This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Differential models for the Anderson dual to bordism theories and invertible QFT’s, II

Mayuko Yamashita Department of Mathematics, Kyoto University, Kita-shirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan [email protected]
Abstract.

This is the second part of the work on differential models of the Anderson duals to the stable tangential GG-bordism theories IΩGI\Omega^{G}, motivated by classifications of invertible QFT’s. Using the model constructed in the first part [YY21], in this paper we show that pushforwards in generalized differential cohomology theories induces transformations between differential cohomology theories which refine the Anderson duals to multiplicative genera. This gives us a unified understanding of an important class of elements in the Anderson duals with physical origins.

1. Introduction

This is the second part of the work on differential models of the Anderson duals to the stable tangential GG-bordism theories IΩGI\Omega^{G} motivated by classifications of invertible QFT’s. The generalized cohomology theory IΩGI\Omega^{G} is conjectured by Freed and Hopkins [FH21, Conjecture 8.37] to classify deformation classes of possibly non-topological invertible quantum field theories (QFT’s) on stable tangential GG-manifolds. Motivated by this conjecture, in the previous paper [YY21] by Yonekura and the author, we constructed a model IΩdRGI\Omega^{G}_{\mathrm{dR}} of IΩGI\Omega^{G} and its differential extension IΩdRG^\widehat{I\Omega^{G}_{\mathrm{dR}}} by abstractizing properties of partition functions for invertible QFT’s. This paper is devoted to their relations with multiplicative genera. We show that pushforwards (also called integrations) in generalized differential cohomology theories allow us to construct differential refinements of certain cohomology transformations which arise from the Anderson dual to multiplicative genera and the module structures of the Anderson duals. This gives us a unified understanding of an important class of elements in the Anderson duals with physical origins. Moreover, having transformations in the differential level gives a more direct connection to physical picture, since they can be regarded as transformations of QFTs without taking deformation classes, recovering the information of partition functions.

First, we explain the motivations of the previous paper. As we recall in Section 2, the differential group (IΩdRG^)n(X)(\widehat{I\Omega^{G}_{\mathrm{dR}}})^{n}(X) consists of pairs (ω,h)(\omega,h), where ωΩclon(X;H(MTG;))\omega\in\Omega^{n}_{\mathrm{clo}}(X;{H}^{\bullet}(MTG;\mathbb{R})) where nn is the total degree, and hh is a map which assigns /\mathbb{R}/\mathbb{Z}-values to differential stable tangential GG-cycles of dimension (n1)(n-1) over XX, which satisfy a compatibility condition with respect to bordisms. The physical interpretation is that hh is the complex phase of the partition function of an invertible QFT. For example, given a hermitian line bundle with unitary connection over XX, the pair of the first Chern form and the holonomy function gives an element for G=SOG=\mathrm{SO} and n=2n=2 (Subsection 3.4.1). Similarly, given a hermitian vector bundle with unitary connection, we can construct even-degree elements for G=SpincG=\mathrm{Spin}^{c} using the reduced eta invariants of twisted Dirac operators (Subsection 3.4.3): this theory is related to anomaly of spinor field theory. Then, a natural mathematical question arises: what are these elements mathematically? It is natural to expect a topological characterization of these elements. Questions of this kind also appears in [FH21, Conjecture 9.70] (also recalled in Conjecture 3.50 below). This paper is devoted to this question. Actually, these examples are special cases of the general construction in this paper which we now explain.

Now we explain the general settings. In this paper, the tangential structure groups G={Gd,sd,ρd}d0G=\{G_{d},s_{d},\rho_{d}\}_{d\in\mathbb{Z}_{\geq 0}} (see Section 2) is assumed to be multiplicative, i.e., the corresponding Madsen-Tillmann spectrum MTGMTG is equipped with a structure of a ring spectrum. Assume we are given a ring spectrum EE with a homomorphism of ring spectra,

𝒢:MTGE.\displaystyle\mathcal{G}\colon MTG\to E.

such 𝒢\mathcal{G} is also called a multiplicative genus, and examples include the usual orientation τ:MTSOH\tau\colon MT\mathrm{SO}\to H\mathbb{Z} and the Atiyah-Bott-Shapiro orientations ABS:MTSpincK\mathrm{ABS}\colon MT\mathrm{Spin}^{c}\to K and ABS:MTSpinKO\mathrm{ABS}\colon MT\mathrm{Spin}\to KO.

On the topological level, a ring homomorphism 𝒢:MTGE\mathcal{G}\colon MTG\to E gives pushforwards in EE for proper GG-oriented smooth maps. Pushforwards in differential cohomology, or differential pushforwards, are certain differential refinements of topological pushforwards. Basically, they consist of corresponding maps in E^\widehat{E} for each proper map with a “differential EE-orientation”. The formulations depend on the context. To clarify this point, in this paper we use the differential extension E^HS\widehat{E}_{\mathrm{HS}} of EE constructed by Hopkins-Singer [HS05], and use the formulation of differential pushforwards in that paper. Throughout this paper, we assume that EE is rationally even, i.e., E2k+1(pt)=0E^{2k+1}(\mathrm{pt})\otimes\mathbb{R}=0 for any integer kk. In this case, by [Upm15] there exists a canonical multiplicative structure on the Hopkins-Singer’s differential extension E^HS(;ιE)\widehat{E}_{\mathrm{HS}}^{*}(-;\iota_{E}) associated to a fundamental cycle ιEZ0(E;VE)\iota_{E}\in Z^{0}(E;V_{E}^{\bullet}). The theory of differential pushforwards gets simple in this case. This point is explained in Subsection 3.1 and Appendix A. Of course our result applies to any model of differential extension E^\widehat{E} of EE which is isomorphic to the Hopkins-Singer’s model. Practically, most known examples of differential extensions are isomorphic to Hopkins-Singer’s model (see Footnote 2). The holonomy functions are examples of differential pushforwards in the case τ:MTSOH\tau\colon MT\mathrm{SO}\to H\mathbb{Z}, and the reduced eta invariants are those for ABS:MTSpincK\mathrm{ABS}\colon MT\mathrm{Spin}^{c}\to K by the result of Freed and Lott [FL10] and Klonoff [Klo08].

Let nn be an integer such that E1n(pt)=0E^{1-n}(\mathrm{pt})\otimes\mathbb{R}=0. As we show in Subsection 3.3, the above data defines the following natural transformation,

(1.1) Φ𝒢:E^HS(;ιE)IEn(pt)(IΩdRG^)+n(),\displaystyle\Phi_{\mathcal{G}}\colon\widehat{E}_{\mathrm{HS}}^{*}(-;\iota_{E})\otimes IE^{n}(\mathrm{pt})\to(\widehat{I\Omega^{G}_{\mathrm{dR}}})^{*+n}(-),

on Mfdop\mathrm{Mfd}^{\mathrm{op}} (Definition 3.36).

The main result of this paper is the following topological characterization of the transformation (1.1).

Theorem 1.2 (=Theorem 3.26).

In the above settings, let XX be a manifold and kk be an integer. For e^E^HSk(X;ιE)\widehat{e}\in\widehat{E}_{\mathrm{HS}}^{k}(X;\iota_{E}) and βIEn(pt)\beta\in IE^{n}(\mathrm{pt}), the element I(Φ𝒢(e^β))(IΩG)k+n(X)=[X+MTG,Σk+nI]I(\Phi_{\mathcal{G}}(\widehat{e}\otimes\beta))\in(I\Omega^{G})^{k+n}(X)=[X^{+}\wedge MTG,\Sigma^{k+n}I\mathbb{Z}] coincides with the following composition,

(1.3) X+MTGe𝒢ΣkEEmultiΣkE𝛽Σk+nI.\displaystyle X^{+}\wedge MTG\xrightarrow{e\wedge\mathcal{G}}\Sigma^{k}E\wedge E\xrightarrow{\mathrm{multi}}\Sigma^{k}E\xrightarrow{\beta}\Sigma^{k+n}I\mathbb{Z}.

Here we denoted e:=I(e^)Ek(X)e:=I(\widehat{e})\in E^{k}(X).

As we will see in Subsection 3.4, this result applies to the above mentioned examples as follows.

Example 1.4 (Subsection 3.4.1).

Set E=HE=H\mathbb{Z} with τ:MTSOH\tau\colon MT\mathrm{SO}\to H\mathbb{Z}. We have the Anderson self-duality element γHIH0(pt)\gamma_{H\mathbb{Z}}\in IH\mathbb{Z}^{0}(\mathrm{pt}). The transformation

(1.5) Φτ(γH):H^2(X;)(IΩdRSO^)2(X)\displaystyle\Phi_{\tau}(-\otimes\gamma_{H})\colon\widehat{H}^{2}(X;\mathbb{Z})\to(\widehat{I\Omega^{\mathrm{SO}}_{\mathrm{dR}}})^{2}(X)

sends the class of a hermitian line bundle with connection [L,]H^2(X;)[L,\nabla]\in\widehat{H}^{2}(X;\mathbb{Z}) to the element (c1(),Hol)(IΩdRSO^)2(X)(c_{1}(\nabla),\mathrm{Hol}_{\nabla})\in(\widehat{I\Omega^{\mathrm{SO}}_{\mathrm{dR}}})^{2}(X). Applying Theorem 1.2, we see that its deformation class coincides with the following composition,

X+MTSOc1(L)τΣ2HHmultiΣ2HγHΣ2I.\displaystyle X^{+}\wedge MT\mathrm{SO}\xrightarrow{c_{1}(L)\wedge\tau}\Sigma^{2}H\mathbb{Z}\wedge H\mathbb{Z}\xrightarrow{\mathrm{multi}}\Sigma^{2}H\mathbb{Z}\xrightarrow{\gamma_{H}}\Sigma^{2}I\mathbb{Z}.
Example 1.6 (Subsections 3.4.3 and 3.4.4).

