This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Diffusion dynamics of competing information on networks

Teruyoshi Kobayashi [email protected] Department of Economics, Kobe University, Kobe, Japan
Center for Computational Social Science, Kobe University, Kobe, Japan
Abstract

Information diffusion on social networks has been described as a collective outcome of threshold behaviors in the framework of threshold models. However, since the existing models do not take into account individuals’ optimization problem, it remains an open question what dynamics emerge in the diffusion process when individuals face multiple (and possibly incompatible) information. Here, we develop a microfounded general threshold model that enables us to analyze the collective dynamics of individual behavior in the propagation of multiple information. The analysis reveals that the virality of competing information is fundamentally indeterminate. When individuals maximize coordination with neighbors, the diffusion process is described as a saddle path, thereby leading to an unpredictable symmetry breaking. When individuals’ choices are irreversible, there is a continuum of stable equilibria where a certain degree of social polarization takes place by chance.

I Introduction

New technologies, rumors, and political opinions occasionally spread globally through social ties among individuals. The dynamical processes of complex contagions have been extensively studied within the framework of threshold models to understand whether and to what extent a “social meme” (e.g., a particular technology, opinion, etc) spreads on a social network [1, 2, 3, 4, 5, 6, 7, 8, 9].

However, it is common in reality that multiple memes are competing each other, and the popularity of one meme often affects the virality of another; examples include “format wars” (e.g., VHS vs Betamax, Blu-ray Disc vs HD-DVD, etc) [10, 11], political campaign (e.g., democrat/republican) [12, 13, 14, 15, 16, 17], and vaccination behavior (i.e., pro- and anti-vaccination) [18, 19, 20]. In some cases, only one meme survives (e.g., VHS and Blu-ray Disc), while in other cases, multiple memes coexist persistently. The interplay between competing social memes that takes place at both local and global scales thus plays a key role in understanding the actual diffusion dynamics. In the context of simple contagion, in which infection probability is given by a constant, spreading dynamics of two competing viruses/pathogens have been well studied [21, 22, 23]. In contrast, in the literature of complex social contagion, it is still unknown when and how individuals collectively spread multiple memes as a result of optimization behavior.

Here, we develop a generalized threshold model of global cascades that allows us to describe the propagation dynamics of competing memes. Our model is “microfounded” in the sense that individual behavior is optimized; individuals maximize coordination with their neighbors. In this model, therefore, any stationary state of the dynamical process, if it exists, is interpreted as a collective outcome of individuals’ strategic choices, namely, a Nash equilibrium [24, 25, 26, 27, 28].

Game theorists have long studied diffusion on networks that arises from strategic interactions between individuals connected by social ties [29, 30, 31, 26, 32]. A pioneering work by Morris [24] studies a class of 2×22\times 2 coordination games on regular graphs and derived a contagion threshold of the payoff parameter. In the literature on network games [29, 26], however, most of the studies focus on the equilibrium property rather than the dynamics of diffusion [25, 33, 34]. In studies of complex contagion in network science, on the other hand, individual behavior is often captured by a presumed threshold rule [35, 1]. Unless individuals’ optimization is taken into account, however, any extension of the threshold rule would be inevitably arbitrarily since there is no fundamental principle behind the rule. In the current work, we provide a framework in which individual behavior is disciplined through coordination games. Based on the game-theoretic approach, we endogenously obtain generalized threshold rules with which individuals decide whether to accept memes given the influence from others.

II A threshold model of cascades with competing memes

Recently, it is shown that the (fractional) threshold rule used in the Watts cascade model [1] and the optimal strategy in a model of coordination games on networks [24, 29, 26] are functionally equivalent [27]. This indicates that a global cascade may be interpreted as a collective outcome of individuals’ optimization behavior that maximizes their payoffs from coordination. However, while this equivalence provides a microfoundation for the Watts threshold model, the argument is limited to the case where individuals face a binary choice problem (e.g., cooperate or not cooperate, being active or inactive). In this section, we aim to generalize the binary threshold rule by introducing a non-binary coordination games.

II.1 Coordination game with two types of social memes

We consider two types of social memes, respectively labeled as 𝖺\mathsf{a} and 𝖻\mathsf{b}. The memes can be either complementary, exclusive or neutral. Each individual decides whether to accept 𝖺\mathsf{a} or 𝖻\mathsf{b}, or both (called the bilingual option, denoted by 𝖺𝖻\mathsf{ab}), referring to the popularity of each meme among local neighbors [36, 28]. Let S{𝟢,𝖺,𝖻,𝖺𝖻}S\equiv\{\mathsf{0},\mathsf{a},\mathsf{b},\mathsf{ab}\} be the set of pure strategies where s=𝟢s=\mathsf{0} indicates the status-quo (i.e., neither meme is accepted). In an infinitesimal time interval dtdt, randomly selected individuals update their strategies (i.e., asynchronous update [3, 37]) to maximize the payoffs of coordination games. The payoff matrix for a bilateral coordination game is presented in Tab. II.1.

Table 1: Payoff matrix of a coordination game. We assume a,b>c>0a,b>c>0. The two memes are complementary (resp. exclusive) when c~<c\tilde{c}<c (resp. c~>c\tilde{c}>c).
𝟢\mathsf{0} 𝖺\mathsf{a} 𝖻\mathsf{b} 𝖺𝖻\mathsf{ab}
𝟢\mathsf{0} 0,00,0 0,c0,-c 0,c0,-c 0,2c~0,-2\tilde{c}
𝖺\mathsf{a} c,0-c,0 ac,aca-c,a-c c,c-c,-c ac,a2c~a-c,a-2\tilde{c}
𝖻\mathsf{b} c,0-c,0 c,c-c,-c bc,bcb-c,b-c bc,b2c~b-c,b-2\tilde{c}
𝖺𝖻\mathsf{ab} 2c~,0\>\>\quad-2\tilde{c},0\>\>\quad a2c~,aca-2\tilde{c},a-c b2c~,bcb-2\tilde{c},b-c a+b2c~a+b-2\tilde{c}, a+b2c~{}\qquad a+b-2\tilde{c}

Each element of the payoff matrix shows the returns for the corresponding strategy pair. For instance, the pair (c,0)(-c,0) in the (2,1)(2,1)th element of the matrix indicates that a player accepting meme 𝖺\mathsf{a} receives the payoff c-c while the other player receives 0 by staying in the status quo. aa and bb are the benefits of coordinating with neighbors in adopting strategies 𝖺\mathsf{a} and 𝖻\mathsf{b}, respectively, and cc denotes the fundamental cost of accepting a meme, where we assume that a,b>c>0a,b>c>0. For example, two close friends having PCs will be better off using a common operating system rather than different ones. a,b>ca,b>c indicates that the net benefit of coordination (i.e., aca-c or bcb-c) is always positive, whereas the net benefit of failing to cooperate (i.e., c-c) is negative. 2c~-2\tilde{c} in the bottom row represents the fundamental cost of adopting the bilingual strategy 𝖺𝖻\mathsf{ab}. c~\tilde{c} may be larger or less than cc, depending on the extent to which the two memes are complementary or exclusive. If c~c\tilde{c}\gg c, then 𝖺𝖻\mathsf{ab} will no longer be a plausible option since the two memes are prohibitively exclusive (e.g., democrat/republican, Windows/Mac). In contrast, when c~\tilde{c} is low enough, 𝖺𝖻\mathsf{ab} would be preferred to 𝖺\mathsf{a} and 𝖻\mathsf{b}, because accepting a meme reduces the cost of accepting the other (e.g., MacBook and iPhone).

