This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Diffusion approximation of critical controlled multi-type branching processes

Mátyás Barczy1, Miguel González2, Pedro Martín-Chávez2,\ast and Inés del Puerto2
1
HUN-REN–SZTE Analysis and Applications Research Group, Bolyai Institute, University of Szeged, 6720 Szeged, Aradi vértanúk tere 1., Hungary
2Department of Mathematics, University of Extremadura, 06006 Badajoz, Av. de Elvas s/n, Spain
Emails: [email protected] (M. Barczy), [email protected] (M. González), [email protected] (P. Martín-Chávez) and [email protected] (I. del Puerto)
\astCorresponding author
Abstract

Branching processes form an important family of stochastic processes that have been successfully applied in many fields. In this paper, we focus our attention on controlled multi-type branching processes (CMBPs). A Feller-type diffusion approximation is derived for some critical CMBPs. Namely, we consider a sequence of appropriately scaled random step functions formed from a critical CMBP with control distributions having expectations that satisfy a kind of linearity assumption. It is proved that such a sequence converges weakly toward a squared Bessel process supported by a ray determined by an eigenvector of a matrix related to the offspring mean matrix and the control distributions of the branching process in question. As applications, among others, we derive Feller-type diffusion approximations of critical, primitive multi-type branching processes with immigration and some two-sex branching processes. We also describe the asymptotic behaviour of the relative frequencies of distinct types of individuals for critical CMBPs.

Keywords. Controlled branching processes, multi-type branching processes, two-sex branching processes, diffusion approximation, squared Bessel processes.

2020 Mathematics Subject Classifications. 60J80, 60F17.

1 Introduction

Branching processes can be well-applied to describe evolutionary systems, where elements reproduce according to certain probability laws. These processes are commonly used in population dynamics, and, in this context, systems are referred to as populations and elements as individuals or cells. In this framework, multi-type branching processes, that are appropriate for modelling the evolution of populations in which different types of individuals coexist, have been successfully applied. For instance, these processes are used for modelling polymerase chain reaction (see, e.g., Sagitov and Ståhlberg [30]), for modelling cell proliferation kinetics (see, e.g., González et al. [15], Kimmel and Axelrod [26, Chapter 5] or Yanev [37]) or for studying extinction of outbreak of diseases (see, e.g., Mwasunda et al. [27]). We will focus our attention on the class of controlled multi-type branching processes (CMBPs). This class was first introduced in González et al. [14]. The key feature of CMBPs is that the number of parents of each type at a given generation is determined by a random control mechanism that depends on the number of individuals of different types in the previous generation.

CMBPs form a wide family of branching processes that include, as particular cases, the well-known classical branching processes, namely, multi-type branching processes without or with immigration (MBPs or MBPIs), or two-sex branching processes (see details in Example 2.1). Although, for all these processes, individuals give rise to offspring independently of each others, in general, a CMBP no longer satisfies the additive property (see, e.g., Athreya and Ney [4, Chapter 1, page 3]). This is an important property that is satisfied, for instance, by MBPs and MBPIs. The lack of the additive property for a general CMBP makes it difficult to study this kind of processes and it comes from the following fact. Provided that we know the number of different types of individuals in a generation, in case of a general CMBP, the number of different types of individuals in the next generation is a random sum of some independent random variables, while, in case of a MBP or a MBPI, it is a non-random sum (in the sense that the number of summands is deterministic).

This paper aims to obtain a Feller-type diffusion approximation for some critical CMBPs (details of the model are given in Section 2) and to study the asymptotic behaviour of the relative frequencies of distinct types of individuals. The problems under consideration have a dual motivation. On the one hand, it has interest in itself from a theoretical point of view. Our theoretical results (see Theorem 3.3 and its corollaries) may allow us to study relevant applied problems as well. For example, our result on the asymptotic behaviour of relative frequencies may find applications in cell kinetics. On the other hand, the obtained scaling limit theorem can enable us to carry out further research on statistical inference. For example, one may complete the study on weighted conditional least square estimators for some critical CMBPs, started in González et al. [11], or one might start to investigate more general quasi-likelihood estimators. This intended research could contribute to the modeling of real data using CMBPs.

From a mathematical point of view, achieving functional limit theorems for critical branching processes has attracted the interest of many researchers since 1951, when Feller [10] was able to provide the first formulation for Galton–Watson processes. He proved that the sequence of appropriately scaled critical Galton–Watson processes converges in distribution to a non-negative diffusion process without drift (for a detailed proof based on infinitesimal generators, see also Ethier and Kurtz [9, Theorem 9.1.3]). The extension to branching processes with immigration started with the pioneering paper of Wei and Winnicki [33], where the limit process is a squared Bessel process that can be characterized as the pathwise unique strong solution of a certain stochastic differential equation (SDE). Focusing on controlled branching models, a further extension to the critical, single-type case was first carried out by Sriram et al. [32], and, more recently, by González et al. [13]. Furthermore, for some critical CMBPs, under quite involved technical conditions, González et al. [16, Corollary 4.1] proved a conditional weak limit theorem for the one-dimensional distributions provided that the explosion set has a positive probability. However, according to our knowledge, functional limit theorems for critical CMBPs are not available in the literature. Our present paper fills this gap, it is a natural extension of the result for critical single-type controlled branching processes (CBPs) in González et al. [13] to the multi-type case.

Assuming that the expectations of the control distributions satisfy a linear relationship with the population size additively perturbed by a function also depending on the population size (see (2.10)), we introduce a classification for such CMBPs based on the spectral radius of a matrix related to the offspring mean matrix and to the control distributions. Under some additional hypotheses, we prove that a suitably scaled and normalized critical CMBP converges weakly toward a squared Bessel process supported by a ray determined by an eigenvector of the aforementioned matrix, see Theorem 3.3. As corollaries, we are able to rediscover the known results on Feller-type diffusion approximations for critical, primitive MPBIs (see Corollaries 3.8 and 3.9). What is even more interesting is that we can apply our main theorem to get Feller-type diffusion approximations for some two-sex branching processes. We emphasize that no such results are available in the literature. Very recently, Bansaye et al. [5] have also proved a scaling limit theorem for a class of two-sex branching processes that combine classical asexual Galton–Watson processes and two-sex Galton–Watson branching processes introduced by Daley [8]. For a comparison of our results and theirs, see Remark 3.12. Finally, a result on the asymptotic behaviour of the relative frequencies for critical CMBPs is also derived from Theorem 3.3 (see Corollary 3.13). This kind of result has potential applications, for instance, in the field of cell kinetics, where it is more usual to measure relative frequencies instead of the absolute cell counts.

The proof of our main result (Theorem 3.3) follows the proof scheme of Theorem 3.1 in Ispány and Pap [21] for MBPIs, which is based on a weak convergence result for random step processes due to Ispány and Pap [20, Corollary 2.2] (see also Theorem A.4). This latter result has been applied in other papers to prove several scaling limit theorems, see, e.g., Ispány and Pap [21] and Ráth [28]. The lack of the additive property for a general CMBP makes the proof of our Theorem 3.3 more involved. Next, we outline the course of the proof, and we also point out the new ingredients in it. We start with determining the conditional moments of the branching process (see Proposition 2.3), which are essential to find out the asymptotic behaviour of some moments of the branching process (see Lemma A.3). The heart of the proof of Theorem 3.3 is an application of Theorem A.4 for a sequence of martingale differences formed from the CMBP in question (see (4.3) in Step 1). Then, in case of MBPIs, the Feller-type diffusion approximation follows straightforwardly from a continuous mapping theorem (see Theorem A.5), as Ispány and Pap [21] showed. However, this is not the case for general CMBPs, an extra additional work (see Step 3) is required. We also emphasize that the additive perturbation of the expectations of the control distributions mentioned above (see also (2.10)) results a new difficulty in the proofs compared to MBPIs, and it is addressed in the proofs of Steps 1 and 3.

The paper is structured as follows. In Section 2, CMBPs are defined, and, under the linearity assumption (2.11) on the conditional expectations, we introduce their classification by distinguishing subcritical, critical and supercritical CMBPs. By giving examples, we also point out that different types of classical branching processes can be viewed as particular cases of our model, thus illustrating its wide scope of applicability. In Section 3, we collect all the hypotheses that are assumed and we present all of our results obtained. Section 4 is devoted to the proof of Theorem 3.3, which is structured in four steps for an easy reading. We close the paper with an Appendix which contains some auxiliary results such as the asymptotic behaviour of the first and second moments of CMBPs and the second and fourth moments of a corresponding martingale difference (see Lemma A.3).

2 Controlled multi-type branching processes

Let (Ω,,P)(\Omega,\mathcal{F},\mathrm{P}) be a fixed probability space on which all the random variables will be defined, and let \mathbb{N}, +\mathbb{Z}_{+}, \mathbb{R}, +\mathbb{R}_{+} and ++\mathbb{R}_{++} be the set of positive integers, non-negative integers, real numbers, non-negative real numbers, and positive real numbers, respectively. For all 𝒙,𝒚p,\boldsymbol{x},\boldsymbol{y}\in\mathbb{R}^{p}, let us denote by 𝒙𝒚\boldsymbol{x}\preceq\boldsymbol{y} if each coordinate of 𝒙\boldsymbol{x} is less than or equal to the corresponding coordinate of 𝒚\boldsymbol{y}. For 𝒛=(z1,,zp)p{\boldsymbol{z}}=(z_{1},\ldots,z_{p})^{\top}\in\mathbb{R}^{p}, let |𝒛|\colonequals(|z1|,,|zp|)+p|\boldsymbol{z}|\colonequals(|z_{1}|,\ldots,|z_{p}|)^{\top}\in\mathbb{R}_{+}^{p}, and 𝒛+\colonequals(z1+,,zp+)+p{\boldsymbol{z}}^{+}\colonequals(z_{1}^{+},\ldots,z_{p}^{+})^{\top}\in\mathbb{R}_{+}^{p}, where x+x^{+} stands for the positive part of xx\in\mathbb{R} and for the transpose. The natural basis in p\mathbb{R}^{p} is denoted by 𝒆1,,𝒆p\boldsymbol{e}_{1},\ldots,\boldsymbol{e}_{p}. The null vector in p\mathbb{R}^{p} is denoted by 𝟎p\boldsymbol{0}_{p}. The Borel sigma-algebra on p\mathbb{R}^{p} is denoted by (p)\mathcal{B}(\mathbb{R}^{p}). The trace of a matrix 𝖠p×p\mathsf{A}\in\mathbb{R}^{p\times p} is denoted by tr(𝖠)\operatorname{tr}\left(\mathsf{A}\right). The p×pp\times p identity matrix is denoted by 𝖨p\mathsf{I}_{p}. For a matrix 𝖠l×p\mathsf{A}\in\mathbb{R}^{l\times p}, let Null(𝖠)\colonequals{𝒙p:𝖠𝒙=𝟎l}\operatorname{Null}(\mathsf{A})\colonequals\{\boldsymbol{x}\in\mathbb{R}^{p}:\mathsf{A}\boldsymbol{x}=\boldsymbol{0}_{l}\}. Along the paper, we will not distinguish between the notations of the norm of a vector in p\mathbb{R}^{p} and that of a matrix in p×p\mathbb{R}^{p\times p}. For 𝒛p{\boldsymbol{z}}\in\mathbb{R}^{p}, let 𝒛\|{\boldsymbol{z}}\| denote the Euclidean norm of 𝒛{\boldsymbol{z}}, and for a matrix 𝖠p×p\mathsf{A}\in\mathbb{R}^{p\times p}, let 𝖠\colonequalsmax{𝖠𝒛:𝒛=1,𝒛p}\|\mathsf{A}\|\colonequals\max\{\|\mathsf{A}{\boldsymbol{z}}\|:\|{\boldsymbol{z}}\|=1,\,{\boldsymbol{z}}\in\mathbb{R}^{p}\}. For a positive semi-definite matrix 𝖠p×p\mathsf{A}\in\mathbb{R}^{p\times p}, let 𝖠\sqrt{\mathsf{A}} denote the unique symmetric positive semi-definite square root of 𝖠\mathsf{A}. For a function 𝒉:pp\boldsymbol{h}:\mathbb{R}^{p}\to\mathbb{R}^{p}, by the notation 𝒉(𝒛)=O(f(𝒛))\boldsymbol{h}({\boldsymbol{z}})=\operatorname{O}(f({\boldsymbol{z}})) as 𝒛\|{\boldsymbol{z}}\|\to\infty, where f:p+f:\mathbb{R}^{p}\to\mathbb{R}_{+}, we mean that there exist C>0C>0 and R>0R>0 such that 𝒉(𝒛)Cf(𝒛)\|\boldsymbol{h}({\boldsymbol{z}})\|\leq Cf({\boldsymbol{z}}) for all 𝒛p{\boldsymbol{z}}\in\mathbb{R}^{p} with 𝒛>R\|{\boldsymbol{z}}\|>R. Further, if for all ϵ>0\epsilon>0 there exists R>0R>0 such that 𝒉(𝒛)ϵf(𝒛)\|\boldsymbol{h}({\boldsymbol{z}})\|\leq\epsilon f({\boldsymbol{z}}) for all 𝒛p{\boldsymbol{z}}\in\mathbb{R}^{p} with 𝒛>R\|{\boldsymbol{z}}\|>R, then we write 𝒉(𝒛)=o(f(𝒛))\boldsymbol{h}({\boldsymbol{z}})=\operatorname{o}(f({\boldsymbol{z}})) as 𝒛\|{\boldsymbol{z}}\|\to\infty. Convergence in probability is denoted by P\stackrel{{\scriptstyle\mathrm{P}}}{{\longrightarrow}}. Some further notations for weak convergence of stochastic processes with càdlàg sample paths are recalled in Section 3.

For a fixed pp\in\mathbb{N} and a +p\mathbb{Z}_{+}^{p}–valued random vector 𝒁0\boldsymbol{Z}_{0}, let us consider a controlled pp–type branching process (𝒁k)k+(\boldsymbol{Z}_{k})_{k\in\mathbb{Z}_{+}}, defined recursively as

𝒁k+1\colonequalsi=1pj=1ϕk,i(𝒁k)𝑿k,j,i,k+,\boldsymbol{Z}_{k+1}\colonequals\sum_{i=1}^{p}\sum_{j=1}^{\phi_{k,i}(\boldsymbol{Z}_{k})}\boldsymbol{X}_{k,j,i},\quad\quad k\in\mathbb{Z}_{+}, (2.1)

where 𝒁k\boldsymbol{Z}_{k}, ϕk(𝒛)\boldsymbol{\phi}_{k}(\boldsymbol{z}), 𝒛+p\boldsymbol{z}\in\mathbb{Z}_{+}^{p}, and 𝑿k,j,i\boldsymbol{X}_{k,j,i} are +p\mathbb{Z}_{+}^{p}–valued random vectors:

𝒁k\equalscolon(Zk,1Zk,p),ϕk(𝒛)\equalscolon(ϕk,1(𝒛)ϕk,p(𝒛)),𝑿k,j,i\equalscolon(Xk,j,i,1Xk,j,i,p).\boldsymbol{Z}_{k}\equalscolon\begin{pmatrix}Z_{k,1}\\ \vdots\\ Z_{k,p}\end{pmatrix},\qquad\boldsymbol{\phi}_{k}(\boldsymbol{z})\equalscolon\begin{pmatrix}\phi_{k,1}(\boldsymbol{z})\\ \vdots\\ \phi_{k,p}(\boldsymbol{z})\end{pmatrix},\qquad\boldsymbol{X}_{k,j,i}\equalscolon\begin{pmatrix}X_{k,j,i,1}\\ \vdots\\ X_{k,j,i,p}\end{pmatrix}.

The intuitive interpretation of the process (𝒁k)k+(\boldsymbol{Z}_{k})_{k\in\mathbb{Z}_{+}} is as follows:

  • Zk,iZ_{k,i} is the number of ii–type individuals in the kk–th generation,

  • ϕk,i(𝒁k)\phi_{k,i}(\boldsymbol{Z}_{k}) is the number of ii–type progenitors in the kk–th generation,

  • Xk,j,i,lX_{k,j,i,l} is the number of ll–type offsprings of the jj–th ii–type progenitor in the kk–th generation.

Assume that {𝒁0,ϕk(𝒛),𝑿k,j,i:k+,j,𝒛+p,i{1,,p}}\{\boldsymbol{Z}_{0},\boldsymbol{\phi}_{k}(\boldsymbol{z}),\boldsymbol{X}_{k,j,i}:k\in\mathbb{Z}_{+},\,j\in\mathbb{N},\,\boldsymbol{z}\in\mathbb{Z}_{+}^{p},\,i\in\{1,\ldots,p\}\} are independent, {ϕk(𝒛):k+}\{\boldsymbol{\phi}_{k}(\boldsymbol{z}):k\in\mathbb{Z}_{+}\} are identically distributed for each 𝒛+p\boldsymbol{z}\in\mathbb{Z}_{+}^{p} and {𝑿k,j,i:k+,j}\{\boldsymbol{X}_{k,j,i}:k\in\mathbb{Z}_{+},\,j\in\mathbb{N}\} are also identically distributed for each i{1,,p}i\in\{1,\ldots,p\}. The distributions of ϕ0(𝒛)\boldsymbol{\phi}_{0}(\boldsymbol{z}), 𝒛+p{\boldsymbol{z}}\in\mathbb{Z}_{+}^{p}, are called the control distributions.

Moreover, for clarity of the readers, let us write out (2.1) for controlled two-type branching processes. The number of ii–type individuals in the initial generation is Z0,iZ_{0,i}, i=1,2i=1,2, and the recursive definition in (2.1) takes the form

(Zk+1,1Zk+1,2)=j=1ϕk,1(Zk,1,Zk,2)(Xk,j,1,1Xk,j,1,2)+j=1ϕk,2(Zk,1,Zk,2)(Xk,j,2,1Xk,j,2,2),k+.\begin{pmatrix}Z_{k+1,1}\\ Z_{k+1,2}\end{pmatrix}=\sum_{j=1}^{\phi_{k,1}(Z_{k,1},Z_{k,2})}\begin{pmatrix}X_{k,j,1,1}\\ X_{k,j,1,2}\end{pmatrix}+\sum_{j=1}^{\phi_{k,2}(Z_{k,1},Z_{k,2})}\begin{pmatrix}X_{k,j,2,1}\\ X_{k,j,2,2}\end{pmatrix},\qquad k\in\mathbb{Z}_{+}.

Part (iv) of Example 2.1 serves as a good illustration of a two-type case.

It is easy to check that the process defined in (2.1) is a +p\mathbb{Z}_{+}^{p}-valued Markov chain. This model is very general, several other popular branching processes can be seen as particular cases of the CMBPs, see Example 2.1.

Example 2.1.
  • (i)

    Multi-type branching processes. We get the subclass of pp–type branching processes without immigration by defining the deterministic control function as ϕk(𝒛)\colonequals𝒛\boldsymbol{\phi}_{k}(\boldsymbol{z})\colonequals\boldsymbol{z}, 𝒛+p{\boldsymbol{z}}\in\mathbb{Z}_{+}^{p}, k+k\in\mathbb{Z}_{+}, in (2.1).

  • (ii)

    Multi-type branching processes with immigration. Let us consider such a MBPI (𝒀k)k+{(\boldsymbol{Y}_{k})_{k\in\mathbb{Z}_{+}}} given by

    𝒀k+1\colonequalsi=1pj=1Yk,i𝝃k,j,i+𝑰k+1,k+,\boldsymbol{Y}_{k+1}\colonequals\sum_{i=1}^{p}\sum_{j=1}^{Y_{k,i}}\boldsymbol{\xi}_{k,j,i}+\boldsymbol{I}_{k+1},\quad\quad k\in\mathbb{Z}_{+}, (2.2)

    where {𝒀0,𝝃k,j,i,𝑰k:k+,j,i{1,,p}}\{\boldsymbol{Y}_{0},\,\boldsymbol{\xi}_{k,j,i},\boldsymbol{I}_{k}:k\in\mathbb{Z}_{+},\,j\in\mathbb{N},\,i\in\{1,\ldots,p\}\} are independent +p\mathbb{Z}_{+}^{p}–valued random vectors, {𝝃k,j,i:k+,j}\{\boldsymbol{\xi}_{k,j,i}:k\in\mathbb{Z}_{+},\,j\in\mathbb{N}\} are identically distributed for each i{1,,p}i\in\{1,\ldots,p\} (offspring distributions) and {𝑰k:k+}\{\boldsymbol{I}_{k}:k\in\mathbb{Z}_{+}\} are also identically distributed (immigration distribution). Note that (𝒀k)k+(\boldsymbol{Y}_{k})_{k\in\mathbb{Z}_{+}} can be written as a (p+1)(p+1)–type branching process with

    𝒁k\colonequals(𝒀k1),𝑿k,j,i\colonequals(𝝃k,j,i0),𝑿k,1,p+1\colonequals(𝑰k+11)\boldsymbol{Z}_{k}\colonequals\begin{pmatrix}\boldsymbol{Y}_{k}\\ {1}\end{pmatrix},\qquad\boldsymbol{X}_{k,j,i}\colonequals\begin{pmatrix}\boldsymbol{\xi}_{k,j,i}\\ 0\end{pmatrix},\qquad{\boldsymbol{X}_{k,1,p+1}}\colonequals\begin{pmatrix}\boldsymbol{I}_{k+1}\\ 1\end{pmatrix} (2.3)

    for k+k\in\mathbb{Z}_{+}, jj\in\mathbb{N}, i{1,,p}i\in\{1,\ldots,p\}, when ϕk(𝒛)\colonequals𝒛\boldsymbol{\phi}_{k}(\boldsymbol{z})\colonequals\boldsymbol{z}, 𝒛+p+1{\boldsymbol{z}}\in\mathbb{Z}_{+}^{p+1}, k+k\in\mathbb{Z}_{+} (see (i)). Moreover, (𝒀k)k+(\boldsymbol{Y}_{k})_{k\in\mathbb{Z}_{+}} can also be written as a controlled (p+1)(p+1)–type branching process with the choices given in (2.3) and the control functions

    ϕk(𝒛)\colonequals(z1zp1),𝒛+p+1,k+.\boldsymbol{\phi}_{k}(\boldsymbol{z})\colonequals\begin{pmatrix}z_{1}\\ \vdots\\ z_{p}\\ 1\end{pmatrix},\qquad{\boldsymbol{z}}\in\mathbb{Z}_{+}^{p+1},\quad k\in\mathbb{Z}_{+}.
  • (iii)

    Multi-type branching processes with migration. Let us consider a stochastic process (𝒁k)k+{(\boldsymbol{Z}_{k})_{k\in\mathbb{Z}_{+}}} given by

    𝒁k+1\colonequalsi=1pj=1Zk,i+Mk,i(Zk,i)𝑿k,j,i,k+,\boldsymbol{Z}_{k+1}\colonequals\sum_{i=1}^{p}\sum_{j=1}^{Z_{k,i}+M_{k,i}(Z_{k,i})}\boldsymbol{X}_{k,j,i},\quad\quad k\in\mathbb{Z}_{+},

    where {𝒁0,𝑴k(𝒛),𝑿k,j,i:k+,j,𝒛+p,i{1,,p}}\{\boldsymbol{Z}_{0},\boldsymbol{M}_{k}({\boldsymbol{z}}),\boldsymbol{X}_{k,j,i}:k\in\mathbb{Z}_{+},\,j\in\mathbb{N},\,\boldsymbol{z}\in\mathbb{Z}_{+}^{p},\,i\in\{1,\ldots,p\}\} are independent p\mathbb{Z}^{p}–valued random vectors such that 𝒁0\boldsymbol{Z}_{0} and 𝑿k,j,i\boldsymbol{X}_{k,j,i} have non-negative coordinates, {𝑴k(𝒛)\colonequals(Mk,1(z1),,Mk,p(zp)):k+}\{\boldsymbol{M}_{k}({\boldsymbol{z}})\colonequals(M_{k,1}(z_{1}),\ldots,M_{k,p}(z_{p}))^{\top}:k\in\mathbb{Z}_{+}\} are identically distributed for each 𝒛+p{\boldsymbol{z}}\in\mathbb{Z}_{+}^{p} with range contained in [z1,)××[zp,)[-z_{1},\infty)\times\cdots\times[-z_{p},\infty), and {𝑿k,j,i:k+,j}\{\boldsymbol{X}_{k,j,i}:k\in\mathbb{Z}_{+},\,j\in\mathbb{N}\} are also identically distributed for each i{1,,p}i\in\{1,\ldots,p\}. For each i{1,,p}i\in\{1,\ldots,p\}, Mk,i(zi)M_{k,i}(z_{i}) can be interpreted as a migration component for the ii–type individuals in the kk–th generation. Depending on the sign of Mk,i(zi)M_{k,i}(z_{i}), there is emigration (negative value), immigration (positive value) or no migration (zero value). In fact, this is an equivalent way of writing a CMBP, because every ϕk(𝒛)\boldsymbol{\phi}_{k}(\boldsymbol{z}) can be written as 𝒛+𝑴k(𝒛)\boldsymbol{z}+\boldsymbol{M}_{k}({\boldsymbol{z}}), 𝒛+p{\boldsymbol{z}}\in\mathbb{Z}_{+}^{p}, kk\in\mathbb{N}, with appropriate choices of 𝑴k(𝒛)\boldsymbol{M}_{k}({\boldsymbol{z}}).

  • (iv)

    Two-sex Galton–Watson branching processes with immigration (2SBPIs). Let us consider such a process (Fk,Mk)k+(F_{k},M_{k})_{k\in\mathbb{Z}_{+}} with offspring and immigration distribution defined as follows. Let (F0,M0)(F_{0},M_{0}) be an +2\mathbb{Z}_{+}^{2}–valued random variable (random initial generation) and

    (Fk+1,Mk+1)\displaystyle(F_{k+1},M_{k+1}) \colonequalsj=1Uk(fk,j,mk,j)+(Fk+1I,Mk+1I),k+,\displaystyle\colonequals\sum_{j=1}^{U_{k}}(f_{k,j},m_{k,j})+(F_{k+1}^{I},M_{k+1}^{I}),\qquad k\in\mathbb{Z}_{+}, (2.4)
    Uk\displaystyle U_{k} \colonequalsL(Fk,Mk),k+,\displaystyle\colonequals L(F_{k},M_{k}),\qquad k\in\mathbb{Z}_{+},

    where {(F0,M0),(fk,j,mk,j),(FkI,MkI):k+,j}\{(F_{0},M_{0}),(f_{k,j},m_{k,j}),(F_{k}^{I},M_{k}^{I}):k\in\mathbb{Z}_{+},\,j\in\mathbb{N}\} are independent +2\mathbb{Z}_{+}^{2}–valued random vectors, {(fk,j,mk,j):k+,j}\{(f_{k,j},m_{k,j}):k\in\mathbb{Z}_{+},\,j\in\mathbb{N}\} are identically distributed (offspring distribution), and {(FkI,MkI):k+}\{(F_{k}^{I},M_{k}^{I}):k\in\mathbb{Z}_{+}\} are also identically distributed (immigration distribution). Further, (Uk)k+(U_{k})_{k\in\mathbb{Z}_{+}} is a sequence of mating units corresponding to the mating function L:+×++L:\mathbb{Z}_{+}\times\mathbb{Z}_{+}\to\mathbb{Z}_{+}, assumed to be non-decreasing in each argument. In the terminology of Asmussen [3], LL can be called a marriage function as well. Then the 2SBPI (Fk,Mk)k+(F_{k},M_{k})_{k\in\mathbb{Z}_{+}} can be considered a CMBP (𝒁k)k+({\boldsymbol{Z}}_{k})_{k\in\mathbb{Z}_{+}} given by

    𝒁k\colonequals(FkMk),ϕk(𝒛)\colonequals(L(𝒛)1),𝑿k,j,1\colonequals(fk,jmk,j),𝑿k,j,2\colonequals(Fk+1IMk+1I)\displaystyle\boldsymbol{Z}_{k}\colonequals\begin{pmatrix}F_{k}\\ M_{k}\end{pmatrix},\qquad\boldsymbol{\phi}_{k}(\boldsymbol{z})\colonequals\begin{pmatrix}L(\boldsymbol{z})\\ 1\end{pmatrix},\qquad\boldsymbol{X}_{k,j,1}\colonequals\begin{pmatrix}f_{k,j}\\ m_{k,j}\end{pmatrix},\qquad\boldsymbol{X}_{k,j,2}\colonequals\begin{pmatrix}F_{k+1}^{I}\\[2.84526pt] M_{k+1}^{I}\end{pmatrix}

    for k+k\in\mathbb{Z}_{+}, jj\in\mathbb{N}, and 𝒛+2{\boldsymbol{z}}\in\mathbb{Z}_{+}^{2}. In this case, we emphasize that the coordinates of the control can be interpreted in a different way compared to what is written after (2.1). Namely, the first coordinate of the control denotes the number of couples, while the second one denotes an extra couple, which brings in female and male immigrants. \blacksquare

Remark 2.2.

As happens for the 2SBPI, the intuitive interpretation of the branching process that appears in part (ii) of Example 2.1 is lost when we see it as a (p+1)(p+1)–type branching process or as a controlled (p+1)(p+1)–type branching process. Indeed, we add the possibility that there is an extra type of individuals in the population, but the number of them in all generations is 11. The only one individual of extra type always gives birth one individual of extra type and possibly some individuals of other types, which correspond to the immigrants arriving in the population. Despite the fact that both cases lack practical interpretability, this mathematical description is perfectly valid and useful:

  • (i)

    It will enable us to recover the known result on the asymptotic behaviour of critical, primitive MBPIs due to Ispány and Pap [21, Theorem 3.1] (see Corollary 3.8). Furthermore, if we do not want to lose the intuitive interpretation, we could consider the controlled pp–type branching process (𝒁k)k+(\boldsymbol{Z}_{k})_{k\in\mathbb{Z}_{+}} with 𝒁0\colonequals𝒀0{\boldsymbol{Z}}_{0}\colonequals\boldsymbol{Y}_{0}, ϕk(𝒛)\colonequals𝒛+𝑰k+1\boldsymbol{\phi}_{k}(\boldsymbol{z})\colonequals\boldsymbol{z}+\boldsymbol{I}_{k+1}, and 𝑿k,j,i\colonequals𝝃k,j,i\boldsymbol{X}_{k,j,i}\colonequals\boldsymbol{\xi}_{k,j,i} for k+k\in\mathbb{Z}_{+}, jj\in\mathbb{N}, and 𝒛+p{\boldsymbol{z}}\in\mathbb{Z}_{+}^{p}, where {𝒀0,𝝃k,j,i,𝑰k:k+,j,i{1,,p}}\{\boldsymbol{Y}_{0},\,\boldsymbol{\xi}_{k,j,i},\boldsymbol{I}_{k}:k\in\mathbb{Z}_{+},\,j\in\mathbb{N},\,i\in\{1,\ldots,p\}\} are given in part (ii) of Example 2.1. This is the third representation of a MBPI (for the other two ones, see part (ii) of Example 2.1). Note also that (𝒁k)k+(\boldsymbol{Z}_{k})_{k\in\mathbb{Z}_{+}} is a particular case of the multi-type branching process with migration in part (iii) in Example 2.1. In the single-type critical case, González et al. [13, Remark 3.2.2] proved that (under some moment assumptions) (n1Znt)t+(n^{-1}Z_{\lfloor nt\rfloor})_{t\in\mathbb{R}_{+}} converges weakly as nn\to\infty toward a limit process, which coincides with the limit process for a critical (usual) single-type branching processes with immigration scaled and normalized in the same way. Corollary 3.9 will imply that a version of this statement remains true in the pp–type critical case.

  • (ii)

    It is the first time that a 2SBPI is written as a CMBP (see part (iv) of Example 2.1), such a rewriting has not been considered until now in the literature. In fact, since the control distributions are deterministic in case of a 2SBPI, it suggests a possible way to generalize the notion of a 2SBPI by allowing random mating functions. Earlier, only two-sex Galton–Watson branching processes without immigration, introduced by Daley [8], were viewed as special controlled branching processes (see Sevast’yanov and Zubkov [31, model 3]). Furthermore, Theorem 3.3 together with part (iv) of Example 2.1 will allow us to obtain scaling limit theorems for some critical 2SBPIs previously not considered in the literature (see Corollary 3.10). \blacksquare

Let us introduce notations for some moments. In all what follows, we suppose that E[𝑿0,1,i4]<\operatorname{E}\!\left[\|\boldsymbol{X}_{0,1,i}\|^{4}\right]<\infty for i{1,,p}i\in\{1,\ldots,p\} and E[ϕ0(𝒛)4]<\operatorname{E}\!\left[\|\boldsymbol{\phi}_{0}(\boldsymbol{z})\|^{4}\right]<\infty for 𝒛+p\boldsymbol{z}\in\mathbb{Z}_{+}^{p}, and we denote

𝒎i\displaystyle\boldsymbol{m}_{i} \colonequalsE[𝑿0,1,i]+p,\displaystyle\colonequals\operatorname{E}\!\left[\boldsymbol{X}_{0,1,i}\right]\in\mathbb{R}_{+}^{p}, 𝜺(𝒛)\displaystyle\boldsymbol{\varepsilon}(\boldsymbol{z}) \colonequalsE[ϕ0(𝒛)]+p,\displaystyle\colonequals\operatorname{E}\!\left[\boldsymbol{\phi}_{0}(\boldsymbol{z})\right]\in\mathbb{R}_{+}^{p}, (2.5)
Σi\displaystyle\mathsf{\Sigma}_{i} \colonequalsVar[𝑿0,1,i]p×p,\displaystyle\colonequals\operatorname{Var}\!\left[\boldsymbol{X}_{0,1,i}\right]\in\mathbb{R}^{p\times p}, Γ(𝒛)\displaystyle\mathsf{\Gamma}(\boldsymbol{z}) \colonequalsVar[ϕ0(𝒛)]p×p,\displaystyle\colonequals\operatorname{Var}\!\left[\boldsymbol{\phi}_{0}(\boldsymbol{z})\right]\in\mathbb{R}^{p\times p}, (2.6)
ζi,l\displaystyle\zeta_{i,l} \colonequalsE[(X0,1,i,lmi,l)4]+,\displaystyle\colonequals\operatorname{E}\!\left[(X_{0,1,i,l}-m_{i,l})^{4}\right]\in\mathbb{R}_{+}, κi(𝒛)\displaystyle\kappa_{i}(\boldsymbol{z}) \colonequalsE[(ϕ0,i(𝒛)εi(𝒛))4]+,\displaystyle\colonequals\operatorname{E}\!\left[(\phi_{0,i}(\boldsymbol{z})-\varepsilon_{i}(\boldsymbol{z}))^{4}\right]\in\mathbb{R}_{+}, (2.7)

where i,l{1,,p}i,l\in\{1,\ldots,p\} and 𝒛+p{\boldsymbol{z}}\in\mathbb{Z}_{+}^{p}.

Note that the moments defined in (2.5) and (2.6) are of course well-defined under weaker assumptions, namely, under the existence of first and second order moments of the offspring and control distributions, respectively. We also remark that 𝒎i\boldsymbol{m}_{i}, Σi\mathsf{\Sigma}_{i} and ζi,l\zeta_{i,l}, i,l{1,,p}i,l\in\{1,\ldots,p\}, do not depend on the control distributions, while 𝜺(𝒛)\boldsymbol{\varepsilon}(\boldsymbol{z}), Γ(𝒛)\mathsf{\Gamma}(\boldsymbol{z}), and κi(𝒛)\kappa_{i}(\boldsymbol{z}), 𝒛+p{\boldsymbol{z}}\in\mathbb{Z}_{+}^{p}, i{1,,p}i\in\{1,\ldots,p\}, do depend.

Let us consider the canonical filtration of the process k\colonequalsσ(𝒁0,,𝒁k),\mathcal{F}_{k}\colonequals\sigma(\boldsymbol{Z}_{0},\ldots,\boldsymbol{Z}_{k}), k+,k\in\mathbb{Z}_{+}, introduce the matrix 𝗆\colonequals(𝒎1,,𝒎p)+p×p,\mathsf{m}\colonequals(\boldsymbol{m}_{1},\ldots,\boldsymbol{m}_{p})\in\mathbb{R}_{+}^{p\times p}, and the operator :p×(p×p)pp×p\odot:\mathbb{R}^{p}\times(\mathbb{R}^{p\times p})^{p}\to\mathbb{R}^{p\times p}, 𝒛𝗔\colonequalsi=1pzi𝖠i\boldsymbol{z}\odot\boldsymbol{\mathsf{A}}\colonequals\sum_{i=1}^{p}z_{i}\mathsf{A}_{i} for 𝒛=(z1,,zp)p\boldsymbol{z}=(z_{1},\ldots,z_{p})^{\top}\in\mathbb{R}^{p} and 𝗔=(𝖠1,,𝖠p)(p×p)p\boldsymbol{\mathsf{A}}=(\mathsf{A}_{1},\ldots,\mathsf{A}_{p})\in(\mathbb{R}^{p\times p})^{p}.

The following proposition is a multi-type counterpart of Proposition 3.5 in González et al. [12].

Proposition 2.3.

For each kk\in\mathbb{N}, we have

E[𝒁k|k1]\displaystyle\operatorname{E}\left[\boldsymbol{Z}_{k}\;\middle|\;\mathcal{F}_{k-1}\right] =𝗆𝜺(𝒁k1),\displaystyle=\mathsf{m}\boldsymbol{\varepsilon}(\boldsymbol{Z}_{k-1}), (2.8)
Var[𝒁k|k1]\displaystyle\operatorname{Var}\left[\boldsymbol{Z}_{k}\;\middle|\;\mathcal{F}_{k-1}\right] =𝜺(𝒁k1)𝝨+𝗆Γ(𝒁k1)𝗆,\displaystyle=\boldsymbol{\varepsilon}(\boldsymbol{Z}_{k-1})\odot\boldsymbol{\mathsf{\Sigma}}+\mathsf{m}\mathsf{\Gamma}(\boldsymbol{Z}_{k-1})\mathsf{m}^{\top}, (2.9)

where 𝝨\colonequals(Σ1,,Σp)(p×p)p\boldsymbol{\mathsf{\Sigma}}\colonequals(\mathsf{\Sigma}_{1},\ldots,\mathsf{\Sigma}_{p})\in(\mathbb{R}^{p\times p})^{p}.

Proof.

