\chi) with rnr_{n}\in\mathbb{Z}. Then xc0x_{c}\in\mathbb{Z}_{\geq 0} for any c98c\mid 98 where xcx_{c} is given by (19). According to Theorem 3.2 (applied to ff), (14) and the complete set of representatives of Γ0(98)\1()\Gamma_{0}(98)\backslash\mathbb{P}^{1}(\mathbb{Q}) described in the proof of Proposition 3.4 we have x1+x2+6x7+6x14+x49+x98=336x_{1}+x_{2}+6x_{7}+6x_{14}+x_{49}+x_{98}=336 of which there are only finitely many solutions (xc)c98(x_{c})_{c\mid 98}. For each solution, we obtain (rn)n98(r_{n})_{n\mid 98} via (27) and then check whether rnr_{n}\in\mathbb{Z} and the character corresponding to (rn)n98(r_{n})_{n\mid 98} is the same as χ\chi using Lemma 6.1. In this way we find that there are exactly four holomorphic eta-quotients of cover index 22 in M1(Γ0(98),χ)M_{1}(\Gamma_{0}(98),\chi) (totally 6969 holomorphic eta-quotients, 5757 of which are primitive).

7.3. The weight 3/23/2

There are totally 1786217862 spaces M3/2(Γ0(N),χ)M_{3/2}(\Gamma_{0}(N),\chi) whose dimensions can be calculated using Theorem 4.2. Among these spaces, the largest level is N=400N=400 and the largest dimension is 4848. See Appendix A for the usage of SageMath code that gives these data. The following observation will be used later: the dimensions of these 1786217862 spaces are all greater than 11 when N>36N>36.

8. Application: one-dimensional spaces and Eisenstein series of rational weights

In [16, Section 7], the author gives infinitely many identities whose left-hand sides are Eisenstein series and right-hand sides are eta-quotients of rational weights for the levels 22 and 33. Using Theorem 4.2 (with t=0t=0), we find new identities of this kind for the level 44 in this section.

First let us rewrite Theorem 4.2 more explicitly for N=4N=4. We have m=6m=6, ε2=ε3=0\varepsilon_{2}=\varepsilon_{3}=0. Let r1r_{1}, r2r_{2}, r4r_{4} be rational numbers and set k=12(r1+r2+r4)k=\frac{1}{2}(r_{1}+r_{2}+r_{4}). Let

(44) (x1x2x4)=(421121124)(r1r2r4).\begin{pmatrix}x_{1}\\ x_{2}\\ x_{4}\end{pmatrix}=\begin{pmatrix}4&2&1\\ 1&2&1\\ 1&2&4\end{pmatrix}\cdot\begin{pmatrix}r_{1}\\ r_{2}\\ r_{4}\end{pmatrix}.

Our aim is to find an Eisenstein series E(τ)E(\tau) of weight kk equal to f(τ)=η(τ)r1η(2τ)r2η(4τ)r4f(\tau)=\eta(\tau)^{r_{1}}\eta(2\tau)^{r_{2}}\eta(4\tau)^{r_{4}}. We only consider the Eisenstein series defined at the cusp i\mathrm{i}\infty, so assume x4=0x_{4}=0 which means ff does not vanish at the cusp i\mathrm{i}\infty. Since ff must be a holomorphic eta-quotient, we assume x1,x20x_{1},x_{2}\geq 0. Therefore,

x1=6r215r40,x2=3r40,hence k=12(r23r4)0.x_{1}=-6r_{2}-15r_{4}\geq 0,\quad x_{2}=-3r_{4}\geq 0,\quad\text{hence }k=\frac{1}{2}(-r_{2}-3r_{4})\geq 0.

Now the first inequality in (21) becomes k>4+2({x124}+{x224})k>-4+2\left(\left\{\frac{x_{1}}{24}\right\}+\left\{\frac{x_{2}}{24}\right\}\right), which holds since k0k\geq 0. Consequently, (22) with t=0t=0 is applicable. We summarize:

Proposition 8.1.

Let r2r_{2} and r4r_{4} be rational numbers satisfying 2r25r40-2r_{2}-5r_{4}\geq 0 and r40-r_{4}\geq 0. Let D1D\in\mathbb{Z}_{\geq 1} such that Dr2,Dr42Dr_{2},\,Dr_{4}\in 2\mathbb{Z}. Then we have

dimMk(Γ0(4),χ)=[2r25r48]+[r48]+1,\dim_{\mathbb{C}}M_{k}(\Gamma_{0}(4),\chi)=\left[\frac{-2r_{2}-5r_{4}}{8}\right]+\left[\frac{-r_{4}}{8}\right]+1,

where χ:Γ0(4)D~×\chi\colon\widetilde{\Gamma_{0}(4)^{D}}\to\mathbb{C}^{\times} is the character of η(τ)2r24r4η(2τ)r2η(4τ)r4\eta(\tau)^{-2r_{2}-4r_{4}}\eta(2\tau)^{r_{2}}\eta(4\tau)^{r_{4}} and k=12(r23r4)k=\frac{1}{2}(-r_{2}-3r_{4}).

Proof.

We have shown that (22) with t=0t=0 holds. A simplification gives the desired formula. ∎

Corollary 8.2.

Let the notation and assumptions be as in Proposition 8.1. Then dimMk(Γ0(4),χ)=1\dim_{\mathbb{C}}M_{k}(\Gamma_{0}(4),\chi)=1 if and only if

02r25r4<8and0r4<8.0\leq-2r_{2}-5r_{4}<8\quad\text{and}\quad 0\leq-r_{4}<8.

Moreover, suppose dimMk(Γ0(4),χ)=1\dim_{\mathbb{C}}M_{k}(\Gamma_{0}(4),\chi)=1; then k>2k>2 if and only if (2r25r4)+(r4)>8(-2r_{2}-5r_{4})+(-r_{4})>8.

Note that when dimMk(Γ0(4),χ)=1\dim_{\mathbb{C}}M_{k}(\Gamma_{0}(4),\chi)=1, then Mk(Γ0(4),χ)=η(τ)2r24r4η(2τ)r2η(4τ)r4M_{k}(\Gamma_{0}(4),\chi)=\mathbb{C}\eta(\tau)^{-2r_{2}-4r_{4}}\eta(2\tau)^{r_{2}}\eta(4\tau)^{r_{4}}. Hence if Mk(Γ0(4),χ)M_{k}(\Gamma_{0}(4),\chi) contains an Eisenstein series, then an identity that relates the eta-quotient and the Eisenstein series follows. In the rest we only consider the case k>2k>2 in which nonholomorphic Eisenstein series are avoided. Similar identities can also be derived in the cases k<2k<2, which we will do in the future work.

Recall the definition of Eisenstein series of rational weights greater than 22:

Definition 8.3 (Definition 3.1, [16]).

Let D,ND,N be positive integers, and let k1Dk\in\frac{1}{D}\mathbb{Z} that is greater than 22. Let χ:Γ0(N)D~×\chi\colon\widetilde{\Gamma_{0}(N)^{D}}\to\mathbb{C}^{\times} be a finite index character such that χ(I~)=𝔢(k/2)\chi(\widetilde{-I})=\mathfrak{e}\left(-k/2\right). Let s1()s\in\mathbb{P}^{1}(\mathbb{Q}) and γsSL2()\gamma_{s}\in\mathrm{SL}_{2}(\mathbb{Z}) such that γs(i)=s\gamma_{s}(\mathrm{i}\infty)=s. If χ(γs~T~wsγs~1)=1\chi(\widetilde{\gamma_{s}}\widetilde{T}^{w_{s}}\widetilde{\gamma_{s}}^{-1})=1, then we define the Eisenstein series Eγs,kE_{\gamma_{s},k} on the group Γ0(N)D~\widetilde{\Gamma_{0}(N)^{D}}, of weight kk, with character χ\chi and at cusp γs\gamma_{s} as

Eγs,k(τ)=γγs~T~wsγs~1\Γ0(N)D~χ(γ)11|kγs~1γ.E_{\gamma_{s},k}(\tau)=\sum_{\gamma\in\widetilde{\gamma_{s}}\langle\widetilde{T}^{w_{s}}\rangle\widetilde{\gamma_{s}}^{-1}\backslash\widetilde{\Gamma_{0}(N)^{D}}}\chi(\gamma)^{-1}\cdot 1|_{k}\widetilde{\gamma_{s}}^{-1}\gamma.

In the above definition, wsw_{s} is the width (c.f. Section 3). If s=a/cs=a/c where a,ca,c are coprime integers, then ws=N(N,c2)w_{s}=\frac{N}{(N,c^{2})}. The basic properties of these Eγs,kE_{\gamma_{s},k} are collected in [16, Section 3].

Now let N=4N=4 and let χ\chi be as in Proposition 8.1. Since χ(T~)=1\chi(\widetilde{T})=1 the Eisenstein series EI,k(τ)E_{I,k}(\tau) is well-defined provided that k>2k>2, that is, (2r25r4)+(r4)>8(-2r_{2}-5r_{4})+(-r_{4})>8. The main result of this section is the following:

Theorem 8.4.

Let r2r_{2} and r4r_{4} be rational numbers satisfying

(45) 02r25r4<8,0r4<8,(2r25r4)+(r4)>8.0\leq-2r_{2}-5r_{4}<8,\quad 0\leq-r_{4}<8,\quad(-2r_{2}-5r_{4})+(-r_{4})>8.

Let DD be a positive integer such that Dr2,Dr42Dr_{2},\,Dr_{4}\in 2\mathbb{Z}. Let χ:Γ0(4)D~×\chi\colon\widetilde{\Gamma_{0}(4)^{D}}\to\mathbb{C}^{\times} be the character of η(τ)2r24r4η(2τ)r2η(4τ)r4\eta(\tau)^{-2r_{2}-4r_{4}}\eta(2\tau)^{r_{2}}\eta(4\tau)^{r_{4}}. Set k=12(r23r4)k=\frac{1}{2}(-r_{2}-3r_{4}) and

EI,k(τ)=EI,k(τ;r2,r4)=γT~\Γ0(4)D~χ(γ)11|kγ.E_{I,k}(\tau)=E_{I,k}(\tau;r_{2},r_{4})=\sum_{\gamma\in\langle\widetilde{T}\rangle\backslash\widetilde{\Gamma_{0}(4)^{D}}}\chi(\gamma)^{-1}\cdot 1|_{k}\gamma.

Then we have

(46) η(τ)2r24r4η(2τ)r2η(4τ)r4=12DEI,k(τ;r2,r4).\eta(\tau)^{-2r_{2}-4r_{4}}\eta(2\tau)^{r_{2}}\eta(4\tau)^{r_{4}}=\frac{1}{2D}E_{I,k}(\tau;r_{2},r_{4}).
Proof.

Corollary 8.2 shows that dimMk(Γ0(4),χ)=1\dim_{\mathbb{C}}M_{k}(\Gamma_{0}(4),\chi)=1. Let x1x_{1}, x2x_{2} and x4x_{4} be as in (44) with r1=2r24r4r_{1}=-2r_{2}-4r_{4}. Then the assumptions imply that x10x_{1}\geq 0, x20x_{2}\geq 0 and x4=0x_{4}=0. Thus η(τ)2r24r4η(2τ)r2η(4τ)r4\eta(\tau)^{-2r_{2}-4r_{4}}\eta(2\tau)^{r_{2}}\eta(4\tau)^{r_{4}} is holomorphic at all cusps and hence is in Mk(Γ0(4),χ)M_{k}(\Gamma_{0}(4),\chi). By [16, Theorem 3.3] we have EI,kMk(Γ0(4),χ)E_{I,k}\in M_{k}(\Gamma_{0}(4),\chi). It follows that η(τ)2r24r4η(2τ)r2η(4τ)r4=cEI,k\eta(\tau)^{-2r_{2}-4r_{4}}\eta(2\tau)^{r_{2}}\eta(4\tau)^{r_{4}}=c\cdot E_{I,k}. Let τ+\Im\tau\to+\infty; we find that c=12Dc=\frac{1}{2D} again by [16, Theorem 3.3]. ∎

In the rest of this section we will write out the Fourier expansion of 12DEI,k(τ)\frac{1}{2D}E_{I,k}(\tau) which will give us a more explicit form of the identity (46).

Lemma 8.5.

For any rational numbers r2,r4r_{2},r_{4} with k=12(r23r4)>2k=\frac{1}{2}(-r_{2}-3r_{4})>2 we have

12DEI,k(τ;r2,r4)=1+4c>0,d(c,d)=1𝔢(124P(c,d;r2,r4))(cτ+d)k\frac{1}{2D}E_{I,k}(\tau;r_{2},r_{4})=1+\sum_{\begin{subarray}{c}{4\mid c>0,d\in\mathbb{Z}}\\ {(c,d)=1}\end{subarray}}\mathfrak{e}\left(-\frac{1}{24}P(c,d;r_{2},r_{4})\right)\cdot(c\tau+d)^{-k}

where

P(c,d;r2,r4)\displaystyle P(c,d;r_{2},r_{4}) =r2(Ψ(a2bc/2d)2Ψ(abcd))+r4(Ψ(a4bc/4d)4Ψ(abcd))\displaystyle=r_{2}\cdot\left(\Psi\begin{pmatrix}{a}&{2b}\\ {c/2}&{d}\end{pmatrix}-2\Psi\begin{pmatrix}{a}&{b}\\ {c}&{d}\end{pmatrix}\right)+r_{4}\cdot\left(\Psi\begin{pmatrix}{a}&{4b}\\ {c/4}&{d}\end{pmatrix}-4\Psi\begin{pmatrix}{a}&{b}\\ {c}&{d}\end{pmatrix}\right)
(47) =r2(12s(d,c/2)24s(d,c)+3)+r4(12s(d,c/4)48s(d,c)+9)\displaystyle=r_{2}\cdot\left(12s(-d,c/2)-24s(-d,c)+3\right)+r_{4}\cdot\left(12s(-d,c/4)-48s(-d,c)+9\right)

with a,ba,b being any integers such that adbc=1ad-bc=1.

Proof.

According to [16, Lemma 3.2],

EI,k(τ;r2,r4)=D4c,d(c,d)=1χ(abcd)~1(cτ+d)kE_{I,k}(\tau;r_{2},r_{4})=D\cdot\sum_{\begin{subarray}{c}{4\mid c\in\mathbb{Z},d\in\mathbb{Z}}\\ {(c,d)=1}\end{subarray}}\chi\widetilde{\left(\begin{smallmatrix}{a}&{b}\\ {c}&{d}\end{smallmatrix}\right)}^{-1}\cdot(c\tau+d)^{-k}

where a,ba,b are any integers such that adbc=1ad-bc=1. By Remark 2.2, χ(I~)=𝔢(k/2)\chi\left(\widetilde{-I}\right)=\mathfrak{e}\left(-k/2\right). It follows that

χ(abcd)~1(cτ+d)k=χ(abcd)~1(cτd)k.\chi\widetilde{\left(\begin{smallmatrix}{a}&{b}\\ {c}&{d}\end{smallmatrix}\right)}^{-1}\cdot(c\tau+d)^{-k}=\chi\widetilde{\left(\begin{smallmatrix}{-a}&{-b}\\ {-c}&{-d}\end{smallmatrix}\right)}^{-1}\cdot(-c\tau-d)^{-k}.

Thus

12DEI,k(τ;r2,r4)=1+4c>0,d(c,d)=1χ(abcd)~1(cτ+d)k.\frac{1}{2D}E_{I,k}(\tau;r_{2},r_{4})=1+\sum_{\begin{subarray}{c}{4\mid c>0,d\in\mathbb{Z}}\\ {(c,d)=1}\end{subarray}}\chi\widetilde{\left(\begin{smallmatrix}{a}&{b}\\ {c}&{d}\end{smallmatrix}\right)}^{-1}\cdot(c\tau+d)^{-k}.

Substituting (6) and (5) in the above expression gives the desired formula. ∎

Proposition 8.6.

With the notation being as above, we have

12DEI,k(τ;r2,r4)=1+eπik/2(2π)kΓ(k)n1nk1a(n)qn,\frac{1}{2D}E_{I,k}(\tau;r_{2},r_{4})=1+\mathrm{e}^{-\uppi\mathrm{i}k/2}\frac{(2\uppi)^{k}}{\Gamma(k)}\sum_{n\in\mathbb{Z}_{\geq 1}}n^{k-1}a(n)\cdot q^{n},

where

a(n)=c11(4c)k0d<4c(d,4c)=1𝔢(dn4c124P(4c,d;r2,r4)).a(n)=\sum_{c\in\mathbb{Z}_{\geq 1}}\frac{1}{(4c)^{k}}\sum_{\begin{subarray}{c}{0\leq d<4c}\\ {(d,4c)=1}\end{subarray}}\mathfrak{e}\left(\frac{dn}{4c}-\frac{1}{24}P(4c,d;r_{2},r_{4})\right).
Proof.

For dd\in\mathbb{Z}, c1c\in\mathbb{Z}_{\geq 1} set

f(d,c)={𝔢(124P(c,d;r2,r4)) if 4c and (d,c)=1;0 if 4c and (d,c)=1;f(d(d,c),c(d,c)) if (d,c)>1.f(d,c)=\begin{dcases}\mathfrak{e}\left(-\frac{1}{24}P(c,d;r_{2},r_{4})\right)&\text{ if }4\mid c\text{ and }(d,c)=1;\\ 0&\text{ if }4\nmid c\text{ and }(d,c)=1;\\ f\left(\frac{d}{(d,c)},\frac{c}{(d,c)}\right)&\text{ if }(d,c)>1.\end{dcases}

Thus, 12DEI,k(τ;r2,r4)=1+ζ(k)1c1,df(d,c)(cτ+d)k\frac{1}{2D}E_{I,k}(\tau;r_{2},r_{4})=1+\zeta(k)^{-1}\cdot\sum_{c\in\mathbb{Z}_{\geq 1},d\in\mathbb{Z}}f(d,c)(c\tau+d)^{-k} since t(c,d)μ(t)=0\sum_{t\mid(c,d)}\mu(t)=0 if (c,d)>1(c,d)>1 and tμ(t)tk=ζ(k)1\sum_{t}\frac{\mu(t)}{t^{k}}=\zeta(k)^{-1}, where ζ\zeta is the Riemann zeta function and μ\mu is the Möbius function. Note that f(d+c,c)=f(d,c)f(d+c,c)=f(d,c). This fact, together with the Lipschitz summation formula

n1(τ+n)s=eπis/2(2π)sΓ(s)n1ns1e2πinτ,τ,(s)>1\sum_{n\in\mathbb{Z}}\frac{1}{(\tau+n)^{s}}=\mathrm{e}^{-\uppi\mathrm{i}s/2}\frac{(2\uppi)^{s}}{\Gamma(s)}\sum_{n\geq 1}n^{s-1}\mathrm{e}^{2\uppi\mathrm{i}n\tau},\quad\tau\in\mathfrak{H},\,\Re(s)>1

implies that

df(d,c)(cτ+d)k\displaystyle\sum_{d\in\mathbb{Z}}f(d,c)(c\tau+d)^{-k} =ck0d1<cf(d1,c)d0(τ+d1c+d0)k\displaystyle=c^{-k}\sum_{0\leq d_{1}<c}f(d_{1},c)\sum_{d_{0}\in\mathbb{Z}}(\tau+\frac{d_{1}}{c}+d_{0})^{-k}
=eπik/2(2π)kΓ(k)ckn1nk10d<cf(d,c)𝔢(dnc)qn.\displaystyle=\mathrm{e}^{-\uppi\mathrm{i}k/2}\frac{(2\uppi)^{k}}{\Gamma(k)}c^{-k}\sum_{n\in\mathbb{Z}_{\geq 1}}n^{k-1}\sum_{0\leq d<c}f(d,c)\mathfrak{e}\left(\frac{dn}{c}\right)q^{n}.

Therefore,

(48) 12DEI,k(τ;r2,r4)=1+eπik/2(2π)kΓ(k)ζ(k)n1nk1c11ck0d<cf(d,c)𝔢(dnc)qn.\frac{1}{2D}E_{I,k}(\tau;r_{2},r_{4})=1+\mathrm{e}^{-\uppi\mathrm{i}k/2}\frac{(2\uppi)^{k}}{\Gamma(k)\zeta(k)}\sum_{n\in\mathbb{Z}_{\geq 1}}n^{k-1}\sum_{c\in\mathbb{Z}_{\geq 1}}\frac{1}{c^{k}}\sum_{0\leq d<c}f(d,c)\mathfrak{e}\left(\frac{dn}{c}\right)q^{n}.

By the definition of f(d,c)f(d,c) we find that

c11ck0d<cf(d,c)𝔢(dnc)\displaystyle\sum_{c\in\mathbb{Z}_{\geq 1}}\frac{1}{c^{k}}\sum_{0\leq d<c}f(d,c)\mathfrak{e}\left(\frac{dn}{c}\right) =t1c1,0d<c(d,c)=t1(tc)kf(td,tc)𝔢(dnc)\displaystyle=\sum_{t\in\mathbb{Z}_{\geq 1}}\sum_{\begin{subarray}{c}{c\in\mathbb{Z}_{\geq 1},0\leq d<c}\\ {(d,c)=t}\end{subarray}}\frac{1}{(tc)^{k}}f(td,tc)\mathfrak{e}\left(\frac{dn}{c}\right)
=ζ(k)c1,0d<4c(d,4c)=11(4c)kf(d,4c)𝔢(dn4c)\displaystyle=\zeta(k)\cdot\sum_{\begin{subarray}{c}{c\in\mathbb{Z}_{\geq 1},0\leq d<4c}\\ {(d,4c)=1}\end{subarray}}\frac{1}{(4c)^{k}}f(d,4c)\mathfrak{e}\left(\frac{dn}{4c}\right)
=ζ(k)c1,0d<4c(d,4c)=11(4c)k𝔢(dn4c124P(4c,d;r2,r4)).\displaystyle=\zeta(k)\cdot\sum_{\begin{subarray}{c}{c\in\mathbb{Z}_{\geq 1},0\leq d<4c}\\ {(d,4c)=1}\end{subarray}}\frac{1}{(4c)^{k}}\mathfrak{e}\left(\frac{dn}{4c}-\frac{1}{24}P(4c,d;r_{2},r_{4})\right).

Inserting this into (48) gives the desired formula. ∎

Remark 8.7.

The reader may compare the above proposition with [16, Theorem 6.2].

We can now give an equivalent statement of Theorem 8.4 in a form that gives Fourier coefficients of certain infinite qq-products:

Corollary 8.8.

Let r2r_{2} and r4r_{4} be rational numbers satisfying (45). Let DD be a positive integer such that Dr2,Dr42Dr_{2},\,Dr_{4}\in 2\mathbb{Z}. Let n0c(n)qn\sum_{n\in\mathbb{Z}_{\geq 0}}c(n)q^{n} be the holomorphic branch of the DD-th root of the infinite product

n1(1qn)2Dr24Dr4n1(1q2n)Dr2n1(1q4n)Dr4\prod_{n\in\mathbb{Z}_{\geq 1}}(1-q^{n})^{-2Dr_{2}-4Dr_{4}}\prod_{n\in\mathbb{Z}_{\geq 1}}(1-q^{2n})^{Dr_{2}}\prod_{n\in\mathbb{Z}_{\geq 1}}(1-q^{4n})^{Dr_{4}}

with c(0)=1c(0)=1. Then for n1n\geq 1 we have

c(n)=eπik/2(2π)kΓ(k)nk1c11(4c)k0d<4c(d,4c)=1𝔢(dn4c124P(4c,d;r2,r4)).c(n)=\mathrm{e}^{-\uppi\mathrm{i}k/2}\frac{(2\uppi)^{k}}{\Gamma(k)}n^{k-1}\sum_{c\in\mathbb{Z}_{\geq 1}}\frac{1}{(4c)^{k}}\sum_{\begin{subarray}{c}{0\leq d<4c}\\ {(d,4c)=1}\end{subarray}}\mathfrak{e}\left(\frac{dn}{4c}-\frac{1}{24}P(4c,d;r_{2},r_{4})\right).

(See (47) for the definition of P(4c,d;r2,r4)P(4c,d;r_{2},r_{4}).)

Proof.

There are exactly DD holomorphic branches and the one with the leading term 11 is the eta-quotient η(τ)2r24r4η(2τ)r2η(4τ)r4\eta(\tau)^{-2r_{2}-4r_{4}}\eta(2\tau)^{r_{2}}\eta(4\tau)^{r_{4}}. Now the assertion follows from Theorem 8.4 and Proposition 8.6. ∎

Example 8.9.

Let us consider the special case r2=0r_{2}=0, r4=32r_{4}=-\frac{3}{2} for which (45) holds. Note that k=12(r23r4)=94k=\frac{1}{2}(-r_{2}-3r_{4})=\frac{9}{4}. Set D=4D=4. Then Corollary 8.8 shows

n1(1qn)6n1(1q4n)3=1+e9πi/8(2π)94Γ(94)n1n54(c11(4c)940d<4c(d,4c)=1𝔢(dn4c124P(4c,d;0,32)))qn,\frac{\prod_{n\in\mathbb{Z}_{\geq 1}}(1-q^{n})^{6}}{\sqrt{\prod_{n\in\mathbb{Z}_{\geq 1}}(1-q^{4n})^{3}}}=1+\mathrm{e}^{-9\uppi\mathrm{i}/8}\frac{(2\uppi)^{\frac{9}{4}}}{\Gamma(\frac{9}{4})}\sum_{n\in\mathbb{Z}_{\geq 1}}n^{\frac{5}{4}}\left(\sum_{c\in\mathbb{Z}_{\geq 1}}\frac{1}{(4c)^{\frac{9}{4}}}\sum_{\begin{subarray}{c}{0\leq d<4c}\\ {(d,4c)=1}\end{subarray}}\mathfrak{e}\left(\frac{dn}{4c}-\frac{1}{24}P(4c,d;0,-\frac{3}{2})\right)\right)\cdot q^{n},

where the square root is the principal branch n1(1q4n)3=1+o(1)\sqrt{\prod_{n\in\mathbb{Z}_{\geq 1}}(1-q^{4n})^{3}}=1+o(1) and

P(4c,d;0,32)=18s(d,c)+72s(d,4c)272.P(4c,d;0,-\frac{3}{2})=-18s(-d,c)+72s(-d,4c)-\frac{27}{2}.

(See (4) for the definition of s(d,c)s(-d,c).) For numerical check (of this and the next examples) using SageMath programs, see Appendix A.

Example 8.10.

Corollary 8.8 contains as well some identities involving ordinary eta-quotients, that is, eta-quotients with integral exponents. For instance, set r2=7r_{2}=7, r4=4r_{4}=-4 and hence k=12(r23r4)=52k=\frac{1}{2}(-r_{2}-3r_{4})=\frac{5}{2} and D=2D=2. For this setting, (45) holds. The identity reads

n1(1qn)2(1q2n)7(1q4n)4=1+e5πi/4(2π)52Γ(52)n1n32c11(4c)520d<4c(d,4c)=1𝔢(dn4c124P(4c,d;7,4))qn\prod_{n\in\mathbb{Z}_{\geq 1}}(1-q^{n})^{2}(1-q^{2n})^{7}(1-q^{4n})^{-4}\\ =1+\mathrm{e}^{-5\uppi\mathrm{i}/4}\frac{(2\uppi)^{\frac{5}{2}}}{\Gamma(\frac{5}{2})}\sum_{n\in\mathbb{Z}_{\geq 1}}n^{\frac{3}{2}}\sum_{c\in\mathbb{Z}_{\geq 1}}\frac{1}{(4c)^{\frac{5}{2}}}\sum_{\begin{subarray}{c}{0\leq d<4c}\\ {(d,4c)=1}\end{subarray}}\mathfrak{e}\left(\frac{dn}{4c}-\frac{1}{24}P(4c,d;7,-4)\right)\cdot q^{n}

where

P(4c,d;7,4)=48s(d,c)+84s(d,2c)+24s(d,4c)15.P(4c,d;7,-4)=-48s(-d,c)+84s(-d,2c)+24s(-d,4c)-15.

We will return to this function, i.e., η(τ)2η(2τ)7η(4τ)4\eta(\tau)^{2}\eta(2\tau)^{7}\eta(4\tau)^{-4} in the next section (c.f. Section 9.4.1) and show that it is, among others, a Hecke eigenform in a generalized sense. (In [20, Section 4], the authors obtained some Hecke eigenforms in the generalized sense. However, for N=4N=4, only Hecke eigenforms of weight 1/21/2, 11, 3/23/2 are obtained. The current example gives a Hecke eigenform of weight 5/25/2 which can not be achieved using methods in [20].)

9. Application: an extension of Martin’s list of multiplicative eta-quotients

In 1996 Martin [17] obtained the complete list of integral-weight holomorphic eta-quotients that are eigenforms for all Hecke operators. This generalized a previous result of Dummit, Kisilevsky and McKay [41]. The term “eta-quotient” in [17] refers to one whose multiplier system is induced by a Dirichlet character (necessarily real) and the Hecke operators are in the sense of [18].

In this section, we provide an algorithm for finding out all holomorphic eta-quotients f(τ)=n1η(nτ)rnf(\tau)=\prod_{n\geq 1}\eta(n\tau)^{r_{n}} of integral exponents rnr_{n} (integral or half-integral weights) and of arbitrary multiplier systems such that either of the following conditions holds:

  1. (a)

    dimMk(Γ0(N),χ)\dim_{\mathbb{C}}M_{k}(\Gamma_{0}(N),\chi) can be computed using Theorem 4.2 (with t=0t=0) and is equal to 11,

  2. (b)

    dimMk(Γ0(N),χ)\dim_{\mathbb{C}}M_{k}(\Gamma_{0}(N),\chi) can be computed using Theorem 4.2 (with t=0t=0) and is greater than 11, ff is a cusp form, k>2k>2 and there exist dimMk(Γ0(N),χ)1\dim_{\mathbb{C}}M_{k}(\Gamma_{0}(N),\chi)-1 linearly independent Eisenstein series in Mk(Γ0(N),χ)M_{k}(\Gamma_{0}(N),\chi) (c.f. Definition 8.3),

where k=12nrnk=\frac{1}{2}\sum_{n}r_{n} is the weight, NN is the least common multiple of all nn with rn0r_{n}\neq 0 (when rn=0r_{n}=0 for all nn, let N=1N=1) and χ\chi is the character Γ0(N)~×\widetilde{\Gamma_{0}(N)}\rightarrow\mathbb{C}^{\times} of ff. (Note that throughout this section Γ0(N)~=Γ0(N)2~\widetilde{\Gamma_{0}(N)}=\widetilde{\Gamma_{0}(N)^{2}} as in Section 6.)

If ff satisfies either of the above conditions, we say it is admissible. If ff satisfies the condition (a) then we say it is admissible of type I; if it satisfies (b) then we say it is admissible of type II. Moreover, if ff satisfies either of the conditions

  1. (a’)

    dimMk(Γ0(N),χ)=1\dim_{\mathbb{C}}M_{k}(\Gamma_{0}(N),\chi)=1,

  2. (b’)

    dimMk(Γ0(N),χ)2\dim_{\mathbb{C}}M_{k}(\Gamma_{0}(N),\chi)\geq 2 but dimSk(Γ0(N),χ)=1\dim_{\mathbb{C}}S_{k}(\Gamma_{0}(N),\chi)=1 and ff is a cusp form,

we say ff is weakly admissible. Thus an admissible eta-quotient must be a weakly admissible eta-quotient. Similarly, we can define the concept of weakly admissible eta-quotients of type I and type II. For each weakly admissible ff, we will show that it is a Hecke eigenform in the sense of Wohlfahrt [19]; c.f. Theorem 9.19. Therefore, our list of admissible eta-quotients can be considered as an extension of Martin’s list.

9.1. The algorithm for finding admissible eta-quotients

Throughout this subsection, let f(τ)=n1η(nτ)rnf(\tau)=\prod_{n\geq 1}\eta(n\tau)^{r_{n}} be a holomorphic eta-quotient where rnr_{n} are integers and are equal to 0 for all but finitely many nn. Let k=12nrnk=\frac{1}{2}\sum_{n}r_{n} be the weight and NN, the level999The reader should notice that this usage of “eta quotient of level NN” is different from that in the second half of Section 2. In the usage here any eta-quotient has a uniquely determined level while in the usage before, an eta-quotient, say η(τ)η(2τ)\eta(\tau)\eta(2\tau), may be regarded as of level 22, or of level 44, etc., be the least common multiple of {n1:rn0}\{n\in\mathbb{Z}_{\geq 1}\colon r_{n}\neq 0\} (with the convention N=1N=1 if rn=0r_{n}=0 for all nn). Let χ:Γ0(N)~×\chi\colon\widetilde{\Gamma_{0}(N)}\rightarrow\mathbb{C}^{\times} be the character of ff (c.f. (6) with D=2D=2). Since ff is holomorphic at all cusps we have xc0x_{c}\geq 0 for all cNc\mid N (xcx_{c} are defined in (19)). By Remark 4.3 we have

dimMk(Γ0(N),χ)\displaystyle\dim_{\mathbb{C}}M_{k}(\Gamma_{0}(N),\chi) k112m+14ε2+13ε3+cNϕ(c,N/c)(12{xc24})\displaystyle\geq\frac{k-1}{12}m+\frac{1}{4}\varepsilon_{2}+\frac{1}{3}\varepsilon_{3}+\sum_{c\mid N}\phi(c,N/c)\cdot\left(\frac{1}{2}-\left\{\frac{x_{c}}{24}\right\}\right)
>k112m12cNϕ(c,N/c)\displaystyle>\frac{k-1}{12}m-\frac{1}{2}\sum_{c\mid N}\phi(c,N/c)

where mm, ε2\varepsilon_{2}, ε3\varepsilon_{3} are given by (9), (10), (11) respectively.

Lemma 9.1.

If ((k1)N123N2)pN(1+1p)1\left(\frac{(k-1)N}{12}-\frac{3\sqrt{N}}{2}\right)\cdot\prod_{p\mid N}\left(1+\frac{1}{p}\right)\geq 1, then ff is not admissible. As a consequence, there are only finitely many admissible eta-quotients.

Proof.

Assume by contradiction that ff is admissible. If the condition (a) holds, then

(49) 1=dimMk(Γ0(N),χ)>k112m12cNϕ(c,N/c).1=\dim_{\mathbb{C}}M_{k}(\Gamma_{0}(N),\chi)>\frac{k-1}{12}m-\frac{1}{2}\sum_{c\mid N}\phi(c,N/c).

By (41) we have ε=cNϕ(c,N/c)mN1/2\varepsilon_{\infty}=\sum_{c\mid N}\phi(c,N/c)\leq m\cdot N^{-1/2}. This, together with (49) and (9), implies that ((k1)N12N2)pN(1+1p)<1\left(\frac{(k-1)N}{12}-\frac{\sqrt{N}}{2}\right)\cdot\prod_{p\mid N}\left(1+\frac{1}{p}\right)<1 which contradicts the assumption. On the other hand, if the condition (b) holds. Since k>2k>2, there are totally101010These n0n_{0} functions, in the rational weight (k>2k>2) situation, constitute a basis of the Eisenstein space which, as in the integral weight case, is defined as the orthogonal complement of the space of cusp forms under the Petersson inner product. In addition, one can prove that n0=|R|n_{0}=\lvert R\rvert where RR is (18) with f0f_{0} arbitrarily chosen. n0n_{0} Eisenstein series in Mk(Γ0(N),χ)M_{k}(\Gamma_{0}(N),\chi), where

(50) n0=#{sΓ0(N)\1():χ(γs~T~wsγs~1)=1},n_{0}=\mathop{\mathrm{\#}}\left\{s\in\Gamma_{0}(N)\backslash\mathbb{P}^{1}(\mathbb{Q})\colon\chi(\widetilde{\gamma_{s}}\widetilde{T}^{w_{s}}\widetilde{\gamma_{s}}^{-1})=1\right\},

(wsw_{s} is the width; c.f. Section 3, γs\gamma_{s} is any matrix in SL2()\mathrm{SL}_{2}(\mathbb{Z}) such that γs(i)=s\gamma_{s}(\mathrm{i}\infty)=s) and these n0n_{0} functions are \mathbb{C}-linearly independent. See [16, Theorem 3.3]. By condition (b) we have n0dimMk(Γ0(N),χ)1n_{0}\geq\dim_{\mathbb{C}}M_{k}(\Gamma_{0}(N),\chi)-1. Since in the current case ff is a cusp form, these n0n_{0} Eisenstein series and ff together constitute a basis of Mk(Γ0(N),χ)M_{k}(\Gamma_{0}(N),\chi) and n0=dimMk(Γ0(N),χ)1n_{0}=\dim_{\mathbb{C}}M_{k}(\Gamma_{0}(N),\chi)-1. Hence

(51) n0+1=dimMk(Γ0(N),χ)>k112m12cNϕ(c,N/c).n_{0}+1=\dim_{\mathbb{C}}M_{k}(\Gamma_{0}(N),\chi)>\frac{k-1}{12}m-\frac{1}{2}\sum_{c\mid N}\phi(c,N/c).