Neighbors’ states are represented by vector 𝐦=(m𝟢,m𝖺,m𝖻,m𝖺𝖻){\bf{m}}=(m_{\mathsf{0}},m_{\mathsf{a}},m_{\mathsf{b}},m_{\mathsf{ab}})^{\top}, where msm_{s} denotes the number of neighbors adopting strategy sSs\in S. Note that we have sSms=k\sum_{s\in S}m_{s}=k for nodes with degree kk. The total payoff of a player having kk neighbors is given by the sum of the payoffs obtained by playing kk independent bilateral games [24, 25, 26]. We assume that the network has a locally tree-like structure, and that neighbors of a player are not directly connected. Therefore, in playing a game with a particular neighbor, the neighbor does not have an incentive to cooperate with other neighbors. Let v(s,𝐦)v(s,\bf{m}) denote the total payoffs of a player adopting strategy sSs\in S and facing the neighbors’ strategy profile 𝐦{\bf m}. We have

v(𝟢,𝐦)\displaystyle v(\mathsf{0},{\bf{m}}) =0,\displaystyle=0, (1)
v(𝖺,𝐦)\displaystyle v(\mathsf{a},{\bf{m}}) =ck+aM𝖺,\displaystyle=-ck+aM_{\mathsf{a}}, (2)
v(𝖻,𝐦)\displaystyle v(\mathsf{b},{\bf{m}}) =ck+bM𝖻,\displaystyle=-ck+bM_{\mathsf{b}}, (3)
v(𝖺𝖻,𝐦)\displaystyle v(\mathsf{ab},{\bf{m}}) =2c~k+aM𝖺+bM𝖻,\displaystyle=-2\tilde{c}k+aM_{\mathsf{a}}+bM_{\mathsf{b}}, (4)

where M𝖺m𝖺+m𝖺𝖻M_{\mathsf{a}}\equiv m_{\mathsf{a}}+m_{\mathsf{ab}} (resp. M𝖻m𝖻+m𝖺𝖻M_{\mathsf{b}}\equiv m_{\mathsf{b}}+m_{\mathsf{ab}}) denotes the total number of neighbors accepting meme 𝖺\mathsf{a} (resp. 𝖻\mathsf{b}), including bilinguals. The optimal strategy ss^{*} is then expressed as a function of 𝐦{\bf m}:

s(𝐦)=argmaxsSv(s,𝐦).\displaystyle s^{\ast}({\bf m})=\underset{s\in S}{\rm arg\,max}\;v(s,{\bf m}). (5)

In a time interval dtdt, a randomly chosen fraction dtdt of NN individuals updates their strategies following Eq. (5). It is assumed that the initial states are kept unchanged for nodes with k=0k=0 since isolated nodes do not have a chance to play coordination game.

II.2 Threshold rule as the optimal strategy in coordination games

Based on the payoffs of each strategy (1)–(4), an individual optimally selects a strategy ss^{\ast} such that v(s,𝐦)v(s,𝐦)v(s^{\ast},{\bf m})\geq v(s^{\prime},{\bf m}) for all ss^{\prime}:

(i) s=𝖺s^{\ast}=\mathsf{a} if v𝖺>v𝟢v_{\mathsf{a}}>v_{\mathsf{0}}, v𝖺>v𝖻v_{\mathsf{a}}>v_{\mathsf{b}}, and v𝖺>v𝖺𝖻v_{\mathsf{a}}>v_{\mathsf{ab}}:

ck+aM𝖺\displaystyle-ck+aM_{\mathsf{a}} >0,\displaystyle>0, (6)
ck+aM𝖺\displaystyle-ck+aM_{\mathsf{a}} >ck+bM𝖻,\displaystyle>-ck+bM_{\mathsf{b}}, (7)
ck+aM𝖺\displaystyle-ck+aM_{\mathsf{a}} >2c~k+aM𝖺+bM𝖻,\displaystyle>-2\tilde{c}k+aM_{\mathsf{a}}+bM_{\mathsf{b}}, (8)

where vsv_{s} is shorthand for v(s,𝐦)v(s,{\bf m}). In the same manner, we have the following conditions for s=𝖻s^{\ast}=\mathsf{b} and 𝖺𝖻\mathsf{ab}:

(ii) s=𝖻s^{\ast}=\mathsf{b} if v𝖻>v𝟢v_{\mathsf{b}}>v_{\mathsf{0}}, v𝖻>v𝖺v_{\mathsf{b}}>v_{\mathsf{a}}, and v𝖻>v𝖺𝖻v_{\mathsf{b}}>v_{\mathsf{ab}}:

ck+bM𝖻\displaystyle-ck+bM_{\mathsf{b}} >0,\displaystyle>0, (9)
ck+bM𝖻\displaystyle-ck+bM_{\mathsf{b}} >ck+aM𝖺,\displaystyle>-ck+aM_{\mathsf{a}}, (10)
ck+bM𝖻\displaystyle-ck+bM_{\mathsf{b}} >2c~k+aM𝖺+bM𝖻,\displaystyle>-2\tilde{c}k+aM_{\mathsf{a}}+bM_{\mathsf{b}}, (11)

(iii) s=𝖺𝖻s^{\ast}=\mathsf{ab} if v𝖺𝖻>v𝟢v_{\mathsf{ab}}>v_{\mathsf{0}}, v𝖺𝖻>v𝖺v_{\mathsf{ab}}>v_{\mathsf{a}}, and v𝖺𝖻>v𝖻v_{\mathsf{ab}}>v_{\mathsf{b}}:

2c~k+aM𝖺\displaystyle-2\tilde{c}k+aM_{\mathsf{a}} +bM𝖻>0,\displaystyle+bM_{\mathsf{b}}>0, (12)
2c~k+aM𝖺\displaystyle-2\tilde{c}k+aM_{\mathsf{a}} +bM𝖻>ck+aM𝖺,\displaystyle+bM_{\mathsf{b}}>-ck+aM_{\mathsf{a}}, (13)
2c~k+aM𝖺\displaystyle-2\tilde{c}k+aM_{\mathsf{a}} +bM𝖻>ck+bM𝖻.\displaystyle+bM_{\mathsf{b}}>-ck+bM_{\mathsf{b}}. (14)

When there are “tie” strategies in simulation (i.e., vs=vsv_{s}=v_{s^{\prime}} for sss\neq s^{\prime}), we randomly select a strategy among the tie strategies.

Refer to caption
Figure 1: Schematic of strategic choice in the presence of multiple social memes.

Given the above conditions, the optimal strategy ss^{\ast} for each individual can be written as the following threshold rules:

s={𝖺if M𝖺k>θ𝖺,M𝖻k<(1λ)θ𝖻 and M𝖺M𝖻>θ𝖺θ𝖻,𝖻if M𝖻k>θ𝖻,M𝖺k<(1λ)θ𝖺 and M𝖺M𝖻<θ𝖺θ𝖻,𝖺𝖻if M𝖺k>(1λ)θ𝖺,M𝖻k>(1λ)θ𝖻 and θ𝖻M𝖺k+θ𝖺M𝖻k>θ𝖺θ𝖻(2λ),𝟢otherwise,s^{\ast}=\begin{cases}\mathsf{a}&\text{if }\;\frac{M_{\mathsf{a}}}{k}>\theta_{\mathsf{a}},\frac{M_{\mathsf{b}}}{k}<(1-\lambda)\theta_{\mathsf{b}}\;\text{ and }\frac{M_{\mathsf{a}}}{M_{\mathsf{b}}}>\frac{\theta_{\mathsf{a}}}{\theta_{\mathsf{b}}},\\ \mathsf{b}&\text{if }\;\frac{M_{\mathsf{b}}}{k}>\theta_{\mathsf{b}},\;\frac{M_{\mathsf{a}}}{k}<(1-\lambda)\theta_{\mathsf{a}}\;\text{ and }\;\frac{M_{\mathsf{a}}}{M_{\mathsf{b}}}<\frac{\theta_{\mathsf{a}}}{\theta_{\mathsf{b}}},\\ \mathsf{ab}&\text{if }\;\frac{M_{\mathsf{a}}}{k}>(1-\lambda)\theta_{\mathsf{a}},\;\frac{M_{\mathsf{b}}}{k}>(1-\lambda)\theta_{\mathsf{b}}\\ {}&\;\;\;\;\;\;\text{ and }\;\theta_{\mathsf{b}}\frac{M_{\mathsf{a}}}{k}+\theta_{\mathsf{a}}\frac{M_{\mathsf{b}}}{k}>\theta_{\mathsf{a}}\theta_{\mathsf{b}}(2-\lambda),\\ \mathsf{0}&\text{otherwise},\end{cases} (15)