Set E=KE=K with the Atiyah-Bott-Shapiro orientations ABS:MTSpincK\mathrm{ABS}\colon MT\mathrm{Spin}^{c}\to K. We have the Anderson self-duality element γKIK0(pt)\gamma_{K}\in IK^{0}(\mathrm{pt}). The transformation

(1.7) ΦABS(γK):K^2k(X)(IΩdRSpinc^)2k(X).\displaystyle\Phi_{\mathrm{ABS}}(-\otimes\gamma_{K})\colon\widehat{K}^{2k}(X)\to(\widehat{I\Omega^{\mathrm{Spin}^{c}}_{\mathrm{dR}}})^{2k}(X).

maps the class [W,hW,W,0]K^0(X)K^2k(X)[W,h^{W},\nabla^{W},0]\in\widehat{K}^{0}(X)\simeq\widehat{K}^{2k}(X) of hermitian vector bundle with unitary connection to the element ((Ch(W)Todd)|2k,η¯W)(IΩSpinc^)2k(X)\left((\mathrm{Ch}(\nabla^{W})\otimes\mathrm{Todd})|_{2k},\overline{\eta}_{\nabla^{W}}\right)\in\left(\widehat{I\Omega^{\mathrm{Spin}^{c}}}\right)^{2k}(X). Applying Theorem 1.2, we see that its deformation class coincides with the following composition,

X+MTSpinc[E]ABSKKmultiKBottΣ2kKγKΣ2kI.\displaystyle X^{+}\wedge MT\mathrm{Spin}^{c}\xrightarrow{[E]\wedge\mathrm{ABS}}K\wedge K\xrightarrow{\mathrm{multi}}K\xrightarrow[\simeq]{\mathrm{Bott}}\Sigma^{2k}K\xrightarrow{\gamma_{K}}\Sigma^{2k}I\mathbb{Z}.

In Subsection 3.4.4, we explain that this transformation can be interpreted as taking anomaly theories of complex spinor field theories.

The paper is organized as follows. In Section 2 we recall the definition of the differential models in [YY21]. Section 3 is the main part of this paper. We construct the natural transformation (1.1) and prove Theorem 1.2 in Subsection 3.3. We explain some examples, as well as relation with anomalies, in Subsection 3.4. As we explain in Subsection 3.1, there are certain subtleties regarding the formulations of differential pushforwards. In Appendix A, we collect the necessary results concerning differential pushforwards for submersions when EE is rationally even.

1.1. Notations and Conventions

  • By manifolds, we mean smooth manifolds with corners. We use the conventions explained in [YY21, Subection 2.3].

  • The space of \mathbb{R}-valued differential forms on a manifold XX is denoted by Ω(X)\Omega^{*}(X).

  • We deal with differential forms with values in a graded real vector space VV^{\bullet}. In the notation Ωn(;V)\Omega^{n}(-;V^{\bullet}), nn means the total degree. In the case if VV^{\bullet} is infinite-dimensional, we topologize it as the colimit of all its finite-dimensional subspaces with the caonical topology, and set Ωn(X;V):=C(X;(TXV)n)\Omega^{n}(X;V^{\bullet}):=C^{\infty}(X;(\wedge T^{*}X\otimes_{\mathbb{R}}V^{\bullet})^{n}). This means that, any element in Ωn(X;V)\Omega^{n}(X;V^{\bullet}) can locally be written as a finite sum iξiϕi\sum_{i}\xi_{i}\otimes\phi_{i} with ξiΩmi(X)\xi_{i}\in\Omega^{m_{i}}(X) and ϕiVnmi\phi_{i}\in V^{n-m_{i}} for some mim_{i} for each ii. The space of closed forms are denoted by Ωclon(;V)\Omega_{\mathrm{clo}}^{n}(-;V^{\bullet}).

  • For a manifold XX and a real vector space VV, we denote by V¯\underline{V} the trivial bundle V¯:=X×V\underline{V}:=X\times V over XX.

  • For a topological space XX, we denote by pX:Xptp_{X}\colon X\to\mathrm{pt} the map to pt\mathrm{pt}. We set X+:=(X{},{})X^{+}:=(X\sqcup\{*\},\{*\}).

  • For two topological spaces XX and YY, we denote by prX:X×YX\mathrm{pr}_{X}\colon X\times Y\to X the projection to XX.

  • We set I:=[0,1]I:=[0,1].

  • For a real vector bundle VV over a topological space, we denote its orientation line bundle (rank-11 real vector bundle) by Ori(V)\mathrm{Ori}(V). For a manifold MM, we set Ori(M):=Ori(TM)\mathrm{Ori}(M):=\mathrm{Ori}(TM).

  • For a spectrum {En}n\{E_{n}\}_{n\in\mathbb{Z}}, we require the adjoints EnΩEn+1E_{n}\to\Omega E_{n+1} of the structure homomorphisms are homeomorphisms. For a sequence of pointed spaces {En}na\{E^{\prime}_{n}\}_{n\in\mathbb{Z}_{\geq a}} with maps ΣEnEn+1\Sigma E^{\prime}_{n}\to E^{\prime}_{n+1}, we define its spectrification LE:={(LE)n}nLE^{\prime}:=\{(LE^{\prime})_{n}\}_{n\in\mathbb{Z}} to be the spectrum given by

    (LE)n:=limkΩkEn+k.\displaystyle(LE^{\prime})_{n}:=\varinjlim_{k}\Omega^{k}E^{\prime}_{n+k}.
  • For a generalized cohomology theory EE, we set VE:=E(pt)V_{E}^{\bullet}:=E^{\bullet}(\mathrm{pt})\otimes\mathbb{R}.

  • The Chern-Dold homomorphism [Rud98, Chapter II, 7.13] for a generalized cohomology theory EE is denoted by

    (1.8) ch:E()H(;VE).\displaystyle\mathrm{ch}\colon E^{*}(-)\to H^{*}(-;V_{E}^{\bullet}).
  • We use the axiomatic framework of generalized differential cohomology given in [BS12] (also recalled in [YY21, Subsection 2.2]). We abuse the notations RR, aa and II for the structure maps for general differential cohomology theories, following the standard notations in those papers.

2. Preliminaries from [YY21]

In this section we recall necessary parts of the previous paper [YY21]. In [YY21], we constructed a model IΩdRG^\widehat{I\Omega^{G}_{\mathrm{dR}}} of a differential extension of the Anderson dual to the tangential GG-bordism homology theory IΩGI\Omega^{G}.

First we recall the definition of the Anderson duals to spectra (see [YY21, Section 2.1], [HS05, Appendix B] and [FMS07, Appendix B]). The functor XHom(π(X),/)X\mapsto\mathrm{Hom}(\pi_{*}(X),\mathbb{R}/\mathbb{Z}) on the stable homotopy category is represented by a spectrum denoted by I(/)I(\mathbb{R}/\mathbb{Z}). The Anderson dual to the sphere spectrum, denoted by II\mathbb{Z}, is defined as the homotopy fiber of the morphism HI(/)H\mathbb{R}\to I(\mathbb{R}/\mathbb{Z}) representing the transformation Hom(π(),)Hom(π(),/)\mathrm{Hom}(\pi_{*}(-),\mathbb{R})\to\mathrm{Hom}(\pi_{*}(-),\mathbb{R}/\mathbb{Z}). For any spectra EE, the Anderson dual to EE, denoted by IEIE, is defined to be the function spectrum from EE to II\mathbb{Z}, IE:=F(E,I)IE:=F(E,I\mathbb{Z}). This implies that we have the following exact sequence for any spectra XX.

(2.1) Hom(En1(X),)\displaystyle\cdots\to\mathrm{Hom}(E_{n-1}(X),\mathbb{R}) 𝜋Hom(En1(X),/)IEn(X)\displaystyle\xrightarrow{\pi}\operatorname{Hom}(E_{n-1}(X),\mathbb{R}/\mathbb{Z})\to IE^{n}(X)
Hom(En(X),)𝜋Hom(En(X),/)(exact).\displaystyle\to\mathrm{Hom}(E_{n}(X),\mathbb{R})\xrightarrow{\pi}\operatorname{Hom}(E_{n}(X),\mathbb{R}/\mathbb{Z})\to\cdots\ (\mbox{exact}).

In [YY21] and the current paper, we are particularly interested in the Anderson dual to the GG-bordism homology theory. Here, G={Gd,sd,ρd}d0G=\{G_{d},s_{d},\rho_{d}\}_{d\in\mathbb{Z}_{\geq 0}} is a sequence of compact Lie groups equipped with homomorphisms sd:GdGd+1s_{d}\colon G_{d}\to G_{d+1} and ρd:GdO(d,)\rho_{d}\colon G_{d}\to\mathrm{O}(d,\mathbb{R}) for each dd, such that the following diagram commutes.

GdρdsdO(d,)Gd+1ρd+1O(d+1,).\displaystyle\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 11.96638pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&\\&\crcr}}}\ignorespaces{\hbox{\kern-8.3886pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{G_{d}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 20.63252pt\raise 5.20139pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.8125pt\hbox{$\scriptstyle{\rho_{d}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 44.57747pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 0.0pt\raise-20.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.8125pt\hbox{$\scriptstyle{s_{d}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-30.16669pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 44.57747pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mathrm{O}(d,\mathbb{R})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 63.02715pt\raise-29.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-11.96638pt\raise-40.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{G_{d+1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 15.5603pt\raise-34.63194pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.64584pt\hbox{$\scriptstyle{\rho_{d+1}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 35.96638pt\raise-40.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 35.96638pt\raise-40.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mathrm{O}(d+1,\mathbb{R})}$}}}}}}}\ignorespaces}}}}\ignorespaces.

Here we use the inclusion O(d,)O(d+1,)\mathrm{O}(d,\mathbb{R})\hookrightarrow\mathrm{O}(d+1,\mathbb{R}) defined by

A[100A]\displaystyle A\mapsto\left[\begin{array}[]{c|c}1&0\\ \hline\cr 0&A\end{array}\right]

throughout this paper. Given such GG, the stable tangential GG-bordism homology theory assigns the stable tangential bordism group (ΩG)()(\Omega^{G})_{*}(-). It is represented by the Madsen-Tillmann spectrum MTGMTG, which is a variant of the Thom spectrum MGMG. For details see for example [Fre19, Section 6.6]. In this paper we take MTGMTG and MGMG to be a spectrum as in [HS05, (4.60)]. The Anderson dual IΩGI\Omega^{G} fits into the following exact sequence.