This inequality, together with (41), (9) and the fact n0ε=cNϕ(c,N/c)n_{0}\leq\varepsilon_{\infty}=\sum_{c\mid N}\phi(c,N/c), implies that ((k1)N123N2)pN(1+1p)<1\left(\frac{(k-1)N}{12}-\frac{3\sqrt{N}}{2}\right)\cdot\prod_{p\mid N}\left(1+\frac{1}{p}\right)<1 which contradicts the assumption. Therefore, we have shown that both of conditions (a) and (b) lead to contradictions, so ff is not admissible.

Now we begin to prove that there are only finitely many admissible eta-quotients. Since fMk(Γ0(N),χ)f\in M_{k}(\Gamma_{0}(N),\chi) is a holomorphic eta-quotient of integral exponents, 2k02k\in\mathbb{Z}_{\geq 0}. For k=0k=0, we must have f=1f=1. For k=1/2k=1/2 and 11, we have shown in Remark 7.2 that there are only finitely many NN such that dimMk(Γ0(N),χ)\dim_{\mathbb{C}}M_{k}(\Gamma_{0}(N),\chi) can be calculated using Theorem 4.2. For each pair (k,N)(k,N), the holomorphic eta-quotients of level NN and weight kk constitute a finite set since the cardinality of this set does not exceed the cardinality of the solution set of cNϕ(c,N/c)xc=2mk\sum_{c\mid N}\phi(c,N/c)x_{c}=2mk, xc0x_{c}\in\mathbb{Z}_{\geq 0} (c.f. Proposition 5.1 and Remark 5.2) which is finite. This proves that there are only finitely many admissible eta-quotients of weights 0, 1/21/2 and 11. For each weight k3/2k\geq 3/2, there exists an N0N_{0} such that when N>N0N>N_{0} we have ((k1)N123N2)pN(1+1p)1\left(\frac{(k-1)N}{12}-\frac{3\sqrt{N}}{2}\right)\cdot\prod_{p\mid N}\left(1+\frac{1}{p}\right)\geq 1. Thus, the level of an admissible eta-quotient of weight kk does not exceed N0N_{0} and hence there are finitely many of them. Finally, if k19k\geq 19 and N2N\geq 2, we have

((k1)N123N2)pN(1+1p)32(NN)pN(1+1p)1,\left(\frac{(k-1)N}{12}-\frac{3\sqrt{N}}{2}\right)\cdot\prod_{p\mid N}\left(1+\frac{1}{p}\right)\geq\frac{3}{2}(N-\sqrt{N})\cdot\prod_{p\mid N}\left(1+\frac{1}{p}\right)\geq 1,

and if k31k\geq 31, N=1N=1, then the left-hand side still 1\geq 1. It follows that if the weight of ff is greater than or equal to 3131, then ff is not admissible. Therefore, there are only finitely many admissible eta-quotients. ∎

Corollary 9.2.

If N>400N>400, then ff is not admissible. Moreover, if N>36N>36, then ff is not admissible of type I.

Proof.

Suppose N>400N>400; we have k0k\neq 0. If k=1/2k=1/2, 11 or 3/23/2, then by Tables 1, LABEL:table:wt1 and Section 7.3, dimMk(Γ0(N),χ)\dim_{\mathbb{C}}M_{k}(\Gamma_{0}(N),\chi) can not be calculated using Theorem 4.2 with t=0t=0 (that is, the first inequality in (21) does not hold) for any χ\chi. Thus, ff is not admissible111111Although ff is possibly weakly admissible.. Otherwise, if k2k\geq 2, then obviously ((k1)N123N2)pN(1+1p)1\left(\frac{(k-1)N}{12}-\frac{3\sqrt{N}}{2}\right)\cdot\prod_{p\mid N}\left(1+\frac{1}{p}\right)\geq 1. It follows from this and Lemma 9.1 that ff is not admissible.

Now we begin to prove the latter assertion; suppose N>36N>36. Certainly k0k\neq 0. According to Table 1, Table LABEL:table:wt1 and Subsection 7.3, if k=1/2k=1/2, 11 or 3/23/2, then dimMk(Γ0(N),χ)2\dim_{\mathbb{C}}M_{k}(\Gamma_{0}(N),\chi)\geq 2 provided it can be calculated using Theorem 4.2 (with t=0t=0). Hence ff is not admissible of type I. If k2k\geq 2, then for 36<N40036<N\leq 400 but N49N\neq 49 we have

dimMk(Γ0(N),χ)>k112m12cNϕ(c,N/c)>1.\dim_{\mathbb{C}}M_{k}(\Gamma_{0}(N),\chi)>\frac{k-1}{12}m-\frac{1}{2}\sum_{c\mid N}\phi(c,N/c)>1.

See Appendix A for the SageMath code verifying this. If N=49N=49, then ε3=2\varepsilon_{3}=2 (c.f. (11)), and hence

dimMk(Γ0(49),χ)\displaystyle\dim_{\mathbb{C}}M_{k}(\Gamma_{0}(49),\chi) k112m+14ε2+13ε3+cNϕ(c,N/c)(12{xc24})\displaystyle\geq\frac{k-1}{12}m+\frac{1}{4}\varepsilon_{2}+\frac{1}{3}\varepsilon_{3}+\sum_{c\mid N}\phi(c,N/c)\cdot\left(\frac{1}{2}-\left\{\frac{x_{c}}{24}\right\}\right)
>211256+2312c49ϕ(c,49/c)>1.\displaystyle>\frac{2-1}{12}\cdot 56+\frac{2}{3}-\frac{1}{2}\sum_{c\mid 49}\phi(c,49/c)>1.

Therefore ff is not admissible of type I for k2k\geq 2, 36<N40036<N\leq 400. ∎

According to the above corollary and Lemma 9.1, the following algorithm can be used to present all admissible nonconstant eta-quotients.

  1. (a)

    Let NN range over {1,2,3,4,,400}\{1,2,3,4,\dots,400\}.

  2. (b)

    For a fixed NN, set KN={k12:12k<1+12m+18N}K_{N}=\left\{k\in\frac{1}{2}\mathbb{Z}\colon\frac{1}{2}\leq k<1+\frac{12}{m}+\frac{18}{\sqrt{N}}\right\}, where mm is defined in (9).

  3. (c)

    Let NN be fixed as above. For any cNc\mid N, let xcx_{c} range over nonnegative integers such that cNϕ(c,N/c)xc2mKN\sum_{c\mid N}\phi(c,N/c)x_{c}\in 2m\cdot K_{N}.

  4. (d)

    Let NN and (xc)cN(x_{c})_{c\mid N} be fixed. Determine the sequence (rn)nN(r_{n})_{n\mid N} by (27) and set k=12nNrnk=\frac{1}{2}\sum_{n\mid N}r_{n}, g=nNη(nτ)rng=\prod_{n\mid N}\eta(n\tau)^{r_{n}}. Since cNϕ(c,N/c)xc=mnNrn\sum_{c\mid N}\phi(c,N/c)x_{c}=m\cdot\sum_{n\mid N}r_{n} (c.f. Remark 5.2) we have kKNk\in K_{N}.

  5. (e)

    If rnr_{n} are not all integers, or they are all integers but NN is not the least common multiple of {rn0:nN}\{r_{n}\neq 0\colon n\mid N\}, then we continue to the next value of (xc)cN(x_{c})_{c\mid N} in Step (d) since in these cases either gg is not an eta-quotient of integral exponents or gg has been considered in a previous step.

  6. (f)

    We check whether (21) with t=0t=0 holds. If it does not hold, gg is not admissible so we go to Step (d) and consider the next value of (xc)cN(x_{c})_{c\mid N}.

  7. (g)

    We check whether dimMk(Γ0(N),χ)=1\dim_{\mathbb{C}}M_{k}(\Gamma_{0}(N),\chi)=1 via (22). If this is the case, then we find an admissible gg. We record it, go to Step (d) and consider the next value of (xc)cN(x_{c})_{c\mid N}.

  8. (h)

    We check whether k>2k>2, gg is a cusp form (equivalent to xc>0x_{c}>0 for all cNc\mid N) and dimMk(Γ0(N),χ)=n0+1\dim_{\mathbb{C}}M_{k}(\Gamma_{0}(N),\chi)=n_{0}+1 where n0n_{0} is given in (50). If this is the case, then gg is admissible which we record; otherwise gg is not admissible. We have completely determined whether this gg is admissible or not so we go to Step (d) and consider the next value of (xc)cN(x_{c})_{c\mid N}.

  9. (i)

    Since for each NN there are only finitely many values of (xc)cN(x_{c})_{c\mid N}, this algorithm halts in finitely many steps.

Proposition 9.3.

The above algorithm gives all admissible nonconstant eta-quotients with no repetition.

Proof.

First, it is immediate that the functions gg recorded in Steps (g) or (h) are admissible nonconstant eta-quotients. Second, suppose g1g_{1} and g2g_{2} are functions recorded in Steps (g) or (h) corresponding to different pairs (N1,(xc)cN1)\left(N_{1},(x_{c})_{c\mid N_{1}}\right) and (N2,(xc)cN2)\left(N_{2},(x^{\prime}_{c})_{c\mid N_{2}}\right). If N1N2N_{1}\neq N_{2}, then the exponents of g1g_{1} are different from those of g2g_{2} since their least common multiples are different. Hence g1g2g_{1}\neq g_{2}. Otherwise N1=N2N_{1}=N_{2} but their is some cN1c\mid N_{1} such that xcxcx_{c}\neq x^{\prime}_{c}. Thus the sequences of exponents of g1g_{1} and g2g_{2} are different by Proposition 5.1, and hence g1g2g_{1}\neq g_{2} as well. Finally, let f=nN0η(nτ)rnf=\prod_{n\mid N_{0}}\eta(n\tau)^{r_{n}} be any admissible nonconstant eta-quotient whose level is N0N_{0} and weight is k0k_{0}. By Corollary 9.2 we have 1N04001\leq N_{0}\leq 400; by Lemma 9.1 we have k0KN0k_{0}\in K_{N_{0}}. Define (yc)cN0(y_{c})_{c\mid N_{0}} by (19) (with N=N0N=N_{0} and xcx_{c} replaced by ycy_{c}). It is immediate that ycy_{c}\in\mathbb{Z}. Moreover, yc0y_{c}\geq 0 since ff is holomorphic at all cusps. We have cN0ϕ(c,N0/c)yc=2mk0\sum_{c\mid N_{0}}\phi(c,N_{0}/c)y_{c}=2mk_{0} (c.f. Remark 5.2) and hence cN0ϕ(c,N0/c)yc2mKN0\sum_{c\mid N_{0}}\phi(c,N_{0}/c)y_{c}\in 2m\cdot K_{N_{0}} where m=N0pN0(1+1/p)1m=N_{0}\prod_{p\mid N_{0}}(1+1/p)^{-1}. It follows that in Steps (a) and (c) the variable NN can actually take the value N0N_{0} and (xc)cN(x_{c})_{c\mid N} can take the value (yc)cN0(y_{c})_{c\mid N_{0}}. The corresponding gg in Step (d) is equal to ff according to Proposition 5.1. Therefore, ff is recorded in some step of the algorithm which concludes the proof. ∎

Remark 9.4.

If Step (h) is removed, then the remaining part of the algorithm gives all admissible nonconstant eta-quotients of type I. If this is the task, then we can shrink the set that NN ranges over in Step (a) to {1,2,3,,36}\{1,2,3,\dots,36\} by the latter assertion of Corollary 9.2. In the following subsections, we will only consider such eta-quotients because finding those of type II need more effort and the program takes rather long time121212We have provided the SageMath code that can produce admissible eta-quotients of type II. See Appendix A for the usage. which we will do in a future paper. The simplest example of type II is η(τ)24\eta(\tau)^{24} since it is a cusp form, dimM12(SL2())=2\dim_{\mathbb{C}}M_{12}(\mathrm{SL}_{2}(\mathbb{Z}))=2 and there is an Eisenstein series in M12(SL2())M_{12}(\mathrm{SL}_{2}(\mathbb{Z})). As a comparison, η(τ)r\eta(\tau)^{r} is an admissible eta-quotient of type I for r=0,1,2,,23r=0,1,2,\dots,23 since dimMr/2(SL2(),χηr)=1\dim_{\mathbb{C}}M_{r/2}(\mathrm{SL}_{2}(\mathbb{Z}),\chi_{\eta^{r}})=1. See [20, Section 5].

9.2. The table of admissible eta-quotients of type I

For the SageMath program realizing the algorithm for finding admissible eta-quotients of type I in the last subsection, see Appendix A. Here (Table LABEL:table:admissibleTypeI below) we present all such eta-quotients for levels N=1,p1,p12,p13N=1,\,p_{1},\,p_{1}^{2},\,p_{1}^{3} and p1p2p_{1}p_{2} where p1p_{1}, p2p_{2} are distinct primes.