Let kk\in\mathbb{N} be fixed arbitrarily. By the Markov property, we get E[𝒁kk1]=E[𝒁k𝒁k1]\operatorname{E}\!\left[{\boldsymbol{Z}}_{k}\mid\mathcal{F}_{k-1}\right]=\operatorname{E}\!\left[{\boldsymbol{Z}}_{k}\mid{\boldsymbol{Z}}_{k-1}\right]. Using that ϕk1(𝒛)\boldsymbol{\phi}_{k-1}(\boldsymbol{z}), 𝒛+p{\boldsymbol{z}}\in\mathbb{Z}_{+}^{p}, and 𝐗k1,j,i\mathbf{X}_{k-1,j,i}, jj\in\mathbb{N}, i{1,,p}i\in\{1,\ldots,p\}, are independent of each other and of 𝒁k1{\boldsymbol{Z}}_{k-1}, we have

E[𝒁k𝒁k1=𝒛]\displaystyle\operatorname{E}\!\left[{\boldsymbol{Z}}_{k}\mid{\boldsymbol{Z}}_{k-1}={\boldsymbol{z}}\right] =E[i=1pj=1ϕk1,i(𝒛)𝑿k1,j,i]=i=1pE[E[j=1ϕk1,i(𝒛)𝑿k1,j,i|ϕk1(𝒛)]]\displaystyle=\operatorname{E}\!\left[\sum_{i=1}^{p}\sum_{j=1}^{\phi_{k-1,i}(\boldsymbol{z})}\boldsymbol{X}_{k-1,j,i}\right]=\sum_{i=1}^{p}\operatorname{E}\!\left[\operatorname{E}\left[\sum_{j=1}^{\phi_{k-1,i}(\boldsymbol{z})}\boldsymbol{X}_{k-1,j,i}\;\middle|\;\boldsymbol{\phi}_{k-1}(\boldsymbol{z})\right]\right]
=i=1pE[ϕk1,i(𝒛)E[𝑿k1,j,i]]=i=1pE[ϕ0,i(𝒛)]𝒎i=𝗆𝜺(𝒛),𝒛+p,\displaystyle=\sum_{i=1}^{p}\operatorname{E}\!\left[\phi_{k-1,i}(\boldsymbol{z})\operatorname{E}\!\left[\boldsymbol{X}_{k-1,j,i}\right]\right]=\sum_{i=1}^{p}\operatorname{E}\!\left[\phi_{0,i}(\boldsymbol{z})\right]\boldsymbol{m}_{i}=\mathsf{m}\boldsymbol{\varepsilon}(\boldsymbol{z}),\qquad{\boldsymbol{z}}\in\mathbb{Z}_{+}^{p},

which implies (2.8).

Now we turn to prove (2.9). Using again the Markov property and (2.8), we have that Var[𝒁k|k1]=Var[𝒁k|𝒁k1]\operatorname{Var}\left[{\boldsymbol{Z}}_{k}\;\middle|\;\mathcal{F}_{k-1}\right]=\operatorname{Var}\left[{\boldsymbol{Z}}_{k}\;\middle|\;{\boldsymbol{Z}}_{k-1}\right], and, using also the law of total variance, similarly as before, we get

Var[𝒁k|𝒁k1=𝒛]=Var[i=1pj=1ϕk1,i(𝒛)𝑿k1,j,i]\displaystyle\operatorname{Var}\left[{\boldsymbol{Z}}_{k}\;\middle|\;{\boldsymbol{Z}}_{k-1}={\boldsymbol{z}}\right]=\operatorname{Var}\!\left[\sum_{i=1}^{p}\sum_{j=1}^{\phi_{k-1,i}(\boldsymbol{z})}\boldsymbol{X}_{k-1,j,i}\right] =E[Var[i=1pj=1ϕk1,i(𝒛)𝑿k1,j,i|ϕk1(𝒛)]]\displaystyle=\operatorname{E}\!\left[\operatorname{Var}\left[\sum_{i=1}^{p}\sum_{j=1}^{\phi_{k-1,i}(\boldsymbol{z})}\boldsymbol{X}_{k-1,j,i}\;\middle|\;\boldsymbol{\phi}_{k-1}(\boldsymbol{z})\right]\right]
+Var[E[i=1pj=1ϕk1,i(𝒛)𝑿k1,j,i|ϕk1(𝒛)]]\displaystyle\quad+\operatorname{Var}\!\left[\operatorname{E}\left[\sum_{i=1}^{p}\sum_{j=1}^{\phi_{k-1,i}(\boldsymbol{z})}\boldsymbol{X}_{k-1,j,i}\;\middle|\;\boldsymbol{\phi}_{k-1}(\boldsymbol{z})\right]\right]

for 𝒛+p{\boldsymbol{z}}\in\mathbb{Z}_{+}^{p}, where

E[Var[i=1pj=1ϕk1,i(𝒛)𝑿k1,j,i|ϕk1(𝒛)]]\displaystyle\operatorname{E}\!\left[\operatorname{Var}\left[\sum_{i=1}^{p}\sum_{j=1}^{\phi_{k-1,i}(\boldsymbol{z})}\boldsymbol{X}_{k-1,j,i}\;\middle|\;\boldsymbol{\phi}_{k-1}(\boldsymbol{z})\right]\right] =E[i=1pj=1ϕk1,i(𝒛)Var[𝑿k1,j,i]]\displaystyle=\operatorname{E}\!\left[\sum_{i=1}^{p}\sum_{j=1}^{\phi_{k-1,i}(\boldsymbol{z})}\operatorname{Var}\!\left[\boldsymbol{X}_{k-1,j,i}\right]\right]
=i=1pE[ϕk1,i(𝒛)Σi]=𝜺(𝒛)𝝨,\displaystyle=\sum_{i=1}^{p}\operatorname{E}\!\left[\phi_{k-1,i}(\boldsymbol{z})\mathsf{\Sigma}_{i}\right]=\boldsymbol{\varepsilon}(\boldsymbol{z})\odot\boldsymbol{\mathsf{\Sigma}},

and

Var[E[i=1pj=1ϕk1,i(𝒛)𝑿k1,j,i|ϕk1(𝒛)]]\displaystyle\operatorname{Var}\!\left[\operatorname{E}\left[\sum_{i=1}^{p}\sum_{j=1}^{\phi_{k-1,i}(\boldsymbol{z})}\boldsymbol{X}_{k-1,j,i}\;\middle|\;\boldsymbol{\phi}_{k-1}(\boldsymbol{z})\right]\right] =Var[i=1pϕk1,i(𝒛)𝒎i]=Var[𝗆ϕk1(𝒛)]\displaystyle=\operatorname{Var}\!\left[\sum_{i=1}^{p}\phi_{k-1,i}(\boldsymbol{z})\boldsymbol{m}_{i}\right]=\operatorname{Var}\!\left[\mathsf{m}\boldsymbol{\phi}_{k-1}(\boldsymbol{z})\right]
=𝗆Var[ϕk1(𝒛)]𝗆=𝗆Γ(𝒛)𝗆.\displaystyle=\mathsf{m}\operatorname{Var}\!\left[\boldsymbol{\phi}_{k-1}(\boldsymbol{z})\right]\mathsf{m}^{\top}=\mathsf{m}\mathsf{\Gamma}(\boldsymbol{z})\mathsf{m}^{\top}.

This yields (2.9). ∎

From now on, we assume that there exist a matrix Λp×p\mathsf{\Lambda}\in\mathbb{R}^{p\times p} and a function 𝒉:+pp\boldsymbol{h}:\mathbb{Z}_{+}^{p}\to\mathbb{R}^{p} with 𝒉(𝒛)=o(𝒛)\|\boldsymbol{h}(\boldsymbol{z})\|=\operatorname{o}(\|{\boldsymbol{z}}\|) as 𝒛\|\boldsymbol{z}\|\to\infty such that

𝜺(𝒛)\displaystyle\boldsymbol{\varepsilon}(\boldsymbol{z}) =Λ𝒛+𝒉(𝒛),𝒛+p.\displaystyle=\mathsf{\Lambda}\boldsymbol{z}+\boldsymbol{h}(\boldsymbol{z}),\qquad\boldsymbol{z}\in\mathbb{Z}_{+}^{p}. (2.10)

Roughly speaking, the assumption (2.10) means that the average quantity of ancestors can be expressed as a linear map of the number of individuals affected by a minor perturbation, which becomes insignificant (negligible) in comparison with the population size when this latter is large enough. It is worth noting that migration of parents, both emigration and immigration, is permitted under (2.10) (see, for instance, part (iii) of Example 2.1 assuming that E[𝑴0(𝒛)]=o(𝒛)\|\operatorname{E}\!\left[\boldsymbol{M}_{0}({\boldsymbol{z}})\right]\|=\operatorname{o}(\|{\boldsymbol{z}}\|) as 𝒛\|{\boldsymbol{z}}\|\to\infty). In the single-type case, i.e., in case of p=1p=1, a corresponding condition has already been assumed (see, e.g., the condition (i) in Theorems 1 and 2 in González et al. [17]). In the multi-type case, the assumption (2.10) was also considered in González and del Puerto [11, condition (11.2)] and in González et al. [16, condition (4.2)], but only with a diagonal matrix Λ\mathsf{\Lambda} having non-negative entries.

Using (2.8) and (2.10), we get

E[𝒁k|k1]=𝗆Λ𝒁k1+𝗆𝒉(𝒁k1),k.\displaystyle\operatorname{E}\left[\boldsymbol{Z}_{k}\;\middle|\;\mathcal{F}_{k-1}\right]=\mathsf{m}\mathsf{\Lambda}\boldsymbol{Z}_{k-1}+\mathsf{m}\boldsymbol{h}(\boldsymbol{Z}_{k-1}),\qquad k\in\mathbb{N}. (2.11)

We can introduce a classification for a subclass of CMBPs satisfying (2.11) based on the asymptotic behaviour of E[𝒁k]\operatorname{E}\!\left[\boldsymbol{Z}_{k}\right] as kk\to\infty. Taking expectations of both sides of (2.11), by a recursive argument, one can derive a formula for E[𝒁k]\operatorname{E}\!\left[\boldsymbol{Z}_{k}\right], kk\in\mathbb{N} (see (A.5) in Appendix A). From this, one can see that in the description of the asymptotic behaviour of E[𝒁k]\operatorname{E}\!\left[\boldsymbol{Z}_{k}\right] as kk\to\infty, the powers of the matrix 𝗆~\colonequals𝗆Λ\tilde{\mathsf{m}}\colonequals\mathsf{m}\mathsf{\Lambda} play a crucial role. We assume that 𝗆~+p×p\tilde{\mathsf{m}}\in\mathbb{R}_{+}^{p\times p} and it has only one eigenvalue of maximum modulus ρ~\tilde{\rho} with algebraic and geometric multiplicities equal one. By the spectral theory of matrices, the asymptotic behaviour of (𝗆Λ)k(\mathsf{m}\mathsf{\Lambda})^{k} as kk\to\infty is determined by ρ~\tilde{\rho}, the other eigenvalues do not come into play. Motivated by this, by definition, we say that such a CMBP is subcritical if ρ~<1\tilde{\rho}<1, critical if ρ~=1\tilde{\rho}=1, and supercritical if ρ~>1\tilde{\rho}>1. It is important to highlight that whenever the matrix 𝗆~\tilde{\mathsf{m}} is primitive (i.e., there exists nn\in\mathbb{N} such that all the entries of 𝗆~n\tilde{\mathsf{m}}^{n} are positive), the Perron–Frobenius theorem (see also Lemma A.1) guarantees the unique existence of ρ~\tilde{\rho}. Moreover, the usual classification of multi-type branching processes without and with immigration coincides with the one proposed here (see, e.g., Athreya and Ney [4, Chapter V, page 186] and Kaplan [25, page 948]).

3 Results

Let (𝒁k)k+({\boldsymbol{Z}}_{k})_{k\in\mathbb{Z}_{+}} be a controlled pp–type branching process given in (2.1). Let us introduce the following hypotheses.

Hypothesis 1.

E[𝒁02]\operatorname{E}\!\left[\|{\boldsymbol{Z}}_{0}\|^{2}\right], E[𝑿0,1,i4]\operatorname{E}\!\left[\|\boldsymbol{X}_{0,1,i}\|^{4}\right] and E[ϕ0(𝒛)4]\operatorname{E}\!\left[\|\boldsymbol{\phi}_{0}(\boldsymbol{z})\|^{4}\right] are finite for each i{1,,p}i\in\{1,\ldots,p\} and 𝒛+p{\boldsymbol{z}}\in\mathbb{Z}_{+}^{p}.

Hypothesis 2.

There exist Λp×p\mathsf{\Lambda}\in\mathbb{R}^{p\times p}, 𝜶p\boldsymbol{\alpha}\in\mathbb{R}^{p} and a function 𝒈:+pp\boldsymbol{g}:\mathbb{Z}_{+}^{p}\to\mathbb{R}^{p} with 𝒈(𝒛)=o(1)\|\boldsymbol{g}(\boldsymbol{z})\|=\operatorname{o}(1) as 𝒛\|\boldsymbol{z}\|\to\infty such that

𝜺(𝒛)=Λ𝒛+𝜶+𝒈(𝒛),𝒛+p.\boldsymbol{\varepsilon}(\boldsymbol{z})=\mathsf{\Lambda}\boldsymbol{z}+\boldsymbol{\alpha}+\boldsymbol{g}(\boldsymbol{z}),\qquad\boldsymbol{z}\in\mathbb{Z}_{+}^{p}.
Hypothesis 3.

Γ(𝒛)=o(𝒛)\|\mathsf{\Gamma}(\boldsymbol{z})\|=\operatorname{o}(\|\boldsymbol{z}\|) as 𝒛.\|\boldsymbol{z}\|\to\infty.

Hypothesis 4.

κi(𝒛)=O(𝒛2)\kappa_{i}(\boldsymbol{z})=\operatorname{O}(\|\boldsymbol{z}\|^{2}) as 𝒛\|\boldsymbol{z}\|\to\infty for i=1,,p.i=1,\ldots,p.

Hypothesis 5.

The matrix 𝗆~:=𝗆Λ\tilde{\mathsf{m}}:=\mathsf{m}\mathsf{\Lambda} belongs to +p×p\mathbb{R}_{+}^{p\times p} and

  1. (a)

    ρ~\colonequals1\tilde{\rho}\colonequals 1 is an eigenvalue of 𝗆~\tilde{\mathsf{m}} having algebraic and geometric multiplicities 11, and the absolute values of the other eigenvalues of 𝗆~\tilde{\mathsf{m}} are less than 11,

  2. (b)

    there exist a unique right eigenvector 𝒖~+p\tilde{\boldsymbol{u}}\in\mathbb{R}_{+}^{p} and a unique left eigenvector 𝒗~+p\tilde{\boldsymbol{v}}\in\mathbb{R}_{+}^{p} corresponding to ρ~=1\tilde{\rho}=1 such that u~1++u~p=1\tilde{u}_{1}+\ldots+\tilde{u}_{p}=1, Λ𝒖~+p\mathsf{\Lambda}\tilde{\boldsymbol{u}}\in\mathbb{R}_{+}^{p} and 𝒗~𝒖~=1\tilde{\boldsymbol{v}}^{\top}\tilde{\boldsymbol{u}}=1,

  3. (c)

    limk𝗆~k=Π~\lim_{k\to\infty}\tilde{\mathsf{m}}^{k}=\tilde{\mathsf{\Pi}} and there exist c~++\tilde{c}\in\mathbb{R}_{++} and r~(0,1)\tilde{r}\in(0,1) such that 𝗆~kΠ~c~r~k\|\tilde{\mathsf{m}}^{k}-\tilde{\mathsf{\Pi}}\|\leq\tilde{c}\tilde{r}^{k} for each kk\in\mathbb{N}, where Π~\colonequals𝒖~𝒗~\tilde{\mathsf{\Pi}}\colonequals\tilde{\boldsymbol{u}}\tilde{\boldsymbol{v}}^{\top}.

Hypothesis 6.

For all ϵ>0\epsilon>0 and B>0B>0, there exists k0(ϵ,B)k_{0}(\epsilon,B)\in\mathbb{N} such that P[𝒁kB]ϵ\operatorname{P}\left[\|{\boldsymbol{Z}}_{k}\|\leq B\right]\leq\epsilon for each kk0(ϵ,B)k\geq k_{0}(\epsilon,B), kk\in\mathbb{N}.

Remark 3.1.
  1. (i)

    In Hypotheses 1 and 4, the fourth order moment assumptions for the offspring and control distributions are used in the proofs only for checking the conditional Lindeberg condition, namely, condition (iii) of Theorem A.4, in order to prove convergence of some random step processes toward a diffusion process. For critical single-type CBPs, assuming that the explosion set has probability one, a detailed exposition of a proof of the conditional Lindeberg condition in question under second order moment assumptions can be found in González et al. [13].

  2. (ii)

    If Hypothesis 2 holds for ϕ0(𝒛)\boldsymbol{\phi}_{0}(\boldsymbol{z}), 𝒛+p{\boldsymbol{z}}\in\mathbb{Z}_{+}^{p}, then it also holds for any of its linear transformations 𝖡ϕ0(𝒛)+𝜷\mathsf{B}\boldsymbol{\phi}_{0}(\boldsymbol{z})+\boldsymbol{\beta}, 𝒛𝒁+p{\boldsymbol{z}}\in{\boldsymbol{Z}}_{+}^{p}, with 𝖡p×p\mathsf{B}\in\mathbb{R}^{p\times p} and 𝜷p\boldsymbol{\beta}\in\mathbb{R}^{p}, by replacing Λ\mathsf{\Lambda}, 𝜶\boldsymbol{\alpha} and 𝒈\boldsymbol{g} with 𝖡Λ\mathsf{B\Lambda}, 𝖡𝜶+𝜷\mathsf{B}\boldsymbol{\alpha}+\boldsymbol{\beta} and 𝖡𝒈\mathsf{B}\boldsymbol{g}, respectively. Note that, in Hypothesis 2, 𝜶p\boldsymbol{\alpha}\in\mathbb{R}^{p} can have negative coordinates as well, for an example, see part (i) of Remark 3.6.

  3. (iii)

    Taking into account Lemma A.1, we have that Hypothesis 5 holds if the matrix 𝗆~\tilde{\mathsf{m}} is primitive, its Perron–Frobenius eigenvalue ρ~\tilde{\rho} equals 11, and Λ𝒖~+p\mathsf{\Lambda}\tilde{\boldsymbol{u}}\in\mathbb{R}_{+}^{p}, where 𝒖~\tilde{\boldsymbol{u}} is the right Perron–Frobenius eigenvector of 𝗆~\tilde{\mathsf{m}} corresponding to ρ~\tilde{\rho}. Moreover, notice that if 𝗆\mathsf{m} is primitive, then a set of sufficient conditions for 𝗆~\tilde{\mathsf{m}} to be primitive is that Λ++p×p\mathsf{\Lambda}\in\mathbb{R}_{++}^{p\times p} and that 𝗆\mathsf{m} and Λ\mathsf{\Lambda} commute. Note also that if Λ+p×p\mathsf{\Lambda}\in\mathbb{R}_{+}^{p\times p}, then 𝗆~+p×p\tilde{\mathsf{m}}\in\mathbb{R}_{+}^{p\times p} and Λ𝒙+p\mathsf{\Lambda}\boldsymbol{x}\in\mathbb{R}_{+}^{p} for all 𝒙+p\boldsymbol{x}\in\mathbb{R}_{+}^{p}.

  4. (iv)

    A sufficient condition for Hypothesis 6 is the almost sure explosion of the process, i.e. P[𝒁k as k]=1\operatorname{P}\left[\|\boldsymbol{Z}_{k}\|\to\infty\text{ as }k\to\infty\right]=1. Indeed, for all B>0B>0, we have

    {𝒁k as k}k=0n=k{𝒁n>B}.\{\|\boldsymbol{Z}_{k}\|\to\infty\text{ as }k\to\infty\}\subset\bigcup_{k=0}^{\infty}\bigcap_{n=k}^{\infty}\{\|\boldsymbol{Z}_{n}\|>B\}.

    Therefore, by the continuity of probability, we have for all B>0B>0,

    1=P[k=0n=k{𝒁n>B}]=limkP[n=k{𝒁n>B}]lim infkP[𝒁k>B],1=\operatorname{P}\left[\bigcup_{k=0}^{\infty}\bigcap_{n=k}^{\infty}\{\|\boldsymbol{Z}_{n}\|>B\}\right]=\lim_{k\to\infty}\operatorname{P}\left[\bigcap_{n=k}^{\infty}\{\|\boldsymbol{Z}_{n}\|>B\}\right]\leq\liminf_{k\to\infty}\operatorname{P}\left[\|\boldsymbol{Z}_{k}\|>B\right],

    yielding that limkP[𝒁k>B]=1\lim_{k\to\infty}\operatorname{P}\left[\|\boldsymbol{Z}_{k}\|>B\right]=1 for all B>0B>0, or equivalently limkP[𝒁kB]=0\lim_{k\to\infty}\operatorname{P}\left[\|\boldsymbol{Z}_{k}\|\leq B\right]=0 for all B>0B>0. Consequently, Hypothesis 6 holds. It is also interesting to notice that Hypothesis 6 can not be derived from Hypotheses 15, see part (ii) of Remark 3.6 for a nontrivial example, where Hypotheses 15 hold, but Hypothesis 6 does not.

  5. (v)

    In case of 𝒈𝟎p\boldsymbol{g}\equiv\boldsymbol{0}_{p}, Hypothesis 6 is not needed for our forthcoming main Theorem 3.3. In fact, in the proof of Theorem 3.3 it will be seen that Hypothesis 6 is only used for deriving (4.35) and (4.38), which are trivially satisfied for 𝒈𝟎p\boldsymbol{g}\equiv\boldsymbol{0}_{p}. \blacksquare

Next, we give an example for a controlled pp–type branching process for which the Hypotheses 15 hold.

Example 3.2.

Let us consider a controlled pp–type branching process with E[𝒁02]<\operatorname{E}\!\left[\|{\boldsymbol{Z}}_{0}\|^{2}\right]<\infty, E[𝑿0,1,i4]<\operatorname{E}\!\left[\|\boldsymbol{X}_{0,1,i}\|^{4}\right]<\infty, i{1,,p}i\in\{1,\ldots,p\}, and

ϕk,i(𝒛)=zi+Uk,i𝟙{zi>0},k+,𝒛+p,i{1,,p},\phi_{k,i}({\boldsymbol{z}})=z_{i}+U_{k,i}\mathds{1}_{\{z_{i}>0\}},\qquad k\in\mathbb{Z}_{+},\quad{\boldsymbol{z}}\in\mathbb{Z}_{+}^{p},\quad i\in\{1,\ldots,p\},

where {Uk,i:k+,i{1,,p}}\{U_{k,i}:k\in\mathbb{Z}_{+},i\in\{1,\ldots,p\}\} are independent and identically distributed +p\mathbb{Z}_{+}^{p}–valued random variables such that their common distribution is the uniform distribution on the set {1,0,1}\{-1,0,1\}, and 𝟙A\mathds{1}_{A} denotes the indicator function of a set AA. The interpretation is as follows. Whenever there are ii–type individuals, there is a migratory component Uk,iU_{k,i} that allows the emigration/immigration of one ii–type progenitor or there could be no migration with the same probabilities 13\frac{1}{3}. This is a particular case of model (iii) in Example 2.1. Hypothesis 1 is trivially fulfilled and Hypotheses 2, 3 and 4 hold with Λ=𝖨p,\mathsf{\Lambda}=\mathsf{I}_{p}, 𝜶=𝟎p\boldsymbol{\alpha}=\boldsymbol{0}_{p} and 𝒈𝟎p\boldsymbol{g}\equiv\boldsymbol{0}_{p}, since, for each 𝒛+p\boldsymbol{z}\in\mathbb{Z}_{+}^{p}, we have

Γ(𝒛)=(Cov[U0,i,U0,j]𝟙{zi>0,zj>0})i,j=1p=(23δi,j𝟙{zi>0,zj>0})i,j=1p,\mathsf{\Gamma}(\boldsymbol{z})=\Big{(}\operatorname{Cov}\left[U_{0,i},\;U_{0,j}\right]\mathds{1}_{\{z_{i}>0,\,z_{j}>0\}}\Big{)}_{i,j=1}^{p}=\Big{(}\frac{2}{3}\delta_{i,j}\mathds{1}_{\{z_{i}>0,\,z_{j}>0\}}\Big{)}_{i,j=1}^{p},

and

κi(𝒛)=E[U0,i4𝟙{zi>0}]=23𝟙{zi>0},\kappa_{i}(\boldsymbol{z})=\operatorname{E}\!\left[U_{0,i}^{4}\mathds{1}_{\{z_{i}>0\}}\right]=\frac{2}{3}\mathds{1}_{\{z_{i}>0\}},

yielding that Γ(𝒛)23\|\mathsf{\Gamma}(\boldsymbol{z})\|\leq\frac{2}{3} and κi(𝒛)23\kappa_{i}(\boldsymbol{z})\leq\frac{2}{3} for 𝒛+p{\boldsymbol{z}}\in\mathbb{Z}_{+}^{p}. Moreover, taking into account parts (iii) and (v) of Remark 3.1, if 𝗆\mathsf{m} is primitive with Perron–Frobenius eigenvalue 1, then Hypothesis 5 is also satisfied, and Hypothesis 6 is not needed. \blacksquare

Let 𝐂(+,p)\mathbf{C}(\mathbb{R}_{+},\mathbb{R}^{p}) be the space of p\mathbb{R}^{p}–valued continuous functions on +\mathbb{R}_{+} and let us denote by 𝐃(+,p)\mathbf{D}(\mathbb{R}_{+},\mathbb{R}^{p}) the space of p\mathbb{R}^{p}–valued càdlàg functions on +\mathbb{R}_{+} and by 𝒟(+,p)\mathcal{D}_{\infty}(\mathbb{R}_{+},\mathbb{R}^{p}) its Borel σ\sigma–algebra corresponding to the metric defined in equation (1.26) in Jacod and Shiryaev [22, Chapter VI]. For p\mathbb{R}^{p}–valued stochastic processes with càdlàg paths (𝓨t(n))t+(\boldsymbol{\mathcal{Y}}_{t}^{(n)})_{t\in\mathbb{R}_{+}}, nn\in\mathbb{N}, and (𝓨t)t+(\boldsymbol{\mathcal{Y}}_{t})_{t\in\mathbb{R}_{+}}, if the distribution of (𝓨t(n))t+(\boldsymbol{\mathcal{Y}}_{t}^{(n)})_{t\in\mathbb{R}_{+}} on the space (𝐃(+,p),𝒟(+,p))\left(\mathbf{D}(\mathbb{R}_{+},\mathbb{R}^{p}),\mathcal{D}_{\infty}(\mathbb{R}_{+},\mathbb{R}^{p})\right) converges weakly as nn\to\infty to the distribution of (𝓨t)t+(\boldsymbol{\mathcal{Y}}_{t})_{t\in\mathbb{R}_{+}} on the same space, then we use the notation (𝓨t(n))t+(𝓨t)t+(\boldsymbol{\mathcal{Y}}_{t}^{(n)})_{t\in\mathbb{R}_{+}}\stackrel{{\scriptstyle\mathcal{L}}}{{\longrightarrow}}(\boldsymbol{\mathcal{Y}}_{t})_{t\in\mathbb{R}_{+}} as nn\to\infty.

Let us define a sequence of random step processes (𝓩t(n))t+(\boldsymbol{\mathcal{Z}}_{t}^{(n)})_{t\in\mathbb{R}_{+}}, n,n\in\mathbb{N}, using the controlled pp–type branching process (𝒁k)k+({\boldsymbol{Z}}_{k})_{k\in\mathbb{Z}_{+}}, as

𝓩t(n)\colonequalsn1𝒁nt,t+,n.\boldsymbol{\mathcal{Z}}_{t}^{(n)}\colonequals n^{-1}\boldsymbol{Z}_{\lfloor nt\rfloor},\qquad t\in\mathbb{R}_{+},\quad n\in\mathbb{N}.

Recall that, under Hypothesis 5, 𝒖~,𝒗~+p\tilde{\boldsymbol{u}},\tilde{\boldsymbol{v}}\in\mathbb{R}_{+}^{p} are the right and left eigenvectors of 𝗆~\tilde{\mathsf{m}} corresponding to eigenvalue ρ~=1\tilde{\rho}=1, respectively.

Theorem 3.3.

Suppose that Hypotheses 16 hold for the CMBP (𝐙k)k+(\boldsymbol{Z}_{k})_{k\in\mathbb{Z}_{+}} given in (2.1). Then

(𝓩t(n))t+(𝒵t𝒖~)t+as n,(\boldsymbol{\mathcal{Z}}_{t}^{(n)})_{t\in\mathbb{R}_{+}}\stackrel{{\scriptstyle\mathcal{L}}}{{\longrightarrow}}(\mathcal{Z}_{t}\tilde{\boldsymbol{u}})_{t\in\mathbb{R}_{+}}\qquad\text{as }n\to\infty, (3.1)

where (𝒵t)t+(\mathcal{Z}_{t})_{t\in\mathbb{R}_{+}} is the pathwise unique strong solution of the SDE

d𝒵t=𝒗~𝗆𝜶dt+𝒗~((Λ𝒖~)𝝨)𝒗~𝒵t+d𝒲t,t+,\,\mathrm{d}\mathcal{Z}_{t}=\tilde{\boldsymbol{v}}^{\top}\mathsf{m}\boldsymbol{\alpha}\,\mathrm{d}t+\sqrt{\tilde{\boldsymbol{v}}^{\top}((\mathsf{\Lambda}\tilde{\boldsymbol{u}})\odot\boldsymbol{\mathsf{\Sigma}})\tilde{\boldsymbol{v}}\mathcal{Z}_{t}^{+}}\,\mathrm{d}\mathcal{W}_{t},\qquad t\in\mathbb{R}_{+}, (3.2)

with initial value 0, where (𝒲t)t+(\mathcal{W}_{t})_{t\in\mathbb{R}_{+}} is a standard Wiener process.

Remark 3.4.

The coefficient functions x𝒗~𝗆𝜶\mathbb{R}\ni x\mapsto\tilde{\boldsymbol{v}}^{\top}\mathsf{m}\boldsymbol{\alpha}\in\mathbb{R} and x𝒗~((Λ𝒖~)𝝨)𝒗~x+\mathbb{R}\ni x\mapsto\sqrt{\tilde{\boldsymbol{v}}^{\top}((\mathsf{\Lambda}\tilde{\boldsymbol{u}})\odot\boldsymbol{\mathsf{\Sigma}})\tilde{\boldsymbol{v}}x^{+}}\in\mathbb{R} satisfy the conditions of Theorem 1 in Yamada and Watanabe [36], so pathwise uniqueness is guaranteed for SDE (3.2). Indeed, 0ϵu1du=\int_{0}^{\epsilon}u^{-1}\,\mathrm{d}u=\infty for all ϵ>0\epsilon>0 and square root is a strictly increasing non-negative function vanishing at zero such that |xy||xy||\sqrt{x}-\sqrt{y}|\leq\sqrt{|x-y|} for all x,y+x,y\in\mathbb{R}_{+}. Moreover, if 𝒗~𝗆𝜶+\tilde{\boldsymbol{v}}^{\top}\mathsf{m}\boldsymbol{\alpha}\in\mathbb{R}_{+} (respectively, 𝒗~𝗆𝜶>0\tilde{\boldsymbol{v}}^{\top}\mathsf{m}\boldsymbol{\alpha}>0), then 𝒵t\mathcal{Z}_{t} is non-negative (respectively, positive) for all t>0t>0 by the comparison theorem (see, e.g., Revuz and Yor [29, Chapter IX, Theorem 3.7]) and, consequently, 𝒵t+\mathcal{Z}_{t}^{+} in (3.2) may be replaced by 𝒵t\mathcal{Z}_{t}. Indeed, in case of 𝒗~((Λ𝒖~)𝝨)𝒗~=0\tilde{\boldsymbol{v}}^{\top}((\mathsf{\Lambda}\tilde{\boldsymbol{u}})\odot\boldsymbol{\mathsf{\Sigma}})\tilde{\boldsymbol{v}}=0, we have 𝒵t=𝒗~𝗆𝜶t\mathcal{Z}_{t}=\tilde{\boldsymbol{v}}^{\top}\mathsf{m}\boldsymbol{\alpha}\,t, t+t\in\mathbb{R}_{+}, and in case of 𝒗~((Λ𝒖~)𝝨)𝒗~>0\tilde{\boldsymbol{v}}^{\top}((\mathsf{\Lambda}\tilde{\boldsymbol{u}})\odot\boldsymbol{\mathsf{\Sigma}})\tilde{\boldsymbol{v}}>0 and t>0t>0, we have 𝒵t\mathcal{Z}_{t} has a Gamma distribution with parameters 2𝒗~𝗆𝜶/(𝒗~((Λ𝒖~)𝝨)𝒗~)2\tilde{\boldsymbol{v}}^{\top}\mathsf{m}\boldsymbol{\alpha}/(\tilde{\boldsymbol{v}}^{\top}((\mathsf{\Lambda}\tilde{\boldsymbol{u}})\odot\boldsymbol{\mathsf{\Sigma}})\tilde{\boldsymbol{v}}) and 2/(𝒗~((Λ𝒖~)𝝨)𝒗~t)2/(\tilde{\boldsymbol{v}}^{\top}((\mathsf{\Lambda}\tilde{\boldsymbol{u}})\odot\boldsymbol{\mathsf{\Sigma}})\tilde{\boldsymbol{v}}\,t) (following, e.g., from Ikeda and Watanabe [19, Chapter IV, Example 8.2]). \blacksquare

Remark 3.5.
  1. (i)

    It turns out that the limit process in (3.1) can also be characterized as the pathwise unique strong solution of the SDE

    d𝓩t=Π~𝗆𝜶dt+Π~(Λ𝓩t)+𝝨d𝓦t,t+,\,\mathrm{d}\boldsymbol{\mathcal{Z}}_{t}=\tilde{\mathsf{\Pi}}\mathsf{m}\boldsymbol{\alpha}\,\mathrm{d}t+\tilde{\mathsf{\Pi}}\sqrt{(\mathsf{\Lambda}\boldsymbol{\mathcal{Z}}_{t})^{+}\odot\boldsymbol{\mathsf{\Sigma}}}\,\mathrm{d}\boldsymbol{\mathcal{W}}_{t},\qquad t\in\mathbb{R}_{+}, (3.3)

    with initial value 𝟎p\boldsymbol{0}_{p}, where (𝓦t)t+(\boldsymbol{\mathcal{W}}_{t})_{t\in\mathbb{R}_{+}} is a standard pp–dimensional Wiener process (for details, see Step 4 in the proof of Theorem 3.3).

  2. (ii)

    If all the coordinates of the vector 𝜶p\boldsymbol{\alpha}\in\mathbb{R}^{p} in Hypothesis 2 are negative, then 𝒵t=0\mathcal{Z}_{t}=0, t+t\in\mathbb{R}_{+} (where (𝒵t)t+(\mathcal{Z}_{t})_{t\in\mathbb{R}_{+}} is the pathwise unique strong solution of the SDE (3.2)). Indeed, by Remark 3.4, we have E[𝒵t]=𝒗~𝗆𝜶t(,0]\mathrm{E}[{\mathcal{Z}_{t}}]=\tilde{\boldsymbol{v}}^{\top}\mathsf{m}\boldsymbol{\alpha}t\in(-\infty,0] for all t+t\in\mathbb{R}_{+}. Since 𝓩t(n)+p\boldsymbol{\mathcal{Z}}_{t}^{(n)}\in\mathbb{R}_{+}^{p}, nn\in\mathbb{N}, t+t\in\mathbb{R}_{+}, the limit process (𝒵t𝒖~)t+(\mathcal{Z}_{t}\tilde{\boldsymbol{u}})_{t\in\mathbb{R}_{+}} in (3.1) is +p\mathbb{R}_{+}^{p}-valued, and, using that 𝒖~+p\tilde{\boldsymbol{u}}\in\mathbb{R}_{+}^{p}, it implies that 𝒵t+\mathcal{Z}_{t}\in\mathbb{R}_{+}, t+t\in\mathbb{R}_{+}. Consequently, if all the coordinates of the vector 𝜶p\boldsymbol{\alpha}\in\mathbb{R}^{p} in Hypothesis 2 are negative, then 𝒗~𝗆𝜶=0\tilde{\boldsymbol{v}}^{\top}\mathsf{m}\boldsymbol{\alpha}=0, implying that 𝒵t=0\mathcal{Z}_{t}=0, t+t\in\mathbb{R}_{+}, as desired. \blacksquare

In the next remark, we point out that Hypothesis 6 basically excludes that P[ϕ0(𝟎p)=𝟎p]=1\operatorname{P}\left[\boldsymbol{\phi}_{0}(\boldsymbol{0}_{p})=\boldsymbol{0}_{p}\right]=1, this condition appears for the conditional weak limit theorems for one-dimensional distributions of critical CMBPs in González et al. [16, Section 4]. Further, we also demonstrate that Hypothesis 6 is independent of Hypotheses 15.

Remark 3.6.
  1. (i)

    If P[ϕ0(𝟎p)=𝟎p]=1\operatorname{P}\left[\boldsymbol{\phi}_{0}(\boldsymbol{0}_{p})=\boldsymbol{0}_{p}\right]=1, then 𝜶=𝒈(𝟎p)\boldsymbol{\alpha}=-\boldsymbol{g}(\boldsymbol{0}_{p}) in Hypothesis 2. Moreover, if P[ϕ0(𝟎p)=𝟎p]=1\operatorname{P}\left[\boldsymbol{\phi}_{0}(\boldsymbol{0}_{p})=\boldsymbol{0}_{p}\right]=1 and 𝟎p\boldsymbol{0}_{p} is a state of (𝒁k)k+({\boldsymbol{Z}}_{k})_{k\in\mathbb{Z}_{+}}, i.e., there exists an n0+n_{0}\in\mathbb{Z}_{+} such that P[𝒁n0=𝟎p]>0\operatorname{P}\left[{\boldsymbol{Z}}_{n_{0}}=\boldsymbol{0}_{p}\right]>0, then Hypothesis 6 does not hold. Indeed, in this case, we have {𝒁n0=𝟎p}{𝒁k=𝟎p}\{{\boldsymbol{Z}}_{n_{0}}=\boldsymbol{0}_{p}\}\subseteq\{{\boldsymbol{Z}}_{k}=\boldsymbol{0}_{p}\} for each kn0k\geq n_{0}, k+k\in\mathbb{Z}_{+}, yielding that {𝒁n0=𝟎p}{𝒁kB}\{{\boldsymbol{Z}}_{n_{0}}=\boldsymbol{0}_{p}\}\subseteq\{\|{\boldsymbol{Z}}_{k}\|\leq B\} for all B>0B>0 and kn0k\geq n_{0}, k+k\in\mathbb{Z}_{+}. Consequently, we get 0<P[𝒁n0=𝟎p]P[𝒁kB]0<\operatorname{P}\left[{\boldsymbol{Z}}_{n_{0}}=\boldsymbol{0}_{p}\right]\leq\operatorname{P}\left[\|{\boldsymbol{Z}}_{k}\|\leq B\right] for all B>0B>0 and kn0k\geq n_{0}, k+k\in\mathbb{Z}_{+}. By choosing ϵ:=12P[𝒁n0=𝟎p]>0\epsilon:=\frac{1}{2}\operatorname{P}\left[{\boldsymbol{Z}}_{n_{0}}=\boldsymbol{0}_{p}\right]>0, one can see that Hypothesis 6 does not hold. If P[ϕ0(𝟎p)=𝟎p]=1\operatorname{P}\left[\boldsymbol{\phi}_{0}(\boldsymbol{0}_{p})=\boldsymbol{0}_{p}\right]=1 and 𝟎p\boldsymbol{0}_{p} is not a state of (𝒁k)k+({\boldsymbol{Z}}_{k})_{k\in\mathbb{Z}_{+}}, then, in principle, Hypothesis 6 can hold. For example, let p\colonequals2p\colonequals 2,

    ϕk(𝒛)\equalscolon{𝟎2if 𝒛=𝟎2,(z1+1z1+z21)if 𝒛𝟎2𝒛+2,k+,\displaystyle\boldsymbol{\phi}_{k}(\boldsymbol{z})\equalscolon\begin{cases}\boldsymbol{0}_{2}&\text{if ${\boldsymbol{z}}=\boldsymbol{0}_{2}$,}\\ \begin{pmatrix}z_{1}+1\\ z_{1}+z_{2}-1\end{pmatrix}&\text{if ${\boldsymbol{z}}\neq\boldsymbol{0}_{2}$, ${\boldsymbol{z}}\in\mathbb{Z}_{+}^{2}$,}\end{cases}\qquad k\in\mathbb{Z}_{+},
    𝑿k,j,1\equalscolon(10),𝑿k,j,2\equalscolon(00),𝒁0\equalscolon(10),k+,j.\displaystyle\boldsymbol{X}_{k,j,1}\equalscolon\begin{pmatrix}1\\ 0\end{pmatrix},\quad\boldsymbol{X}_{k,j,2}\equalscolon\begin{pmatrix}0\\ 0\end{pmatrix},\quad{\boldsymbol{Z}}_{0}\equalscolon\begin{pmatrix}1\\ 0\end{pmatrix},\qquad k\in\mathbb{Z}_{+},\,j\in\mathbb{N}.