(2.2) Hom(Ωn1G(X),)\displaystyle\cdots\to\mathrm{Hom}(\Omega^{G}_{n-1}(X),\mathbb{R}) Hom(Ωn1G(X),/)(IΩG)n(X)\displaystyle\to\operatorname{Hom}(\Omega^{G}_{n-1}(X),\mathbb{R}/\mathbb{Z})\to(I\Omega^{G})^{n}(X)
Hom(ΩnG(X),)Hom(ΩnG(X),/)(exact).\displaystyle\to\mathrm{Hom}(\Omega^{G}_{n}(X),\mathbb{R})\to\operatorname{Hom}(\Omega^{G}_{n}(X),\mathbb{R}/\mathbb{Z})\to\cdots\ (\mbox{exact}).

Now we proceed to recall the definition of IΩdRG^\widehat{I\Omega^{G}_{\mathrm{dR}}}. In [YY21], we defined the relative groups IΩdRG^(X,Y)\widehat{I\Omega^{G}_{\mathrm{dR}}}(X,Y). But since we only deal with the absolute case X=(X,)X=(X,\varnothing) in this paper, we concentrate on this case. To recall the definition of IΩdRG^\widehat{I\Omega^{G}_{\mathrm{dR}}}, we first recall the differential stable GG-structures on vector bundles.

Definition 2.3 (Differential stable GG-structures on vector bundles, [YY21, Definition 3.1]).

Let VV be a real vector bundle of rank nn over a manifold MM.

  1. (1)

    A representative of differential stable GG-structure on VV is a quadruple g~=(d,P,,ψ)\widetilde{g}=(d,P,\nabla,\psi), where dnd\geq n is an integer, (P,)(P,\nabla) is a principal GdG_{d}-bundle with connection over MM and ψ:P×ρdd¯dnV\psi\colon P\times_{\rho_{d}}\mathbb{R}^{d}\simeq\underline{\mathbb{R}}^{d-n}\oplus V is an isomorphism of vector bundles over MM.

  2. (2)

    We define the stabilization of such g~\widetilde{g} by g~(1):=(d+1,P(1):=P×sdGd+1,(1),ψ(1))\widetilde{g}(1):=(d+1,P(1):=P\times_{s_{d}}G_{d+1},\nabla(1),\psi(1)), where (1)\nabla(1) and ψ(1)\psi(1) are naturally induced on P(1)P(1) from \nabla and ψ\psi, respectively.

  3. (3)

    A differential stable GG-structure gg on VV is a class of representatives g~\widetilde{g} under the relation g~stabg~(1)\widetilde{g}\sim_{\mathrm{stab}}\widetilde{g}(1).

  4. (4)

    Suppose we have two representatives of the forms g~=(d,P,,ψ)\widetilde{g}=(d,P,\nabla,\psi) and g~=(d,P,,ψ)\widetilde{g}=(d,P,\nabla,\psi^{\prime}), such that ψ\psi and ψ\psi^{\prime} are homotopic. In this case, the resulting differential stable GG-structures gg and gg^{\prime} are called homotopic.

If we forget the information of the connection \nabla, we get the corresponding notion of (topological) differential stable GG-structures. For a differential stable GG-structure gg, we denote the underlying topological structure by gtopg^{\mathrm{top}}. Similar remarks apply to the various definitions below.

We also recall the normal variant, which we use in Appendix A.

Definition 2.4 (Differential stable normal GG-structures on vector bundles, [YY21, Definition 4.75]).

Let VV be a real vector bundle of rank nn over a manifold MM.

  1. (1)

    A representative of differential stable normal GG-structure on VV is a quadruple g~=(d,P,,ψ)\widetilde{g}^{\perp}=(d,P,\nabla,\psi), where dnd\geq n is an integer, (P,)(P,\nabla) is a principal GdnG_{d-n}-bundle with connection over MM and ψ:(P×ρdndn)V¯d\psi\colon(P\times_{\rho_{d-n}}\mathbb{R}^{d-n})\oplus V\simeq\underline{\mathbb{R}}^{d} is an isomorphism of vector bundles over MM.

  2. (2), (3)

    We define the stabilization of such g~\widetilde{g}^{\perp} in the same way as Definition 2.3, and a differential stable normal GG-structure gg^{\perp} on VV is defined to be a class of representatives under the stabilization relation.

  3. (4)

    We define the homotopy relation between two such gg^{\perp}’s also in the same way.

A differential stable tangential GG-structure on a manifold MM is a differential stable GG-structure on TMTM. Given a manifold XX, a differential stable tangential GG-cycle of dimension nn over XX is a triple (M,g,f)(M,g,f), where MM is an nn-dimensional closed manifold, gg is a differential stable tangential GG-structure on MM and fC(M,X)f\in C^{\infty}(M,X). Using these cycles, we defined

  • The abelian group 𝒞nG(X)\mathcal{C}^{G_{\nabla}}_{n}(X), consisting of the equivalence classes [M,g,f][M,g,f] of differential stable tangential GG-cycles of dimension nn over XX, with the equivalence relation generated by isomorphisms, opposite relation and homotopy relation [YY21, Definition 3.5].

  • The Picard groupoid hBordnG(X)h\mathrm{Bord}^{G_{\nabla}}_{n}(X), whose objects are differential stable tangential GG-cycles (M,g,f)(M,g,f) of dimension nn over XX, and morphisms are the bordism classes [W,gW,fW][W,g_{W},f_{W}] of bordisms (W,gW,fW):(M,g,f)(M+,g+,f+)(W,g_{W},f_{W})\colon(M_{-},g_{-},f_{-})\to(M_{+},g_{+},f_{+}) [YY21, Definition 3.8].

By the theorem of Pontryagin-Thom we have an equivalence of Picard groupoids [YY21, Lemma 3.10],

(2.5) hBordnG(X)π1(L(X+MTG)n).\displaystyle h\mathrm{Bord}^{G_{\nabla}}_{n}(X)\simeq\pi_{\leq 1}(L(X^{+}\wedge MTG)_{-n}).

Here the right hand side denotes the fundamental Picard groupoid.

Let Gd\mathbb{R}_{G_{d}} denote the GdG_{d} module with the underlying vector space \mathbb{R} and the GdG_{d}-action by detρd:G{±1}\mathrm{det}\circ\rho_{d}\colon G\to\{\pm 1\}. By the Thom isomorphism, we have

NG\displaystyle N_{G}^{\bullet} :=H(MTG;)limd(Sym/2𝔤dGd)GdH(MG;)=:NG.\displaystyle:=H^{\bullet}(MTG;\mathbb{R})\simeq\varprojlim_{d}(\mathrm{Sym}^{\bullet/2}\mathfrak{g}_{d}^{*}\otimes_{\mathbb{R}}\mathbb{R}_{G_{d}})^{G_{d}}\simeq H^{\bullet}(MG;\mathbb{R})=:N_{G^{\perp}}^{\bullet}.

The fourth arrow in (2.2) gives the homomorphism

(2.6) ch:(IΩG)(X)H(X;NG)Hom(ΩG(X),).\displaystyle\mathrm{ch}^{\prime}\colon(I\Omega^{G})^{*}(X)\to H^{*}(X;N_{G}^{\bullet})\simeq\operatorname{Hom}(\Omega^{G}_{*}(X),\mathbb{R}).

By [YY21, Proposition 4.9] we have a canonical homomorphism

(2.7) q:VIΩGn𝑞NGn.\displaystyle q\colon V_{I\Omega^{G}}^{n}\xrightarrow{q}N_{G}^{n}.

The map qq is isomorphism if ΩnG(pt)\Omega^{G}_{n}(\mathrm{pt}) is finitely generated for all nn.

Let 𝒱\mathcal{V}^{*} be any \mathbb{Z}-graded vector space over \mathbb{R}. Given a vector bundle VMV\to M with a differential stable GG-structure gg, we get a homomorphism of \mathbb{Z}-graded real vector spaces by the Chern-Weil construction [YY21, Definition 4.4 and Remark 4.10],

(2.8) cwg:Ω(M;H(MTG;𝒱))=Ω(M;H(MG;𝒱))Ω(M;Ori(V)𝒱).\displaystyle\mathrm{cw}_{g}\colon\Omega^{*}(M;H^{\bullet}(MTG;\mathcal{V}^{*}))=\Omega^{*}\left(M;H^{\bullet}(MG;\mathcal{V}^{*})\right)\to\Omega^{*}(M;\mathrm{Ori}(V)\otimes_{\mathbb{R}}\mathcal{V}^{*}).

Since the orientation bundle of a vector bundle and its normal bundle are canonically identified, for VMV\to M equipped with a differential stable normal GG-structure gg^{\perp}, we also get

(2.9) cwg:Ω(M;H(MTG;𝒱))=Ω(M;H(MG;𝒱))Ω(M;Ori(V)𝒱).\displaystyle\mathrm{cw}_{g^{\perp}}\colon\Omega^{*}(M;H^{\bullet}(MTG;\mathcal{V}^{*}))=\Omega^{*}\left(M;H^{\bullet}(MG;\mathcal{V}^{*})\right)\to\Omega^{*}(M;\mathrm{Ori}(V)\otimes_{\mathbb{R}}\mathcal{V}^{*}).

For ωΩclon(X;H(MTG;𝒱))\omega\in\Omega_{\mathrm{clo}}^{n}(X;H^{\bullet}(MTG;\mathcal{V}^{*})) we get a homomorphism

(2.10) cw(ω):HomhBordN1G(X)((M,g,f),(M+,g+,f+))\displaystyle\mathrm{cw}(\omega)\colon\operatorname{Hom}_{h\mathrm{Bord}^{G_{\nabla}}_{N-1}(X)}((M_{-},g_{-},f_{-}),(M_{+},g_{+},f_{+})) 𝒱nN\displaystyle\to\mathcal{V}^{n-N}
[W,gW,fW]\displaystyle[W,g_{W},f_{W}] WcwgW((fW)ω),\displaystyle\mapsto\int_{W}\mathrm{cw}_{g_{W}}((f_{W})^{*}\omega),

for each pair of objects (M±,g±,f±)(M_{\pm},g_{\pm},f_{\pm}) in hBordN1G(X)h\mathrm{Bord}^{G_{\nabla}}_{N-1}(X). In the following definition, we use (2.10) in the case 𝒱=\mathcal{V}^{*}=\mathbb{R} and n=Nn=N.