Table 3. All admissible eta-quotients of type I of level N=1,p1,p12,p13N=1,p_{1},\,p_{1}^{2},\,p_{1}^{3} or p1p2p_{1}p_{2} where p1p_{1}, p2p_{2} are distinct primes. An entry n1r1n2r2ntrtn_{1}^{r_{1}}n_{2}^{r_{2}}\cdots n_{t}^{r_{t}} represents the eta-quotient η(n1τ)r1η(n2τ)r2η(ntτ)rt\eta(n_{1}\tau)^{r_{1}}\eta(n_{2}\tau)^{r_{2}}\dots\eta(n_{t}\tau)^{r_{t}} and kk is the weight.
N=1N=1
1r1^{r} where r=0,1,2,,23r=0,1,2,\dots,23
N=2N=2, k=1/2k=1/2
11221^{-1}2^{2} 10211^{0}2^{1} 12211^{2}2^{-1}
N=2N=2, k=1k=1
12241^{-2}2^{4} 11231^{-1}2^{3} 10221^{0}2^{2} 11211^{1}2^{1} 13211^{3}2^{-1} 14221^{4}2^{-2}
N=2N=2, k=3/2k=3/2
13261^{-3}2^{6} 12251^{-2}2^{5} 11241^{-1}2^{4} 10231^{0}2^{3} 11221^{1}2^{2} 12211^{2}2^{1}
14211^{4}2^{-1} 15221^{5}2^{-2} 16231^{6}2^{-3}
N=2N=2, k=2k=2
14281^{-4}2^{8} 13271^{-3}2^{7} 12261^{-2}2^{6} 11251^{-1}2^{5} 10241^{0}2^{4} 11231^{1}2^{3}
12221^{2}2^{2} 13211^{3}2^{1} 15211^{5}2^{-1} 16221^{6}2^{-2} 17231^{7}2^{-3} 18241^{8}2^{-4}
N=2N=2, k=5/2k=5/2
152101^{-5}2^{10} 14291^{-4}2^{9} 13281^{-3}2^{8} 12271^{-2}2^{7} 11261^{-1}2^{6} 10251^{0}2^{5}
11241^{1}2^{4} 12231^{2}2^{3} 13221^{3}2^{2} 14211^{4}2^{1} 16211^{6}2^{-1} 17221^{7}2^{-2}
18231^{8}2^{-3} 19241^{9}2^{-4} 110251^{10}2^{-5}
N=2N=2, k=3k=3
162121^{-6}2^{12} 152111^{-5}2^{11} 142101^{-4}2^{10} 13291^{-3}2^{9} 12281^{-2}2^{8} 11271^{-1}2^{7}
10261^{0}2^{6} 11251^{1}2^{5} 12241^{2}2^{4} 13231^{3}2^{3} 14221^{4}2^{2} 15211^{5}2^{1}
17211^{7}2^{-1} 18221^{8}2^{-2} 19231^{9}2^{-3} 110241^{10}2^{-4} 111251^{11}2^{-5} 112261^{12}2^{-6}
N=2N=2, k=7/2k=7/2
172141^{-7}2^{14} 162131^{-6}2^{13} 152121^{-5}2^{12} 142111^{-4}2^{11} 132101^{-3}2^{10} 12291^{-2}2^{9}
11281^{-1}2^{8} 10271^{0}2^{7} 11261^{1}2^{6} 12251^{2}2^{5} 13241^{3}2^{4} 14231^{4}2^{3}
15221^{5}2^{2} 16211^{6}2^{1} 18211^{8}2^{-1} 19221^{9}2^{-2} 110231^{10}2^{-3} 111241^{11}2^{-4}
112251^{12}2^{-5} 113261^{13}2^{-6} 114271^{14}2^{-7}
N=2N=2, k=4k=4
172151^{-7}2^{15} 162141^{-6}2^{14} 152131^{-5}2^{13} 142121^{-4}2^{12} 132111^{-3}2^{11} 122101^{-2}2^{10}
11291^{-1}2^{9} 10281^{0}2^{8} 11271^{1}2^{7} 12261^{2}2^{6} 13251^{3}2^{5} 14241^{4}2^{4}
15231^{5}2^{3} 16221^{6}2^{2} 17211^{7}2^{1} 19211^{9}2^{-1} 110221^{10}2^{-2} 111231^{11}2^{-3}
112241^{12}2^{-4} 113251^{13}2^{-5} 114261^{14}2^{-6} 115271^{15}2^{-7}
N=2N=2, k=9/2k=9/2
152141^{-5}2^{14} 142131^{-4}2^{13} 132121^{-3}2^{12} 122111^{-2}2^{11} 112101^{-1}2^{10} 10291^{0}2^{9}
11281^{1}2^{8} 12271^{2}2^{7} 13261^{3}2^{6} 14251^{4}2^{5} 15241^{5}2^{4} 16231^{6}2^{3}
17221^{7}2^{2} 18211^{8}2^{1} 110211^{10}2^{-1} 111221^{11}2^{-2} 112231^{12}2^{-3} 113241^{13}2^{-4}
114251^{14}2^{-5}
N=2N=2, k=5k=5
132131^{-3}2^{13} 122121^{-2}2^{12} 112111^{-1}2^{11} 102101^{0}2^{10} 11291^{1}2^{9} 12281^{2}2^{8}
13271^{3}2^{7} 14261^{4}2^{6} 15251^{5}2^{5} 16241^{6}2^{4} 17231^{7}2^{3} 18221^{8}2^{2}
19211^{9}2^{1} 111211^{11}2^{-1} 112221^{12}2^{-2} 113231^{13}2^{-3}
N=2N=2, k=11/2k=11/2
112121^{-1}2^{12} 102111^{0}2^{11} 112101^{1}2^{10} 12291^{2}2^{9} 13281^{3}2^{8} 14271^{4}2^{7}
15261^{5}2^{6} 16251^{6}2^{5} 17241^{7}2^{4} 18231^{8}2^{3} 19221^{9}2^{2} 110211^{10}2^{1}
112211^{12}2^{-1}
N=2N=2, k=6k=6
112111^{1}2^{11} 122101^{2}2^{10} 13291^{3}2^{9} 14281^{4}2^{8} 15271^{5}2^{7} 16261^{6}2^{6}
17251^{7}2^{5} 18241^{8}2^{4} 19231^{9}2^{3} 110221^{10}2^{2} 111211^{11}2^{1}
N=2N=2, k=13/2k=13/2
132101^{3}2^{10} 14291^{4}2^{9} 15281^{5}2^{8} 16271^{6}2^{7} 17261^{7}2^{6} 18251^{8}2^{5}
19241^{9}2^{4} 110231^{10}2^{3}
N=2N=2, k=7k=7
15291^{5}2^{9} 16281^{6}2^{8} 17271^{7}2^{7} 18261^{8}2^{6} 19251^{9}2^{5}
N=2N=2, k=15/2k=15/2
17281^{7}2^{8} 18271^{8}2^{7}
N=3N=3, k=1/2k=1/2
10311^{0}3^{1}
N=3N=3, k=1k=1
11331^{-1}3^{3} 10321^{0}3^{2} 11311^{1}3^{1} 13311^{3}3^{-1}
N=3N=3, k=3/2k=3/2
11341^{-1}3^{4} 10331^{0}3^{3} 11321^{1}3^{2} 12311^{2}3^{1} 14311^{4}3^{-1}
N=3N=3, k=2k=2
12361^{-2}3^{6} 11351^{-1}3^{5} 10341^{0}3^{4} 11331^{1}3^{3} 12321^{2}3^{2} 13311^{3}3^{1}
15311^{5}3^{-1} 16321^{6}3^{-2}
N=3N=3, k=5/2k=5/2
12371^{-2}3^{7} 11361^{-1}3^{6} 10351^{0}3^{5} 11341^{1}3^{4} 12331^{2}3^{3} 13321^{3}3^{2}
14311^{4}3^{1} 16311^{6}3^{-1} 17321^{7}3^{-2}
N=3N=3, k=3k=3
12381^{-2}3^{8} 11371^{-1}3^{7} 10361^{0}3^{6} 11351^{1}3^{5} 12341^{2}3^{4} 13331^{3}3^{3}
14321^{4}3^{2} 15311^{5}3^{1} 17311^{7}3^{-1} 18321^{8}3^{-2}
N=3N=3, k=7/2k=7/2
11381^{-1}3^{8} 10371^{0}3^{7} 11361^{1}3^{6} 12351^{2}3^{5} 13341^{3}3^{4} 14331^{4}3^{3}
15321^{5}3^{2} 16311^{6}3^{1} 18311^{8}3^{-1}
N=3N=3, k=4k=4
11371^{1}3^{7} 12361^{2}3^{6} 13351^{3}3^{5} 14341^{4}3^{4} 15331^{5}3^{3} 16321^{6}3^{2}
17311^{7}3^{1}
N=3N=3, k=9/2k=9/2
12371^{2}3^{7} 13361^{3}3^{6} 14351^{4}3^{5} 15341^{5}3^{4} 16331^{6}3^{3} 17321^{7}3^{2}
N=3N=3, k=5k=5
14361^{4}3^{6} 15351^{5}3^{5} 16341^{6}3^{4}
N=3N=3, k=11/2k=11/2
15361^{5}3^{6} 16351^{6}3^{5}
N=4N=4, k=1/2k=1/2
1225421^{-2}2^{5}4^{-2} 1123411^{-1}2^{3}4^{-1} 1021421^{0}2^{-1}4^{2} 1020411^{0}2^{0}4^{1} 1022411^{0}2^{2}4^{-1} 1121411^{1}2^{-1}4^{1}
N=4N=4, k=1k=1
14210441^{-4}2^{10}4^{-4} 1327421^{-3}2^{7}4^{-2} 1328431^{-3}2^{8}4^{-3} 1225411^{-2}2^{5}4^{-1} 1226421^{-2}2^{6}4^{-2} 1227431^{-2}2^{7}4^{-3}
1121421^{-1}2^{1}4^{2} 1122411^{-1}2^{2}4^{1} 1124411^{-1}2^{4}4^{-1} 1125421^{-1}2^{5}4^{-2} 1022441^{0}2^{-2}4^{4} 1021431^{0}2^{-1}4^{3}
1020421^{0}2^{0}4^{2} 1021411^{0}2^{1}4^{1} 1023411^{0}2^{3}4^{-1} 1024421^{0}2^{4}4^{-2} 1122431^{1}2^{-2}4^{3} 1121421^{1}2^{-1}4^{2}
1120411^{1}2^{0}4^{1} 1122411^{1}2^{2}4^{-1} 1222421^{2}2^{-2}4^{2} 1221411^{2}2^{-1}4^{1} 1221411^{2}2^{1}4^{-1} 1322411^{3}2^{-2}4^{1}
N=4N=4, k=3/2k=3/2
16215461^{-6}2^{15}4^{-6} 15212441^{-5}2^{12}4^{-4} 15213451^{-5}2^{13}4^{-5} 1429421^{-4}2^{9}4^{-2} 14210431^{-4}2^{10}4^{-3} 14211441^{-4}2^{11}4^{-4}
14212451^{-4}2^{12}4^{-5} 1327411^{-3}2^{7}4^{-1} 1328421^{-3}2^{8}4^{-2} 1329431^{-3}2^{9}4^{-3} 13210441^{-3}2^{10}4^{-4} 1223421^{-2}2^{3}4^{2}
1224411^{-2}2^{4}4^{1} 1226411^{-2}2^{6}4^{-1} 1227421^{-2}2^{7}4^{-2} 1228431^{-2}2^{8}4^{-3} 1229441^{-2}2^{9}4^{-4} 1120441^{-1}2^{0}4^{4}
1121431^{-1}2^{1}4^{3} 1122421^{-1}2^{2}4^{2} 1123411^{-1}2^{3}4^{1} 1125411^{-1}2^{5}4^{-1} 1126421^{-1}2^{6}4^{-2} 1127431^{-1}2^{7}4^{-3}
1023461^{0}2^{-3}4^{6} 1022451^{0}2^{-2}4^{5} 1021441^{0}2^{-1}4^{4} 1020431^{0}2^{0}4^{3} 1021421^{0}2^{1}4^{2} 1022411^{0}2^{2}4^{1}
1024411^{0}2^{4}4^{-1} 1025421^{0}2^{5}4^{-2} 1026431^{0}2^{6}4^{-3} 1123451^{1}2^{-3}4^{5} 1122441^{1}2^{-2}4^{4} 1121431^{1}2^{-1}4^{3}
1120421^{1}2^{0}4^{2} 1121411^{1}2^{1}4^{1} 1123411^{1}2^{3}4^{-1} 1124421^{1}2^{4}4^{-2} 1223441^{2}2^{-3}4^{4} 1222431^{2}2^{-2}4^{3}
1221421^{2}2^{-1}4^{2} 1220411^{2}2^{0}4^{1} 1222411^{2}2^{2}4^{-1} 1223421^{2}2^{3}4^{-2} 1323431^{3}2^{-3}4^{3} 1322421^{3}2^{-2}4^{2}
1321411^{3}2^{-1}4^{1} 1321411^{3}2^{1}4^{-1} 1423421^{4}2^{-3}4^{2} 1422411^{4}2^{-2}4^{1} 1420411^{4}2^{0}4^{-1} 1523411^{5}2^{-3}4^{1}
N=4N=4, k=2k=2
17217461^{-7}2^{17}4^{-6} 17218471^{-7}2^{18}4^{-7} 16214441^{-6}2^{14}4^{-4} 16215451^{-6}2^{15}4^{-5} 16216461^{-6}2^{16}4^{-6} 16217471^{-6}2^{17}4^{-7}
15211421^{-5}2^{11}4^{-2} 15212431^{-5}2^{12}4^{-3} 15213441^{-5}2^{13}4^{-4} 15214451^{-5}2^{14}4^{-5} 15215461^{-5}2^{15}4^{-6} 1429411^{-4}2^{9}4^{-1}
14210421^{-4}2^{10}4^{-2} 14211431^{-4}2^{11}4^{-3} 14212441^{-4}2^{12}4^{-4} 14213451^{-4}2^{13}4^{-5} 14214461^{-4}2^{14}4^{-6} 1325421^{-3}2^{5}4^{2}
1326411^{-3}2^{6}4^{1} 1328411^{-3}2^{8}4^{-1} 1329421^{-3}2^{9}4^{-2} 13210431^{-3}2^{10}4^{-3} 13211441^{-3}2^{11}4^{-4} 13212451^{-3}2^{12}4^{-5}
1222441^{-2}2^{2}4^{4} 1223431^{-2}2^{3}4^{3} 1224421^{-2}2^{4}4^{2} 1225411^{-2}2^{5}4^{1} 1227411^{-2}2^{7}4^{-1} 1228421^{-2}2^{8}4^{-2}
1229431^{-2}2^{9}4^{-3} 12210441^{-2}2^{10}4^{-4} 12211451^{-2}2^{11}4^{-5} 1121461^{-1}2^{-1}4^{6} 1120451^{-1}2^{0}4^{5} 1121441^{-1}2^{1}4^{4}
1122431^{-1}2^{2}4^{3} 1123421^{-1}2^{3}4^{2} 1124411^{-1}2^{4}4^{1} 1126411^{-1}2^{6}4^{-1} 1127421^{-1}2^{7}4^{-2} 1128431^{-1}2^{8}4^{-3}
1129441^{-1}2^{9}4^{-4} 1023471^{0}2^{-3}4^{7} 1022461^{0}2^{-2}4^{6} 1021451^{0}2^{-1}4^{5} 1020441^{0}2^{0}4^{4} 1021431^{0}2^{1}4^{3}
1022421^{0}2^{2}4^{2} 1023411^{0}2^{3}4^{1} 1025411^{0}2^{5}4^{-1} 1026421^{0}2^{6}4^{-2} 1027431^{0}2^{7}4^{-3} 1028441^{0}2^{8}4^{-4}
1124471^{1}2^{-4}4^{7} 1123461^{1}2^{-3}4^{6} 1122451^{1}2^{-2}4^{5} 1121441^{1}2^{-1}4^{4} 1120431^{1}2^{0}4^{3} 1121421^{1}2^{1}4^{2}
1122411^{1}2^{2}4^{1} 1124411^{1}2^{4}4^{-1} 1125421^{1}2^{5}4^{-2} 1126431^{1}2^{6}4^{-3} 1224461^{2}2^{-4}4^{6} 1223451^{2}2^{-3}4^{5}
1222441^{2}2^{-2}4^{4} 1221431^{2}2^{-1}4^{3} 1220421^{2}2^{0}4^{2} 1221411^{2}2^{1}4^{1} 1223411^{2}2^{3}4^{-1} 1224421^{2}2^{4}4^{-2}
1225431^{2}2^{5}4^{-3} 1324451^{3}2^{-4}4^{5} 1323441^{3}2^{-3}4^{4} 1322431^{3}2^{-2}4^{3} 1321421^{3}2^{-1}4^{2} 1320411^{3}2^{0}4^{1}
1322411^{3}2^{2}4^{-1} 1323421^{3}2^{3}4^{-2} 1424441^{4}2^{-4}4^{4} 1423431^{4}2^{-3}4^{3} 1422421^{4}2^{-2}4^{2} 1421411^{4}2^{-1}4^{1}
1421411^{4}2^{1}4^{-1} 1422421^{4}2^{2}4^{-2} 1524431^{5}2^{-4}4^{3} 1523421^{5}2^{-3}4^{2} 1522411^{5}2^{-2}4^{1} 1520411^{5}2^{0}4^{-1}
1624421^{6}2^{-4}4^{2} 1623411^{6}2^{-3}4^{1} 1621411^{6}2^{-1}4^{-1} 1724411^{7}2^{-4}4^{1}
N=4N=4, k=5/2k=5/2
17216441^{-7}2^{16}4^{-4} 17217451^{-7}2^{17}4^{-5} 17218461^{-7}2^{18}4^{-6} 16213421^{-6}2^{13}4^{-2} 16214431^{-6}2^{14}4^{-3} 16215441^{-6}2^{15}4^{-4}
16216451^{-6}2^{16}4^{-5} 16217461^{-6}2^{17}4^{-6} 16218471^{-6}2^{18}4^{-7} 15211411^{-5}2^{11}4^{-1} 15212421^{-5}2^{12}4^{-2} 15213431^{-5}2^{13}4^{-3}
15214441^{-5}2^{14}4^{-4} 15215451^{-5}2^{15}4^{-5} 15216461^{-5}2^{16}4^{-6} 15217471^{-5}2^{17}4^{-7} 1427421^{-4}2^{7}4^{2} 1428411^{-4}2^{8}4^{1}
14210411^{-4}2^{10}4^{-1} 14211421^{-4}2^{11}4^{-2} 14212431^{-4}2^{12}4^{-3} 14213441^{-4}2^{13}4^{-4} 14214451^{-4}2^{14}4^{-5} 14215461^{-4}2^{15}4^{-6}
14216471^{-4}2^{16}4^{-7} 1324441^{-3}2^{4}4^{4} 1325431^{-3}2^{5}4^{3} 1326421^{-3}2^{6}4^{2} 1327411^{-3}2^{7}4^{1} 1329411^{-3}2^{9}4^{-1}
13210421^{-3}2^{10}4^{-2} 13211431^{-3}2^{11}4^{-3} 13212441^{-3}2^{12}4^{-4} 13213451^{-3}2^{13}4^{-5} 13214461^{-3}2^{14}4^{-6} 1222451^{-2}2^{2}4^{5}
1223441^{-2}2^{3}4^{4} 1224431^{-2}2^{4}4^{3} 1225421^{-2}2^{5}4^{2} 1226411^{-2}2^{6}4^{1} 1228411^{-2}2^{8}4^{-1} 1229421^{-2}2^{9}4^{-2}
12210431^{-2}2^{10}4^{-3} 12211441^{-2}2^{11}4^{-4} 12212451^{-2}2^{12}4^{-5} 12213461^{-2}2^{13}4^{-6} 1120461^{-1}2^{0}4^{6} 1121451^{-1}2^{1}4^{5}
1122441^{-1}2^{2}4^{4} 1123431^{-1}2^{3}4^{3} 1124421^{-1}2^{4}4^{2} 1125411^{-1}2^{5}4^{1} 1127411^{-1}2^{7}4^{-1} 1128421^{-1}2^{8}4^{-2}
1129431^{-1}2^{9}4^{-3} 11210441^{-1}2^{10}4^{-4} 11211451^{-1}2^{11}4^{-5} 1021461^{0}2^{-1}4^{6} 1020451^{0}2^{0}4^{5} 1021441^{0}2^{1}4^{4}
1022431^{0}2^{2}4^{3} 1023421^{0}2^{3}4^{2} 1024411^{0}2^{4}4^{1} 1026411^{0}2^{6}4^{-1} 1027421^{0}2^{7}4^{-2} 1028431^{0}2^{8}4^{-3}
1029441^{0}2^{9}4^{-4} 10210451^{0}2^{10}4^{-5} 1123471^{1}2^{-3}4^{7} 1122461^{1}2^{-2}4^{6} 1121451^{1}2^{-1}4^{5} 1120441^{1}2^{0}4^{4}
1121431^{1}2^{1}4^{3} 1122421^{1}2^{2}4^{2} 1123411^{1}2^{3}4^{1} 1125411^{1}2^{5}4^{-1} 1126421^{1}2^{6}4^{-2} 1127431^{1}2^{7}4^{-3}
1128441^{1}2^{8}4^{-4} 1224471^{2}2^{-4}4^{7} 1223461^{2}2^{-3}4^{6} 1222451^{2}2^{-2}4^{5} 1221441^{2}2^{-1}4^{4} 1220431^{2}2^{0}4^{3}
1221421^{2}2^{1}4^{2} 1222411^{2}2^{2}4^{1} 1224411^{2}2^{4}4^{-1} 1225421^{2}2^{5}4^{-2} 1226431^{2}2^{6}4^{-3} 1227441^{2}2^{7}4^{-4}
1325471^{3}2^{-5}4^{7} 1324461^{3}2^{-4}4^{6} 1323451^{3}2^{-3}4^{5} 1322441^{3}2^{-2}4^{4} 1321431^{3}2^{-1}4^{3} 1320421^{3}2^{0}4^{2}
1321411^{3}2^{1}4^{1} 1323411^{3}2^{3}4^{-1} 1324421^{3}2^{4}4^{-2} 1325431^{3}2^{5}4^{-3} 1425461^{4}2^{-5}4^{6} 1424451^{4}2^{-4}4^{5}
1423441^{4}2^{-3}4^{4} 1422431^{4}2^{-2}4^{3} 1421421^{4}2^{-1}4^{2} 1420411^{4}2^{0}4^{1} 1422411^{4}2^{2}4^{-1} 1423421^{4}2^{3}4^{-2}
1424431^{4}2^{4}4^{-3} 1525451^{5}2^{-5}4^{5} 1524441^{5}2^{-4}4^{4} 1523431^{5}2^{-3}4^{3} 1522421^{5}2^{-2}4^{2} 1521411^{5}2^{-1}4^{1}
1521411^{5}2^{1}4^{-1} 1522421^{5}2^{2}4^{-2} 1625441^{6}2^{-5}4^{4} 1624431^{6}2^{-4}4^{3} 1623421^{6}2^{-3}4^{2} 1622411^{6}2^{-2}4^{1}
1620411^{6}2^{0}4^{-1} 1725431^{7}2^{-5}4^{3} 1724421^{7}2^{-4}4^{2} 1723411^{7}2^{-3}4^{1}
N=4N=4, k=3k=3
17215421^{-7}2^{15}4^{-2} 17216431^{-7}2^{16}4^{-3} 17217441^{-7}2^{17}4^{-4} 16213411^{-6}2^{13}4^{-1} 16214421^{-6}2^{14}4^{-2} 16215431^{-6}2^{15}4^{-3}
16216441^{-6}2^{16}4^{-4} 16217451^{-6}2^{17}4^{-5} 1529421^{-5}2^{9}4^{2} 15210411^{-5}2^{10}4^{1} 15212411^{-5}2^{12}4^{-1} 15213421^{-5}2^{13}4^{-2}
15214431^{-5}2^{14}4^{-3} 15215441^{-5}2^{15}4^{-4} 15216451^{-5}2^{16}4^{-5} 15217461^{-5}2^{17}4^{-6} 1427431^{-4}2^{7}4^{3} 1428421^{-4}2^{8}4^{2}
1429411^{-4}2^{9}4^{1} 14211411^{-4}2^{11}4^{-1} 14212421^{-4}2^{12}4^{-2} 14213431^{-4}2^{13}4^{-3} 14214441^{-4}2^{14}4^{-4} 14215451^{-4}2^{15}4^{-5}
14216461^{-4}2^{16}4^{-6} 14217471^{-4}2^{17}4^{-7} 1325441^{-3}2^{5}4^{4} 1326431^{-3}2^{6}4^{3} 1327421^{-3}2^{7}4^{2} 1328411^{-3}2^{8}4^{1}
13210411^{-3}2^{10}4^{-1} 13211421^{-3}2^{11}4^{-2} 13212431^{-3}2^{12}4^{-3} 13213441^{-3}2^{13}4^{-4} 13214451^{-3}2^{14}4^{-5} 13215461^{-3}2^{15}4^{-6}
13216471^{-3}2^{16}4^{-7} 1224441^{-2}2^{4}4^{4} 1225431^{-2}2^{5}4^{3} 1226421^{-2}2^{6}4^{2} 1227411^{-2}2^{7}4^{1} 1229411^{-2}2^{9}4^{-1}
12210421^{-2}2^{10}4^{-2} 12211431^{-2}2^{11}4^{-3} 12212441^{-2}2^{12}4^{-4} 12213451^{-2}2^{13}4^{-5} 12214461^{-2}2^{14}4^{-6} 12215471^{-2}2^{15}4^{-7}
1122451^{-1}2^{2}4^{5} 1123441^{-1}2^{3}4^{4} 1124431^{-1}2^{4}4^{3} 1125421^{-1}2^{5}4^{2} 1126411^{-1}2^{6}4^{1} 1128411^{-1}2^{8}4^{-1}
1129421^{-1}2^{9}4^{-2} 11210431^{-1}2^{10}4^{-3} 11211441^{-1}2^{11}4^{-4} 11212451^{-1}2^{12}4^{-5} 11213461^{-1}2^{13}4^{-6} 1021451^{0}2^{1}4^{5}
1022441^{0}2^{2}4^{4} 1023431^{0}2^{3}4^{3} 1024421^{0}2^{4}4^{2} 1025411^{0}2^{5}4^{1} 1027411^{0}2^{7}4^{-1} 1028421^{0}2^{8}4^{-2}
1029431^{0}2^{9}4^{-3} 10210441^{0}2^{10}4^{-4} 10211451^{0}2^{11}4^{-5} 10212461^{0}2^{12}4^{-6} 1121461^{1}2^{-1}4^{6} 1120451^{1}2^{0}4^{5}
1121441^{1}2^{1}4^{4} 1122431^{1}2^{2}4^{3} 1123421^{1}2^{3}4^{2} 1124411^{1}2^{4}4^{1} 1126411^{1}2^{6}4^{-1} 1127421^{1}2^{7}4^{-2}
1128431^{1}2^{8}4^{-3} 1129441^{1}2^{9}4^{-4} 11210451^{1}2^{10}4^{-5} 1222461^{2}2^{-2}4^{6} 1221451^{2}2^{-1}4^{5} 1220441^{2}2^{0}4^{4}
1221431^{2}2^{1}4^{3} 1222421^{2}2^{2}4^{2} 1223411^{2}2^{3}4^{1} 1225411^{2}2^{5}4^{-1} 1226421^{2}2^{6}4^{-2} 1227431^{2}2^{7}4^{-3}
1228441^{2}2^{8}4^{-4} 1229451^{2}2^{9}4^{-5} 1324471^{3}2^{-4}4^{7} 1323461^{3}2^{-3}4^{6} 1322451^{3}2^{-2}4^{5} 1321441^{3}2^{-1}4^{4}
1320431^{3}2^{0}4^{3} 1321421^{3}2^{1}4^{2} 1322411^{3}2^{2}4^{1} 1324411^{3}2^{4}4^{-1} 1325421^{3}2^{5}4^{-2} 1326431^{3}2^{6}4^{-3}
1327441^{3}2^{7}4^{-4} 1425471^{4}2^{-5}4^{7} 1424461^{4}2^{-4}4^{6} 1423451^{4}2^{-3}4^{5} 1422441^{4}2^{-2}4^{4} 1421431^{4}2^{-1}4^{3}
1420421^{4}2^{0}4^{2} 1421411^{4}2^{1}4^{1} 1423411^{4}2^{3}4^{-1} 1424421^{4}2^{4}4^{-2} 1425431^{4}2^{5}4^{-3} 1526471^{5}2^{-6}4^{7}
1525461^{5}2^{-5}4^{6} 1524451^{5}2^{-4}4^{5} 1523441^{5}2^{-3}4^{4} 1522431^{5}2^{-2}4^{3} 1521421^{5}2^{-1}4^{2} 1520411^{5}2^{0}4^{1}
1522411^{5}2^{2}4^{-1} 1626461^{6}2^{-6}4^{6} 1625451^{6}2^{-5}4^{5} 1624441^{6}2^{-4}4^{4} 1623431^{6}2^{-3}4^{3} 1622421^{6}2^{-2}4^{2}
1621411^{6}2^{-1}4^{1} 1726451^{7}2^{-6}4^{5} 1725441^{7}2^{-5}4^{4} 1724431^{7}2^{-4}4^{3}
N=4N=4, k=7/2k=7/2
17215411^{-7}2^{15}4^{-1} 17216421^{-7}2^{16}4^{-2} 16212411^{-6}2^{12}4^{1} 16214411^{-6}2^{14}4^{-1} 16215421^{-6}2^{15}4^{-2} 16216431^{-6}2^{16}4^{-3}
15210421^{-5}2^{10}4^{2} 15211411^{-5}2^{11}4^{1} 15213411^{-5}2^{13}4^{-1} 15214421^{-5}2^{14}4^{-2} 15215431^{-5}2^{15}4^{-3} 15216441^{-5}2^{16}4^{-4}
1429421^{-4}2^{9}4^{2} 14210411^{-4}2^{10}4^{1} 14212411^{-4}2^{12}4^{-1} 14213421^{-4}2^{13}4^{-2} 14214431^{-4}2^{14}4^{-3} 14215441^{-4}2^{15}4^{-4}
14216451^{-4}2^{16}4^{-5} 1327431^{-3}2^{7}4^{3} 1328421^{-3}2^{8}4^{2} 1329411^{-3}2^{9}4^{1} 13211411^{-3}2^{11}4^{-1} 13212421^{-3}2^{12}4^{-2}
13213431^{-3}2^{13}4^{-3} 13214441^{-3}2^{14}4^{-4} 13215451^{-3}2^{15}4^{-5} 13216461^{-3}2^{16}4^{-6} 1226431^{-2}2^{6}4^{3} 1227421^{-2}2^{7}4^{2}
1228411^{-2}2^{8}4^{1} 12210411^{-2}2^{10}4^{-1} 12211421^{-2}2^{11}4^{-2} 12212431^{-2}2^{12}4^{-3} 12213441^{-2}2^{13}4^{-4} 12214451^{-2}2^{14}4^{-5}
12215461^{-2}2^{15}4^{-6} 12216471^{-2}2^{16}4^{-7} 1124441^{-1}2^{4}4^{4} 1125431^{-1}2^{5}4^{3} 1126421^{-1}2^{6}4^{2} 1127411^{-1}2^{7}4^{1}
1129411^{-1}2^{9}4^{-1} 11210421^{-1}2^{10}4^{-2} 11211431^{-1}2^{11}4^{-3} 11212441^{-1}2^{12}4^{-4} 11213451^{-1}2^{13}4^{-5} 11214461^{-1}2^{14}4^{-6}
11215471^{-1}2^{15}4^{-7} 1023441^{0}2^{3}4^{4} 1024431^{0}2^{4}4^{3} 1025421^{0}2^{5}4^{2} 1026411^{0}2^{6}4^{1} 1028411^{0}2^{8}4^{-1}
1029421^{0}2^{9}4^{-2} 10210431^{0}2^{10}4^{-3} 10211441^{0}2^{11}4^{-4} 10212451^{0}2^{12}4^{-5} 10213461^{0}2^{13}4^{-6} 10214471^{0}2^{14}4^{-7}
1121451^{1}2^{1}4^{5} 1122441^{1}2^{2}4^{4} 1123431^{1}2^{3}4^{3} 1124421^{1}2^{4}4^{2} 1125411^{1}2^{5}4^{1} 1127411^{1}2^{7}4^{-1}
1128421^{1}2^{8}4^{-2} 1129431^{1}2^{9}4^{-3} 11210441^{1}2^{10}4^{-4} 11211451^{1}2^{11}4^{-5} 11212461^{1}2^{12}4^{-6} 1220451^{2}2^{0}4^{5}
1221441^{2}2^{1}4^{4} 1222431^{2}2^{2}4^{3} 1223421^{2}2^{3}4^{2} 1224411^{2}2^{4}4^{1} 1226411^{2}2^{6}4^{-1} 1227421^{2}2^{7}4^{-2}
1228431^{2}2^{8}4^{-3} 1229441^{2}2^{9}4^{-4} 12210451^{2}2^{10}4^{-5} 1322461^{3}2^{-2}4^{6} 1321451^{3}2^{-1}4^{5} 1320441^{3}2^{0}4^{4}
1321431^{3}2^{1}4^{3} 1322421^{3}2^{2}4^{2} 1323411^{3}2^{3}4^{1} 1325411^{3}2^{5}4^{-1} 1326421^{3}2^{6}4^{-2} 1327431^{3}2^{7}4^{-3}
1423461^{4}2^{-3}4^{6} 1422451^{4}2^{-2}4^{5} 1421441^{4}2^{-1}4^{4} 1420431^{4}2^{0}4^{3} 1421421^{4}2^{1}4^{2} 1422411^{4}2^{2}4^{1}
1424411^{4}2^{4}4^{-1} 1525471^{5}2^{-5}4^{7} 1524461^{5}2^{-4}4^{6} 1523451^{5}2^{-3}4^{5} 1522441^{5}2^{-2}4^{4} 1521431^{5}2^{-1}4^{3}
1520421^{5}2^{0}4^{2} 1521411^{5}2^{1}4^{1} 1626471^{6}2^{-6}4^{7} 1625461^{6}2^{-5}4^{6} 1624451^{6}2^{-4}4^{5} 1623441^{6}2^{-3}4^{4}
1622431^{6}2^{-2}4^{3} 1727471^{7}2^{-7}4^{7} 1726461^{7}2^{-6}4^{6} 1725451^{7}2^{-5}4^{5}
N=4N=4, k=4k=4
16215411^{-6}2^{15}4^{-1} 15212411^{-5}2^{12}4^{1} 15214411^{-5}2^{14}4^{-1} 15215421^{-5}2^{15}4^{-2} 14211411^{-4}2^{11}4^{1} 14213411^{-4}2^{13}4^{-1}
14214421^{-4}2^{14}4^{-2} 14215431^{-4}2^{15}4^{-3} 1329421^{-3}2^{9}4^{2} 13210411^{-3}2^{10}4^{1} 13212411^{-3}2^{12}4^{-1} 13213421^{-3}2^{13}4^{-2}
13214431^{-3}2^{14}4^{-3} 13215441^{-3}2^{15}4^{-4} 1228421^{-2}2^{8}4^{2} 1229411^{-2}2^{9}4^{1} 12211411^{-2}2^{11}4^{-1} 12212421^{-2}2^{12}4^{-2}
12213431^{-2}2^{13}4^{-3} 12214441^{-2}2^{14}4^{-4} 12215451^{-2}2^{15}4^{-5} 1126431^{-1}2^{6}4^{3} 1127421^{-1}2^{7}4^{2} 1128411^{-1}2^{8}4^{1}
11210411^{-1}2^{10}4^{-1} 11211421^{-1}2^{11}4^{-2} 11212431^{-1}2^{12}4^{-3} 11213441^{-1}2^{13}4^{-4} 11214451^{-1}2^{14}4^{-5} 11215461^{-1}2^{15}4^{-6}
1025431^{0}2^{5}4^{3} 1026421^{0}2^{6}4^{2} 1027411^{0}2^{7}4^{1} 1029411^{0}2^{9}4^{-1} 10210421^{0}2^{10}4^{-2} 10211431^{0}2^{11}4^{-3}
10212441^{0}2^{12}4^{-4} 10213451^{0}2^{13}4^{-5} 10214461^{0}2^{14}4^{-6} 10215471^{0}2^{15}4^{-7} 1123441^{1}2^{3}4^{4} 1124431^{1}2^{4}4^{3}
1125421^{1}2^{5}4^{2} 1126411^{1}2^{6}4^{1} 1128411^{1}2^{8}4^{-1} 1129421^{1}2^{9}4^{-2} 11210431^{1}2^{10}4^{-3} 11211441^{1}2^{11}4^{-4}
11212451^{1}2^{12}4^{-5} 1222441^{2}2^{2}4^{4} 1223431^{2}2^{3}4^{3} 1224421^{2}2^{4}4^{2} 1225411^{2}2^{5}4^{1} 1227411^{2}2^{7}4^{-1}
1228421^{2}2^{8}4^{-2} 1229431^{2}2^{9}4^{-3} 1320451^{3}2^{0}4^{5} 1321441^{3}2^{1}4^{4} 1322431^{3}2^{2}4^{3} 1323421^{3}2^{3}4^{2}
1324411^{3}2^{4}4^{1} 1326411^{3}2^{6}4^{-1} 1421451^{4}2^{-1}4^{5} 1420441^{4}2^{0}4^{4} 1421431^{4}2^{1}4^{3} 1422421^{4}2^{2}4^{2}
1423411^{4}2^{3}4^{1} 1523461^{5}2^{-3}4^{6} 1522451^{5}2^{-2}4^{5} 1521441^{5}2^{-1}4^{4} 1520431^{5}2^{0}4^{3} 1624461^{6}2^{-4}4^{6}
1623451^{6}2^{-3}4^{5} 1726471^{7}2^{-6}4^{7}
N=4N=4, k=9/2k=9/2
14214411^{-4}2^{14}4^{-1} 13211411^{-3}2^{11}4^{1} 13213411^{-3}2^{13}4^{-1} 13214421^{-3}2^{14}4^{-2} 12210411^{-2}2^{10}4^{1} 12212411^{-2}2^{12}4^{-1}
12213421^{-2}2^{13}4^{-2} 12214431^{-2}2^{14}4^{-3} 1128421^{-1}2^{8}4^{2} 1129411^{-1}2^{9}4^{1} 11211411^{-1}2^{11}4^{-1} 11212421^{-1}2^{12}4^{-2}
11213431^{-1}2^{13}4^{-3} 11214441^{-1}2^{14}4^{-4} 1027421^{0}2^{7}4^{2} 1028411^{0}2^{8}4^{1} 10210411^{0}2^{10}4^{-1} 10211421^{0}2^{11}4^{-2}
10212431^{0}2^{12}4^{-3} 10213441^{0}2^{13}4^{-4} 10214451^{0}2^{14}4^{-5} 1125431^{1}2^{5}4^{3} 1126421^{1}2^{6}4^{2} 1127411^{1}2^{7}4^{1}
1129411^{1}2^{9}4^{-1} 11210421^{1}2^{10}4^{-2} 11211431^{1}2^{11}4^{-3} 1224431^{2}2^{4}4^{3} 1225421^{2}2^{5}4^{2} 1226411^{2}2^{6}4^{1}
1228411^{2}2^{8}4^{-1} 1322441^{3}2^{2}4^{4} 1323431^{3}2^{3}4^{3} 1324421^{3}2^{4}4^{2} 1325411^{3}2^{5}4^{1} 1421441^{4}2^{1}4^{4}
1422431^{4}2^{2}4^{3} 1521451^{5}2^{-1}4^{5}
N=4N=4, k=5k=5
12213411^{-2}2^{13}4^{-1} 11210411^{-1}2^{10}4^{1} 11212411^{-1}2^{12}4^{-1} 11213421^{-1}2^{13}4^{-2} 1029411^{0}2^{9}4^{1} 10211411^{0}2^{11}4^{-1}
10212421^{0}2^{12}4^{-2} 10213431^{0}2^{13}4^{-3} 1127421^{1}2^{7}4^{2} 1128411^{1}2^{8}4^{1} 11210411^{1}2^{10}4^{-1} 1226421^{2}2^{6}4^{2}
1227411^{2}2^{7}4^{1} 1324431^{3}2^{4}4^{3}
N=4N=4, k=11/2k=11/2
10212411^{0}2^{12}4^{-1} 1129411^{1}2^{9}4^{1}
N=5N=5, k=1/2k=1/2
10511^{0}5^{1}
N=5N=5, k=1k=1
10521^{0}5^{2} 11511^{1}5^{1}
N=5N=5, k=3/2k=3/2
10531^{0}5^{3} 11521^{1}5^{2} 12511^{2}5^{1}
N=5N=5, k=2k=2
10541^{0}5^{4} 11531^{1}5^{3} 12521^{2}5^{2} 13511^{3}5^{1}
N=5N=5, k=5/2k=5/2
11541^{1}5^{4} 12531^{2}5^{3} 13521^{3}5^{2} 14511^{4}5^{1}
N=5N=5, k=3k=3
12541^{2}5^{4} 13531^{3}5^{3} 14521^{4}5^{2}
N=5N=5, k=7/2k=7/2
13541^{3}5^{4} 14531^{4}5^{3}
N=6N=6, k=1/2k=1/2
112132611^{-1}2^{1}3^{2}6^{-1} 112231611^{-1}2^{2}3^{1}6^{-1} 102031621^{0}2^{0}3^{-1}6^{2} 102030611^{0}2^{0}3^{0}6^{1} 102032611^{0}2^{0}3^{2}6^{-1} 112131621^{1}2^{-1}3^{-1}6^{2}
122131611^{2}2^{-1}3^{-1}6^{1}
N=6N=6, k=1k=1
122234621^{-2}2^{2}3^{4}6^{-2} 122332611^{-2}2^{3}3^{2}6^{-1} 122333621^{-2}2^{3}3^{3}6^{-2} 122431611^{-2}2^{4}3^{1}6^{-1} 122432621^{-2}2^{4}3^{2}6^{-2} 112131611^{-1}2^{1}3^{1}6^{1}
112132601^{-1}2^{1}3^{2}6^{0} 112133611^{-1}2^{1}3^{3}6^{-1} 112134621^{-1}2^{1}3^{4}6^{-2} 112231621^{-1}2^{2}3^{-1}6^{2} 112230611^{-1}2^{2}3^{0}6^{1} 112231601^{-1}2^{2}3^{1}6^{0}
112232611^{-1}2^{2}3^{2}6^{-1} 112233621^{-1}2^{2}3^{3}6^{-2} 112331611^{-1}2^{3}3^{1}6^{-1} 102130631^{0}2^{-1}3^{0}6^{3} 102032641^{0}2^{0}3^{-2}6^{4} 102031631^{0}2^{0}3^{-1}6^{3}
102030621^{0}2^{0}3^{0}6^{2} 102031611^{0}2^{0}3^{1}6^{1} 102033611^{0}2^{0}3^{3}6^{-1} 102034621^{0}2^{0}3^{4}6^{-2} 102131621^{0}2^{1}3^{-1}6^{2} 102130611^{0}2^{1}3^{0}6^{1}
102131601^{0}2^{1}3^{1}6^{0} 102132611^{0}2^{1}3^{2}6^{-1} 102231611^{0}2^{2}3^{1}6^{-1} 102330611^{0}2^{3}3^{0}6^{-1} 112132641^{1}2^{-1}3^{-2}6^{4} 112131631^{1}2^{-1}3^{-1}6^{3}
112130621^{1}2^{-1}3^{0}6^{2} 112131611^{1}2^{-1}3^{1}6^{1} 112031621^{1}2^{0}3^{-1}6^{2} 112030611^{1}2^{0}3^{0}6^{1} 112032611^{1}2^{0}3^{2}6^{-1} 112131611^{1}2^{1}3^{-1}6^{1}
112131611^{1}2^{1}3^{1}6^{-1} 122232641^{2}2^{-2}3^{-2}6^{4} 122132631^{2}2^{-1}3^{-2}6^{3} 122131621^{2}2^{-1}3^{-1}6^{2} 122130611^{2}2^{-1}3^{0}6^{1} 122131601^{2}2^{-1}3^{1}6^{0}
122132611^{2}2^{-1}3^{2}6^{-1} 122031611^{2}2^{0}3^{-1}6^{1} 132232631^{3}2^{-2}3^{-2}6^{3} 132231621^{3}2^{-2}3^{-1}6^{2} 132131611^{3}2^{-1}3^{-1}6^{1} 142232621^{4}2^{-2}3^{-2}6^{2}
142231611^{4}2^{-2}3^{-1}6^{1}
N=6N=6, k=3/2k=3/2
132434621^{-3}2^{4}3^{4}6^{-2} 132435631^{-3}2^{4}3^{5}6^{-3} 132532611^{-3}2^{5}3^{2}6^{-1} 132533621^{-3}2^{5}3^{3}6^{-2} 132534631^{-3}2^{5}3^{4}6^{-3} 122233601^{-2}2^{2}3^{3}6^{0}
122234611^{-2}2^{2}3^{4}6^{-1} 122235621^{-2}2^{2}3^{5}6^{-2} 122331611^{-2}2^{3}3^{1}6^{1} 122332601^{-2}2^{3}3^{2}6^{0} 122333611^{-2}2^{3}3^{3}6^{-1} 122334621^{-2}2^{3}3^{4}6^{-2}
122335631^{-2}2^{3}3^{5}6^{-3} 122431621^{-2}2^{4}3^{-1}6^{2} 122430611^{-2}2^{4}3^{0}6^{1} 122431601^{-2}2^{4}3^{1}6^{0} 122432611^{-2}2^{4}3^{2}6^{-1} 122433621^{-2}2^{4}3^{3}6^{-2}
122434631^{-2}2^{4}3^{4}6^{-3} 122531611^{-2}2^{5}3^{1}6^{-1} 122532621^{-2}2^{5}3^{2}6^{-2} 112032621^{-1}2^{0}3^{2}6^{2} 112033611^{-1}2^{0}3^{3}6^{1} 112130631^{-1}2^{1}3^{0}6^{3}
112131621^{-1}2^{1}3^{1}6^{2} 112132611^{-1}2^{1}3^{2}6^{1} 112133601^{-1}2^{1}3^{3}6^{0} 112134611^{-1}2^{1}3^{4}6^{-1} 112135621^{-1}2^{1}3^{5}6^{-2} 112232641^{-1}2^{2}3^{-2}6^{4}
112231631^{-1}2^{2}3^{-1}6^{3} 112230621^{-1}2^{2}3^{0}6^{2} 112231611^{-1}2^{2}3^{1}6^{1} 112232601^{-1}2^{2}3^{2}6^{0} 112233611^{-1}2^{2}3^{3}6^{-1} 112234621^{-1}2^{2}3^{4}6^{-2}
112235631^{-1}2^{2}3^{5}6^{-3} 112331621^{-1}2^{3}3^{-1}6^{2} 112330611^{-1}2^{3}3^{0}6^{1} 112331601^{-1}2^{3}3^{1}6^{0} 112332611^{-1}2^{3}3^{2}6^{-1} 112333621^{-1}2^{3}3^{3}6^{-2}
112431611^{-1}2^{4}3^{1}6^{-1} 112432621^{-1}2^{4}3^{2}6^{-2} 102130641^{0}2^{-1}3^{0}6^{4} 102131631^{0}2^{-1}3^{1}6^{3} 102132621^{0}2^{-1}3^{2}6^{2} 102031641^{0}2^{0}3^{-1}6^{4}
102030631^{0}2^{0}3^{0}6^{3} 102031621^{0}2^{0}3^{1}6^{2} 102032611^{0}2^{0}3^{2}6^{1} 102034611^{0}2^{0}3^{4}6^{-1} 102132641^{0}2^{1}3^{-2}6^{4} 102131631^{0}2^{1}3^{-1}6^{3}
102130621^{0}2^{1}3^{0}6^{2} 102131611^{0}2^{1}3^{1}6^{1} 102132601^{0}2^{1}3^{2}6^{0} 102133611^{0}2^{1}3^{3}6^{-1} 102134621^{0}2^{1}3^{4}6^{-2} 102231621^{0}2^{2}3^{-1}6^{2}
102230611^{0}2^{2}3^{0}6^{1} 102231601^{0}2^{2}3^{1}6^{0} 102232611^{0}2^{2}3^{2}6^{-1} 102233621^{0}2^{2}3^{3}6^{-2} 102331611^{0}2^{3}3^{-1}6^{1} 102331611^{0}2^{3}3^{1}6^{-1}
102332621^{0}2^{3}3^{2}6^{-2} 102430611^{0}2^{4}3^{0}6^{-1} 112132651^{1}2^{-1}3^{-2}6^{5} 112131641^{1}2^{-1}3^{-1}6^{4} 112130631^{1}2^{-1}3^{0}6^{3} 112131621^{1}2^{-1}3^{1}6^{2}
112132611^{1}2^{-1}3^{2}6^{1} 112133601^{1}2^{-1}3^{3}6^{0} 112032641^{1}2^{0}3^{-2}6^{4} 112031631^{1}2^{0}3^{-1}6^{3} 112030621^{1}2^{0}3^{0}6^{2} 112031611^{1}2^{0}3^{1}6^{1}
112033611^{1}2^{0}3^{3}6^{-1} 112034621^{1}2^{0}3^{4}6^{-2} 112132631^{1}2^{1}3^{-2}6^{3} 112131621^{1}2^{1}3^{-1}6^{2} 112130611^{1}2^{1}3^{0}6^{1} 112131601^{1}2^{1}3^{1}6^{0}
112132611^{1}2^{1}3^{2}6^{-1} 112133621^{1}2^{1}3^{3}6^{-2} 112231611^{1}2^{2}3^{-1}6^{1} 112231611^{1}2^{2}3^{1}6^{-1} 112330611^{1}2^{3}3^{0}6^{-1} 122232651^{2}2^{-2}3^{-2}6^{5}
122231641^{2}2^{-2}3^{-1}6^{4} 122230631^{2}2^{-2}3^{0}6^{3} 122133651^{2}2^{-1}3^{-3}6^{5} 122132641^{2}2^{-1}3^{-2}6^{4} 122131631^{2}2^{-1}3^{-1}6^{3} 122130621^{2}2^{-1}3^{0}6^{2}
122131611^{2}2^{-1}3^{1}6^{1} 122132601^{2}2^{-1}3^{2}6^{0} 122133611^{2}2^{-1}3^{3}6^{-1} 122134621^{2}2^{-1}3^{4}6^{-2} 122032631^{2}2^{0}3^{-2}6^{3} 122031621^{2}2^{0}3^{-1}6^{2}
122030611^{2}2^{0}3^{0}6^{1} 122032611^{2}2^{0}3^{2}6^{-1} 122131611^{2}2^{1}3^{-1}6^{1} 122131611^{2}2^{1}3^{1}6^{-1} 122231601^{2}2^{2}3^{-1}6^{0} 122230611^{2}2^{2}3^{0}6^{-1}
132233651^{3}2^{-2}3^{-3}6^{5} 132232641^{3}2^{-2}3^{-2}6^{4} 132231631^{3}2^{-2}3^{-1}6^{3} 132230621^{3}2^{-2}3^{0}6^{2} 132231611^{3}2^{-2}3^{1}6^{1} 132132631^{3}2^{-1}3^{-2}6^{3}
132131621^{3}2^{-1}3^{-1}6^{2} 132130611^{3}2^{-1}3^{0}6^{1} 132131601^{3}2^{-1}3^{1}6^{0} 132132611^{3}2^{-1}3^{2}6^{-1} 132032621^{3}2^{0}3^{-2}6^{2} 132031611^{3}2^{0}3^{-1}6^{1}
132031611^{3}2^{0}3^{1}6^{-1} 132131601^{3}2^{1}3^{-1}6^{0} 142333651^{4}2^{-3}3^{-3}6^{5} 142332641^{4}2^{-3}3^{-2}6^{4} 142233641^{4}2^{-2}3^{-3}6^{4} 142232631^{4}2^{-2}3^{-2}6^{3}
142231621^{4}2^{-2}3^{-1}6^{2} 142230611^{4}2^{-2}3^{0}6^{1} 142231601^{4}2^{-2}3^{1}6^{0} 142232611^{4}2^{-2}3^{2}6^{-1} 142132621^{4}2^{-1}3^{-2}6^{2} 142131611^{4}2^{-1}3^{-1}6^{1}
152333641^{5}2^{-3}3^{-3}6^{4} 152332631^{5}2^{-3}3^{-2}6^{3} 152331621^{5}2^{-3}3^{-1}6^{2} 152232621^{5}2^{-2}3^{-2}6^{2} 152231611^{5}2^{-2}3^{-1}6^{1}
N=6N=6, k=2k=2
142635631^{-4}2^{6}3^{5}6^{-3} 142636641^{-4}2^{6}3^{6}6^{-4} 132433601^{-3}2^{4}3^{3}6^{0} 132434611^{-3}2^{4}3^{4}6^{-1} 132435621^{-3}2^{4}3^{5}6^{-2} 132532601^{-3}2^{5}3^{2}6^{0}
132533611^{-3}2^{5}3^{3}6^{-1} 132534621^{-3}2^{5}3^{4}6^{-2} 132535631^{-3}2^{5}3^{5}6^{-3} 132536641^{-3}2^{5}3^{6}6^{-4} 122232621^{-2}2^{2}3^{2}6^{2} 122233611^{-2}2^{2}3^{3}6^{1}
122234601^{-2}2^{2}3^{4}6^{0} 122330631^{-2}2^{3}3^{0}6^{3} 122331621^{-2}2^{3}3^{1}6^{2} 122332611^{-2}2^{3}3^{2}6^{1} 122333601^{-2}2^{3}3^{3}6^{0} 122334611^{-2}2^{3}3^{4}6^{-1}
122335621^{-2}2^{3}3^{5}6^{-2} 122431631^{-2}2^{4}3^{-1}6^{3} 122430621^{-2}2^{4}3^{0}6^{2} 122431611^{-2}2^{4}3^{1}6^{1} 122432601^{-2}2^{4}3^{2}6^{0} 122433611^{-2}2^{4}3^{3}6^{-1}
122434621^{-2}2^{4}3^{4}6^{-2} 122435631^{-2}2^{4}3^{5}6^{-3} 122533621^{-2}2^{5}3^{3}6^{-2} 122534631^{-2}2^{5}3^{4}6^{-3} 112032631^{-1}2^{0}3^{2}6^{3} 112033621^{-1}2^{0}3^{3}6^{2}
112131631^{-1}2^{1}3^{1}6^{3} 112132621^{-1}2^{1}3^{2}6^{2} 112133611^{-1}2^{1}3^{3}6^{1} 112134601^{-1}2^{1}3^{4}6^{0} 112230631^{-1}2^{2}3^{0}6^{3} 112231621^{-1}2^{2}3^{1}6^{2}
112232611^{-1}2^{2}3^{2}6^{1} 112233601^{-1}2^{2}3^{3}6^{0} 112234611^{-1}2^{2}3^{4}6^{-1} 112332641^{-1}2^{3}3^{-2}6^{4} 112331631^{-1}2^{3}3^{-1}6^{3} 112330621^{-1}2^{3}3^{0}6^{2}
112331611^{-1}2^{3}3^{1}6^{1} 112332601^{-1}2^{3}3^{2}6^{0} 112333611^{-1}2^{3}3^{3}6^{-1} 112334621^{-1}2^{3}3^{4}6^{-2} 112335631^{-1}2^{3}3^{5}6^{-3} 112430611^{-1}2^{4}3^{0}6^{1}
112431601^{-1}2^{4}3^{1}6^{0} 112432611^{-1}2^{4}3^{2}6^{-1} 112433621^{-1}2^{4}3^{3}6^{-2} 112434631^{-1}2^{4}3^{4}6^{-3} 102132631^{0}2^{-1}3^{2}6^{3} 102133621^{0}2^{-1}3^{3}6^{2}
102031631^{0}2^{0}3^{1}6^{3} 102032621^{0}2^{0}3^{2}6^{2} 102033611^{0}2^{0}3^{3}6^{1} 102131641^{0}2^{1}3^{-1}6^{4} 102130631^{0}2^{1}3^{0}6^{3} 102131621^{0}2^{1}3^{1}6^{2}
102132611^{0}2^{1}3^{2}6^{1} 102133601^{0}2^{1}3^{3}6^{0} 102134611^{0}2^{1}3^{4}6^{-1} 102232641^{0}2^{2}3^{-2}6^{4} 102231631^{0}2^{2}3^{-1}6^{3} 102230621^{0}2^{2}3^{0}6^{2}
102231611^{0}2^{2}3^{1}6^{1} 102232601^{0}2^{2}3^{2}6^{0} 102233611^{0}2^{2}3^{3}6^{-1} 102234621^{0}2^{2}3^{4}6^{-2} 102235631^{0}2^{2}3^{5}6^{-3} 102332631^{0}2^{3}3^{-2}6^{3}
102331621^{0}2^{3}3^{-1}6^{2} 102330611^{0}2^{3}3^{0}6^{1} 102331601^{0}2^{3}3^{1}6^{0} 102332611^{0}2^{3}3^{2}6^{-1} 102333621^{0}2^{3}3^{3}6^{-2} 102334631^{0}2^{3}3^{4}6^{-3}
102431611^{0}2^{4}3^{1}6^{-1} 102432621^{0}2^{4}3^{2}6^{-2} 112130641^{1}2^{-1}3^{0}6^{4} 112131631^{1}2^{-1}3^{1}6^{3} 112132621^{1}2^{-1}3^{2}6^{2} 112133611^{1}2^{-1}3^{3}6^{1}
112031641^{1}2^{0}3^{-1}6^{4} 112030631^{1}2^{0}3^{0}6^{3} 112031621^{1}2^{0}3^{1}6^{2} 112032611^{1}2^{0}3^{2}6^{1} 112034611^{1}2^{0}3^{4}6^{-1} 112132641^{1}2^{1}3^{-2}6^{4}
112131631^{1}2^{1}3^{-1}6^{3} 112130621^{1}2^{1}3^{0}6^{2} 112131611^{1}2^{1}3^{1}6^{1} 112132601^{1}2^{1}3^{2}6^{0} 112133611^{1}2^{1}3^{3}6^{-1} 112134621^{1}2^{1}3^{4}6^{-2}
112232631^{1}2^{2}3^{-2}6^{3} 112231621^{1}2^{2}3^{-1}6^{2} 112230611^{1}2^{2}3^{0}6^{1} 112231601^{1}2^{2}3^{1}6^{0} 112232611^{1}2^{2}3^{2}6^{-1} 112233621^{1}2^{2}3^{3}6^{-2}
112331611^{1}2^{3}3^{-1}6^{1} 112331611^{1}2^{3}3^{1}6^{-1} 112332621^{1}2^{3}3^{2}6^{-2} 122230641^{2}2^{-2}3^{0}6^{4} 122231631^{2}2^{-2}3^{1}6^{3} 122232621^{2}2^{-2}3^{2}6^{2}
122131641^{2}2^{-1}3^{-1}6^{4} 122130631^{2}2^{-1}3^{0}6^{3} 122131621^{2}2^{-1}3^{1}6^{2} 122132611^{2}2^{-1}3^{2}6^{1} 122133601^{2}2^{-1}3^{3}6^{0} 122033651^{2}2^{0}3^{-3}6^{5}
122032641^{2}2^{0}3^{-2}6^{4} 122031631^{2}2^{0}3^{-1}6^{3} 122030621^{2}2^{0}3^{0}6^{2} 122031611^{2}2^{0}3^{1}6^{1} 122033611^{2}2^{0}3^{3}6^{-1} 122034621^{2}2^{0}3^{4}6^{-2}
122132631^{2}2^{1}3^{-2}6^{3} 122131621^{2}2^{1}3^{-1}6^{2} 122130611^{2}2^{1}3^{0}6^{1} 122131601^{2}2^{1}3^{1}6^{0} 122132611^{2}2^{1}3^{2}6^{-1} 122133621^{2}2^{1}3^{3}6^{-2}
122232621^{2}2^{2}3^{-2}6^{2} 122231611^{2}2^{2}3^{-1}6^{1} 122231611^{2}2^{2}3^{1}6^{-1} 122232621^{2}2^{2}3^{2}6^{-2} 122331601^{2}2^{3}3^{-1}6^{0} 122330611^{2}2^{3}3^{0}6^{-1}
132232651^{3}2^{-2}3^{-2}6^{5} 132231641^{3}2^{-2}3^{-1}6^{4} 132230631^{3}2^{-2}3^{0}6^{3} 132231621^{3}2^{-2}3^{1}6^{2} 132232611^{3}2^{-2}3^{2}6^{1} 132233601^{3}2^{-2}3^{3}6^{0}
132133651^{3}2^{-1}3^{-3}6^{5} 132132641^{3}2^{-1}3^{-2}6^{4} 132131631^{3}2^{-1}3^{-1}6^{3} 132130621^{3}2^{-1}3^{0}6^{2} 132131611^{3}2^{-1}3^{1}6^{1} 132132601^{3}2^{-1}3^{2}6^{0}
132133611^{3}2^{-1}3^{3}6^{-1} 132134621^{3}2^{-1}3^{4}6^{-2} 132033641^{3}2^{0}3^{-3}6^{4} 132032631^{3}2^{0}3^{-2}6^{3} 132031621^{3}2^{0}3^{-1}6^{2} 132030611^{3}2^{0}3^{0}6^{1}
132032611^{3}2^{0}3^{2}6^{-1} 132033621^{3}2^{0}3^{3}6^{-2} 132132621^{3}2^{1}3^{-2}6^{2} 132131611^{3}2^{1}3^{-1}6^{1} 132131611^{3}2^{1}3^{1}6^{-1} 132231601^{3}2^{2}3^{-1}6^{0}
132230611^{3}2^{2}3^{0}6^{-1} 142332651^{4}2^{-3}3^{-2}6^{5} 142331641^{4}2^{-3}3^{-1}6^{4} 142330631^{4}2^{-3}3^{0}6^{3} 142233651^{4}2^{-2}3^{-3}6^{5} 142232641^{4}2^{-2}3^{-2}6^{4}
142231631^{4}2^{-2}3^{-1}6^{3} 142230621^{4}2^{-2}3^{0}6^{2} 142231611^{4}2^{-2}3^{1}6^{1} 142232601^{4}2^{-2}3^{2}6^{0} 142233611^{4}2^{-2}3^{3}6^{-1} 142133641^{4}2^{-1}3^{-3}6^{4}
142132631^{4}2^{-1}3^{-2}6^{3} 142131621^{4}2^{-1}3^{-1}6^{2} 142130611^{4}2^{-1}3^{0}6^{1} 142131601^{4}2^{-1}3^{1}6^{0} 142032621^{4}2^{0}3^{-2}6^{2} 142031611^{4}2^{0}3^{-1}6^{1}
152334661^{5}2^{-3}3^{-4}6^{6} 152333651^{5}2^{-3}3^{-3}6^{5} 152332641^{5}2^{-3}3^{-2}6^{4} 152331631^{5}2^{-3}3^{-1}6^{3} 152330621^{5}2^{-3}3^{0}6^{2} 152233641^{5}2^{-2}3^{-3}6^{4}
152232631^{5}2^{-2}3^{-2}6^{3} 162434661^{6}2^{-4}3^{-4}6^{6} 162433651^{6}2^{-4}3^{-3}6^{5}
N=6N=6, k=5/2k=5/2
132432621^{-3}2^{4}3^{2}6^{2} 132433611^{-3}2^{4}3^{3}6^{1} 132434601^{-3}2^{4}3^{4}6^{0} 132534611^{-3}2^{5}3^{4}6^{-1} 132535621^{-3}2^{5}3^{5}6^{-2} 122233621^{-2}2^{2}3^{3}6^{2}
122332621^{-2}2^{3}3^{2}6^{2} 122333611^{-2}2^{3}3^{3}6^{1} 122334601^{-2}2^{3}3^{4}6^{0} 122431621^{-2}2^{4}3^{1}6^{2} 122432611^{-2}2^{4}3^{2}6^{1} 122433601^{-2}2^{4}3^{3}6^{0}
122434611^{-2}2^{4}3^{4}6^{-1} 122535631^{-2}2^{5}3^{5}6^{-3} 112133621^{-1}2^{1}3^{3}6^{2} 112232621^{-1}2^{2}3^{2}6^{2} 112233611^{-1}2^{2}3^{3}6^{1} 112330631^{-1}2^{3}3^{0}6^{3}
112331621^{-1}2^{3}3^{1}6^{2} 112332611^{-1}2^{3}3^{2}6^{1} 112333601^{-1}2^{3}3^{3}6^{0} 112334611^{-1}2^{3}3^{4}6^{-1} 112432601^{-1}2^{4}3^{2}6^{0} 112433611^{-1}2^{4}3^{3}6^{-1}
112434621^{-1}2^{4}3^{4}6^{-2} 112435631^{-1}2^{4}3^{5}6^{-3} 102131631^{0}2^{1}3^{1}6^{3} 102132621^{0}2^{1}3^{2}6^{2} 102133611^{0}2^{1}3^{3}6^{1} 102230631^{0}2^{2}3^{0}6^{3}
102231621^{0}2^{2}3^{1}6^{2} 102232611^{0}2^{2}3^{2}6^{1} 102233601^{0}2^{2}3^{3}6^{0} 102234611^{0}2^{2}3^{4}6^{-1} 102331631^{0}2^{3}3^{-1}6^{3} 102330621^{0}2^{3}3^{0}6^{2}
102331611^{0}2^{3}3^{1}6^{1} 102332601^{0}2^{3}3^{2}6^{0} 102333611^{0}2^{3}3^{3}6^{-1} 102334621^{0}2^{3}3^{4}6^{-2} 102433621^{0}2^{4}3^{3}6^{-2} 102434631^{0}2^{4}3^{4}6^{-3}
112132631^{1}2^{-1}3^{2}6^{3} 112031631^{1}2^{0}3^{1}6^{3} 112032621^{1}2^{0}3^{2}6^{2} 112033611^{1}2^{0}3^{3}6^{1} 112130631^{1}2^{1}3^{0}6^{3} 112131621^{1}2^{1}3^{1}6^{2}
112132611^{1}2^{1}3^{2}6^{1} 112133601^{1}2^{1}3^{3}6^{0} 112232641^{1}2^{2}3^{-2}6^{4} 112231631^{1}2^{2}3^{-1}6^{3} 112230621^{1}2^{2}3^{0}6^{2} 112231611^{1}2^{2}3^{1}6^{1}
112232601^{1}2^{2}3^{2}6^{0} 112233611^{1}2^{2}3^{3}6^{-1} 112234621^{1}2^{2}3^{4}6^{-2} 112330611^{1}2^{3}3^{0}6^{1} 112331601^{1}2^{3}3^{1}6^{0} 112332611^{1}2^{3}3^{2}6^{-1}
112333621^{1}2^{3}3^{3}6^{-2} 112334631^{1}2^{3}3^{4}6^{-3} 122232631^{2}2^{-2}3^{2}6^{3} 122131631^{2}2^{-1}3^{1}6^{3} 122132621^{2}2^{-1}3^{2}6^{2} 122031641^{2}2^{0}3^{-1}6^{4}
122030631^{2}2^{0}3^{0}6^{3} 122031621^{2}2^{0}3^{1}6^{2} 122032611^{2}2^{0}3^{2}6^{1} 122132641^{2}2^{1}3^{-2}6^{4} 122131631^{2}2^{1}3^{-1}6^{3} 122130621^{2}2^{1}3^{0}6^{2}
122131611^{2}2^{1}3^{1}6^{1} 122132601^{2}2^{1}3^{2}6^{0} 122133611^{2}2^{1}3^{3}6^{-1} 122134621^{2}2^{1}3^{4}6^{-2} 122233641^{2}2^{2}3^{-3}6^{4} 122232631^{2}2^{2}3^{-2}6^{3}
122231621^{2}2^{2}3^{-1}6^{2} 122230611^{2}2^{2}3^{0}6^{1} 122231601^{2}2^{2}3^{1}6^{0} 122232611^{2}2^{2}3^{2}6^{-1} 122233621^{2}2^{2}3^{3}6^{-2} 122234631^{2}2^{2}3^{4}6^{-3}
122331611^{2}2^{3}3^{1}6^{-1} 122332621^{2}2^{3}3^{2}6^{-2} 132230641^{3}2^{-2}3^{0}6^{4} 132231631^{3}2^{-2}3^{1}6^{3} 132232621^{3}2^{-2}3^{2}6^{2} 132131641^{3}2^{-1}3^{-1}6^{4}
132130631^{3}2^{-1}3^{0}6^{3} 132131621^{3}2^{-1}3^{1}6^{2} 132132611^{3}2^{-1}3^{2}6^{1} 132133601^{3}2^{-1}3^{3}6^{0} 132032641^{3}2^{0}3^{-2}6^{4} 132031631^{3}2^{0}3^{-1}6^{3}
132030621^{3}2^{0}3^{0}6^{2} 132031611^{3}2^{0}3^{1}6^{1} 132033611^{3}2^{0}3^{3}6^{-1} 132133641^{3}2^{1}3^{-3}6^{4} 132132631^{3}2^{1}3^{-2}6^{3} 132131621^{3}2^{1}3^{-1}6^{2}
132130611^{3}2^{1}3^{0}6^{1} 132131601^{3}2^{1}3^{1}6^{0} 132232621^{3}2^{2}3^{-2}6^{2} 132231611^{3}2^{2}3^{-1}6^{1} 142330641^{4}2^{-3}3^{0}6^{4} 142331631^{4}2^{-3}3^{1}6^{3}
142332621^{4}2^{-3}3^{2}6^{2} 142231641^{4}2^{-2}3^{-1}6^{4} 142230631^{4}2^{-2}3^{0}6^{3} 142231621^{4}2^{-2}3^{1}6^{2} 142232611^{4}2^{-2}3^{2}6^{1} 142133651^{4}2^{-1}3^{-3}6^{5}
142132641^{4}2^{-1}3^{-2}6^{4} 142131631^{4}2^{-1}3^{-1}6^{3} 142130621^{4}2^{-1}3^{0}6^{2} 142033641^{4}2^{0}3^{-3}6^{4} 142032631^{4}2^{0}3^{-2}6^{3} 152332651^{5}2^{-3}3^{-2}6^{5}
152331641^{5}2^{-3}3^{-1}6^{4} 152233651^{5}2^{-2}3^{-3}6^{5}
N=6N=6, k=3k=3
122433611^{-2}2^{4}3^{3}6^{1} 112332621^{-1}2^{3}3^{2}6^{2} 112333611^{-1}2^{3}3^{3}6^{1} 112434611^{-1}2^{4}3^{4}6^{-1} 102232621^{0}2^{2}3^{2}6^{2} 102233611^{0}2^{2}3^{3}6^{1}
102331621^{0}2^{3}3^{1}6^{2} 102332611^{0}2^{3}3^{2}6^{1} 102333601^{0}2^{3}3^{3}6^{0} 112132621^{1}2^{1}3^{2}6^{2} 112230631^{1}2^{2}3^{0}6^{3} 112231621^{1}2^{2}3^{1}6^{2}
112232611^{1}2^{2}3^{2}6^{1} 112233601^{1}2^{2}3^{3}6^{0} 112332601^{1}2^{3}3^{2}6^{0} 112333611^{1}2^{3}3^{3}6^{-1} 112334621^{1}2^{3}3^{4}6^{-2} 122031631^{2}2^{0}3^{1}6^{3}
122032621^{2}2^{0}3^{2}6^{2} 122130631^{2}2^{1}3^{0}6^{3} 122131621^{2}2^{1}3^{1}6^{2} 122132611^{2}2^{1}3^{2}6^{1} 122133601^{2}2^{1}3^{3}6^{0} 122231631^{2}2^{2}3^{-1}6^{3}
122230621^{2}2^{2}3^{0}6^{2} 122231611^{2}2^{2}3^{1}6^{1} 122232601^{2}2^{2}3^{2}6^{0} 122233611^{2}2^{2}3^{3}6^{-1} 132131631^{3}2^{-1}3^{1}6^{3} 132132621^{3}2^{-1}3^{2}6^{2}
132030631^{3}2^{0}3^{0}6^{3} 132031621^{3}2^{0}3^{1}6^{2} 132032611^{3}2^{0}3^{2}6^{1} 132132641^{3}2^{1}3^{-2}6^{4} 132131631^{3}2^{1}3^{-1}6^{3} 132130621^{3}2^{1}3^{0}6^{2}
142231631^{4}2^{-2}3^{1}6^{3} 142131641^{4}2^{-1}3^{-1}6^{4}
N=6N=6, k=7/2k=7/2
112232621^{1}2^{2}3^{2}6^{2} 122132621^{2}2^{1}3^{2}6^{2} 122231621^{2}2^{2}3^{1}6^{2} 122232611^{2}2^{2}3^{2}6^{1}
N=7N=7, k=1/2k=1/2
10711^{0}7^{1}
N=7N=7, k=1k=1
10721^{0}7^{2} 11711^{1}7^{1}
N=7N=7, k=3/2k=3/2
10731^{0}7^{3} 11721^{1}7^{2} 12711^{2}7^{1}
N=7N=7, k=2k=2
11731^{1}7^{3} 12721^{2}7^{2} 13711^{3}7^{1}
N=7N=7, k=5/2k=5/2
12731^{2}7^{3} 13721^{3}7^{2}
N=8N=8, k=1/2k=1/2
102245821^{0}2^{-2}4^{5}8^{-2} 102143811^{0}2^{-1}4^{3}8^{-1} 102041821^{0}2^{0}4^{-1}8^{2} 102040811^{0}2^{0}4^{0}8^{1} 102042811^{0}2^{0}4^{2}8^{-1} 102141811^{0}2^{1}4^{-1}8^{1}
N=8N=8, k=1k=1
122343821^{-2}2^{3}4^{3}8^{-2} 122441811^{-2}2^{4}4^{1}8^{-1} 122543821^{-2}2^{5}4^{-3}8^{2} 122542811^{-2}2^{5}4^{-2}8^{1} 122540811^{-2}2^{5}4^{0}8^{-1} 122643811^{-2}2^{6}4^{-3}8^{1}
112045821^{-1}2^{0}4^{5}8^{-2} 112143811^{-1}2^{1}4^{3}8^{-1} 112144821^{-1}2^{1}4^{4}8^{-2} 112241821^{-1}2^{2}4^{-1}8^{2} 112240811^{-1}2^{2}4^{0}8^{1} 112242811^{-1}2^{2}4^{2}8^{-1}
112342821^{-1}2^{3}4^{-2}8^{2} 112341811^{-1}2^{3}4^{-1}8^{1} 112341811^{-1}2^{3}4^{1}8^{-1} 112442811^{-1}2^{4}4^{-2}8^{1} 102347821^{0}2^{-3}4^{7}8^{-2} 102348831^{0}2^{-3}4^{8}8^{-3}
102245811^{0}2^{-2}4^{5}8^{-1} 102246821^{0}2^{-2}4^{6}8^{-2} 102247831^{0}2^{-2}4^{7}8^{-3} 102141821^{0}2^{-1}4^{1}8^{2} 102142811^{0}2^{-1}4^{2}8^{1} 102144811^{0}2^{-1}4^{4}8^{-1}
102145821^{0}2^{-1}4^{5}8^{-2} 102041831^{0}2^{0}4^{-1}8^{3} 102040821^{0}2^{0}4^{0}8^{2} 102041811^{0}2^{0}4^{1}8^{1} 102043811^{0}2^{0}4^{3}8^{-1} 102044821^{0}2^{0}4^{4}8^{-2}
102142831^{0}2^{1}4^{-2}8^{3} 102141821^{0}2^{1}4^{-1}8^{2} 102140811^{0}2^{1}4^{0}8^{1} 102142811^{0}2^{1}4^{2}8^{-1} 102242821^{0}2^{2}4^{-2}8^{2} 102241811^{0}2^{2}4^{-1}8^{1}
102241811^{0}2^{2}4^{1}8^{-1} 102342811^{0}2^{3}4^{-2}8^{1} 112346821^{1}2^{-3}4^{6}8^{-2} 112244811^{1}2^{-2}4^{4}8^{-1} 112245821^{1}2^{-2}4^{5}8^{-2} 112140821^{1}2^{-1}4^{0}8^{2}
112141811^{1}2^{-1}4^{1}8^{1} 112143811^{1}2^{-1}4^{3}8^{-1} 112041821^{1}2^{0}4^{-1}8^{2} 112040811^{1}2^{0}4^{0}8^{1} 112042811^{1}2^{0}4^{2}8^{-1} 112141811^{1}2^{1}4^{-1}8^{1}
122345821^{2}2^{-3}4^{5}8^{-2} 122243811^{2}2^{-2}4^{3}8^{-1} 122141821^{2}2^{-1}4^{-1}8^{2} 122140811^{2}2^{-1}4^{0}8^{1} 122142811^{2}2^{-1}4^{2}8^{-1} 122041811^{2}2^{0}4^{-1}8^{1}
N=8N=8, k=3/2k=3/2
132543821^{-3}2^{5}4^{3}8^{-2} 132641811^{-3}2^{6}4^{1}8^{-1} 132642821^{-3}2^{6}4^{2}8^{-2} 132743821^{-3}2^{7}4^{-3}8^{2} 132742811^{-3}2^{7}4^{-2}8^{1} 132740811^{-3}2^{7}4^{0}8^{-1}
132844821^{-3}2^{8}4^{-4}8^{2} 132843811^{-3}2^{8}4^{-3}8^{1} 132841811^{-3}2^{8}4^{-1}8^{-1} 132944811^{-3}2^{9}4^{-4}8^{1} 122245821^{-2}2^{2}4^{5}8^{-2} 122246831^{-2}2^{2}4^{6}8^{-3}
122343811^{-2}2^{3}4^{3}8^{-1} 122344821^{-2}2^{3}4^{4}8^{-2} 122345831^{-2}2^{3}4^{5}8^{-3} 122441821^{-2}2^{4}4^{-1}8^{2} 122440811^{-2}2^{4}4^{0}8^{1} 122442811^{-2}2^{4}4^{2}8^{-1}
122443821^{-2}2^{4}4^{3}8^{-2} 122543831^{-2}2^{5}4^{-3}8^{3} 122542821^{-2}2^{5}4^{-2}8^{2} 122541811^{-2}2^{5}4^{-1}8^{1} 122541811^{-2}2^{5}4^{1}8^{-1} 122542821^{-2}2^{5}4^{2}8^{-2}
122644831^{-2}2^{6}4^{-4}8^{3} 122643821^{-2}2^{6}4^{-3}8^{2} 122642811^{-2}2^{6}4^{-2}8^{1} 122640811^{-2}2^{6}4^{0}8^{-1} 122744821^{-2}2^{7}4^{-4}8^{2} 122743811^{-2}2^{7}4^{-3}8^{1}
122741811^{-2}2^{7}4^{-1}8^{-1} 122844811^{-2}2^{8}4^{-4}8^{1} 112147821^{-1}2^{-1}4^{7}8^{-2} 112148831^{-1}2^{-1}4^{8}8^{-3} 112045811^{-1}2^{0}4^{5}8^{-1} 112046821^{-1}2^{0}4^{6}8^{-2}
112047831^{-1}2^{0}4^{7}8^{-3} 112141821^{-1}2^{1}4^{1}8^{2} 112142811^{-1}2^{1}4^{2}8^{1} 112144811^{-1}2^{1}4^{4}8^{-1} 112145821^{-1}2^{1}4^{5}8^{-2} 112146831^{-1}2^{1}4^{6}8^{-3}
112241831^{-1}2^{2}4^{-1}8^{3} 112240821^{-1}2^{2}4^{0}8^{2} 112241811^{-1}2^{2}4^{1}8^{1} 112243811^{-1}2^{2}4^{3}8^{-1} 112244821^{-1}2^{2}4^{4}8^{-2} 112342831^{-1}2^{3}4^{-2}8^{3}
112341821^{-1}2^{3}4^{-1}8^{2} 112340811^{-1}2^{3}4^{0}8^{1} 112342811^{-1}2^{3}4^{2}8^{-1} 112343821^{-1}2^{3}4^{3}8^{-2} 112443831^{-1}2^{4}4^{-3}8^{3} 112442821^{-1}2^{4}4^{-2}8^{2}
112441811^{-1}2^{4}4^{-1}8^{1} 112441811^{-1}2^{4}4^{1}8^{-1} 112543821^{-1}2^{5}4^{-3}8^{2} 112542811^{-1}2^{5}4^{-2}8^{1} 112540811^{-1}2^{5}4^{0}8^{-1} 112643811^{-1}2^{6}4^{-3}8^{1}
102347811^{0}2^{-3}4^{7}8^{-1} 102348821^{0}2^{-3}4^{8}8^{-2} 102244811^{0}2^{-2}4^{4}8^{1} 102246811^{0}2^{-2}4^{6}8^{-1} 102247821^{0}2^{-2}4^{7}8^{-2} 102248831^{0}2^{-2}4^{8}8^{-3}
102142821^{0}2^{-1}4^{2}8^{2} 102143811^{0}2^{-1}4^{3}8^{1} 102145811^{0}2^{-1}4^{5}8^{-1} 102146821^{0}2^{-1}4^{6}8^{-2} 102147831^{0}2^{-1}4^{7}8^{-3} 102041821^{0}2^{0}4^{1}8^{2}
102042811^{0}2^{0}4^{2}8^{1} 102044811^{0}2^{0}4^{4}8^{-1} 102045821^{0}2^{0}4^{5}8^{-2} 102046831^{0}2^{0}4^{6}8^{-3} 102141831^{0}2^{1}4^{-1}8^{3} 102140821^{0}2^{1}4^{0}8^{2}
102141811^{0}2^{1}4^{1}8^{1} 102143811^{0}2^{1}4^{3}8^{-1} 102144821^{0}2^{1}4^{4}8^{-2} 102242831^{0}2^{2}4^{-2}8^{3} 102241821^{0}2^{2}4^{-1}8^{2} 102240811^{0}2^{2}4^{0}8^{1}
102242811^{0}2^{2}4^{2}8^{-1} 102243821^{0}2^{2}4^{3}8^{-2} 102343831^{0}2^{3}4^{-3}8^{3} 102342821^{0}2^{3}4^{-2}8^{2} 102341811^{0}2^{3}4^{-1}8^{1} 102341811^{0}2^{3}4^{1}8^{-1}
102443821^{0}2^{4}4^{-3}8^{2} 102442811^{0}2^{4}4^{-2}8^{1} 102440811^{0}2^{4}4^{0}8^{-1} 102543811^{0}2^{5}4^{-3}8^{1} 112448821^{1}2^{-4}4^{8}8^{-2} 112449831^{1}2^{-4}4^{9}8^{-3}
112346811^{1}2^{-3}4^{6}8^{-1} 112347821^{1}2^{-3}4^{7}8^{-2} 112348831^{1}2^{-3}4^{8}8^{-3} 112242821^{1}2^{-2}4^{2}8^{2} 112243811^{1}2^{-2}4^{3}8^{1} 112245811^{1}2^{-2}4^{5}8^{-1}
112246821^{1}2^{-2}4^{6}8^{-2} 112247831^{1}2^{-2}4^{7}8^{-3} 112140831^{1}2^{-1}4^{0}8^{3} 112141821^{1}2^{-1}4^{1}8^{2} 112142811^{1}2^{-1}4^{2}8^{1} 112144811^{1}2^{-1}4^{4}8^{-1}
112145821^{1}2^{-1}4^{5}8^{-2} 112041831^{1}2^{0}4^{-1}8^{3} 112040821^{1}2^{0}4^{0}8^{2} 112041811^{1}2^{0}4^{1}8^{1} 112043811^{1}2^{0}4^{3}8^{-1} 112044821^{1}2^{0}4^{4}8^{-2}
112142831^{1}2^{1}4^{-2}8^{3} 112141821^{1}2^{1}4^{-1}8^{2} 112140811^{1}2^{1}4^{0}8^{1} 112142811^{1}2^{1}4^{2}8^{-1} 112242821^{1}2^{2}4^{-2}8^{2} 112241811^{1}2^{2}4^{-1}8^{1}
112241811^{1}2^{2}4^{1}8^{-1} 112342811^{1}2^{3}4^{-2}8^{1} 122447821^{2}2^{-4}4^{7}8^{-2} 122448831^{2}2^{-4}4^{8}8^{-3} 122345811^{2}2^{-3}4^{5}8^{-1} 122346821^{2}2^{-3}4^{6}8^{-2}
122347831^{2}2^{-3}4^{7}8^{-3} 122241821^{2}2^{-2}4^{1}8^{2} 122242811^{2}2^{-2}4^{2}8^{1} 122244811^{2}2^{-2}4^{4}8^{-1} 122245821^{2}2^{-2}4^{5}8^{-2} 122141831^{2}2^{-1}4^{-1}8^{3}
122140821^{2}2^{-1}4^{0}8^{2} 122141811^{2}2^{-1}4^{1}8^{1} 122143811^{2}2^{-1}4^{3}8^{-1} 122144821^{2}2^{-1}4^{4}8^{-2} 122042831^{2}2^{0}4^{-2}8^{3} 122041821^{2}2^{0}4^{-1}8^{2}
122040811^{2}2^{0}4^{0}8^{1} 122042811^{2}2^{0}4^{2}8^{-1} 122142821^{2}2^{1}4^{-2}8^{2} 122141811^{2}2^{1}4^{-1}8^{1} 122141811^{2}2^{1}4^{1}8^{-1} 122242811^{2}2^{2}4^{-2}8^{1}
132446821^{3}2^{-4}4^{6}8^{-2} 132344811^{3}2^{-3}4^{4}8^{-1} 132345821^{3}2^{-3}4^{5}8^{-2} 132240821^{3}2^{-2}4^{0}8^{2} 132241811^{3}2^{-2}4^{1}8^{1} 132243811^{3}2^{-2}4^{3}8^{-1}
132141821^{3}2^{-1}4^{-1}8^{2} 132140811^{3}2^{-1}4^{0}8^{1} 132142811^{3}2^{-1}4^{2}8^{-1} 132041811^{3}2^{0}4^{-1}8^{1}
N=8N=8, k=2k=2
132445821^{-3}2^{4}4^{5}8^{-2} 132446831^{-3}2^{4}4^{6}8^{-3} 132543811^{-3}2^{5}4^{3}8^{-1} 132544821^{-3}2^{5}4^{4}8^{-2} 132545831^{-3}2^{5}4^{5}8^{-3} 132641821^{-3}2^{6}4^{-1}8^{2}
132640811^{-3}2^{6}4^{0}8^{1} 132642811^{-3}2^{6}4^{2}8^{-1} 132643821^{-3}2^{6}4^{3}8^{-2} 132644831^{-3}2^{6}4^{4}8^{-3} 132743831^{-3}2^{7}4^{-3}8^{3} 132742821^{-3}2^{7}4^{-2}8^{2}
132741811^{-3}2^{7}4^{-1}8^{1} 132741811^{-3}2^{7}4^{1}8^{-1} 132844831^{-3}2^{8}4^{-4}8^{3} 132843821^{-3}2^{8}4^{-3}8^{2} 132842811^{-3}2^{8}4^{-2}8^{1} 132945831^{-3}2^{9}4^{-5}8^{3}
122245811^{-2}2^{2}4^{5}8^{-1} 122246821^{-2}2^{2}4^{6}8^{-2} 122342811^{-2}2^{3}4^{2}8^{1} 122344811^{-2}2^{3}4^{4}8^{-1} 122345821^{-2}2^{3}4^{5}8^{-2} 122346831^{-2}2^{3}4^{6}8^{-3}
122440821^{-2}2^{4}4^{0}8^{2} 122441811^{-2}2^{4}4^{1}8^{1} 122443811^{-2}2^{4}4^{3}8^{-1} 122444821^{-2}2^{4}4^{4}8^{-2} 122445831^{-2}2^{4}4^{5}8^{-3} 122541821^{-2}2^{5}4^{-1}8^{2}
122540811^{-2}2^{5}4^{0}8^{1} 122542811^{-2}2^{5}4^{2}8^{-1} 122543821^{-2}2^{5}4^{3}8^{-2} 122544831^{-2}2^{5}4^{4}8^{-3} 122643831^{-2}2^{6}4^{-3}8^{3} 122642821^{-2}2^{6}4^{-2}8^{2}
122641811^{-2}2^{6}4^{-1}8^{1} 122641811^{-2}2^{6}4^{1}8^{-1} 122642821^{-2}2^{6}4^{2}8^{-2} 122744831^{-2}2^{7}4^{-4}8^{3} 122743821^{-2}2^{7}4^{-3}8^{2} 122742811^{-2}2^{7}4^{-2}8^{1}
122740811^{-2}2^{7}4^{0}8^{-1} 122845831^{-2}2^{8}4^{-5}8^{3} 122844821^{-2}2^{8}4^{-4}8^{2} 122843811^{-2}2^{8}4^{-3}8^{1} 112147811^{-1}2^{-1}4^{7}8^{-1} 112044811^{-1}2^{0}4^{4}8^{1}
112046811^{-1}2^{0}4^{6}8^{-1} 112047821^{-1}2^{0}4^{7}8^{-2} 112143811^{-1}2^{1}4^{3}8^{1} 112145811^{-1}2^{1}4^{5}8^{-1} 112146821^{-1}2^{1}4^{6}8^{-2} 112147831^{-1}2^{1}4^{7}8^{-3}
112241821^{-1}2^{2}4^{1}8^{2} 112242811^{-1}2^{2}4^{2}8^{1} 112244811^{-1}2^{2}4^{4}8^{-1} 112245821^{-1}2^{2}4^{5}8^{-2} 112246831^{-1}2^{2}4^{6}8^{-3} 112340821^{-1}2^{3}4^{0}8^{2}
112341811^{-1}2^{3}4^{1}8^{1} 112343811^{-1}2^{3}4^{3}8^{-1} 112344821^{-1}2^{3}4^{4}8^{-2} 112345831^{-1}2^{3}4^{5}8^{-3} 112442831^{-1}2^{4}4^{-2}8^{3} 112441821^{-1}2^{4}4^{-1}8^{2}
112440811^{-1}2^{4}4^{0}8^{1} 112442811^{-1}2^{4}4^{2}8^{-1} 112443821^{-1}2^{4}4^{3}8^{-2} 112543831^{-1}2^{5}4^{-3}8^{3} 112542821^{-1}2^{5}4^{-2}8^{2} 112541811^{-1}2^{5}4^{-1}8^{1}
112541811^{-1}2^{5}4^{1}8^{-1} 112542821^{-1}2^{5}4^{2}8^{-2} 112644831^{-1}2^{6}4^{-4}8^{3} 112643821^{-1}2^{6}4^{-3}8^{2} 112642811^{-1}2^{6}4^{-2}8^{1} 112640811^{-1}2^{6}4^{0}8^{-1}
112744821^{-1}2^{7}4^{-4}8^{2} 112743811^{-1}2^{7}4^{-3}8^{1} 112741811^{-1}2^{7}4^{-1}8^{-1} 112844811^{-1}2^{8}4^{-4}8^{1} 102247811^{0}2^{-2}4^{7}8^{-1} 102144811^{0}2^{-1}4^{4}8^{1}
102146811^{0}2^{-1}4^{6}8^{-1} 102147821^{0}2^{-1}4^{7}8^{-2} 102043811^{0}2^{0}4^{3}8^{1} 102045811^{0}2^{0}4^{5}8^{-1} 102046821^{0}2^{0}4^{6}8^{-2} 102047831^{0}2^{0}4^{7}8^{-3}
102141821^{0}2^{1}4^{1}8^{2} 102142811^{0}2^{1}4^{2}8^{1} 102144811^{0}2^{1}4^{4}8^{-1} 102145821^{0}2^{1}4^{5}8^{-2} 102146831^{0}2^{1}4^{6}8^{-3} 102240821^{0}2^{2}4^{0}8^{2}
102241811^{0}2^{2}4^{1}8^{1} 102243811^{0}2^{2}4^{3}8^{-1} 102244821^{0}2^{2}4^{4}8^{-2} 102245831^{0}2^{2}4^{5}8^{-3} 102342831^{0}2^{3}4^{-2}8^{3} 102341821^{0}2^{3}4^{-1}8^{2}
102340811^{0}2^{3}4^{0}8^{1} 102342811^{0}2^{3}4^{2}8^{-1} 102343821^{0}2^{3}4^{3}8^{-2} 102443831^{0}2^{4}4^{-3}8^{3} 102442821^{0}2^{4}4^{-2}8^{2} 102441811^{0}2^{4}4^{-1}8^{1}
102441811^{0}2^{4}4^{1}8^{-1} 102442821^{0}2^{4}4^{2}8^{-2} 102544831^{0}2^{5}4^{-4}8^{3} 102543821^{0}2^{5}4^{-3}8^{2} 102542811^{0}2^{5}4^{-2}8^{1} 102540811^{0}2^{5}4^{0}8^{-1}
102644821^{0}2^{6}4^{-4}8^{2} 102643811^{0}2^{6}4^{-3}8^{1} 102641811^{0}2^{6}4^{-1}8^{-1} 102744811^{0}2^{7}4^{-4}8^{1} 112448811^{1}2^{-4}4^{8}8^{-1} 112345811^{1}2^{-3}4^{5}8^{1}
112347811^{1}2^{-3}4^{7}8^{-1} 112348821^{1}2^{-3}4^{8}8^{-2} 112244811^{1}2^{-2}4^{4}8^{1} 112246811^{1}2^{-2}4^{6}8^{-1} 112247821^{1}2^{-2}4^{7}8^{-2} 112248831^{1}2^{-2}4^{8}8^{-3}
112142821^{1}2^{-1}4^{2}8^{2} 112143811^{1}2^{-1}4^{3}8^{1} 112145811^{1}2^{-1}4^{5}8^{-1} 112146821^{1}2^{-1}4^{6}8^{-2} 112147831^{1}2^{-1}4^{7}8^{-3} 112041821^{1}2^{0}4^{1}8^{2}
112042811^{1}2^{0}4^{2}8^{1} 112044811^{1}2^{0}4^{4}8^{-1} 112045821^{1}2^{0}4^{5}8^{-2} 112046831^{1}2^{0}4^{6}8^{-3} 112141831^{1}2^{1}4^{-1}8^{3} 112140821^{1}2^{1}4^{0}8^{2}
112141811^{1}2^{1}4^{1}8^{1} 112143811^{1}2^{1}4^{3}8^{-1} 112144821^{1}2^{1}4^{4}8^{-2} 112242831^{1}2^{2}4^{-2}8^{3} 112241821^{1}2^{2}4^{-1}8^{2} 112240811^{1}2^{2}4^{0}8^{1}
112242811^{1}2^{2}4^{2}8^{-1} 112243821^{1}2^{2}4^{3}8^{-2} 112343831^{1}2^{3}4^{-3}8^{3} 112342821^{1}2^{3}4^{-2}8^{2} 112341811^{1}2^{3}4^{-1}8^{1} 112341811^{1}2^{3}4^{1}8^{-1}
112443821^{1}2^{4}4^{-3}8^{2} 112442811^{1}2^{4}4^{-2}8^{1} 112440811^{1}2^{4}4^{0}8^{-1} 112543811^{1}2^{5}4^{-3}8^{1} 122447811^{2}2^{-4}4^{7}8^{-1} 122448821^{2}2^{-4}4^{8}8^{-2}
122344811^{2}2^{-3}4^{4}8^{1} 122346811^{2}2^{-3}4^{6}8^{-1} 122347821^{2}2^{-3}4^{7}8^{-2} 122348831^{2}2^{-3}4^{8}8^{-3} 122242821^{2}2^{-2}4^{2}8^{2} 122243811^{2}2^{-2}4^{3}8^{1}
122245811^{2}2^{-2}4^{5}8^{-1} 122246821^{2}2^{-2}4^{6}8^{-2} 122247831^{2}2^{-2}4^{7}8^{-3} 122141821^{2}2^{-1}4^{1}8^{2} 122142811^{2}2^{-1}4^{2}8^{1} 122144811^{2}2^{-1}4^{4}8^{-1}
122145821^{2}2^{-1}4^{5}8^{-2} 122146831^{2}2^{-1}4^{6}8^{-3} 122041831^{2}2^{0}4^{-1}8^{3} 122040821^{2}2^{0}4^{0}8^{2} 122041811^{2}2^{0}4^{1}8^{1} 122043811^{2}2^{0}4^{3}8^{-1}
122044821^{2}2^{0}4^{4}8^{-2} 122142831^{2}2^{1}4^{-2}8^{3} 122141821^{2}2^{1}4^{-1}8^{2} 122140811^{2}2^{1}4^{0}8^{1} 122142811^{2}2^{1}4^{2}8^{-1} 122243831^{2}2^{2}4^{-3}8^{3}
122242821^{2}2^{2}4^{-2}8^{2} 122241811^{2}2^{2}4^{-1}8^{1} 132548821^{3}2^{-5}4^{8}8^{-2} 132549831^{3}2^{-5}4^{9}8^{-3} 132446811^{3}2^{-4}4^{6}8^{-1} 132447821^{3}2^{-4}4^{7}8^{-2}
132448831^{3}2^{-4}4^{8}8^{-3} 132342821^{3}2^{-3}4^{2}8^{2} 132343811^{3}2^{-3}4^{3}8^{1} 132345811^{3}2^{-3}4^{5}8^{-1} 132346821^{3}2^{-3}4^{6}8^{-2} 132347831^{3}2^{-3}4^{7}8^{-3}
132240831^{3}2^{-2}4^{0}8^{3} 132241821^{3}2^{-2}4^{1}8^{2} 132242811^{3}2^{-2}4^{2}8^{1} 132244811^{3}2^{-2}4^{4}8^{-1} 132141831^{3}2^{-1}4^{-1}8^{3} 132140821^{3}2^{-1}4^{0}8^{2}
132141811^{3}2^{-1}4^{1}8^{1} 132042831^{3}2^{0}4^{-2}8^{3}
N=8N=8, k=5/2k=5/2
132445811^{-3}2^{4}4^{5}8^{-1} 132542811^{-3}2^{5}4^{2}8^{1} 132544811^{-3}2^{5}4^{4}8^{-1} 132545821^{-3}2^{5}4^{5}8^{-2} 132641811^{-3}2^{6}4^{1}8^{1} 132643811^{-3}2^{6}4^{3}8^{-1}
132741821^{-3}2^{7}4^{-1}8^{2} 132740811^{-3}2^{7}4^{0}8^{1} 122345811^{-2}2^{3}4^{5}8^{-1} 122442811^{-2}2^{4}4^{2}8^{1} 122444811^{-2}2^{4}4^{4}8^{-1} 122445821^{-2}2^{4}4^{5}8^{-2}
122541811^{-2}2^{5}4^{1}8^{1} 122543811^{-2}2^{5}4^{3}8^{-1} 122544821^{-2}2^{5}4^{4}8^{-2} 122545831^{-2}2^{5}4^{5}8^{-3} 122641821^{-2}2^{6}4^{-1}8^{2} 122640811^{-2}2^{6}4^{0}8^{1}
122642811^{-2}2^{6}4^{2}8^{-1} 122742821^{-2}2^{7}4^{-2}8^{2} 122741811^{-2}2^{7}4^{-1}8^{1} 122844831^{-2}2^{8}4^{-4}8^{3} 112146811^{-1}2^{1}4^{6}8^{-1} 112243811^{-1}2^{2}4^{3}8^{1}
112245811^{-1}2^{2}4^{5}8^{-1} 112246821^{-1}2^{2}4^{6}8^{-2} 112342811^{-1}2^{3}4^{2}8^{1} 112344811^{-1}2^{3}4^{4}8^{-1} 112345821^{-1}2^{3}4^{5}8^{-2} 112346831^{-1}2^{3}4^{6}8^{-3}
112440821^{-1}2^{4}4^{0}8^{2} 112441811^{-1}2^{4}4^{1}8^{1} 112443811^{-1}2^{4}4^{3}8^{-1} 112444821^{-1}2^{4}4^{4}8^{-2} 112445831^{-1}2^{4}4^{5}8^{-3} 112541821^{-1}2^{5}4^{-1}8^{2}
112540811^{-1}2^{5}4^{0}8^{1} 112542811^{-1}2^{5}4^{2}8^{-1} 112543821^{-1}2^{5}4^{3}8^{-2} 112544831^{-1}2^{5}4^{4}8^{-3} 112643831^{-1}2^{6}4^{-3}8^{3} 112642821^{-1}2^{6}4^{-2}8^{2}
112641811^{-1}2^{6}4^{-1}8^{1} 112641811^{-1}2^{6}4^{1}8^{-1} 112744831^{-1}2^{7}4^{-4}8^{3} 112743821^{-1}2^{7}4^{-3}8^{2} 112742811^{-1}2^{7}4^{-2}8^{1} 112845831^{-1}2^{8}4^{-5}8^{3}
102046811^{0}2^{0}4^{6}8^{-1} 102143811^{0}2^{1}4^{3}8^{1} 102145811^{0}2^{1}4^{5}8^{-1} 102146821^{0}2^{1}4^{6}8^{-2} 102242811^{0}2^{2}4^{2}8^{1} 102244811^{0}2^{2}4^{4}8^{-1}
102245821^{0}2^{2}4^{5}8^{-2} 102246831^{0}2^{2}4^{6}8^{-3} 102340821^{0}2^{3}4^{0}8^{2} 102341811^{0}2^{3}4^{1}8^{1} 102343811^{0}2^{3}4^{3}8^{-1} 102344821^{0}2^{3}4^{4}8^{-2}
102345831^{0}2^{3}4^{5}8^{-3} 102441821^{0}2^{4}4^{-1}8^{2} 102440811^{0}2^{4}4^{0}8^{1} 102442811^{0}2^{4}4^{2}8^{-1} 102443821^{0}2^{4}4^{3}8^{-2} 102444831^{0}2^{4}4^{4}8^{-3}
102543831^{0}2^{5}4^{-3}8^{3} 102542821^{0}2^{5}4^{-2}8^{2} 102541811^{0}2^{5}4^{-1}8^{1} 102541811^{0}2^{5}4^{1}8^{-1} 102542821^{0}2^{5}4^{2}8^{-2} 102644831^{0}2^{6}4^{-4}8^{3}
102643821^{0}2^{6}4^{-3}8^{2} 102642811^{0}2^{6}4^{-2}8^{1} 102640811^{0}2^{6}4^{0}8^{-1} 102745831^{0}2^{7}4^{-5}8^{3} 102744821^{0}2^{7}4^{-4}8^{2} 102743811^{0}2^{7}4^{-3}8^{1}
112247811^{1}2^{-2}4^{7}8^{-1} 112144811^{1}2^{-1}4^{4}8^{1} 112146811^{1}2^{-1}4^{6}8^{-1} 112147821^{1}2^{-1}4^{7}8^{-2} 112043811^{1}2^{0}4^{3}8^{1} 112045811^{1}2^{0}4^{5}8^{-1}
112046821^{1}2^{0}4^{6}8^{-2} 112047831^{1}2^{0}4^{7}8^{-3} 112141821^{1}2^{1}4^{1}8^{2} 112142811^{1}2^{1}4^{2}8^{1} 112144811^{1}2^{1}4^{4}8^{-1} 112145821^{1}2^{1}4^{5}8^{-2}
112146831^{1}2^{1}4^{6}8^{-3} 112240821^{1}2^{2}4^{0}8^{2} 112241811^{1}2^{2}4^{1}8^{1} 112243811^{1}2^{2}4^{3}8^{-1} 112244821^{1}2^{2}4^{4}8^{-2} 112245831^{1}2^{2}4^{5}8^{-3}
112342831^{1}2^{3}4^{-2}8^{3} 112341821^{1}2^{3}4^{-1}8^{2} 112340811^{1}2^{3}4^{0}8^{1} 112342811^{1}2^{3}4^{2}8^{-1} 112443831^{1}2^{4}4^{-3}8^{3} 112442821^{1}2^{4}4^{-2}8^{2}
112441811^{1}2^{4}4^{-1}8^{1} 112544831^{1}2^{5}4^{-4}8^{3} 122347811^{2}2^{-3}4^{7}8^{-1} 122244811^{2}2^{-2}4^{4}8^{1} 122246811^{2}2^{-2}4^{6}8^{-1} 122247821^{2}2^{-2}4^{7}8^{-2}
122143811^{2}2^{-1}4^{3}8^{1} 122145811^{2}2^{-1}4^{5}8^{-1} 122146821^{2}2^{-1}4^{6}8^{-2} 122147831^{2}2^{-1}4^{7}8^{-3} 122041821^{2}2^{0}4^{1}8^{2} 122042811^{2}2^{0}4^{2}8^{1}
122044811^{2}2^{0}4^{4}8^{-1} 122140821^{2}2^{1}4^{0}8^{2} 122141811^{2}2^{1}4^{1}8^{1} 122242831^{2}2^{2}4^{-2}8^{3} 132548811^{3}2^{-5}4^{8}8^{-1} 132445811^{3}2^{-4}4^{5}8^{1}
132447811^{3}2^{-4}4^{7}8^{-1} 132448821^{3}2^{-4}4^{8}8^{-2} 132344811^{3}2^{-3}4^{4}8^{1} 132346811^{3}2^{-3}4^{6}8^{-1} 132242821^{3}2^{-2}4^{2}8^{2} 132243811^{3}2^{-2}4^{3}8^{1}
N=8N=8, k=3k=3
122544811^{-2}2^{5}4^{4}8^{-1} 122641811^{-2}2^{6}4^{1}8^{1} 112345811^{-1}2^{3}4^{5}8^{-1} 112442811^{-1}2^{4}4^{2}8^{1} 112444811^{-1}2^{4}4^{4}8^{-1} 112445821^{-1}2^{4}4^{5}8^{-2}
112541811^{-1}2^{5}4^{1}8^{1} 112543811^{-1}2^{5}4^{3}8^{-1} 112641821^{-1}2^{6}4^{-1}8^{2} 112640811^{-1}2^{6}4^{0}8^{1} 102245811^{0}2^{2}4^{5}8^{-1} 102342811^{0}2^{3}4^{2}8^{1}
102344811^{0}2^{3}4^{4}8^{-1} 102345821^{0}2^{3}4^{5}8^{-2} 102441811^{0}2^{4}4^{1}8^{1} 102443811^{0}2^{4}4^{3}8^{-1} 102444821^{0}2^{4}4^{4}8^{-2} 102445831^{0}2^{4}4^{5}8^{-3}
102541821^{0}2^{5}4^{-1}8^{2} 102540811^{0}2^{5}4^{0}8^{1} 102542811^{0}2^{5}4^{2}8^{-1} 102642821^{0}2^{6}4^{-2}8^{2} 102641811^{0}2^{6}4^{-1}8^{1} 102744831^{0}2^{7}4^{-4}8^{3}
112046811^{1}2^{0}4^{6}8^{-1} 112143811^{1}2^{1}4^{3}8^{1} 112145811^{1}2^{1}4^{5}8^{-1} 112146821^{1}2^{1}4^{6}8^{-2} 112242811^{1}2^{2}4^{2}8^{1} 112244811^{1}2^{2}4^{4}8^{-1}
112340821^{1}2^{3}4^{0}8^{2} 112341811^{1}2^{3}4^{1}8^{1} 122146811^{2}2^{-1}4^{6}8^{-1} 122043811^{2}2^{0}4^{3}8^{1}
N=8N=8, k=7/2k=7/2
102444811^{0}2^{4}4^{4}8^{-1} 102541811^{0}2^{5}4^{1}8^{1}
N=9N=9, k=1/2k=1/2
1030911^{0}3^{0}9^{1}
N=9N=9, k=1k=1
1134911^{-1}3^{4}9^{-1} 1030921^{0}3^{0}9^{2} 1031911^{0}3^{1}9^{1} 1033911^{0}3^{3}9^{-1} 1131921^{1}3^{-1}9^{2} 1130911^{1}3^{0}9^{1}
1231911^{2}3^{-1}9^{1}
N=9N=9, k=3/2k=3/2
1237921^{-2}3^{7}9^{-2} 1133911^{-1}3^{3}9^{1} 1135911^{-1}3^{5}9^{-1} 1031921^{0}3^{1}9^{2} 1032911^{0}3^{2}9^{1} 1034911^{0}3^{4}9^{-1}
1130921^{1}3^{0}9^{2} 1131911^{1}3^{1}9^{1} 1133911^{1}3^{3}9^{-1} 1231921^{2}3^{-1}9^{2} 1230911^{2}3^{0}9^{1}
N=9N=9, k=2k=2
1237911^{-2}3^{7}9^{-1} 1238921^{-2}3^{8}9^{-2} 1134911^{-1}3^{4}9^{1} 1136911^{-1}3^{6}9^{-1} 1137921^{-1}3^{7}9^{-2} 1033911^{0}3^{3}9^{1}
1035911^{0}3^{5}9^{-1} 1036921^{0}3^{6}9^{-2} 1131921^{1}3^{1}9^{2} 1132911^{1}3^{2}9^{1} 1134911^{1}3^{4}9^{-1} 1230921^{2}3^{0}9^{2}
1231911^{2}3^{1}9^{1}
N=9N=9, k=5/2k=5/2
1238911^{-2}3^{8}9^{-1} 1239921^{-2}3^{9}9^{-2} 1135911^{-1}3^{5}9^{1} 1137911^{-1}3^{7}9^{-1} 1138921^{-1}3^{8}9^{-2} 1034911^{0}3^{4}9^{1}
1036911^{0}3^{6}9^{-1} 1037921^{0}3^{7}9^{-2} 1133911^{1}3^{3}9^{1} 1135911^{1}3^{5}9^{-1} 1231921^{2}3^{1}9^{2}
N=9N=9, k=3k=3
1138911^{-1}3^{8}9^{-1} 1037911^{0}3^{7}9^{-1} 1038921^{0}3^{8}9^{-2} 1134911^{1}3^{4}9^{1}
N=9N=9, k=7/2k=7/2
1038911^{0}3^{8}9^{-1}
N=10N=10, k=1/2k=1/2
1020511021^{0}2^{0}5^{-1}10^{2} 1020501011^{0}2^{0}5^{0}10^{1} 1020521011^{0}2^{0}5^{2}10^{-1}
N=10N=10, k=1k=1
1122511021^{-1}2^{2}5^{-1}10^{2} 1122501011^{-1}2^{2}5^{0}10^{1} 1122511001^{-1}2^{2}5^{1}10^{0} 1122521011^{-1}2^{2}5^{2}10^{-1} 1020501021^{0}2^{0}5^{0}10^{2} 1020511011^{0}2^{0}5^{1}10^{1}
1021511021^{0}2^{1}5^{-1}10^{2} 1021501011^{0}2^{1}5^{0}10^{1} 1021511001^{0}2^{1}5^{1}10^{0} 1021521011^{0}2^{1}5^{2}10^{-1} 1120511021^{1}2^{0}5^{-1}10^{2} 1120501011^{1}2^{0}5^{0}10^{1}
1120521011^{1}2^{0}5^{2}10^{-1} 1221511021^{2}2^{-1}5^{-1}10^{2} 1221501011^{2}2^{-1}5^{0}10^{1} 1221511001^{2}2^{-1}5^{1}10^{0} 1221521011^{2}2^{-1}5^{2}10^{-1}
N=10N=10, k=3/2k=3/2
1122501021^{-1}2^{2}5^{0}10^{2} 1122511011^{-1}2^{2}5^{1}10^{1} 1122521001^{-1}2^{2}5^{2}10^{0} 1021501021^{0}2^{1}5^{0}10^{2} 1021511011^{0}2^{1}5^{1}10^{1} 1021521001^{0}2^{1}5^{2}10^{0}
1022511021^{0}2^{2}5^{-1}10^{2} 1022501011^{0}2^{2}5^{0}10^{1} 1022511001^{0}2^{2}5^{1}10^{0} 1022521011^{0}2^{2}5^{2}10^{-1} 1120501021^{1}2^{0}5^{0}10^{2} 1120511011^{1}2^{0}5^{1}10^{1}
1121511021^{1}2^{1}5^{-1}10^{2} 1121501011^{1}2^{1}5^{0}10^{1} 1121511001^{1}2^{1}5^{1}10^{0} 1121521011^{1}2^{1}5^{2}10^{-1} 1221501021^{2}2^{-1}5^{0}10^{2} 1221511011^{2}2^{-1}5^{1}10^{1}
1221521001^{2}2^{-1}5^{2}10^{0} 1220511021^{2}2^{0}5^{-1}10^{2} 1220501011^{2}2^{0}5^{0}10^{1} 1220521011^{2}2^{0}5^{2}10^{-1}
N=10N=10, k=2k=2
1022511011^{0}2^{2}5^{1}10^{1} 1022521001^{0}2^{2}5^{2}10^{0} 1121501021^{1}2^{1}5^{0}10^{2} 1121511011^{1}2^{1}5^{1}10^{1} 1121521001^{1}2^{1}5^{2}10^{0} 1220501021^{2}2^{0}5^{0}10^{2}
1220511011^{2}2^{0}5^{1}10^{1}
N=11N=11, k=3/2k=3/2
101131^{0}11^{3}
N=11N=11, k=2k=2
101141^{0}11^{4} 111131^{1}11^{3} 131111^{3}11^{1}
N=11N=11, k=5/2k=5/2
111141^{1}11^{4} 141111^{4}11^{1}
N=13N=13, k=1/2k=1/2
101311^{0}13^{1}
N=13N=13, k=1k=1
111311^{1}13^{1}
N=14N=14, k=1k=1
1020721441^{0}2^{0}7^{-2}14^{4} 1020711431^{0}2^{0}7^{-1}14^{3} 1020701421^{0}2^{0}7^{0}14^{2} 1020731411^{0}2^{0}7^{3}14^{-1} 1020741421^{0}2^{0}7^{4}14^{-2}
N=14N=14, k=3/2k=3/2
1224701411^{-2}2^{4}7^{0}14^{1} 1224711401^{-2}2^{4}7^{1}14^{0} 1224721411^{-2}2^{4}7^{2}14^{-1} 1122721401^{-1}2^{2}7^{2}14^{0} 1122731411^{-1}2^{2}7^{3}14^{-1} 1122741421^{-1}2^{2}7^{4}14^{-2}
1123701411^{-1}2^{3}7^{0}14^{1} 1123711401^{-1}2^{3}7^{1}14^{0} 1123721411^{-1}2^{3}7^{2}14^{-1} 1020701431^{0}2^{0}7^{0}14^{3} 1021721441^{0}2^{1}7^{-2}14^{4} 1021711431^{0}2^{1}7^{-1}14^{3}
1021701421^{0}2^{1}7^{0}14^{2} 1021721401^{0}2^{1}7^{2}14^{0} 1021731411^{0}2^{1}7^{3}14^{-1} 1021741421^{0}2^{1}7^{4}14^{-2} 1022701411^{0}2^{2}7^{0}14^{1} 1022711401^{0}2^{2}7^{1}14^{0}
1022721411^{0}2^{2}7^{2}14^{-1} 1120721441^{1}2^{0}7^{-2}14^{4} 1120711431^{1}2^{0}7^{-1}14^{3} 1120701421^{1}2^{0}7^{0}14^{2} 1120731411^{1}2^{0}7^{3}14^{-1} 1120741421^{1}2^{0}7^{4}14^{-2}
1221721441^{2}2^{-1}7^{-2}14^{4} 1221711431^{2}2^{-1}7^{-1}14^{3} 1221701421^{2}2^{-1}7^{0}14^{2} 1220711421^{2}2^{0}7^{-1}14^{2} 1220701411^{2}2^{0}7^{0}14^{1} 1321711421^{3}2^{-1}7^{-1}14^{2}
1321701411^{3}2^{-1}7^{0}14^{1} 1321711401^{3}2^{-1}7^{1}14^{0} 1422711421^{4}2^{-2}7^{-1}14^{2} 1422701411^{4}2^{-2}7^{0}14^{1} 1422711401^{4}2^{-2}7^{1}14^{0}
N=14N=14, k=2k=2
1021701431^{0}2^{1}7^{0}14^{3} 1021731401^{0}2^{1}7^{3}14^{0} 1023701411^{0}2^{3}7^{0}14^{1} 1023711401^{0}2^{3}7^{1}14^{0} 1120701431^{1}2^{0}7^{0}14^{3} 1320701411^{3}2^{0}7^{0}14^{1}
N=15N=15, k=1k=1
1030511531^{0}3^{0}5^{-1}15^{3} 1030501521^{0}3^{0}5^{0}15^{2} 1030531511^{0}3^{0}5^{3}15^{-1}
N=15N=15, k=3/2k=3/2
1133501511^{-1}3^{3}5^{0}15^{1} 1133511501^{-1}3^{3}5^{1}15^{0} 1030501531^{0}3^{0}5^{0}15^{3} 1031511531^{0}3^{1}5^{-1}15^{3} 1031501521^{0}3^{1}5^{0}15^{2} 1031521501^{0}3^{1}5^{2}15^{0}
1031531511^{0}3^{1}5^{3}15^{-1} 1032501511^{0}3^{2}5^{0}15^{1} 1032511501^{0}3^{2}5^{1}15^{0} 1130511531^{1}3^{0}5^{-1}15^{3} 1130501521^{1}3^{0}5^{0}15^{2} 1130531511^{1}3^{0}5^{3}15^{-1}
1230501511^{2}3^{0}5^{0}15^{1} 1331501511^{3}3^{-1}5^{0}15^{1} 1331511501^{3}3^{-1}5^{1}15^{0}
N=15N=15, k=2k=2
1031531501^{0}3^{1}5^{3}15^{0} 1033511501^{0}3^{3}5^{1}15^{0} 1130501531^{1}3^{0}5^{0}15^{3} 1330501511^{3}3^{0}5^{0}15^{1}
N=17N=17, k=1k=1
101721^{0}17^{2}
N=17N=17, k=3/2k=3/2
111721^{1}17^{2} 121711^{2}17^{1}
N=19N=19, k=1k=1
101921^{0}19^{2}
N=19N=19, k=3/2k=3/2
111921^{1}19^{2} 121911^{2}19^{1}
N=21N=21, k=1k=1
1030702121^{0}3^{0}7^{0}21^{2}
N=21N=21, k=3/2k=3/2
1031722101^{0}3^{1}7^{2}21^{0} 1032712101^{0}3^{2}7^{1}21^{0} 1130702121^{1}3^{0}7^{0}21^{2} 1230702111^{2}3^{0}7^{0}21^{1}
N=27N=27, k=1/2k=1/2
1030902711^{0}3^{0}9^{0}27^{1}
N=27N=27, k=1k=1
1030912711^{0}3^{0}9^{1}27^{1} 1031902711^{0}3^{1}9^{0}27^{1} 1032912711^{0}3^{2}9^{-1}27^{1}
N=27N=27, k=3/2k=3/2
1030922711^{0}3^{0}9^{2}27^{1} 1031912711^{0}3^{1}9^{1}27^{1} 1032902711^{0}3^{2}9^{0}27^{1}
N=27N=27, k=2k=2
1032912711^{0}3^{2}9^{1}27^{1}
Remark 9.5.