    Then P[ϕ0(𝟎2)=𝟎2]=1\operatorname{P}\left[\boldsymbol{\phi}_{0}(\boldsymbol{0}_{2})=\boldsymbol{0}_{2}\right]=1 and

    𝒁k=(k+1)(10),k.{\boldsymbol{Z}}_{k}=(k+1)\begin{pmatrix}1\\ 0\end{pmatrix},\qquad k\in\mathbb{N}.

    Hence one can easily see that Hypotheses 16 hold with

    Λ\colonequals(1011),𝜶\colonequals(11),𝒈(𝒛)\colonequals{(11)if 𝒛=𝟎2,𝟎2if 𝒛𝟎2𝒛+2,\mathsf{\Lambda}\colonequals\begin{pmatrix}1&0\\ 1&1\\ \end{pmatrix},\qquad\boldsymbol{\alpha}\colonequals\begin{pmatrix}1\\ -1\end{pmatrix},\qquad\boldsymbol{g}(\boldsymbol{z})\colonequals\begin{cases}\begin{pmatrix}-1\\ 1\end{pmatrix}&\text{if ${\boldsymbol{z}}=\boldsymbol{0}_{2}$,}\\ \boldsymbol{0}_{2}&\text{if ${\boldsymbol{z}}\neq\boldsymbol{0}_{2}$, ${\boldsymbol{z}}\in\mathbb{Z}_{+}^{2}$,}\end{cases}

    and

    𝗆=𝗆~\colonequals(1000),𝒖~\colonequals(10),𝒗~\colonequals(10).\mathsf{m}=\tilde{\mathsf{m}}\colonequals\begin{pmatrix}1&0\\ 0&0\\ \end{pmatrix},\qquad\tilde{\boldsymbol{u}}\colonequals\begin{pmatrix}1\\ 0\\ \end{pmatrix},\qquad\tilde{\boldsymbol{v}}\colonequals\begin{pmatrix}1\\ 0\\ \end{pmatrix}.

    In this case, without the application of Theorem 3.3, we readily have that

    (𝓩t(n))t+=(1n(nt+1)(10))t+(t(10))t+as n.(\boldsymbol{\mathcal{Z}}_{t}^{(n)})_{t\in\mathbb{R}_{+}}=\left(\frac{1}{n}(\lfloor nt\rfloor+1)\begin{pmatrix}1\\ 0\\ \end{pmatrix}\right)_{t\in\mathbb{R}_{+}}\stackrel{{\scriptstyle\mathcal{L}}}{{\longrightarrow}}\left(t\begin{pmatrix}1\\ 0\\ \end{pmatrix}\right)_{t\in\mathbb{R}_{+}}\qquad\text{as }n\to\infty.

    Of course, Theorem 3.3 also gives the same result, since in this case the SDE (3.2) takes the form d𝒵t=dt\,\mathrm{d}\mathcal{Z}_{t}=\,\mathrm{d}t, t+t\in\mathbb{R}_{+}, with initial value 0, yielding that 𝒵t=t\mathcal{Z}_{t}=t, t+t\in\mathbb{R}_{+}.

  2. (ii)

    We give a nontrivial example, where Hypotheses 15 hold, but Hypothesis 6 does not. Let p\colonequals2p\colonequals 2,

    ϕk(𝒛)\equalscolon{𝟎2if 𝒛=𝟎2,(z1+1z2+1)if 𝒛𝟎2𝒛+2,k+,\displaystyle\boldsymbol{\phi}_{k}(\boldsymbol{z})\equalscolon\begin{cases}\boldsymbol{0}_{2}&\text{if ${\boldsymbol{z}}=\boldsymbol{0}_{2}$,}\\ \begin{pmatrix}z_{1}+1\\ z_{2}+1\end{pmatrix}&\text{if ${\boldsymbol{z}}\neq\boldsymbol{0}_{2}$, ${\boldsymbol{z}}\in\mathbb{Z}_{+}^{2}$,}\end{cases}\qquad k\in\mathbb{Z}_{+},
    𝑿k,j,i\equalscolon{(11)with probability 12,𝟎2with probability 12,𝒁0\equalscolon(11),k,j,i{1,2}.\displaystyle\boldsymbol{X}_{k,j,i}\equalscolon\begin{cases}\begin{pmatrix}1\\ 1\end{pmatrix}&\text{with probability $\frac{1}{2}$,}\\ \boldsymbol{0}_{2}&\text{with probability $\frac{1}{2}$},\end{cases}\qquad\quad{\boldsymbol{Z}}_{0}\equalscolon\begin{pmatrix}1\\ 1\end{pmatrix},\qquad k,j\in\mathbb{N},\quad i\in\{1,2\}.

    Then

    𝒎i=E[𝑿0,1,i]=12(11),i{1,2},yielding that𝗆=12(1111).\boldsymbol{m}_{i}=\operatorname{E}\!\left[\boldsymbol{X}_{0,1,i}\right]=\frac{1}{2}\begin{pmatrix}1\\ 1\end{pmatrix},\qquad i\in\{1,2\},\qquad\text{yielding that}\qquad\mathsf{m}=\frac{1}{2}\begin{pmatrix}1&1\\ 1&1\end{pmatrix}.

    Further, let

    Λ\colonequals(1001),𝜶\colonequals(11),𝒈(𝒛)\colonequals{(11)if 𝒛=𝟎2,𝟎2if 𝒛𝟎2𝒛+2.\mathsf{\Lambda}\colonequals\begin{pmatrix}1&0\\ 0&1\\ \end{pmatrix},\qquad\boldsymbol{\alpha}\colonequals\begin{pmatrix}1\\ 1\end{pmatrix},\qquad\boldsymbol{g}(\boldsymbol{z})\colonequals\begin{cases}\begin{pmatrix}-1\\ -1\end{pmatrix}&\text{if ${\boldsymbol{z}}=\boldsymbol{0}_{2}$,}\\ \boldsymbol{0}_{2}&\text{if ${\boldsymbol{z}}\neq\boldsymbol{0}_{2}$, ${\boldsymbol{z}}\in\mathbb{Z}_{+}^{2}$.}\end{cases}

    Hence

    𝗆~=𝗆Λ=12(1111),\tilde{\mathsf{m}}=\mathsf{m}\mathsf{\Lambda}=\frac{1}{2}\begin{pmatrix}1&1\\ 1&1\\ \end{pmatrix},

    which is a primitive matrix with Perron–Frobenius eigenvalue ρ~=max(0,1)=1\tilde{\rho}=\max(0,1)=1. Consequently, Hypotheses 15 hold with the above introduced Λ\mathsf{\Lambda}, 𝜶\boldsymbol{\alpha}, 𝒈\boldsymbol{g}, 𝗆~\tilde{\mathsf{m}}, and

    𝒖~\colonequals12(11),𝒗~\colonequals12(11).\tilde{\boldsymbol{u}}\colonequals\frac{1}{\sqrt{2}}\begin{pmatrix}1\\ 1\\ \end{pmatrix},\qquad\tilde{\boldsymbol{v}}\colonequals\frac{1}{\sqrt{2}}\begin{pmatrix}1\\ 1\\ \end{pmatrix}.

    Further, since 𝟎2\boldsymbol{0}_{2} is a state of (𝒁k)k+({\boldsymbol{Z}}_{k})_{k\in\mathbb{Z}_{+}} and P[ϕ0(𝟎2)=𝟎2]=1\operatorname{P}\left[\boldsymbol{\phi}_{0}(\boldsymbol{0}_{2})=\boldsymbol{0}_{2}\right]=1, part (i) of this remark implies that Hypothesis 6 does not hold. \blacksquare

In the next remark, we point out that Theorem 3.3 with p=1p=1 gives back the result of González et al. [13] for critical single-type CBPs.

Remark 3.7.

Theorem 3.3 with p=1p=1, i.e. for critical single-type CBPs, yields that (𝒵t(n))t+(\mathcal{Z}_{t}^{(n)})_{t\in\mathbb{R}_{+}} converges weakly toward (𝒵t)t+(\mathcal{Z}_{t})_{t\in\mathbb{R}_{+}} as nn\to\infty, where (𝒵t)t+(\mathcal{Z}_{t})_{t\in\mathbb{R}_{+}} is the pathwise unique strong solution of the SDE

d𝒵t=mαdt+m1Σ𝒵t+d𝒲t,t+,\,\mathrm{d}\mathcal{Z}_{t}=m\alpha\,\mathrm{d}t+\sqrt{m^{-1}\Sigma\mathcal{Z}_{t}^{+}}\,\mathrm{d}\mathcal{W}_{t},\qquad t\in\mathbb{R}_{+},

with initial value 0, where (𝒲t)t+(\mathcal{W}_{t})_{t\in\mathbb{R}_{+}} is a standard Wiener process, and m>0m>0 and Σ\Sigma are the offspring mean and variance, respectively (Λ\Lambda must be m1m^{-1} in order that (Zk)k+(Z_{k})_{k\in\mathbb{Z}_{+}} be critical). It is worth mentioning that González et al. [13, Theorem 3.1] obtained the same limit process (𝒵t)t+(\mathcal{Z}_{t})_{t\in\mathbb{R}_{+}} assuming the following three hypotheses, namely, (C0): the explosion set has probability one, (C1): ε(z)=m1z+m1α+o(1)\varepsilon(z)=m^{-1}z+m^{-1}\alpha^{\prime}+\operatorname{o}(1) as zz\to\infty with some α>0\alpha^{\prime}>0, and (C2): Γ(z)=o(z)\Gamma(z)=\operatorname{o}(z) as zz\to\infty. Notice that if (C0), (C1) and (C2) hold, then our Hypotheses 2, 3, 5 and 6 are satisfied. Indeed, Hypotheses 2, 3 and 5 follow trivially from (C1) and (C2), and (C0) implies Hypothesis 6 as it was pointed out in part (iv) in Remark 3.1. Concerning Hypotheses 1 and 4, in part (i) of Remark 3.1, we already mentioned the reason why the fourth moments on the offspring and control distributions are assumed in our paper. \blacksquare

As a consequence of Theorem 3.3 one can deduce the asymptotic behaviour of a critical primitive MBPI previously proved by Ispány and Pap [21, Theorem 3.1]. Let (𝒀k)k+(\boldsymbol{Y}_{k})_{k\in\mathbb{Z}_{+}} be a MBPI defined in (2.2) such that the offspring mean matrix 𝗆𝝃\colonequals(E[𝝃0,1,1],,E[𝝃0,1,p])+p×p\mathsf{m}_{\boldsymbol{\xi}}\colonequals(\operatorname{E}\!\left[\boldsymbol{\xi}_{0,1,1}\right],\ldots,\operatorname{E}\!\left[\boldsymbol{\xi}_{0,1,p}\right])\in\mathbb{R}_{+}^{p\times p} is primitive with Perron–Frobenius eigenvalue 1, and let 𝒖\boldsymbol{u} and 𝒗\boldsymbol{v} be its right and left Perron–Frobenius eigenvectors, respectively (see Lemma A.1). Then (𝒀k)k+(\boldsymbol{Y}_{k})_{k\in\mathbb{Z}_{+}} is a critical primitive MBPI. Let us denote 𝒎𝑰\colonequalsE[𝑰1]+p\boldsymbol{m}_{\boldsymbol{I}}\colonequals\operatorname{E}\!\left[\boldsymbol{I}_{1}\right]\in\mathbb{R}_{+}^{p} and 𝗩\colonequals(Var[𝝃0,1,1],,Var[𝝃0,1,p])(p×p)p\boldsymbol{\mathsf{V}}\colonequals(\operatorname{Var}\!\left[\boldsymbol{\xi}_{0,1,1}\right],\ldots,\operatorname{Var}\!\left[\boldsymbol{\xi}_{0,1,p}\right])\in(\mathbb{R}^{p\times p})^{p}.

Corollary 3.8 (Ispány and Pap [21, Theorem 3.1]).

Let (𝐘k)k+(\boldsymbol{Y}_{k})_{k\in\mathbb{Z}_{+}} be a critical primitive pp–type branching process with immigration such that E[𝐘02]<\operatorname{E}\!\left[\|\boldsymbol{Y}_{0}\|^{2}\right]<\infty, E[𝛏0,1,i4]<\operatorname{E}\!\left[\|\boldsymbol{\xi}_{0,1,i}\|^{4}\right]<\infty, i{1,,p}i\in\{1,\ldots,p\}, and E[𝐈14]<\operatorname{E}\!\left[\|\boldsymbol{I}_{1}\|^{4}\right]<\infty. Then

(n1𝒀nt)t+(𝒴t𝒖)t+as n,(n^{-1}\boldsymbol{Y}_{\lfloor nt\rfloor})_{t\in\mathbb{R}_{+}}\stackrel{{\scriptstyle\mathcal{L}}}{{\longrightarrow}}(\mathcal{Y}_{t}\boldsymbol{u})_{t\in\mathbb{R}_{+}}\qquad\text{as }n\to\infty,

where (𝒴t)t+(\mathcal{Y}_{t})_{t\in\mathbb{R}_{+}} is the pathwise unique strong solution of the SDE

d𝒴t=𝒗𝒎𝑰dt+𝒗(𝒖𝗩)𝒗𝒴t+d𝒲t,t+,\,\mathrm{d}\mathcal{Y}_{t}=\boldsymbol{v}^{\top}\boldsymbol{m}_{\boldsymbol{I}}\,\mathrm{d}t+\sqrt{\boldsymbol{v}^{\top}(\boldsymbol{u}\odot\boldsymbol{\mathsf{V}})\boldsymbol{v}\mathcal{Y}_{t}^{+}}\,\mathrm{d}\mathcal{W}_{t},\qquad t\in\mathbb{R}_{+},

with initial value 𝒴0=0\mathcal{Y}_{0}=0, where (𝒲t)t+(\mathcal{W}_{t})_{t\in\mathbb{R}_{+}} is a standard Wiener process.

Proof.

To apply Theorem 3.3, let us rewrite (𝒀k)k+(\boldsymbol{Y}_{k})_{k\in\mathbb{Z}_{+}} as a CMBP (see part (ii) of Example 2.1). For k+k\in\mathbb{Z}_{+}, jj\in\mathbb{N} and i{1,,p}i\in\{1,\ldots,p\}, we have

𝒁k=(𝒀k1),𝑿k,j,i=(𝝃k,j,i0),𝑿k,1,p+1=(𝑰k+11),ϕk(𝒛)=(z1zp1)\boldsymbol{Z}_{k}=\begin{pmatrix}\boldsymbol{Y}_{k}\\ {1}\end{pmatrix},\qquad\boldsymbol{X}_{k,j,i}=\begin{pmatrix}\boldsymbol{\xi}_{k,j,i}\\ 0\end{pmatrix},\qquad{\boldsymbol{X}_{k,1,p+1}}=\begin{pmatrix}\boldsymbol{I}_{k+1}\\ 1\end{pmatrix},\qquad\boldsymbol{\phi}_{k}(\boldsymbol{z})=\begin{pmatrix}z_{1}\\ \vdots\\ z_{p}\\ 1\end{pmatrix}

for each 𝒛+p+1{\boldsymbol{z}}\in\mathbb{Z}_{+}^{p+1}. Further, the deterministic control functions can be written in the form ϕk(𝒛)=Λ𝒛+𝜶+𝒈(𝒛)\boldsymbol{\phi}_{k}(\boldsymbol{z})=\mathsf{\Lambda}\boldsymbol{z}+\boldsymbol{\alpha}+\boldsymbol{g}(\boldsymbol{z}), 𝒛+p+1{\boldsymbol{z}}\in\mathbb{Z}_{+}^{p+1}, k+k\in\mathbb{Z}_{+}, with

Λ=(𝖨p𝟎p𝟎p0),𝜶=(𝟎p1) and 𝒈𝟎p+1.\mathsf{\Lambda}=\begin{pmatrix}\mathsf{I}_{p}&\boldsymbol{0}_{p}\\ \boldsymbol{0}_{p}^{\top}&0\end{pmatrix},\qquad\boldsymbol{\alpha}=\begin{pmatrix}\boldsymbol{0}_{p}\\ 1\end{pmatrix}\qquad\mbox{ and }\qquad\boldsymbol{g}\equiv\boldsymbol{0}_{p+1}.

Then we have

E[𝒁02]\displaystyle\operatorname{E}\!\left[\|{\boldsymbol{Z}}_{0}\|^{2}\right] =E[1+𝒀02]<,\displaystyle=\operatorname{E}\!\left[1+\|\boldsymbol{Y}_{0}\|^{2}\right]<\infty,
E[𝑿0,1,i4]\displaystyle\operatorname{E}\!\left[\|\boldsymbol{X}_{0,1,i}\|^{4}\right] =E[𝝃0,1,i4]<,i{1,,p},\displaystyle=\operatorname{E}\!\left[\|\boldsymbol{\xi}_{0,1,i}\|^{4}\right]<\infty,\qquad i\in\{1,\ldots,p\},
E[𝑿0,1,p+14]\displaystyle\operatorname{E}\!\left[\|\boldsymbol{X}_{0,1,p+1}\|^{4}\right] =E[(1+𝑰12)2]<,\displaystyle=\operatorname{E}\!\left[(1+\|\boldsymbol{I}_{1}\|^{2})^{2}\right]<\infty,
E[ϕ0(𝒛)4]\displaystyle\operatorname{E}\!\left[\|\boldsymbol{\phi}_{0}({\boldsymbol{z}})\|^{4}\right] =ϕ0(𝒛)4<,𝒛+p+1.\displaystyle=\|\boldsymbol{\phi}_{0}({\boldsymbol{z}})\|^{4}<\infty,\qquad{\boldsymbol{z}}\in\mathbb{Z}_{+}^{p+1}.

Thus Γ(𝒛)=𝟢(p+1)×(p+1)\mathsf{\Gamma}(\boldsymbol{z})=\mathsf{0}\in\mathbb{R}^{(p+1)\times(p+1)} and κi(𝒛)=0\kappa_{i}({\boldsymbol{z}})=0, 𝒛+p+1{\boldsymbol{z}}\in\mathbb{Z}_{+}^{p+1}, i{1,,p}i\in\{1,\ldots,p\}, and hence Hypotheses 1, 2, 3 and 4 hold. Since 𝒈𝟎p+1\boldsymbol{g}\equiv\boldsymbol{0}_{p+1}, Hypothesis 6 is not needed, see part (v) of Remark 3.1. Finally, Hypothesis 5 is satisfied with

𝗆=(𝗆𝝃𝒎𝑰𝟎p1),𝗆~=(𝗆𝝃𝟎p𝟎p0),𝒖~=(𝒖0),𝒗~=(𝒗0),Π~=(Π𝝃𝟎p𝟎p0),\mathsf{m}=\begin{pmatrix}\mathsf{m}_{\boldsymbol{\xi}}&\boldsymbol{m}_{\boldsymbol{I}}\\ \boldsymbol{0}_{p}^{\top}&1\end{pmatrix},\qquad\tilde{\mathsf{m}}=\begin{pmatrix}\mathsf{m}_{\boldsymbol{\xi}}&\boldsymbol{0}_{p}\\ \boldsymbol{0}_{p}^{\top}&0\end{pmatrix},\qquad\tilde{\boldsymbol{u}}=\begin{pmatrix}\boldsymbol{u}\\ 0\end{pmatrix},\qquad\tilde{\boldsymbol{v}}=\begin{pmatrix}\boldsymbol{v}\\ 0\end{pmatrix},\qquad\tilde{\mathsf{\Pi}}=\begin{pmatrix}\mathsf{\Pi}_{\boldsymbol{\xi}}&\boldsymbol{0}_{p}\\ \boldsymbol{0}_{p}^{\top}&0\end{pmatrix},

where Π𝝃\colonequalslimk𝗆𝝃k\mathsf{\Pi}_{\boldsymbol{\xi}}\colonequals\lim_{k\to\infty}\mathsf{m}_{\boldsymbol{\xi}}^{k}, and c~\tilde{c} and r~\tilde{r} in part (c) of Hypothesis 5 can be chosen as for Π𝝃\mathsf{\Pi}_{\boldsymbol{\xi}} (since 𝗆𝝃\mathsf{m}_{\boldsymbol{\xi}} is primitive with Frobenius–Perron eigenvalue 11, and see part (iii) of Lemma A.1). Further, we get

Σi\displaystyle\mathsf{\Sigma}_{i} =(Var[𝝃0,1,i]𝟎p𝟎p0),i{1,,p},\displaystyle=\begin{pmatrix}\operatorname{Var}\!\left[\boldsymbol{\xi}_{0,1,i}\right]&\boldsymbol{0}_{p}\\ \boldsymbol{0}_{p}^{\top}&0\end{pmatrix},\qquad i\in\{1,\ldots,p\}, Σp+1\displaystyle\mathsf{\Sigma}_{p+1} =(Var[𝑰1]𝟎p𝟎p0),\displaystyle=\begin{pmatrix}\operatorname{Var}\!\left[\boldsymbol{I}_{1}\right]&\boldsymbol{0}_{p}\\ \boldsymbol{0}_{p}^{\top}&0\end{pmatrix},

and, consequently, Theorem 3.3 yields the statement. ∎

Motivated by part (i) of Remark 2.2, we derive another corollary of Theorem 3.3.

Corollary 3.9.

Let (𝐙k)k+(\boldsymbol{Z}_{k})_{k\in\mathbb{Z}_{+}} be a critical controlled pp–type branching process given in part (i) of Remark 2.2 such that E[𝐘02]<\operatorname{E}\!\left[\|\boldsymbol{Y}_{0}\|^{2}\right]<\infty, E[𝛏0,1,i4]<\operatorname{E}\!\left[\|\boldsymbol{\xi}_{0,1,i}\|^{4}\right]<\infty, i{1,,p}i\in\{1,\ldots,p\}, and E[𝐈14]<\operatorname{E}\!\left[\|\boldsymbol{I}_{1}\|^{4}\right]<\infty. Then

(n1𝒁nt)t+(𝒵t𝒖)t+as n,(n^{-1}\boldsymbol{Z}_{\lfloor nt\rfloor})_{t\in\mathbb{R}_{+}}\stackrel{{\scriptstyle\mathcal{L}}}{{\longrightarrow}}(\mathcal{Z}_{t}\boldsymbol{u})_{t\in\mathbb{R}_{+}}\qquad\text{as }n\to\infty,

where (𝒵t)t+(\mathcal{Z}_{t})_{t\in\mathbb{R}_{+}} is the pathwise unique strong solution of the SDE

d𝒵t=𝒗𝒎𝑰dt+𝒗(𝒖𝗩)𝒗𝒵t+d𝒲t,t+,\,\mathrm{d}\mathcal{Z}_{t}=\boldsymbol{v}^{\top}\boldsymbol{m}_{\boldsymbol{I}}\,\mathrm{d}t+\sqrt{\boldsymbol{v}^{\top}(\boldsymbol{u}\odot\boldsymbol{\mathsf{V}})\boldsymbol{v}\mathcal{Z}_{t}^{+}}\,\mathrm{d}\mathcal{W}_{t},\qquad t\in\mathbb{R}_{+},

with initial value 𝒵0=0\mathcal{Z}_{0}=0, where (𝒲t)t+(\mathcal{W}_{t})_{t\in\mathbb{R}_{+}} is a standard Wiener process.

Proof.

We follow the same steps as in the proof of Corollary 3.8. We have

E[𝒁02]\displaystyle\operatorname{E}\!\left[\|{\boldsymbol{Z}}_{0}\|^{2}\right] =E[𝒀02]<,\displaystyle=\operatorname{E}\!\left[\|\boldsymbol{Y}_{0}\|^{2}\right]<\infty,
E[𝑿0,1,i4]\displaystyle\operatorname{E}\!\left[\|\boldsymbol{X}_{0,1,i}\|^{4}\right] =E[𝝃0,1,i4]<,i{1,,p}\displaystyle=\operatorname{E}\!\left[\|\boldsymbol{\xi}_{0,1,i}\|^{4}\right]<\infty,\qquad i\in\{1,\ldots,p\}
E[ϕ0(𝒛)4]\displaystyle\operatorname{E}\!\left[\|\boldsymbol{\phi}_{0}({\boldsymbol{z}})\|^{4}\right] 8E[𝒛4+𝑰14]<,\displaystyle\leq 8\operatorname{E}\!\left[\|{\boldsymbol{z}}\|^{4}+\|\boldsymbol{I}_{1}\|^{4}\right]<\infty,

where, for the last inequality, we used the power mean inequality (see (A.6)). Therefore, Hypothesis 1 is satisfied. Hypothesis 2 also holds because 𝜺(𝒛)=Λ𝒛+𝜶+𝒈(𝒛)\boldsymbol{\varepsilon}(\boldsymbol{z})=\mathsf{\Lambda}\boldsymbol{z}+\boldsymbol{\alpha}+\boldsymbol{g}(\boldsymbol{z}), 𝒛+p{\boldsymbol{z}}\in\mathbb{Z}_{+}^{p}, with Λ=𝖨p\mathsf{\Lambda}=\mathsf{I}_{p}, 𝜶=𝒎𝑰\boldsymbol{\alpha}=\boldsymbol{m}_{\boldsymbol{I}} and 𝒈𝟎p\boldsymbol{g}\equiv\boldsymbol{0}_{p}. Due to E[𝑰14]<\operatorname{E}\!\left[\|\boldsymbol{I}_{1}\|^{4}\right]<\infty, it is clear that Γ(𝒛)=Var[𝑰1]p×p\mathsf{\Gamma}(\boldsymbol{z})=\operatorname{Var}\!\left[\boldsymbol{I}_{1}\right]\in\mathbb{R}^{p\times p} and κi(𝒛)=E[(I1,im𝑰,i)4]<\kappa_{i}({\boldsymbol{z}})=\operatorname{E}\!\left[(I_{1,i}-m_{\boldsymbol{I},i})^{4}\right]<\infty, 𝒛+p{\boldsymbol{z}}\in\mathbb{Z}_{+}^{p}, i{1,,p}i\in\{1,\ldots,p\}, so Hypotheses 3 and 4 are satisfied. Furthermore, Hypothesis 5 holds with

𝗆=𝗆𝝃,𝗆~=𝗆𝝃,𝒖~=𝒖,𝒗~=𝒗,Π~=Π𝝃,\mathsf{m}=\mathsf{m}_{\boldsymbol{\xi}},\qquad\tilde{\mathsf{m}}=\mathsf{m}_{\boldsymbol{\xi}},\qquad\tilde{\boldsymbol{u}}=\boldsymbol{u},\qquad\tilde{\boldsymbol{v}}=\boldsymbol{v},\qquad\tilde{\mathsf{\Pi}}=\mathsf{\Pi}_{\boldsymbol{\xi},}

where Π𝝃:=limk𝗆𝝃k\mathsf{\Pi}_{\boldsymbol{\xi}}:=\lim_{k\to\infty}\mathsf{m}_{\boldsymbol{\xi}}^{k}, and c~\tilde{c} and r~\tilde{r} in part (c) of Hypothesis 5 can be chosen as for Π𝝃\mathsf{\Pi}_{\boldsymbol{\xi}} (see part (iii) of Lemma A.1). Indeed, by our assumption, 𝗆𝝃\mathsf{m}_{\boldsymbol{\xi}} is primitive with Perron–Frobenius eigenvalue equals 1. Finally, Hypothesis 6 is not needed, since 𝒈𝟎p\boldsymbol{g}\equiv\boldsymbol{0}_{p} (see part (v) of Remark 3.1). Hence the result follows from Theorem 3.3 using also that 𝒗𝗆𝝃𝒎𝑰=𝒗𝒎𝑰\boldsymbol{v}^{\top}\mathsf{m}_{\boldsymbol{\xi}}\boldsymbol{m}_{\boldsymbol{I}}=\boldsymbol{v}^{\top}\boldsymbol{m}_{\boldsymbol{I}}, since 𝒗\boldsymbol{v} is the left Perron–Frobenius eigenvector for 𝗆𝝃\mathsf{m}_{\boldsymbol{\xi}}. ∎

Next, we establish a scaling limit theorem for a 2SBPI with the promiscuous mating function L(x,y)\colonequalsxmin{1,y}L(x,y)\colonequals x\min\{1,y\}, x,y+x,y\in\mathbb{Z}_{+}. This type of mating function was first considered by Daley [8], and it was deeply studied by Alsmeyer and Rösler [1, 2]. Up to our knowledge, no such result as the following one is available in the literature (for more details, see Remark 3.12).

Corollary 3.10.

Let (Fk,Mk)k+(F_{k},M_{k})_{k\in\mathbb{Z}_{+}} be a 2SBPI defined in (2.4) with the promiscuous mating function. Assume that (F0,M0)(F_{0},M_{0}) is a 2\mathbb{N}^{2}–valued random vector, E[(F0,M0)2]<\operatorname{E}\!\left[\|(F_{0},M_{0})\|^{2}\right]<\infty, E[(f0,1,m0,1)4]<\operatorname{E}\!\left[\|(f_{0,1},m_{0,1})\|^{4}\right]<\infty, and E[(F1I,M1I)4]<\operatorname{E}\!\left[\|(F_{1}^{I},M_{1}^{I})\|^{4}\right]<\infty. If P[M1I=0]=0\operatorname{P}\left[M_{1}^{I}=0\right]=0 and E[f0,1]=1\operatorname{E}\!\left[f_{0,1}\right]=1, then

(n1(Fnt,Mnt))t+(𝒳t(1,E[m0,1]))t+as n,(n^{-1}(F_{\lfloor nt\rfloor},M_{\lfloor nt\rfloor}))_{t\in\mathbb{R}_{+}}\stackrel{{\scriptstyle\mathcal{L}}}{{\longrightarrow}}(\mathcal{X}_{t}(1,\operatorname{E}\!\left[m_{0,1}\right]))_{t\in\mathbb{R}_{+}}\qquad\text{as }n\to\infty,

where (𝒳t)t+(\mathcal{X}_{t})_{t\in\mathbb{R}_{+}} is the pathwise unique strong solution of the SDE

d𝒳t=E[F1I]dt+Var[f0,1]𝒳t+d𝒲t,t+,\,\mathrm{d}\mathcal{X}_{t}=\operatorname{E}\!\left[F_{1}^{I}\right]\,\mathrm{d}t+\sqrt{\operatorname{Var}\!\left[f_{0,1}\right]\mathcal{X}_{t}^{+}}\,\mathrm{d}\mathcal{W}_{t},\qquad t\in\mathbb{R}_{+},

with initial value 𝒳0=0\mathcal{X}_{0}=0, where (𝒲t)t+(\mathcal{W}_{t})_{t\in\mathbb{R}_{+}} is a standard Wiener process.

Proof.

Recall that L(x,y)=xmin{1,y}L(x,y)=x\min\{1,y\}, x,y+x,y\in\mathbb{Z}_{+}.

First, using that P[M1I=0]=0\operatorname{P}\left[M_{1}^{I}=0\right]=0 and (F0,M0)(F_{0},M_{0}) is 2\mathbb{N}^{2}–valued, we check that L(Fn,Mn)=FnL(F_{n},M_{n})=F_{n} for each n+n\in\mathbb{Z}_{+} almost surely. For this, since MnM_{n} is +\mathbb{Z}_{+}–valued, taking into account the form of LL, it is enough to verify that P[Mn=0]=0\operatorname{P}\left[M_{n}=0\right]=0, nn\in\mathbb{N}. Using that P[M1I=0]=0\operatorname{P}\left[M_{1}^{I}=0\right]=0, by a conditioning argument with respect to UnU_{n}, we can get for each n+n\in\mathbb{Z}_{+},

P[Mn+1=0]\displaystyle\operatorname{P}\left[M_{n+1}=0\right] =E[𝟙{Mn+1=0}]=E[E[𝟙{Mn+1=0}|Un]]=E[E[𝟙{j=1Unmn,j+Mn+1I=0}|Un]]\displaystyle=\operatorname{E}\!\left[\mathds{1}_{\{M_{n+1}=0\}}\right]=\operatorname{E}\!\left[\operatorname{E}\left[\mathds{1}_{\{M_{n+1}=0\}}\;\middle|\;U_{n}\right]\right]=\operatorname{E}\!\left[\operatorname{E}\left[\mathds{1}_{\{\sum_{j=1}^{U_{n}}m_{n,j}+M_{n+1}^{I}=0\}}\;\middle|\;U_{n}\right]\right]
=E[E[𝟙{Mn+1I=0}j=1Un𝟙{mn,j=0}|Un]]=E[P[M1I=0](P[m0,1=0])Un]\displaystyle=\operatorname{E}\!\left[\operatorname{E}\left[\mathds{1}_{\{M_{n+1}^{I}=0\}}\prod_{j=1}^{U_{n}}\mathds{1}_{\{m_{n,j}=0\}}\;\middle|\;U_{n}\right]\right]=\operatorname{E}\!\left[\operatorname{P}\left[M_{1}^{I}=0\right](\operatorname{P}\left[m_{0,1}=0\right])^{U_{n}}\right]
=P[M1I=0]E[(P[m0,1=0])Un]=0,\displaystyle=\operatorname{P}\left[M_{1}^{I}=0\right]\operatorname{E}\!\left[(\operatorname{P}\left[m_{0,1}=0\right])^{U_{n}}\right]=0,

as desired.

Consequently, (Fk,Mk)k+(F_{k},M_{k})_{k\in\mathbb{Z}_{+}} coincides almost surely with the 2-type controlled branching process (𝒁k)k+({\boldsymbol{Z}}_{k})_{k\in\mathbb{Z}_{+}} given by

𝒁k\colonequals(FkMk),ϕk(𝒛)\colonequals(z11),𝑿k,j,1\colonequals(fk,jmk,j),𝑿k,j,2\colonequals(Fk+1IMk+1I)\displaystyle\boldsymbol{Z}_{k}\colonequals\begin{pmatrix}F_{k}\\ M_{k}\end{pmatrix},\qquad\boldsymbol{\phi}_{k}(\boldsymbol{z})\colonequals\begin{pmatrix}z_{1}\\ 1\end{pmatrix},\qquad\boldsymbol{X}_{k,j,1}\colonequals\begin{pmatrix}f_{k,j}\\ m_{k,j}\end{pmatrix},\qquad\boldsymbol{X}_{k,j,2}\colonequals\begin{pmatrix}F_{k+1}^{I}\\[2.84526pt] M_{k+1}^{I}\end{pmatrix}

for k+k\in\mathbb{Z}_{+}, jj\in\mathbb{N}, and 𝒛=(z1,z2)+2{\boldsymbol{z}}=(z_{1},z_{2})\in\mathbb{Z}_{+}^{2}.

We want to apply Theorem 3.3 for (𝒁k)k+({\boldsymbol{Z}}_{k})_{k\in\mathbb{Z}_{+}}. The control distributions are deterministic, so Hypothesis 3 and 4 are trivially satisfied. In addition, we get

E[𝒁02]\displaystyle\operatorname{E}\!\left[\|{\boldsymbol{Z}}_{0}\|^{2}\right] =E[(F0,M0)2]<,\displaystyle=\operatorname{E}\!\left[\|(F_{0},M_{0})\|^{2}\right]<\infty,
E[𝑿0,1,14]\displaystyle\operatorname{E}\!\left[\|\boldsymbol{X}_{0,1,1}\|^{4}\right] =E[(f0,1,m0,1)4]<,\displaystyle=\operatorname{E}\!\left[\|(f_{0,1},m_{0,1})\|^{4}\right]<\infty,
E[𝑿0,1,24]\displaystyle\operatorname{E}\!\left[\|\boldsymbol{X}_{0,1,2}\|^{4}\right] =E[(F1I,M1I)4]<,\displaystyle=\operatorname{E}\!\left[\|(F_{1}^{I},M_{1}^{I})\|^{4}\right]<\infty,
E[ϕ0(𝒛)4]\displaystyle\operatorname{E}\!\left[\|\boldsymbol{\phi}_{0}({\boldsymbol{z}})\|^{4}\right] =(z12+1)2<,𝒛+2,\displaystyle=(z_{1}^{2}+1)^{2}<\infty,\qquad{\boldsymbol{z}}\in\mathbb{Z}_{+}^{2},

yielding that Hypothesis 1 holds. For each 𝒛+2{\boldsymbol{z}}\in\mathbb{Z}_{+}^{2}, we have

ϕ0(𝒛)=(z11)=Λ𝒛+𝜶 with Λ=(1000) and 𝜶=(01),\boldsymbol{\phi}_{0}(\boldsymbol{z})=\begin{pmatrix}z_{1}\\ 1\end{pmatrix}=\mathsf{\Lambda}\boldsymbol{z}+\boldsymbol{\alpha}\qquad\text{ with }\quad\mathsf{\Lambda}=\begin{pmatrix}1&0\\ 0&0\end{pmatrix}\quad\mbox{ and }\quad\boldsymbol{\alpha}=\begin{pmatrix}0\\ 1\end{pmatrix},

and hence Hypothesis 2 holds with the given Λ\mathsf{\Lambda}, 𝜶\boldsymbol{\alpha}, and 𝒈𝟎2\boldsymbol{g}\equiv\boldsymbol{0}_{2}. Hypothesis 6 is not needed, see part (v) of Remark 3.1. Further, we get

𝗆\displaystyle\mathsf{m} =(E[f0,1]E[F1I]E[m0,1]E[M1I]),\displaystyle=\begin{pmatrix}\operatorname{E}\!\left[f_{0,1}\right]&\operatorname{E}\!\left[F_{1}^{I}\right]\\[2.84526pt] \operatorname{E}\!\left[m_{0,1}\right]&\operatorname{E}\!\left[M_{1}^{I}\right]\end{pmatrix}, Σ1\displaystyle\mathsf{\Sigma}_{1} =(Var[f0,1]Cov[f0,1,m0,1]Cov[f0,1,m0,1]Var[m0,1]),\displaystyle=\begin{pmatrix}\operatorname{Var}\!\left[f_{0,1}\right]&\operatorname{Cov}\left[f_{0,1},\;m_{0,1}\right]\\ \operatorname{Cov}\left[f_{0,1},\;m_{0,1}\right]&\operatorname{Var}\!\left[m_{0,1}\right]\end{pmatrix},
𝗆~\displaystyle\tilde{\mathsf{m}} =(E[f0,1]0E[m0,1]0),\displaystyle=\begin{pmatrix}\operatorname{E}\!\left[f_{0,1}\right]&0\\ \operatorname{E}\!\left[m_{0,1}\right]&0\end{pmatrix}, Σ2\displaystyle\mathsf{\Sigma}_{2} =(Var[F1I]Cov[F1I,M1I]Cov[F1I,M1I]Var[M1I]).\displaystyle=\begin{pmatrix}\operatorname{Var}\!\left[F_{1}^{I}\right]&\operatorname{Cov}\left[F_{1}^{I},\;M_{1}^{I}\right]\\[2.84526pt] \operatorname{Cov}\left[F_{1}^{I},\;M_{1}^{I}\right]&\operatorname{Var}\!\left[M_{1}^{I}\right]\end{pmatrix}.