Definition 2.11 ((IΩdRG^)(\widehat{I\Omega^{G}_{\mathrm{dR}}})^{*} and (IΩdRG)(I\Omega^{G}_{\mathrm{dR}})^{*}, [YY21, Definition 4.15]).

Let XX be a manifold and n0n\in\mathbb{Z}_{\geq 0}.

  1. (1)

    Define (IΩdRG^)n(X)(\widehat{I\Omega^{G}_{\mathrm{dR}}})^{n}(X) to be an abelian group consisting of pairs (ω,h)(\omega,h), such that

    1. (a)

      ω\omega is a closed nn-form111Recall that nn is the total degree. ωΩclon(X;NG)\omega\in\Omega_{\mathrm{clo}}^{n}(X;N_{G}^{\bullet}).

    2. (b)

      hh is a group homomorphism h:𝒞n1G(X)/h\colon\mathcal{C}^{G_{\nabla}}_{n-1}(X)\to\mathbb{R}/\mathbb{Z}.

    3. (c)

      ω\omega and hh satisfy the following compatibility condition. Assume that we are given two objects (M,g,f)(M_{-},g_{-},f_{-}) and (M+,g+,f+)(M_{+},g_{+},f_{+}) in hBordn1G(X)h\mathrm{Bord}^{G_{\nabla}}_{n-1}(X) and a morphism [W,gW,fW][W,g_{W},f_{W}] from the former to the latter. Then we have

      h([M+,g+,f+])h([M,g,f])=cw(ω)([W,gW,fW])(mod).\displaystyle h([M_{+},g_{+},f_{+}])-h([M_{-},g_{-},f_{-}])=\mathrm{cw}(\omega)([W,g_{W},f_{W}])\pmod{\mathbb{Z}}.

    Abelian group structure on (IΩdRG^)n(X)(\widehat{I\Omega^{G}_{\mathrm{dR}}})^{n}(X) is defined in the obvious way.

  2. (2)

    We define a homomorphsim of abelian groups,

    a:Ωn1(X;NG)/Im(d)\displaystyle a\colon\Omega^{n-1}(X;N_{G}^{\bullet})/\mathrm{Im}(d) (IΩdRG^)n(X)\displaystyle\to(\widehat{I\Omega^{G}_{\mathrm{dR}}})^{n}(X)
    α\displaystyle\alpha (dα,cw(α)).\displaystyle\mapsto(d\alpha,\mathrm{cw}(\alpha)).

    Here the homomorphism cw(α):𝒞n1G(X)/\mathrm{cw}(\alpha)\colon\mathcal{C}^{G_{\nabla}}_{n-1}(X)\to\mathbb{R}/\mathbb{Z} is defined by

    cw(α)([M,g,f]):=Mcwg(fα)(mod).\displaystyle\mathrm{cw}(\alpha)([M,g,f]):=\int_{M}\mathrm{cw}_{g}(f^{*}\alpha)\pmod{\mathbb{Z}}.

    We set

    (IΩdRG)n(X):=(IΩdRG^)n(X)/Im(a).\displaystyle(I\Omega^{G}_{\mathrm{dR}})^{n}(X):=(\widehat{I\Omega^{G}_{\mathrm{dR}}})^{n}(X)/\mathrm{Im}(a).

For n<0n\in\mathbb{Z}_{<0} we set (IΩdRG^)n(X)=0(\widehat{I\Omega^{G}_{\mathrm{dR}}})^{n}(X)=0 and (IΩdRG)n(X)=0(I\Omega^{G}_{\mathrm{dR}})^{n}(X)=0.

We defined the structure homomorphisms RR, aa and II along with the S1S^{1}-integration map \int for IΩdRG^\widehat{I\Omega^{G}_{\mathrm{dR}}}. One of the main results of [YY21] is the following.

Theorem 2.12 ([YY21, Theorem 4.51]).

We have a natural isomorphism of functors MfdAb\mathrm{Mfd}\to\mathrm{Ab}^{\mathbb{Z}},

(IΩdRG)(IΩG)\displaystyle(I\Omega^{G}_{\mathrm{dR}})^{*}\simeq(I\Omega^{G})^{*}

Moreover, the functor IΩdRG^\widehat{I\Omega^{G}_{\mathrm{dR}}}, along with the structure maps introduced in [YY21], is a differential extension with S1S^{1}-integration of the pair ((IΩG),ch)\left((I\Omega^{G})^{*},\mathrm{ch}^{\prime}\right), where ch\mathrm{ch}^{\prime} is defined in (2.6).

3. Pushforwards in differential cohomologies and the Anderson duality

This is the main section of this paper. The main part is Subsection 3.3, where we construct the natural transformation (1.1) and prove Theorem 1.2. Subsections 3.1 and 3.2 are preparation for the construction and proof. We explain some examples, as well as relations with anomaly, in Subsection 3.4.

3.1. Preliminary–Differential pushforwards in the Hopkins-Singer model

In this subsection, we briefly explain the differential extensions of generalized cohomology theories constructed by Hopkins-Singer and the differential pushforwards (called integration in [HS05]) in that model. We explain it in more detail in Appendix A.

On the topological level, a ring homomorphism 𝒢:MTGE\mathcal{G}\colon MTG\to E gives pushforwards in EE for GG-oriented proper smooth maps. For proper smooth maps p:NXp\colon N\to X of relative dimension r:=dimNdimXr:=\dim N-\dim X with (topological) stable relative tangential GG-structures gptopg_{p}^{\mathrm{top}}, we get the corresponding pushforward map,

(3.1) (p,gptop):E(N)Er(X).\displaystyle(p,{g_{p}^{\mathrm{top}}})_{*}\colon E^{*}(N)\to E^{*-r}(X).

In particular in the case X=ptX=\mathrm{pt}, for a closed manifold MM of dimension nn with a stable tangential GG-structure gtopg^{\mathrm{top}} ([YY21, Definition 3.2]), we get

(pM,gtop):E(M)En(pt).\displaystyle(p_{M},g^{\mathrm{top}})_{*}\colon E^{*}(M)\to E^{*-n}(\mathrm{pt}).

There are notions of differential refinements of the pushforward maps in E^\widehat{E}. For example see [HS05, Section 4.10], [BSSW09, Section 2] and [Bun12, Section 4.8 – 4.10]. Basically, they consist of corresponding maps in E^\widehat{E} for each proper map with a “differential EE-orientation”. The formulations depend on the context. In this paper, we adopt the one by Hopkins-Singer222 In particular we use the differential extension E^HS\widehat{E}_{\mathrm{HS}}. Practically this is not restrictive. We are assuming EE is rationally even and multiplicative, so E^HS\widehat{E}_{\mathrm{HS}} is equipped with a canonical multiplicative structure by [Upm15]. Thus, when the coefficients of EE are countably generated, we can apply the uniqueness result in [BS10, Theorem 1.7] to conclude that any other multiplicative differential extension (defined on the category of all smooth manifolds) is isomorphic to E^HS\widehat{E}_{\mathrm{HS}}. .

Hopkins and Singer gave a model of differential extensions, which we denote by E^HS(;ιE)\widehat{E}_{\mathrm{HS}}^{*}(-;\iota_{E}), for any spectrum EE, in terms of differential function complexes. In general we choose a \mathbb{Z}-graded vector space VV^{\bullet}, and a singular cocycle ιEZ0(E;V)=limnZn(En;V)\iota_{E}\in Z^{0}(E;V^{\bullet})=\varprojlim_{n}Z^{n}(E_{n};V^{\bullet}). Then for each nn and for each manifold XX, we get a simplicial complex called differential function complex,

(En;ιn)X=(E;ι)nX,\displaystyle(E_{n};\iota_{n})^{X}=(E;\iota)^{X}_{n},

consisting of differential functions X×Δ(En;ιn)X\times\Delta^{\bullet}\to(E_{n};\iota_{n}). This complex has a filtration filts(E;ι)nX\mathrm{filt}_{s}(E;\iota)^{X}_{n}, s0s\in\mathbb{Z}_{\geq 0}. The differential cohomology group is defined as (it is denoted by E(n)n(X;ι)E(n)^{n}(X;\iota) in [HS05]),

E^HSn(X;ι):=π0filt0(E;ι)nX.\displaystyle\widehat{E}^{n}_{\mathrm{HS}}(X;\iota):=\pi_{0}\mathrm{filt}_{0}(E;\iota)^{X}_{n}.

In particular this means that an element in E^HSn(X;ι)\widehat{E}^{n}_{\mathrm{HS}}(X;\iota) is represented by a differential function (c,h,ω):X(En;ιn)(c,h,\omega)\colon X\to(E_{n};\iota_{n}), consisting of a continuous map c:XEnc\colon X\to E_{n}, a closed form ωΩclon(X;V)\omega\in\Omega_{\mathrm{clo}}^{n}(X;V^{\bullet}) and a singular cochain hCn1(X;V)h\in C^{n-1}(X;V^{\bullet}) such that δh=cιnω\delta h=c^{*}\iota_{n}-\omega as smooth singular cocycles.

A particularly important case is when V=VEV=V_{E}^{\bullet} and ιEZ0(E;VE)\iota_{E}\in Z^{0}(E;V_{E}^{\bullet}) is the fundamental cocycle, i.e., a singular cocycle representing the Chern-Dold character of EE. In this case the associated differential cohomology groups E^HSn(X;ιE)\widehat{E}^{n}_{\mathrm{HS}}(X;\iota_{E}) satisfies the axioms of differential cohomology theory in [BS10]. The isomorphism class of the resulting group is independent of the choice of the fundamental cocycle ιE\iota_{E}, with an isomorphism given by a cochain cobounding the difference.