where θ𝖺c/a(0,1)\theta_{\mathsf{a}}\equiv c/a\in(0,1), θ𝖻c/b(0,1)\theta_{\mathsf{b}}\equiv c/b\in(0,1), and λ2(1c~/c)\lambda\equiv 2(1-\widetilde{c}/c). λ\lambda captures the degree of complementarity (or compatibility) between 𝖺\mathsf{a} and 𝖻\mathsf{b} where λ>0\lambda>0 (resp. λ<0\lambda<0) indicates that the two memes are complementary (resp. exclusive). When λ=0\lambda=0, they are mutually independent. In the analysis, we focus on a reasonable range of parameter values such that Nash equilibria of bilateral games are given by (𝟢,𝟢)(\mathsf{0},\mathsf{0}), (𝖺,𝖺)(\mathsf{a},\mathsf{a}), (𝖻,𝖻)(\mathsf{b},\mathsf{b}) and (𝖺𝖻,𝖺𝖻)(\mathsf{ab},\mathsf{ab}). In fact, this assumption sets natural constraints for the threshold values: λ<1\lambda<1, (1λ)θ𝖺<1(1-\lambda)\theta_{\mathsf{a}}<1 and (1λ)θ𝖻<1(1-\lambda)\theta_{\mathsf{b}}<1 (see Appendix A for a derivation). Note that even if the neighborhood profile is the same, the optimal strategy may differ depending on λ\lambda (Fig. 1). If M𝖻=0M_{\mathsf{b}}=0 (resp. M𝖺=0M_{\mathsf{a}}=0), then the threshold rules reduce to the single threshold condition appeared in the binary-state cascade model à la Watts [1]: m𝖺/k>θ𝖺m_{\mathsf{a}}/k>\theta_{\mathsf{a}} (resp. m𝖻/k>θ𝖻m_{\mathsf{b}}/k>\theta_{\mathsf{b}}).

II.3 Simulation procedure

The procedure of numerical simulations is as follows:

  1. 1.

    For given zz and NN, generate an Erdős-Rényi network with a common connecting probability z/(N1)z/(N-1).

  2. 2.

    Select seed nodes at random so that there are ρ𝖺(0)N\lfloor\rho^{\mathsf{a}}(0)N\rfloor nodes adopting strategy 𝖺\mathsf{a} and ρ𝖻(0)N\lfloor\rho^{\mathsf{b}}(0)N\rfloor nodes adopting strategy 𝖻\mathsf{b}. The other nodes employ strategy 𝟢\mathsf{0} as the status quo.

  3. 3.

    Choose a fraction dt(0,1)dt\in(0,1) of nodes uniformly at random and update their strategies to maximize their payoffs vv.

  4. 4.

    Repeat step 3 until convergence, where no nodes can be better off by changing their strategies.

  5. 5.

    Repeat steps 1–4.

Note that we implement an asynchronous update in step 3, where a randomly chosen fraction dtdt of nodes update their strategies in an infinitesimally small interval dtdt [38, 3]. We set dt=0.01dt=0.01 in all simulations.

III Results

III.1 AME solution

In the present model, any of the three strategies {𝖺,𝖻,𝖺𝖻}\{\mathsf{a},\mathsf{b},\mathsf{ab}\} may spread globally, and the shares of each strategy in the stationary state, denoted by {ρs}\{\rho^{s}\}, generally vary depending on the payoff parameters and network structure. This type of spreading process is considered as a multistate dynamical process, for which the approximate master equations (AMEs) method has been used to analytically calculate the dynamical paths and the stationary state [38, 3, 39, 28] (see Appendix B for a description of the AME equations. The Matlab code is based on [40]).

Refer to caption
Figure 2: Phase diagram of equilibrium strategies. Relative threshold (θ𝖺/θ𝖻\theta_{\mathsf{a}}/\theta_{\mathsf{b}}) vs (a) mean degree zz (λ=0\lambda=0), and (b) complementarity λ\lambda (z=4z=4). Each colored area denotes a region within which a particular strategy is dominant (i.e., ρs>0.5\rho^{s}>0.5) in the AME method based on Erdős-Rényi networks. Black dotted, blue dotted and red solid lines respectively indicate the boundaries of the dominant regions for 𝖺\mathsf{a}, 𝖻\mathsf{b} and 𝖺𝖻\mathsf{ab} obtained by simulation. “n.a.” (shaded in dark gray) denotes the region in which the parameter constraints are not satisfied. (c) Equilibrium share of each strategy obtained by simulation (symbols) and the AME method (lines). There are three phases of social contagion, labeled as phases i, ii and iii, depending on λ\lambda. We set a=4a=4, b=4b=4 (in panel c), c=1c=1 and N=104N=10^{4}. The average is taken over 100 runs with initial seed fraction ρ𝖺(0)=ρ𝖻(0)=0.03\rho^{\mathsf{a}}(0)=\rho^{\mathsf{b}}(0)=0.03 and ρ𝖺𝖻(0)=0\rho^{\mathsf{ab}}(0)=0.

Depending on the inherent attractiveness (i.e., aa and bb), the degree of complementarity λ\lambda and the mean degree zz, there are three phases as to which strategy is dominant in equilibrium (Figs. 2a and b, and S1). We observe that the AME solutions (shaded) well predict the corresponding simulation results (lines). It should be noted that the cascade region [1, 2] within which we have 1ρ𝟢01-\rho^{\mathsf{0}}\gg 0 is mostly covered by the combined dominant region (Fig. S2), suggesting that a strategy often dominates the others once a global cascade occurs.

While it is natural that the attractiveness parameters aa and bb explain the differences in popularity between 𝖺\mathsf{a} and 𝖻\mathsf{b} (Fig. 2a and b), the following question still remains: what happens when the two memes are equally attractive (i.e., a=ba=b) yet mutually exclusive? When a=ba=b, we always have ρ𝖺=ρ𝖻\rho^{\mathsf{a}}=\rho^{\mathsf{b}} in the AME solution since there is no intrinsic difference between the two memes (black solid in Fig. 2c).

Refer to caption
Figure 3: Ternary plot for the theoretical and simulated values of (ρ𝖺,ρ𝖻,ρ𝖺𝖻)(\rho^{\mathsf{a}},\rho^{\mathsf{b}},\rho^{\mathsf{ab}}) in each phase. Phases i–iii annotated at the top are defined based on the AME solution (see Fig. 2c). The size of light-blue circle represents the simulated frequency, while black cross denotes the AME solution. We exclude simulation runs that did not reach convergence by t=300t=300. See the caption of Fig. 2 for the parameter values.