Each entry in Table LABEL:table:admissibleTypeI is different from others. For instance, although the eta-quotient η(τ)3\eta(\tau)^{3}, when considered as η(τ)3η(2τ)0\eta(\tau)^{3}\eta(2\tau)^{0}, generates the one-dimensional space M3/2(Γ0(2),χ)M_{3/2}(\Gamma_{0}(2),\chi) where χ:Γ0(3)~×\chi\colon\widetilde{\Gamma_{0}(3)}\rightarrow\mathbb{C}^{\times} is the character of η(τ)3η(2τ)0\eta(\tau)^{3}\eta(2\tau)^{0}, we list η(τ)3\eta(\tau)^{3} only in the group N=1N=1, not N=2,k=3/2N=2,k=3/2 to avoid repetition. As a comparison, Tables 2 and 3 of [20], whose entries constitute a subset of Table LABEL:table:admissibleTypeI above, contain repeated eta-quotients. For example, η(τ)1η(2τ)2=η(τ)1η(2τ)2η(4τ)0\eta(\tau)^{-1}\eta(2\tau)^{2}=\eta(\tau)^{-1}\eta(2\tau)^{2}\eta(4\tau)^{0} is listed both in the groups corresponding to N=2,k=1/2N=2,k=1/2 and N=4,k=1/2N=4,k=1/2 there.