Since E[f0,1]=1\operatorname{E}\!\left[f_{0,1}\right]=1 and 𝗆~k=𝗆~\tilde{\mathsf{m}}^{k}=\tilde{\mathsf{m}}, kk\in\mathbb{N}, the conditions of Hypothesis 5 are satisfied with

𝒖~=11+E[m0,1](1E[m0,1]),𝒗~=(1+E[m0,1]0),Λ𝒖~=11+E[m0,1](10),\displaystyle\tilde{\boldsymbol{u}}=\frac{1}{1+\operatorname{E}\!\left[m_{0,1}\right]}\begin{pmatrix}1\\ \operatorname{E}\!\left[m_{0,1}\right]\end{pmatrix},\qquad\tilde{\boldsymbol{v}}=\begin{pmatrix}1+\operatorname{E}\!\left[m_{0,1}\right]\\ 0\end{pmatrix},\qquad\mathsf{\Lambda}\tilde{\boldsymbol{u}}=\frac{1}{1+\operatorname{E}\!\left[m_{0,1}\right]}\begin{pmatrix}1\\ 0\end{pmatrix},
Π~=limk𝗆~k=𝗆~.\displaystyle\tilde{\mathsf{\Pi}}=\lim_{k\to\infty}\tilde{\mathsf{m}}^{k}=\tilde{\mathsf{m}}.

Therefore, Theorem 3.3 implies that

(1n(FntMnt))t+(𝒵t1+E[m0,1](1E[m0,1]))t+as n,\left(\frac{1}{n}\begin{pmatrix}F_{\lfloor nt\rfloor}\\ M_{\lfloor nt\rfloor}\end{pmatrix}\right)_{t\in\mathbb{R}_{+}}\stackrel{{\scriptstyle\mathcal{L}}}{{\longrightarrow}}\left(\frac{\mathcal{Z}_{t}}{1+\operatorname{E}\!\left[m_{0,1}\right]}\begin{pmatrix}1\\ \operatorname{E}\!\left[m_{0,1}\right]\end{pmatrix}\right)_{t\in\mathbb{R}_{+}}\qquad\text{as }n\to\infty,

where (𝒵t)t+(\mathcal{Z}_{t})_{t\in\mathbb{R}_{+}} is the pathwise unique strong solution of the SDE

d𝒵t=(1+E[m0,1])E[F1I]dt+(1+E[m0,1])Var[f0,1]𝒵t+d𝒲t,t+,\,\mathrm{d}\mathcal{Z}_{t}=(1+\operatorname{E}\!\left[m_{0,1}\right])\operatorname{E}\!\left[F_{1}^{I}\right]\,\mathrm{d}t+\sqrt{(1+\operatorname{E}\!\left[m_{0,1}\right])\operatorname{Var}\!\left[f_{0,1}\right]\mathcal{Z}_{t}^{+}}\,\mathrm{d}\mathcal{W}_{t},\qquad t\in\mathbb{R}_{+},

with initial value 𝒵0=0\mathcal{Z}_{0}=0, where (𝒲t)t+(\mathcal{W}_{t})_{t\in\mathbb{R}_{+}} is a standard Wiener process. With the process (𝒳t)t+(\mathcal{X}_{t})_{t\in\mathbb{R}_{+}} given by 𝒳t=(1+E[m0,1])1𝒵t\mathcal{X}_{t}=(1+\operatorname{E}\!\left[m_{0,1}\right])^{-1}\mathcal{Z}_{t}, t+t\in\mathbb{R}_{+}, we obtain the desired result. ∎

Next, we apply Theorem 3.3 for a 2SBPI defined in (2.4) with a so-called self-fertilization mating function defined by L(𝒛):=z1+z2L({\boldsymbol{z}}):=z_{1}+z_{2}, 𝒛=(z1,z2)+2{\boldsymbol{z}}=(z_{1},z_{2})\in\mathbb{R}_{+}^{2}, which allows both females and males have partenogenesis (asexual reproduction). In this model, every individual (regardless whether it is a female or male) corresponds to a mating unit and can have female and male offsprings independently of the other individuals. There is a kind of phenomenon in nature as well, e.g., for aphids and for some reptiles. The following result can be considered as another new contribution in the field of Feller-type diffusion approximations of 2SBPIs.

Corollary 3.11.

Let (Fk,Mk)k+(F_{k},M_{k})_{k\in\mathbb{Z}_{+}} be a 2SBPI defined in (2.4) with the self-fertilization mating function. Assume that E[(F0,M0)2]<\operatorname{E}\!\left[\|(F_{0},M_{0})\|^{2}\right]<\infty, E[(f0,1,m0,1)4]<\operatorname{E}\!\left[\|(f_{0,1},m_{0,1})\|^{4}\right]<\infty, E[(F1I,M1I)4]<\operatorname{E}\!\left[\|(F_{1}^{I},M_{1}^{I})\|^{4}\right]<\infty, and E[f0,1],E[m0,1](0,1)\operatorname{E}\!\left[f_{0,1}\right],\operatorname{E}\!\left[m_{0,1}\right]\in(0,1) are such that E[f0,1]+E[m0,1]=1\operatorname{E}\!\left[f_{0,1}\right]+\operatorname{E}\!\left[m_{0,1}\right]=1. Then

(n1(Fnt,Mnt))t+(𝒳t(E[f0,1],E[m0,1]))t+as n,(n^{-1}(F_{\lfloor nt\rfloor},M_{\lfloor nt\rfloor}))_{t\in\mathbb{R}_{+}}\stackrel{{\scriptstyle\mathcal{L}}}{{\longrightarrow}}(\mathcal{X}_{t}(\operatorname{E}\!\left[f_{0,1}\right],\operatorname{E}\!\left[m_{0,1}\right]))_{t\in\mathbb{R}_{+}}\qquad\text{as }n\to\infty,

where (𝒳t)t+(\mathcal{X}_{t})_{t\in\mathbb{R}_{+}} is the pathwise unique strong solution of the SDE

d𝒳t=(E[F1I]+E[M1I])dt+Var[f0,1+m0,1]𝒳t+d𝒲t,t+,\,\mathrm{d}\mathcal{X}_{t}=(\operatorname{E}\!\left[F_{1}^{I}\right]+\operatorname{E}\!\left[M_{1}^{I}\right])\,\mathrm{d}t+\sqrt{\operatorname{Var}\!\left[f_{0,1}+m_{0,1}\right]\mathcal{X}_{t}^{+}}\,\mathrm{d}\mathcal{W}_{t},\qquad t\in\mathbb{R}_{+},

with initial value 𝒳0=0\mathcal{X}_{0}=0, where (𝒲t)t+(\mathcal{W}_{t})_{t\in\mathbb{R}_{+}} is a standard Wiener process.

Proof.

Let us rewrite (Fk,Mk)k+(F_{k},M_{k})_{k\in\mathbb{Z}_{+}} as a CMBP (𝒁k)k+({\boldsymbol{Z}}_{k})_{k\in\mathbb{Z}_{+}} (see part (ii) of Example 2.1). We want to apply Theorem 3.3 for (𝒁k)k+({\boldsymbol{Z}}_{k})_{k\in\mathbb{Z}_{+}}. The control distributions are deterministic, so Hypothesis 3 and 4 are trivially satisfied. In addition, we get

E[𝒁02]\displaystyle\operatorname{E}\!\left[\|{\boldsymbol{Z}}_{0}\|^{2}\right] =E[(F0,M0)2]<,\displaystyle=\operatorname{E}\!\left[\|(F_{0},M_{0})\|^{2}\right]<\infty,
E[𝑿0,1,14]\displaystyle\operatorname{E}\!\left[\|\boldsymbol{X}_{0,1,1}\|^{4}\right] =E[(f0,1,m0,1)4]<,\displaystyle=\operatorname{E}\!\left[\|(f_{0,1},m_{0,1})\|^{4}\right]<\infty,
E[𝑿0,1,24]\displaystyle\operatorname{E}\!\left[\|\boldsymbol{X}_{0,1,2}\|^{4}\right] =E[(F1I,M1I)4]<,\displaystyle=\operatorname{E}\!\left[\|(F_{1}^{I},M_{1}^{I})\|^{4}\right]<\infty,
E[ϕ0(𝒛)4]\displaystyle\operatorname{E}\!\left[\|\boldsymbol{\phi}_{0}({\boldsymbol{z}})\|^{4}\right] =((z1+z2)2+1)2<,𝒛+2,\displaystyle=((z_{1}+z_{2})^{2}+1)^{2}<\infty,\qquad{\boldsymbol{z}}\in\mathbb{Z}_{+}^{2},

yielding that Hypothesis 1 holds. For each 𝒛+2{\boldsymbol{z}}\in\mathbb{Z}_{+}^{2}, we have

ϕ0(𝒛)=(z1+z21)=Λ𝒛+𝜶 with Λ=(1100) and 𝜶=(01),\boldsymbol{\phi}_{0}(\boldsymbol{z})=\begin{pmatrix}z_{1}+z_{2}\\ 1\end{pmatrix}=\mathsf{\Lambda}\boldsymbol{z}+\boldsymbol{\alpha}\qquad\text{ with }\quad\mathsf{\Lambda}=\begin{pmatrix}1&1\\ 0&0\end{pmatrix}\quad\mbox{ and }\quad\boldsymbol{\alpha}=\begin{pmatrix}0\\ 1\end{pmatrix},

and hence Hypothesis 2 holds with the given Λ\mathsf{\Lambda}, 𝜶\boldsymbol{\alpha}, and 𝒈𝟎2\boldsymbol{g}\equiv\boldsymbol{0}_{2}. Hypothesis 6 is not needed, see part (v) of Remark 3.1. Further, we get

𝗆\displaystyle\mathsf{m} =(E[f0,1]E[F1I]E[m0,1]E[M1I]),\displaystyle=\begin{pmatrix}\operatorname{E}\!\left[f_{0,1}\right]&\operatorname{E}\!\left[F_{1}^{I}\right]\\[2.84526pt] \operatorname{E}\!\left[m_{0,1}\right]&\operatorname{E}\!\left[M_{1}^{I}\right]\end{pmatrix}, Σ1\displaystyle\mathsf{\Sigma}_{1} =(Var[f0,1]Cov[f0,1,m0,1]Cov[f0,1,m0,1]Var[m0,1]),\displaystyle=\begin{pmatrix}\operatorname{Var}\!\left[f_{0,1}\right]&\operatorname{Cov}\left[f_{0,1},\;m_{0,1}\right]\\ \operatorname{Cov}\left[f_{0,1},\;m_{0,1}\right]&\operatorname{Var}\!\left[m_{0,1}\right]\end{pmatrix},
𝗆~\displaystyle\tilde{\mathsf{m}} =(E[f0,1]E[f0,1]E[m0,1]E[m0,1]),\displaystyle=\begin{pmatrix}\operatorname{E}\!\left[f_{0,1}\right]&\operatorname{E}\!\left[f_{0,1}\right]\\ \operatorname{E}\!\left[m_{0,1}\right]&\operatorname{E}\!\left[m_{0,1}\right]\end{pmatrix}, Σ2\displaystyle\mathsf{\Sigma}_{2} =(Var[F1I]Cov[F1I,M1I]Cov[F1I,M1I]Var[M1I]).\displaystyle=\begin{pmatrix}\operatorname{Var}\!\left[F_{1}^{I}\right]&\operatorname{Cov}\left[F_{1}^{I},\;M_{1}^{I}\right]\\[2.84526pt] \operatorname{Cov}\left[F_{1}^{I},\;M_{1}^{I}\right]&\operatorname{Var}\!\left[M_{1}^{I}\right]\end{pmatrix}.

The two eigenvalues of 𝗆~\tilde{\mathsf{m}} are 0 and E[f0,1]+E[m0,1]=1\operatorname{E}\!\left[f_{0,1}\right]+\operatorname{E}\!\left[m_{0,1}\right]=1, and consequently the spectral radius of 𝗆~\tilde{\mathsf{m}} is 11. Using also that E[f0,1],E[m0,1](0,1)\operatorname{E}\!\left[f_{0,1}\right],\operatorname{E}\!\left[m_{0,1}\right]\in(0,1), we have that 𝗆~\tilde{\mathsf{m}} is a primitive matrix with Frobenius–Perron eigenvalue 11. Note also that 𝗆~k=𝗆~\tilde{\mathsf{m}}^{k}=\tilde{\mathsf{m}}, kk\in\mathbb{N}, since E[f0,1]+E[m0,1]=1\operatorname{E}\!\left[f_{0,1}\right]+\operatorname{E}\!\left[m_{0,1}\right]=1. Taking into these considerations, one can check that the conditions of Hypothesis 5 are satisfied with

𝒖~=(E[f0,1]E[m0,1]),𝒗~=(11),Λ𝒖~=(10),Π~=limk𝗆~k=𝗆~,\displaystyle\tilde{\boldsymbol{u}}=\begin{pmatrix}\operatorname{E}\!\left[f_{0,1}\right]\\ \operatorname{E}\!\left[m_{0,1}\right]\end{pmatrix},\qquad\tilde{\boldsymbol{v}}=\begin{pmatrix}1\\ 1\end{pmatrix},\qquad\mathsf{\Lambda}\tilde{\boldsymbol{u}}=\begin{pmatrix}1\\ 0\end{pmatrix},\qquad\tilde{\mathsf{\Pi}}=\lim_{k\to\infty}\tilde{\mathsf{m}}^{k}=\tilde{\mathsf{m}},

and the constants c~++\tilde{c}\in\mathbb{R}_{++} and r~(0,1)\tilde{r}\in(0,1) in part (c) of Hypothesis 5 can be chosen arbitrarily. Therefore, Theorem 3.3 implies that

(1n(FntMnt))t+(𝒳t(E[f0,1]E[m0,1]))t+as n,\left(\frac{1}{n}\begin{pmatrix}F_{\lfloor nt\rfloor}\\ M_{\lfloor nt\rfloor}\end{pmatrix}\right)_{t\in\mathbb{R}_{+}}\stackrel{{\scriptstyle\mathcal{L}}}{{\longrightarrow}}\left(\mathcal{X}_{t}\begin{pmatrix}\operatorname{E}\!\left[f_{0,1}\right]\\ \operatorname{E}\!\left[m_{0,1}\right]\end{pmatrix}\right)_{t\in\mathbb{R}_{+}}\qquad\text{as }n\to\infty,

where (𝒳t)t+(\mathcal{X}_{t})_{t\in\mathbb{R}_{+}} is the pathwise unique strong solution of the SDE

d𝒳t\displaystyle\,\mathrm{d}\mathcal{X}_{t} =(11)𝗆(01)dt+(11)(1Σ1+0Σ2)(11)𝒳t+d𝒲t\displaystyle=\begin{pmatrix}1&1\\ \end{pmatrix}\mathsf{m}\begin{pmatrix}0\\ 1\\ \end{pmatrix}\,\mathrm{d}t+\sqrt{\begin{pmatrix}1&1\\ \end{pmatrix}\big{(}1\cdot\mathsf{\Sigma}_{1}+0\cdot\mathsf{\Sigma}_{2}\big{)}\begin{pmatrix}1\\ 1\\ \end{pmatrix}\mathcal{X}^{+}_{t}}\,\mathrm{d}\mathcal{W}_{t}
=(E[F1I]+E[M1I])dt+(Var[f0,1]+2Cov[f0,1,m0,1]+Var[m0,1])𝒳t+d𝒲t,t+,\displaystyle=(\operatorname{E}\!\left[F_{1}^{I}\right]+\operatorname{E}\!\left[M_{1}^{I}\right])\,\mathrm{d}t+\sqrt{(\operatorname{Var}\!\left[f_{0,1}\right]+2\operatorname{Cov}\left[f_{0,1},\;m_{0,1}\right]+\operatorname{Var}\!\left[m_{0,1}\right])\mathcal{X}^{+}_{t}}\,\mathrm{d}\mathcal{W}_{t},\qquad t\in\mathbb{R}_{+},

with initial value 𝒳0=0\mathcal{X}_{0}=0, where (𝒲t)t+(\mathcal{W}_{t})_{t\in\mathbb{R}_{+}} is a standard Wiener process. Since Var[f0,1]+2Cov[f0,1,m0,1]+Var[m0,1]=Var[f0,1+m0,1]\operatorname{Var}\!\left[f_{0,1}\right]+2\operatorname{Cov}\left[f_{0,1},\;m_{0,1}\right]+\operatorname{Var}\!\left[m_{0,1}\right]=\operatorname{Var}\!\left[f_{0,1}+m_{0,1}\right], this yields the assertion. ∎

Remark 3.12.

Scaling limits for a class of processes that combine classical asexual Galton–Watson processes and two-sex Galton–Watson branching processes without immigration (introduced by Daley [8]) have been recently studied in Bansaye et al. [5]. However, this new family of processes does not include the class of two-sex Galton–Watson branching processes with immigration as a particular case, so the results in Bansaye et al. [5] do not imply our Corollaries 3.10 and 3.11. Even if we recover two-sex Galton–Watson branching processes without immigration as particular cases of the model (1)-(2) in Bansaye et al. [5] (using their notations, with the special choices n,pf,N:=1\mathcal{E}_{n,p}^{f,N}:=-1 and n,pm,N:=1\mathcal{E}_{n,p}^{m,N}:=-1, n,pn,p\in\mathbb{N}, which intuitively mean that the individuals (females or males) do not survive in the next generation), then their Theorem 2.1 cannot be applied, because their assumption (A1) does not hold in this case. Furthermore, note that for two-sex Galton–Watson branching processes without immigration, our Corollary 3.10 cannot be applied as well, since the assumption P[M1I=0]=0\operatorname{P}\left[M_{1}^{I}=0\right]=0 does not hold in this case, however Corollary 3.11 can be applied and the limit process of the scaled two-sex Galton–Watson branching processes without immigration in question is the identically zero process. \blacksquare

Next, we formulate another corollary of Theorem 3.3, namely, we derive a limit distribution for the relative frequencies of distinct types of individuals. For different models, one can find similar results in Jagers [23, Corollary 1], in Yakovlev and Yanev [34, Proposition 1], [35, Theorem 2], and in Barczy and Pap [7, Corollary 4.1].

Recall that if 𝗆~\tilde{\mathsf{m}} is primitive with Perron–Frobenius eigenvalue 11, then 𝒖~\tilde{\boldsymbol{u}} and 𝒗~\tilde{\boldsymbol{v}} denote the right and left Perron–Frobenius eigenvectors corresponding to 11, respectively.

Corollary 3.13.

Suppose that Hypotheses 14 and 6 hold for the CMBP (𝐙k)k+(\boldsymbol{Z}_{k})_{k\in\mathbb{Z}_{+}} given in (2.1). Assume also that the matrix 𝗆~\tilde{\mathsf{m}} is primitive with Perron–Frobenius eigenvalue 11, and Λ𝐮~+p\mathsf{\Lambda}\tilde{\boldsymbol{u}}\in\mathbb{R}_{+}^{p}. If, in addition, 𝐯~𝗆𝛂>0\tilde{\boldsymbol{v}}^{\top}\mathsf{m}\boldsymbol{\alpha}>0, then for all t>0t>0 and i,j{1,,p}i,j\in\{1,\ldots,p\}, we get

𝟙{𝒆j𝒁nt0}𝒆i𝒁nt𝒆j𝒁ntP𝒆i𝒖~𝒆j𝒖~and𝟙{𝒁nt𝟎p}𝒆i𝒁ntk=1p𝒆k𝒁ntP𝒆i𝒖~as n.\mathds{1}_{\{\boldsymbol{e}_{j}^{\top}{\boldsymbol{Z}}_{\lfloor nt\rfloor}\neq 0\}}\frac{\boldsymbol{e}_{i}^{\top}{\boldsymbol{Z}}_{\lfloor nt\rfloor}}{\boldsymbol{e}_{j}^{\top}{\boldsymbol{Z}}_{\lfloor nt\rfloor}}\stackrel{{\scriptstyle\mathrm{P}}}{{\longrightarrow}}\frac{\boldsymbol{e}_{i}^{\top}\tilde{\boldsymbol{u}}}{\boldsymbol{e}_{j}^{\top}\tilde{\boldsymbol{u}}}\qquad\text{and}\qquad\mathds{1}_{\{{\boldsymbol{Z}}_{\lfloor nt\rfloor}\neq\boldsymbol{0}_{p}\}}\frac{\boldsymbol{e}_{i}^{\top}{\boldsymbol{Z}}_{\lfloor nt\rfloor}}{\sum_{k=1}^{p}\boldsymbol{e}_{k}^{\top}{\boldsymbol{Z}}_{\lfloor nt\rfloor}}\stackrel{{\scriptstyle\mathrm{P}}}{{\longrightarrow}}\boldsymbol{e}_{i}^{\top}\tilde{\boldsymbol{u}}\qquad\text{as $n\to\infty$.}
Remark 3.14.

The indicator functions 𝟙{𝒆j𝒁nt0}\mathds{1}_{\{\boldsymbol{e}_{j}^{\top}{\boldsymbol{Z}}_{\lfloor nt\rfloor}\neq 0\}} and 𝟙{𝒁nt𝟎p}\mathds{1}_{\{{\boldsymbol{Z}}_{\lfloor nt\rfloor}\neq\boldsymbol{0}_{p}\}} are needed in Corollary 3.13, since it can happen that P[𝒁nt=𝟎p]>0\operatorname{P}\left[{\boldsymbol{Z}}_{\lfloor nt\rfloor}=\boldsymbol{0}_{p}\right]>0 for some t>0t>0. \blacksquare

Proof of Corollary 3.13. For all t>0t>0 and i,j{1,,p}i,j\in\{1,\ldots,p\}, Theorem 3.3 yields that

1n(𝒆i𝒁nt,𝒆j𝒁nt)(𝒆i𝒖~𝒵t,𝒆j𝒖~𝒵t)as n.\frac{1}{n}\Big{(}\boldsymbol{e}_{i}^{\top}{\boldsymbol{Z}}_{\lfloor nt\rfloor},\boldsymbol{e}_{j}^{\top}{\boldsymbol{Z}}_{\lfloor nt\rfloor}\Big{)}\stackrel{{\scriptstyle\mathcal{L}}}{{\longrightarrow}}\Big{(}\boldsymbol{e}_{i}^{\top}\tilde{\boldsymbol{u}}\,\mathcal{Z}_{t},\boldsymbol{e}_{j}^{\top}\tilde{\boldsymbol{u}}\,\mathcal{Z}_{t}\Big{)}\qquad\text{as $n\to\infty$.}

The function g:2g:\mathbb{R}^{2}\to\mathbb{R} defined by

g(x,y)\colonequals{xyif x and y0,0if x and y=0,g(x,y)\colonequals\begin{cases}\frac{x}{y}&\text{if $x\in\mathbb{R}$ and $y\neq 0$,}\\ 0&\text{if $x\in\mathbb{R}$ and $y=0$,}\end{cases}

is continuous on the set ×({0})\mathbb{R}\times(\mathbb{R}\setminus\{0\}), and the distribution of (𝒆i𝒖~𝒵t,𝒆j𝒖~𝒵t)\Big{(}\boldsymbol{e}_{i}^{\top}\tilde{\boldsymbol{u}}\,\mathcal{Z}_{t},\boldsymbol{e}_{j}^{\top}\tilde{\boldsymbol{u}}\,\mathcal{Z}_{t}\Big{)} is concentrated on this set, since, by Remark 3.4, P[𝒵t>0]=1\operatorname{P}\left[\mathcal{Z}_{t}>0\right]=1 for all t>0t>0 and 𝒆j𝒖~>0\boldsymbol{e}_{j}^{\top}\tilde{\boldsymbol{u}}>0. Hence the continuous mapping theorem yields that

𝟙{𝒆j𝒁nt0}𝒆i𝒁nt𝒆j𝒁nt\displaystyle\mathds{1}_{\{\boldsymbol{e}_{j}^{\top}{\boldsymbol{Z}}_{\lfloor nt\rfloor}\neq 0\}}\frac{\boldsymbol{e}_{i}^{\top}{\boldsymbol{Z}}_{\lfloor nt\rfloor}}{\boldsymbol{e}_{j}^{\top}{\boldsymbol{Z}}_{\lfloor nt\rfloor}} =g(n1𝒆i𝒁nt,n1𝒆j𝒁nt)\displaystyle=g(n^{-1}\boldsymbol{e}_{i}^{\top}{\boldsymbol{Z}}_{\lfloor nt\rfloor},n^{-1}\boldsymbol{e}_{j}^{\top}{\boldsymbol{Z}}_{\lfloor nt\rfloor})
g(𝒆i𝒖~𝒵t,𝒆j𝒖~𝒵t)=𝟙{𝒆j𝒖~𝒵t0}𝒆i𝒖~𝒵t𝒆j𝒖~𝒵t=𝒆i𝒖~𝒆j𝒖~as n,\displaystyle\stackrel{{\scriptstyle\mathcal{L}}}{{\longrightarrow}}g(\boldsymbol{e}_{i}^{\top}\tilde{\boldsymbol{u}}\,\mathcal{Z}_{t},\boldsymbol{e}_{j}^{\top}\tilde{\boldsymbol{u}}\,\mathcal{Z}_{t})=\mathds{1}_{\{\boldsymbol{e}_{j}^{\top}\tilde{\boldsymbol{u}}\,\mathcal{Z}_{t}\neq 0\}}\frac{\boldsymbol{e}_{i}^{\top}\tilde{\boldsymbol{u}}\,\mathcal{Z}_{t}}{\boldsymbol{e}_{j}^{\top}\tilde{\boldsymbol{u}}\,\mathcal{Z}_{t}}=\frac{\boldsymbol{e}_{i}^{\top}\tilde{\boldsymbol{u}}}{\boldsymbol{e}_{j}^{\top}\tilde{\boldsymbol{u}}}\qquad\text{as $n\to\infty$,}

thus we obtain the first convergence (using also that the limit is not random, so convergence in distribution yields convergence in probability in this case).

Similarly, for each i{1,,p}i\in\{1,\ldots,p\}, the function h:ph:\mathbb{R}^{p}\to\mathbb{R} defined by

h(x1,,xp)\colonequals{xii=1pxkif (x1,,xp)p and k=1pxk0,0if (x1,,xp)p and k=1pxk=0,h(x_{1},\ldots,x_{p})\colonequals\begin{cases}\frac{x_{i}}{\sum_{i=1}^{p}x_{k}}&\text{if $(x_{1},\ldots,x_{p})\in\mathbb{R}^{p}$ and $\sum_{k=1}^{p}x_{k}\neq 0$,}\\ 0&\text{if $(x_{1},\ldots,x_{p})\in\mathbb{R}^{p}$ and $\sum_{k=1}^{p}x_{k}=0$,}\end{cases}

is continuous on the set p{(x1,,xp)p:k=1pxk=0}\mathbb{R}^{p}\setminus\{(x_{1},\ldots,x_{p})\in\mathbb{R}^{p}:\sum_{k=1}^{p}x_{k}=0\}, and the distribution of 𝒖~𝒵t\tilde{\boldsymbol{u}}\mathcal{Z}_{t} is concentrated on this set, since P[𝒵t>0]=1\operatorname{P}\left[\mathcal{Z}_{t}>0\right]=1, t>0t>0, and 𝒖~++p\tilde{\boldsymbol{u}}\in\mathbb{R}_{++}^{p} imply that P[k=1p𝒆k𝒖~𝒵t=0]=0\operatorname{P}\left[\sum_{k=1}^{p}\boldsymbol{e}_{k}^{\top}\tilde{\boldsymbol{u}}\mathcal{Z}_{t}=0\right]=0. Using that 𝟙{𝒁nt𝟎p}=𝟙{k=1p𝒆k𝒁nt0}\mathds{1}_{\{{\boldsymbol{Z}}_{\lfloor nt\rfloor}\neq\boldsymbol{0}_{p}\}}=\mathds{1}_{\{\sum_{k=1}^{p}\boldsymbol{e}_{k}^{\top}{\boldsymbol{Z}}_{\lfloor nt\rfloor}\neq 0\}}, the continuous mapping theorem yields that

𝟙{𝒁nt𝟎p}𝒆i𝒁ntk=1p𝒆k𝒁nt\displaystyle\mathds{1}_{\{{\boldsymbol{Z}}_{\lfloor nt\rfloor}\neq\mathbf{0}_{p}\}}\frac{\boldsymbol{e}_{i}^{\top}{\boldsymbol{Z}}_{\lfloor nt\rfloor}}{\sum_{k=1}^{p}\boldsymbol{e}_{k}^{\top}{\boldsymbol{Z}}_{\lfloor nt\rfloor}} =h(n1𝒁nt)\displaystyle=h(n^{-1}{\boldsymbol{Z}}_{\lfloor nt\rfloor})
h(𝒖~𝒵t)=𝟙{k=1p𝒆k𝒖~𝒵t0}𝒆i𝒖~𝒵tk=1p𝒆k𝒖~𝒵t=𝒆i𝒖~k=1p𝒆k𝒖~=𝒆i𝒖~\displaystyle\stackrel{{\scriptstyle\mathcal{L}}}{{\longrightarrow}}h(\tilde{\boldsymbol{u}}\mathcal{Z}_{t})=\mathds{1}_{\{\sum_{k=1}^{p}\boldsymbol{e}_{k}^{\top}\tilde{\boldsymbol{u}}\mathcal{Z}_{t}\neq 0\}}\frac{\boldsymbol{e}_{i}^{\top}\tilde{\boldsymbol{u}}\mathcal{Z}_{t}}{\sum_{k=1}^{p}\boldsymbol{e}_{k}^{\top}\tilde{\boldsymbol{u}}\mathcal{Z}_{t}}=\frac{\boldsymbol{e}_{i}^{\top}\tilde{\boldsymbol{u}}}{\sum_{k=1}^{p}\boldsymbol{e}_{k}^{\top}\tilde{\boldsymbol{u}}}=\boldsymbol{e}_{i}^{\top}\tilde{\boldsymbol{u}}

as nn\to\infty, where we also used that the sum of coordinates of 𝒖~\tilde{\boldsymbol{u}} is 1 (see part (ii) of Lemma A.1). Thus we obtain the second convergence as well (using again that the limit is not random). \Box

4 Proof of Theorem 3.3

The proof is divided in four steps. In the first three Steps 1, 2 and 3, we introduce some auxiliary stochastic processes, prove their convergence in distribution, and in Step 4, we discuss that how Steps 1–3 yield the assertion. The detailed proofs for Steps 1–3 can be found after Step 4.

Step 1

From the process (𝒁k)k+,(\boldsymbol{Z}_{k})_{k\in\mathbb{Z}_{+}}, we define a martingale difference sequence with respect to the filtration (k)k+(\mathcal{F}_{k})_{k\in\mathbb{Z}_{+}} given by

𝑴k\colonequals𝒁kE[𝒁k|k1],k,\boldsymbol{M}_{k}\colonequals\boldsymbol{Z}_{k}-\operatorname{E}\left[\boldsymbol{Z}_{k}\;\middle|\;\mathcal{F}_{k-1}\right],\qquad k\in\mathbb{N}, (4.1)

and we also consider the following sequence of random step processes

𝓜t(n)=n1(𝒁0+k=1nt𝑴k),t+,n.\boldsymbol{\mathcal{M}}_{t}^{(n)}=n^{-1}\left(\boldsymbol{Z}_{0}+\sum_{k=1}^{\lfloor nt\rfloor}\boldsymbol{M}_{k}\right),\quad\quad t\in\mathbb{R}_{+},\quad n\in\mathbb{N}. (4.2)

We will prove that

𝓜(n)𝓜as n,\boldsymbol{\mathcal{M}}^{(n)}\stackrel{{\scriptstyle\mathcal{L}}}{{\longrightarrow}}\boldsymbol{\mathcal{M}}\qquad\text{as }n\to\infty, (4.3)

where (𝓜t)t+(\boldsymbol{\mathcal{M}}_{t})_{t\in\mathbb{R}_{+}} is the pathwise unique strong solution of the SDE

d𝓜t=(ΛΠ~(𝓜t+t𝗆𝜶))+𝝨d𝓦t,t+,\,\mathrm{d}\boldsymbol{\mathcal{M}}_{t}=\sqrt{(\mathsf{\Lambda}\tilde{\mathsf{\Pi}}(\boldsymbol{\mathcal{M}}_{t}+t\mathsf{m}\boldsymbol{\alpha}))^{+}\odot\boldsymbol{\mathsf{\Sigma}}}\,\mathrm{d}\boldsymbol{\mathcal{W}}_{t},\qquad t\in\mathbb{R}_{+}, (4.4)

with initial value 𝟎p\boldsymbol{0}_{p}, where (𝓦t)t+(\boldsymbol{\mathcal{W}}_{t})_{t\in\mathbb{R}_{+}} is a pp–dimensional standard Wiener process.

Step 2

We will show that (4.3) implies

𝚿n(𝓜(n))𝚿(𝓜)as n,\boldsymbol{\Psi}_{n}(\boldsymbol{\mathcal{M}}^{(n)})\stackrel{{\scriptstyle\mathcal{L}}}{{\longrightarrow}}\boldsymbol{\Psi}(\boldsymbol{\mathcal{M}})\qquad\text{as }n\to\infty, (4.5)

where the mappings 𝚿:𝐃(+,p)𝐃(+,p)\boldsymbol{\Psi}:\mathbf{D}(\mathbb{R}_{+},\mathbb{R}^{p})\to\mathbf{D}(\mathbb{R}_{+},\mathbb{R}^{p}) and 𝚿n:𝐃(+,p)𝐃(+,p)\boldsymbol{\Psi}_{n}:\mathbf{D}(\mathbb{R}_{+},\mathbb{R}^{p})\to\mathbf{D}(\mathbb{R}_{+},\mathbb{R}^{p}), nn\in\mathbb{N}, are given by

𝚿(𝒇)(t)\displaystyle\boldsymbol{\Psi}(\boldsymbol{f})(t) \colonequalsΠ~(𝒇(t)+t𝗆𝜶),\displaystyle\colonequals\tilde{\mathsf{\Pi}}(\boldsymbol{f}(t)+t\mathsf{m}\boldsymbol{\alpha}), (4.6)
𝚿n(𝒇)(t)\displaystyle\boldsymbol{\Psi}_{n}(\boldsymbol{f})(t) \colonequals𝗆~nt𝒇(0)+j=1nt𝗆~ntj(𝒇(jn)𝒇(j1n)+1n𝗆𝜶),\displaystyle\colonequals\tilde{\mathsf{m}}^{\lfloor nt\rfloor}\boldsymbol{f}(0)+\sum_{j=1}^{\lfloor nt\rfloor}\tilde{\mathsf{m}}^{\lfloor nt\rfloor-j}\left(\boldsymbol{f}\left(\frac{j}{n}\right)-\boldsymbol{f}\left(\frac{j-1}{n}\right)+\frac{1}{n}\mathsf{m}\boldsymbol{\alpha}\right), (4.7)

for 𝒇𝐃(+,p)\boldsymbol{f}\in\mathbf{D}(\mathbb{R}_{+},\mathbb{R}^{p}), t+t\in\mathbb{R}_{+}, nn\in\mathbb{N}.

Step 3

We will check that 𝓩(n)=𝚿n(𝓜(n))+𝓥(n)\boldsymbol{\mathcal{Z}}^{(n)}=\boldsymbol{\Psi}_{n}(\boldsymbol{\mathcal{M}}^{(n)})+\boldsymbol{\mathcal{V}}^{(n)}, nn\in\mathbb{N}, and

𝓩(n)𝚿(𝓜)as n,\boldsymbol{\mathcal{Z}}^{(n)}\stackrel{{\scriptstyle\mathcal{L}}}{{\longrightarrow}}\boldsymbol{\Psi}(\boldsymbol{\mathcal{M}})\qquad\text{as }n\to\infty, (4.8)

where (𝓥t(n))t+,(\boldsymbol{\mathcal{V}}_{t}^{(n)})_{t\in\mathbb{R}_{+}}, n,n\in\mathbb{N}, is another sequence of random step processes defined by

𝓥t(n)\colonequalsn1j=1nt𝗆~ntj𝗆𝒈(𝒁j1),t+,n.\boldsymbol{\mathcal{V}}_{t}^{(n)}\colonequals n^{-1}\sum_{j=1}^{\lfloor nt\rfloor}\tilde{\mathsf{m}}^{\lfloor nt\rfloor-j}\mathsf{m}\boldsymbol{g}(\boldsymbol{Z}_{j-1}),\qquad t\in\mathbb{R}_{+},\quad n\in\mathbb{N}. (4.9)

Step 4

As a consequence of Steps 1–3, one can easily derive (3.1). Namely, let us define

𝓩t\displaystyle\boldsymbol{\mathcal{Z}}_{t} \colonequals𝚿(𝓜t)=Π~(𝓜t+t𝗆𝜶),t+,\displaystyle\colonequals\boldsymbol{\Psi}(\boldsymbol{\mathcal{M}}_{t})=\tilde{\mathsf{\Pi}}(\boldsymbol{\mathcal{M}}_{t}+t\mathsf{m}\boldsymbol{\alpha}),\qquad t\in\mathbb{R}_{+}, (4.10)
𝒴t\displaystyle\mathcal{Y}_{t} \colonequals𝒗~𝓩t=𝒗~(𝓜t+t𝗆𝜶),t+,\displaystyle\colonequals\tilde{\boldsymbol{v}}^{\top}\boldsymbol{\mathcal{Z}}_{t}=\tilde{\boldsymbol{v}}^{\top}(\boldsymbol{\mathcal{M}}_{t}+t\mathsf{m}\boldsymbol{\alpha}),\qquad t\in\mathbb{R}_{+}, (4.11)

where we used that 𝒗~Π~=𝒗~𝒖~𝒗~=𝒗~\tilde{\boldsymbol{v}}^{\top}\tilde{\mathsf{\Pi}}=\tilde{\boldsymbol{v}}^{\top}\tilde{\boldsymbol{u}}\tilde{\boldsymbol{v}}^{\top}=\tilde{\boldsymbol{v}}^{\top} (see Hypothesis 5).