We find that there are three phases in the AME solutions for the case of 𝖺=𝖻\mathsf{a}=\mathsf{b}: i) ρ𝖺,ρ𝖻>0\rho^{\mathsf{a}},\rho^{\mathsf{b}}>0 and ρ𝖺𝖻=0\rho^{\mathsf{ab}}=0, ii) ρ𝖺,ρ𝖻,ρ𝖺𝖻>0\rho^{\mathsf{a}},\rho^{\mathsf{b}},\rho^{\mathsf{ab}}>0, and iii) ρ𝖺=ρ𝖻=0\rho^{\mathsf{a}}=\rho^{\mathsf{b}}=0 and ρ𝖺𝖻>0\rho^{\mathsf{ab}}>0 (Fig. 2c). It is important to note that while the stationary values of ρ𝖺\rho^{\mathsf{a}} and ρ𝖻\rho^{\mathsf{b}} are nearly 0.50.5 in phase i (i.e., λ<1\lambda<-1), this does not indicate that each of the strategies 𝖺\mathsf{a} and 𝖻\mathsf{b} is adopted by 50%50\% of the population. The average values for simulated ρ𝖺\rho^{\mathsf{a}} and ρ𝖻\rho^{\mathsf{b}} are nearly 0.50.5 because the chance of 𝖺\mathsf{a} or 𝖻\mathsf{b} being a dominant strategy (i.e., ρ𝖺1\rho^{\mathsf{a}}\approx 1 or ρ𝖻1\rho^{\mathsf{b}}\approx 1) is close to 0.50.5 (Fig. 3a). That is, the popularity of each meme is either 0% or 100% in each simulation (blue circle in the ternary plot in Fig. 3a), although the fractions ρ𝖺\rho^{\mathsf{a}} and ρ𝖻\rho^{\mathsf{b}} averaged over simulation runs are both 0.50.5, which corresponds to the AME value (black cross in Fig. 3a). This indicates that there is no diversity of memes (i.e., the two memes do not coexist) in a stationary state of a spreading process occurring in phase i.

In phase ii (i.e., 1λ0.7-1\lesssim\lambda\lesssim-0.7), we have a different set of diffused strategies: {𝖺,𝖺𝖻}\{\mathsf{a},\mathsf{ab}\}, {𝖻,𝖺𝖻}\{\mathsf{b},\mathsf{ab}\} and {𝖺𝖻}\{\mathsf{ab}\} (Fig. 3b). The memes are neither too complementary nor too exclusive, and this is the only phase in which a strategy diversification may be observed. The AME solution indicates that ρ𝖺\rho^{\mathsf{a}} and ρ𝖻\rho^{\mathsf{b}} are less than 0.50.5 (Fig. 2c), but again strategies 𝖺\mathsf{a} and 𝖻\mathsf{b} do not coexist in simulation, resulting in a deviation from the theoretical average (Fig. 3b). In phase iii (i.e., λ>0.7\lambda>-0.7), the two memes are not strongly mutually exclusive, so that the only strategy adopted in the stationary state is 𝖺𝖻\mathsf{ab} (Fig. 3, right). Since there is only one strategy that prevails in the network, the model is essentially the same as the binary-state cascade model, where the theoretical average is equal to the simulated popularity of 𝖺𝖻\mathsf{ab} in each simulation. These observations suggest that the intrinsic symmetry between the two types of memes leads to a symmetric cascade only in phase iii while symmetry is likely to be broken in the other phases.

Refer to caption
Figure 4: Phase diagram of the propagation process on 4-regular random graphs. The initial state (ρ𝖺(0)=ρ𝖻(0)=0.01\rho^{\mathsf{a}}(0)=\rho^{\mathsf{b}}(0)=0.01, ρ𝖺𝖻(0)=0\rho^{\mathsf{ab}}(0)=0) is indicated by red circle. Point A is a saddle equilibrium, and examples of simulated path are shown at the bottom. The panels show typical behaviors in (a) phase i, (b) phase ii, and (c) phase iii. We set a=b=4a=b=4, c=1c=1.

III.2 Mechanics of symmetry breaking

To understand the fundamental mechanics behind the observed symmetry breaking, we draw phase diagrams based on a mean-field (MF) approximation using random zz-regular networks (i.e., the degree distribution pk=δkzp_{k}=\delta_{kz}), for which it is assumed that the states of neighbors are independent of each other [7]. In the MF method, the evolution of ρs\rho^{s} for each sSs\in S is described by the following differential equation [38, 3, 39]:

ρs˙=\displaystyle\dot{\rho^{s}}= ssρs|𝐦|=zz(𝐦,𝝆)F𝐦(ss)\displaystyle-\sum_{s^{\prime}\neq s}\rho^{s}\sum_{|{\bf m}|=z}\mathcal{M}_{z}({\bf m},{\bm{\rho}})F_{\bf m}(s\to s^{\prime})
+ssρs|𝐦|=zz(𝐦,𝝆)F𝐦(ss),\displaystyle+\sum_{s^{\prime}\neq s}\rho^{s^{\prime}}\sum_{|{\bf m}|=z}\mathcal{M}_{z}({\bf m},{\bm{\rho}})F_{\bf m}(s^{\prime}\to s), (16)

where 𝝆(ρ𝟢,ρ𝖺,ρ𝖻,ρ𝖺𝖻){\bm{\rho}}\equiv(\rho^{\mathsf{0}},\rho^{\mathsf{a}},\rho^{\mathsf{b}},\rho^{\mathsf{ab}})^{\top}, and z(𝐦,𝝆)\mathcal{M}_{z}({\bf m},{\bm{\rho}}) is the multinomial distribution given by

z(𝐦,𝝆)z!m𝟢!m𝖺!m𝖻!m𝖺𝖻!(ρ𝟢)m𝟢(ρ𝖺)m𝖺(ρ𝖻)m𝖻(ρ𝖺𝖻)m𝖺𝖻.\displaystyle\mathcal{M}_{z}({\bf m},{\bm{\rho}})\equiv\frac{z!}{m_{\mathsf{0}}!m_{\mathsf{a}}!m_{\mathsf{b}}!m_{\mathsf{ab}}!}(\rho^{\mathsf{0}})^{m_{\mathsf{0}}}(\rho^{\mathsf{a}})^{m_{\mathsf{a}}}(\rho^{\mathsf{b}})^{m_{\mathsf{b}}}(\rho^{\mathsf{ab}})^{m_{\mathsf{ab}}}. (17)

F𝐦(ss)F_{{\bf m}}(s\to s^{\prime}) denotes the probability that individuals change their strategy from ss to ss^{\prime} for a given neighbors’ profile 𝐦{\bf m}: F𝐦(ss)=1F_{{\bf m}}(s\to s^{\prime})=1 if s=s(𝐦)s^{\prime}=s^{*}({\bf m}), and 0 otherwise. The first term in Eq. (16) captures the rate at which a node changes its strategy from ss to s(s)s^{\prime}(\neq s), and the second term denotes the rate at which a node newly employs strategy ss. Note that this is a system of four differential equations (|S|=4|S|=4), but it is sufficient to use three of them because there is an obvious constraint sSρs=1\sum_{s\in S}\rho^{s}=1.

Fig. 4 presents phase diagrams in the ρ𝖺\rho^{\mathsf{a}}-ρ𝖻\rho^{\mathsf{b}} space for three different values of λ\lambda, representing the phases i–iii defined above. Note that the theoretical equilibrium (indicated by point A) is saddle-path stable in all the three cases, but the diagrams differ in the size of the region in which ρ𝖺𝖻˙>0\dot{\rho^{\mathsf{ab}}}>0 (shaded in gray). When the two memes are highly exclusive (Fig. 4a), there is no chance for strategy 𝖺𝖻\mathsf{ab} to gain popularity, so ρ𝖺𝖻˙=0\dot{\rho^{\mathsf{ab}}}=0 for any combination of (ρ𝖺,ρ𝖻)(\rho^{\mathsf{a}},\rho^{\mathsf{b}}). In simulations on finite-size networks, the saddle-path equilibrium indicated by the MF/AME method, (ρ𝖺,ρ𝖻)=(0.5,0.5)(\rho^{\mathsf{a}},\rho^{\mathsf{b}})=(0.5,0.5), is not practically reachable; simulated paths of (ρ𝖺,ρ𝖻)(\rho^{\mathsf{a}},\rho^{\mathsf{b}}) converge to (0,1)(0,1) or (1,0)(1,0) once they deviate from the stable balanced path: ρ𝖺(t)=ρ𝖻(t)\rho^{\mathsf{a}}(t)=\rho^{\mathsf{b}}(t) for all t0t\geq 0 (red dotted in Fig. 4a, bottom).