In [HS05, Section 4.10], a differential pushforward is defined simply as maps of differential function spaces333 This point is important in the proof of Proposition 3.21, which is the main ingredient of the proof of the main result (Theorem 3.26). This is the reason why we want to use the Hopkins-Singer’s formulation. ,

(3.2) 𝒢^:(MTGr(En)+;V𝒢(ιMTG)r(ιE)n)(E;ιE)nr,\displaystyle\widehat{\mathcal{G}}\colon\left(MTG_{-r}\wedge(E_{n})^{+};V_{\mathcal{G}}(\iota_{MTG})_{-r}\cup(\iota_{E})_{n}\right)\to(E;\iota_{E})_{n-r},

refining the map MTG(En)+𝒢idE(En)+multiΣnEMTG\wedge(E_{n})^{+}\xrightarrow{\mathcal{G}\wedge\mathrm{id}}E\wedge(E_{n})^{+}\xrightarrow{\mathrm{multi}}\Sigma^{n}E. Here we are taking V=VEV=V_{E}^{\bullet}, and the cocycle V𝒢(ιMTG)Z0(MTG;VE)V_{\mathcal{G}}(\iota_{MTG})\in Z^{0}(MTG;V_{E}^{\bullet}) is obtained by applying V𝒢:VMTGVEV_{\mathcal{G}}\colon V_{MTG}\to V_{E} on the coefficient of ιMTG\iota_{MTG}. Then444 As we explain in Appendix A.2, this process needs some additional choices of cochains. By the assumption that EE is rationally even, the resulting map on the differential cohomology level does not depend on the choices. , the map 𝒢^\widehat{\mathcal{G}} associates to every proper neat map of p:NXp\colon N\to X of relative dimension rr with a differential (tangential) BGBG-orientation gpHSg_{p}^{\mathrm{HS}} with a map

(3.3) (p,gpHS):E^HS(N;ιE)E^HSr(X;ιE),\displaystyle(p,g_{p}^{\mathrm{HS}})_{*}\colon\widehat{E}^{*}_{\mathrm{HS}}(N;\iota_{E})\to\widehat{E}^{*-r}_{\mathrm{HS}}(X;\iota_{E}),

called the differential pushforward map.

Remark 3.4.

As we explain in Appendix A.2 and A.3, the definition of (the tangential version of) differential BGBG-oriented maps in [HS05] differs from the differential stable relative GG-structure in [YY21, Definition 5.12]. Fix a fundamental cocycle ιMTGZ0(MTG;VMTG)\iota_{MTG}\in Z^{0}(MTG;V_{MTG}^{\bullet}). Given a proper smooth map p:NXp\colon N\to X, a topological tangential BGBG-orientation consists of a choice of embedding Nk×XN\hookrightarrow\mathbb{R}^{k}\times X for some kk, a tubular neighborhood WW of NN in k×X\mathbb{R}^{k}\times X with a vector bundle structure WNW\to N, and a classifying map W¯:=Thom(W)MTGkr\overline{W}:=\mathrm{Thom}(W)\to MTG_{k-r}. A differential tangential BGBG-orientation gpHSg_{p}^{\mathrm{HS}} consists of its lift to a differential function

(3.5) t(gpHS)=(c,h,ω):W¯(MTGkr,(ιMTG)kr),\displaystyle t({g_{p}^{\mathrm{HS}}})=(c,h,\omega)\colon\overline{W}\to(MTG_{k-r},(\iota_{MTG})_{k-r}),

Then the map (3.3) is given by (3.2) and the Pontryagin-Thom construction. The resulting pushforward maps depend on the various choices.

Remark 3.6.

However, using the assumption that EE is rationally even, in the case where pp is a submersion the situation is simple. First of all, the relative tangent bundle T(p)=ker(TNTX)T(p)=\ker(TN\to TX) makes sense, and we restrict our attention to the case where we are given a differential stable GG-structure gpg_{p} on T(p)T(p) (as opposed to the more general notion of differential stable relative tangential GG-structure on pp in [YY21, Definition 5.12]). Then, associated to such gpg_{p} there is a canonical set of choices of gqHSg_{q}^{\mathrm{HS}} which gives the same map (3.3). We explain this point in details in Appendix A. We call such gpHSg_{p}^{\mathrm{HS}} a lift of gpg_{p} (Definition A.56). The map (3.3) defined by any choice of a lift gpHSg_{p}^{\mathrm{HS}} of gpg_{p} is the unique map denoted by

(3.7) (p,gp):=(p,gpHS):E^HS(N;ιE)E^HSr(X;ιE).\displaystyle(p,g_{p})_{*}:=(p,g_{p}^{\mathrm{HS}})_{*}\colon\widehat{E}^{*}_{\mathrm{HS}}(N;\iota_{E})\to\widehat{E}^{*-r}_{\mathrm{HS}}(X;\iota_{E}).

We simply call it the differential pushforward map (Definition A.52 and Proposition A.57).

In the case where p:NXp\colon N\to X is a submersion and equipped with a differential stable GG-structure gpg_{p} on T(p)T(p), there is also the corresponding pushforward map on the level of differential forms. The Chern-Dold character (1.8) of the multiplicative genus 𝒢E0(MTG)\mathcal{G}\in E^{0}(MTG) is the element

(3.8) ch(𝒢)H0(MTG;VE).\displaystyle\mathrm{ch}(\mathcal{G})\in H^{0}(MTG;V_{E}^{\bullet}).

For example, for 𝒢=τ:MTSOH\mathcal{G}=\tau\colon MT\mathrm{SO}\to H\mathbb{Z}, the Chern-Dold chacacter is trivial, 11. For 𝒢=ABS:MTSpincK\mathcal{G}=\mathrm{ABS}\colon MT\mathrm{Spin}^{c}\to{K} and 𝒢=ABS:MTSpinK\mathcal{G}=\mathrm{ABS}\colon MT\mathrm{Spin}\to{K}, the Chern-Dold characters are the Todd polynomial and the A^\widehat{A} polynomial, respectively. Applying the Chern-Weil construction in (2.8), we get the Chern-Dold character form for the relative tangent bundle,

(3.9) cwgp(ch(𝒢))Ωclo0(N;Ori(T(p))VE).\displaystyle\mathrm{cw}_{g_{p}}(\mathrm{ch}(\mathcal{G}))\in\Omega_{\mathrm{clo}}^{0}(N;\mathrm{Ori}(T(p))\otimes_{\mathbb{R}}V_{E}^{\bullet}).

Using this, the pushforward map on Ω(;VE)\Omega^{*}(-;V_{E}^{\bullet}) is given by

(3.10) N/Xcwgp(ch(𝒢)):Ωn(N;VE)Ωnr(X;VE).\displaystyle\int_{N/X}-\wedge\mathrm{cw}_{g_{p}}(\mathrm{ch}(\mathcal{G}))\colon\Omega^{n}(N;V_{E}^{\bullet})\to\Omega^{n-r}(X;V_{E}^{\bullet}).

Restricted to the closed forms, the induced homomorphism on the cohomology, Hn(N;VE)Hnr(X;VE)H^{n}(N;V_{E}^{\bullet})\to H^{n-r}(X;V_{E}^{\bullet}), is compatible with the Chern-Dold character (1.8) for EE and the topological pushforward (3.1). The differential pushforward map in (3.7) is compatible with the map (3.10) (tangential version of (A.27)).

In particular, if X=ptX=\mathrm{pt}, for every nn-dimensional differential stable tangential GG-cycle (M,g)(M,g) over pt\mathrm{pt}, the differential pushforward map (3.7) is

(3.11) (pM,g):E^HS(M;ιE)E^HSn(pt;ιE).\displaystyle(p_{M},g)_{*}\colon\widehat{E}^{*}_{\mathrm{HS}}(M;\iota_{E})\to\widehat{E}^{*-n}_{\mathrm{HS}}(\mathrm{pt};\iota_{E}).

As we explain in the last part of Appendix A.1, an important property of the pushforward is the following Bordism formula, relating the pushforward of differential forms (3.10) on the bulk and the differential pushforward (3.11) on the boundary.

Fact 3.12 (Bordism formula, [Bun12, Problem 4.235]).

For any morphism [W,gW]:(M,g)(M+,g+)[W,g_{W}]\colon(M_{-},g_{-})\to(M_{+},g_{+}) in hBordn1G(pt)h\mathrm{Bord}^{G_{\nabla}}_{n-1}(\mathrm{pt}), the following diagram commutes.

E^HS(W;ιE)R(iM)iM+Ω(W;VE)Wcwg(ch(𝒢))Ωn(pt;VE)aE^HS(M;ιE)E^HS(M+;ιE)(pM,g)(pM+,g+)E^n+1(pt).\displaystyle\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 54.98769pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&&\\&&&\crcr}}}\ignorespaces{\hbox{\kern-24.95914pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\widehat{E}_{\mathrm{HS}}^{*}(W;\iota_{E})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 46.7068pt\raise 5.39166pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.39166pt\hbox{$\scriptstyle{R}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 78.98769pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 0.0pt\raise-20.63791pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.4903pt\hbox{$\scriptstyle{(-i^{*}_{M_{-}})\oplus i^{*}_{M_{+}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-29.75082pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 78.98769pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\Omega^{*}(W;V_{E}^{\bullet})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 130.7499pt\raise 6.5pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{{\int_{W}-\wedge\mathrm{cw}_{g}(\mathrm{ch}(\mathcal{G}))}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 184.57768pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 154.57768pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 184.57768pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\Omega^{*-n}(\mathrm{pt};V_{E}^{\bullet})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 212.29224pt\raise-20.63791pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.50694pt\hbox{$\scriptstyle{a}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 212.29224pt\raise-29.24916pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-54.98769pt\raise-41.27583pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\widehat{E}_{\mathrm{HS}}^{*}(M_{-};\iota_{E})\oplus\widehat{E}_{\mathrm{HS}}^{*}(M_{+};\iota_{E})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 75.60654pt\raise-34.36751pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.34167pt\hbox{$\scriptstyle{(p_{M_{-}},g_{-})_{*}\oplus(p_{M_{+}},g_{+})_{*}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 190.31154pt\raise-41.27583pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 101.78268pt\raise-41.27583pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 154.57768pt\raise-41.27583pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 190.31154pt\raise-41.27583pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\widehat{E}^{*-n+1}(\mathrm{pt})}$}}}}}}}\ignorespaces}}}}\ignorespaces.
Example 3.13.

In the case 𝒢=τ:MTSOH\mathcal{G}=\tau\colon MT\mathrm{SO}\to H\mathbb{Z}, the nontrivial degree of pushforwards (pM,g):H^dimM+1(M;)H^1(pt;)/(p_{M},g)_{*}\colon\widehat{H}^{\dim M+1}(M;\mathbb{Z})\to\widehat{H}^{1}(\mathrm{pt};\mathbb{Z})\simeq\mathbb{R}/\mathbb{Z} are called the higher holonomy function which appears in the definition of Chern-Simons invariants. In terms of the Cheeger-Simons model of H^\widehat{H\mathbb{Z}} in terms of differential characters [CS85], it is given by the evaluation on the fundamental cycle. In particular for the case dimM=1\dim M=1 it is the usual holonomy, and the Bordism formula is satisfied because of the relation between the curvature and the holonomy for U(1)U(1)-connections.