Then 𝓩=𝒴𝒖~\boldsymbol{\mathcal{Z}}=\mathcal{Y}\tilde{\boldsymbol{u}}, since

𝒴t𝒖~=𝒗~(𝓜t+t𝗆𝜶)𝒖~=𝒖~(𝒗~𝓜t)+t𝒖~(𝒗~𝗆𝜶)=Π~𝓜t+tΠ~𝗆𝜶=𝓩t,t+.\mathcal{Y}_{t}\tilde{\boldsymbol{u}}=\tilde{\boldsymbol{v}}^{\top}(\boldsymbol{\mathcal{M}}_{t}+t\mathsf{m}\boldsymbol{\alpha})\tilde{\boldsymbol{u}}=\tilde{\boldsymbol{u}}(\tilde{\boldsymbol{v}}^{\top}\boldsymbol{\mathcal{M}}_{t})+t\tilde{\boldsymbol{u}}(\tilde{\boldsymbol{v}}^{\top}\mathsf{m}\boldsymbol{\alpha})=\tilde{\mathsf{\Pi}}\boldsymbol{\mathcal{M}}_{t}+t\tilde{\mathsf{\Pi}}\mathsf{m}\boldsymbol{\alpha}=\boldsymbol{\mathcal{Z}}_{t},\qquad t\in\mathbb{R}_{+}.

Further, by Itô’s formula, we can show that (𝒴t)t+(\mathcal{Y}_{t})_{t\in\mathbb{R}_{+}} is the pathwise unique strong solution of the SDE (3.2) with initial value 0, thus (3.1) follows and the proof concludes. Indeed, the SDE (4.4) can also be written in the form

d𝓜t=(𝒗~(𝓜t+t𝗆𝜶))+((Λ𝒖~)𝝨)d𝓦t,t+,\,\mathrm{d}\boldsymbol{\mathcal{M}}_{t}=\sqrt{(\tilde{\boldsymbol{v}}^{\top}(\boldsymbol{\mathcal{M}}_{t}+t\mathsf{m}\boldsymbol{\alpha}))^{+}((\mathsf{\Lambda}\tilde{\boldsymbol{u}})\odot\boldsymbol{\mathsf{\Sigma}})}\,\mathrm{d}\boldsymbol{\mathcal{W}}_{t},\qquad t\in\mathbb{R}_{+}, (4.12)

since Λ𝒖~+p\mathsf{\Lambda}\tilde{\boldsymbol{u}}\in\mathbb{R}_{+}^{p} (see Hypothesis 5) implies that

(𝒗~(𝓜t+t𝗆𝜶))+Λ𝒖~=((Λ𝒖~)𝒗~(𝓜t+t𝗆𝜶))+=(ΛΠ~(𝓜t+t𝗆𝜶))+,t+.(\tilde{\boldsymbol{v}}^{\top}(\boldsymbol{\mathcal{M}}_{t}+t\mathsf{m}\boldsymbol{\alpha}))^{+}\mathsf{\Lambda}\tilde{\boldsymbol{u}}=((\mathsf{\Lambda}\tilde{\boldsymbol{u}})\tilde{\boldsymbol{v}}^{\top}(\boldsymbol{\mathcal{M}}_{t}+t\mathsf{m}\boldsymbol{\alpha}))^{+}=(\mathsf{\Lambda}\tilde{\mathsf{\Pi}}(\boldsymbol{\mathcal{M}}_{t}+t\mathsf{m}\boldsymbol{\alpha}))^{+},\qquad t\in\mathbb{R}_{+}.

Therefore, (𝒴t)t+(\mathcal{Y}_{t})_{t\in\mathbb{R}_{+}} is the pathwise unique strong solution of the SDE

d𝒴t=𝒗~𝗆𝜶dt+𝒴t+𝒗~(Λ𝒖~)𝝨d𝓦t,t+,\,\mathrm{d}\mathcal{Y}_{t}=\tilde{\boldsymbol{v}}^{\top}\mathsf{m}\boldsymbol{\alpha}\,\mathrm{d}t+\sqrt{\mathcal{Y}_{t}^{+}}\tilde{\boldsymbol{v}}^{\top}\sqrt{(\mathsf{\Lambda}\tilde{\boldsymbol{u}})\odot\boldsymbol{\mathsf{\Sigma}}}\,\mathrm{d}\boldsymbol{\mathcal{W}}_{t},\qquad t\in\mathbb{R}_{+}, (4.13)

with initial value 0, since, by (4.11), d𝒴t=𝒗~𝗆𝜶dt+𝒗~d𝓜t\,\mathrm{d}\mathcal{Y}_{t}=\tilde{\boldsymbol{v}}^{\top}\mathsf{m}\boldsymbol{\alpha}\,\mathrm{d}t+\tilde{\boldsymbol{v}}^{\top}\,\mathrm{d}\boldsymbol{\mathcal{M}}_{t}, t+t\in\mathbb{R}_{+}, and (𝓜t)t+(\boldsymbol{\mathcal{M}}_{t})_{t\in\mathbb{R}_{+}} is the pathwise unique strong solution of (4.12) with initial value 𝟎p\boldsymbol{0}_{p}.

Suppose that 𝒗~((Λ𝒖~)𝝨)𝒗~0\tilde{\boldsymbol{v}}^{\top}((\mathsf{\Lambda}\tilde{\boldsymbol{u}})\odot\boldsymbol{\mathsf{\Sigma}})\tilde{\boldsymbol{v}}\neq 0, then the process (𝒲t)t+(\mathcal{W}_{t})_{t\in\mathbb{R}_{+}} given by

𝒲t\colonequals(𝒗~((Λ𝒖~)𝝨)𝒗~)1/2𝒗~(Λ𝒖~)𝝨𝓦t,t+,\mathcal{W}_{t}\colonequals\left(\tilde{\boldsymbol{v}}^{\top}((\mathsf{\Lambda}\tilde{\boldsymbol{u}})\odot\boldsymbol{\mathsf{\Sigma}})\tilde{\boldsymbol{v}}\right)^{-1/2}\tilde{\boldsymbol{v}}^{\top}\sqrt{(\mathsf{\Lambda}\tilde{\boldsymbol{u}})\odot\boldsymbol{\mathsf{\Sigma}}}\,\boldsymbol{\mathcal{W}}_{t},\qquad t\in\mathbb{R}_{+},

is a well-defined one-dimensional standard Wiener process, since Λ𝒖~+p\mathsf{\Lambda}\tilde{\boldsymbol{u}}\in\mathbb{R}_{+}^{p}, yielding that (Λ𝒖~)𝝨(\mathsf{\Lambda}\tilde{\boldsymbol{u}})\odot\boldsymbol{\mathsf{\Sigma}} is a positive semi-definite matrix. In such a case, the SDE (4.13) can be written as

d𝒴t=𝒗~𝗆𝜶dt+𝒴t+𝒗~((Λ𝒖~)𝝨)𝒗~d𝒲t,t+,\displaystyle\,\mathrm{d}\mathcal{Y}_{t}=\tilde{\boldsymbol{v}}^{\top}\mathsf{m}\boldsymbol{\alpha}\,\mathrm{d}t+\sqrt{\mathcal{Y}_{t}^{+}}\sqrt{\tilde{\boldsymbol{v}}^{\top}((\mathsf{\Lambda}\tilde{\boldsymbol{u}})\odot\boldsymbol{\mathsf{\Sigma}})\tilde{\boldsymbol{v}}}\,\mathrm{d}\mathcal{W}_{t},\qquad t\in\mathbb{R}_{+}, (4.14)

which coincides with the SDE (3.2), as desired. Otherwise, it is trivial because if 𝒗~((Λ𝒖~)𝝨)𝒗~=0\tilde{\boldsymbol{v}}^{\top}((\mathsf{\Lambda}\tilde{\boldsymbol{u}})\odot\boldsymbol{\mathsf{\Sigma}})\tilde{\boldsymbol{v}}=0, then 𝒗~(Λ𝒖~)𝝨=0\|\tilde{\boldsymbol{v}}^{\top}\sqrt{(\mathsf{\Lambda}\tilde{\boldsymbol{u}})\odot\boldsymbol{\mathsf{\Sigma}}}\|=0, yielding that SDEs (3.2) and (4.13) correspond to the ODE dx(t)=𝒗~𝗆𝜶dt\,\mathrm{d}x(t)=\tilde{\boldsymbol{v}}\mathsf{m}\boldsymbol{\alpha}\,\mathrm{d}t, t+t\in\mathbb{R}_{+}, with initial value 0, and this ODE has the identically zero solution.

Finally, notice that the statement in Remark 3.5 can be derived using the equality 𝓩=𝒴𝒖~\boldsymbol{\mathcal{Z}}=\mathcal{Y}\tilde{\boldsymbol{u}}, (4.8), (4.10), (4.11), and (4.12). Namely, we have

d𝓩t=Π~𝗆𝜶dt+Π~d𝓜t=Π~𝗆𝜶dt+Π~𝒴t+((Λ𝒖~)𝝨)d𝓦t,t+.\displaystyle\,\mathrm{d}\boldsymbol{\mathcal{Z}}_{t}=\tilde{\mathsf{\Pi}}\mathsf{m}\boldsymbol{\alpha}\,\mathrm{d}t+\tilde{\mathsf{\Pi}}\,\mathrm{d}\boldsymbol{\mathcal{M}}_{t}=\tilde{\mathsf{\Pi}}\mathsf{m}\boldsymbol{\alpha}\,\mathrm{d}t+\tilde{\mathsf{\Pi}}\sqrt{\mathcal{Y}_{t}^{+}((\mathsf{\Lambda}\tilde{\boldsymbol{u}})\odot\boldsymbol{\mathsf{\Sigma}})}\,\mathrm{d}\boldsymbol{\mathcal{W}}_{t},\qquad t\in\mathbb{R}_{+}.

Since Λ𝒖~+p\mathsf{\Lambda}\tilde{\boldsymbol{u}}\in\mathbb{R}_{+}^{p}, we have

𝒴t+Λ𝒖~=(𝒴tΛ𝒖~)+=(Λ𝒴t𝒖~)+=(Λ𝓩t)+,t+,\mathcal{Y}_{t}^{+}\mathsf{\Lambda}\tilde{\boldsymbol{u}}=(\mathcal{Y}_{t}\mathsf{\Lambda}\tilde{\boldsymbol{u}})^{+}=(\mathsf{\Lambda}\mathcal{Y}_{t}\tilde{\boldsymbol{u}})^{+}=(\mathsf{\Lambda}\boldsymbol{\mathcal{Z}}_{t})^{+},\qquad t\in\mathbb{R}_{+},

yielding (3.3), as desired.

Proof of Step 1

We need to show that (4.3) holds. To this end, we apply Theorem A.4 with 𝒃(t,𝒙)=𝟎pp\boldsymbol{b}(t,\boldsymbol{x})=\boldsymbol{0}_{p}\in\mathbb{R}^{p}, 𝖢(t,𝒙)=(ΛΠ~(𝒙+t𝗆𝜶))+𝝨p×p\mathsf{C}(t,\boldsymbol{x})=\sqrt{(\mathsf{\Lambda\tilde{\Pi}}(\boldsymbol{x}+t\mathsf{m}\boldsymbol{\alpha}))^{+}\odot\boldsymbol{\mathsf{\Sigma}}}\in\mathbb{R}^{p\times p}, (t,𝒙)+×p(t,\boldsymbol{x})\in\mathbb{R}_{+}\times\mathbb{R}^{p}, 𝜼\boldsymbol{\eta} is the Dirac measure concentrated at 𝟎p\boldsymbol{0}_{p}, 𝓤=𝓜\boldsymbol{\mathcal{U}}=\boldsymbol{\mathcal{M}}, k(n)=k\mathcal{F}_{k}^{(n)}=\mathcal{F}_{k}, 𝑼0(n)=n1𝒁0\boldsymbol{U}_{0}^{(n)}=n^{-1}\boldsymbol{Z}_{0} and 𝑼k(n)=n1𝑴k\boldsymbol{U}_{k}^{(n)}=n^{-1}\boldsymbol{M}_{k}, k,nk,n\in\mathbb{N}.

First, we check that the SDE (4.4) has a pathwise unique strong solution for all p\mathbb{R}^{p}–valued initial values. As seen in Step 4, we can rewrite the SDE (4.4) in the form (4.12).

If (𝓜t(𝒚0))t+(\boldsymbol{\mathcal{M}}_{t}^{(\boldsymbol{y}_{0})})_{t\in\mathbb{R}_{+}} is a strong solution of (4.12) with initial value 𝓜0(𝒚0)=𝒚0p\boldsymbol{\mathcal{M}}_{0}^{(\boldsymbol{y}_{0})}=\boldsymbol{y}_{0}\in\mathbb{R}^{p}, then we check that the process ((𝒫t(𝒚0),𝓠t(𝒚0)))t+((\mathcal{P}_{t}^{(\boldsymbol{y}_{0})},\boldsymbol{\mathcal{Q}}_{t}^{(\boldsymbol{y}_{0})}))_{t\in\mathbb{R}_{+}}, defined by

𝒫t(𝒚0)\colonequals𝒗~(𝓜t(𝒚0)+t𝗆𝜶),𝓠t(𝒚0)\colonequals𝓜t(𝒚0)𝒫t(𝒚0)𝒖~,t+,\mathcal{P}_{t}^{(\boldsymbol{y}_{0})}\colonequals\tilde{\boldsymbol{v}}^{\top}(\boldsymbol{\mathcal{M}}_{t}^{(\boldsymbol{y}_{0})}+t\mathsf{m}\boldsymbol{\alpha}),\qquad\boldsymbol{\mathcal{Q}}_{t}^{(\boldsymbol{y}_{0})}\colonequals\boldsymbol{\mathcal{M}}_{t}^{(\boldsymbol{y}_{0})}-\mathcal{P}_{t}^{(\boldsymbol{y}_{0})}\tilde{\boldsymbol{u}},\qquad t\in\mathbb{R}_{+},

is a strong solution of the SDE

{d𝒫t=𝒗~𝗆𝜶dt+𝒫t+𝒗~(Λ𝒖~)𝝨d𝓦t,d𝓠t=Π~𝗆𝜶dt+𝒫t+(𝖨pΠ~)(Λ𝒖~)𝝨d𝓦t,t+,\begin{cases}\,\mathrm{d}\mathcal{P}_{t}=\tilde{\boldsymbol{v}}^{\top}\mathsf{m}\boldsymbol{\alpha}\,\mathrm{d}t+\sqrt{\mathcal{P}_{t}^{+}}\tilde{\boldsymbol{v}}^{\top}\sqrt{(\mathsf{\Lambda}\tilde{\boldsymbol{u}})\odot\boldsymbol{\mathsf{\Sigma}}}\,\mathrm{d}\boldsymbol{\mathcal{W}}_{t},\\ \,\mathrm{d}\boldsymbol{\mathcal{Q}}_{t}=-\tilde{\mathsf{\Pi}}\mathsf{m}\boldsymbol{\alpha}\,\mathrm{d}t+\sqrt{\mathcal{P}_{t}^{+}}(\mathsf{I}_{p}-\tilde{\mathsf{\Pi}})\sqrt{(\mathsf{\Lambda}\tilde{\boldsymbol{u}})\odot\boldsymbol{\mathsf{\Sigma}}}\,\mathrm{d}\boldsymbol{\mathcal{W}}_{t},\end{cases}\qquad t\in\mathbb{R}_{+}, (4.15)

with initial value

(𝒫0(𝒚0),𝓠0(𝒚0))=(𝒗~𝒚0,𝒚0𝒗~𝒚0𝒖~)=(𝒗~𝒚0,𝒚0𝒖~𝒗~𝒚0)=(𝒗~𝒚0,(𝖨pΠ~)𝒚0).(\mathcal{P}_{0}^{(\boldsymbol{y}_{0})},\boldsymbol{\mathcal{Q}}_{0}^{(\boldsymbol{y}_{0})})=(\tilde{\boldsymbol{v}}^{\top}\boldsymbol{y}_{0},\boldsymbol{y}_{0}-\tilde{\boldsymbol{v}}^{\top}\boldsymbol{y}_{0}\tilde{\boldsymbol{u}})=(\tilde{\boldsymbol{v}}^{\top}\boldsymbol{y}_{0},\boldsymbol{y}_{0}-\tilde{\boldsymbol{u}}\tilde{\boldsymbol{v}}^{\top}\boldsymbol{y}_{0})=(\tilde{\boldsymbol{v}}^{\top}\boldsymbol{y}_{0},(\mathsf{I}_{p}-\tilde{\mathsf{\Pi}})\boldsymbol{y}_{0}).

Notice that the first SDE in (4.15) readily follows from (4.12), and the second one can be checked as follows

d𝓠t(𝒚0)\displaystyle\,\mathrm{d}\boldsymbol{\mathcal{Q}}_{t}^{(\boldsymbol{y}_{0})} =d𝓜t(𝒚0)𝒖~d𝒫t(𝒚0)=𝒖~𝒗~𝗆𝜶dt+(𝖨p𝒖~𝒗~)d𝓜t(𝒚0)\displaystyle=\,\mathrm{d}\boldsymbol{\mathcal{M}}_{t}^{(\boldsymbol{y}_{0})}-\tilde{\boldsymbol{u}}\,\mathrm{d}\mathcal{P}_{t}^{(\boldsymbol{y}_{0})}=-\tilde{\boldsymbol{u}}\tilde{\boldsymbol{v}}^{\top}\mathsf{m}\boldsymbol{\alpha}\,\mathrm{d}t+(\mathsf{I}_{p}-\tilde{\boldsymbol{u}}\tilde{\boldsymbol{v}}^{\top})\,\mathrm{d}\boldsymbol{\mathcal{M}}_{t}^{(\boldsymbol{y}_{0})}
=Π~𝗆𝜶dt+(𝖨pΠ~)(𝒫t(𝒚0))+((Λ𝒖~)𝝨)d𝓦t,t+.\displaystyle=-\tilde{\mathsf{\Pi}}\mathsf{m}\boldsymbol{\alpha}\,\mathrm{d}t+(\mathsf{I}_{p}-\tilde{\mathsf{\Pi}})\sqrt{(\mathcal{P}_{t}^{(\boldsymbol{y}_{0})})^{+}((\mathsf{\Lambda}\tilde{\boldsymbol{u}})\odot\boldsymbol{\mathsf{\Sigma}})}\,\mathrm{d}\boldsymbol{\mathcal{W}}_{t},\qquad t\in\mathbb{R}_{+}.

Conversely, if ((𝒫t(p0,𝒒0),𝓠t(p0,𝒒0)))t+((\mathcal{P}_{t}^{(p_{0},\boldsymbol{q}_{0})},\boldsymbol{\mathcal{Q}}_{t}^{(p_{0},\boldsymbol{q}_{0})}))_{t\in\mathbb{R}_{+}} is a strong solution of the SDE (4.15) with initial value (𝒫0(p0,𝒒0),𝓠0(p0,𝒒0))=(p0,𝒒0)×p(\mathcal{P}_{0}^{(p_{0},\boldsymbol{q}_{0})},\boldsymbol{\mathcal{Q}}_{0}^{(p_{0},\boldsymbol{q}_{0})})=(p_{0},\boldsymbol{q}_{0})\in\mathbb{R}\times\mathbb{R}^{p}, again by Itô’s formula, the process

𝓜t(p0,𝒒0):=𝒫t(p0,𝒒0)𝒖~+𝓠t(p0,𝒒0),t+,\boldsymbol{\mathcal{M}}_{t}^{(p_{0},\boldsymbol{q}_{0})}:=\mathcal{P}_{t}^{(p_{0},\boldsymbol{q}_{0})}\tilde{\boldsymbol{u}}+\boldsymbol{\mathcal{Q}}_{t}^{(p_{0},\boldsymbol{q}_{0})},\qquad t\in\mathbb{R}_{+},

is a strong solution of (4.12) with initial value 𝓜0(p0,𝒒0)=p0𝒖~+𝒒0\boldsymbol{\mathcal{M}}_{0}^{(p_{0},\boldsymbol{q}_{0})}=p_{0}\tilde{\boldsymbol{u}}+\boldsymbol{q}_{0}.

Now, let us see that the map p𝒚(𝒗~𝒚,(𝖨pΠ~)𝒚)\mathbb{R}^{p}\ni\boldsymbol{y}\mapsto(\tilde{\boldsymbol{v}}^{\top}\boldsymbol{y},(\mathsf{I}_{p}-\tilde{\mathsf{\Pi}})\boldsymbol{y}) is a bijection between p\mathbb{R}^{p} and ×Null(𝒗~)\mathbb{R}\times\operatorname{Null}(\tilde{\boldsymbol{v}}^{\top}). Let 𝒙0,𝒚0p\boldsymbol{x}_{0},\boldsymbol{y}_{0}\in\mathbb{R}^{p} be two vectors with the same image under the map in question. Then the injectivity (i.e. 𝒙0=𝒚0\boldsymbol{x}_{0}=\boldsymbol{y}_{0}) follows from

{𝒗~𝒙0=𝒗~𝒚0(𝖨pΠ~)𝒙0=(𝖨pΠ~)𝒚0, yielding that {𝒖~(𝒗~𝒙0)=𝒖~(𝒗~𝒚0)𝒙0𝒖~(𝒗~𝒙0)=𝒚0𝒖~(𝒗~𝒚0),\begin{cases}\tilde{\boldsymbol{v}}^{\top}\boldsymbol{x}_{0}=\tilde{\boldsymbol{v}}^{\top}\boldsymbol{y}_{0}\\ (\mathsf{I}_{p}-\tilde{\mathsf{\Pi}})\boldsymbol{x}_{0}=(\mathsf{I}_{p}-\tilde{\mathsf{\Pi}})\boldsymbol{y}_{0},\end{cases}\quad\text{ yielding that }\quad\begin{cases}\tilde{\boldsymbol{u}}(\tilde{\boldsymbol{v}}^{\top}\boldsymbol{x}_{0})=\tilde{\boldsymbol{u}}(\tilde{\boldsymbol{v}}^{\top}\boldsymbol{y}_{0})\\ \boldsymbol{x}_{0}-\tilde{\boldsymbol{u}}(\tilde{\boldsymbol{v}}^{\top}\boldsymbol{x}_{0})=\boldsymbol{y}_{0}-\tilde{\boldsymbol{u}}(\tilde{\boldsymbol{v}}^{\top}\boldsymbol{y}_{0}),\end{cases}

where we have used Hypothesis 5. Further, for all (p0,𝒒0)×Null(𝒗~)(p_{0},\boldsymbol{q}_{0})\in\mathbb{R}\times\operatorname{Null}(\tilde{\boldsymbol{v}}^{\top}), the vector 𝒚0\colonequalsp0𝒖~+𝒒0\boldsymbol{y}_{0}\colonequals p_{0}\tilde{\boldsymbol{u}}+\boldsymbol{q}_{0} is an element of the preimage of (p0,𝒒0)(p_{0},\boldsymbol{q}_{0}), since, using that 𝒗~𝒖~=1\tilde{\boldsymbol{v}}^{\top}\tilde{\boldsymbol{u}}=1, we have 𝒗(p0𝒖~+𝒒0)=p0+0=p0{\boldsymbol{v}}^{\top}(p_{0}\tilde{\boldsymbol{u}}+\boldsymbol{q}_{0})=p_{0}+0=p_{0} and

(𝖨pΠ~)(p0𝒖~+𝒒0)=p0𝒖~+𝒒0p0𝒖~(𝒗~𝒖~)𝒖~𝒗~𝒒0=𝒒0𝒖~0=𝒒0.(\mathsf{I}_{p}-\tilde{\mathsf{\Pi}})(p_{0}\tilde{\boldsymbol{u}}+\boldsymbol{q}_{0})=p_{0}\tilde{\boldsymbol{u}}+\boldsymbol{q}_{0}-p_{0}\tilde{\boldsymbol{u}}(\tilde{\boldsymbol{v}}^{\top}\tilde{\boldsymbol{u}})-\tilde{\boldsymbol{u}}\tilde{\boldsymbol{v}}^{\top}\boldsymbol{q}_{0}=\boldsymbol{q}_{0}-\tilde{\boldsymbol{u}}\cdot 0=\boldsymbol{q}_{0}.

Hence the map in question is surjective.

All in all, it is enough to prove that SDE (4.15) has a pathwise unique strong solution for all initial values in ×p\mathbb{R}\times\mathbb{R}^{p}, in particular for all initial values in ×Null(𝒗~)\mathbb{R}\times\operatorname{Null}(\tilde{\boldsymbol{v}}^{\top}), which is shown below. The pathwise uniqueness for the first SDE in (4.15) (see also the SDE (4.13)) is clear by the discussion in Step 4 and Remark 3.4. We now proceed with the second SDE in (4.15). One can easily get that its pathwise unique strong solution with initial value 𝑸t(p0,𝒒0)=𝒒0\boldsymbol{Q}_{t}^{(p_{0},\boldsymbol{q}_{0})}=\boldsymbol{q}_{0} takes the form

𝑸t(p0,𝒒0)=𝒒0Π~𝗆𝜶t+(𝖨pΠ~)(Λ𝒖~)𝝨0t(𝒫s(p0))+d𝓦s,t+,\boldsymbol{Q}_{t}^{(p_{0},\boldsymbol{q}_{0})}=\boldsymbol{q}_{0}-\tilde{\mathsf{\Pi}}\mathsf{m}\boldsymbol{\alpha}t+(\mathsf{I}_{p}-\tilde{\mathsf{\Pi}})\sqrt{(\mathsf{\Lambda}\tilde{\boldsymbol{u}})\odot\boldsymbol{\mathsf{\Sigma}}}\int_{0}^{t}\sqrt{(\mathcal{P}_{s}^{(p_{0})})^{+}}\,\mathrm{d}\boldsymbol{\mathcal{W}}_{s},\qquad t\in\mathbb{R}_{+},

and not only for all (p0,𝒒0)×Null(𝒗~)(p_{0},\boldsymbol{q}_{0})\in\mathbb{R}\times\operatorname{Null}(\tilde{\boldsymbol{v}}^{\top}) but also for all (p0,𝒒0)×p(p_{0},\boldsymbol{q}_{0})\in\mathbb{R}\times\mathbb{R}^{p}.

In what follows, we check that the assumptions of Theorem A.4 hold with our previous choices.

Step 1/A

For each n,kn,k\in\mathbb{N}, we get that E[n1𝑴k2]<\operatorname{E}\!\left[\|n^{-1}\boldsymbol{M}_{k}\|^{2}\right]<\infty, since

E[𝑴k2]\displaystyle\operatorname{E}\!\left[\|\boldsymbol{M}_{k}\|^{2}\right] =E[tr(𝑴k(𝑴k))]=tr(Var[𝑴k])=tr(Var[E[𝑴k|k1]]+E[Var[𝑴k|k1]])\displaystyle=\operatorname{E}\!\left[\operatorname{tr}\left(\boldsymbol{M}_{k}(\boldsymbol{M}_{k})^{\top}\right)\right]=\operatorname{tr}\left(\operatorname{Var}\!\left[\boldsymbol{M}_{k}\right]\right)=\operatorname{tr}\left(\operatorname{Var}\!\left[\operatorname{E}\left[\boldsymbol{M}_{k}\;\middle|\;\mathcal{F}_{k-1}\right]\right]+\operatorname{E}\!\left[\operatorname{Var}\left[\boldsymbol{M}_{k}\;\middle|\;\mathcal{F}_{k-1}\right]\right]\right)
=tr(E[Var[𝑴k|k1]])=tr(E[Var[𝒁k|k1]])<,\displaystyle=\operatorname{tr}\left(\operatorname{E}\!\left[\operatorname{Var}\left[\boldsymbol{M}_{k}\;\middle|\;\mathcal{F}_{k-1}\right]\right]\right)=\operatorname{tr}\left(\operatorname{E}\!\left[\operatorname{Var}\left[\boldsymbol{Z}_{k}\;\middle|\;\mathcal{F}_{k-1}\right]\right]\right)<\infty,

where we used the variance decomposition formula and, at the last step, equation (2.9). Further, n1𝒁0𝟎pn^{-1}{\boldsymbol{Z}}_{0}\stackrel{{\scriptstyle\mathcal{L}}}{{\longrightarrow}}\boldsymbol{0}_{p} as nn\to\infty.

Step 1/B

For all T>0,T>0, the condition (i) of Theorem A.4 is trivially satisfied, since (𝑴k)k(\boldsymbol{M}_{k})_{k\in\mathbb{N}} is a sequence of martingale differences yielding that E[𝑴k|k1]=𝟎p\operatorname{E}\left[\boldsymbol{M}_{k}\;\middle|\;\mathcal{F}_{k-1}\right]=\boldsymbol{0}_{p}, kk\in\mathbb{N}.

The conditions (ii) and (iii) of Theorem A.4 can be written in the following forms

supt[0,T]1n2k=1ntE[𝑴k(𝑴k)|k1]0t(𝓡s(n))+ds𝝨P0as n,\sup_{t\in[0,T]}\left\|\frac{1}{n^{2}}\sum_{k=1}^{\lfloor nt\rfloor}\operatorname{E}\left[\boldsymbol{M}_{k}(\boldsymbol{M}_{k})^{\top}\;\middle|\;\mathcal{F}_{k-1}\right]-\int_{0}^{t}(\boldsymbol{\mathcal{R}}_{s}^{(n)})^{+}\,\mathrm{d}s\odot\boldsymbol{\mathsf{\Sigma}}\right\|\stackrel{{\scriptstyle\mathrm{P}}}{{\longrightarrow}}0\qquad\text{as }n\to\infty, (4.16)
1n2k=1nTE[𝑴k2𝟙{𝑴k>nθ}|k1]P0as n for allθ>0,\frac{1}{n^{2}}\sum_{k=1}^{\lfloor nT\rfloor}\operatorname{E}\left[\|\boldsymbol{M}_{k}\|^{2}\mathds{1}_{\{\|\boldsymbol{M}_{k}\|>n\theta\}}\;\middle|\;\mathcal{F}_{k-1}\right]\stackrel{{\scriptstyle\mathrm{P}}}{{\longrightarrow}}0\qquad\text{as }n\to\infty\text{ for all}\;\theta>0, (4.17)

where the process (𝓡t(n))t+(\boldsymbol{\mathcal{R}}_{t}^{(n)})_{t\in\mathbb{R}_{+}} is defined by

𝓡t(n)\colonequalsΛΠ~(𝓜t(n)+t𝗆𝜶),t+,n.\boldsymbol{\mathcal{R}}_{t}^{(n)}\colonequals\mathsf{\Lambda}\tilde{\mathsf{\Pi}}(\boldsymbol{\mathcal{M}}_{t}^{(n)}+t\mathsf{m}\boldsymbol{\alpha}),\qquad t\in\mathbb{R}_{+},\quad n\in\mathbb{N}.

Step 1/C

We show (4.16). Taking into account E[𝑴k(𝑴k)|k1]=Var[𝒁k|k1]\operatorname{E}\left[\boldsymbol{M}_{k}(\boldsymbol{M}_{k})^{\top}\;\middle|\;\mathcal{F}_{k-1}\right]=\operatorname{Var}\left[\boldsymbol{Z}_{k}\;\middle|\;\mathcal{F}_{k-1}\right], kk\in\mathbb{N}, equation (2.9) and Hypothesis 2, we can obtain

1n2k=1ntE[𝑴k(𝑴k)|k1]=1n2(nt𝜶+k=1nt(Λ𝒁k1+𝒈(𝒁k1)))𝝨+𝗆(1n2k=1ntΓ(𝒁k1))𝗆,t+.\displaystyle\begin{split}\frac{1}{n^{2}}\sum_{k=1}^{\lfloor nt\rfloor}\operatorname{E}\left[\boldsymbol{M}_{k}(\boldsymbol{M}_{k})^{\top}\;\middle|\;\mathcal{F}_{k-1}\right]&=\frac{1}{n^{2}}\Bigg{(}\lfloor nt\rfloor\boldsymbol{\alpha}+\sum_{k=1}^{\lfloor nt\rfloor}\left(\mathsf{\Lambda}\boldsymbol{Z}_{k-1}+\boldsymbol{g}(\boldsymbol{Z}_{k-1})\right)\Bigg{)}\odot\boldsymbol{\mathsf{\Sigma}}\\ &\quad+\mathsf{m}\Bigg{(}\frac{1}{n^{2}}\sum_{k=1}^{\lfloor nt\rfloor}\mathsf{\Gamma}(\boldsymbol{Z}_{k-1})\Bigg{)}\mathsf{m}^{\top},\qquad t\in\mathbb{R}_{+}.\end{split} (4.18)

Using again Hypothesis 2 together with equation (2.8), the martingale differences in (4.1) can be written as

𝑴k=𝒁k𝗆~𝒁k1𝗆𝜶𝗆𝒈(𝒁k1),k.\boldsymbol{M}_{k}=\boldsymbol{Z}_{k}-\tilde{\mathsf{m}}\boldsymbol{Z}_{k-1}-\mathsf{m}\boldsymbol{\alpha}-\mathsf{m}\boldsymbol{g}(\boldsymbol{Z}_{k-1}),\qquad k\in\mathbb{N}. (4.19)

With this expression and equation (4.2), we have

𝓡t(n)\displaystyle\boldsymbol{\mathcal{R}}_{t}^{(n)} =ΛΠ~(1n(𝒁0+k=1nt(𝒁k𝗆~𝒁k1𝗆𝜶𝗆𝒈(𝒁k1)))+t𝗆𝜶)\displaystyle=\mathsf{\Lambda}\tilde{\mathsf{\Pi}}\left(\frac{1}{n}\Bigg{(}\boldsymbol{Z}_{0}+\sum_{k=1}^{\lfloor nt\rfloor}\Big{(}\boldsymbol{Z}_{k}-\tilde{\mathsf{m}}\boldsymbol{Z}_{k-1}-\mathsf{m}\boldsymbol{\alpha}-\mathsf{m}\boldsymbol{g}(\boldsymbol{Z}_{k-1})\Big{)}\Bigg{)}+t\mathsf{m}\boldsymbol{\alpha}\right)
=1nΛΠ~𝒁nt+ntntnΛΠ~𝗆𝜶1nk=1ntΛΠ~𝗆𝒈(𝒁k1),t+,n,\displaystyle=\frac{1}{n}\mathsf{\Lambda}\tilde{\mathsf{\Pi}}\boldsymbol{Z}_{\lfloor nt\rfloor}+\frac{nt-\lfloor nt\rfloor}{n}\mathsf{\Lambda}\tilde{\mathsf{\Pi}}\mathsf{m}\boldsymbol{\alpha}-\frac{1}{n}\sum_{k=1}^{\lfloor nt\rfloor}\mathsf{\Lambda}\tilde{\mathsf{\Pi}}\mathsf{m}\boldsymbol{g}(\boldsymbol{Z}_{k-1}),\qquad t\in\mathbb{R}_{+},\quad n\in\mathbb{N},

because Π~𝗆~=(liml𝗆~l)𝗆~=liml𝗆~l+1=Π~\tilde{\mathsf{\Pi}}\tilde{\mathsf{m}}=(\lim_{l\to\infty}\tilde{\mathsf{m}}^{l})\tilde{\mathsf{m}}=\lim_{l\to\infty}\tilde{\mathsf{m}}^{l+1}=\tilde{\mathsf{\Pi}} by Hypothesis 5.