Refer to caption
Figure 5: Size effect on the frequency of symmetry breaking. a=b=1a=b=1, c=1c=1, λ=1.5\lambda=-1.5, z=4z=4, ρ𝖺(0)=ρ𝖻(0)=0.1\rho^{\mathsf{a}}(0)=\rho^{\mathsf{b}}(0)=0.1, ρ𝖺𝖻(0)=0\rho^{\mathsf{ab}}(0)=0, and T=100T=100. We run 1,000 simulations for each network size.

In principle, the symmetric MF/AME solution would correspond to the “simulated” equilibrium in the limit of large networks with no structural fluctuations. However, any synthetically generated networks are generally not free from finite-size effects and fluctuations, so it is not guaranteed that ρ𝖺(t)=ρ𝖻(t)\rho^{\mathsf{a}}(t)=\rho^{\mathsf{b}}(t) for all t0t\geq 0 in simulations. Histograms of simulated values of ρ𝖺ρ𝖻\rho^{\mathsf{a}}-\rho^{\mathsf{b}} at a certain point in time, denoted by TT, reveal the effect of network size on the likelihood of symmetry breaking (Fig. 5). When NN is relatively small, symmetry breaking occurs in the early stage of spreading process, so we often have ρ𝖺(T)=1\rho^{\mathsf{a}}(T)=1 or ρ𝖻(T)=1\rho^{\mathsf{b}}(T)=1 at T=100T=100 (Fig. 5a and b). In contrast, when N=105N=10^{5} or larger, it is much less likely that either of the strategies is adopted by most of the population at T=100T=100, indicating that the intrinsic symmetry of the memes is more likely to be maintained for larger networks (Fig. 5c and d).

In phase ii, there arises an area in which ρ𝖺𝖻˙>0\dot{\rho^{\mathsf{ab}}}>0 (Fig. 4b). This suggests that the feasible region of (ρ𝖺,ρ𝖻)(\rho^{\mathsf{a}},\rho^{\mathsf{b}}) (i.e., {(ρ𝖺,ρ𝖻):ρ𝖺0,ρ𝖻0,ρ𝖺+ρ𝖻+ρ𝖺𝖻1}\{(\rho^{\mathsf{a}},\rho^{\mathsf{b}}):\rho^{\mathsf{a}}\geq 0,\rho^{\mathsf{b}}\geq 0,\rho^{\mathsf{a}}+\rho^{\mathsf{b}}+\rho^{\mathsf{ab}}\leq 1\}) gradually shrinks as ρ𝖺𝖻\rho^{\mathsf{ab}} increases as long as the current state of (ρ𝖺,ρ𝖻)(\rho^{\mathsf{a}},\rho^{\mathsf{b}}) is in the gray-shaded area. In this phase, symmetry breaking may occur, but not always (Fig. 4b, bottom). In the latter case, both ρ𝖺\rho^{\mathsf{a}} and ρ𝖻\rho^{\mathsf{b}} initially increase and then begin to decrease as the feasible region shrinks in accordance with a rise in ρ𝖺𝖻\rho^{\mathsf{ab}}. In phase iii, we always have ρ𝖺𝖻˙>0\dot{\rho^{\mathsf{ab}}}>0 (Fig. 4c). This indicates that any path of (ρ𝖺,ρ𝖻)(\rho^{\mathsf{a}},\rho^{\mathsf{b}}) will move toward the origin at some point in time as ρ𝖺𝖻\rho^{\mathsf{ab}} increases. Therefore, 𝖺𝖻\mathsf{ab} will be the only diffused strategy in equilibrium. The time to reach convergence in simulated cascades follows a heavy-tailed distribution when symmetry breaking always occurs (i.e., in phase i), while the spreading process promptly reaches an equilibrium in the other phases (Fig. S3).

III.3 Irreversibility of individual behavior

In the model shown above, individuals’ choices are fully reversible where the past strategies do not affect the current strategic choice (Eq. 5). This is a reason why either of the social memes could dominate the other and there is no possibility of polarization: ρ𝖺0,ρ𝖻0\rho^{\mathsf{a}}\gg 0,\;\rho^{\mathsf{b}}\gg 0 and ρ𝖺𝖻=0\rho^{\mathsf{ab}}=0 [15, 16]. Such a reversible decision making, however, would be practically infeasible when switching costs are high (e.g., switching from Mac to Windows). To investigate irreversible dynamics, we introduce a parameter q[0,1]q\in[0,1] representing the degree of irreversibility; q=0q=0 and 11 respectively correspond to the fully reversible and irreversible cases. When q=1q=1, only the following five switching patterns are allowed: 𝟢𝖺\mathsf{0}\to\mathsf{a}, 𝟢𝖻\mathsf{0}\to\mathsf{b}, 𝟢𝖺𝖻\mathsf{0}\to\mathsf{ab}, 𝖺𝖺𝖻\mathsf{a}\to\mathsf{ab}, and 𝖻𝖺𝖻\mathsf{b}\to\mathsf{ab}. Thus, once a meme is accepted, there is no possibility that the meme will be abandoned (i.e., 𝖺𝟢\mathsf{a}\nrightarrow\mathsf{0}, 𝖺𝖻\mathsf{a}\nrightarrow\mathsf{b}, 𝖺𝖻𝖻\mathsf{ab}\nrightarrow\mathsf{b}, etc). The irreversibility parameter q[0,1]q\in[0,1] denotes the rate at which a strategy will not be reverted. The response function with irreversibility constraints, denoted by F~𝐦(ss)\widetilde{F}_{\bf m}(s\to s^{\prime}), is given in Table 2:

Table 2: Elements of the irreversible response function F~𝐦(ss)\widetilde{F}_{\bf m}(s\to s^{\prime}). The unconstrained response function F𝐦F_{\bf m} is defined by Eq. (23). Rows and columns denote the current states (i.e., ss) and the next states (i.e., ss^{\prime}), respectively.
ss^{\prime}
𝟢\mathsf{0} 𝖺\mathsf{a} 𝖻\mathsf{b} 𝖺𝖻\mathsf{ab}
𝟢\mathsf{0}\;\;\; F𝐦(𝟢𝟢)F_{\bf m}(\mathsf{0}\to\mathsf{0}) F𝐦(𝟢𝖺)F_{\bf m}(\mathsf{0}\to\mathsf{a}) F𝐦(𝟢𝖻)F_{\bf m}(\mathsf{0}\to\mathsf{b}) F𝐦(𝟢𝖺𝖻)F_{\bf m}(\mathsf{0}\to\mathsf{ab})
ss\;\; 𝖺\mathsf{a}\;\;\; (1q)F𝐦(𝖺𝟢)(1-q)F_{\bf m}(\mathsf{a}\to\mathsf{0}) 1s𝖺F~𝐦(𝖺s)1-\sum_{s\neq\mathsf{a}}\widetilde{F}_{\bf m}(\mathsf{a}\to s) (1q)F𝐦(𝖺𝖻)(1-q)F_{\bf m}(\mathsf{a}\to\mathsf{b}) F𝐦(𝖺𝖺𝖻)F_{\bf m}(\mathsf{a}\to\mathsf{ab})
𝖻\mathsf{b}\;\;\; (1q)F𝐦(𝖻𝟢)(1-q)F_{\bf m}(\mathsf{b}\to\mathsf{0}) (1q)F𝐦(𝖻𝖺)(1-q)F_{\bf m}(\mathsf{b}\to\mathsf{a}) 1s𝖻F~𝐦(𝖻s)1-\sum_{s\neq\mathsf{b}}\widetilde{F}_{\bf m}(\mathsf{b}\to s) F𝐦(𝖻𝖺𝖻)F_{\bf m}(\mathsf{b}\to\mathsf{ab})
𝖺𝖻\mathsf{ab}\;\;\; (1q)F𝐦(𝖺𝖻𝟢)(1-q)F_{\bf m}(\mathsf{ab}\to\mathsf{0}) (1q)F𝐦(𝖺𝖻𝖺)(1-q)F_{\bf m}(\mathsf{ab}\to\mathsf{a}) (1q)F𝐦(𝖺𝖻𝖻)(1-q)F_{\bf m}(\mathsf{ab}\to\mathsf{b}) 1s𝖺𝖻F~𝐦(𝖺𝖻s)1-\sum_{s\neq\mathsf{ab}}\widetilde{F}_{\bf m}(\mathsf{ab}\to s)