Example 3.14.

In the case 𝒢=ABS:MTSpincK\mathcal{G}=\mathrm{ABS}\colon MT\mathrm{Spin}^{c}\to{K}, Freed and Lott [FL10] constructed a model of K^\widehat{K} in terms of hermitian vector bundles with hermitian connections, and the refinement of pushforwards when dimM\dim M is odd, (pM,g):K^0(M)K^dimM(pt)/(p_{M},g)_{*}\colon\widehat{K}^{0}(M)\to\widehat{K}^{-\dim M}(\mathrm{pt})\simeq\mathbb{R}/\mathbb{Z}, is given by the reduced eta invariants. The Bordism formula is a consequence of the Atiyah-Patodi-Singer index theorem.

3.2. Differential Pushforwards in terms of functors

As a preparation to the main Subsection 3.3, in this subsection we translate the data of differential pushforwards into functors from hBordG()h\mathrm{Bord}^{G_{\nabla}}_{-}(-).

Definition 3.15.

In the above settings, let XX be a manifold, kk be an integer and e^E^HSk(X;ιE)\widehat{e}\in\widehat{E}_{\mathrm{HS}}^{k}(X;\iota_{E}). Let nn be an integer with k+n10k+n-1\geq 0. Then define the functor of Picard groupoids,

(3.16) T𝒢,e^:hBordk+n1G(X)(VEn𝑎E^HS1n(pt;ιE)),\displaystyle T_{{\mathcal{G}},\widehat{e}}\colon h\mathrm{Bord}^{G_{\nabla}}_{k+n-1}(X)\to\left(V_{E}^{-n}\xrightarrow{a}\widehat{E}_{\mathrm{HS}}^{1-n}(\mathrm{pt};\iota_{E})\right),

by the following.

  • On objects, we set

    (3.17) T𝒢,e^(M,g,f):=(pM,g)f(e^)E^HS1n(pt;ιE)\displaystyle T_{{\mathcal{G}},\widehat{e}}(M,g,f):=(p_{M},g)_{*}f^{*}(\widehat{e})\in\widehat{E}_{\mathrm{HS}}^{1-n}(\mathrm{pt};\iota_{E})
  • On morphisms, we set

    T𝒢,e^([W,gW,fW]):=cw(R(e^)ch(𝒢))([W,gW,fW]).\displaystyle T_{{\mathcal{G}},\widehat{e}}([W,g_{W},f_{W}]):=\mathrm{cw}(R(\widehat{e})\wedge\mathrm{ch}(\mathcal{G}))([W,g_{W},f_{W}]).

    Here R(e^)Ωclok(X;VE)R(\widehat{e})\in\Omega_{\mathrm{clo}}^{k}(X;V_{E}^{\bullet}) is the curvature of e^\widehat{e} and we use (2.10).

The well-definedness of the functor follows by the Bordism formula in Fact 3.12.

As is easily shown by the Bordism formula, the formula (3.17) defines the homomorphism

(3.18) T𝒢,e^:𝒞k+n1G(X)E^HS1n(pt;ιE).\displaystyle T_{{\mathcal{G}},\widehat{e}}\colon\mathcal{C}^{G_{\nabla}}_{k+n-1}(X)\to\widehat{E}_{\mathrm{HS}}^{1-n}(\mathrm{pt};\iota_{E}).

As expected, the transformation (3.16) is induced by the first arrow in (3.27). To show this, first remark that for any spectrum FF and its any fundamental cycle ιF\iota_{F}, the forgetful functor gives the equivalence of Picard groupoids,

(3.19) π1((F;ιF)npt)π1(Fn),\displaystyle\pi_{\leq 1}((F;\iota_{F})^{\mathrm{pt}}_{n})\simeq\pi_{\leq 1}(F_{n}),

where the left hand side means the simplicial fundamental groupoid, whose objects are differential functions tpt:pt(F;ιF)nt_{\mathrm{pt}}\colon\mathrm{pt}\to(F;\iota_{F})_{n}, and morphisms are bordism classes of differential functions tI:I(F;ιF)nt_{I}\colon I\to(F;\iota_{F})_{n}. The right hand side is the fundamental groupoid for the space FnF_{n}, which is equipped with the structure of a Picard groupoid by [HS05, Example B.7].

We have a functor of Picard groupoids555The right hand side is the Picard groupoid associated to the homomorphism a:VEnE^HS1n(pt;ιE)a\colon V_{E}^{-n}\to\widehat{E}_{\mathrm{HS}}^{1-n}(\mathrm{pt};\iota_{E}) of abelian groups. In general, a homomorphism :AB\partial\colon A\to B between abelian groups associates a Picard groupoid (AB)(A\xrightarrow{\partial}B), whose objects are elements of BB, and a morphism from bb to bb^{\prime} is given by an element aAa\in A such that bb=(a)b^{\prime}-b=\partial(a). ,

(3.20) ev:π1((E;ιE)1npt)(VEn𝑎E^HS1n(pt;ιE)),\displaystyle\mathrm{ev}\colon\pi_{\leq 1}\left((E;\iota_{E})^{\mathrm{pt}}_{1-n}\right)\to\left(V_{E}^{-n}\xrightarrow{a}\widehat{E}_{\mathrm{HS}}^{1-n}(\mathrm{pt};\iota_{E})\right),

given by assigning the element [tpt]E^HS1n(pt;ιE)[t_{\mathrm{pt}}]\in\widehat{E}_{\mathrm{HS}}^{1-n}(\mathrm{pt};\iota_{E}) for an object and the integration of the curvature R([tI])Ωclo1n(I;VE)R([t_{I}])\in\Omega_{\mathrm{clo}}^{1-n}(I;V_{E}^{\bullet}) for a morphism.

Proposition 3.21.

The functor (3.16) of Picard groupoids is naturally isomorphic to the following composition,

(3.22) hBordk+n1G(X)π1(L(X+MTG)1kn)e𝒢π1(E1n)(VEn𝑎E^HS1n(pt;ιE)),\displaystyle h\mathrm{Bord}^{G_{\nabla}}_{k+n-1}(X)\simeq\pi_{\leq 1}(L(X^{+}\wedge MTG)_{1-k-n})\xrightarrow{e\wedge\mathcal{G}}\pi_{\leq 1}(E_{1-n})\to\left(V_{E}^{-n}\xrightarrow{a}\widehat{E}_{\mathrm{HS}}^{1-n}(\mathrm{pt};\iota_{E})\right),

where the first arrow is the equivalence in (2.5), and the last arrow is the composition of (3.19) and (3.20).

Proof.

Choose a differential function t(e^):X(Ek;(ιE)k)t(\widehat{e})\colon X\to(E_{k};(\iota_{E})_{k}) representing e^\widehat{e}. For each object (M,g,f)(M,g,f) in hBordk+n1G(X)h\mathrm{Bord}^{G_{\nabla}}_{k+n-1}(X), choose a Hopkins-Singer’s differential GG-structure gHSg^{\mathrm{HS}} lifting gg. By the discussion in Appendix A.2 and its tangential variant in Appendix A.3, we get a functor

(3.23) hBordk+n1G(X)π1((Ek)+MTG1kn;(ιE)kV𝒢(ιMTG)1kn)pt).\displaystyle h\mathrm{Bord}^{G_{\nabla}}_{k+n-1}(X)\to\pi_{\leq 1}((E_{k})^{+}\wedge MTG_{1-k-n};(\iota_{E})_{k}\cup V_{\mathcal{G}}(\iota_{MTG})_{1-k-n})^{\mathrm{pt}}).

Indeed, for objects, given (M,g,f)(M,g,f) with the chosen lift gHSg^{\mathrm{HS}}, denote the underlying embedding and tubular neighborhood by MUNM\subset U\subset\mathbb{R}^{N}. We have differential functions ft(e^):M(E;ιE)kf^{*}t(\widehat{e})\colon M\to(E;\iota_{E})_{k} and t(gHS):U¯(MTG;ιMTG)N(k+n1)t({g^{\mathrm{HS}}})\colon\overline{U}\to(MTG;\iota_{MTG})_{N-(k+n-1)}. Applying the (MTGMTG-version of the) left vertical arrow of (A.40) to them and using the open embedding UNU\hookrightarrow\mathbb{R}^{N} (the Pontryagin-Thom collapse), we get the differential function pt(EkMTG1kn;(ιE)kV𝒢(ιMTG)1kn)\mathrm{pt}\to(E_{k}\wedge MTG_{1-k-n};(\iota_{E})_{k}\cup V_{\mathcal{G}}(\iota_{MTG})_{1-k-n}).

For morphisms [W,gW,fW]:(M,g,f)(M+,g+,f+)[W,g_{W},f_{W}]\colon(M_{-},g_{-},f_{-})\to(M_{+},g_{+},f_{+}), choose any representative (W,gW,fW)(W,g_{W},f_{W}) and smooth map pW:WIp_{W}\colon W\to I (not necessarily a submersion) so that it coincides with a collar coordinates of each objects (M±,g±,f±)(M_{\pm},g_{\pm},f_{\pm}) near the endpoints, respectively. The structure gWg_{W} induces gpWg_{p_{W}}, in particular the topological structure gpWtopg_{p_{W}}^{\mathrm{top}}, on pWp_{W}. Take any Hopkins-Singer’s differential tangential BGBG-oorientation gpWHSg_{p_{W}}^{\mathrm{HS}} (Appendix A.3) for pWp_{W} which coincides with the chosen lifts at the boundary, and whose underlying map classifies gpWtopg_{p_{W}}^{\mathrm{top}}. Then applying the same procedure as that we did for objects above, we get a differential function I(EkMTG1kn;(ιE)kV𝒢(ιMTG)1kn)I\to(E_{k}\wedge MTG_{1-k-n};(\iota_{E})_{k}\cup V_{\mathcal{G}}(\iota_{MTG})_{1-k-n}) which restricts at the boundary to the ones assigned to objects above. Since any of the choices we have made is unique up to bordisms, the resulting morphism in the right hand side of (3.23) is uniquely determined. This gives the desired functor.