Remark 9.6.

One should notice, e.g., that the formal product 1030501521^{0}3^{0}5^{0}15^{2} which represents η(15τ)2\eta(15\tau)^{2} is in Table LABEL:table:admissibleTypeI but 1030501511^{0}3^{0}5^{0}15^{1} is not. This is because dimM1/2(Γ0(15),χ)\dim_{\mathbb{C}}M_{1/2}(\Gamma_{0}(15),\chi) can not be computed using Theorem 4.2 (with t=0t=0) for any χ\chi but dimM1(Γ0(15),χ)\dim_{\mathbb{C}}M_{1}(\Gamma_{0}(15),\chi) can with χ\chi being the character of η(15τ)2\eta(15\tau)^{2} as one may directly see by comparing both sides of the first inequality of (21). See also Table 1 and Table LABEL:table:wt1. Nevertheless, we can prove that η(15τ)\eta(15\tau) is weakly admissible, as the following proposition shows.

Proposition 9.7.

Let ff be an eta-quotient (of integral exponents). If there is a positive integer nn such that fnf^{n} is weakly admissible, then ff is weakly admissible. As a consequence, The mm-th root, where m1m\in\mathbb{Z}_{\geq 1}, of an eta-quotient η(nτ)rn\prod\eta(n\tau)^{r_{n}} in Table LABEL:table:admissibleTypeI is weakly admissible provided that mrnm\mid r_{n} for all nn.

Proof.

Let NN, kk be the level and weight of ff respectively. Let χ:Γ0(N)~×\chi\colon\widetilde{\Gamma_{0}(N)}\rightarrow\mathbb{C}^{\times} be the character of ff. Then χn\chi^{n} is the character131313Here χn\chi^{n} means the character on Γ0(N)~\widetilde{\Gamma_{0}(N)} that sends (γ,ε)\left(\gamma,\varepsilon\right) to χ(γ,ε)n\chi\left(\gamma,\varepsilon\right)^{n} where γΓ0(N)\gamma\in\Gamma_{0}(N) and ε{±1}\varepsilon\in\{\pm 1\}. of fnf^{n}. First suppose fnf^{n} is weakly admissible of type I, which means fnf^{n} is holomorphic at all cusps and dimMnk(Γ0(N),χn)=1\dim_{\mathbb{C}}M_{nk}(\Gamma_{0}(N),\chi^{n})=1. Then obviously ff is holomorphic at all cusps so fMk(Γ0(N),χ)f\in M_{k}(\Gamma_{0}(N),\chi). To prove dimMk(Γ0(N),χ)=1\dim_{\mathbb{C}}M_{k}(\Gamma_{0}(N),\chi)=1, let 0gMk(Γ0(N),χ)0\neq g\in M_{k}(\Gamma_{0}(N),\chi) be arbitrary. Then gnMnk(Γ0(N),χn)g^{n}\in M_{nk}(\Gamma_{0}(N),\chi^{n}) and hence gn=cfng^{n}=c\cdot f^{n} for some c×c\in\mathbb{C}^{\times}. It follows that g=c1fg=c_{1}\cdot f where c1c_{1} is an nn-th root of cc since \mathfrak{H} is connected and ff is holomorphic on \mathfrak{H}. This proves that ff is weakly admissible of type I. The case of type II is proved in a similar manner with spaces such as Mk(Γ0(N),χ)M_{k}(\Gamma_{0}(N),\chi) replaced by Sk(Γ0(N),χ)S_{k}(\Gamma_{0}(N),\chi). ∎

Remark 9.8.

It should be noted that if fnf^{n} is weakly admissible of type II, then we can only assert that ff is weakly admissible; we can say nothing about whether ff is of type I or II. For instance, consider f(τ)=η(τ)f(\tau)=\eta(\tau), n=24n=24.

9.3. Generalized double coset operators

We recall the theory of generalized double coset operators developed in [20, Section 3]. This is a generalization of Wohlfahrt’s extension of Hecke operators; c.f. [19]. Let ll, NN be positive integers. Let χ\chi be the character (6) where D=2D=2 and rnr_{n} are integers. Let (rn)nN(r_{n}^{\prime})_{n\mid N} be another sequence of integers such that nrn=nrn\sum_{n}r_{n}=\sum_{n}r_{n}^{\prime} and let χ\chi^{\prime} be the character (6) with rnr_{n} replaced by rnr_{n}^{\prime} (again D=2D=2). We define a formal expression (c.f. [20, eq. (28) and (30)])

(52) Tlf(τ)=lk2al(N,a)=1ak0b<d(a,b,d)=1χ(Nb+axzNdy)~1χ(aybydzNx)~1f(aτ+bd)T_{l}f(\tau)=l^{-\frac{k}{2}}\cdot\sum_{\begin{subarray}{c}{a\mid l}\\ {(N,a)=1}\end{subarray}}a^{k}\sum_{\begin{subarray}{c}{0\leq b<d}\\ {(a,b,d)=1}\end{subarray}}\chi\widetilde{\left(\begin{smallmatrix}{-Nb+ax}&{z}\\ {-Nd}&{y}\end{smallmatrix}\right)}^{-1}\chi^{\prime}\widetilde{\left(\begin{smallmatrix}{ay}&{by-dz}\\ {N}&{x}\end{smallmatrix}\right)}^{-1}f\left(\frac{a\tau+b}{d}\right)

where k12k\in\frac{1}{2}\mathbb{Z}, d=lad=\frac{l}{a} and x,y,zx,y,z are any integers (depending on aa, bb and dd) such that (Nd,Nb+ax)=1(Nd,-Nb+ax)=1 and (Nb+ax)y+Ndz=1(-Nb+ax)y+Ndz=1. If the dependence on kk, NN, χ\chi and χ\chi^{\prime} is important, then we also denote TlT_{l} by Tl;k,N,χ,χT_{l;k,N,\chi,\chi^{\prime}} or Tl;χ,χT_{l;\chi,\chi^{\prime}}.

Theorem 9.9.

For ff being a meromorphic modular form of weight k12k\in\frac{1}{2}\mathbb{Z} for the group Γ0(N)\Gamma_{0}(N) with character χ\chi, TlfT_{l}f is well-defined (i.e., independent of the choices of x,y,zx,y,z) and is a meromorphic modular form of the same weight for the same group with character χ\chi^{\prime} provided that the following three conditions hold:

(53) lnNNnrnnNNnrn(mod24),\displaystyle l\sum_{n\mid N}\frac{N}{n}r_{n}\equiv\sum_{n\mid N}\frac{N}{n}r_{n}^{\prime}\pmod{24},
(54) nNnrnlnNnrn(mod24),\displaystyle\sum_{n\mid N}nr_{n}\equiv l\sum_{n\mid N}nr_{n}^{\prime}\pmod{24},
(55) l2|k|2rnrnn is a perfect square,\displaystyle l^{2\lvert k^{\prime}\rvert}\cdot\prod_{2\nmid r_{n}-r_{n}^{\prime}}n\text{ is a perfect square,}

where k=12nrnk^{\prime}=\frac{1}{2}\sum_{n}r_{n}. Moreover, if the above conditions hold, then TlT_{l} maps Mk(Γ0(N),χ)M_{k}(\Gamma_{0}(N),\chi) into Mk(Γ0(N),χ)M_{k}(\Gamma_{0}(N),\chi^{\prime}) and Sk(Γ0(N),χ)S_{k}(\Gamma_{0}(N),\chi) into Sk(Γ0(N),χ)S_{k}(\Gamma_{0}(N),\chi^{\prime}) respectively.

Proof.

This is a combination of the last assertion of [20, Theorem 3.9], [20, Proposition 3.2(4),(5)] and [20, eq. (28), (30)]. ∎

Theorem 9.10.

Let f1=nη(nτ)rnf_{1}=\prod_{n}\eta(n\tau)^{r_{n}} and f2=nη(nτ)rnf_{2}=\prod_{n}\eta(n\tau)^{r^{\prime}_{n}} be weakly admissible eta-quotients of the same type (e.g., functions listed in Table LABEL:table:admissibleTypeI) of the same weight kk and the same level NN. Let χ\chi and χ\chi^{\prime} be the characters of f1f_{1} and f2f_{2} on Γ0(N)~\widetilde{\Gamma_{0}(N)} respectively. Then for any l1l\in\mathbb{Z}_{\geq 1} satisfying (53), (54) and (55) (with k=kk^{\prime}=k), there exists a clc_{l}\in\mathbb{C} such that

Tl;χ,χf1=clf2.T_{l;\chi,\chi^{\prime}}f_{1}=c_{l}\cdot f_{2}.
Proof.

An immediate consequence of Theorem 9.9. ∎

Remark 9.11.

This theorem is still valid in the following two cases:

  • f1f_{1} is weakly admissible of type II and f2f_{2} is weakly admissible of type I,

  • f1f_{1} is a cusp form that is weakly admissible of type I and f2f_{2} is weakly admissible of type II.

Remark 9.12.

In the case N=1N=1 (hence r1=r1r_{1}=r^{\prime}_{1}, k=12r1k=\frac{1}{2}r_{1} and χ=χ\chi=\chi^{\prime}) the identity reads Tlηr1=clηr1T_{l}\eta^{r_{1}}=c_{l}\cdot\eta^{r_{1}} where r1=0,1,2,24r_{1}=0,1,2,\dots 24. This has been investigated in detail in [20, Section 5] where clc_{l} and (52) are given in explicit forms.

We are mainly interested in the case f1=f2f_{1}=f_{2} in Theorem 9.10.

Corollary 9.13.

Let f(τ)=nη(nτ)rnf(\tau)=\prod_{n}\eta(n\tau)^{r_{n}} be a weakly admissible eta-quotient (e.g., a function listed in Table LABEL:table:admissibleTypeI) of weight k=12nrnk=\frac{1}{2}\sum_{n}r_{n} and level NN. We define a submonoid of the multiplicative monoid of positive integers as follows:

Lf={{l1:l1modmf} if k,{l1:l1modmf and l is a perfect square} if k12+,L_{f}=\begin{dcases}\left\{l\in\mathbb{Z}_{\geq 1}\colon l\equiv 1\bmod{m_{f}}\right\}&\text{ if }k\in\mathbb{Z},\\ \left\{l\in\mathbb{Z}_{\geq 1}\colon l\equiv 1\bmod{m_{f}}\text{ and }l\text{ is a perfect square}\right\}&\text{ if }k\in\frac{1}{2}+\mathbb{Z},\end{dcases}

where

mf=24(24,n(N/n)rn,nnrn).m_{f}=\frac{24}{(24,\sum_{n}(N/n)r_{n},\sum_{n}nr_{n})}.

Then for any lLfl\in L_{f} we have Tlf=clfT_{l}f=c_{l}\cdot f for some clc_{l}\in\mathbb{C}.

Proof.

Elementary number theory shows that lLfl\in L_{f} if and only if (53), (54) and (55) with rn=rnr^{\prime}_{n}=r_{n} and k=kk^{\prime}=k hold. Therefore the assertion follows from Theorem 9.10 with f1=f2=ff_{1}=f_{2}=f. ∎

Remark 9.14.

The monoid LfL_{f} and the integer mfm_{f} actually depend only on 𝐫=(rn)nN\mathbf{r}=(r_{n})_{n\mid N}, so we sometimes write L𝐫L_{\mathbf{r}} and m𝐫m_{\mathbf{r}} instead.

In another words, any weakly admissible eta-quotient ff is an eigenform for the operators TlT_{l} indexed by the infinite monoid LfL_{f}. When kk\in\mathbb{Z} and the character of ff is induced by some Dirichlet character, then by a result of Gordon, Hughes and Newman (cf. [39, Theorem 1.64]) we have mf=1m_{f}=1 and hence Lf=1L_{f}=\mathbb{Z}_{\geq 1}. Moreover, in this case, TlT_{l} is proportional to the usual Hecke operator of index ll. Consequently, the functions in Table LABEL:table:admissibleTypeI are all Hecke eigenforms for appropriate infinite operator monoids in a generalized sense.