Since Λ𝒖~+p\mathsf{\Lambda}\tilde{\boldsymbol{u}}\in\mathbb{R}_{+}^{p}, we have ΛΠ~=(Λ𝒖~)𝒗~+p×p\mathsf{\Lambda}\tilde{\mathsf{\Pi}}=(\mathsf{\Lambda}\tilde{\boldsymbol{u}})\tilde{\boldsymbol{v}}^{\top}\in\mathbb{R}_{+}^{p\times p} and, consequently, we get that

𝓑,t(n)(𝓡t(n))+𝓑+,t(n),n,t+,{\boldsymbol{\mathcal{B}}_{-,t}^{(n)}\preceq(\boldsymbol{\mathcal{R}}_{t}^{(n)})^{+}\preceq\boldsymbol{\mathcal{B}}_{+,t}^{(n)},\qquad n\in\mathbb{N},\quad t\in\mathbb{R}_{+},}

where the bounds 𝓑,t(n)\boldsymbol{\mathcal{B}}_{-,t}^{(n)} and 𝓑+,t(n)\boldsymbol{\mathcal{B}}_{+,t}^{(n)} are defined by

𝓑±,t(n)\colonequals1nΛΠ~𝒁nt±ntntn|ΛΠ~𝗆𝜶|±1nk=1nt|ΛΠ~𝗆𝒈(𝒁k1)|,\boldsymbol{\mathcal{B}}_{\pm,t}^{(n)}\colonequals\frac{1}{n}\mathsf{\Lambda}\tilde{\mathsf{\Pi}}\boldsymbol{Z}_{\lfloor nt\rfloor}\pm\frac{nt-\lfloor nt\rfloor}{n}|\mathsf{\Lambda}\tilde{\mathsf{\Pi}}\mathsf{m}\boldsymbol{\alpha}|\pm\frac{1}{n}\sum_{k=1}^{\lfloor nt\rfloor}|\mathsf{\Lambda}\tilde{\mathsf{\Pi}}\mathsf{m}\boldsymbol{g}(\boldsymbol{Z}_{k-1})|,

and recall that |𝒛|=(|z1|,,|zp|)+p|{\boldsymbol{z}}|=(|z_{1}|,\ldots,|z_{p}|)^{\top}\in\mathbb{R}_{+}^{p} for any 𝒛=(z1,,zp)p{\boldsymbol{z}}=(z_{1},\ldots,z_{p})^{\top}\in\mathbb{R}^{p}. Hence we get

0t𝓑,s(n)ds0t(𝓡s(n))+ds0t𝓑+,s(n)ds,t+,n.\int_{0}^{t}\boldsymbol{\mathcal{B}}_{-,s}^{(n)}\,\mathrm{d}s\preceq\int_{0}^{t}(\boldsymbol{\mathcal{R}}_{s}^{(n)})^{+}\,\mathrm{d}s\preceq\int_{0}^{t}\boldsymbol{\mathcal{B}}_{+,s}^{(n)}\,\mathrm{d}s,\qquad t\in\mathbb{R}_{+},\;\;n\in\mathbb{N}. (4.20)

Next, we check that, for all t+t\in\mathbb{R}_{+},

0t𝓑±,s(n)ds=1n2j=0nt1ΛΠ~𝒁j+ntntn2ΛΠ~𝒁nt±nt+(ntnt)22n2|ΛΠ~𝗆𝜶|±1n2j=0nt1k=1j|ΛΠ~𝗆𝒈(𝒁k1)|±ntntn2k=1nt|ΛΠ~𝗆𝒈(𝒁k1)|.\displaystyle\begin{split}\int_{0}^{t}\boldsymbol{\mathcal{B}}_{\pm,s}^{(n)}\,\mathrm{d}s&=\frac{1}{n^{2}}\sum_{j=0}^{\lfloor nt\rfloor-1}\mathsf{\Lambda}\tilde{\mathsf{\Pi}}\boldsymbol{Z}_{j}+\frac{nt-\lfloor nt\rfloor}{n^{2}}\mathsf{\Lambda}\tilde{\mathsf{\Pi}}\boldsymbol{Z}_{\lfloor nt\rfloor}\pm\frac{\lfloor nt\rfloor+(nt-\lfloor nt\rfloor)^{2}}{2n^{2}}|\mathsf{\Lambda}\tilde{\mathsf{\Pi}}\mathsf{m}\boldsymbol{\alpha}|\\ &\quad\pm\frac{1}{n^{2}}\sum_{j=0}^{\lfloor nt\rfloor-1}\sum_{k=1}^{j}|\mathsf{\Lambda}\tilde{\mathsf{\Pi}}\mathsf{m}\boldsymbol{g}(\boldsymbol{Z}_{k-1})|\pm\frac{nt-\lfloor nt\rfloor}{n^{2}}\sum_{k=1}^{\lfloor nt\rfloor}|\mathsf{\Lambda}\tilde{\mathsf{\Pi}}\mathsf{m}\boldsymbol{g}(\boldsymbol{Z}_{k-1})|.\end{split} (4.21)

To verify (4.21), we split the integral as follows

0t𝓑±,s(n)ds=j=0nt1jnj+1n𝓑±,s(n)ds+ntnt𝓑±,s(n)ds,\int_{0}^{t}\boldsymbol{\mathcal{B}}_{\pm,s}^{(n)}\,\mathrm{d}s=\sum_{j=0}^{\lfloor nt\rfloor-1}\int_{\frac{j}{n}}^{\frac{j+1}{n}}\boldsymbol{\mathcal{B}}_{\pm,s}^{(n)}\,\mathrm{d}s+\int_{\frac{\lfloor nt\rfloor}{n}}^{t}\boldsymbol{\mathcal{B}}_{\pm,s}^{(n)}\,\mathrm{d}s,

and we take into account

jnj+1n𝓑±,s(n)ds=1n2ΛΠ~𝒁j±12n2|ΛΠ~𝗆𝜶|±1n2k=1j|ΛΠ~𝗆𝒈(𝒁k1)|\int_{\frac{j}{n}}^{\frac{j+1}{n}}\boldsymbol{\mathcal{B}}_{\pm,s}^{(n)}\,\mathrm{d}s=\frac{1}{n^{2}}\mathsf{\Lambda}\tilde{\mathsf{\Pi}}\boldsymbol{Z}_{j}\pm\frac{1}{2n^{2}}|\mathsf{\Lambda}\tilde{\mathsf{\Pi}}\mathsf{m}\boldsymbol{\alpha}|\pm\frac{1}{n^{2}}\sum_{k=1}^{j}|\mathsf{\Lambda}\tilde{\mathsf{\Pi}}\mathsf{m}\boldsymbol{g}(\boldsymbol{Z}_{k-1})|

for j{0,,nt1}j\in\{0,\ldots,\lfloor nt\rfloor-1\}, and

ntnt𝓑±,s(n)ds=ntntn2ΛΠ~𝒁nt±(ntnt)22n2|ΛΠ~𝗆𝜶|±ntntn2k=1nt|ΛΠ~𝗆𝒈(𝒁k1)|,\int_{\frac{\lfloor nt\rfloor}{n}}^{t}\boldsymbol{\mathcal{B}}_{\pm,s}^{(n)}\,\mathrm{d}s=\frac{nt-\lfloor nt\rfloor}{n^{2}}\mathsf{\Lambda}\tilde{\mathsf{\Pi}}\boldsymbol{Z}_{\lfloor nt\rfloor}\pm\frac{(nt-\lfloor nt\rfloor)^{2}}{2n^{2}}|\mathsf{\Lambda}\tilde{\mathsf{\Pi}}\mathsf{m}\boldsymbol{\alpha}|\pm\frac{nt-\lfloor nt\rfloor}{n^{2}}\sum_{k=1}^{\lfloor nt\rfloor}|\mathsf{\Lambda}\tilde{\mathsf{\Pi}}\mathsf{m}\boldsymbol{g}(\boldsymbol{Z}_{k-1})|,

where we used that

jnj+1nnsjnds=12n2,j{0,,nt1},\int_{\frac{j}{n}}^{\frac{j+1}{n}}\frac{ns-j}{n}\,\mathrm{d}s=\frac{1}{2n^{2}},\qquad j\in\{0,\ldots,\lfloor nt\rfloor-1\},

and

ntntnsntnds=(ntnt)22n2.\int_{\frac{\lfloor nt\rfloor}{n}}^{t}\frac{ns-\lfloor nt\rfloor}{n}\,\mathrm{d}s=\frac{(nt-\lfloor nt\rfloor)^{2}}{2n^{2}}.

In what follows, we will use that for all 𝖠p×p\mathsf{A}\in\mathbb{R}^{p\times p} and 𝒙,𝒚p\boldsymbol{x},\boldsymbol{y}\in\mathbb{R}^{p}, 𝒚0+p\boldsymbol{y}_{0}\in\mathbb{R}_{+}^{p} with 𝒚𝒚0𝒙𝒚+𝒚0\boldsymbol{y}-\boldsymbol{y}_{0}\preceq\boldsymbol{x}\preceq\boldsymbol{y}+\boldsymbol{y}_{0}, we have

𝖠𝒙𝝨𝖠𝒚𝝨+𝒚𝟎𝝨,\displaystyle\|\mathsf{A}-\boldsymbol{x}\odot\boldsymbol{\mathsf{\Sigma}}\|\leq\|\mathsf{A}-\boldsymbol{y}\odot\boldsymbol{\mathsf{\Sigma}}\|+\|\boldsymbol{y_{0}}\|\|\boldsymbol{\mathsf{\Sigma}}\|, (4.22)

where we recall 𝝨=i=1pΣi\|\boldsymbol{\mathsf{\Sigma}}\|=\sum_{i=1}^{p}\|\mathsf{\Sigma}_{i}\|. Indeed, using that 𝒛𝝨𝒛𝝨\|\boldsymbol{z}\odot\boldsymbol{\mathsf{\Sigma}}\|\leq\|\boldsymbol{z}\|\|\boldsymbol{\mathsf{\Sigma}}\| for all 𝒛p\boldsymbol{z}\in\mathbb{R}^{p} (see (A.8)), we get

𝖠𝒙𝝨\displaystyle\|\mathsf{A}-\boldsymbol{x}\odot\boldsymbol{\mathsf{\Sigma}}\| 𝖠𝒚𝝨+(𝒚𝒙)𝝨=𝖠𝒚𝝨+i=1p(yixi)Σi\displaystyle\leq\|\mathsf{A}-\boldsymbol{y}\odot\boldsymbol{\mathsf{\Sigma}}\|+\|(\boldsymbol{y}-\boldsymbol{x})\odot\boldsymbol{\mathsf{\Sigma}}\|=\|\mathsf{A}-\boldsymbol{y}\odot\boldsymbol{\mathsf{\Sigma}}\|+\left\|\sum_{i=1}^{p}(y_{i}-x_{i})\mathsf{\mathsf{\Sigma}}_{i}\right\|
𝖠𝒚𝝨+i=1p|yixi|Σi𝖠𝒚𝝨+𝒚𝒙i=1pΣi\displaystyle\leq\|\mathsf{A}-\boldsymbol{y}\odot\boldsymbol{\mathsf{\Sigma}}\|+\sum_{i=1}^{p}|y_{i}-x_{i}|\|\mathsf{\mathsf{\Sigma}}_{i}\|\leq\|\mathsf{A}-\boldsymbol{y}\odot\boldsymbol{\mathsf{\Sigma}}\|+\|\boldsymbol{y}-\boldsymbol{x}\|\sum_{i=1}^{p}\|\mathsf{\mathsf{\Sigma}}_{i}\|
𝖠𝒚𝝨+𝒚0𝝨,\displaystyle\leq\|\mathsf{A}-\boldsymbol{y}\odot\boldsymbol{\mathsf{\Sigma}}\|+\|\boldsymbol{y}_{0}\|\|\boldsymbol{\mathsf{\Sigma}}\|,

as desired. Hence, from equations (4.18), (4.20), (4.21) and (4.22), we obtain

1n2k=1ntE[𝑴k(𝑴k)|k1]0t(𝓡s(n))+ds𝝨1n2k=0nt1Λ(𝖨pΠ~)𝒁k𝝨+ntntn2ΛΠ~𝒁nt𝝨+ntn2𝜶𝝨+nt+(ntnt)22n2|ΛΠ~𝗆𝜶|𝝨+1n2k=1nt𝒈(𝒁k1)𝝨+𝗆(1n2k=1ntΓ(𝒁k1))𝗆+1n2j=0nt1k=1j|ΛΠ~𝗆𝒈(𝒁k1)|𝝨+ntntn2k=1nt|ΛΠ~𝗆𝒈(𝒁k1)|𝝨.\displaystyle\begin{split}&\left\|\frac{1}{n^{2}}\sum_{k=1}^{\lfloor nt\rfloor}\operatorname{E}\left[\boldsymbol{M}_{k}(\boldsymbol{M}_{k})^{\top}\;\middle|\;\mathcal{F}_{k-1}\right]-\int_{0}^{t}(\boldsymbol{\mathcal{R}}_{s}^{(n)})^{+}\,\mathrm{d}s\odot\boldsymbol{\mathsf{\Sigma}}\right\|\\ &\quad\leq\left\|\frac{1}{n^{2}}\sum_{k=0}^{\lfloor nt\rfloor-1}\mathsf{\Lambda}(\mathsf{I}_{p}-\tilde{\mathsf{\Pi}})\boldsymbol{Z}_{k}\odot\boldsymbol{\mathsf{\Sigma}}\right\|+\left\|\frac{nt-\lfloor nt\rfloor}{n^{2}}\mathsf{\Lambda}\tilde{\mathsf{\Pi}}\boldsymbol{Z}_{\lfloor nt\rfloor}\odot\boldsymbol{\mathsf{\Sigma}}\right\|\\ &\qquad+\left\|\frac{\lfloor nt\rfloor}{n^{2}}\boldsymbol{\alpha}\odot\boldsymbol{\mathsf{\Sigma}}\right\|+\left\|\frac{\lfloor nt\rfloor+(nt-\lfloor nt\rfloor)^{2}}{2n^{2}}|\mathsf{\Lambda}\tilde{\mathsf{\Pi}}\mathsf{m}\boldsymbol{\alpha}|\right\|\|\boldsymbol{\mathsf{\Sigma}}\|\\ &\qquad+\left\|\frac{1}{n^{2}}\sum_{k=1}^{\lfloor nt\rfloor}\boldsymbol{g}(\boldsymbol{Z}_{k-1})\odot\boldsymbol{\mathsf{\Sigma}}\right\|+\left\|\mathsf{m}\Bigg{(}\frac{1}{n^{2}}\sum_{k=1}^{\lfloor nt\rfloor}\mathsf{\Gamma}(\boldsymbol{Z}_{k-1})\Bigg{)}\mathsf{m}^{\top}\right\|\\ &\qquad+\left\|\frac{1}{n^{2}}\sum_{j=0}^{\lfloor nt\rfloor-1}\sum_{k=1}^{j}|\mathsf{\Lambda}\tilde{\mathsf{\Pi}}\mathsf{m}\boldsymbol{g}(\boldsymbol{Z}_{k-1})|\right\|\|\boldsymbol{\mathsf{\Sigma}}\|+\left\|\frac{nt-\lfloor nt\rfloor}{n^{2}}\sum_{k=1}^{\lfloor nt\rfloor}|\mathsf{\Lambda}\tilde{\mathsf{\Pi}}\mathsf{m}\boldsymbol{g}(\boldsymbol{Z}_{k-1})|\right\|\|\boldsymbol{\mathsf{\Sigma}}\|.\end{split} (4.23)

As a consequence of Hypothesis 2, the function 𝒈\boldsymbol{g} is bounded, and |𝖠𝒛|=𝖠𝒛𝖠𝒛\||\mathsf{A}{\boldsymbol{z}}|\|=\|\mathsf{A}{\boldsymbol{z}}\|\leq\|\mathsf{A}\|\|{\boldsymbol{z}}\| for all 𝖠p×p\mathsf{A}\in\mathbb{R}^{p\times p} and 𝒛p{\boldsymbol{z}}\in\mathbb{R}^{p}. Thus, in order to show (4.16), we can easily see that it is enough to prove that

supt[0,T]1n2k=0nt1(𝖨pΠ~)𝒁k\displaystyle\sup_{t\in[0,T]}\frac{1}{n^{2}}\sum_{k=0}^{\lfloor nt\rfloor-1}\|(\mathsf{I}_{p}-\tilde{\mathsf{\Pi}})\boldsymbol{Z}_{k}\| P0,\displaystyle\stackrel{{\scriptstyle\mathrm{P}}}{{\longrightarrow}}0, (4.24)
supt[0,T]1n2𝒁nt\displaystyle\sup_{t\in[0,T]}\frac{1}{n^{2}}\|\boldsymbol{Z}_{\lfloor nt\rfloor}\| P0,\displaystyle\stackrel{{\scriptstyle\mathrm{P}}}{{\longrightarrow}}0, (4.25)
supt[0,T]1n2k=1ntΓ(𝒁k1)\displaystyle\sup_{t\in[0,T]}\frac{1}{n^{2}}\sum_{k=1}^{\lfloor nt\rfloor}\|\mathsf{\Gamma}(\boldsymbol{Z}_{k-1})\| P0,\displaystyle\stackrel{{\scriptstyle\mathrm{P}}}{{\longrightarrow}}0, (4.26)
supt[0,T]1n2j=0nt1k=1j𝒈(𝒁k1)\displaystyle\sup_{t\in[0,T]}\frac{1}{n^{2}}\sum_{j=0}^{\lfloor nt\rfloor-1}\sum_{k=1}^{j}\|\boldsymbol{g}(\boldsymbol{Z}_{k-1})\| P0,\displaystyle\stackrel{{\scriptstyle\mathrm{P}}}{{\longrightarrow}}0, (4.27)

as nn\to\infty for all T>0T>0. Indeed, for all T>0T>0, the supremum on [0,T][0,T] of the fifth and eight terms on the right hand side of (4.23) tend to 0 as nn\to\infty in probability, since

supt[0,T]ntntn2k=1nt|𝒈(𝒁k1)|supt[0,T]1n2k=1nt|𝒈(𝒁k1)|nTn2sup𝒛+p𝒈(𝒛)=O(1n)\displaystyle\sup_{t\in[0,T]}\left\|\frac{nt-\lfloor nt\rfloor}{n^{2}}\sum_{k=1}^{\lfloor nt\rfloor}|\boldsymbol{g}(\boldsymbol{Z}_{k-1})|\right\|\leq\sup_{t\in[0,T]}\left\|\frac{1}{n^{2}}\sum_{k=1}^{\lfloor nt\rfloor}|\boldsymbol{g}(\boldsymbol{Z}_{k-1})|\right\|\leq\frac{\lfloor nT\rfloor}{n^{2}}\sup_{{\boldsymbol{z}}\in\mathbb{Z}_{+}^{p}}\|\boldsymbol{g}({\boldsymbol{z}})\|=\operatorname{O}\left(\frac{1}{n}\right)

as nn\to\infty. We remark that, later, at the end of the proof of Step 3, it will turn out that n1k=1nTE[𝒈(𝒁k1)]0n^{-1}\sum_{k=1}^{\lfloor nT\rfloor}\operatorname{E}\!\left[\|\boldsymbol{g}(\boldsymbol{Z}_{k-1})\|\right]\to 0 as nn\to\infty for all T>0T>0 holds as well.

Let us start proving (4.24) and (4.25). From equation (4.19), the following expression can be obtained recursively,

𝒁k=𝗆~k𝒁0+j=1k𝗆~kj(𝑴j+𝗆𝜶+𝗆𝒈(𝒁j1)),k,\boldsymbol{Z}_{k}=\tilde{\mathsf{m}}^{k}\boldsymbol{Z}_{0}+\sum_{j=1}^{k}\tilde{\mathsf{m}}^{k-j}\left(\boldsymbol{M}_{j}+\mathsf{m}\boldsymbol{\alpha}+\mathsf{m}\boldsymbol{g}(\boldsymbol{Z}_{j-1})\right),\qquad k\in\mathbb{N}, (4.28)

and, using it with Π~𝗆~k=Π~\tilde{\mathsf{\Pi}}\tilde{\mathsf{m}}^{k}=\tilde{\mathsf{\Pi}}, k+{k\in\mathbb{Z}_{+}}, we have

(𝖨pΠ~)𝒁k=(𝗆~kΠ~)𝒁0+j=1k(𝗆~kjΠ~)(𝑴j+𝗆𝜶+𝗆𝒈(𝒁j1))(\mathsf{I}_{p}-\tilde{\mathsf{\Pi}})\boldsymbol{Z}_{k}=(\tilde{\mathsf{m}}^{k}-\tilde{\mathsf{\Pi}})\boldsymbol{Z}_{0}+\sum_{j=1}^{k}(\tilde{\mathsf{m}}^{k-j}-\tilde{\mathsf{\Pi}})\left(\boldsymbol{M}_{j}+\mathsf{m}\boldsymbol{\alpha}+\mathsf{m}\boldsymbol{g}(\boldsymbol{Z}_{j-1})\right)

for kk\in\mathbb{N}.

Let c~++\tilde{c}\in\mathbb{R}_{++} and r~(0,1)\tilde{r}\in(0,1) be the constants given in part (c) of Hypothesis 5 such that 𝗆~kΠ~c~r~k\|\tilde{\mathsf{m}}^{k}-\tilde{\mathsf{\Pi}}\|\leq\tilde{c}\tilde{r}^{k} for each kk\in\mathbb{N}, and let us introduce the constants

C~\displaystyle\tilde{C} \colonequalssupj+𝗆~jc~+Π~,\displaystyle\colonequals\sup_{j\in\mathbb{Z}_{+}}\|\tilde{\mathsf{m}}^{j}\|\leq\tilde{c}+\|\tilde{\mathsf{\Pi}}\|, (4.29)
C𝒈\displaystyle C_{\boldsymbol{g}} \colonequalssup𝒛+p𝒈(𝒛)<.\displaystyle\colonequals\sup_{\boldsymbol{z}\in\mathbb{Z}_{+}^{p}}\|\boldsymbol{g}(\boldsymbol{z})\|<\infty. (4.30)

Then, using (4.28), the following inequalities hold

𝒁nt\displaystyle\|\boldsymbol{Z}_{\lfloor nt\rfloor}\| 𝗆~nt𝒁0+j=1nt𝗆~ntj(𝑴j+𝗆(𝜶+𝒈(𝒁j1)))\displaystyle\leq\|\tilde{\mathsf{m}}^{\lfloor nt\rfloor}\|\|\boldsymbol{Z}_{0}\|+\sum_{j=1}^{\lfloor nt\rfloor}\|\tilde{\mathsf{m}}^{\lfloor nt\rfloor-j}\|\Big{(}\|\boldsymbol{M}_{j}\|+\|\mathsf{m}\|\big{(}\|\boldsymbol{\alpha}\|+\|\boldsymbol{g}(\boldsymbol{Z}_{j-1})\|\big{)}\Big{)}
C~(𝒁0+nt𝗆(𝜶+C𝒈)+j=1nt𝑴j),n,t+,\displaystyle\leq\tilde{C}\left(\|\boldsymbol{Z}_{0}\|+\lfloor nt\rfloor\|\mathsf{m}\|\big{(}\|\boldsymbol{\alpha}\|+C_{\boldsymbol{g}}\big{)}+\sum_{j=1}^{\lfloor nt\rfloor}\|\boldsymbol{M}_{j}\|\right),\qquad n\in\mathbb{N},\quad t\in\mathbb{R}_{+},

and

k=0nt1(𝖨pΠ~)𝒁k\displaystyle\sum_{k=0}^{\lfloor nt\rfloor-1}\|(\mathsf{I}_{p}-\tilde{\mathsf{\Pi}})\boldsymbol{Z}_{k}\| c~k=0nt1r~k𝒁0+c~k=0nt1j=1kr~kj(𝑴j+𝗆(𝜶+𝒈(𝒁j1)))\displaystyle\leq\tilde{c}\sum_{k=0}^{\lfloor nt\rfloor-1}\tilde{r}^{k}\|\boldsymbol{Z}_{0}\|+\tilde{c}\sum_{k=0}^{\lfloor nt\rfloor-1}\sum_{j=1}^{k}\tilde{r}^{k-j}\Big{(}\|\boldsymbol{M}_{j}\|+\|\mathsf{m}\|\big{(}\|\boldsymbol{\alpha}\|+\|\boldsymbol{g}(\boldsymbol{Z}_{j-1})\|\big{)}\Big{)}
c~1r~(𝒁0+nt𝗆(𝜶+C𝒈)+j=1nt𝑴j),n,t+,\displaystyle\leq\frac{\tilde{c}}{1-\tilde{r}}\left(\|\boldsymbol{Z}_{0}\|+\lfloor nt\rfloor\|\mathsf{m}\|\big{(}\|\boldsymbol{\alpha}\|+C_{\boldsymbol{g}}\big{)}+\sum_{j=1}^{\lfloor nt\rfloor}\|\boldsymbol{M}_{j}\|\right),\qquad n\in\mathbb{N},\quad t\in\mathbb{R}_{+},

where at the last inequality we also used that

k=0nt1j=1kr~kjxj\displaystyle\sum_{k=0}^{\lfloor nt\rfloor-1}\sum_{j=1}^{k}\tilde{r}^{k-j}x_{j} =j=1nt1k=jnt1r~kjxjj=1nt1xjk=jr~kj=11r~j=1nt1xj\displaystyle=\sum_{j=1}^{\lfloor nt\rfloor-1}\sum_{k=j}^{\lfloor nt\rfloor-1}\tilde{r}^{k-j}x_{j}\leq\sum_{j=1}^{\lfloor nt\rfloor-1}x_{j}\sum_{k=j}^{\infty}\tilde{r}^{k-j}=\frac{1}{1-\tilde{r}}\sum_{j=1}^{\lfloor nt\rfloor-1}x_{j}
11r~j=1ntxjfor all 𝒙=(x1,,xnt)+nt.\displaystyle\leq\frac{1}{1-\tilde{r}}\sum_{j=1}^{\lfloor nt\rfloor}x_{j}\qquad\text{for all }\boldsymbol{x}=(x_{1},\ldots,x_{\lfloor nt\rfloor})^{\top}\in\mathbb{R}_{+}^{\lfloor nt\rfloor}.

Hence, to get (4.24) and (4.25) it is enough to show

1n2𝒁0P0,1n2k=1nT𝑴kP0as n,\displaystyle\frac{1}{n^{2}}\|\boldsymbol{Z}_{0}\|\stackrel{{\scriptstyle\mathrm{P}}}{{\longrightarrow}}0,\qquad\frac{1}{n^{2}}\sum_{k=1}^{\lfloor nT\rfloor}\|\boldsymbol{M}_{k}\|\stackrel{{\scriptstyle\mathrm{P}}}{{\longrightarrow}}0\qquad\text{as }n\to\infty, (4.31)

for all T>0T>0.

The first convergence in (4.31) holds trivially, since, in fact, n2𝒁00n^{-2}\|{\boldsymbol{Z}}_{0}\|\to 0 as nn\to\infty almost surely.

The second convergence in (4.31) follows from (A.3), since, by Jensen inequality, E[𝑴k]E[𝑴k2]=O(k1/2)\operatorname{E}\!\left[\|\boldsymbol{M}_{k}\|\right]\leq\sqrt{\operatorname{E}\!\left[\|\boldsymbol{M}_{k}\|^{2}\right]}=\operatorname{O}(k^{1/2}) as kk\to\infty, and hence, for all T>0T>0, we get that

k=1nTE[𝑴k]=O(n3/2)as n.\sum_{k=1}^{\lfloor nT\rfloor}\operatorname{E}\!\left[\|\boldsymbol{M}_{k}\|\right]=\operatorname{O}(n^{3/2})\qquad\text{as }n\to\infty.

Consequently, n2k=1nT𝑴kn^{-2}\sum_{k=1}^{\lfloor nT\rfloor}\|\boldsymbol{M}_{k}\| converges to 0 in L1L^{1} as nn\to\infty.

Next, we check convergence (4.26). It is enough to prove that for all T>0T>0, we have that

1n2k=1nTE[Γ(𝒁k1)]0as n.\displaystyle\frac{1}{n^{2}}\sum_{k=1}^{\lfloor nT\rfloor}\operatorname{E}\!\left[\|\mathsf{\Gamma}(\boldsymbol{Z}_{k-1})\|\right]\to 0\qquad\text{as $n\to\infty$.} (4.32)

By Hypothesis 3, for all ϵ>0\epsilon>0 there exists K(ϵ)>0K(\epsilon)>0 such that Γ(𝒛)<ϵ𝒛\|\mathsf{\Gamma}(\boldsymbol{z})\|<\epsilon\|\boldsymbol{z}\| for each 𝒛+p\boldsymbol{z}\in\mathbb{Z}_{+}^{p} with 𝒛>K(ϵ)\|\boldsymbol{z}\|>K(\epsilon). Since

E[Γ(𝒁k1)]=E[Γ(𝒁k1)(𝟙{𝒁k1K(ϵ)}+𝟙{𝒁k1>K(ϵ)})],k,\operatorname{E}\!\left[\|\mathsf{\Gamma}(\boldsymbol{Z}_{k-1})\|\right]=\operatorname{E}\!\left[\|\mathsf{\Gamma}(\boldsymbol{Z}_{k-1})\|\left(\mathds{1}_{\{\|\boldsymbol{Z}_{k-1}\|\leq K(\epsilon)\}}+\mathds{1}_{\{\|\boldsymbol{Z}_{k-1}\|>K(\epsilon)\}}\right)\right],\qquad k\in\mathbb{N},

for all T>0T>0, ϵ>0\epsilon>0 and nn\in\mathbb{N}, we have

1n2k=1nTE[Γ(𝒁k1)]\displaystyle\frac{1}{n^{2}}\sum_{k=1}^{\lfloor nT\rfloor}\operatorname{E}\!\left[\|\mathsf{\Gamma}(\boldsymbol{Z}_{k-1})\|\right] 1n2k=1nT(max{𝒛+p:𝒛K(ϵ)}Γ(𝒛)+ϵE[𝒁k1])\displaystyle\leq\frac{1}{n^{2}}\sum_{k=1}^{\lfloor nT\rfloor}\left(\max_{\{\boldsymbol{z}\in\mathbb{Z}_{+}^{p}:\|\boldsymbol{z}\|\leq K(\epsilon)\}}\|\mathsf{\Gamma}(\boldsymbol{z})\|+\epsilon\operatorname{E}\!\left[\|\boldsymbol{Z}_{k-1}\|\right]\right)
Tnmax{𝒛+p:𝒛K(ε)}Γ(𝒛)+ϵn2k=1nTE[𝒁k1],\displaystyle\leq\frac{T}{n}\max_{\{\boldsymbol{z}\in\mathbb{Z}_{+}^{p}:\|\boldsymbol{z}\|\leq K(\varepsilon)\}}\|\mathsf{\Gamma}(\boldsymbol{z})\|+\frac{\epsilon}{n^{2}}\sum_{k=1}^{\lfloor nT\rfloor}\operatorname{E}\!\left[\|\boldsymbol{Z}_{k-1}\|\right],

where max{𝒛+p:𝒛K(ε)}Γ(𝒛)<\max_{\{\boldsymbol{z}\in\mathbb{Z}_{+}^{p}:\|\boldsymbol{z}\|\leq K(\varepsilon)\}}\|\mathsf{\Gamma}(\boldsymbol{z})\|<\infty. Using part (i) of Lemma A.3, we get

1n2k=1nTE[𝒁k1]=O(1)as n.\frac{1}{n^{2}}\sum_{k=1}^{\lfloor nT\rfloor}\operatorname{E}\!\left[\|\boldsymbol{Z}_{k-1}\|\right]=\operatorname{O}(1)\qquad\text{as }n\to\infty.

Hence for all T>0T>0 and ϵ>0\epsilon>0, we get

limn(Tnmax{𝒛+p:𝒛K(ε)}Γ(𝒛)+ϵn2k=1nTE[𝒁k1])=0,\lim_{n\to\infty}\left(\frac{T}{n}\max_{\{\boldsymbol{z}\in\mathbb{Z}_{+}^{p}:\|\boldsymbol{z}\|\leq K(\varepsilon)\}}\|\mathsf{\Gamma}(\boldsymbol{z})\|+\frac{\epsilon}{n^{2}}\sum_{k=1}^{\lfloor nT\rfloor}\operatorname{E}\!\left[\|\boldsymbol{Z}_{k-1}\|\right]\right)=0,

which yields (4.32), as desired.

Similarly, we prove (4.27) by checking that for all T>0T>0, we get that

1n2j=1nTk=0j1E[𝒈(𝒁k)]0as n.\displaystyle\frac{1}{n^{2}}\sum_{j=1}^{\lfloor nT\rfloor}\sum_{k=0}^{j-1}\operatorname{E}\!\left[\|\boldsymbol{g}(\boldsymbol{Z}_{k})\|\right]\to 0\qquad\text{as }n\to\infty. (4.33)

By Hypothesis 2, for all ϵ>0\epsilon>0 there exists N(ϵ)>0N(\epsilon)>0 such that 𝒈(𝒛)<ϵ\|\boldsymbol{g}(\boldsymbol{z})\|<\epsilon for all 𝒛+p\boldsymbol{z}\in\mathbb{Z}_{+}^{p} with 𝒛>N(ϵ)\|\boldsymbol{z}\|>N(\epsilon). Then, using the notation C𝒈C_{\boldsymbol{g}} introduced in (4.30), we get

E[𝒈(𝒁k)]\displaystyle\operatorname{E}\!\left[\|\boldsymbol{g}(\boldsymbol{Z}_{k})\|\right] =E[𝒈(𝒁k)(𝟙{𝒁kN(ϵ)}+𝟙{𝒁k>N(ϵ)})]\displaystyle=\operatorname{E}\!\left[\|\boldsymbol{g}(\boldsymbol{Z}_{k})\|\left(\mathds{1}_{\{\|\boldsymbol{Z}_{k}\|\leq N(\epsilon)\}}+\mathds{1}_{\{\|\boldsymbol{Z}_{k}\|>N(\epsilon)\}}\right)\right]
C𝒈P[𝒁kN(ϵ)]+ϵ,k,\displaystyle\leq C_{\boldsymbol{g}}\operatorname{P}\left[\|\boldsymbol{Z}_{k}\|\leq N(\epsilon)\right]+\epsilon,\qquad k\in\mathbb{N}, (4.34)

and then using Hypothesis 6 we can derive that for all T>0T>0 and ϵ>0\epsilon>0,

j=1nTk=0j1E[𝒈(𝒁k)]=k=0nT1j=k+1nTE[𝒈(𝒁k)]ϵnT2+C𝒈k=0nT1(nTk)P[𝒁kN(ϵ)]ϵnT2+C𝒈k=0k0(ε,N(ϵ))1(nTk)P[𝒁kN(ϵ)]+C𝒈k=k0(ϵ,N(ϵ))nT1(nTk)ϵ\displaystyle\begin{split}\sum_{j=1}^{\lfloor nT\rfloor}\sum_{k=0}^{j-1}\operatorname{E}\!\left[\|\boldsymbol{g}(\boldsymbol{Z}_{k})\|\right]&=\sum_{k=0}^{\lfloor nT\rfloor-1}\sum_{j=k+1}^{\lfloor nT\rfloor}\operatorname{E}\!\left[\|\boldsymbol{g}(\boldsymbol{Z}_{k})\|\right]\\ &\leq\epsilon\lfloor nT\rfloor^{2}+C_{\boldsymbol{g}}\sum_{k=0}^{\lfloor nT\rfloor-1}(\lfloor nT\rfloor-k)\operatorname{P}\left[\|\boldsymbol{Z}_{k}\|\leq N(\epsilon)\right]\\ &\leq\epsilon\lfloor nT\rfloor^{2}+C_{\boldsymbol{g}}\sum_{k=0}^{k_{0}(\varepsilon,N(\epsilon))-1}(\lfloor nT\rfloor-k)\operatorname{P}\left[\|\boldsymbol{Z}_{k}\|\leq N(\epsilon)\right]\\ &\quad+C_{\boldsymbol{g}}\sum_{k=k_{0}(\epsilon,N(\epsilon))}^{\lfloor nT\rfloor-1}(\lfloor nT\rfloor-k)\epsilon\end{split} (4.35)

for sufficiently large nn\in\mathbb{N}, where

k=0k0(ϵ,N(ϵ))1(nTk)P[𝒁kN(ϵ)]k0(ϵ,N(ϵ))nT,\sum_{k=0}^{k_{0}(\epsilon,N(\epsilon))-1}(\lfloor nT\rfloor-k)\operatorname{P}\left[\|\boldsymbol{Z}_{k}\|\leq N(\epsilon)\right]\leq k_{0}(\epsilon,N(\epsilon))\lfloor nT\rfloor,

and

k=k0(ϵ,N(ϵ))nT1(nTk)ϵϵn2T2.\sum_{k=k_{0}(\epsilon,N(\epsilon))}^{\lfloor nT\rfloor-1}(\lfloor nT\rfloor-k)\epsilon\leq\epsilon n^{2}T^{2}.

As a consequence, for all T>0T>0 and ϵ>0\epsilon>0, we have

lim supn1n2j=1nTk=0j1E[𝒈(𝒁k)]ϵT2+ϵC𝒈T2.\limsup_{n\to\infty}\frac{1}{n^{2}}\sum_{j=1}^{\lfloor nT\rfloor}\sum_{k=0}^{j-1}\operatorname{E}\!\left[\|\boldsymbol{g}(\boldsymbol{Z}_{k})\|\right]\leq\epsilon T^{2}+\epsilon C_{\boldsymbol{g}}T^{2}.

Hence, by taking the limit as ϵ0\epsilon\downarrow 0, we obtain (4.33), as desired.

Step 1/D

We show (4.17). For this, it is enough to verify that for all T>0T>0 and θ>0\theta>0, we have

1n2k=1nTE[𝑴k2𝟙{𝑴k>nθ}]0as n.\displaystyle\frac{1}{n^{2}}\sum_{k=1}^{\lfloor nT\rfloor}\operatorname{E}\!\left[\|\boldsymbol{M}_{k}\|^{2}\mathds{1}_{\{\|\boldsymbol{M}_{k}\|>n\theta\}}\right]\to 0\qquad\text{as }n\to\infty. (4.36)

Using that

E[𝑴k2𝟙{𝑴k>nθ}]1n2θ2E[𝑴k4],n,k,\operatorname{E}\!\left[\|\boldsymbol{M}_{k}\|^{2}\mathds{1}_{\{\|\boldsymbol{M}_{k}\|>n\theta\}}\right]\leq\frac{1}{n^{2}\theta^{2}}\operatorname{E}\!\left[\|\boldsymbol{M}_{k}\|^{4}\right],\qquad n,k\in\mathbb{N},

the convergence (4.36) follows from equation (A.4), since

1n2k=1nTE[𝑴k2𝟙{𝑴k>nθ}]1θ2n4k=1nTE[𝑴k4]0as n.\frac{1}{n^{2}}\sum_{k=1}^{\lfloor nT\rfloor}\operatorname{E}\!\left[\|\boldsymbol{M}_{k}\|^{2}\mathds{1}_{\{\|\boldsymbol{M}_{k}\|>n\theta\}}\right]\leq\frac{1}{\theta^{2}n^{4}}\sum_{k=1}^{\lfloor nT\rfloor}\operatorname{E}\!\left[\|\boldsymbol{M}_{k}\|^{4}\right]\to 0\qquad\text{as }n\to\infty.

Consequently, we finished the proof of (4.3).

Proof of Step 2

We want to apply Theorem A.5 to prove the convergence (4.5). We need to check that the assumptions of Theorem A.5 are satisfied. The continuity of 𝚿\boldsymbol{\Psi} can be straightforwardly deduced (following also from Jacod and Shiryaev [22, Chapter VI, Proposition 1.23]), so the measurability of 𝚿\boldsymbol{\Psi} holds. For the sequence (𝚿n)n(\boldsymbol{\Psi}_{n})_{n\in\mathbb{N}} and NN\in\mathbb{N}, let us introduce the localized sequence (𝚿nN)n(\boldsymbol{\Psi}_{n}^{N})_{n\in\mathbb{N}} given by 𝚿nN:𝐃(+,p)𝐃(+,p)\boldsymbol{\Psi}_{n}^{N}:\mathbf{D}(\mathbb{R}_{+},\mathbb{R}^{p})\to\mathbf{D}(\mathbb{R}_{+},\mathbb{R}^{p}), 𝚿nN(𝒇)(t)\colonequals𝚿n(𝒇)(tN)\boldsymbol{\Psi}_{n}^{N}(\boldsymbol{f})(t)\colonequals\boldsymbol{\Psi}_{n}(\boldsymbol{f})(t\wedge N) for 𝒇𝐃(+,p)\boldsymbol{f}\in\mathbf{D}(\mathbb{R}_{+},\mathbb{R}^{p}), t+t\in\mathbb{R}_{+}, nn\in\mathbb{N}. Since, for each nn\in\mathbb{N} and 𝒇𝐃(+,p)\boldsymbol{f}\in\mathbf{D}(\mathbb{R}_{+},\mathbb{R}^{p}), 𝚿nN(𝒇)𝚿n(𝒇)\boldsymbol{\Psi}_{n}^{N}(\boldsymbol{f})\to\boldsymbol{\Psi}_{n}(\boldsymbol{f}) as NN\to\infty, it is enough to check the measurability of 𝚿nN\boldsymbol{\Psi}_{n}^{N}, nn\in\mathbb{N} (see Barczy et al. [6, page 603] for the details). Briefly, for each nn\in\mathbb{N}, one can introduce the auxiliary measurable mappings 𝚿nN,1:𝐃(+,p)(p)nN+1\boldsymbol{\Psi}_{n}^{N,1}:\mathbf{D}(\mathbb{R}_{+},\mathbb{R}^{p})\to(\mathbb{R}^{p})^{nN+1} and 𝚿nN,2:(p)nN+1𝐃(+,p)\boldsymbol{\Psi}_{n}^{N,2}:(\mathbb{R}^{p})^{nN+1}\to\mathbf{D}(\mathbb{R}_{+},\mathbb{R}^{p}) defined by

𝚿nN,1(𝒇)\displaystyle\boldsymbol{\Psi}_{n}^{N,1}(\boldsymbol{f}) \colonequals(𝒇(0),𝒇(1n),𝒇(2n),,𝒇(N))\displaystyle\colonequals\left(\boldsymbol{f}\left(0\right),\boldsymbol{f}\left(\frac{1}{n}\right),\boldsymbol{f}\left(\frac{2}{n}\right),\ldots,\boldsymbol{f}\left(N\right)\right)

for 𝒇𝐃(+,p)\boldsymbol{f}\in\mathbf{D}(\mathbb{R}_{+},\mathbb{R}^{p}), and

𝚿nN,2(𝒙0,𝒙1,,𝒙nN)(t)\displaystyle\boldsymbol{\Psi}_{n}^{N,2}(\boldsymbol{x}_{0},\boldsymbol{x}_{1},\ldots,\boldsymbol{x}_{nN})(t) \colonequals𝗆~n(tN)𝒙0+j=1n(tN)𝗆~n(tN)j(𝒙j𝒙j1+1n𝗆𝜶)\displaystyle\colonequals\tilde{\mathsf{m}}^{\lfloor n(t\wedge N)\rfloor}\boldsymbol{x}_{0}+\sum_{j=1}^{\lfloor n(t\wedge N)\rfloor}\tilde{\mathsf{m}}^{\lfloor n(t\wedge N)\rfloor-j}\left(\boldsymbol{x}_{j}-\boldsymbol{x}_{j-1}+\frac{1}{n}\mathsf{m}\boldsymbol{\alpha}\right)

for (𝒙0,𝒙1,,𝒙nN)(p)nN+1(\boldsymbol{x}_{0},\boldsymbol{x}_{1},\ldots,\boldsymbol{x}_{nN})\in(\mathbb{R}^{p})^{nN+1} and t+t\in\mathbb{R}_{+}. Then we have that 𝚿nN=𝚿nN,2𝚿nN,1\boldsymbol{\Psi}_{n}^{N}=\boldsymbol{\Psi}_{n}^{N,2}\circ\boldsymbol{\Psi}_{n}^{N,1}, n,Nn,N\in\mathbb{N}.