For nodes with s=𝟢s=\mathsf{0}, there is no constraint in updating their strategy. For nodes with s=𝖺s=\mathsf{a} (resp. s=𝖻s=\mathsf{b}), shifting to s=𝖻s^{\prime}=\mathsf{b} (resp. s=𝖺s^{\prime}=\mathsf{a}) or s=𝟢s^{\prime}=\mathsf{0} is restricted, for which the transition probability is multiplied by a factor of (1q)(1-q). For nodes with s=𝖺𝖻s=\mathsf{ab}, any state change is restricted. Note that the unconstrained response function is recovered if q=0q=0.

Refer to caption
Figure 6: Equilibrium indeterminacy due to irreversibility. Phase diagrams for (a) partially irreversible (q=0.8q=0.8), and (b) fully irreversible (q=1q=1) cases. Histograms of ρ𝖺ρ𝖻\rho^{\mathsf{a}}-\rho^{\mathsf{b}} for (c) q=0.8q=0.8 and (d) q=1q=1. The phase diagrams are obtained using the MF method based on 4-regular random graphs, while the histograms at the stationary state are obtained from simulations using Erdős-Rényi graphs with z=4z=4. In panels a and b, blue and red circles respectively denote stable and unstable equilibria at which ρs˙=0,sS\dot{\rho^{s}}=0,\forall s\in S. We run simulations 1,000 times with ρ𝖺(0)=ρ𝖻(0)=0.01\rho^{\mathsf{a}}(0)=\rho^{\mathsf{b}}(0)=0.01, ρ𝖺𝖻(0)=0\rho^{\mathsf{ab}}(0)=0, a=b=4a=b=4, c=1c=1, and λ=2\lambda=-2 in all panels.

Let GsG_{s} be a function that represents the right-hand side of the MF equation (16) (i.e., ρ˙s=Gs(𝝆)\dot{\rho}^{s}=G_{s}({\bm{\rho}})). A stable (resp. unstable) equilibrium is defined as an equilibrium at which ρ˙s=0\dot{\rho}^{s}=0 for all sSs\in S and the maximum eigenvalue of the Jacobian of vector 𝐆=(G𝟢,G𝖺,G𝖻,G𝖺𝖻)\mathbf{G}=(G_{\mathsf{0}},G_{\mathsf{a}},G_{\mathsf{b}},G_{\mathsf{ab}})^{\top} is non-positive (resp. positive). We find that introducing a partial irreversibility (i.e., q<1q<1) does not qualitatively change the dynamical process; there are still two symmetric unstable equilibria, (ρ𝖺,ρ𝖻)=(0,0)(\rho^{\mathsf{a}},\rho^{\mathsf{b}})=(0,0) and (0.5,0.5)(0.5,0.5) (red circles in Fig. 6a), and two asymmetric stable equilibria, (0,1)(0,1) and (1,0)(1,0) (blue circles in Fig. 6a). Symmetry breaking always occurs in phase i as in the fully reversible model (Fig. 6c). Note, however, that the greater the degree of irreversibility qq, the longer the time to convergence for q<1q<1 (Fig. S4).

In phase i, where ρ𝖺𝖻(t)=0\rho^{\mathsf{ab}}(t)=0 for all tt, the saddle equilibrium disappears when the strategies are fully irreversible (i.e., q=1q=1). Instead, there arises a continuum of stable equilibria (ρ𝖺,ρ𝖻)({\rho}^{\mathsf{a}},{\rho}^{\mathsf{b}}) such that ρ𝖺+ρ𝖻=1{\rho}^{\mathsf{a}}+{\rho}^{\mathsf{b}}=1 (Fig. 6b). This indicates that equilibrium is indeterminate in irreversible dynamics even in the limit of large networks. Indeed, the simulated equilibria are continuously distributed, at each of which polarization occurs (i.e., ρ𝖺0,ρ𝖻0\rho^{\mathsf{a}}\gg 0,\;\rho^{\mathsf{b}}\gg 0 and ρ𝖺𝖻=0\rho^{\mathsf{ab}}=0) (Fig. 6d). This is intuitive given that the state-transition process is no longer ergodic when q=1q=1. Due to the irreversibility, the time to convergence is minimized at q=1q=1 (Fig. S4). We also find that in phases ii and iii, the bilingual strategy 𝖺𝖻\mathsf{ab} promptly becomes the dominant strategy when q=1q=1 (Figs. S5 and S6).

IV Discussion

We presented a generalized model of complex social contagion with multiple social memes based on a game-theoretic foundation. The model explains how symmetry breaking and polarization occur in the spread of competing information on networks. While the “average” popularity of each meme can be well approximated by the AME/MF methods, averaging is not appropriate when symmetry is broken in the actual spreading process.

There are some issues to be addressed in future research. First, the proposed model based on coordination games should be regarded as an example of possible extensions of the cascade model for which individual behavior is rationalized. While the current work provides a microfoundation of the Watts threshold model from a game-theoretic approach, different specifications of strategic behavior could lead to different forms of threshold rules.

Second, we did not consider any non-random network structure, such as community structure. The absence of community structure might be a reason why polarization does not occur in the case of reversible strategies. Third, unlike the binary-state cascade models, it is difficult to obtain analytical conditions under which a global cascade can occur. We exploited the power of AMEs to show the boundary of cascade region, yet a simple analytical cascade condition would be useful to predict global cascades.

T. K. acknowledges financial support from JSPS KAKENHI 19H01506 and 20H05633. I would like to thank Tomokatsu Onaga for useful comments.

Appendix A Constraints for λ\lambda

Since we focus on a situation in which the pure strategy Nash equilibria for each bilateral game are given by (𝟢,𝟢)(\mathsf{0},\mathsf{0}), (𝖺,𝖺)(\mathsf{a},\mathsf{a}), (𝖻,𝖻)(\mathsf{b},\mathsf{b}) and (𝖺𝖻,𝖺𝖻)(\mathsf{ab},\mathsf{ab}), the payoff of strategy ss must be the highest if the opponent’s strategy is ss. We have the following conditions for each of these strategy pairs to be attained as a Nash equilibrium:

  1. (i)

    For the strategy pair (𝟢,𝟢)(\mathsf{0},\mathsf{0}) to be a Nash equilibrium, we need to have 2c~<0-2\tilde{c}<0. Since λ=2(1c~/c)\lambda=2(1-\tilde{c}/c), it indicates that

    λ<2.\displaystyle\lambda<2. (18)
  2. (ii)

    For the strategy pair (𝖺,𝖺)(\mathsf{a},\mathsf{a}) to be a Nash equilibrium, we need to have ac>a2c~a-c>a-2\tilde{c}. It follows that

    λ<1.\displaystyle\lambda<1. (19)

    Note that the condition for the pair (𝖻,𝖻)(\mathsf{b},\mathsf{b}) is the same.