The identities Tlf=clfT_{l}f=c_{l}\cdot f become interesting only when we can express (52) in a more explicit form, at least one where x,y,zx,y,z do not appear. The following theorem gives such a formula which is key to the current topic. The reader may compare this with a previous result of Wohlfahrt [19, eq. (7||3) and (10||3)].

Theorem 9.15.

Let N1N\in\mathbb{Z}_{\geq 1}. For each nNn\mid N, let rnr_{n} be an integer and set

(56) 𝐫=(rn)nN,k=12nNrn,xN=nNnrn,Π=nN(Nn1)|rn|.\mathbf{r}=(r_{n})_{n\mid N},\quad k^{\prime}=\frac{1}{2}\sum_{n\mid N}r_{n},\quad x_{N}=\sum_{n\mid N}nr_{n},\quad\varPi=\prod_{n\mid N}(Nn^{-1})^{\lvert r_{n}\rvert}.

Let χ𝐫:Γ0(N)~×\chi_{\mathbf{r}}\colon\widetilde{\Gamma_{0}(N)}\rightarrow\mathbb{C}^{\times} be the character of nNη(nτ)rn\prod_{n\mid N}\eta(n\tau)^{r_{n}}, i.e. (6). Let ff be a meromorphic modular form on Γ0(N)\Gamma_{0}(N) of weight kk+2k\in k^{\prime}+2\mathbb{Z} with character χ𝐫\chi_{\mathbf{r}} and let lL𝐫l\in L_{\mathbf{r}}. Then

  1. (a)

    we have the expansions (on τ>Y0\Im\tau>Y_{0})

    f(τ)=nxN24+cf(n)qn,Tlf(τ)=nxN24+cTlf(n)qn,f(\tau)=\sum_{n\in\frac{x_{N}}{24}+\mathbb{Z}}c_{f}(n)q^{n},\quad T_{l}f(\tau)=\sum_{n\in\frac{x_{N}}{24}+\mathbb{Z}}c_{T_{l}f}(n)q^{n},

    where Y0Y_{0} is some nonnegative number, cf(n),cTlf(n)c_{f}(n),\,c_{T_{l}f}(n)\in\mathbb{C} are uniquely determined and TlT_{l} is the operator defined in (52) with χ=χ=χ𝐫\chi=\chi^{\prime}=\chi_{\mathbf{r}};

  2. (b)

    for nxN24+n\in\frac{x_{N}}{24}+\mathbb{Z} we have

    (57) cTlf(n)=lk2al,d=l/a(a,N)=1(aΠ)akcf(lna2)0b<d(a,b,d)=1(Nb(a,d))2k𝔢(bd(nlxN24))ψl,𝐫(a,b)c_{T_{l}f}(n)=l^{-\frac{k}{2}}\sum_{\begin{subarray}{c}{a\mid l,\,d=l/a}\\ {(a,N)=1}\end{subarray}}\genfrac{(}{)}{}{}{a}{\varPi}a^{k}\cdot c_{f}\left(\frac{ln}{a^{2}}\right)\sum_{\begin{subarray}{c}{0\leq b<d}\\ {(a,b,d)=1}\end{subarray}}\genfrac{(}{)}{}{}{-Nb}{(a,d)}^{2k}\mathfrak{e}\left(bd\left(\frac{n}{l}-\frac{x_{N}}{24}\right)\right)\psi_{l,\mathbf{r}}(a,b)

    where

    ψl,𝐫(a,b)={𝔢(k+δ4(d1)+(k+δ)(l1)(N1)4) if 2l,𝔢(k+δ4(a1)N(k+δ)(1+δ1)4b) if 2l, 2N,1 if 2l, 2N,\psi_{l,\mathbf{r}}(a,b)=\begin{dcases}\mathfrak{e}\left(-\frac{k+\delta}{4}(d-1)+\frac{(k+\delta)(l-1)(N-1)}{4}\right)&\text{ if }2\nmid l,\\ \mathfrak{e}\left(-\frac{k+\delta}{4}(a-1)-\frac{N(k+\delta)(1+\delta_{1})}{4}b\right)&\text{ if }2\mid l,\,2\mid N,\\ 1&\text{ if }2\mid l,\,2\nmid N,\end{dcases}

    with δ=0\delta=0 (δ=1\delta=1 respectively) if Π\varPi takes the form 2α(4m+1)2^{\alpha}\cdot(4m+1) (2α(4m+3)2^{\alpha}\cdot(4m+3) respectively), α,m0\alpha,\,m\in\mathbb{Z}_{\geq 0}, δ1=1\delta_{1}=1 if 2l2\mid l, 4N4\mid N, k12+k\in\frac{1}{2}+\mathbb{Z}, v2(Π)1mod2v_{2}(\varPi)\equiv 1\bmod{2} and δ1=0\delta_{1}=0 otherwise.

A few words of caution are in order. Note that (aΠ)\genfrac{(}{)}{}{}{a}{\varPi} and (Nb(a,d))\genfrac{(}{)}{}{}{-Nb}{(a,d)} refer to Kronecker-Jacobi symbols; they are not fractions. Also note that in (57) we have set cf(lna2)=0c_{f}\left(\frac{ln}{a^{2}}\right)=0 if lna2xN24+\frac{ln}{a^{2}}\not\in\frac{x_{N}}{24}+\mathbb{Z}. In addition, kk can be replaced by kk^{\prime} in the definition of ψl,𝐫(a,b)\psi_{l,\mathbf{r}}(a,b) and if ff is the eta-quotient nNη(nτ)rn\prod_{n\mid N}\eta(n\tau)^{r_{n}} itself, which is the case we will use below, then k=kk=k^{\prime}. Finally, Y0=0Y_{0}=0 if ff is holomorphic on \mathfrak{H}.

Remark 9.16.

The formula (57) is equivalent to

(58) Tlf(τ)=lk2al,d=l/a(a,N)=1(aΠ)ak0b<d(a,b,d)=1(Nb(a,d))2k𝔢(xN24bd)ψl,𝐫(a,b)f(aτ+bd)T_{l}f(\tau)=l^{-\frac{k}{2}}\sum_{\begin{subarray}{c}{a\mid l,\,d=l/a}\\ {(a,N)=1}\end{subarray}}\genfrac{(}{)}{}{}{a}{\varPi}a^{k}\sum_{\begin{subarray}{c}{0\leq b<d}\\ {(a,b,d)=1}\end{subarray}}\genfrac{(}{)}{}{}{-Nb}{(a,d)}^{2k}\mathfrak{e}\left(-\frac{x_{N}}{24}bd\right)\psi_{l,\mathbf{r}}(a,b)\cdot f\left(\frac{a\tau+b}{d}\right)

which can be considered as an explicit form of (52) with χ=χ\chi=\chi^{\prime}.

Proof of Theorem 9.15 and Remark 9.16.

We begin with the proof of (58). Set

R:=χ(Nb+axzNdy)~χ(aybydzNx)~=χ𝐫((Nb+ax)ay+Nz(Nb+ax)(bydz)+xzNady+NyNd(bydz)+xy)~R:=\chi\widetilde{\left(\begin{smallmatrix}{-Nb+ax}&{z}\\ {-Nd}&{y}\end{smallmatrix}\right)}\chi^{\prime}\widetilde{\left(\begin{smallmatrix}{ay}&{by-dz}\\ {N}&{x}\end{smallmatrix}\right)}=\chi_{\mathbf{r}}\widetilde{\left(\begin{smallmatrix}{(-Nb+ax)ay+Nz}&{(-Nb+ax)(by-dz)+xz}\\ {-Nady+Ny}&{-Nd(by-dz)+xy}\end{smallmatrix}\right)}

in (52). (Theorem 9.9 and the assumption lL𝐫l\in L_{\mathbf{r}} ensure that TlT_{l} is well-defined.) Since ad=lad=l and

(59) (Nb+ax)y+Ndz=1(-Nb+ax)y+Ndz=1

we have

R=χ𝐫(aN(l1)zb(l1)xzN(l1)yd(l1)xy)~.R=\chi_{\mathbf{r}}\widetilde{\left(\begin{smallmatrix}{a-N(l-1)z}&{b-(l-1)xz}\\ {-N(l-1)y}&{d-(l-1)xy}\end{smallmatrix}\right)}.

To derive (58) from (52), we need only to prove

(60) R1=(aΠ)(Nb(a,d))2k𝔢(xN24bd)ψl,𝐫(a,b)R^{-1}=\genfrac{(}{)}{}{}{a}{\varPi}\genfrac{(}{)}{}{}{-Nb}{(a,d)}^{2k}\mathfrak{e}\left(-\frac{x_{N}}{24}bd\right)\psi_{l,\mathbf{r}}(a,b)

for which we need the Petersson’s formula of χη\chi_{\eta}:

(61) χη((abcd),ε)={ε(d|c|)𝔢(124((a2d)cbd(c21)+(3d3)c))if 2c,ε(cd)𝔢(124((a2d)cbd(c21)+3d3))if 2c.\chi_{\eta}\left(\left(\begin{smallmatrix}{a}&{b}\\ {c}&{d}\end{smallmatrix}\right),\varepsilon\right)=\begin{cases}\varepsilon\cdot\genfrac{(}{)}{}{}{d}{\lvert c\rvert}\mathfrak{e}\left(\frac{1}{24}\left((a-2d)c-bd(c^{2}-1)+(3d-3)c\right)\right)&\text{if }2\nmid c,\\ \varepsilon\cdot\genfrac{(}{)}{}{}{c}{d}\mathfrak{e}\left(\frac{1}{24}\left((a-2d)c-bd(c^{2}-1)+3d-3\right)\right)&\text{if }2\mid c.\end{cases}

For a proof of (61) see [42]. Since rnr_{n}\in\mathbb{Z} we have

(62) R=nNχηrn(aN(l1)zn(b(l1)xz)Nn(l1)yd(l1)xy)~.R=\prod_{n\mid N}\chi_{\eta}^{r_{n}}\widetilde{\left(\begin{smallmatrix}{a-N(l-1)z}&{n(b-(l-1)xz)}\\ {-\frac{N}{n}(l-1)y}&{d-(l-1)xy}\end{smallmatrix}\right)}.

The strategy141414The N=1N=1 case has been successfully worked out in the proof of [20, Lemma 5.2]. The strategy here is essentially the one there. is to insert (61) into (62) and then eliminate x,y,zx,\,y,\,z using properties of Kronecker-Jacobi symbols. Inserting (61) into (62) gives

(63) R=nN2Nn(l1)y(d(l1)xyNn1(l1)|y|)rnnN2Nn(l1)y(Nn1(l1)yd(l1)xy)rn𝔢(xN24bd)nN2Nn(l1)y𝔢(rn8(d1(l1)xy)(Nn1)(l1)y)nN2Nn(l1)y𝔢(rn8(d1(l1)xy))R=\prod_{\begin{subarray}{c}{n\mid N}\\ {2\nmid\frac{N}{n}(l-1)y}\end{subarray}}\genfrac{(}{)}{}{}{d-(l-1)xy}{Nn^{-1}(l-1)\lvert y\rvert}^{r_{n}}\cdot\prod_{\begin{subarray}{c}{n\mid N}\\ {2\mid\frac{N}{n}(l-1)y}\end{subarray}}\genfrac{(}{)}{}{}{-Nn^{-1}(l-1)y}{d-(l-1)xy}^{r_{n}}\cdot\mathfrak{e}\left(\frac{x_{N}}{24}bd\right)\\ \cdot\prod_{\begin{subarray}{c}{n\mid N}\\ {2\nmid\frac{N}{n}(l-1)y}\end{subarray}}\mathfrak{e}\left(\frac{r_{n}}{8}(d-1-(l-1)xy)(-Nn^{-1})(l-1)y\right)\cdot\prod_{\begin{subarray}{c}{n\mid N}\\ {2\mid\frac{N}{n}(l-1)y}\end{subarray}}\mathfrak{e}\left(\frac{r_{n}}{8}(d-1-(l-1)xy)\right)

where we have used the fact

(64) 24(l1)nNnrn,24(l1)nNNn1rn24\mid(l-1)\sum_{n\mid N}nr_{n},\quad 24\mid(l-1)\sum_{n\mid N}Nn^{-1}r_{n}

which are consequences of the assumption lL𝐫l\in L_{\mathbf{r}}. Now the proof splits into three cases.

The case 2l2\nmid l. We must have 2Nn(l1)y2\mid\frac{N}{n}(l-1)y for any nNn\mid N. Therefore

(65) R=𝔢(xN24bd)nN(Nn1(l1)yd(l1)xy)rnnN𝔢(rn8(d1(l1)xy)).R=\mathfrak{e}\left(\frac{x_{N}}{24}bd\right)\prod_{n\mid N}\genfrac{(}{)}{}{}{-Nn^{-1}(l-1)y}{d-(l-1)xy}^{r_{n}}\prod_{n\mid N}\mathfrak{e}\left(\frac{r_{n}}{8}(d-1-(l-1)xy)\right).

Note that if k12+k^{\prime}\in\frac{1}{2}+\mathbb{Z} then ll is an odd square and hence

(Nn1(l1)yd(l1)xy)=(Nn1d(l1)xy)((l1)yd(l1)xy)=(Nn1d(l1)xy)(yd).\genfrac{(}{)}{}{}{-Nn^{-1}(l-1)y}{d-(l-1)xy}=\genfrac{(}{)}{}{}{Nn^{-1}}{d-(l-1)xy}\cdot\genfrac{(}{)}{}{}{-(l-1)y}{d-(l-1)xy}=\genfrac{(}{)}{}{}{Nn^{-1}}{d-(l-1)xy}\cdot\genfrac{(}{)}{}{}{y}{d}.

Inserting this into (65) we find that

(66) R=𝔢(xN24bd)(Πd(l1)xy)(yd)2k𝔢(k4(d1(l1)xy)).R=\mathfrak{e}\left(\frac{x_{N}}{24}bd\right)\cdot\genfrac{(}{)}{}{}{\varPi}{d-(l-1)xy}\genfrac{(}{)}{}{}{y}{d}^{2k^{\prime}}\mathfrak{e}\left(\frac{k^{\prime}}{4}(d-1-(l-1)xy)\right).

If kk^{\prime}\in\mathbb{Z}, the above expression is still valid. By (59) if k12+k^{\prime}\in\frac{1}{2}+\mathbb{Z} we have

(67) (yd)=(Nb+axd)=(Nb(a,d)).\genfrac{(}{)}{}{}{y}{d}=\genfrac{(}{)}{}{}{-Nb+ax}{d}=\genfrac{(}{)}{}{}{-Nb}{(a,d)}.

For the last equality, see [20, p. 567, line -3]. If kk^{\prime}\in\mathbb{Z}, then trivially (yd)2k=(Nb(a,d))2k\genfrac{(}{)}{}{}{y}{d}^{2k^{\prime}}=\genfrac{(}{)}{}{}{-Nb}{(a,d)}^{2k^{\prime}}. For the calculation of (Πd(l1)xy)\genfrac{(}{)}{}{}{\varPi}{d-(l-1)xy}, we set

(68) Π=pΠ, 2vp(Π)p.\varPi^{\prime}=\prod_{p\mid\varPi,\,2\nmid v_{p}(\varPi)}p.

There are four cases to consider. For the first case, Π1mod4\varPi^{\prime}\equiv 1\bmod{4}, we have

(69) (Πd(l1)xy)=(Πd(l1)xy)=(d(l1)xyΠ)=(aΠ)=(aΠ).\genfrac{(}{)}{}{}{\varPi}{d-(l-1)xy}=\genfrac{(}{)}{}{}{\varPi^{\prime}}{d-(l-1)xy}=\genfrac{(}{)}{}{}{d-(l-1)xy}{\varPi^{\prime}}=\genfrac{(}{)}{}{}{a}{\varPi^{\prime}}=\genfrac{(}{)}{}{}{a}{\varPi}.

The third equality above follows from

(d(l1)xyp)=(dlxy+xyp)=(xyp)=(ap),pΠ\genfrac{(}{)}{}{}{d-(l-1)xy}{p}=\genfrac{(}{)}{}{}{d-lxy+xy}{p}=\genfrac{(}{)}{}{}{xy}{p}=\genfrac{(}{)}{}{}{a}{p},\quad p\mid\varPi^{\prime}

since by (59) we have axy1modpaxy\equiv 1\bmod{p} and lxydmodplxy\equiv d\bmod{p}. Moreover, we have

(70) 𝔢(k(l1)xy4)=𝔢(k(l1)(N1)4).\mathfrak{e}\left(-\frac{k^{\prime}(l-1)xy}{4}\right)=\mathfrak{e}\left(-\frac{k^{\prime}(l-1)(N-1)}{4}\right).

(When kk^{\prime}\in\mathbb{Z}, l3mod4l\equiv 3\bmod{4} and 2N2\nmid N, (70) does not necessarily hold, but we can always choose x,y,zx,y,z such that 2y2\mid y for which (70) holds. We always make such a choice.) Inserting (67), (69) and (70) into (66) and replacing kk^{\prime} by kk we obtain (60) as required. For the other three cases Π3mod4\varPi^{\prime}\equiv 3\bmod{4}, Π2mod8\varPi^{\prime}\equiv 2\bmod{8} and Π6mod8\varPi^{\prime}\equiv 6\bmod{8}, we proceed similarly and obtain (60) likewise. However, if 2Π2\mid\varPi^{\prime} there is an extra difficulty: a factor (2ad(l1)axy)=(21+(l1)N(dzby))\genfrac{(}{)}{}{}{2}{ad-(l-1)axy}=\genfrac{(}{)}{}{}{2}{1+(l-1)N(dz-by)} appears and we should prove it equals 11. This is immediate if l1mod4l\equiv 1\bmod{4} since 2Π2\mid\varPi^{\prime} implies 2N2\mid N. Now suppose l3mod4l\equiv 3\bmod{4}. Assume by contradiction that 4N4\nmid N; we have N2mod4N\equiv 2\bmod{4}. By the first relation of (64) we have 4nnrn4\mid\sum_{n}nr_{n} from which 22nrn2\mid\sum_{2\nmid n}r_{n}. Since 2Π2\mid\varPi^{\prime} we have

v2(Π)=nNv2(N/n)|rn|=2n|rn|1mod2v_{2}(\varPi)=\sum_{n\mid N}v_{2}(N/n)\cdot\lvert r_{n}\rvert=\sum_{2\nmid n}\lvert r_{n}\rvert\equiv 1\bmod{2}

which contradicts 22nrn2\mid\sum_{2\nmid n}r_{n}. Therefore, 4N4\mid N and hence (21+(l1)N(dzby))=1\genfrac{(}{)}{}{}{2}{1+(l-1)N(dz-by)}=1.

The case 2l2\mid l, 2N2\nmid N. By (59) if 2d2\mid d then 2y2\nmid y and if 2d2\nmid d then we can choose x,y,zx,y,z such that 2y2\nmid y. (If (x,y,z)(x,y,z) is a solution to (59) with 2y2\mid y, then (x,y+Nd,z(Nb+ax))(x,y+Nd,z-(-Nb+ax)) is another solution with 2y+Nd2\nmid y+Nd.) We always make such a choice. Thus (63) becomes

R=𝔢(xN24bd)nN(d(l1)xyNn1(l1)|y|)rnnN𝔢(rn8(d1(l1)xy)(Nn1)(l1)y).R=\mathfrak{e}\left(\frac{x_{N}}{24}bd\right)\prod_{n\mid N}\genfrac{(}{)}{}{}{d-(l-1)xy}{Nn^{-1}(l-1)\lvert y\rvert}^{r_{n}}\prod_{n\mid N}\mathfrak{e}\left(\frac{r_{n}}{8}(d-1-(l-1)xy)(-Nn^{-1})(l-1)y\right).

Since l1modm𝐫l\equiv 1\bmod{m_{\mathbf{r}}} we have 2m𝐫2\nmid m_{\mathbf{r}}. By the definition of m𝐫m_{\mathbf{r}} (c.f. Remark 9.14) we have

(71) 8nnrn,8nNn1rn.8\mid\sum_{n}nr_{n},\quad 8\mid\sum_{n}Nn^{-1}r_{n}.

It follows that k=12nrnk^{\prime}=\frac{1}{2}\sum_{n}r_{n}\in\mathbb{Z} and

(72) R=𝔢(xN24bd)nN(d(l1)xyNn1(l1)|y|)rn.R=\mathfrak{e}\left(\frac{x_{N}}{24}bd\right)\prod_{n\mid N}\genfrac{(}{)}{}{}{d-(l-1)xy}{Nn^{-1}(l-1)\lvert y\rvert}^{r_{n}}.

Note that

(d(l1)xyNn1(l1)|y|)=(d(l1)xyNn1)(d(l1)xy(l1)|y|)=(d(l1)xyNn1)(d(l1)|y|)\genfrac{(}{)}{}{}{d-(l-1)xy}{Nn^{-1}(l-1)\lvert y\rvert}=\genfrac{(}{)}{}{}{d-(l-1)xy}{Nn^{-1}}\cdot\genfrac{(}{)}{}{}{d-(l-1)xy}{(l-1)\lvert y\rvert}=\genfrac{(}{)}{}{}{d-(l-1)xy}{Nn^{-1}}\cdot\genfrac{(}{)}{}{}{d}{(l-1)\lvert y\rvert}

where the last equality follows from the fact (l1)|y|(l-1)\lvert y\rvert is odd and positive. Inserting this and 2k0mod22k^{\prime}\equiv 0\bmod{2} into (72) we obtain

R=𝔢(xN24bd)(d(l1)xyΠ)=𝔢(xN24bd)(aΠ)R=\mathfrak{e}\left(\frac{x_{N}}{24}bd\right)\cdot\genfrac{(}{)}{}{}{d-(l-1)xy}{\varPi}=\mathfrak{e}\left(\frac{x_{N}}{24}bd\right)\cdot\genfrac{(}{)}{}{}{a}{\varPi}

where the last equality follows just as in the deduction of (69). We thus have arrived at (60).

The case 2l2\mid l, 2N2\mid N. As in the last case, we have 8nnrn8\mid\sum_{n}nr_{n} and 8nNn1rn8\mid\sum_{n}Nn^{-1}r_{n}. Moreover, yy must be odd by (59). For any nNn\mid N with 2Nn(l1)y2\nmid\frac{N}{n}(l-1)y, that is, with 2Nn2\nmid\frac{N}{n}, we have

(d(l1)xyNn1(l1)|y|)=(Nn1(l1)|y|d(l1)xy)𝔢(18(d1(l1)xy)(Nn1(l1)|y|1)).\genfrac{(}{)}{}{}{d-(l-1)xy}{Nn^{-1}(l-1)\lvert y\rvert}=\genfrac{(}{)}{}{}{Nn^{-1}(l-1)\lvert y\rvert}{d-(l-1)xy}\cdot\mathfrak{e}\left(-\frac{1}{8}(d-1-(l-1)xy)\cdot(Nn^{-1}(l-1)\lvert y\rvert-1)\right).

Choosing a solution (x,y,z)(x,y,z) to (59) with y<0y<0 and inserting the above identity into (63), we find that

R=𝔢(xN24bd)nN(Nn1(l1)yd(l1)xy)rnnN2Nn𝔢(rn8(d1(l1)xy)(Nn1(l1)y1))nN2Nn𝔢(rn8(d1(l1)xy)(Nn1)(l1)y)nN2Nn𝔢(rn8(d1(l1)xy))R=\mathfrak{e}\left(\frac{x_{N}}{24}bd\right)\cdot\prod_{n\mid N}\genfrac{(}{)}{}{}{-Nn^{-1}(l-1)y}{d-(l-1)xy}^{r_{n}}\cdot\prod_{\begin{subarray}{c}{n\mid N}\\ {2\nmid\frac{N}{n}}\end{subarray}}\mathfrak{e}\left(-\frac{r_{n}}{8}(d-1-(l-1)xy)(-Nn^{-1}(l-1)y-1)\right)\\ \cdot\prod_{\begin{subarray}{c}{n\mid N}\\ {2\nmid\frac{N}{n}}\end{subarray}}\mathfrak{e}\left(\frac{r_{n}}{8}(d-1-(l-1)xy)(-Nn^{-1})(l-1)y\right)\cdot\prod_{\begin{subarray}{c}{n\mid N}\\ {2\mid\frac{N}{n}}\end{subarray}}\mathfrak{e}\left(\frac{r_{n}}{8}(d-1-(l-1)xy)\right)

We deal with the factor nN(Nn1(l1)yd(l1)xy)rn\prod_{n\mid N}\genfrac{(}{)}{}{}{-Nn^{-1}(l-1)y}{d-(l-1)xy}^{r_{n}} as in previous cases and thus simplify the expression for RR as

(73) R=𝔢(xN24bd)(Πd(l1)xy)(d(l1)y)2k𝔢(k4(d1(l1)xy)((l1)y)).R=\mathfrak{e}\left(\frac{x_{N}}{24}bd\right)\cdot\genfrac{(}{)}{}{}{\varPi}{d-(l-1)xy}\cdot\genfrac{(}{)}{}{}{d}{-(l-1)y}^{2k^{\prime}}\cdot\mathfrak{e}\left(\frac{k^{\prime}}{4}(d-1-(l-1)xy)\cdot(-(l-1)y)\right).

There are six subcases: (c.f. (68) for Π\varPi^{\prime})

  1. (a)

    2l2\mid l, 4N4\mid N, kk^{\prime}\in\mathbb{Z} and 2Π2\nmid\varPi^{\prime}.

  2. (b)

    2l2\mid l, 4N4\mid N, kk^{\prime}\in\mathbb{Z} and 2Π2\mid\varPi^{\prime}.

  3. (c)

    2l2\mid l, 4N4\mid N, k12+k^{\prime}\in\frac{1}{2}+\mathbb{Z} and 2Π2\nmid\varPi^{\prime}.

  4. (d)

    2l2\mid l, 4N4\mid N, k12+k^{\prime}\in\frac{1}{2}+\mathbb{Z} and 2Π2\mid\varPi^{\prime}. (Only in this subcase we have δ1=1\delta_{1}=1.)

  5. (e)

    2l2\mid l, N2mod4N\equiv 2\bmod{4} and 2Π2\nmid\varPi^{\prime}. (We must have kk^{\prime}\in\mathbb{Z} in this subcase.)

  6. (f)

    2l2\mid l, N2mod4N\equiv 2\bmod{4} and 2Π2\mid\varPi^{\prime}. (We must have kk^{\prime}\in\mathbb{Z} in this subcase.)

We will only give the proof of the more difficult subcases (b) and (d) and omit the other four since the strategies are the same. For (b), we first prove 8N8\mid N. Assume by contradiction that 8N8\nmid N; then 22N2^{2}\parallel N. It follows that

v2(Π)nNv2(n)=1v2(N/n)|rn|=nNv2(n)=1|rn|1mod2.v_{2}(\varPi)\equiv\sum_{\begin{subarray}{c}{n\mid N}\\ {v_{2}(n)=1}\end{subarray}}v_{2}(N/n)\cdot\lvert r_{n}\rvert=\sum_{\begin{subarray}{c}{n\mid N}\\ {v_{2}(n)=1}\end{subarray}}\lvert r_{n}\rvert\equiv 1\bmod{2}.

On the other hand, (71) still holds in this case, and hence

nNv2(n)=0rnnNv2(n)=2rn0mod2.\sum_{\begin{subarray}{c}{n\mid N}\\ {v_{2}(n)=0}\end{subarray}}r_{n}\equiv\sum_{\begin{subarray}{c}{n\mid N}\\ {v_{2}(n)=2}\end{subarray}}r_{n}\equiv 0\bmod{2}.

Therefore nNrn1mod2\sum_{n\mid N}r_{n}\equiv 1\bmod{2}, that is, k12+k^{\prime}\in\frac{1}{2}+\mathbb{Z}, which contradicts the assumption in (b). Hence 8N8\mid N. Note that both Π/2\varPi^{\prime}/2 and d(l1)xyd-(l-1)xy are odd and positive, from which we deduce that

(Πd(l1)xy)\displaystyle\genfrac{(}{)}{}{}{\varPi}{d-(l-1)xy} =(Πd(l1)xy)\displaystyle=\genfrac{(}{)}{}{}{\varPi^{\prime}}{d-(l-1)xy}
=(2d(l1)xy)(d(l1)xyΠ/2)𝔢(14(d1(l1)xy)Π/212)\displaystyle=\genfrac{(}{)}{}{}{2}{d-(l-1)xy}\genfrac{(}{)}{}{}{d-(l-1)xy}{\varPi^{\prime}/2}\mathfrak{e}\left(\frac{1}{4}(d-1-(l-1)xy)\cdot\frac{\varPi^{\prime}/2-1}{2}\right)
=(2ad(l1)axy)(aΠ)𝔢(14(d1(l1)xy)Π/212)\displaystyle=\genfrac{(}{)}{}{}{2}{ad-(l-1)axy}\genfrac{(}{)}{}{}{a}{\varPi^{\prime}}\mathfrak{e}\left(\frac{1}{4}(d-1-(l-1)xy)\cdot\frac{\varPi^{\prime}/2-1}{2}\right)
=(21+(l1)N(dzby))(aΠ)𝔢(14(d1(l1)xy)Π/212)\displaystyle=\genfrac{(}{)}{}{}{2}{1+(l-1)N(dz-by)}\genfrac{(}{)}{}{}{a}{\varPi}\mathfrak{e}\left(\frac{1}{4}(d-1-(l-1)xy)\cdot\frac{\varPi^{\prime}/2-1}{2}\right)
(74) =(aΠ)𝔢(14(a1)Π/212).\displaystyle=\genfrac{(}{)}{}{}{a}{\varPi}\mathfrak{e}\left(\frac{1}{4}(a-1)\cdot\frac{\varPi^{\prime}/2-1}{2}\right).

The last equality holds since by (59) and 8N8\mid N we have axy1mod4axy\equiv 1\bmod{4} and hence

(a1)(d1(l1)xy)ad+(l1)a=(a21)d0mod4.(a-1)-(d-1-(l-1)xy)\equiv a-d+(l-1)a=(a^{2}-1)d\equiv 0\bmod{4}.

An argument similar to the above deduction shows that

𝔢(k4(d1(l1)xy)((l1)y))=𝔢(k4(a1)(l1)).\mathfrak{e}\left(\frac{k^{\prime}}{4}(d-1-(l-1)xy)\cdot(-(l-1)y)\right)=\mathfrak{e}\left(\frac{k^{\prime}}{4}(a-1)(l-1)\right).

Inserting this and (74) into (73) and noting that aa is odd, we obtain (60) in the subcase (b). For the subcase (d), ll is a square. Since (N,a)=1(N,a)=1 and ad=lad=l we have v2(d)=v2(l)0mod2v_{2}(d)=v_{2}(l)\equiv 0\bmod{2} and hence 4d4\mid d. Thus if we let d=d/2v2(d)d^{\prime}=d/2^{v_{2}(d)} then

(d(l1)y)=(dy)=(dy)=𝔢(y14d12)(yd).\genfrac{(}{)}{}{}{d}{-(l-1)y}=\genfrac{(}{)}{}{}{d}{y}=\genfrac{(}{)}{}{}{d^{\prime}}{y}=\mathfrak{e}\left(\frac{y-1}{4}\cdot\frac{d^{\prime}-1}{2}\right)\cdot\genfrac{(}{)}{}{}{y}{d}.

Combining this and

(Nb+axd)(yd)=((Nb+ax)yd)=(1Ndzd)=1\genfrac{(}{)}{}{}{-Nb+ax}{d}\genfrac{(}{)}{}{}{y}{d}=\genfrac{(}{)}{}{}{(-Nb+ax)y}{d}=\genfrac{(}{)}{}{}{1-Ndz}{d}=1

we find that

(75) (d(l1)y)=𝔢(y14d12)(Nb+axd)=𝔢(y14d12)(Nb(a,d)).\genfrac{(}{)}{}{}{d}{-(l-1)y}=\mathfrak{e}\left(\frac{y-1}{4}\cdot\frac{d^{\prime}-1}{2}\right)\cdot\genfrac{(}{)}{}{}{-Nb+ax}{d}=\mathfrak{e}\left(\frac{y-1}{4}\cdot\frac{d^{\prime}-1}{2}\right)\cdot\genfrac{(}{)}{}{}{-Nb}{(a,d)}.

The calculation of (Πd(l1)xy)\genfrac{(}{)}{}{}{\varPi}{d-(l-1)xy} is similar to that in above cases (e.g. (69) or (74)) and the result is

(76) (Πd(l1)xy)=(21+Nb)(aΠ)𝔢(14(l1)(a1)Π/212).\genfrac{(}{)}{}{}{\varPi}{d-(l-1)xy}=\genfrac{(}{)}{}{}{2}{1+Nb}\genfrac{(}{)}{}{}{a}{\varPi}\mathfrak{e}\left(\frac{1}{4}(l-1)(a-1)\cdot\frac{\varPi^{\prime}/2-1}{2}\right).

For the factor 𝔢(k4(d1(l1)xy)((l1)y))\mathfrak{e}\left(\frac{k^{\prime}}{4}(d-1-(l-1)xy)\cdot(-(l-1)y)\right) in (73), note that ld=(a1)d0mod8l-d=(a-1)d\equiv 0\bmod{8}, 2y2\nmid y and hence

𝔢(k4(d1(l1)xy)((l1)y))\displaystyle\mathfrak{e}\left(\frac{k^{\prime}}{4}(d-1-(l-1)xy)\cdot(-(l-1)y)\right) =𝔢(k4(l1)2(1xy)(y))\displaystyle=\mathfrak{e}\left(\frac{k^{\prime}}{4}(l-1)^{2}(1-xy)(-y)\right)
=𝔢(k4(1xy)(y))=𝔢(k4(xy)).\displaystyle=\mathfrak{e}\left(\frac{k^{\prime}}{4}(1-xy)(-y)\right)=\mathfrak{e}\left(\frac{k^{\prime}}{4}(x-y)\right).

Inserting this equality, (75) and (76) into (73) we obtain

(77) R=(aΠ)(Nb(a,d))𝔢(xN24bd)(21+Nb)𝔢(14(l1)(a1)Π/212)𝔢(y14d12+k4(xy)).R=\genfrac{(}{)}{}{}{a}{\varPi}\genfrac{(}{)}{}{}{-Nb}{(a,d)}\mathfrak{e}\left(\frac{x_{N}}{24}bd\right)\genfrac{(}{)}{}{}{2}{1+Nb}\\ \cdot\mathfrak{e}\left(\frac{1}{4}(l-1)(a-1)\cdot\frac{\varPi^{\prime}/2-1}{2}\right)\mathfrak{e}\left(\frac{y-1}{4}\cdot\frac{d^{\prime}-1}{2}+\frac{k^{\prime}}{4}(x-y)\right).

Now we simplify the factor 𝔢(y14d12+k4(xy))\mathfrak{e}\left(\frac{y-1}{4}\cdot\frac{d^{\prime}-1}{2}+\frac{k^{\prime}}{4}(x-y)\right) in above. By (59) and the facts 2d2\mid d, 4N4\mid N we find that (Nb+ax)y1mod8(-Nb+ax)y\equiv 1\bmod{8}. This, together with 2y2\nmid y, implies xay+Nabmod8x\equiv ay+Nab\bmod{8}. It follows that

𝔢(y14d12+k4(xy))\displaystyle\mathfrak{e}\left(\frac{y-1}{4}\cdot\frac{d^{\prime}-1}{2}+\frac{k^{\prime}}{4}(x-y)\right) =𝔢(2k4(y1)d12+k4(ayy+Nab))\displaystyle=\mathfrak{e}\left(\frac{-2k^{\prime}}{4}(y-1)\cdot\frac{d^{\prime}-1}{2}+\frac{k^{\prime}}{4}(ay-y+Nab)\right)
(78) =𝔢(k4Nab)𝔢(k4y(ad))𝔢(k4(d1)).\displaystyle=\mathfrak{e}\left(\frac{k^{\prime}}{4}Nab\right)\mathfrak{e}\left(\frac{k^{\prime}}{4}y(a-d^{\prime})\right)\mathfrak{e}\left(\frac{k^{\prime}}{4}(d^{\prime}-1)\right).

Since ad=l/2v2(d)=l/2v2(l)ad^{\prime}=l/2^{v_{2}(d)}=l/2^{v_{2}(l)} is a square, 2a2\nmid a and 2d2\nmid d^{\prime} we have

(79) ad0mod8.a-d^{\prime}\equiv 0\bmod{8}.