By Definition 3.15 and Proposition A.57, the functor T𝒢,e^T_{{\mathcal{G}},\widehat{e}} coincides with the composition of (3.23) with

(3.24) π1((EkMTG1kn;(ιE)kV𝒢(ιMTG)1kn)pt)𝒢^π1((E;ιE)1npt)\displaystyle\pi_{\leq 1}\left(\left(E_{k}\wedge MTG_{1-k-n};(\iota_{E})_{k}\cup V_{\mathcal{G}}(\iota_{MTG})_{1-k-n}\right)^{\mathrm{pt}}\right)\xrightarrow{\widehat{\mathcal{G}}}\pi_{\leq 1}((E;\iota_{E})^{\mathrm{pt}}_{1-n})
ev(VEn𝑎E^HS1n(pt;ιE)).\displaystyle\xrightarrow{\mathrm{ev}}\left(V_{E}^{-n}\xrightarrow{a}\widehat{E}_{\mathrm{HS}}^{1-n}(\mathrm{pt};\iota_{E})\right).

The fact that it is naturally isomorphic to (3.22) is just the cosequence of the fact that e^\widehat{e} and 𝒢^\widehat{\mathcal{G}} are refinements of ee and 𝒢\mathcal{G}, respectively. This completes the proof. ∎

3.3. The construction and the proof

In this main subsection, we state and prove the main result of this article. Let GG be a multiplicative tangential structure groups, EE be a rationally even ring spectrum and 𝒢:MTGE\mathcal{G}\colon MTG\to E be a homomorphism of ring spectra. Fix an integer nn such that E1n(pt)=0E^{1-n}(\mathrm{pt})\otimes\mathbb{R}=0. We construct a natural transformation

(3.25) Φ𝒢:E^HS(;ιE)IEn(pt)(IΩdRG^)+n(),\displaystyle\Phi_{\mathcal{G}}\colon\widehat{E}_{\mathrm{HS}}^{*}(-;\iota_{E})\otimes IE^{n}(\mathrm{pt})\to(\widehat{I\Omega^{G}_{\mathrm{dR}}})^{*+n}(-),

on Mfdop\mathrm{Mfd}^{\mathrm{op}} (Definition 3.36).

The main result of this paper is the following topological characterization of the transformation (3.25).

Theorem 3.26 (=Theorem 1.2).

In the above settings, let XX be a manifold and kk be an integer. For e^E^HSk(X;ιE)\widehat{e}\in\widehat{E}_{\mathrm{HS}}^{k}(X;\iota_{E}) and βIEn(pt)\beta\in IE^{n}(\mathrm{pt}), the element I(Φ𝒢(e^β))(IΩG)k+n(X)=[X+MTG,Σk+nI]I(\Phi_{\mathcal{G}}(\widehat{e}\otimes\beta))\in(I\Omega^{G})^{k+n}(X)=[X^{+}\wedge MTG,\Sigma^{k+n}I\mathbb{Z}] coincides with the following composition,

(3.27) X+MTGe𝒢ΣkEEmultiΣkE𝛽Σk+nI.\displaystyle X^{+}\wedge MTG\xrightarrow{e\wedge\mathcal{G}}\Sigma^{k}E\wedge E\xrightarrow{\mathrm{multi}}\Sigma^{k}E\xrightarrow{\beta}\Sigma^{k+n}I\mathbb{Z}.

Here we denoted e:=I(e^)Ek(X)e:=I(\widehat{e})\in E^{k}(X).

As a preparation, we show that there exists a canonical homomorphism666 The existsnce of a canonical pairing IEn(pt)E^HS1n(pt;ιE)/IE^{-n}(\mathrm{pt})\otimes\widehat{E}^{1-n}_{\mathrm{HS}}(\mathrm{pt};\iota_{E})\to\mathbb{R}/\mathbb{Z} is used in [FMS07, Proposition 6], in particular in the last arrow of the second line of the proof of that proposition. They do not state any condition on EE, but they use the assumption VE1n=0V_{E}^{1-n}=0 implicitely.

(3.28) s:IEn(pt)HomCh((VEn𝑎E^HS1n(pt;ιE)),(/)),\displaystyle s\colon IE^{n}(\mathrm{pt})\to\mathrm{Hom}_{\mathrm{Ch}}\left(\left(V_{E}^{-n}\xrightarrow{a}\widehat{E}_{\mathrm{HS}}^{1-n}(\mathrm{pt};\iota_{E})\right),(\mathbb{R}\to\mathbb{R}/\mathbb{Z})\right),

where HomCh\operatorname{Hom}_{\mathrm{Ch}} denotes the group of chain maps of complexes of abelian groups. Indeed, by [HS05, (4.57)], we have a canonical isomorphism777 This isomorphism does not follow from the axiom of differential cohomology theory in [BS10]. For more on this point, see [BS10, Section 5].

(3.29) ker(R:E^HS(;ιE)Ωclo(;VE))E1(;/).\displaystyle\ker\left(R\colon\widehat{E}^{*}_{\mathrm{HS}}(-;\iota_{E})\to\Omega^{*}_{\mathrm{clo}}(-;V_{E}^{\bullet})\right)\simeq E^{*-1}(-;\mathbb{R}/\mathbb{Z}).

Here, for any abelian group 𝔾\mathbb{G}, the cohomology theory E(;𝔾)E^{*}(-;\mathbb{G}) is represented by the spectrum E𝔾:=ES𝔾E\mathbb{G}:=E\wedge S\mathbb{G}, where S𝔾S\mathbb{G} is the Moore spectrum. As explained there, this is because the differential function complexes can be fits into the homotopy Cartesian square [HS05, (4.12)]. Applied to pt\mathrm{pt} and =1n*=1-n, we get the identification

(3.30) E^HS1n(pt;ιE)=ker(R:E^HS1n(pt;ιE)VE1n)En(pt;/).\displaystyle\widehat{E}^{1-n}_{\mathrm{HS}}(\mathrm{pt};\iota_{E})=\ker\left(R\colon\widehat{E}^{1-n}_{\mathrm{HS}}(\mathrm{pt};\iota_{E})\to V_{E}^{1-n}\right)\simeq E^{-n}(\mathrm{pt};\mathbb{R}/\mathbb{Z}).

An element βIEn(pt)=[E,ΣnI]\beta\in IE^{n}(\mathrm{pt})=[E,\Sigma^{n}I\mathbb{Z}] induces the element β𝔾[E𝔾,ΣnIS𝔾]\beta_{\mathbb{G}}\in[E\mathbb{G},\Sigma^{n}I\mathbb{Z}\wedge S\mathbb{G}] for any 𝔾\mathbb{G}, and using ISHI\mathbb{Z}\wedge S\mathbb{R}\simeq H\mathbb{R} and IS/I/I\mathbb{Z}\wedge S\mathbb{R}/\mathbb{Z}\simeq I\mathbb{R}/\mathbb{Z}, we get the induced homomorphisms on pt\mathrm{pt}, which we also denote as

(3.31) β\displaystyle\beta_{\mathbb{R}} :VEn=En(pt;),\displaystyle\colon V_{E}^{-n}=E^{-n}(\mathrm{pt};\mathbb{R})\to\mathbb{R},
(3.32) β/\displaystyle\beta_{\mathbb{R}/\mathbb{Z}} :E^HS1n(pt;ιE)(3.30)En(pt;/)/,\displaystyle\colon\widehat{E}^{1-n}_{\mathrm{HS}}(\mathrm{pt};\iota_{E})\xrightarrow[\eqref{eq_HS_flat}]{\simeq}E^{-n}(\mathrm{pt};\mathbb{R}/\mathbb{Z})\to\mathbb{R}/\mathbb{Z},

The homomorphism (3.31) coincides with the one obtained by the map IEn(X)Hom(En(X),)IE^{n}(X)\to\mathrm{Hom}(E_{n}(X),\mathbb{R}) in (2.1). The homomorphism (3.28) is given by mapping β\beta to the pair (β,β/)(\beta_{\mathbb{R}},\beta_{\mathbb{R}/\mathbb{Z}}). The well-definedness follows by the construction.

On the other hand, by [HS05, Corollary B.17]888 Note that there is an obvious typo of the degree in the statement of [HS05, Corollary B.17]. (also see [YY21, Fact 2.6] and the explanations there), we have an isomorphism for any spectra EE,

(3.33) IEn(pt)π0FunPic(π1(E1n),(/)),\displaystyle IE^{n}(\mathrm{pt})\simeq\pi_{0}\mathrm{Fun}_{\mathrm{Pic}}\left(\pi_{\leq 1}(E_{1-n}),(\mathbb{R}\to\mathbb{R}/\mathbb{Z})\right),

where π0FunPic\pi_{0}\mathrm{Fun}_{\mathrm{Pic}} means the group of natural isomorphism classes of functors of Picard groupoids. By (3.19), (3.20) and (3.33), we get a homomorphism

(3.34) ev:π0FunPic((VEn𝑎E^HS1n(pt;ιE)),(/))IEn(pt).\displaystyle\mathrm{ev}_{*}\colon\pi_{0}\mathrm{Fun}_{\mathrm{Pic}}\left(\left(V_{E}^{-n}\xrightarrow{a}\widehat{E}_{\mathrm{HS}}^{1-n}(\mathrm{pt};\iota_{E})\right),(\mathbb{R}\to\mathbb{R}/\mathbb{Z})\right)\to IE^{n}(\mathrm{pt}).

It directly follows from the definition of the identification (3.29) that we have

(3.35) id=evs:IEn(pt)IEn(pt).\displaystyle\mathrm{id}=\mathrm{ev}_{*}\circ s\colon IE^{n}(\mathrm{pt})\to IE^{n}(\mathrm{pt}).
Definition 3.36 (Φ𝒢\Phi_{\mathcal{G}}).