  3. (iii)

    For the strategy pair (𝖺𝖻,𝖺𝖻)(\mathsf{ab},\mathsf{ab}) to be a Nash equilibrium, we need to have a+b2c~>aca+b-2\tilde{c}>a-c and a+b2c~>bca+b-2\tilde{c}>b-c (Recall that ac>0a-c>0 and bc>0b-c>0). It follows that

    (1λ)θ𝖺<1 and (1λ)θ𝖻<1.\displaystyle(1-\lambda)\theta_{\mathsf{a}}<1\;\;\text{ and }\;\;(1-\lambda)\theta_{\mathsf{b}}<1. (20)

Given the conditions (18)–(20), λ\lambda must satisfy λ<1\lambda<1, (1λ)θ𝖺<1(1-\lambda)\theta_{\mathsf{a}}<1, and (1λ)θ𝖻<1(1-\lambda)\theta_{\mathsf{b}}<1.

Appendix B AME equations

Here, we describe the spreading process of competing memes based on the AME method. Let ρk,𝐦s\rho^{s}_{k,{\bf m}} denote the fraction of kk-degree nodes belonging to the (s,𝐦)(s,{\bf m}) class (i.e., kk-degree nodes adopting strategy ss and facing the neighbor profile 𝐦{\bf m}). Using the AME formalism, the evolution of ρk,𝐦s\rho^{s}_{k,{\bf m}} is given by [38, 3, 39]:

ρs˙k,𝐦=\displaystyle\dot{\rho^{s}}_{k,{\bf m}}\;=\; ssF𝐦(ss)ρk,𝐦s\displaystyle-\sum_{s^{\prime}\neq s}F_{{\bf m}}(s\to s^{\prime})\rho_{k,{\bf m}}^{s}
rSrrmrϕs(rr)ρk,𝐦s\displaystyle-\sum_{r\in S}\sum_{r^{\prime}\neq r}m_{r}\phi_{s}(r\to r^{\prime})\rho_{k,{\bf m}}^{s}
+ssF𝐦(ss)ρk,𝐦s\displaystyle+\;\>\sum_{s^{\prime}\neq s}F_{{\bf m}}(s^{\prime}\to s)\rho_{k,{\bf m}}^{s^{\prime}}
+rSrr(mr+1)ϕs(rr)ρk,𝐦𝐞r+𝐞rs,\displaystyle+\sum_{r\in S}\sum_{r^{\prime}\neq r}(m_{r^{\prime}}+1)\phi_{s}(r^{\prime}\to r)\rho_{k,{\bf m}-{\bf e}_{r}+{\bf e}_{r^{\prime}}}^{s}, (21)

for sSs\in S, where ϕs(rr)\phi_{s}(r\to r^{\prime}) denotes the probability that a neighbor of a node adopting strategy ss changes its strategy from rr to rr^{\prime}:

ϕs(rr)=\displaystyle\phi_{s}(r\to r^{\prime})= kpk|𝐦|=kmsρk,𝐦rF𝐦(rr)kpk|𝐦|=kmsρk,𝐦r.\displaystyle\frac{\sum_{k}p_{k}\sum_{|{\bf m}|=k}m_{s}{\rho}^{r}_{k,{\bf m}}F_{\bf m}(r\to r^{\prime})}{\sum_{k}p_{k}\sum_{|{\bf m}|=k}m_{s}\rho_{k,{\bf m}}^{r}}. (22)

pkp_{k} denotes the degree distribution, and the response function F𝐦(ss)F_{{\bf m}}(s\to s^{\prime}) describes the rate at which individuals change their strategy from ss to ss^{\prime} for a given neighbors’ profile 𝐦{\bf m}:

F𝐦(ss)={1 if s=s(𝐦),0 otherwise,\displaystyle F_{{\bf m}}(s\to s^{\prime})=\begin{cases}1\;\;{\text{ if }}\;s^{\prime}=s^{*}({\bf m}),\\ 0\;\;{\text{ otherwise}},\end{cases} (23)

where s(𝐦)s^{*}({\bf m}) is the optimal strategy defined in Eq. (5). The expected fraction of individuals adopting strategy sSs\in S leads to ρs=kpk|𝐦|=kρk,𝐦s\rho^{s}=\sum_{k}p_{k}\sum_{|{\bf m}|=k}\rho_{k,{\bf m}}^{s}, where |𝐦|=k\sum_{|{\bf m}|=k} denotes the sum over all combinations of {ms}\{m_{s}\} such that sSms=k\sum_{s\in S}m_{s}=k.

There are four factors that change ρk,𝐦s\rho_{k,{\bf m}}^{s} over time in Eq. (21). Individuals will leave the (s,𝐦)(s,{\bf m}) class if i) their strategy changes from ss to s(s)s^{\prime}(\neq s) (the first term) or ii) their neighbor profile changes from 𝐦{\bf m} to 𝐦(𝐦){\bf m}^{\prime}(\neq{\bf m}) (the second term). Individuals will enter the (s,𝐦)(s,{\bf m}) class if iii) their strategies newly change from s(s)s^{\prime}(\neq s) to ss (the third term) or iv) the neighbors’ profile shifts from 𝐦(𝐦){\bf m}^{\prime}(\neq{\bf m}) to 𝐦{\bf m} (the fourth term). The expression 𝐦𝐞r+𝐞r{\bf m}-{\bf e}_{r}+{\bf e}_{r^{\prime}} in the fourth term denotes the neighbor profile that has mr+1m_{r^{\prime}}+1 in the rr^{\prime}-th element and mr1m_{r}-1 in the rr-th element.

The denominator of Eq. (22), kpk|𝐦|=kmsρk,𝐦r\sum_{k}p_{k}\sum_{|{\bf m}|=k}m_{s}\rho_{k,{\bf m}}^{r}, represents the expected number of (s)(s)(r)(r) edges. Since the expected number of (s)(s)(r)(r) edges that shift to (s)(s)(r)(r^{\prime}) in an infinitesimal interval dtdt is given as kpk|𝐦|=kmsρk,𝐦rF𝐦(rr)dt\sum_{k}p_{k}\sum_{|{\bf m}|=k}m_{s}\rho_{k,{\bf m}}^{r}F_{\bf m}(r\to r^{\prime})dt, the probability of a (s)(s)(r)(r) edge shifting to a (s)(s)(r)(r^{\prime}) edge, denoted by ϕs(rr)dt\phi_{s}(r\to r^{\prime})dt, is obtained as the ratio of the two, leading to Eq. (22). The AME solution is calculated using Matlab codes provided in [40].