In addition, since k12+k^{\prime}\in\frac{1}{2}+\mathbb{Z}, 2a2\nmid a and 4N4\mid N,

(80) 𝔢(k4Nab)=𝔢(18Nab)=𝔢(18Nb).\mathfrak{e}\left(\frac{k^{\prime}}{4}Nab\right)=\mathfrak{e}\left(\frac{1}{8}Nab\right)=\mathfrak{e}\left(\frac{1}{8}Nb\right).

Inserting (79) and (80) into (78), then combining (77) and noting that 𝔢(18Nb)(21+Nb)=1\mathfrak{e}\left(\frac{1}{8}Nb\right)\genfrac{(}{)}{}{}{2}{1+Nb}=1, we arrive at (60) as required. This concludes the proof of (58).

Finally, we begin to prove Theorem 9.15. For Theorem 9.15(a), elementary Fourier analysis shows that

f(τ)=n124cf(n)qn,Tlf(τ)=n124cTlf(n)qn,f(\tau)=\sum_{n\in\frac{1}{24}\mathbb{Z}}c_{f}(n)q^{n},\quad T_{l}f(\tau)=\sum_{n\in\frac{1}{24}\mathbb{Z}}c_{T_{l}f}(n)q^{n},

which converge on τ>Y0\Im\tau>Y_{0} for some Y00Y_{0}\geq 0 since f(τ+24)=f(τ)f(\tau+24)=f(\tau) and Tlf(τ+24)=Tlf(τ)T_{l}f(\tau+24)=T_{l}f(\tau). By modularity f|k(1101)~=χ𝐫(1101)~f=𝔢(xN24)ff|_{k}\widetilde{\left(\begin{smallmatrix}{1}&{1}\\ {0}&{1}\end{smallmatrix}\right)}=\chi_{\mathbf{r}}\widetilde{\left(\begin{smallmatrix}{1}&{1}\\ {0}&{1}\end{smallmatrix}\right)}\cdot f=\mathfrak{e}\left(\frac{x_{N}}{24}\right)\cdot f and Tlf|k(1101)~=χ𝐫(1101)~Tlf=𝔢(xN24)TlfT_{l}f|_{k}\widetilde{\left(\begin{smallmatrix}{1}&{1}\\ {0}&{1}\end{smallmatrix}\right)}=\chi_{\mathbf{r}}\widetilde{\left(\begin{smallmatrix}{1}&{1}\\ {0}&{1}\end{smallmatrix}\right)}\cdot T_{l}f=\mathfrak{e}\left(\frac{x_{N}}{24}\right)\cdot T_{l}f. In terms of Fourier coefficients,

cf(n)𝔢(n)=cf(n)𝔢(xN24),cTlf(n)𝔢(n)=cTlf(n)𝔢(xN24).c_{f}(n)\mathfrak{e}\left(n\right)=c_{f}(n)\mathfrak{e}\left(\frac{x_{N}}{24}\right),\quad c_{T_{l}f}(n)\mathfrak{e}\left(n\right)=c_{T_{l}f}(n)\mathfrak{e}\left(\frac{x_{N}}{24}\right).

It follows that cf(n)=0c_{f}(n)=0 unless nxN24+n\in\frac{x_{N}}{24}+\mathbb{Z} and so is cTlf(n)c_{T_{l}f}(n). Theorem 9.15(b), that is, (57), follows immediately from (58) whose details are omitted. ∎

In the important case xN0mod24x_{N}\equiv 0\mod{24} we have cf(n)=0c_{f}(n)=0 and cTlf(n)=0c_{T_{l}f}(n)=0 unless nn\in\mathbb{Z}. Therefore, (57) becomes

(81) cTlf(n)=lk2al,a2ln(a,N)=1,d=l/a(aΠ)akcf(lna2)0b<d(a,b,d)=1(Nb(a,d))2k𝔢(bdnl)ψl,𝐫(a,b)c_{T_{l}f}(n)=l^{-\frac{k}{2}}\sum_{\begin{subarray}{c}{a\mid l,\,a^{2}\mid ln}\\ {(a,N)=1,\,d=l/a}\end{subarray}}\genfrac{(}{)}{}{}{a}{\varPi}a^{k}\cdot c_{f}\left(\frac{ln}{a^{2}}\right)\sum_{\begin{subarray}{c}{0\leq b<d}\\ {(a,b,d)=1}\end{subarray}}\genfrac{(}{)}{}{}{-Nb}{(a,d)}^{2k}\mathfrak{e}\left(\frac{bdn}{l}\right)\psi_{l,\mathbf{r}}(a,b)

for nn\in\mathbb{Z}. From this some elegant formulas for special cases follow:

Corollary 9.17.

We keep the notations and assumptions of Theorem 9.15 and assume that xN0mod24x_{N}\equiv 0\mod{24}. Then

cTlf(0)=cf(0)lk2al,d=l/a(a,N)=1(aΠ)ak0b<d(a,b,d)=1(Nb(a,d))2kψl,𝐫(a,b).c_{T_{l}f}(0)=c_{f}(0)\cdot l^{-\frac{k}{2}}\sum_{\begin{subarray}{c}{a\mid l,\,d=l/a}\\ {(a,N)=1}\end{subarray}}\genfrac{(}{)}{}{}{a}{\varPi}a^{k}\sum_{\begin{subarray}{c}{0\leq b<d}\\ {(a,b,d)=1}\end{subarray}}\genfrac{(}{)}{}{}{-Nb}{(a,d)}^{2k}\psi_{l,\mathbf{r}}(a,b).

Moreover, if for any prime pp not dividing NN we have p2lp^{2}\nmid l (e.g. ll is square-free or rad(l)rad(N)\mathop{\mathrm{rad}}(l)\mid\mathop{\mathrm{rad}}(N)), then

(82) cTlf(1)=cf(l)lk20b<lψl,𝐫(1,b).c_{T_{l}f}(1)=c_{f}(l)\cdot l^{-\frac{k}{2}}\sum_{0\leq b<l}\psi_{l,\mathbf{r}}(1,b).

Finally, if l=pαl=p^{\alpha} where pp is a prime not dividing NN and α1\alpha\in\mathbb{Z}_{\geq 1}, then

cTpαf(1)=pαk20β[α/2](pΠ)βpkβcf(pα2β)0b<pαβ(pβ,b)=1(Nbpβ)2k𝔢(bpβ)ψl,𝐫(pβ,b).c_{T_{p^{\alpha}}f}(1)=p^{-\frac{\alpha k}{2}}\sum_{0\leq\beta\leq[\alpha/2]}\genfrac{(}{)}{}{}{p}{\varPi}^{\beta}p^{k\beta}\cdot c_{f}(p^{\alpha-2\beta})\sum_{\begin{subarray}{c}{0\leq b<p^{\alpha-\beta}}\\ {(p^{\beta},b)=1}\end{subarray}}\genfrac{(}{)}{}{}{-Nb}{p^{\beta}}^{2k}\mathfrak{e}\left(\frac{b}{p^{\beta}}\right)\psi_{l,\mathbf{r}}(p^{\beta},b).
Remark 9.18.

The sum over bb in the above formulas, (81) or (57) is either a partial sum of a geometric sequence or a Gauss sum according to whether kk is integral or half-integral. It is not hard to derive an explicit formula for this sum but we exclude this task here. For the N=1N=1 case the reader may consult [20, eq. (58)] and [20, Lemma 5.6] for such formulas.

9.4. Identities involving Fourier coefficients of weakly admissible eta-quotients

The main theorem of Section 9 is the following:

Theorem 9.19.

Let f(τ)=nNη(nτ)rn=ncf(n)qnf(\tau)=\prod_{n\mid N}\eta(n\tau)^{r_{n}}=\sum_{n}c_{f}(n)q^{n} be a weakly admissible eta-quotient (e.g., a function listed in Table LABEL:table:admissibleTypeI) where NN is the level. We keep the notations in (56) with k=kk^{\prime}=k. Then for any lLfl\in L_{f} (c.f. Corollary 9.13) there exists a unique clc_{l}\in\mathbb{C} such that

(83) lk2al,d=l/a(a,N)=1(aΠ)akcf(lna2)0b<d(a,b,d)=1(Nb(a,d))2k𝔢(bd(nlxN24))ψl,𝐫(a,b)=clcf(n)l^{-\frac{k}{2}}\sum_{\begin{subarray}{c}{a\mid l,\,d=l/a}\\ {(a,N)=1}\end{subarray}}\genfrac{(}{)}{}{}{a}{\varPi}a^{k}\cdot c_{f}\left(\frac{ln}{a^{2}}\right)\sum_{\begin{subarray}{c}{0\leq b<d}\\ {(a,b,d)=1}\end{subarray}}\genfrac{(}{)}{}{}{-Nb}{(a,d)}^{2k}\mathfrak{e}\left(bd\left(\frac{n}{l}-\frac{x_{N}}{24}\right)\right)\psi_{l,\mathbf{r}}(a,b)=c_{l}\cdot c_{f}(n)

holds for any nxN24+n\in\frac{x_{N}}{24}+\mathbb{Z}. Moreover, the number clc_{l} is equal to the left-hand side of the above identity with nn replaced by xN24\frac{x_{N}}{24}.

Proof.

By Corollary 9.13 Tlf=clfT_{l}f=c_{l}\cdot f and hence cTlf(n)=clcf(n)c_{T_{l}f}(n)=c_{l}\cdot c_{f}(n) for any nxN24+n\in\frac{x_{N}}{24}+\mathbb{Z}. Inserting (57) into this identity gives the desired formula. Letting n=xN24n=\frac{x_{N}}{24} and noting that cf(xN24)=1c_{f}\left(\frac{x_{N}}{24}\right)=1 we obtain the formula for clc_{l}. ∎

The identities (83) have been verified numerically for l121l\leq 121, nxN2440n-\frac{x_{N}}{24}\leq 40 and ff being any function listed in Table LABEL:table:admissibleTypeI by a SageMath program. See Appendix A for the code. The rest of this section is devoted to useful consequences of Theorem 9.19 and concrete examples.

9.4.1. Closed formulas for Fourier coefficients of eta-quotients.

Let f(τ)=nNη(nτ)rnf(\tau)=\prod_{n\mid N}\eta(n\tau)^{r_{n}} be a weakly admissible eta-quotient (e.g., a function listed in Table LABEL:table:admissibleTypeI) where NN is the level. We keep the notations in (56) with k=kk^{\prime}=k. Here let us consider the situation xN=0x_{N}=0 where we have

f(τ)=nNm1(1qnm)rn=n0cf(n)qn,τ.f(\tau)=\prod_{n\mid N}\prod_{m\in\mathbb{Z}_{\geq 1}}(1-q^{nm})^{r_{n}}=\sum_{n\in\mathbb{Z}_{\geq 0}}c_{f}(n)q^{n},\quad\tau\in\mathfrak{H}.

We have given a series expression of cf(n)c_{f}(n) involving Dedekind sums for N=4N=4, r1=2r_{1}=2, r2=7r_{2}=7, r4=4r_{4}=-4 in Example 8.10. This example is of course also listed in Table LABEL:table:admissibleTypeI. In fact, there exist very simple closed formulas for cf(n)c_{f}(n) only involving Kronecker-Jacobi symbols at least for nn square-free—thanks to Theorem 9.19.

Theorem 9.20.

Let the notations and assumptions be as above. Let lLfl\in L_{f} (c.f. Corollary 9.13) satisfy

(84) pNp2l,for any prime p.p\nmid N\implies p^{2}\nmid l,\quad\text{for any prime }p.

(e.g. ll is square-free or rad(l)rad(N)\mathop{\mathrm{rad}}(l)\mid\mathop{\mathrm{rad}}(N).) We require that at least one of ll and NN is odd. Then

cf(l)={r1al,(a,N)=1(aΠ)ak1 if 2l, 2N,r1al,(a,N)=1(aΠ)ak1𝔢((k+δ)(ld)4) if 2l,c_{f}(l)=\begin{dcases}-r_{1}\cdot\sum_{a\mid l,\,(a,N)=1}\genfrac{(}{)}{}{}{a}{\varPi}a^{k-1}&\text{ if }2\mid l,\,2\nmid N,\\ -r_{1}\cdot\sum_{a\mid l,\,(a,N)=1}\genfrac{(}{)}{}{}{a}{\varPi}a^{k-1}\mathfrak{e}\left(\frac{(k+\delta)(l-d)}{4}\right)&\text{ if }2\nmid l,\end{dcases}

where d=l/ad=l/a, Π=nN(Nn1)|rn|\varPi=\prod_{n\mid N}(Nn^{-1})^{\lvert r_{n}\rvert} and δ=0\delta=0 (δ=1\delta=1 respectively) if Π\varPi takes the form 2α(4m+1)2^{\alpha}\cdot(4m+1) (2α(4m+3)2^{\alpha}\cdot(4m+3) respectively). In particular, if rad(l)rad(N)\mathop{\mathrm{rad}}(l)\mid\mathop{\mathrm{rad}}(N), then cf(l)=r1c_{f}(l)=-r_{1}.

Proof.

A combination of (82) and (83) (with n=1n=1) gives cf(l)0b<lψl,𝐫(1,b)=lk2clcf(1)c_{f}(l)\cdot\sum_{0\leq b<l}\psi_{l,\mathbf{r}}(1,b)=l^{\frac{k}{2}}c_{l}\cdot c_{f}(1). By the last assertion of Theorem 9.19 we have

cl=lk2al,(a,N)=1(aΠ)akcf(0)0b<dψl,𝐫(a,b).c_{l}=l^{-\frac{k}{2}}\sum_{a\mid l,\,(a,N)=1}\genfrac{(}{)}{}{}{a}{\varPi}a^{k}\cdot c_{f}(0)\sum_{0\leq b<d}\psi_{l,\mathbf{r}}(a,b).

Since cf(0)=1c_{f}(0)=1 and cf(1)=r1c_{f}(1)=-r_{1} we find that

(85) cf(l)0b<lψl,𝐫(1,b)=r1al,(a,N)=1(aΠ)ak0b<dψl,𝐫(a,b).c_{f}(l)\cdot\sum_{0\leq b<l}\psi_{l,\mathbf{r}}(1,b)=-r_{1}\cdot\sum_{a\mid l,\,(a,N)=1}\genfrac{(}{)}{}{}{a}{\varPi}a^{k}\cdot\sum_{0\leq b<d}\psi_{l,\mathbf{r}}(a,b).

The assumption at least one of ll and NN is odd ensures that 0b<lψl,𝐫(1,b)0\sum_{0\leq b<l}\psi_{l,\mathbf{r}}(1,b)\neq 0. Therefore the desired formulas follow by expanding 0b<lψl,𝐫(1,b)\sum_{0\leq b<l}\psi_{l,\mathbf{r}}(1,b) and 0b<dψl,𝐫(a,b)\sum_{0\leq b<d}\psi_{l,\mathbf{r}}(a,b) in (85). ∎

Remark 9.21.

The formulas for cf(l)c_{f}(l) in the above theorem seem like coefficients of Eisenstein series. This is actually the case since xN=0x_{N}=0 implies ff is not a cusp form. Since ff is weakly admissible, then it must be of type I, that is, dimMk(Γ0(N),χ𝐫)=1\dim_{\mathbb{C}}M_{k}(\Gamma_{0}(N),\chi_{\mathbf{r}})=1. Therefore ff is in the Eisenstein space.

Remark 9.22.

In the case of half-integral weights, Theorem 9.20 can be used only for those ll with rad(l)rad(N)\mathop{\mathrm{rad}}(l)\mid\mathop{\mathrm{rad}}(N). However, there is no half-integral weight eta-quotient ff in Table LABEL:table:admissibleTypeI such that cf(l)c_{f}(l) (l>1l>1) can be computed using Theorem 9.20. Nevertheless, it is still worthwhile to include the case of half-integral weights in Theorem 9.20 since there may exist weakly admissible eta-quotients not listed in Table LABEL:table:admissibleTypeI whose coefficients cf(l)c_{f}(l) can be computed using this theorem.

Example 9.23.

Let us consider an example of level 1212 which is not listed in Table LABEL:table:admissibleTypeI. The reader may use SageMath programs described in Appendix A to produce this eta-quotient and check the assertions given here. Set

f(τ)=η(τ)1η(2τ)1η(3τ)1η(4τ)1η(6τ)4η(12τ)2=n0cf(n)qn.f(\tau)=\eta(\tau)^{1}\eta(2\tau)^{-1}\eta(3\tau)^{-1}\eta(4\tau)^{1}\eta(6\tau)^{4}\eta(12\tau)^{-2}=\sum_{n\in\mathbb{Z}_{\geq 0}}c_{f}(n)q^{n}.

Let (xc)c12(x_{c})_{c\mid 12} be as in Proposition 5.1. Hence diva/cf=xc24\mathop{\mathrm{div}}_{a/c}f=\frac{x_{c}}{24} for c12c\mid 12 and aa coprime to cc; c.f. (14). We have

(x1x2x3x4x6x12)=(1264321361321421216336112241231631234612)(r1r2r3r4r6r12)=(11598150),\begin{pmatrix}x_{1}\\ x_{2}\\ x_{3}\\ x_{4}\\ x_{6}\\ x_{12}\end{pmatrix}=\begin{pmatrix}12&6&4&3&2&1\\ 3&6&1&3&2&1\\ 4&2&12&1&6&3\\ 3&6&1&12&2&4\\ 1&2&3&1&6&3\\ 1&2&3&4&6&12\end{pmatrix}\begin{pmatrix}r_{1}\\ r_{2}\\ r_{3}\\ r_{4}\\ r_{6}\\ r_{12}\end{pmatrix}=\begin{pmatrix}11\\ 5\\ 9\\ 8\\ 15\\ 0\end{pmatrix},

from which we see that ff is a holomorphic eta-quotient. Moreover, ff is admissible of type I. Thus Theorem 9.20 can be applied to ff. Note that mfm_{f} in Corollary 9.13 is equal to 2424 and hence

Lf={l1:l1mod24}.L_{f}=\{l\in\mathbb{Z}_{\geq 1}\colon l\equiv 1\bmod{24}\}.

Therefore (a,12)=1(a,12)=1 for any ala\mid l where lLfl\in L_{f}. Moreover,

k=1,Π=2933=square6,δ=1.k=1,\quad\varPi=2^{9}\cdot 3^{3}=\text{square}\cdot 6,\quad\delta=1.

It follows from Theorem 9.20 that

cf(l)=al(a6)=pl(1+(p6))c_{f}(l)=-\sum_{a\mid l}\genfrac{(}{)}{}{}{a}{6}=-\prod_{p\mid l}\left(1+\genfrac{(}{)}{}{}{p}{6}\right)

where 1l1mod241\leq l\equiv 1\bmod{24} is square-free. Consequently, for such ll, cf(l)-c_{f}(l) is either zero or a power of 22. Moreover, for any α1\alpha\in\mathbb{Z}_{\geq 1} there exist infinitely many ll such that cf(l)=2αc_{f}(l)=-2^{\alpha}.

9.4.2. Multiplicativity of weakly admissible eta-quotients.

The Fourier coefficients cf(n)c_{f}(n) of an eta-quotient ff in Martin’s list [17, Table I] satisfy cf(nm)cf(1)=cf(n)cf(m)c_{f}(nm)c_{f}(1)=c_{f}(n)c_{f}(m) whenever nn, mm are coprime positive integers. This is the reason they are called multiplicative eta-quotients. The proper generalization to weakly admissible eta-quotients is stated in the following theorem.

Theorem 9.24.

Let us keep the notations and assumptions of Theorem 9.19. Then the map LfL_{f}\rightarrow\mathbb{C} that sends ll to clc_{l} is a multiplicative function, that is, we have cl1l2=cl1cl2c_{l_{1}l_{2}}=c_{l_{1}}\cdot c_{l_{2}} for any l1,l2Lfl_{1},l_{2}\in L_{f} with151515The gcd (l1,l2)(l_{1},l_{2}) is the usual greatest common divisor in the monoid of positive integers, not in the monoid LfL_{f}. These two concepts are different. For instance in the monoid L={l1:l1mod24}L=\{l\in\mathbb{Z}_{\geq 1}\colon l\equiv 1\bmod{24}\}, (529,553)=5(5\cdot 29,5\cdot 53)=5 in the usual sense, but the unique common divisor of 5295\cdot 29 and 5535\cdot 53 in LL is 11. (l1,l2)=1(l_{1},l_{2})=1.

This theorem is an immediate consequence of the following general fact which in the special case N=1N=1 is due to Wohlfahrt [19].

Proposition 9.25.

Let N1N\in\mathbb{Z}_{\geq 1} and χ1\chi_{1}, χ2\chi_{2}, χ3\chi_{3} be complex linear characters on the double cover Γ0(N)~\widetilde{\Gamma_{0}(N)}. Let l1,l21l_{1},l_{2}\in\mathbb{Z}_{\geq 1} such that χ1\chi_{1} and χ2\chi_{2} are (100l1)~\widetilde{\left(\begin{smallmatrix}{1}&{0}\\ {0}&{l_{1}}\end{smallmatrix}\right)}-compatible, χ2\chi_{2} and χ3\chi_{3} are (100l2)~\widetilde{\left(\begin{smallmatrix}{1}&{0}\\ {0}&{l_{2}}\end{smallmatrix}\right)}-compatible. Then χ1\chi_{1} and χ3\chi_{3} are (100l1l2)~\widetilde{\left(\begin{smallmatrix}{1}&{0}\\ {0}&{l_{1}l_{2}}\end{smallmatrix}\right)}-compatible. Moreover, if (l1,l2)=1(l_{1},l_{2})=1 then

(86) Tl2;χ2,χ3Tl1;χ1,χ2f=Tl1l2;χ1,χ3fT_{l_{2};\chi_{2},\chi_{3}}\circ T_{l_{1};\chi_{1},\chi_{2}}f=T_{l_{1}l_{2};\chi_{1},\chi_{3}}f

for any meromorphic modular form ff on Γ0(N)\Gamma_{0}(N) of weight k12k\in\frac{1}{2}\mathbb{Z} and with character χ1\chi_{1}.

For the concept of compatibility of multiplier systems, see [20, Lemma 3.1] for details. We say χ\chi and χ\chi^{\prime} are (100l)~\widetilde{\left(\begin{smallmatrix}{1}&{0}\\ {0}&{l}\end{smallmatrix}\right)}-compatible if for any γ(100l)~1Γ0(N)~(100l)~Γ0(N)~\gamma\in\widetilde{\left(\begin{smallmatrix}{1}&{0}\\ {0}&{l}\end{smallmatrix}\right)}^{-1}\widetilde{\Gamma_{0}(N)}\widetilde{\left(\begin{smallmatrix}{1}&{0}\\ {0}&{l}\end{smallmatrix}\right)}\cap\widetilde{\Gamma_{0}(N)} we have χ((100l)~γ(100l)~1)=χ(γ)\chi\left(\widetilde{\left(\begin{smallmatrix}{1}&{0}\\ {0}&{l}\end{smallmatrix}\right)}\gamma\widetilde{\left(\begin{smallmatrix}{1}&{0}\\ {0}&{l}\end{smallmatrix}\right)}^{-1}\right)=\chi^{\prime}(\gamma).

Proof of Proposition 9.25 and Theorem 9.24.

First let us prove χ1\chi_{1} and χ3\chi_{3} are (100l1l2)~\widetilde{\left(\begin{smallmatrix}{1}&{0}\\ {0}&{l_{1}l_{2}}\end{smallmatrix}\right)}-compatible. Let g(100l1l2)~1Γ0(N)~(100l1l2)~Γ0(N)~g\in\widetilde{\left(\begin{smallmatrix}{1}&{0}\\ {0}&{l_{1}l_{2}}\end{smallmatrix}\right)}^{-1}\widetilde{\Gamma_{0}(N)}\widetilde{\left(\begin{smallmatrix}{1}&{0}\\ {0}&{l_{1}l_{2}}\end{smallmatrix}\right)}\cap\widetilde{\Gamma_{0}(N)} be arbitrary. We have

χ1((100l1l2)~g(100l1l2)~1)\displaystyle\chi_{1}\left(\widetilde{\left(\begin{smallmatrix}{1}&{0}\\ {0}&{l_{1}l_{2}}\end{smallmatrix}\right)}g\widetilde{\left(\begin{smallmatrix}{1}&{0}\\ {0}&{l_{1}l_{2}}\end{smallmatrix}\right)}^{-1}\right) =χ1((100l1)~(100l2)~g(100l2)~1(100l1)~1)\displaystyle=\chi_{1}\left(\widetilde{\left(\begin{smallmatrix}{1}&{0}\\ {0}&{l_{1}}\end{smallmatrix}\right)}\widetilde{\left(\begin{smallmatrix}{1}&{0}\\ {0}&{l_{2}}\end{smallmatrix}\right)}g\widetilde{\left(\begin{smallmatrix}{1}&{0}\\ {0}&{l_{2}}\end{smallmatrix}\right)}^{-1}\widetilde{\left(\begin{smallmatrix}{1}&{0}\\ {0}&{l_{1}}\end{smallmatrix}\right)}^{-1}\right)
=χ2((100l2)~g(100l2)~1)\displaystyle=\chi_{2}\left(\widetilde{\left(\begin{smallmatrix}{1}&{0}\\ {0}&{l_{2}}\end{smallmatrix}\right)}g\widetilde{\left(\begin{smallmatrix}{1}&{0}\\ {0}&{l_{2}}\end{smallmatrix}\right)}^{-1}\right)
=χ3(g).\displaystyle=\chi_{3}(g).

In the second equality we have used the assumption χ1\chi_{1} and χ2\chi_{2} are (100l1)~\widetilde{\left(\begin{smallmatrix}{1}&{0}\\ {0}&{l_{1}}\end{smallmatrix}\right)}-compatible and in the third equality the assumption χ2\chi_{2} and χ3\chi_{3} are (100l2)~\widetilde{\left(\begin{smallmatrix}{1}&{0}\\ {0}&{l_{2}}\end{smallmatrix}\right)}-compatible. This proves the (100l1l2)~\widetilde{\left(\begin{smallmatrix}{1}&{0}\\ {0}&{l_{1}l_{2}}\end{smallmatrix}\right)}-compatibility of χ1\chi_{1} and χ3\chi_{3}.

Assume that (l1,l2)=1(l_{1},l_{2})=1. To prove (86) we need an equivalent definition of TlfT_{l}f via double coset actions. For the proof of this equivalence see [20, eq. (28) and (30)]. Write

Γ0(N)~(100li)~Γ0(N)~=γAiΓ0(N)~γ~\widetilde{\Gamma_{0}(N)}\widetilde{\left(\begin{smallmatrix}{1}&{0}\\ {0}&{l_{i}}\end{smallmatrix}\right)}\widetilde{\Gamma_{0}(N)}=\bigsqcup_{\gamma\in A_{i}}\widetilde{\Gamma_{0}(N)}\widetilde{\gamma}

for i=1,2i=1,2. Then

Tl1;χ1,χ2f=γA1(χ1|l1χ2)1(γ~)f|kγ~,T_{l_{1};\chi_{1},\chi_{2}}f=\sum_{\gamma\in A_{1}}(\chi_{1}|_{l_{1}}\chi_{2})^{-1}(\widetilde{\gamma})\cdot f|_{k}\widetilde{\gamma},

where χ1|l1χ2(h)=χ1(h1)χ2(h2)\chi_{1}|_{l_{1}}\chi_{2}(h)=\chi_{1}(h_{1})\chi_{2}(h_{2}) if we write h=h1(100l1)~h2h=h_{1}\widetilde{\left(\begin{smallmatrix}{1}&{0}\\ {0}&{l_{1}}\end{smallmatrix}\right)}h_{2} with h1,h2Γ0(N)~h_{1},h_{2}\in\widetilde{\Gamma_{0}(N)}. The compatibility ensures that χ1|l1χ2(h)\chi_{1}|_{l_{1}}\chi_{2}(h) is well-defined. Therefore

(87) Tl2;χ2,χ3Tl1;χ1,χ2f=γ1A1,γ2A2(χ2|l2χ3)1(γ2~)(χ1|l1χ2)1(γ1~)f|kγ1~γ2~.T_{l_{2};\chi_{2},\chi_{3}}\circ T_{l_{1};\chi_{1},\chi_{2}}f=\sum_{\gamma_{1}\in A_{1},\gamma_{2}\in A_{2}}(\chi_{2}|_{l_{2}}\chi_{3})^{-1}(\widetilde{\gamma_{2}})(\chi_{1}|_{l_{1}}\chi_{2})^{-1}(\widetilde{\gamma_{1}})\cdot f|_{k}\widetilde{\gamma_{1}}\widetilde{\gamma_{2}}.

By [20, eq. (25)] with m=1m=1 we can choose the following AiA_{i}:

(88) Ai={(ab0d):a,d>0, 0b<d,ad=li,(N,a)=1,(a,b,d)=1}.A_{i}=\left\{\left(\begin{smallmatrix}{a}&{b}\\ {0}&{d}\end{smallmatrix}\right)\colon a,d>0,\,0\leq b<d,\,ad=l_{i},\,(N,a)=1,\,(a,b,d)=1\right\}.

It follows from the assumption (l1,l2)=1(l_{1},l_{2})=1 and elementary number theory that γ1~γ2~Γ0(N)~(100l1l2)~Γ0(N)~\widetilde{\gamma_{1}}\widetilde{\gamma_{2}}\in\widetilde{\Gamma_{0}(N)}\widetilde{\left(\begin{smallmatrix}{1}&{0}\\ {0}&{l_{1}l_{2}}\end{smallmatrix}\right)}\widetilde{\Gamma_{0}(N)} if γ1A1\gamma_{1}\in A_{1} and γ2A2\gamma_{2}\in A_{2}. Therefore the map

σ:A1×A2\displaystyle\sigma\colon A_{1}\times A_{2} Γ0(N)~\Γ0(N)~(100l1l2)~Γ0(N)~\displaystyle\rightarrow\widetilde{\Gamma_{0}(N)}\backslash\widetilde{\Gamma_{0}(N)}\widetilde{\left(\begin{smallmatrix}{1}&{0}\\ {0}&{l_{1}l_{2}}\end{smallmatrix}\right)}\widetilde{\Gamma_{0}(N)}
(γ1,γ2)\displaystyle(\gamma_{1},\gamma_{2}) Γ0(N)~γ1~γ2~\displaystyle\mapsto\widetilde{\Gamma_{0}(N)}\cdot\widetilde{\gamma_{1}}\widetilde{\gamma_{2}}

is well-defined. By the theory of classical Hecke algebras, or more precisely, by Theorem 2.8.1(2) and Eq. (2.7.2) of [35], σ\sigma is a surjection and each inverse image σ1(x)\sigma^{-1}(x) has the same cardinality. Since σ1(Γ0(N)~(100l1l2)~)={((100l1),(100l2))}\sigma^{-1}\left(\widetilde{\Gamma_{0}(N)}\widetilde{\left(\begin{smallmatrix}{1}&{0}\\ {0}&{l_{1}l_{2}}\end{smallmatrix}\right)}\right)=\left\{(\left(\begin{smallmatrix}{1}&{0}\\ {0}&{l_{1}}\end{smallmatrix}\right),\left(\begin{smallmatrix}{1}&{0}\\ {0}&{l_{2}}\end{smallmatrix}\right))\right\} is a singleton, σ\sigma is a bijection which means the range of summation in the right-hand side of (87) is essentially a set of representatives of the coset space Γ0(N)~\Γ0(N)~(100l1l2)~Γ0(N)~\widetilde{\Gamma_{0}(N)}\backslash\widetilde{\Gamma_{0}(N)}\widetilde{\left(\begin{smallmatrix}{1}&{0}\\ {0}&{l_{1}l_{2}}\end{smallmatrix}\right)}\widetilde{\Gamma_{0}(N)}. Now we can define a map, which is key to the proof,

ξ:Γ0(N)~(100l1l2)~Γ0(N)~\displaystyle\xi\colon\widetilde{\Gamma_{0}(N)}\widetilde{\left(\begin{smallmatrix}{1}&{0}\\ {0}&{l_{1}l_{2}}\end{smallmatrix}\right)}\widetilde{\Gamma_{0}(N)} \displaystyle\rightarrow\mathbb{C}
x\displaystyle x χ1|l1χ2(xγ~21)χ2|l2χ3(γ~2)\displaystyle\mapsto\chi_{1}|_{l_{1}}\chi_{2}(x\widetilde{\gamma}_{2}^{-1})\cdot\chi_{2}|_{l_{2}}\chi_{3}(\widetilde{\gamma}_{2})

where (γ1,γ2)(\gamma_{1},\gamma_{2}) is the uniquely determined pair in A1×A2A_{1}\times A_{2} such that Γ0(N)~x=Γ0(N)~γ1~γ2~\widetilde{\Gamma_{0}(N)}x=\widetilde{\Gamma_{0}(N)}\widetilde{\gamma_{1}}\widetilde{\gamma_{2}}. It is not hard to see that

(89) ξ(gxh)=χ1(g)ξ(x)χ3(h),g,hΓ0(N)~,xΓ0(N)~(100l1l2)~Γ0(N)~,ξ(100l1l2)~=1\xi(gxh)=\chi_{1}(g)\xi(x)\chi_{3}(h),\quad g,h\in\widetilde{\Gamma_{0}(N)},\,x\in\widetilde{\Gamma_{0}(N)}\widetilde{\left(\begin{smallmatrix}{1}&{0}\\ {0}&{l_{1}l_{2}}\end{smallmatrix}\right)}\widetilde{\Gamma_{0}(N)},\quad\xi\widetilde{\left(\begin{smallmatrix}{1}&{0}\\ {0}&{l_{1}l_{2}}\end{smallmatrix}\right)}=1

and that

(90) ξ(γ1~γ2~)=χ1|l1χ2(γ1~)χ2|l2χ3(γ2~).\xi(\widetilde{\gamma_{1}}\widetilde{\gamma_{2}})=\chi_{1}|_{l_{1}}\chi_{2}(\widetilde{\gamma_{1}})\chi_{2}|_{l_{2}}\chi_{3}(\widetilde{\gamma_{2}}).

Since the map xχ1|l1l2χ3(x)x\mapsto\chi_{1}|_{l_{1}l_{2}}\chi_{3}(x) also satisfies (89), we have ξ=χ1|l1l2χ3\xi=\chi_{1}|_{l_{1}l_{2}}\chi_{3}. Inserting this and (90) into (87) gives

Tl2;χ2,χ3Tl1;χ1,χ2f=γ1A1,γ2A2ξ1(γ1~γ2~)f|kγ1~γ2~=γ1A1,γ2A2(χ1|l1l2χ3)1(γ1~γ2~)f|kγ1~γ2~.T_{l_{2};\chi_{2},\chi_{3}}\circ T_{l_{1};\chi_{1},\chi_{2}}f=\sum_{\gamma_{1}\in A_{1},\gamma_{2}\in A_{2}}\xi^{-1}(\widetilde{\gamma_{1}}\widetilde{\gamma_{2}})\cdot f|_{k}\widetilde{\gamma_{1}}\widetilde{\gamma_{2}}=\sum_{\gamma_{1}\in A_{1},\gamma_{2}\in A_{2}}(\chi_{1}|_{l_{1}l_{2}}\chi_{3})^{-1}(\widetilde{\gamma_{1}}\widetilde{\gamma_{2}})\cdot f|_{k}\widetilde{\gamma_{1}}\widetilde{\gamma_{2}}.

Since σ\sigma is a bijection, we obtain (86) from the above equalities.

Finally we prove Theorem 9.24. Let ff be as in this theorem. Then Tl1f=cl1fT_{l_{1}}f=c_{l_{1}}\cdot f, Tl2f=cl2fT_{l_{2}}f=c_{l_{2}}\cdot f and Tl1l2f=cl1l2fT_{l_{1}l_{2}}f=c_{l_{1}l_{2}}\cdot f by Corollary 9.13. Since (l1,l2)=1(l_{1},l_{2})=1 we have

cl1l2f=Tl1l2f=Tl2(Tl1f)=Tl2(cl1f)=cl1cl2fc_{l_{1}l_{2}}\cdot f=T_{l_{1}l_{2}}f=T_{l_{2}}(T_{l_{1}}f)=T_{l_{2}}(c_{l_{1}}\cdot f)=c_{l_{1}}c_{l_{2}}\cdot f

where we have used Proposition 9.25 in the second equality. Since ff is not identically zero we find cl1l2=cl1cl2c_{l_{1}l_{2}}=c_{l_{1}}\cdot c_{l_{2}} as required. ∎

Before looking at examples, let us simplify some notations. Set xN=xN24x_{N}^{\prime}=\frac{x_{N}}{24} and

Sl,𝐫(a)=0b<d(a,b,d)=1(Nb(a,d))2k𝔢((l1)xNba)ψl,𝐫(a,b).S_{l,\mathbf{r}}(a)=\sum_{\begin{subarray}{c}{0\leq b<d}\\ {(a,b,d)=1}\end{subarray}}\genfrac{(}{)}{}{}{-Nb}{(a,d)}^{2k}\mathfrak{e}\left(-\frac{(l-1)x_{N}^{\prime}b}{a}\right)\psi_{l,\mathbf{r}}(a,b).