Consider the set 𝐂={𝒇𝐂(+,p):Π~𝒇(0)=𝒇(0)}\mathbf{C}=\{\boldsymbol{f}\in\mathbf{C}(\mathbb{R}_{+},\mathbb{R}^{p}):\tilde{\mathsf{\Pi}}\boldsymbol{f}(0)=\boldsymbol{f}(0)\}. Let us check now that 𝐂\mathbf{C} is measurable and P[𝓜𝐂]=1.\operatorname{P}\left[\boldsymbol{\mathcal{M}}\in\mathbf{C}\right]=1. The projection 𝐃(+,p)𝒇𝝅0(𝒇)\colonequals𝒇(0)p\mathbf{D}(\mathbb{R}_{+},\mathbb{R}^{p})\ni\boldsymbol{f}\mapsto\boldsymbol{\pi}_{0}(\boldsymbol{f})\colonequals\boldsymbol{f}(0)\in\mathbb{R}^{p} and the mapping p𝒙(𝖨pΠ~)𝒙p\mathbb{R}^{p}\ni\boldsymbol{x}\mapsto(\mathsf{I}_{p}-\tilde{\mathsf{\Pi}})\boldsymbol{x}\in\mathbb{R}^{p} are measurable. Since 𝐂(+,p)\mathbf{C}(\mathbb{R}_{+},\mathbb{R}^{p}) is a measurable set (see Ethier and Kurtz [9, Problem 3.11.25]), we have 𝐂=𝐂(+,p)𝝅01(Null(𝖨pΠ~))𝒟(+,p)\mathbf{C}=\mathbf{C}(\mathbb{R}_{+},\mathbb{R}^{p})\cap\boldsymbol{\pi}_{0}^{-1}(\operatorname{Null}(\mathsf{I}_{p}-\tilde{\mathsf{\Pi}}))\in\mathcal{D}_{\infty}(\mathbb{R}_{+},\mathbb{R}^{p}). Furthermore, in Step 1, we proved that 𝓜\boldsymbol{\mathcal{M}} is the pathwise unique strong solution of SDE (4.4) with initial value 𝟎p\boldsymbol{0}_{p}. Hence it has continuous sample paths almost surely, and Π~𝓜0=Π~𝟎p=𝟎p=𝓜0\tilde{\mathsf{\Pi}}\boldsymbol{\mathcal{M}}_{0}=\tilde{\mathsf{\Pi}}\boldsymbol{0}_{p}=\boldsymbol{0}_{p}=\boldsymbol{\mathcal{M}}_{0}. Finally, the procedure to show that 𝐂𝐂𝚽,(𝚽n)n\mathbf{C}\subset\mathbf{C}_{\boldsymbol{\Phi},(\boldsymbol{\Phi}_{n})_{n\in\mathbb{N}}} follows the same steps as on page 736 in Ispány and Pap [21].

Proof of Step 3

First, we check that 𝓩(n)=𝚿n(𝓜(n))+𝓥(n)\boldsymbol{\mathcal{Z}}^{(n)}=\boldsymbol{\Psi}_{n}(\boldsymbol{\mathcal{M}}^{(n)})+\boldsymbol{\mathcal{V}}^{(n)}, nn\in\mathbb{N}. Using Hypothesis 2 and equations (2.8), (4.1), (4.7), and (4.9), we get

(𝚿n(𝓜(n)))t\displaystyle(\boldsymbol{\Psi}_{n}(\boldsymbol{\mathcal{M}}^{(n)}))_{t} =𝗆~nt1n𝒁0+j=1nt𝗆~ntj(1n𝑴j+1n𝗆𝜶)\displaystyle=\tilde{\mathsf{m}}^{\lfloor nt\rfloor}\frac{1}{n}\boldsymbol{Z}_{0}+\sum_{j=1}^{\lfloor nt\rfloor}\tilde{\mathsf{m}}^{\lfloor nt\rfloor-j}\Big{(}\frac{1}{n}\boldsymbol{M}_{j}+\frac{1}{n}\mathsf{m}\boldsymbol{\alpha}\Big{)}
=1n𝗆~nt𝒁0+1nj=1nt𝗆~ntj(𝒁j𝗆ε(𝒁j1)+𝗆𝜶)\displaystyle=\frac{1}{n}\tilde{\mathsf{m}}^{\lfloor nt\rfloor}\boldsymbol{Z}_{0}+\frac{1}{n}\sum_{j=1}^{\lfloor nt\rfloor}\tilde{\mathsf{m}}^{\lfloor nt\rfloor-j}\big{(}\boldsymbol{Z}_{j}-\mathsf{m}\varepsilon(\boldsymbol{Z}_{j-1})+\mathsf{m}\boldsymbol{\alpha}\big{)}
=1n𝗆~nt𝒁0+1nj=1nt𝗆~ntj(𝒁j𝗆~𝒁j1𝗆g(𝒁j1))\displaystyle=\frac{1}{n}\tilde{\mathsf{m}}^{\lfloor nt\rfloor}\boldsymbol{Z}_{0}+\frac{1}{n}\sum_{j=1}^{\lfloor nt\rfloor}\tilde{\mathsf{m}}^{\lfloor nt\rfloor-j}\Big{(}\boldsymbol{Z}_{j}-\tilde{\mathsf{m}}\boldsymbol{Z}_{j-1}-\mathsf{m}g(\boldsymbol{Z}_{j-1})\Big{)}
=n1𝒁ntn1j=1nt𝗆~ntj𝗆𝒈(𝒁j1)\displaystyle=n^{-1}\boldsymbol{Z}_{\lfloor nt\rfloor}-n^{-1}\sum_{j=1}^{\lfloor nt\rfloor}\tilde{\mathsf{m}}^{\lfloor nt\rfloor-j}\mathsf{m}\boldsymbol{g}(\boldsymbol{Z}_{j-1})
=n1𝒁nt𝓥t(n)=𝓩t(n)𝓥t(n),n,t+,\displaystyle=n^{-1}\boldsymbol{Z}_{\lfloor nt\rfloor}-\boldsymbol{\mathcal{V}}_{t}^{(n)}=\boldsymbol{\mathcal{Z}}^{(n)}_{t}-\boldsymbol{\mathcal{V}}_{t}^{(n)},\qquad n\in\mathbb{N},\quad t\in\mathbb{R}_{+},

as desired.

Next, we show (4.8). Taking into account (4.5) and Jacod and Shiryaev [22, Chapter VI, Lemma 3.31], in order to prove (4.8), it is enough to see that for all T>0T>0 and δ>0\delta>0, we get

limnP[supt[0,T]𝓥t(n)δ]=0.\lim_{n\to\infty}\operatorname{P}\left[\sup_{t\in[0,T]}\|\boldsymbol{\mathcal{V}}_{t}^{(n)}\|\geq\delta\right]=0. (4.37)

This can be checked as follows. For all T>0T>0 and δ>0\delta>0, by Markov’s inequality and (4.29), we get

P[supt[0,T]𝓥t(n)δ]\displaystyle\operatorname{P}\left[\sup_{t\in[0,T]}\|\boldsymbol{\mathcal{V}}_{t}^{(n)}\|\geq\delta\right] δ1E[n1j=1nT𝗆~nTj𝗆𝒈(𝒁j1)]\displaystyle\leq\delta^{-1}\operatorname{E}\!\left[n^{-1}\sum_{j=1}^{\lfloor nT\rfloor}\|\tilde{\mathsf{m}}^{\lfloor nT\rfloor-j}\mathsf{m}\boldsymbol{g}(\boldsymbol{Z}_{j-1})\|\right]
C~𝗆δ1n1j=1nTE[𝒈(𝒁j1)],n,\displaystyle\leq\tilde{C}\|\mathsf{m}\|\delta^{-1}n^{-1}\sum_{j=1}^{\lfloor nT\rfloor}\operatorname{E}\!\left[\|\boldsymbol{g}(\boldsymbol{Z}_{j-1})\|\right],\qquad n\in\mathbb{N},

and then we proceed as in the proof of (4.27). For all ϵ>0\epsilon>0, there exists N(ϵ)>0N(\epsilon)>0 such that 𝒈(𝒛)<ϵ\|\boldsymbol{g}(\boldsymbol{z})\|<\epsilon for each 𝒛+p\boldsymbol{z}\in\mathbb{Z}_{+}^{p} with 𝒛>N(ϵ)\|\boldsymbol{z}\|>N(\epsilon). So, using Hypothesis 6 and (4), we get for all T>0T>0 and ϵ>0\epsilon>0

1nj=1nTE[𝒈(𝒁j1)]1nj=1nT(C𝒈P[𝒁j1N(ϵ)]+ϵ)ϵT+C𝒈n(j=0k0(ϵ,N(ϵ))1P[𝒁jN(ϵ)]+j=k0(ϵ,N(ϵ))nT1ϵ)ϵT+C𝒈k0(ϵ,N(ϵ))1n+ϵC𝒈T\displaystyle\begin{split}\frac{1}{n}\sum_{j=1}^{\lfloor nT\rfloor}\operatorname{E}\!\left[\|\boldsymbol{g}(\boldsymbol{Z}_{j-1})\|\right]&\leq\frac{1}{n}\sum_{j=1}^{\lfloor nT\rfloor}\left(C_{\boldsymbol{g}}\operatorname{P}\left[\|\boldsymbol{Z}_{j-1}\|\leq N(\epsilon)\right]+\epsilon\right)\\ &\leq\epsilon T+\frac{C_{\boldsymbol{g}}}{n}\left(\sum_{j=0}^{k_{0}(\epsilon,N(\epsilon))-1}\operatorname{P}\left[\|\boldsymbol{Z}_{j}\|\leq N(\epsilon)\right]+\sum_{j=k_{0}(\epsilon,N(\epsilon))}^{\lfloor nT\rfloor-1}\epsilon\right)\\ &\leq\epsilon T+C_{\boldsymbol{g}}k_{0}(\epsilon,N(\epsilon))\frac{1}{n}+\epsilon C_{\boldsymbol{g}}T\end{split} (4.38)

for sufficiently large nn\in\mathbb{N}. By taking the limit as nn\to\infty, we have that for all T>0T>0 and ϵ>0\epsilon>0,

lim supn1nj=1nTE[𝒈(𝒁j1)]ϵT+ϵC𝒈T,\limsup_{n\to\infty}\frac{1}{n}\sum_{j=1}^{\lfloor nT\rfloor}\operatorname{E}\!\left[\|\boldsymbol{g}(\boldsymbol{Z}_{j-1})\|\right]\leq\epsilon T+\epsilon C_{\boldsymbol{g}}T,

and then taking the limit as ϵ0\epsilon\downarrow 0, we obtain that n1j=1nTE[𝒈(𝒁j1)]0n^{-1}\sum_{j=1}^{\lfloor nT\rfloor}\operatorname{E}\!\left[\|\boldsymbol{g}(\boldsymbol{Z}_{j-1})\|\right]\to 0 as nn\to\infty, yielding (4.37), as desired. \Box

Appendix A Appendix

The reader can consult Horn and Johnson [18] for the following known facts about primitive non-negative matrices (see Definition 8.5.0 and Theorems 8.2.8, 8.5.1 and 8.5.2 in [18]). A primitive matrix 𝖠+p×p\mathsf{A}\in\mathbb{R}_{+}^{p\times p} is an irreducible matrix with only one eigenvalue of maximum modulus (the so-called Perron–Frobenius eigenvalue), or equivalently, 𝖠+p×p\mathsf{A}\in\mathbb{R}_{+}^{p\times p} is primitive if and only if there exists nn\in\mathbb{N} such that 𝖠n++p×p.\mathsf{A}^{n}\in\mathbb{R}_{++}^{p\times p}. By the Perron–Frobenius theorem, we have the following lemma.

Lemma A.1.

Let 𝖠+p×p\mathsf{A}\in\mathbb{R}_{+}^{p\times p} be a primitive matrix and let ρ\rho be its Perron–Frobenius eigenvalue. The following statements hold:

  1. (i)

    ρ++,\rho\in\mathbb{R}_{++}, its algebraic and geometric multiplicity are equal to 1, and the absolute values of the other eigenvalues of 𝖠\mathsf{A} are less than ρ\rho.

  2. (ii)

    There exists a unique right eigenvector 𝒖++p\boldsymbol{u}\in\mathbb{R}_{++}^{p} and a unique left eigenvector 𝒗++p\boldsymbol{v}\in\mathbb{R}_{++}^{p} corresponding to ρ\rho such that the sum of the coordinates of 𝒖\boldsymbol{u} is 1 and 𝒗𝒖=1\boldsymbol{v}^{\top}\boldsymbol{u}=1. One calls 𝒖\boldsymbol{u} and 𝒗\boldsymbol{v} the right and left Perron–Frobenius eigenvector, respectively.

  3. (iii)

    If ρ=1,\rho=1, then limk𝖠k=Π\lim_{k\to\infty}\mathsf{A}^{k}=\mathsf{\Pi} and there exist c++c\in\mathbb{R}_{++} and r(0,1)r\in(0,1) such that 𝖠kΠcrk\|\mathsf{A}^{k}-\mathsf{\Pi}\|\leq cr^{k} for each kk\in\mathbb{N}, where Π\colonequals𝒖𝒗++p×p\mathsf{\Pi}\colonequals\boldsymbol{u}\boldsymbol{v}^{\top}\in\mathbb{R}_{++}^{p\times p}.

Next, we will investigate the asymptotic behaviour of the first and second moments of the norm 𝒁k\|{\boldsymbol{Z}}_{k}\| for a critical CMBP (𝒁k)k+({\boldsymbol{Z}}_{k})_{k\in\mathbb{Z}_{+}}. We will also study the same question for the second and fourth moments of 𝑴k\|\boldsymbol{M}_{k}\|, where (𝑴k)k(\boldsymbol{M}_{k})_{k\in\mathbb{N}} is the martingale difference sequence, given in (4.1), built from (𝒁k)k+({\boldsymbol{Z}}_{k})_{k\in\mathbb{Z}_{+}}. We need the following auxiliary result, presented and proved first.

Lemma A.2.

Let AA, AnA_{n}, nn\in\mathbb{N}, be independent and identically distributed +\mathbb{Z}_{+}–valued random variables with zero mean. If BB is a +\mathbb{Z}_{+}–valued random variable independent of AA and AnA_{n}, nn\in\mathbb{N}, then

E[(i=1BAi)4]=3ΣA2(ΓB+μB2)+(ζA3ΣA2)μB,\operatorname{E}\!\left[\left(\sum_{i=1}^{B}A_{i}\right)^{4}\right]=3\Sigma_{A}^{2}(\Gamma_{B}+\mu_{B}^{2})+(\zeta_{A}-3\Sigma_{A}^{2})\mu_{B},

where ΣA\colonequalsVar[A]\Sigma_{A}\colonequals\operatorname{Var}\!\left[A\right], ζA\colonequalsE[A4]\zeta_{A}\colonequals\operatorname{E}\!\left[A^{4}\right], μB\colonequalsE[B]\mu_{B}\colonequals\operatorname{E}\!\left[B\right], and ΓB\colonequalsVar[B]\Gamma_{B}\colonequals\operatorname{Var}\!\left[B\right].

Proof.

By the properties of the conditional expectation, we can get

E[(i=1BAi)4]=E[E[i,j,k,l=1BAiAjAkAl|B]]=E[i=1BE[Ai4]]+3E[i,j=1ijBE[Ai2Aj2]],\operatorname{E}\!\left[\left(\sum_{i=1}^{B}A_{i}\right)^{4}\right]=\operatorname{E}\!\left[\operatorname{E}\left[\sum_{i,j,k,l=1}^{B}A_{i}A_{j}A_{k}A_{l}\;\middle|\;B\right]\right]=\operatorname{E}\!\left[\sum_{i=1}^{B}\operatorname{E}\!\left[A_{i}^{4}\right]\right]+3\operatorname{E}\!\left[\sum_{\begin{subarray}{c}i,j=1\\ i\neq j\end{subarray}}^{B}\operatorname{E}\!\left[A_{i}^{2}A_{j}^{2}\right]\right],

where the terms that would correspond to E[Ai3Aj]\operatorname{E}\!\left[A_{i}^{3}A_{j}\right], E[Ai2AjAk]\operatorname{E}\!\left[A_{i}^{2}A_{j}A_{k}\right] and E[AiAjAkAl]\operatorname{E}\!\left[A_{i}A_{j}A_{k}A_{l}\right] (indices i,j,k,li,j,k,l are different from each other) vanish due to independence and the zero mean of the random variables in question.

Let us calculate the summands on the right hand side of the expression above:

E[i=1BE[Ai4]]=ζAμB,\operatorname{E}\!\left[\sum_{i=1}^{B}\operatorname{E}\!\left[A_{i}^{4}\right]\right]=\zeta_{A}\mu_{B},

and

E[i,j=1ijBE[Ai2Aj2]]=ΣA2E[B(B1)]=ΣA2(ΓB+μB2μB).\operatorname{E}\!\left[\sum_{\begin{subarray}{c}i,j=1\\ i\neq j\end{subarray}}^{B}\operatorname{E}\!\left[A_{i}^{2}A_{j}^{2}\right]\right]=\Sigma_{A}^{2}\operatorname{E}\!\left[B(B-1)\right]=\Sigma_{A}^{2}(\Gamma_{B}+\mu_{B}^{2}-\mu_{B}).

This yields the assertion. ∎

Lemma A.3.

Let (𝐙k)k+(\boldsymbol{Z}_{k})_{k\in\mathbb{Z}_{+}} be a controlled pp–type branching process given in (2.1) such that E[𝐙0]\operatorname{E}\!\left[\|{\boldsymbol{Z}}_{0}\|\right], E[𝐗0,1,i]\operatorname{E}\!\left[\|\boldsymbol{X}_{0,1,i}\|\right] and E[ϕ0(𝐳)]\operatorname{E}\!\left[\|\boldsymbol{\phi}_{0}(\boldsymbol{z})\|\right] are finite for i{1,,p}i\in\{1,\ldots,p\} and 𝐳+p{\boldsymbol{z}}\in\mathbb{Z}_{+}^{p}. Assume that 𝛆(𝐳)=Λ𝐳+𝐡(𝐳)\boldsymbol{\varepsilon}(\boldsymbol{z})=\mathsf{\Lambda}\boldsymbol{z}+\boldsymbol{h}(\boldsymbol{z}), 𝐳+p{\boldsymbol{z}}\in\mathbb{Z}_{+}^{p}, where Λp×p\mathsf{\Lambda}\in\mathbb{R}^{p\times p} and 𝐡:+pp\boldsymbol{h}:\mathbb{Z}_{+}^{p}\to\mathbb{R}^{p} satisfies 𝐡(𝐳)=O(1)\|\boldsymbol{h}(\boldsymbol{z})\|=\operatorname{O}(1) as 𝐳\|\boldsymbol{z}\|\to\infty. Further, suppose that Hypothesis 5 holds.

  1. (i)

    Then we have

    E[𝒁k]=O(k)as k.\operatorname{E}\!\left[\|\boldsymbol{Z}_{k}\|\right]=\operatorname{O}(k)\qquad\text{as $k\to\infty$.} (A.1)
  2. (ii)

    If, in addition, E[𝒁02]\operatorname{E}\!\left[\|{\boldsymbol{Z}}_{0}\|^{2}\right], E[𝑿0,1,i2]\operatorname{E}\!\left[\|\boldsymbol{X}_{0,1,i}\|^{2}\right] and E[ϕ0(𝒛)2]\operatorname{E}\!\left[\|\boldsymbol{\phi}_{0}(\boldsymbol{z})\|^{2}\right] are finite for i{1,,p}i\in\{1,\ldots,p\}, 𝒛+p{\boldsymbol{z}}\in\mathbb{Z}_{+}^{p}, and Γ(𝒛)=O(𝒛)\|\mathsf{\Gamma}(\boldsymbol{z})\|=\operatorname{O}(\|\boldsymbol{z}\|) as 𝒛\|{\boldsymbol{z}}\|\to\infty, then we have (A.1) and

    E[𝒁k2]\displaystyle\operatorname{E}\!\left[\|\boldsymbol{Z}_{k}\|^{2}\right] =O(k2)as k,\displaystyle=\operatorname{O}(k^{2})\qquad\text{as }k\to\infty, (A.2)
    E[𝑴k2]\displaystyle\operatorname{E}\!\left[\|\boldsymbol{M}_{k}\|^{2}\right] =O(k)as k.\displaystyle=\operatorname{O}(k)\qquad\text{as }k\to\infty. (A.3)
  3. (iii)

    If, in addition, Hypotheses 1, 4 and Γ(𝒛)=O(𝒛)\|\mathsf{\Gamma}(\boldsymbol{z})\|=\operatorname{O}(\|\boldsymbol{z}\|) as 𝒛\|{\boldsymbol{z}}\|\to\infty hold, then we have (A.1), (A.2), (A.3) and

    E[𝑴k4]=O(k2)as k.\operatorname{E}\!\left[\|\boldsymbol{M}_{k}\|^{4}\right]=\operatorname{O}(k^{2})\qquad\text{as }k\to\infty. (A.4)
Proof.

(i). By (2.8), for each kk\in\mathbb{N}, we have

E[𝒁k]=E[𝗆𝜺(𝒁k1)]=𝗆~E[𝒁k1]+𝗆E[𝒉(𝒁k1)]=𝗆~kE[𝒁0]+j=0k1𝗆~j𝗆E[𝒉(𝒁k1j)].\operatorname{E}\!\left[\boldsymbol{Z}_{k}\right]=\operatorname{E}\!\left[\mathsf{m}\boldsymbol{\varepsilon}(\boldsymbol{Z}_{k-1})\right]=\tilde{\mathsf{m}}\operatorname{E}\!\left[\boldsymbol{Z}_{k-1}\right]+\mathsf{m}\operatorname{E}\!\left[\boldsymbol{h}(\boldsymbol{Z}_{k-1})\right]=\tilde{\mathsf{m}}^{k}\operatorname{E}\!\left[\boldsymbol{Z}_{0}\right]+\sum_{j=0}^{k-1}\tilde{\mathsf{m}}^{j}\mathsf{m}\operatorname{E}\!\left[\boldsymbol{h}(\boldsymbol{Z}_{k-1-j})\right]. (A.5)

Hence, using the triangle inequality, for each kk\in\mathbb{N}, we get

E[𝒁k]𝗆~kE[𝒁0]+j=0k1𝗆~j𝗆E[𝒉(𝒁k1j)].\left\|\operatorname{E}\!\left[\boldsymbol{Z}_{k}\right]\right\|\leq\|\tilde{\mathsf{m}}^{k}\|\operatorname{E}\!\left[\|\boldsymbol{Z}_{0}\|\right]+\sum_{j=0}^{k-1}\|\tilde{\mathsf{m}}^{j}\|\|\mathsf{m}\|\operatorname{E}\!\left[\|\boldsymbol{h}(\boldsymbol{Z}_{k-1-j})\|\right].

We recall the power mean inequality used in the proofs several times: for all nn\in\mathbb{N}, ai+a_{i}\in\mathbb{R}_{+}, i=1,,ni=1,\ldots,n, and 0<k1k20<k_{1}\leq k_{2}, we get

(1ni=1naik1)1k1(1ni=1naik2)1k2.\displaystyle\left(\frac{1}{n}\sum_{i=1}^{n}a_{i}^{k_{1}}\right)^{\frac{1}{k_{1}}}\leq\left(\frac{1}{n}\sum_{i=1}^{n}a_{i}^{k_{2}}\right)^{\frac{1}{k_{2}}}. (A.6)

Using the inequality

𝒙(x1++xp)2++(x1++xp)2=pi=1pxi,𝒙=(x1,,xp)+p,\|\boldsymbol{x}\|\leq\sqrt{(x_{1}+\ldots+x_{p})^{2}+\cdots+(x_{1}+\ldots+x_{p})^{2}}=\sqrt{p}\sum_{i=1}^{p}x_{i},\qquad\boldsymbol{x}=(x_{1},\ldots,x_{p})\in\mathbb{R}_{+}^{p},

and the power mean inequality (A.6), for any random vector 𝝃=(ξ1,,ξp)\boldsymbol{\xi}=(\xi_{1},\ldots,\xi_{p}) having non-negative coordinates, we obtain that

E[𝝃]pE[ξ1++ξp]pp((E[ξ1])2++(E[ξp])2p)12=pE[𝝃].\displaystyle\operatorname{E}\!\left[\|\boldsymbol{\xi}\|\right]\leq\sqrt{p}\operatorname{E}\!\left[\xi_{1}+\ldots+\xi_{p}\right]\leq\sqrt{p}\cdot p\left(\frac{(\operatorname{E}\!\left[\xi_{1}\right])^{2}+\ldots+(\operatorname{E}\!\left[\xi_{p}\right])^{2}}{p}\right)^{\frac{1}{2}}=p\|\operatorname{E}\!\left[\boldsymbol{\xi}\right]\|.

Consequently, we get

E[𝒁k]pE[𝒁k]=pC~(E[𝒁0]+𝗆C𝒉k),\operatorname{E}\!\left[\|\boldsymbol{Z}_{k}\|\right]\leq p\left\|\operatorname{E}\!\left[\boldsymbol{Z}_{k}\right]\right\|=p\tilde{C}(\operatorname{E}\!\left[\|\boldsymbol{Z}_{0}\|\right]+\|\mathsf{m}\|C_{\boldsymbol{h}}k),

where C~=supj+𝗆~j<\tilde{C}=\sup_{j\in\mathbb{Z}_{+}}\|\tilde{\mathsf{m}}^{j}\|<\infty due to Hypothesis 5 (see (4.29)) and the constant C𝒉C_{\boldsymbol{h}} is defined by

C𝒉\colonequalssup𝒛+p𝒉(𝒛)<.C_{\boldsymbol{h}}\colonequals\sup_{\boldsymbol{z}\in\mathbb{Z}_{+}^{p}}\|\boldsymbol{h}(\boldsymbol{z})\|<\infty. (A.7)

This yields (A.1).

(ii). Since the finiteness of the second moment of the norm of a random vector implies that of the first moment, using part (i) of the present lemma, we have (A.1). Taking into account that the expected value and the trace of a random square matrix commute, we have

E[𝒁k2]\displaystyle\operatorname{E}\!\left[\|\boldsymbol{Z}_{k}\|^{2}\right] =E[tr(𝒁k(𝒁k))]=tr(E[𝒁k(𝒁k)])=tr(E[𝒁k]E[𝒁k])+tr(Var[𝒁k])\displaystyle=\operatorname{E}\!\left[\operatorname{tr}\left(\boldsymbol{Z}_{k}(\boldsymbol{Z}_{k})^{\top}\right)\right]=\operatorname{tr}\left(\operatorname{E}\!\left[{\boldsymbol{Z}}_{k}({\boldsymbol{Z}}_{k})^{\top}\right]\right)=\operatorname{tr}\left(\operatorname{E}\!\left[\boldsymbol{Z}_{k}\right]\operatorname{E}\!\left[\boldsymbol{Z}_{k}\right]^{\top}\right)+\operatorname{tr}\left(\operatorname{Var}\!\left[\boldsymbol{Z}_{k}\right]\right)
=E[𝒁k]2+tr(Var[𝒁k])(E[𝒁k])2+pVar[𝒁k],\displaystyle=\left\|\operatorname{E}\!\left[{\boldsymbol{Z}}_{k}\right]\right\|^{2}+\operatorname{tr}\left(\operatorname{Var}\!\left[\boldsymbol{Z}_{k}\right]\right)\leq\left(\operatorname{E}\!\left[\|\boldsymbol{Z}_{k}\|\right]\right)^{2}+p\left\|\operatorname{Var}\!\left[\boldsymbol{Z}_{k}\right]\right\|,

where for the last inequality, we used that for any matrix 𝖡p×p\mathsf{B}\in\mathbb{R}^{p\times p}, we have tr(𝖡)=i=1pbi,ii=1p|bi,i|p𝖡\operatorname{tr}\left(\mathsf{B}\right)=\sum_{i=1}^{p}b_{i,i}\leq\sum_{i=1}^{p}|b_{i,i}|\leq p\|\mathsf{B}\|. We know that (A.1) holds, therefore, in order to get (A.2), it is enough to see Var[𝒁k]=O(k2)\left\|\operatorname{Var}\!\left[\boldsymbol{Z}_{k}\right]\right\|=\operatorname{O}(k^{2}) as kk\to\infty. Using the variance decomposition formula, i.e.

Var[𝒁k]=Var[E[𝒁k|k1]]+E[Var[𝒁k|k1]],k,\operatorname{Var}\!\left[\boldsymbol{Z}_{k}\right]=\operatorname{Var}\!\left[\operatorname{E}\left[\boldsymbol{Z}_{k}\;\middle|\;\mathcal{F}_{k-1}\right]\right]+\operatorname{E}\!\left[\operatorname{Var}\left[\boldsymbol{Z}_{k}\;\middle|\;\mathcal{F}_{k-1}\right]\right],\qquad k\in\mathbb{N},

formulas (2.8) and (2.9), and the assumption on 𝜺(𝒛)\boldsymbol{\varepsilon}({\boldsymbol{z}}), 𝒛+p{\boldsymbol{z}}\in\mathbb{Z}_{+}^{p}, together with the properties of variance, for each kk\in\mathbb{N}, we obtain

Var[𝒁k]\displaystyle\operatorname{Var}\!\left[\boldsymbol{Z}_{k}\right] =Var[𝗆𝜺(𝒁k1)]+E[𝜺(𝒁k1)𝝨+𝗆Γ(𝒁k1)𝗆]\displaystyle=\operatorname{Var}\!\left[\mathsf{m}\boldsymbol{\varepsilon}(\boldsymbol{Z}_{k-1})\right]+\operatorname{E}\!\left[\boldsymbol{\varepsilon}(\boldsymbol{Z}_{k-1})\odot\boldsymbol{\mathsf{\Sigma}}+\mathsf{m}\mathsf{\Gamma}(\boldsymbol{Z}_{k-1})\mathsf{m}^{\top}\right]
=Var[𝗆Λ𝒁k1+𝗆𝒉(𝒁k1)]+E[𝜺(𝒁k1)]𝝨+𝗆E[Γ(𝒁k1)]𝗆\displaystyle=\operatorname{Var}\!\left[\mathsf{m}\mathsf{\Lambda}\boldsymbol{Z}_{k-1}+\mathsf{m}\boldsymbol{h}(\boldsymbol{Z}_{k-1})\right]+\operatorname{E}\!\left[\boldsymbol{\varepsilon}(\boldsymbol{Z}_{k-1})\right]\odot\boldsymbol{\mathsf{\Sigma}}+\mathsf{m}\operatorname{E}\!\left[\mathsf{\Gamma}(\boldsymbol{Z}_{k-1})\right]\mathsf{m}^{\top}
=𝗆~Var[𝒁k1]𝗆~+𝗆Var[𝒉(𝒁k1)]𝗆+𝗆~Cov[𝒁k1,𝒉(𝒁k1)]𝗆\displaystyle=\tilde{\mathsf{m}}\operatorname{Var}\!\left[\boldsymbol{Z}_{k-1}\right]\tilde{\mathsf{m}}^{\top}+\mathsf{m}\operatorname{Var}\!\left[\boldsymbol{h}(\boldsymbol{Z}_{k-1})\right]\mathsf{m}^{\top}+\tilde{\mathsf{m}}\operatorname{Cov}\left[\boldsymbol{Z}_{k-1},\;\boldsymbol{h}(\boldsymbol{Z}_{k-1})\right]\mathsf{m}^{\top}
+𝗆Cov[𝒉(𝒁k1),𝒁k1]𝗆~+E[𝜺(𝒁k1)]𝝨+𝗆E[Γ(𝒁k1)]𝗆.\displaystyle\quad+\mathsf{m}\operatorname{Cov}\left[\boldsymbol{h}(\boldsymbol{Z}_{k-1}),\;\boldsymbol{Z}_{k-1}\right]\tilde{\mathsf{m}}^{\top}+\operatorname{E}\!\left[\boldsymbol{\varepsilon}(\boldsymbol{Z}_{k-1})\right]\odot\boldsymbol{\mathsf{\Sigma}}+\mathsf{m}\operatorname{E}\!\left[\mathsf{\Gamma}(\boldsymbol{Z}_{k-1})\right]\mathsf{m}^{\top}.

Proceeding recursively, we can reach the following expression

Var[𝒁k]\displaystyle\operatorname{Var}\!\left[\boldsymbol{Z}_{k}\right] =𝗆~kVar[𝒁0](𝗆~)k+j=0k1𝗆~j𝗆Var[𝒉(𝒁k1j)]𝗆(𝗆~)j\displaystyle=\tilde{\mathsf{m}}^{k}\operatorname{Var}\!\left[\boldsymbol{Z}_{0}\right](\tilde{\mathsf{m}}^{\top})^{k}+\sum_{j=0}^{k-1}\tilde{\mathsf{m}}^{j}\mathsf{m}\operatorname{Var}\!\left[\boldsymbol{h}(\boldsymbol{Z}_{k-1-j})\right]\mathsf{m}^{\top}(\tilde{\mathsf{m}}^{\top})^{j}
+j=0k1𝗆~j𝗆~Cov[𝒁k1j,𝒉(𝒁k1j)]𝗆(𝗆~)j\displaystyle\quad+\sum_{j=0}^{k-1}\tilde{\mathsf{m}}^{j}\tilde{\mathsf{m}}\operatorname{Cov}\left[\boldsymbol{Z}_{k-1-j},\;\boldsymbol{h}(\boldsymbol{Z}_{k-1-j})\right]\mathsf{m}^{\top}(\tilde{\mathsf{m}}^{\top})^{j}
+j=0k1𝗆~j𝗆Cov[𝒉(𝒁k1j),𝒁k1j]𝗆~(𝗆~)j\displaystyle\quad+\sum_{j=0}^{k-1}\tilde{\mathsf{m}}^{j}\mathsf{m}\operatorname{Cov}\left[\boldsymbol{h}(\boldsymbol{Z}_{k-1-j}),\;\boldsymbol{Z}_{k-1-j}\right]\tilde{\mathsf{m}}^{\top}(\tilde{\mathsf{m}}^{\top})^{j}
+j=0k1𝗆~j(E[𝜺(𝒁k1j)]𝝨)(𝗆~)j+j=0k1𝗆~j𝗆E[Γ(𝒁k1j)]𝗆(𝗆~)j.\displaystyle\quad+\sum_{j=0}^{k-1}\tilde{\mathsf{m}}^{j}\left(\operatorname{E}\!\left[\boldsymbol{\varepsilon}(\boldsymbol{Z}_{k-1-j})\right]\odot\boldsymbol{\mathsf{\Sigma}}\right)(\tilde{\mathsf{m}}^{\top})^{j}+\sum_{j=0}^{k-1}\tilde{\mathsf{m}}^{j}\mathsf{m}\operatorname{E}\!\left[\mathsf{\Gamma}(\boldsymbol{Z}_{k-1-j})\right]\mathsf{m}^{\top}(\tilde{\mathsf{m}}^{\top})^{j}.

In what follows, we will use that for all 𝒛=(z1,,zp)p{\boldsymbol{z}}=(z_{1},\ldots,z_{p})\in\mathbb{R}^{p}, we have

𝒛𝝨=i=1pziΣi𝒛i=1pΣi=𝒛𝝨,\displaystyle\|{\boldsymbol{z}}\odot\boldsymbol{\mathsf{\Sigma}}\|=\left\|\sum_{i=1}^{p}z_{i}\mathsf{\Sigma}_{i}\right\|\leq\|{\boldsymbol{z}}\|\sum_{i=1}^{p}\|\mathsf{\Sigma}_{i}\|=\|{\boldsymbol{z}}\|\|\boldsymbol{\mathsf{\Sigma}}\|, (A.8)

where 𝝨\colonequalsi=1pΣi\|\boldsymbol{\mathsf{\Sigma}}\|\colonequals\sum_{i=1}^{p}\|\mathsf{\Sigma}_{i}\|. By (A.8), the triangle inequality and the symmetry of covariance, we get

Var[𝒁k]𝗆~k2Var[𝒁0]+j=0k1𝗆~j2𝗆2Var[𝒉(𝒁k1j)]+2j=0k1𝗆~j2𝗆~𝗆Cov[𝒁k1j,𝒉(𝒁k1j)]+j=0k1𝗆~j2E[𝜺(𝒁k1j)]𝝨+j=0k1𝗆~j2𝗆2E[Γ(𝒁k1j)],\displaystyle\begin{split}\left\|\operatorname{Var}\!\left[\boldsymbol{Z}_{k}\right]\right\|&\leq\|\tilde{\mathsf{m}}^{k}\|^{2}\left\|\operatorname{Var}\!\left[\boldsymbol{Z}_{0}\right]\right\|+\sum_{j=0}^{k-1}\|\tilde{\mathsf{m}}^{j}\|^{2}\|\mathsf{m}\|^{2}\left\|\operatorname{Var}\!\left[\boldsymbol{h}(\boldsymbol{Z}_{k-1-j})\right]\right\|\\ &+2\sum_{j=0}^{k-1}\|\tilde{\mathsf{m}}^{j}\|^{2}\|\tilde{\mathsf{m}}\|\|\mathsf{m}\|\left\|\operatorname{Cov}\left[\boldsymbol{Z}_{k-1-j},\;\boldsymbol{h}(\boldsymbol{Z}_{k-1-j})\right]\right\|\\ &+\sum_{j=0}^{k-1}\|\tilde{\mathsf{m}}^{j}\|^{2}\operatorname{E}\!\left[\|\boldsymbol{\varepsilon}(\boldsymbol{Z}_{k-1-j})\|\right]\|\boldsymbol{\mathsf{\Sigma}}\|+\sum_{j=0}^{k-1}\|\tilde{\mathsf{m}}^{j}\|^{2}\|\mathsf{m}\|^{2}\operatorname{E}\!\left[\|\mathsf{\Gamma}(\boldsymbol{Z}_{k-1-j})\|\right],\end{split} (A.9)

and now we look for an upper bound for each term on the right hand side of (A.9).