References

  • Watts [2002] D. J. Watts,  Proc. Natl. Acad. Sci. USA 99, 5766 (2002).
  • Gleeson and Cahalane [2007] J. Gleeson and D. Cahalane, Phys. Rev. E 75, 56103 (2007).
  • Gleeson [2013] J. P. Gleeson,  Physical Review X 3, 021004 (2013).
  • Nematzadeh et al. [2014] A. Nematzadeh, E. Ferrara, A. Flammini, and Y.-Y. Ahn,  Phys. Rev. Lett. 113, 088701 (2014).
  • Brummitt and Kobayashi [2015] C. D. Brummitt and T. Kobayashi,  Phys. Rev. E 91, 062813 (2015).
  • Kobayashi [2015] T. Kobayashi,  Phys. Rev. E 92, 062823 (2015).
  • Böttcher et al. [2017] L. Böttcher, J. Nagler, and H. J. Herrmann,  Phys. Rev. Lett. 118, 088301 (2017).
  • Gleeson and Porter [2018] J. P. Gleeson and M. A. Porter, in Complex Spreading Phenomena in Social Systems (Springer, 2018) pp. 81–95.
  • Unicomb et al. [2019] S. Unicomb, G. Iñiguez, J. Kertész, and M. Karsai,  Phys. Rev. E 100, 040301 (2019).
  • Cusumano et al. [1992] M. A. Cusumano, Y. Mylonadis, and R. S. Rosenbloom,  Bus. Hist. Rev. 66, 51 (1992).
  • Anscombe [2008] N. Anscombe, Nat. Photonics 2, 412 (2008).
  • Conover et al. [2012] M. D. Conover, B. Gonçalves, A. Flammini, and F. Menczer,  EPJ Data Sci. 1, 1 (2012).
  • Metaxas and Mustafaraj [2012] P. T. Metaxas and E. Mustafaraj, Science 338, 472 (2012).
  • Ferrara [2017] E. Ferrara,  Information Sciences 418, 1 (2017).
  • Vasconcelos et al. [2019] V. V. Vasconcelos, S. A. Levin, and F. L. Pinheiro,  J. R. Soc. Interface 16, 20190196 (2019).
  • Baumann et al. [2020] F. Baumann, P. Lorenz-Spreen, I. M. Sokolov, and M. Starnini,  Phys. Rev. Lett. 124, 048301 (2020).
  • Cinelli et al. [2021] M. Cinelli, G. D. F. Morales, A. Galeazzi, W. Quattrociocchi, and M. Starnini, Proc. Natl. Acad. Sci. 118 (2021).
  • Johnson et al. [2020] N. F. Johnson, N. Velásquez, N. J. Restrepo, R. Leahy, N. Gabriel, S. El Oud, M. Zheng, P. Manrique, S. Wuchty, and Y. Lupu,  Nature 582, 230 (2020).
  • Prieto Curiel and González Ramírez [2021] R. Prieto Curiel and H. González Ramírez,  Sci. Rep. 11, 1 (2021).
  • Adepoju [2021] P. Adepoju,  Nat. Medicine 27, 1122 (2021).
  • Newman [2005] M. E. Newman, Phys. Rev. Lett. 95, 108701 (2005).
  • Poletto et al. [2013] C. Poletto, S. Meloni, V. Colizza, Y. Moreno, and A. Vespignani, PLoS Comput. Biol. 9, e1003169 (2013).
  • van de Bovenkamp et al. [2014] R. van de Bovenkamp, F. Kuipers, and P. Van Mieghem, Phys. Rev. E 89, 042818 (2014).
  • Morris [2000] S. Morris, Rev. Econ. Stud. 67, 57 (2000).
  • Jackson and Yariv [2007] M. O. Jackson and L. Yariv, Am. Econ. Rev. 97, 92 (2007).
  • Jackson and Zenou [2015] M. O. Jackson and Y. Zenou, in Handbook of Game Theory with Economic Applications, Vol. 4 (Elsevier, 2015) pp. 95–163.
  • Kobayashi and Onaga [2021] T. Kobayashi and T. Onaga, arXiv:2103.09417  (2021).
  • Kobayashi et al. [2021] T. Kobayashi, Y. Ogisu, and T. Onaga, arXiv:2109.14560  (2021).
  • Jackson [2008] M. O. Jackson, Social and Economic Networks (Princeton University Press, NJ: Princeton, 2008).
  • Easley and Kleinberg [2010] D. Easley and J. Kleinberg, Networks, Crowds, and Markets: Reasoning about a Highly Connected World (Cambridge University Press, 2010).
  • Jackson [2011] M. O. Jackson, in Handbook of Social Economics, Vol. 1 (Elsevier, 2011) pp. 511–585.
  • Tabasso [2019] N. Tabasso, Games Econ. Behav. 118, 219 (2019).
  • Ballester et al. [2006] C. Ballester, A. Calvó-Armengol, and Y. Zenou, Econometrica 74, 1403 (2006).
  • Chen et al. [2018] Y.-J. Chen, Y. Zenou, and J. Zhou, Am. Econ. J-Microecon. 10, 34 (2018).
  • Granovetter [1978] M. Granovetter, Am. J. Sociol. 83, 1420 (1978).
  • Oyama and Takahashi [2015] D. Oyama and S. Takahashi, J. Econ. Theory 157, 100 (2015).
  • Melnik et al. [2013] S. Melnik, J. A. Ward, J. P. Gleeson, and M. A. Porter, Chaos 23, 013124 (2013).
  • Gleeson [2011] J. P. Gleeson, Phys. Rev. Lett. 107, 068701 (2011).
  • Fennell and Gleeson [2019] P. G. Fennell and J. P. Gleeson, SIAM Rev. 61, 92 (2019).
  • [40] P. G. Fennell, https://github.com/peterfennell/multi-state-SOLVER.

“Diffusion dynamics of competing information on networks” Teruyoshi Kobayashi

Refer to caption
Figure S1: Dominant strategy in the stationary state. See the caption of Fig. 2 for details.
Refer to caption
Figure S2: Theoretical and simulated cascade region. (a) AME solution and (b) simulation. Color indicates the value of ρ𝖺+ρ𝖻+ρ𝖺𝖻\rho^{\mathsf{a}}+\rho^{\mathsf{b}}+\rho^{\mathsf{ab}} (=1ρ𝟢)(=1-\rho^{\mathsf{0}}), which will be significantly larger than ρ𝖺(0)+ρ𝖻(0)+ρ𝖺𝖻(0)=0.06\rho^{\mathsf{a}}(0)+\rho^{\mathsf{b}}(0)+\rho^{\mathsf{ab}}(0)=0.06 if a global cascade occurs. See the caption of Fig. 2 for the parameter values.
Refer to caption
Figure S3: Distribution of the time to convergence. (a) Dominant regions as in Fig. 2b. A symbol denotes a point at which a complementary cumulative distribution function (CCDF) of convergence time is generated in panel b. (b) CCDF of the time to convergence. Each symbol denotes a particular parameter combination indicated in panel a. When θ𝖺/θ𝖻=1\theta_{\mathsf{a}}/\theta_{\mathsf{b}}=1 and λ=1.5\lambda=-1.5 (i.e., in phase i), at which symmetry breaking always occurs, simulated time to convergence follows a heavy-tailed distribution. We conduct 10,00010,000 simulations on Erdős-Rényi networks with z=4z=4 and discard simulation runs that did not reach convergence by t=10,000t=10,000. See the caption of Fig. 2 for the other parameter values.
Refer to caption
Figure S4: Time to convergence and the degree of irreversibility qq. Error bar denotes one standard deviation while circle denotes the average. See the caption of Fig. 6 for the details of simulation.
Refer to caption
Figure S5: Phase diagrams of (a) reversible and (b) irreversible dynamics for λ=0.9\lambda=-0.9. See Fig. 4 for a detailed description of the phase diagrams. qq denotes the extent to which a strategy is irreversible (i.e., q=0q=0 and 11 represent fully reversible and irreversible cases, respectively). Red cross denotes the MF solution. In panel (b), due to the presence of irreversibility constraints, the popularity of 𝖺𝖻\mathsf{ab} increases faster than in the case of q=0q=0, which shrinks the feasible region of (ρ𝖺,ρ𝖻)(\rho^{\mathsf{a}},\rho^{\mathsf{b}}) faster along with it.
Refer to caption
Figure S6: Phase diagrams of (a) reversible and (b) irreversible dynamics for λ=0\lambda=0. See Figs. 4 and S5 for the description of the phase diagrams.