Then according to Theorem 9.19 we have

cl=lk2al,(a,N)=1(aΠ)akcf(lxNa2)Sl,𝐫(a),lLf.c_{l}=l^{-\frac{k}{2}}\sum_{a\mid l,\,(a,N)=1}\genfrac{(}{)}{}{}{a}{\varPi}a^{k}\cdot c_{f}\left(\frac{lx_{N}^{\prime}}{a^{2}}\right)S_{l,\mathbf{r}}(a),\quad l\in L_{f}.

We recall that here and below ff must be a weakly admissible eta-quotient.

Example 9.26.

If xN=0x_{N}^{\prime}=0, that is, xN=nNnrn=0x_{N}=\sum_{n\mid N}nr_{n}=0, then cf(0)=1c_{f}(0)=1 and hence Theorem 9.24 gives

al1,(a,N)=1(aΠ)akSl1,𝐫(a)al2,(a,N)=1(aΠ)akSl2,𝐫(a)=al1l2,(a,N)=1(aΠ)akSl1l2,𝐫(a)\sum_{a\mid l_{1},\,(a,N)=1}\genfrac{(}{)}{}{}{a}{\varPi}a^{k}\cdot S_{l_{1},\mathbf{r}}(a)\cdot\sum_{a\mid l_{2},\,(a,N)=1}\genfrac{(}{)}{}{}{a}{\varPi}a^{k}\cdot S_{l_{2},\mathbf{r}}(a)=\sum_{a\mid l_{1}l_{2},\,(a,N)=1}\genfrac{(}{)}{}{}{a}{\varPi}a^{k}\cdot S_{l_{1}l_{2},\mathbf{r}}(a)

for l1,l2Lfl_{1},l_{2}\in L_{f} with (l1,l2)=1(l_{1},l_{2})=1.

Example 9.27.

If xN0x_{N}^{\prime}\in\mathbb{Z}_{\geq 0} and (l,xN)=1(l,x_{N}^{\prime})=1, then cf(lxNa2)=0c_{f}\left(\frac{lx_{N}^{\prime}}{a^{2}}\right)=0 unless lxNa2\frac{lx_{N}^{\prime}}{a^{2}}\in\mathbb{Z} by Theorem 9.15(a). Therefore we have

a2l1,(a,N)=1(aΠ)akcf(l1xNa2)Sl1,𝐫(a)a2l2,(a,N)=1(aΠ)akcf(l2xNa2)Sl2,𝐫(a)=a2l1l2,(a,N)=1(aΠ)akcf(l1l2xNa2)Sl1l2,𝐫(a)\sum_{a^{2}\mid l_{1},\,(a,N)=1}\genfrac{(}{)}{}{}{a}{\varPi}a^{k}\cdot c_{f}\left(\frac{l_{1}x_{N}^{\prime}}{a^{2}}\right)S_{l_{1},\mathbf{r}}(a)\cdot\sum_{a^{2}\mid l_{2},\,(a,N)=1}\genfrac{(}{)}{}{}{a}{\varPi}a^{k}\cdot c_{f}\left(\frac{l_{2}x_{N}^{\prime}}{a^{2}}\right)S_{l_{2},\mathbf{r}}(a)\\ =\sum_{a^{2}\mid l_{1}l_{2},\,(a,N)=1}\genfrac{(}{)}{}{}{a}{\varPi}a^{k}\cdot c_{f}\left(\frac{l_{1}l_{2}x_{N}^{\prime}}{a^{2}}\right)S_{l_{1}l_{2},\mathbf{r}}(a)

if l1,l2Lfl_{1},l_{2}\in L_{f} with (l1,l2)=1(l_{1},l_{2})=1, (l1,xN)=1(l_{1},x_{N}^{\prime})=1 and (l2,xN)=1(l_{2},x_{N}^{\prime})=1. If in addition (84) holds for l=l1,l2l=l_{1},l_{2}, then the above identity becomes

(91) cf(l1xN)Sl1,𝐫(1)cf(l2xN)Sl2,𝐫(1)=cf(l1l2xN)Sl1l2,𝐫(1).c_{f}(l_{1}x_{N}^{\prime})S_{l_{1},\mathbf{r}}(1)\cdot c_{f}(l_{2}x_{N}^{\prime})S_{l_{2},\mathbf{r}}(1)=c_{f}(l_{1}l_{2}x_{N}^{\prime})S_{l_{1}l_{2},\mathbf{r}}(1).

From this we obtain a property of cf(n)c_{f}(n) very closed to the multiplicativity property. (We exclude the half-integral case below for simplicity.)

Proposition 9.28.

Let f(τ)=nNη(nτ)rn=ncf(n)qnf(\tau)=\prod_{n\mid N}\eta(n\tau)^{r_{n}}=\sum_{n}c_{f}(n)q^{n} be a weakly admissible eta-quotient (e.g., a function listed in Table LABEL:table:admissibleTypeI or Example 9.23) where NN is the level. We keep the notations in (56) with k=kk^{\prime}=k. Assume that xN=xN240x_{N}^{\prime}=\frac{x_{N}}{24}\in\mathbb{Z}_{\geq 0} and kk\in\mathbb{Z}. Let l1,l2Lfl_{1},l_{2}\in L_{f} satisfy (l1,l2)=1(l_{1},l_{2})=1, (l1,xN)=1(l_{1},x_{N}^{\prime})=1 and (l2,xN)=1(l_{2},x_{N}^{\prime})=1. We require (84) holds for l=l1l=l_{1} and l2l_{2}. Moreover, if N0mod2N\equiv 0\bmod{2} and N(k+δ)2mod4N(k+\delta)\equiv 2\bmod{4}, then we require l1l21mod2l_{1}\equiv l_{2}\equiv 1\bmod{2}. (See Theorem 9.15(b) for the definition of δ\delta.) Then

cf(l1xN)cf(l2xN)=εcf(l1l2xN),c_{f}(l_{1}x_{N}^{\prime})\cdot c_{f}(l_{2}x_{N}^{\prime})=\varepsilon\cdot c_{f}(l_{1}l_{2}x_{N}^{\prime}),

where ε=ul1,𝐫ul2,𝐫ul1l2,𝐫\varepsilon=u_{l_{1},\mathbf{r}}\cdot u_{l_{2},\mathbf{r}}\cdot u_{l_{1}l_{2},\mathbf{r}} with

ul,𝐫={1, if 2l,2N or 4N(k+δ)1, if 2l,4N(k+δ)(l1)1, if 2l,4N(k+δ)(l1).u_{l,\mathbf{r}}=\begin{dcases}1,&\text{ if }2\mid l,\quad 2\nmid N\text{ or }4\mid N(k+\delta)\\ 1,&\text{ if }2\nmid l,\quad 4\mid N(k+\delta)(l-1)\\ -1,&\text{ if }2\nmid l,\quad 4\nmid N(k+\delta)(l-1).\end{dcases}
Proof.

According to (91) we need to prove

(92) Sl1l2,𝐫(1)=ul1,𝐫ul2,𝐫ul1l2,𝐫Sl1,𝐫(1)Sl2,𝐫(1).S_{l_{1}l_{2},\mathbf{r}}(1)=u_{l_{1},\mathbf{r}}\cdot u_{l_{2},\mathbf{r}}\cdot u_{l_{1}l_{2},\mathbf{r}}\cdot S_{l_{1},\mathbf{r}}(1)\cdot S_{l_{2},\mathbf{r}}(1).

By the definition of ψl,𝐫\psi_{l,\mathbf{r}} in Theorem 9.15, we have, since kk\in\mathbb{Z},

Sl,𝐫(1)={l, if 2l,2N or 4N(k+δ)0, if 2l,2N and N(k+δ)2mod4l, if 2l,4N(k+δ)(l1)l, if 2l,4N(k+δ)(l1).S_{l,\mathbf{r}}(1)=\begin{dcases}l,&\text{ if }2\mid l,\quad 2\nmid N\text{ or }4\mid N(k+\delta)\\ 0,&\text{ if }2\mid l,\quad 2\mid N\text{ and }N(k+\delta)\equiv 2\bmod{4}\\ l,&\text{ if }2\nmid l,\quad 4\mid N(k+\delta)(l-1)\\ -l,&\text{ if }2\nmid l,\quad 4\nmid N(k+\delta)(l-1).\end{dcases}

From this (92) follows. Substituting (92) in (91) we obtain

cf(l1xN)cf(l2xN)Sl1,𝐫(1)Sl2,𝐫(1)=εcf(l1l2xN)Sl1,𝐫(1)Sl2,𝐫(1).c_{f}(l_{1}x_{N}^{\prime})\cdot c_{f}(l_{2}x_{N}^{\prime})S_{l_{1},\mathbf{r}}(1)S_{l_{2},\mathbf{r}}(1)=\varepsilon\cdot c_{f}(l_{1}l_{2}x_{N}^{\prime})S_{l_{1},\mathbf{r}}(1)S_{l_{2},\mathbf{r}}(1).

By the assumption we have Sl1,𝐫(1)S_{l_{1},\mathbf{r}}(1) and Sl2,𝐫(1)S_{l_{2},\mathbf{r}}(1) are nonzero and hence the required relation follows. ∎

If xN=0x_{N}^{\prime}=0, then the above proposition holds trivially. We believe there are many weakly admissible eta-quotients with xN1x_{N}^{\prime}\in\mathbb{Z}_{\geq 1} to which we can apply the above proposition. The most well-known example is the discriminant function Δ(τ)=η(τ)24\Delta(\tau)=\eta(\tau)^{24}, which in our terminology is an admissible eta-quotient of type II. The only example in Table LABEL:table:admissibleTypeI is the one presented below.

Example 9.29.

Set f=η(3τ)2η(9τ)1η(27τ)=n1cf(n)qnf=\eta(3\tau)^{2}\eta(9\tau)^{-1}\eta(27\tau)=\sum_{n\in\mathbb{Z}_{\geq 1}}c_{f}(n)q^{n}. This is an admissible eta-quotient of type I. We have

N=27,k=1,xN=24,Π=35,δ=1.N=27,\quad k=1,\quad x_{N}=24,\quad\varPi=3^{5},\quad\delta=1.

Since (c.f. (19))

(x1x3x9x27)=(279313931139313927)(r1r3r9r27)=(1616024),\begin{pmatrix}x_{1}\\ x_{3}\\ x_{9}\\ x_{27}\end{pmatrix}=\begin{pmatrix}27&9&3&1\\ 3&9&3&1\\ 1&3&9&3\\ 1&3&9&27\end{pmatrix}\begin{pmatrix}r_{1}\\ r_{3}\\ r_{9}\\ r_{27}\end{pmatrix}=\begin{pmatrix}16\\ 16\\ 0\\ 24\end{pmatrix},

we have mf=3m_{f}=3 (c.f. Corollary 9.13) and hence Lf={3n+1:n0}L_{f}=\{3n+1\colon n\in\mathbb{Z}_{\geq 0}\}. It follows from Proposition 9.28 that cf(l1)cf(l2)=cf(l1l2)c_{f}(l_{1})c_{f}(l_{2})=c_{f}(l_{1}l_{2}) where l1,l21mod3l_{1},l_{2}\equiv 1\bmod{3} are square-free positive integers with (l1,l2)=1(l_{1},l_{2})=1.

Example 9.30.

Let us give an example of admissible eta-quotient of type II. Set

f=η(τ)η(2τ)η(3τ)η(6τ)3=n1cf(n)qn.f=\eta(\tau)\eta(2\tau)\eta(3\tau)\eta(6\tau)^{3}=\sum_{n\in\mathbb{Z}_{\geq 1}}c_{f}(n)q^{n}.

We have

N=6,k=3,xN=24,Π=2332,δ=0.N=6,\quad k=3,\quad x_{N}=24,\quad\varPi=2^{3}\cdot 3^{2},\quad\delta=0.

Since

(x1x2x3x6)=(6321361221631236)(r1r2r3r6)=(14161824),\begin{pmatrix}x_{1}\\ x_{2}\\ x_{3}\\ x_{6}\end{pmatrix}=\begin{pmatrix}6&3&2&1\\ 3&6&1&2\\ 2&1&6&3\\ 1&2&3&6\end{pmatrix}\begin{pmatrix}r_{1}\\ r_{2}\\ r_{3}\\ r_{6}\end{pmatrix}=\begin{pmatrix}14\\ 16\\ 18\\ 24\end{pmatrix},

we have mf=12m_{f}=12 and hence Lf={12n+1:n0}L_{f}=\{12n+1\colon n\in\mathbb{Z}_{\geq 0}\}. By Theorem 4.2, dimM3(Γ0(6),χ)=2\dim_{\mathbb{C}}M_{3}(\Gamma_{0}(6),\chi)=2 where χ:Γ0(6)~×\chi\colon\widetilde{\Gamma_{0}(6)}\rightarrow\mathbb{C}^{\times} is the character of ff. (Of course this descends to a character of the matrix group Γ0(6)\Gamma_{0}(6) since kk\in\mathbb{Z}.) Recall that the number of Eisenstein series in M3(Γ0(6),χ)M_{3}(\Gamma_{0}(6),\chi) is denoted by n0n_{0} in (50). Since χ(γa/c~T~wa/cγa/c~1)=1\chi(\widetilde{\gamma_{a/c}}\widetilde{T}^{w_{a/c}}\widetilde{\gamma_{a/c}}^{-1})=1 if and only if xc0mod24x_{c}\equiv 0\bmod{24} where c6c\mid 6 and (a,c)=1(a,c)=1, among the four cusps in Γ0(6)\1()\Gamma_{0}(6)\backslash\mathbb{P}^{1}(\mathbb{Q}) there is only one Eisenstein series which is defined at the cusp i\mathrm{i}\infty. Therefore n0=1n_{0}=1. Since ff is a cusp form, we find that it is admissible of type II. It follows from Proposition 9.28 (applied to this ff) that cf(l1)cf(l2)=cf(l1l2)c_{f}(l_{1})c_{f}(l_{2})=c_{f}(l_{1}l_{2}) whenever l1,l21mod12l_{1},l_{2}\equiv 1\bmod{12} are square-free positive integers with (l1,l2)=1(l_{1},l_{2})=1. It is worthwhile to notice that for other pair (l1,l2)(l_{1},l_{2}), the multiplicativity does not necessarily hold. For instance, cf(2)=1c_{f}(2)=-1, cf(3)=2c_{f}(3)=-2 but cf(6)=4c_{f}(6)=4.

9.4.3. An example of half-integral weight

The examples presented above are all of integral weights. To conclude this section we supplement an example of half-integral weight where we show how the Gauss sum b\sum_{b} in (81) can be simplified. Let

(93) f(τ)=η(τ)7η(2τ)17η(4τ)3=n58+0cf(n)qn.f(\tau)=\eta(\tau)^{-7}\eta(2\tau)^{17}\eta(4\tau)^{-3}=\sum_{n\in\frac{5}{8}+\mathbb{Z}_{\geq 0}}c_{f}(n)q^{n}.

The statistics of ff are

N=4,k=72,x1=3,,x2=24,x4=15,Π=231,δ=0,mf=8.N=4,\quad k=\frac{7}{2},\quad x_{1}=3,\quad,x_{2}=24,\quad x_{4}=15,\quad\varPi=2^{31},\quad\delta=0,\quad m_{f}=8.

Thus Lf={l2:l1mod2}L_{f}=\{l^{2}\colon l\equiv 1\bmod{2}\}. By Theorem 4.2 we have dimM7/2(Γ0(4),χ)=2\dim_{\mathbb{C}}M_{7/2}(\Gamma_{0}(4),\chi)=2 where χ:Γ0(4)~×\chi\colon\widetilde{\Gamma_{0}(4)}\rightarrow\mathbb{C}^{\times} is the character of ff and by Definition 8.3 the Eisenstein series can only be given at the cusp 1/21/2. Thus, ff is admissible of type II and Theorems 9.19, 9.24 can be applied.

Now we calculate cl2c_{l^{2}} for l2Lfl^{2}\in L_{f} (c.f. Theorem 9.19). We have, by definition,

(94) cl2=l72al2(a2)a72cf(5l28a2)𝔢(7l28a+78)0b<l2/a(a,b,l2/a)=1(b(a,l2/a))𝔢(5(l21)b8a).c_{l^{2}}=l^{-\frac{7}{2}}\sum_{a\mid l^{2}}\genfrac{(}{)}{}{}{a}{2}a^{\frac{7}{2}}c_{f}\left(\frac{5l^{2}}{8a^{2}}\right)\mathfrak{e}\left(-\frac{7l^{2}}{8a}+\frac{7}{8}\right)\sum_{\begin{subarray}{c}{0\leq b<l^{2}/a}\\ {(a,b,l^{2}/a)=1}\end{subarray}}\genfrac{(}{)}{}{}{-b}{(a,l^{2}/a)}\mathfrak{e}\left(-\frac{5(l^{2}-1)b}{8a}\right).

Note that cf(5l28a2)=0c_{f}\left(\frac{5l^{2}}{8a^{2}}\right)=0 unless 5l28a258+\frac{5l^{2}}{8a^{2}}\in\frac{5}{8}+\mathbb{Z}, that is, unless ala\mid l since a,la,\,l are odd. It follows that for such aa we have (a,l2/a)=a(a,l^{2}/a)=a,

t:=5(l21)(a,l2/a)8a=5(l21)8t:=\frac{5(l^{2}-1)\cdot(a,l^{2}/a)}{8a}=\frac{5(l^{2}-1)}{8}

is an integer (depending on aa and ll) and

0b<l2/a(a,b,l2/a)=1(b(a,l2/a))𝔢(5(l21)b8a)\displaystyle\sum_{\begin{subarray}{c}{0\leq b<l^{2}/a}\\ {(a,b,l^{2}/a)=1}\end{subarray}}\genfrac{(}{)}{}{}{-b}{(a,l^{2}/a)}\mathfrak{e}\left(-\frac{5(l^{2}-1)b}{8a}\right) =0b<l2/a(ba)𝔢(tba)\displaystyle=\sum_{0\leq b<l^{2}/a}\genfrac{(}{)}{}{}{-b}{a}\mathfrak{e}\left(\frac{-tb}{a}\right)
(95) =l2a20b<a(ba)𝔢(tba)\displaystyle=\frac{l^{2}}{a^{2}}\sum_{0\leq b<a}\genfrac{(}{)}{}{}{b}{a}\mathfrak{e}\left(\frac{tb}{a}\right)

is, up to a simple factor, a Gauss sum associated with the character ((a,l2/a))\genfrac{(}{)}{}{}{\cdot}{(a,l^{2}/a)}. To express the values of these Gauss sums, we let, for any odd positive integer mm,

radE(m)\displaystyle\mathop{\mathrm{rad}_{E}}(m) =pmvp(m)0mod2p\displaystyle=\prod_{\begin{subarray}{c}{p\mid m}\\ {v_{p}(m)\equiv 0\bmod{2}}\end{subarray}}p\qquad radO(m)\displaystyle\mathop{\mathrm{rad}_{O}}(m) =pmvp(m)1mod2p\displaystyle=\prod_{\begin{subarray}{c}{p\mid m}\\ {v_{p}(m)\equiv 1\bmod{2}}\end{subarray}}p
rad(m)\displaystyle\mathop{\mathrm{rad}}(m) =radE(m)radO(m)\displaystyle=\mathop{\mathrm{rad}_{E}}(m)\mathop{\mathrm{rad}_{O}}(m)\qquad rad(m)\displaystyle\mathop{\mathrm{rad}^{\prime}}(m) =radE(m)2radO(m)\displaystyle=\mathop{\mathrm{rad}_{E}}(m)^{2}\mathop{\mathrm{rad}_{O}}(m)
irad(m)\displaystyle\mathop{\mathrm{irad}}(m) =m/rad(m)\displaystyle=m/\mathop{\mathrm{rad}}(m)\qquad irad(m)\displaystyle\mathop{\mathrm{irad}^{\prime}}(m) =m/rad(m)\displaystyle=m/\mathop{\mathrm{rad}^{\prime}}(m)

where pp denotes a prime. By [20, Lemma 5.6], if irad(a)t\mathop{\mathrm{irad}}(a)\nmid t then 0b<a(ba)𝔢(tba)=0\sum_{0\leq b<a}\genfrac{(}{)}{}{}{b}{a}\mathfrak{e}\left(\frac{tb}{a}\right)=0; if irad(a)t\mathop{\mathrm{irad}}(a)\mid t then

(96) 0b<a(ba)𝔢(tba)=εaarad(a)(t/irad(a)radO(a))pradE(a)(p1p(t/irad(a)p)2),\sum_{0\leq b<a}\genfrac{(}{)}{}{}{b}{a}\mathfrak{e}\left(\frac{tb}{a}\right)=\varepsilon_{a}\frac{a}{\sqrt{\mathop{\mathrm{rad}^{\prime}}(a)}}\genfrac{(}{)}{}{}{t/\mathop{\mathrm{irad}^{\prime}}(a)}{\mathop{\mathrm{rad}_{O}}(a)}\prod_{p\mid\mathop{\mathrm{rad}_{E}}(a)}\left(p-1-p\genfrac{(}{)}{}{}{t/\mathop{\mathrm{irad}}(a)}{p}^{2}\right),

where (t/irad(a)radO(a))\genfrac{(}{)}{}{}{t/\mathop{\mathrm{irad}^{\prime}}(a)}{\mathop{\mathrm{rad}_{O}}(a)}, (t/irad(a)p)\genfrac{(}{)}{}{}{t/\mathop{\mathrm{irad}}(a)}{p} are Jacobi symbols and εa=1\varepsilon_{a}=1 (εa=i\varepsilon_{a}=\mathrm{i} respectively) if a1mod4a\equiv 1\bmod{4} (a3mod4a\equiv 3\bmod{4} respectively). Inserting (96) and (95) into (94) and noting that 𝔢(7l28a+78)=𝔢(a18)\mathfrak{e}\left(-\frac{7l^{2}}{8a}+\frac{7}{8}\right)=\mathfrak{e}\left(\frac{a-1}{8}\right), (a2)εa𝔢(a18)=1\genfrac{(}{)}{}{}{a}{2}\varepsilon_{a}\mathfrak{e}\left(\frac{a-1}{8}\right)=1 we obtain the following formula.

Proposition 9.31.

For f(τ)=η(τ)7η(2τ)17η(4τ)3=n58+0cf(n)qnf(\tau)=\eta(\tau)^{-7}\eta(2\tau)^{17}\eta(4\tau)^{-3}=\sum_{n\in\frac{5}{8}+\mathbb{Z}_{\geq 0}}c_{f}(n)q^{n} and 1l1mod21\leq l\equiv 1\bmod{2} we have

cl2=l32alirad(a)ta52rad(a)pradE(a)(p1p(t/irad(a)p)2)(t/irad(a)radO(a))cf(5l28a2)c_{l^{2}}=l^{-\frac{3}{2}}\sum_{\begin{subarray}{c}{a\mid l}\\ {\mathop{\mathrm{irad}}(a)\mid t}\end{subarray}}\frac{a^{\frac{5}{2}}}{\sqrt{\mathop{\mathrm{rad}^{\prime}}(a)}}\prod_{p\mid\mathop{\mathrm{rad}_{E}}(a)}\left(p-1-p\genfrac{(}{)}{}{}{t/\mathop{\mathrm{irad}}(a)}{p}^{2}\right)\genfrac{(}{)}{}{}{t/\mathop{\mathrm{irad}^{\prime}}(a)}{\mathop{\mathrm{rad}_{O}}(a)}c_{f}\left(\frac{5l^{2}}{8a^{2}}\right)

where t=5(l21)8t=\frac{5(l^{2}-1)}{8}. In particular, if ll is square-free, then

cl2=l32ala2(ta)cf(5l28a2).c_{l^{2}}=l^{-\frac{3}{2}}\sum_{a\mid l}a^{2}\cdot\genfrac{(}{)}{}{}{t}{a}c_{f}\left(\frac{5l^{2}}{8a^{2}}\right).
Remark 9.32.

Since a5/2rad(a)\frac{a^{5/2}}{\sqrt{\mathop{\mathrm{rad}^{\prime}}(a)}}\in\mathbb{Z} and cf(n)c_{f}(n)\in\mathbb{Z}, we have l3/2cl2l^{3/2}\cdot c_{l^{2}}\in\mathbb{Z}.

According to Theorem 9.24 (applied to (93)) we have cl12cl22=cl12l22c_{l_{1}^{2}}c_{l_{2}^{2}}=c_{l_{1}^{2}l_{2}^{2}} whenever l1,l2l_{1},l_{2} are coprime odd integers. In the special case l1l_{1} and l2l_{2} are square-free, this identity reads

(97) al1a2(5(l121)/8a)cf(5l128a2)al2a2(5(l221)/8a)cf(5l228a2)=al1l2a2(5(l12l221)/8a)cf(5l12l228a2).\sum_{a\mid l_{1}}a^{2}\cdot\genfrac{(}{)}{}{}{5(l_{1}^{2}-1)/8}{a}c_{f}\left(\frac{5l_{1}^{2}}{8a^{2}}\right)\cdot\sum_{a\mid l_{2}}a^{2}\cdot\genfrac{(}{)}{}{}{5(l_{2}^{2}-1)/8}{a}c_{f}\left(\frac{5l_{2}^{2}}{8a^{2}}\right)\\ =\sum_{a\mid l_{1}l_{2}}a^{2}\cdot\genfrac{(}{)}{}{}{5(l_{1}^{2}l_{2}^{2}-1)/8}{a}c_{f}\left(\frac{5l_{1}^{2}l_{2}^{2}}{8a^{2}}\right).

From this we find the genuine multiplicativity property of (93) as stated below. The reader may compare this to the integral-weight counterpart—Proposition 9.28.

Proposition 9.33.

Let f(τ)=η(τ)7η(2τ)17η(4τ)3=n58+0cf(n)qnf(\tau)=\eta(\tau)^{-7}\eta(2\tau)^{17}\eta(4\tau)^{-3}=\sum_{n\in\frac{5}{8}+\mathbb{Z}_{\geq 0}}c_{f}(n)q^{n}. Let l1,l2l_{1},l_{2} be coprime odd square-free integers. Then

cf(5l128)cf(5l228)=cf(5l12l228).c_{f}\left(\frac{5l_{1}^{2}}{8}\right)c_{f}\left(\frac{5l_{2}^{2}}{8}\right)=c_{f}\left(\frac{5l_{1}^{2}l_{2}^{2}}{8}\right).
Proof.

First suppose l1l_{1} and l2l_{2} are primes. By (97) we have

(98) (cf(5l128)+l12(5(l121)/8l1))(cf(5l228)+l22(5(l221)/8l2))=cf(5l12l228)+l22(5(l12l221)/8l2)cf(5l128)+l12(5(l12l221)/8l1)cf(5l228)+l12l22(5(l12l221)/8l1l2).\left(c_{f}\left(\frac{5l_{1}^{2}}{8}\right)+l_{1}^{2}\cdot\genfrac{(}{)}{}{}{5(l_{1}^{2}-1)/8}{l_{1}}\right)\cdot\left(c_{f}\left(\frac{5l_{2}^{2}}{8}\right)+l_{2}^{2}\cdot\genfrac{(}{)}{}{}{5(l_{2}^{2}-1)/8}{l_{2}}\right)\\ =c_{f}\left(\frac{5l_{1}^{2}l_{2}^{2}}{8}\right)+l_{2}^{2}\cdot\genfrac{(}{)}{}{}{5(l_{1}^{2}l_{2}^{2}-1)/8}{l_{2}}c_{f}\left(\frac{5l_{1}^{2}}{8}\right)+l_{1}^{2}\cdot\genfrac{(}{)}{}{}{5(l_{1}^{2}l_{2}^{2}-1)/8}{l_{1}}c_{f}\left(\frac{5l_{2}^{2}}{8}\right)+l_{1}^{2}l_{2}^{2}\cdot\genfrac{(}{)}{}{}{5(l_{1}^{2}l_{2}^{2}-1)/8}{l_{1}l_{2}}.

It is not hard to prove, by the periodicity and multiplicativity of Jacobi symbols, that

(5(l12l221)/8l1)\displaystyle\genfrac{(}{)}{}{}{5(l_{1}^{2}l_{2}^{2}-1)/8}{l_{1}} =(5(l121)/8l1),\displaystyle=\genfrac{(}{)}{}{}{5(l_{1}^{2}-1)/8}{l_{1}},
(5(l12l221)/8l2)\displaystyle\genfrac{(}{)}{}{}{5(l_{1}^{2}l_{2}^{2}-1)/8}{l_{2}} =(5(l221)/8l2),\displaystyle=\genfrac{(}{)}{}{}{5(l_{2}^{2}-1)/8}{l_{2}},
(5(l12l221)/8l1l2)\displaystyle\genfrac{(}{)}{}{}{5(l_{1}^{2}l_{2}^{2}-1)/8}{l_{1}l_{2}} =(5(l121)/8l1)(5(l221)/8l2).\displaystyle=\genfrac{(}{)}{}{}{5(l_{1}^{2}-1)/8}{l_{1}}\cdot\genfrac{(}{)}{}{}{5(l_{2}^{2}-1)/8}{l_{2}}.

Inserting these into (98) gives the desired identity in the case l1l_{1} and l2l_{2} are primes.

Second, suppose l1l_{1} is a prime and l2l_{2} is arbitrary. Again by (97) we have

(99) (cf(5l128)+l12(5(l121)/8l1))al2a2(5(l221)/8a)cf(5l228a2)=al2a2(5(l12l221)/8a)cf(5l12l228a2)+al2l12a2(5(l12l221)/8l1a)cf(5l228a2).\left(c_{f}\left(\frac{5l_{1}^{2}}{8}\right)+l_{1}^{2}\cdot\genfrac{(}{)}{}{}{5(l_{1}^{2}-1)/8}{l_{1}}\right)\cdot\sum_{a\mid l_{2}}a^{2}\cdot\genfrac{(}{)}{}{}{5(l_{2}^{2}-1)/8}{a}c_{f}\left(\frac{5l_{2}^{2}}{8a^{2}}\right)\\ =\sum_{a\mid l_{2}}a^{2}\cdot\genfrac{(}{)}{}{}{5(l_{1}^{2}l_{2}^{2}-1)/8}{a}c_{f}\left(\frac{5l_{1}^{2}l_{2}^{2}}{8a^{2}}\right)+\sum_{a\mid l_{2}}l_{1}^{2}a^{2}\cdot\genfrac{(}{)}{}{}{5(l_{1}^{2}l_{2}^{2}-1)/8}{l_{1}a}c_{f}\left(\frac{5l_{2}^{2}}{8a^{2}}\right).

Since for al2a\mid l_{2},

(5(l121)/8l1)(5(l221)/8a)=(5(l12l221)/8l1a),\genfrac{(}{)}{}{}{5(l_{1}^{2}-1)/8}{l_{1}}\cdot\genfrac{(}{)}{}{}{5(l_{2}^{2}-1)/8}{a}=\genfrac{(}{)}{}{}{5(l_{1}^{2}l_{2}^{2}-1)/8}{l_{1}a},

we obtain from (99) that

cf(5l128)al2a2(5(l221)/8a)cf(5l228a2)\displaystyle c_{f}\left(\frac{5l_{1}^{2}}{8}\right)\cdot\sum_{a\mid l_{2}}a^{2}\cdot\genfrac{(}{)}{}{}{5(l_{2}^{2}-1)/8}{a}c_{f}\left(\frac{5l_{2}^{2}}{8a^{2}}\right) =al2a2(5(l12l221)/8a)cf(5l12l228a2)\displaystyle=\sum_{a\mid l_{2}}a^{2}\cdot\genfrac{(}{)}{}{}{5(l_{1}^{2}l_{2}^{2}-1)/8}{a}c_{f}\left(\frac{5l_{1}^{2}l_{2}^{2}}{8a^{2}}\right)
(100) =al2a2(5(l221)/8a)cf(5l12l228a2).\displaystyle=\sum_{a\mid l_{2}}a^{2}\cdot\genfrac{(}{)}{}{}{5(l_{2}^{2}-1)/8}{a}c_{f}\left(\frac{5l_{1}^{2}l_{2}^{2}}{8a^{2}}\right).

The desired identities for l1l_{1} prime and l2l_{2} arbitrary now follows from (100), the already proven case and the induction on the number of prime divisors of l2l_{2}.

Finally, if l1l_{1} and l2l_{2} are arbitrary, then, by the already proven cases, both sides of the desired identity are equal to pl1l2cf(5p28)\prod_{p\mid l_{1}l_{2}}c_{f}\left(\frac{5p^{2}}{8}\right) and hence the identity holds which concludes the proof. ∎

We have discussed consequences of Theorem 9.24 applied to (93). The above exploration is also valid for any admissible eta-quotient of half-integral weight. (Of course the integral weight case is simpler to deal with.) In addition, for (93) or any admissible eta-quotient of half-integral weight, we can as well simplify the left-hand side of (83) as we have just done for cl2c_{l^{2}}. This will give more interesting identities about cf(n)c_{f}(n). We will not include more details about this due to the length of the paper.

10. Miscellaneous observations and open questions

More general multiplier systems. The dimension formulas stated in Theorem 4.2 concern multiplier systems induced by eta-quotients of fractional exponents. As a comparison, most of the formulas that have appeared in the literature concern multiplier systems induced by Dirichlet characters (in the case of integral weights) or Dirichlet characters times the multiplier system of a power of η(τ)2η(2τ)5η(4τ)2\eta(\tau)^{-2}\eta(2\tau)^{5}\eta(4\tau)^{-2} (in the case of half-integral weights). It is meaningful to deduce an explicit formula for dimMk(Γ0(N),χ1χ2)\dim_{\mathbb{C}}M_{k}(\Gamma_{0}(N),\chi_{1}\chi_{2}) where kk\in\mathbb{Q}, χ1\chi_{1} is induced by an eta-quotient of fractional exponents and χ2\chi_{2} by a Dirichlet character.

Do generalized double coset operators exist for rational weights? Theorem 9.9 let us know for what numbers ll does the expression TlfT_{l}f make sense. The multiplier systems involved are required to be induced by eta-quotients of integral exponents. The question is: if the multiplier systems are induced by eta-quotients of fractional exponents, is there any nontrivial TlT_{l} (i.e. l>1l>1)? All identities presented in Section 9.4 are based on Theorem 9.9. Thus if we can find any TlT_{l} with l>1l>1 in the case of fractional exponents, then, taking into account of Theorem 4.2, we would obtain identities involving cf(n)c_{f}(n) for infinitely many eta-quotients ff of fractional exponents. However, no such operator has been found up to now.

LL-functions and Euler products. According to Theorem 9.24, it is natural to associate an LL-function L(f,s)=lLfcllsL(f,s)=\sum_{l\in L_{f}}\frac{c_{l}}{l^{s}} with a weakly admissible eta-quotient ff. This association is different from the usual one ncf(n)ns\sum_{n}\frac{c_{f}(n)}{n^{s}}. The identities presented in Section 9.4 can be rephrased as properties of this L(f,s)L(f,s). For instance, it has an Euler product. It is interesting to investigate L(f,s)L(f,s), e.g., the functional equations, the corresponding Weil’s theorem, etc.

Listing all weakly admissible eta-quotients. Open question: to find out all weakly admissible eta-quotients (if there exist only finitely many). Another open question: for each weakly admissible eta-quotient, to deduce identities like the one in Proposition 9.33 from (83).

Appendix A Usage of SageMath code

The SageMath code can be obtained from the repository [43]. It is an ipynb file which should be opened in a Sage Jupyter notebook. The code in the first two cells should be run after the file is opened. The first cell, which actually is the one in [44], contains Python/Sage functions dealing with eta-quotients among which we need those concerning the characters and Fourier coefficients of eta-quotients of fractional exponents. The second cell then contains Python/Sage functions on computing dimensions, on order-character relations, on checking identities and on generating tables in this paper.

References