In case of the first term, we easily have

Var[𝒁0]=E[𝒁0(𝒁0)]E[𝒁0]E[(𝒁0)]E[𝒁02]+(E[𝒁0])2<.\left\|\operatorname{Var}\!\left[\boldsymbol{Z}_{0}\right]\right\|=\left\|\operatorname{E}\!\left[{\boldsymbol{Z}}_{0}({\boldsymbol{Z}}_{0})^{\top}\right]-\operatorname{E}\!\left[{\boldsymbol{Z}}_{0}\right]\operatorname{E}\!\left[({\boldsymbol{Z}}_{0})^{\top}\right]\right\|\leq\operatorname{E}\!\left[\|\boldsymbol{Z}_{0}\|^{2}\right]+\big{(}\operatorname{E}\!\left[\|\boldsymbol{Z}_{0}\|\right]\big{)}^{2}<\infty.

In case of the second term, since 𝒉(𝒛)=O(1)\|\boldsymbol{h}(\boldsymbol{z})\|=\operatorname{O}(1) as 𝒛\|{\boldsymbol{z}}\|\to\infty, by (A.7), we get

Var[𝒉(𝒁k)]E[𝒉(𝒁k)2]+(E[𝒉(𝒁k)])2=O(1)as k.\left\|\operatorname{Var}\!\left[\boldsymbol{h}(\boldsymbol{Z}_{k})\right]\right\|\leq\operatorname{E}\!\left[\|\boldsymbol{h}(\boldsymbol{Z}_{k})\|^{2}\right]+\left(\operatorname{E}\!\left[\|\boldsymbol{h}(\boldsymbol{Z}_{k})\|\right]\right)^{2}=\operatorname{O}(1)\qquad\text{as }k\to\infty.

In case of the third term, using (A.1) and (A.7), we get

Cov[𝒁k,𝒉(𝒁k)]\displaystyle\left\|\operatorname{Cov}\left[\boldsymbol{Z}_{k},\;\boldsymbol{h}(\boldsymbol{Z}_{k})\right]\right\| E[𝒁k𝒉(𝒁k)]+E[𝒁k]E[𝒉(𝒁k)]=O(k)as k.\displaystyle\leq\operatorname{E}\!\left[\|\boldsymbol{Z}_{k}\|\|\boldsymbol{h}(\boldsymbol{Z}_{k})\|\right]+\operatorname{E}\!\left[\|\boldsymbol{Z}_{k}\|\right]\operatorname{E}\!\left[\|\boldsymbol{h}(\boldsymbol{Z}_{k})\|\right]=\operatorname{O}(k)\qquad\text{as }k\to\infty.

In case of the fourth term, by the assumption 𝜺(𝒛)=Λ𝒛+𝒉(𝒛)\boldsymbol{\varepsilon}(\boldsymbol{z})=\mathsf{\Lambda}\boldsymbol{z}+\boldsymbol{h}(\boldsymbol{z}), 𝒛+p{\boldsymbol{z}}\in\mathbb{Z}_{+}^{p}, we have

E[𝜺(𝒁k)]ΛE[𝒁k]+C𝒉,k,\operatorname{E}\!\left[\|\boldsymbol{\varepsilon}(\boldsymbol{Z}_{k})\|\right]\leq\|\mathsf{\Lambda}\|\operatorname{E}\!\left[\|\boldsymbol{Z}_{k}\|\right]+C_{\boldsymbol{h}},\qquad k\in\mathbb{N},

where the constant C𝒉C_{\boldsymbol{h}} is defined in (A.7). Using (A.1), this implies that

E[𝜺(𝒁k)]=O(k)as k.\operatorname{E}\!\left[\|\boldsymbol{\varepsilon}(\boldsymbol{Z}_{k})\|\right]=\operatorname{O}(k)\qquad\text{as }k\to\infty. (A.10)

In case of the fifth term, by the assumption Γ(𝒛)=O(𝒛)\|\mathsf{\Gamma}(\boldsymbol{z})\|=\operatorname{O}(\|\boldsymbol{z}\|) as 𝒛\|{\boldsymbol{z}}\|\to\infty and the equation (A.1), we get

E[Γ(𝒁k)]Γ(𝟎p)+CΓE[𝒁k]=O(k)as k,\operatorname{E}\!\left[\|\mathsf{\Gamma}(\boldsymbol{Z}_{k})\|\right]\leq\|\mathsf{\Gamma}(\boldsymbol{0}_{p})\|+C_{\mathsf{\Gamma}}\operatorname{E}\!\left[\|\boldsymbol{Z}_{k}\|\right]=\operatorname{O}(k)\qquad\text{as }k\to\infty, (A.11)

where

CΓ=sup𝒛+p{𝟎p}𝒛1Γ(𝒛)<.C_{\mathsf{\Gamma}}=\sup_{\boldsymbol{z}\in\mathbb{Z}_{+}^{p}\setminus\{\boldsymbol{0}_{p}\}}\|\boldsymbol{z}\|^{-1}\|\mathsf{\Gamma}(\boldsymbol{z})\|<\infty.

Taking into account the previous estimations and that supj+𝗆~j<\sup_{j\in\mathbb{Z}_{+}}\|\tilde{\mathsf{m}}^{j}\|<\infty due to Hypothesis (5) (see (4.29)), the inequality (A.9) implies that

Var[𝒁k]=O(1)+O(k)+j=0k1O(k1j)=O(k2)as k,\left\|\operatorname{Var}\!\left[\boldsymbol{Z}_{k}\right]\right\|=\operatorname{O}(1)+\operatorname{O}(k)+\sum_{j=0}^{k-1}\operatorname{O}(k-1-j)=\operatorname{O}(k^{2})\qquad\text{as }k\to\infty,

which concludes the proof of (A.2).

Next, we verify (A.3). Then

E[𝑴k2]=E[tr(𝑴k(𝑴k))]=tr(E[𝑴k(𝑴k)]),k,\displaystyle\operatorname{E}\!\left[\|\boldsymbol{M}_{k}\|^{2}\right]={\operatorname{E}\!\left[\operatorname{tr}\left(\boldsymbol{M}_{k}(\boldsymbol{M}_{k})^{\top}\right)\right]}={\operatorname{tr}\left(\operatorname{E}\!\left[\boldsymbol{M}_{k}(\boldsymbol{M}_{k})^{\top}\right]\right)},\qquad k\in\mathbb{N}, (A.12)

where, by the tower rule, we have E[𝑴k(𝑴k)]=E[Var[𝒁k|k1]]\operatorname{E}\!\left[\boldsymbol{M}_{k}(\boldsymbol{M}_{k})^{\top}\right]=\operatorname{E}\!\left[\operatorname{Var}\left[\boldsymbol{Z}_{k}\;\middle|\;\mathcal{F}_{k-1}\right]\right]. Consequently, using (2.9), (A.8) and the inequality tr(𝖡)p𝖡\operatorname{tr}\left(\mathsf{B}\right)\leq p\|\mathsf{B}\| for any matrix 𝖡p×p\mathsf{B}\in\mathbb{R}^{p\times p} (justified earlier), we get that

tr(E[𝑴k(𝑴k)])\displaystyle{\operatorname{tr}\left(\operatorname{E}\!\left[\boldsymbol{M}_{k}(\boldsymbol{M}_{k})^{\top}\right]\right)} =tr(E[𝜺(𝒁k1)]𝝨)+tr(𝗆E[Γ(𝒁k1)]𝗆)\displaystyle=\operatorname{tr}\left(\operatorname{E}\!\left[\boldsymbol{\varepsilon}(\boldsymbol{Z}_{k-1})\right]\odot\boldsymbol{\mathsf{\Sigma}}\right)+\operatorname{tr}\left(\mathsf{m}\operatorname{E}\!\left[\mathsf{\Gamma}(\boldsymbol{Z}_{k-1})\right]\mathsf{m}^{\top}\right)
pE[𝜺(𝒁k1)]𝝨+p𝗆E[Γ(𝒁k1)]𝗆\displaystyle\leq{p\|\operatorname{E}\!\left[\boldsymbol{\varepsilon}(\boldsymbol{Z}_{k-1})\right]\odot\boldsymbol{\mathsf{\Sigma}}\|}+{p\|\mathsf{m}\operatorname{E}\!\left[\mathsf{\Gamma}(\boldsymbol{Z}_{k-1})\right]\mathsf{m}^{\top}\|}
pE[𝜺(𝒁k1)]𝝨+pE[Γ(𝒁k1)]𝗆2,k.\displaystyle\leq{p\operatorname{E}\!\left[\|\boldsymbol{\varepsilon}(\boldsymbol{Z}_{k-1})\|\right]\|\boldsymbol{\mathsf{\Sigma}}\|}+{p\operatorname{E}\!\left[\|\mathsf{\Gamma}(\boldsymbol{Z}_{k-1})\|\right]\|\mathsf{m}\|^{2}},\qquad k\in\mathbb{N}. (A.13)

Therefore, (A.3) follows from (A.10), (A.11), (A.12) and (A).

(iii). Consider the following reformulation of the martingale difference sequence (𝑴k)k(\boldsymbol{M}_{k})_{k\in\mathbb{N}} defined in (4.1):

𝑴k=i=1p(j=1ϕk1,i(𝒁k1)𝑿k1,j,iεi(𝒁k1)𝒎i),k,\boldsymbol{M}_{k}=\sum_{i=1}^{p}\left(\sum_{j=1}^{\phi_{k-1,i}(\boldsymbol{Z}_{k-1})}\boldsymbol{X}_{k-1,j,i}-\varepsilon_{i}(\boldsymbol{Z}_{k-1})\boldsymbol{m}_{i}\right),\qquad{k\in\mathbb{N},}

where we used (2.8).

Applying the power mean inequality (A.6) twice, and adding and subtracting the random variable j=1ϕk1,i(𝒁k1)𝒎i=ϕk1,i(𝒁k1)𝒎i\sum_{j=1}^{\phi_{k-1,i}(\boldsymbol{Z}_{k-1})}\boldsymbol{m}_{i}=\phi_{k-1,i}(\boldsymbol{Z}_{k-1})\boldsymbol{m}_{i}, we get

𝑴k4\displaystyle\|\boldsymbol{M}_{k}\|^{4} (i=1pj=1ϕk1,i(𝒁k1)𝑿k1,j,iεi(𝒁k1)𝒎i)4\displaystyle\leq\left(\sum_{i=1}^{p}\left\|\sum_{j=1}^{\phi_{k-1,i}(\boldsymbol{Z}_{k-1})}\boldsymbol{X}_{k-1,j,i}-\varepsilon_{i}(\boldsymbol{Z}_{k-1})\boldsymbol{m}_{i}\right\|\right)^{4}
p3i=1pj=1ϕk1,i(𝒁k1)𝑿k1,j,iεi(𝒁k1)𝒎i4\displaystyle\leq p^{3}\sum_{i=1}^{p}\left\|\sum_{j=1}^{\phi_{k-1,i}(\boldsymbol{Z}_{k-1})}\boldsymbol{X}_{k-1,j,i}-\varepsilon_{i}(\boldsymbol{Z}_{k-1})\boldsymbol{m}_{i}\right\|^{4}
8p3i=1p(j=1ϕk1,i(𝒁k1)(𝑿k1,j,i𝒎i)4+(ϕk1,i(𝒁k1)εi(𝒁k1))𝒎i4)\displaystyle\leq 8p^{3}\sum_{i=1}^{p}\left(\left\|\sum_{j=1}^{\phi_{k-1,i}(\boldsymbol{Z}_{k-1})}(\boldsymbol{X}_{k-1,j,i}-\boldsymbol{m}_{i})\right\|^{4}+\left\|\big{(}\phi_{k-1,i}(\boldsymbol{Z}_{k-1})-\varepsilon_{i}(\boldsymbol{Z}_{k-1})\big{)}\boldsymbol{m}_{i}\right\|^{4}\right)

for kk\in\mathbb{N}. Using again the power mean inequality (A.6) and that 𝒛4=(z12++zp2)2\|\boldsymbol{z}\|^{4}=\left(z_{1}^{2}+\ldots+z_{p}^{2}\right)^{2}, 𝒛=(z1,,zp)+p{\boldsymbol{z}}=(z_{1},\ldots,z_{p})\in\mathbb{Z}_{+}^{p}, we get

E[𝑴k4]\displaystyle\operatorname{E}\!\left[\|\boldsymbol{M}_{k}\|^{4}\right] 8p4i=1pl=1pE[(j=1ϕk1,i(𝒁k1)(Xk1,j,i,lmi,l))4]\displaystyle\leq 8p^{4}\sum_{i=1}^{p}\sum_{l=1}^{p}\operatorname{E}\!\left[\left(\sum_{j=1}^{\phi_{k-1,i}(\boldsymbol{Z}_{k-1})}(X_{k-1,j,i,l}-m_{i,l})\right)^{4}\right]
+8p4i=1pl=1pE[((ϕk1,i(𝒁k1)εi(𝒁k1))mi,l)4].\displaystyle\quad+8p^{4}\sum_{i=1}^{p}\sum_{l=1}^{p}\operatorname{E}\!\left[\left(\bigl{(}\phi_{k-1,i}(\boldsymbol{Z}_{k-1})-\varepsilon_{i}(\boldsymbol{Z}_{k-1})\bigr{)}m_{i,l}\right)^{4}\right].

We will compute the previous upper bounds by first determining the corresponding conditional expectations with respect to k1\mathcal{F}_{k-1}. Using the notations (2.7) and the Markov property of (𝒁k)k+({\boldsymbol{Z}}_{k})_{k\in\mathbb{Z}_{+}}, for each kk\in\mathbb{N}, i,l{1,,p}i,l\in\{1,\ldots,p\}, we obtain

E[(ϕk1,i(𝒁k1)εi(𝒁k1))4mi,l4|k1]=mi,l4κi(𝒁k1),\operatorname{E}\left[\left(\phi_{k-1,i}(\boldsymbol{Z}_{k-1})-\varepsilon_{i}(\boldsymbol{Z}_{k-1})\right)^{4}m_{i,l}^{4}\;\middle|\;\mathcal{F}_{k-1}\right]=m_{i,l}^{4}\kappa_{i}(\boldsymbol{Z}_{k-1}),

and, by (2.6), (2.7) and Lemma A.2 together with the independence of ϕk1(𝒛)\boldsymbol{\phi}_{k-1}(\boldsymbol{z}), 𝒛+p{\boldsymbol{z}}\in\mathbb{Z}_{+}^{p}, 𝐗k1,j,i\mathbf{X}_{k-1,j,i}, jj\in\mathbb{N}, i{1,,p}i\in\{1,\ldots,p\} and 𝒁k1{\boldsymbol{Z}}_{k-1}, we get that

E[(j=1ϕk1,i(𝒁k1)(Xk1,j,i,lmi,l))4|k1]\displaystyle\operatorname{E}\left[\left(\sum_{j=1}^{\phi_{k-1,i}(\boldsymbol{Z}_{k-1})}(X_{k-1,j,i,l}-m_{i,l})\right)^{4}\;\middle|\;\mathcal{F}_{k-1}\right] =3Σi,l,l2(Γi,i(𝒁k1)+εi(𝒁k1)2)\displaystyle=3\mathsf{\Sigma}_{i,l,l}^{2}\left(\mathsf{\Gamma}_{i,i}(\boldsymbol{Z}_{k-1})+\varepsilon_{i}(\boldsymbol{Z}_{k-1})^{2}\right)
+(ζi,l3Σi,l,l2)εi(𝒁k1),\displaystyle\quad+(\zeta_{i,l}-3\mathsf{\Sigma}_{i,l,l}^{2})\varepsilon_{i}(\boldsymbol{Z}_{k-1}),

where Σi,l,l\mathsf{\Sigma}_{i,l,l} is the ll-th diagonal element of the variance matrix Σi\mathsf{\Sigma}_{i} (see (2.6)).

Consequently, we get

E[𝑴k4]\displaystyle\operatorname{E}\!\left[\|\boldsymbol{M}_{k}\|^{4}\right] 8p4i=1pl=1p(mi,l4E[κi(𝒁k1)]+3Σi,l,l2E[Γi,i(𝒁k1)]\displaystyle\leq 8p^{4}\sum_{i=1}^{p}\sum_{l=1}^{p}\Big{(}m_{i,l}^{4}\operatorname{E}\!\left[\kappa_{i}(\boldsymbol{Z}_{k-1})\right]+3\mathsf{\Sigma}_{i,l,l}^{2}\operatorname{E}\!\left[\mathsf{\Gamma}_{i,i}(\boldsymbol{Z}_{k-1})\right]
+3Σi,l,l2E[εi(𝒁k1)2]+(ζi,l3Σi,l,l2)E[εi(𝒁k1)]).\displaystyle\phantom{\leq 8p^{4}\sum_{i=1}^{p}\sum_{l=1}^{p}\quad}+3\mathsf{\Sigma}_{i,l,l}^{2}\operatorname{E}\!\left[\varepsilon_{i}(\boldsymbol{Z}_{k-1})^{2}\right]+(\zeta_{i,l}-3\mathsf{\Sigma}_{i,l,l}^{2})\operatorname{E}\!\left[\varepsilon_{i}(\boldsymbol{Z}_{k-1})\right]\Big{)}.

Thus, to get (A.4) it is enough to check that for each i{1,,p}i\in\{1,\ldots,p\}, E[εi(𝒁k)]\operatorname{E}\!\left[\varepsilon_{i}(\boldsymbol{Z}_{k})\right], E[Γi,i(𝒁k)]\operatorname{E}\!\left[\mathsf{\Gamma}_{i,i}(\boldsymbol{Z}_{k})\right], E[εi(𝒁k)2]\operatorname{E}\!\left[\varepsilon_{i}(\boldsymbol{Z}_{k})^{2}\right], E[κi(𝒁k)]\operatorname{E}\!\left[\kappa_{i}(\boldsymbol{Z}_{k})\right] are O(k2)\operatorname{O}(k^{2}) as kk\to\infty. Using (A.10) and (A.11), we get

E[εi(𝒁k)]E[𝜺(𝒁k)]=O(k),E[Γi,i(𝒁k)]E[Γ(𝒁k)]=O(k)\operatorname{E}\!\left[\varepsilon_{i}(\boldsymbol{Z}_{k})\right]\leq\operatorname{E}\!\left[\|\boldsymbol{\varepsilon}(\boldsymbol{Z}_{k})\|\right]=\operatorname{O}(k),\qquad\operatorname{E}\!\left[\mathsf{\Gamma}_{i,i}(\boldsymbol{Z}_{k})\right]\leq\operatorname{E}\!\left[\|\mathsf{\Gamma}(\boldsymbol{Z}_{k})\|\right]=\operatorname{O}(k)

as kk\to\infty for i{1,,p}i\in\{1,\ldots,p\}. Moreover, by (A.1) and (A.2), we obtain

E[εi(𝒁k)2]\displaystyle\operatorname{E}\!\left[\varepsilon_{i}(\boldsymbol{Z}_{k})^{2}\right] E[𝜺(𝒁k)2]=E[Λ𝒁k+𝒉(𝒁k)2]2(Λ2E[𝒁k2]+C𝒉2)=O(k2)\displaystyle\leq\operatorname{E}\!\left[\|\boldsymbol{\varepsilon}(\boldsymbol{Z}_{k})\|^{2}\right]=\operatorname{E}\!\left[\|\mathsf{\Lambda}\boldsymbol{Z}_{k}+\boldsymbol{h}(\boldsymbol{Z}_{k})\|^{2}\right]\leq 2(\|\mathsf{\Lambda}\|^{2}\operatorname{E}\!\left[\|\boldsymbol{Z}_{k}\|^{2}\right]+C_{\boldsymbol{h}}^{2})=\operatorname{O}(k^{2})

as kk\to\infty for i{1,,p}i\in\{1,\ldots,p\}, where C𝒉C_{\boldsymbol{h}} is defined in (A.7). Finally, by Hypothesis 4, we get

Cκ:=sup𝒛+p{𝟎p}i=1,,p𝒛2κi(𝒛)<,C_{\kappa}:=\sup_{\begin{subarray}{c}\boldsymbol{z}\in\mathbb{Z}_{+}^{p}\setminus\{\boldsymbol{0}_{p}\}\\ i=1,\ldots,p\end{subarray}}\|\boldsymbol{z}\|^{-2}\|\kappa_{i}(\boldsymbol{z})\|<\infty,

and hence, by (A.2), we have E[κi(𝒁k)]κi(𝟎p)+CκE[𝒁k2]=O(k2)\operatorname{E}\!\left[\kappa_{i}(\boldsymbol{Z}_{k})\right]\leq\kappa_{i}(\boldsymbol{0}_{p})+C_{\kappa}\operatorname{E}\!\left[\|\boldsymbol{Z}_{k}\|^{2}\right]=\operatorname{O}(k^{2}) as kk\to\infty for i{1,,p}i\in\{1,\ldots,p\}. ∎

Next, we recall a result on weak convergence of random step processes toward a diffusion process due to Ispány and Pap [20, Corollary 2.2].

Theorem A.4.

Let 𝐛:+×pp\boldsymbol{b}:\mathbb{R}_{+}\times\mathbb{R}^{p}\to\mathbb{R}^{p} and 𝖢:+×pp×r\mathsf{C}:\mathbb{R}_{+}\times\mathbb{R}^{p}\to\mathbb{R}^{p\times r} be continuous functions. Assume that uniqueness in the sense of probability law holds for the SDE

d𝓤t=𝒃(t,𝓤t)dt+𝖢(t,𝓤t)d𝓦t,t+,\,\mathrm{d}\boldsymbol{\mathcal{U}}_{t}=\boldsymbol{b}(t,\boldsymbol{\mathcal{U}}_{t})\,\mathrm{d}t+\mathsf{C}(t,\boldsymbol{\mathcal{U}}_{t})\,\mathrm{d}\boldsymbol{\mathcal{W}}_{t},\qquad t\in\mathbb{R}_{+}, (A.14)

with initial value 𝓤0=𝐮0\boldsymbol{\mathcal{U}}_{0}=\boldsymbol{u}_{0} for all 𝐮0p\boldsymbol{u}_{0}\in\mathbb{R}^{p}, where (𝓦t)t+(\boldsymbol{\mathcal{W}}_{t})_{t\in\mathbb{R}_{+}} is an rr–dimensional standard Wiener process. Let 𝛈\boldsymbol{\eta} be a probability measure on (p,(p))(\mathbb{R}^{p},\mathcal{B}(\mathbb{R}^{p})), and let (𝓤t)t+(\boldsymbol{\mathcal{U}}_{t})_{t\in\mathbb{R}_{+}} be a solution of (A.14) with initial distribution 𝛈\boldsymbol{\eta}. For each n,n\in\mathbb{N}, let (𝐔k(n))k+(\boldsymbol{U}_{k}^{(n)})_{k\in\mathbb{Z}_{+}} be a sequence of p\mathbb{R}^{p}–valued random vectors adapted to a filtration (k(n))k+(\mathcal{F}_{k}^{(n)})_{k\in\mathbb{Z}_{+}} (i.e, 𝐔k(n)\boldsymbol{U}_{k}^{(n)} is k(n)\mathcal{F}_{k}^{(n)}–measurable) such that E[𝐔k(n)2]<\operatorname{E}\!\left[\|\boldsymbol{U}_{k}^{(n)}\|^{2}\right]<\infty for each n,kn,k\in\mathbb{N}. Let

𝓤t(n)\colonequalsk=0nt𝑼k(n),t+,n.\boldsymbol{\mathcal{U}}_{t}^{(n)}\colonequals\sum_{k=0}^{\lfloor nt\rfloor}\boldsymbol{U}_{k}^{(n)},\qquad t\in\mathbb{R}_{+},\quad n\in\mathbb{N}.

Suppose 𝐔0(n)𝛈\boldsymbol{U}_{0}^{(n)}\stackrel{{\scriptstyle\mathcal{L}}}{{\longrightarrow}}\boldsymbol{\eta} as nn\rightarrow\infty, and that for all T>0,T>0,

  1. (i)

    supt[0,T]k=1ntE[𝑼k(n)|k1(n)]0t𝒃(s,𝓤s(n))dsP0\sup_{t\in[0,T]}\left\|\sum_{k=1}^{\lfloor nt\rfloor}\operatorname{E}\left[\boldsymbol{U}_{k}^{(n)}\;\middle|\;\mathcal{F}_{k-1}^{(n)}\right]-\int_{0}^{t}\boldsymbol{b}(s,\boldsymbol{\mathcal{U}}_{s}^{(n)})\,\mathrm{d}s\right\|\stackrel{{\scriptstyle\mathrm{P}}}{{\longrightarrow}}0 as nn\to\infty,

  2. (ii)

    supt[0,T]k=1ntVar[𝑼k(n)|k1(n)]0t𝖢(s,𝓤s(n))𝖢(s,𝓤s(n))dsP0\sup_{t\in[0,T]}\left\|\sum_{k=1}^{\lfloor nt\rfloor}\operatorname{Var}\left[\boldsymbol{U}_{k}^{(n)}\;\middle|\;\mathcal{F}_{k-1}^{(n)}\right]-\int_{0}^{t}\mathsf{C}(s,\boldsymbol{\mathcal{U}}_{s}^{(n)})\mathsf{C}(s,\boldsymbol{\mathcal{U}}_{s}^{(n)})^{\top}\,\mathrm{d}s\right\|\stackrel{{\scriptstyle\mathrm{P}}}{{\longrightarrow}}0 as nn\to\infty,

  3. (iii)

    k=1nTE[𝑼k(n)2𝟙{𝑼k(n)>θ}|k1(n)]P0\sum_{k=1}^{\lfloor nT\rfloor}\operatorname{E}\left[\|\boldsymbol{U}_{k}^{(n)}\|^{2}\mathds{1}_{\{\|\boldsymbol{U}_{k}^{(n)}\|>\theta\}}\;\middle|\;\mathcal{F}_{k-1}^{(n)}\right]\stackrel{{\scriptstyle\mathrm{P}}}{{\longrightarrow}}0 as nn\to\infty for all θ>0\theta>0.

Then 𝓤(n)𝓤\boldsymbol{\mathcal{U}}^{(n)}\stackrel{{\scriptstyle\mathcal{L}}}{{\longrightarrow}}\boldsymbol{\mathcal{U}} as nn\to\infty.

For measurable mappings 𝚽\boldsymbol{\Phi}, 𝚽n:𝐃(+,p)𝐃(+,p)\boldsymbol{\Phi}_{n}:\mathbf{D}(\mathbb{R}_{+},\mathbb{R}^{p})\to\mathbf{D}(\mathbb{R}_{+},\mathbb{R}^{p}), nn\in\mathbb{N}, let 𝐂𝚽,(𝚽n)n\mathbf{C}_{\boldsymbol{\Phi},(\boldsymbol{\Phi}_{n})_{n\in\mathbb{N}}} be the set of all functions 𝒇𝐂(+,p)\boldsymbol{f}\in\mathbf{C}(\mathbb{R}_{+},\mathbb{R}^{p}) for which 𝚽n(𝒇n)𝚽(𝒇)\boldsymbol{\Phi}_{n}(\boldsymbol{f}_{n})\to\boldsymbol{\Phi}(\boldsymbol{f}) whenever 𝒇nlu𝒇\boldsymbol{f}_{n}\stackrel{{\scriptstyle\mathcal{\mathrm{lu}}}}{{\longrightarrow}}\boldsymbol{f} with 𝒇n𝐃(+,p)\boldsymbol{f}_{n}\in\mathbf{D}(\mathbb{R}_{+},\mathbb{R}^{p}), nn\in\mathbb{N}. The notation lu\stackrel{{\scriptstyle\mathcal{\mathrm{lu}}}}{{\longrightarrow}} refers to local uniform convergence, i.e., supt[0,T]𝒇n(t)𝒇(t)0\sup_{t\in[0,T]}\|\boldsymbol{f}_{n}(t)-\boldsymbol{f}(t)\|\to 0 as nn\to\infty for all T++T\in\mathbb{R}_{++}. The following result is a kind of continuous mapping theorem, which can be considered as a consequence of Theorem 3.27 in Kallenberg [24], and its proof also appears in Ispány and Pap [20, Lemma 3.1].

Theorem A.5.

Let (𝓤t)t+(\boldsymbol{\mathcal{U}}_{t})_{t\in\mathbb{R}_{+}} and (𝓤t(n))t+(\boldsymbol{\mathcal{U}}_{t}^{(n)})_{t\in\mathbb{R}_{+}}, nn\in\mathbb{N}, be p\mathbb{R}^{p}–valued stochastic processes with càdlàg paths such that 𝓤(n)𝓤\boldsymbol{\mathcal{U}}^{(n)}\stackrel{{\scriptstyle\mathcal{L}}}{{\longrightarrow}}\boldsymbol{\mathcal{U}} as nn\to\infty. Let 𝚽:𝐃(+,p)𝐃(+,p)\boldsymbol{\Phi}:\mathbf{D}(\mathbb{R}_{+},\mathbb{R}^{p})\to\mathbf{D}(\mathbb{R}_{+},\mathbb{R}^{p}) and 𝚽n:𝐃(+,p)𝐃(+,p)\boldsymbol{\Phi}_{n}:\mathbf{D}(\mathbb{R}_{+},\mathbb{R}^{p})\to\mathbf{D}(\mathbb{R}_{+},\mathbb{R}^{p}), nn\in\mathbb{N}, be measurable mappings such that there exists a measurable set 𝐂𝐂𝚽,(𝚽n)n\mathbf{C}\subset\mathbf{C}_{\boldsymbol{\Phi},(\boldsymbol{\Phi}_{n})_{n\in\mathbb{N}}} with P[𝓤𝐂]=1\operatorname{P}\left[\boldsymbol{\mathcal{U}}\in\mathbf{C}\right]=1. Then 𝚽n(𝓤(n))𝚽(𝓤)\boldsymbol{\Phi}_{n}(\boldsymbol{\mathcal{U}}^{(n)})\stackrel{{\scriptstyle\mathcal{L}}}{{\longrightarrow}}\boldsymbol{\Phi}(\boldsymbol{\mathcal{U}}) as nn\to\infty.

Acknowledgements

We would like to thank the referee for her/his comments that helped us improve the paper.

Funding

Mátyás Barczy was supported by the project TKP2021-NVA-09. Project no. TKP2021-NVA-09 has been implemented with the support provided by the Ministry of Innovation and Technology of Hungary from the National Research, Development and Innovation Fund, financed under the TKP2021-NVA funding scheme. Miguel González, Pedro Martín-Chávez and Inés del Puerto are supported by grant PID2019-108211GB-I00 funded by MCIN/AEI/10.13039/501100011033, by “ERDF A way of making Europe”. Pedro Martín-Chávez is also grateful to the Spanish Ministry of Universities for support from a predoctoral fellowship Grant no. FPU20/06588.

Declarations

Conflict of interest. The authors declare that they have no conflict of interest.

References

  • [1] Alsmeyer, G., and Rösler, U. The bisexual Galton–Watson process with promiscuous mating: extinction probabilities in the supercritical case. The Annals of Applied Probability 6, 3 (1996), 922–939.
  • [2] Alsmeyer, G., and Rösler, U. Asexual versus promiscuous bisexual Galton–Watson processes: The extinction probability ratio. The Annals of Applied Probability 12, 1 (2002), 125–142.
  • [3] Asmussen, S. On some two-sex population models. Ann. Probab. 8, 4 (1980), 727–744.
  • [4] Athreya, K. B., and Ney, P. E. Branching processes, 1 ed. Grundlehren der mathematischen Wissenschaften. Springer, Berlin, Heidelberg, 1972.
  • [5] Bansaye, V., Caballero, M., Méléard, S., and San Martín, J. Scaling limits of bisexual Galton–Watson processes. Stochastics 95, 5 (2023), 749–784.
  • [6] Barczy, M., Ispány, M., and Pap, G. Asymptotic behavior of unstable INAR(p) processes. Stochastic Processes and their Applications 121, 3 (2011), 583–608.
  • [7] Barczy, M., and Pap, G. Asymptotic behavior of critical, irreducible multi-type continuous state and continuous time branching processes with immigration. Stochastics and Dynamics 16, 04 (2016), Article 1650008.
  • [8] Daley, D. J. Extinction conditions for certain bisexual Galton–Watson branching processes. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 9 (1968), 315–322.
  • [9] Ethier, S. N., and Kurtz, T. G. Markov Processes: Characterization and Convergence. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. John Wiley & Sons, Inc., New York, 1986.
  • [10] Feller, W. Diffusion processes in genetics. In Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability (Berlin, Heidelberg, 1951), J. Neyman, Ed., vol. 2 of Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, pp. 227–246.
  • [11] González, M., and del Puerto, I. Weighted conditional least squares estimation in controlled multitype branching processes. In Workshop on Branching Processes and Their Applications (Berlin, Heidelberg, 2010), M. González Velasco, I. del Puerto, R. Martínez, M. Molina, M. Mota, and A. Ramos, Eds., Springer Berlin Heidelberg, pp. 147–155.
  • [12] González, M., del Puerto, I., and Yanev, G. Controlled Branching Processes. ISTE, John Wiley, London, 2018.
  • [13] González, M., Martín-Chávez, P., and del Puerto, I. Diffusion approximation of controlled branching processes using limit theorems for random step processes. Stochastic Models 39, 1 (2023), 232–248.
  • [14] González, M., Martínez, R., and Mota, M. On the unlimited growth of a class of homogeneous multitype Markov chains. Bernoulli 11, 3 (2005), 559–570.
  • [15] González, M., Minuesa, C., del Puerto, I., and Vidyashankar, A. N. Robust Estimation in Controlled Branching Processes: Bayesian Estimators via Disparities. Bayesian Analysis 16, 3 (2021), 1009 – 1037.
  • [16] González, M., Martínez, R., and Mota, M. Rates of growth in a class of homogeneous multidimensional Markov chains. Journal of Applied Probability 43, 1 (2006), 159–174.
  • [17] González, M., Molina, M., and del Puerto, I. Asymptotic behaviour of critical controlled branching processes with random control functions. Journal of Applied Probability 42, 2 (2005), 463–477.
  • [18] Horn, R. A., and Johnson, C. R. Matrix Analysis, 2nd ed. Cambridge University Press, 1985.
  • [19] Ikeda, N., and Watanabe, S. Stochastic Differential Equations and Diffusion Processes, 2nd ed. North-Holland Publishing Co., Amsterdam; Kodansha, Ltd., Tokyo, 1989.
  • [20] Ispány, M., and Pap, G. A note on weak convergence of random step processes. Acta Math Hung 126 (2010), 381–395.
  • [21] Ispány, M., and Pap, G. Asymptotic behavior of critical primitive multi-type branching processes with immigration. Stochastic Analysis and Applications 32, 5 (2014), 727–741.
  • [22] Jacod, J., and Shiryaev, A. N. Limit Theorems for Stochastic Processes, 2nd ed. Grundlehren der mathematischen Wissenschaften. Springer, Berlin, Heidelberg, 2003.
  • [23] Jagers, P. The proportions of individuals of different kinds in two-type populations. a branching process problem arising in biology. Journal of Applied Probability 6, 2 (1969), 249–260.
  • [24] Kallenberg, O. Foundations of Modern Probability, 1 ed. Probability and Its Applications. Springer, New York, NY, 1997.
  • [25] Kaplan, N. The multitype Galton–Watson process with immigration. The Annals of Probability 1, 6 (1973), 947–953.
  • [26] Kimmel, M., and Axelrod, D. Branching Processes in Biology, 2nd ed. Springer New York, NY, 2015.
  • [27] Mwasunda, J. A., Irunde, J. I., Kajunguri, D., and Kuznetsov, D. Outbreak or extinction of bovine cysticercosis and human taeniasis: A stochastic modelling approach. Applied Mathematical Modelling 106 (2022), 73–85.
  • [28] Ráth, B. Time evolution of dense multigraph limits under edge-conservative preferential attachment dynamics. Random Structures Algorithms 41, 3 (2012), 365–390.
  • [29] Revuz, D., and Yor, M. Continuous Martingales and Brownian Motion, 3rd ed. Grundlehren der mathematischen Wissenschaften. Springer, Berlin, Heidelberg, 1998.
  • [30] Sagitov, S., and Ståhlberg, A. Counting unique molecular identifiers in sequencing using a multi-type branching process with immigration. Journal of Theoretical Biology 558 (2023), 111365.
  • [31] Sevast’yanov, B. A., and Zubkov, A. M. Controlled branching processes. Theory of Probability & Its Applications 19, 1 (1974), 14–24.
  • [32] Sriram, T., Bhattacharya, A., González, M., Martínez, R., and del Puerto, I. Estimation of the offspring mean in a controlled branching process with a random control function. Stochastic Processes and their Applications 117, 7 (2007), 928–946.
  • [33] Wei, C. Z., and Winnicki, J. Some asymptotic results for the branching process with immigration. Stochastic Processes and their Applications 31, 2 (1989), 261–282.
  • [34] Yakovlev, A. Y., and Yanev, N. M. Relative frequencies in multitype branching processes. Ann. Appl. Probab. 19, 1 (2009), 1–14.
  • [35] Yakovlev, A. Y., and Yanev, N. M. Limiting distributions for multitype branching processes. Stochastic Analysis and Applications 28, 6 (2010), 1040–1060. PMID: 24031155.
  • [36] Yamada, T., and Watanabe, S. On the uniqueness of solutions of stochastic differential equations. Journal of Mathematics of Kyoto University 11, 1 (1971), 155–167.
  • [37] Yanev, N. M. Stochastic models of cell proliferation kinetics based on branching processes. In Statistical Modeling for Biological Systems: In Memory of Andrei Yakovlev (2020), A. Almudevar, D. Oakes, and J. Hall, Eds., Springer International Publishing, pp. 3–20.