In the settings explained in the beginning of this subsection, for each manifold XX we define a homomorphism of abelian groups

(3.37) Φ𝒢:E^HS(X;ιE)IEn(pt)(IΩdRG^)+n(X),\displaystyle\Phi_{\mathcal{G}}\colon\widehat{E}_{\mathrm{HS}}^{*}(X;\iota_{E})\otimes IE^{n}(\mathrm{pt})\to(\widehat{I\Omega^{G}_{\mathrm{dR}}})^{*+n}(X),

by the following. For e^E^HSk(X;ιE)\widehat{e}\in\widehat{E}_{\mathrm{HS}}^{k}(X;\iota_{E}) and βIEn(pt)\beta\in IE^{n}(\mathrm{pt}), set Φ𝒢(e^β):=(β(R(e^)ch(𝒢)),β/T𝒢,e^)(IΩdRG^)k+n(X)\Phi_{\mathcal{G}}(\widehat{e}\otimes\beta):=(\beta_{\mathbb{R}}(R(\widehat{e})\wedge\mathrm{ch}(\mathcal{G})),\beta_{\mathbb{R}/\mathbb{Z}}\circ T_{{\mathcal{G}},\widehat{e}})\in(\widehat{I\Omega^{G}_{\mathrm{dR}}})^{k+n}(X), where

  • The element β(R(e^)ch(𝒢))Ωclon+k(X;NG)\beta_{\mathbb{R}}(R(\widehat{e})\wedge\mathrm{ch}(\mathcal{G}))\in\Omega_{\mathrm{clo}}^{n+k}(X;N_{G}^{\bullet}) is obtained by applying (3.31) on the coefficient of R(e)ch(𝒢)Ωclok(X;H(MTG;VE))R(e)\wedge\mathrm{ch}(\mathcal{G})\in\Omega_{\mathrm{clo}}^{k}(X;H^{*}(MTG;V_{E}^{\bullet})).

  • β/T𝒢,e^\beta_{\mathbb{R}/\mathbb{Z}}\circ T_{{\mathcal{G}},\widehat{e}} is the composition of (3.18) and (3.32).

The fact that the pair (β(R(e^)ch(𝒢)),β/(T𝒢,e^))(\beta_{\mathbb{R}}(R(\widehat{e})\wedge\mathrm{ch}(\mathcal{G})),\beta_{\mathbb{R}/\mathbb{Z}}(T_{{\mathcal{G}},\widehat{e}})) satisfies the compatibility condition follows from the well-definedness of (3.28) and the fact that T𝒢,eT_{\mathcal{G},e} in Definition 3.15 is a functor.

Now we prove Theorem 3.26.

Proof of Theorem 3.26(=Theorem 1.2).

We use the argument in [YY21, Subsection 4.2]. Recall that, for an element (ω,h)(IΩdRG^)N(X)(\omega,h)\in(\widehat{I\Omega^{G}_{\mathrm{dR}}})^{N}(X) we associated a functor F(ω,h):hBordN1G(X)(/)F_{(\omega,h)}\colon h\mathrm{Bord}^{G_{\nabla}}_{N-1}(X)\to(\mathbb{R}\to\mathbb{R}/\mathbb{Z}) in [YY21, (4.46)]. In the proof of [YY21, Theorem 4.51], the natural isomorphism

(3.38) IΩGIΩdRG,\displaystyle I\Omega^{G}\simeq I\Omega^{G}_{\mathrm{dR}},

where for the former we use the model of II\mathbb{Z} by [HS05, Corollary B.17], was given as follows. Using the equivalence (2.5), we have (IΩG)N(X)=π0FunPic(π1(hBordN1G(X)(/))(I\Omega^{G})^{N}(X)=\pi_{0}\mathrm{Fun}_{\mathrm{Pic}}\left(\pi_{\leq 1}(h\mathrm{Bord}^{G_{\nabla}}_{N-1}(X)\to(\mathbb{R}\to\mathbb{R}/\mathbb{Z})\right). The map (3.38) is given by mapping the isomorphism class of the functor F(ω,h)F_{(\omega,h)} to I(ω,h)(IΩdRG)N(X)I(\omega,h)\in({I\Omega^{G}_{\mathrm{dR}}})^{N}(X).

Now fix e^E^HSk(X;ιE)\widehat{e}\in\widehat{E}_{\mathrm{HS}}^{k}(X;\iota_{E}) and βIEn(pt)\beta\in IE^{n}(\mathrm{pt}). By Definitions 3.36 and 3.15, the functor associated to Φ𝒢(e^β)\Phi_{\mathcal{G}}(\widehat{e}\otimes\beta) coincides with the following composition.

(3.39) FΦ𝒢(e^β):hBordk+n1G(X)T𝒢,e^(VEn𝑎E^HS1n(pt;ιE))s(β)=(β,β/)(/).\displaystyle F_{\Phi_{\mathcal{G}}(\widehat{e}\otimes\beta)}\colon h\mathrm{Bord}^{G_{\nabla}}_{k+n-1}(X)\xrightarrow{T_{{\mathcal{G}},\widehat{e}}}\left(V_{E}^{-n}\xrightarrow{a}\widehat{E}_{\mathrm{HS}}^{1-n}(\mathrm{pt};\iota_{E})\right)\xrightarrow{s(\beta)=(\beta_{\mathbb{R}},\beta_{\mathbb{R}/\mathbb{Z}})}(\mathbb{R}\to\mathbb{R}/\mathbb{Z}).

Combining this with Proposition 3.21 and (3.35), we see that, under the equivalence hBordk+n1G(X)π1(L(X+MTG)1kn)h\mathrm{Bord}^{G_{\nabla}}_{k+n-1}(X)\simeq\pi_{\leq 1}(L(X^{+}\wedge MTG)_{1-k-n}), (3.39) coincides with

π1(L(X+MTG)1kn)e𝒢π1(E1n)𝛽(/),\displaystyle\pi_{\leq 1}(L(X^{+}\wedge MTG)_{1-k-n})\xrightarrow{e\wedge\mathcal{G}}\pi_{\leq 1}(E_{1-n})\xrightarrow{\beta}(\mathbb{R}\to\mathbb{R}/\mathbb{Z}),

up to a natural isomorphism. This completes the proof of Theorem 3.26. ∎

3.4. Examples

3.4.1. The holonomy theory (1) : [YY21, Example 4.54]

Here we explain the easiest example of the “Holonomy theory (1)” which appeared in [YY21, Example 4.54]. This corresponds to the case E=HE=H\mathbb{Z}, 𝒢=τ:MTSOH\mathcal{G}=\tau\colon MT\mathrm{SO}\to H\mathbb{Z} is the usual orientation, and n=0n=0.

Recall that, given a manifold XX and a hermitian line bundle with unitary connection (L,)(L,\nabla) over XX, we get the element

(3.40) (c1(),Hol)(IΩdRSO^)2(X).\displaystyle(c_{1}(\nabla),\mathrm{Hol}_{\nabla})\in(\widehat{I\Omega^{\mathrm{SO}}_{\mathrm{dR}}})^{2}(X).

On the other hand, in the case E=HE=H\mathbb{Z} we have the canonical choice of an element in IH0(pt)IH\mathbb{Z}^{0}(\mathrm{pt}), namely the Anderson self-duality element γHIH0(pt)\gamma_{H}\in IH\mathbb{Z}^{0}(\mathrm{pt}). Thus we have the homomorphism

Φτ(γH):H^2(X;)(IΩdRSO^)2(X).\displaystyle\Phi_{\tau}(-\otimes\gamma_{H})\colon\widehat{H}^{2}(X;\mathbb{Z})\to(\widehat{I\Omega^{\mathrm{SO}}_{\mathrm{dR}}})^{2}(X).

Using the model of H^2\widehat{H\mathbb{Z}}^{2} in terms of hermitian vector bundles with U(1)U(1)-connections (for example see [HS05, Example 2.7]), the pair (L,)(L,\nabla) defines a class [L,]H^2(X;)[L,\nabla]\in\widehat{H}^{2}(X;\mathbb{Z}). We have the following.

Proposition 3.41.

We have the following equality in (IΩdRSO^)2(X)(\widehat{I\Omega^{\mathrm{SO}}_{\mathrm{dR}}})^{2}(X),

(3.42) (c1(),Hol)=Φτ([L,]γH).\displaystyle(c_{1}(\nabla),\mathrm{Hol}_{\nabla})=\Phi_{\tau}([L,\nabla]\otimes\gamma_{H}).

Moreover, the element I(c1(),Hol)(IΩdRSO)2(X)I(c_{1}(\nabla),\mathrm{Hol}_{\nabla})\in({I\Omega^{\mathrm{SO}}_{\mathrm{dR}}})^{2}(X) coincides with the following composition,

X+MTSOc1(L)τΣ2HHmultiΣ2HγHΣ2I.\displaystyle X^{+}\wedge MT\mathrm{SO}\xrightarrow{c_{1}(L)\wedge\tau}\Sigma^{2}H\mathbb{Z}\wedge H\mathbb{Z}\xrightarrow{\mathrm{multi}}\Sigma^{2}H\mathbb{Z}\xrightarrow{\gamma_{H}}\Sigma^{2}I\mathbb{Z}.
Proof.

The last statement follows from (3.42) and Theorem 3.26. The equality (3.42) follows from the fact that the self-duality element γH\gamma_{H} induces the canonical isomorphism H^1(pt;)/\widehat{H}^{1}(\mathrm{pt};\mathbb{Z})\simeq\mathbb{R}/\mathbb{Z} and H0(pt;)H^{0}(\mathrm{pt};\mathbb{Z})\simeq\mathbb{R}, together with the following well-known facts about H^\widehat{H\mathbb{Z}} (for example see [HS05, Section 2.4]). The element [L,]H^2(X;)[L,\nabla]\in\widehat{H}^{2}(X;\mathbb{Z}) satisfies

γHR([L,])=c1()Ω2(X),\displaystyle\gamma_{H}\circ R([L,\nabla])=c_{1}(\nabla)\in\Omega^{2}(X),

and, given a map f:MXf\colon M\to X from an oriented 11-dimensional closed manifold (M,g)(M,g), the pushforward (pM,g):H^2(M;)H^1(pt;)γH/(p_{M},g)_{*}\colon\widehat{H}^{2}(M;\mathbb{Z})\to\widehat{H}^{1}(\mathrm{pt};\mathbb{Z})\xrightarrow[\simeq]{\gamma_{H}}\mathbb{R}/\mathbb{Z}

γH(pM,g)f[L,]=Holf.\displaystyle\gamma_{H}\circ(p_{M},g)_{*}f^{*}[L,\nabla]=\mathrm{Hol}_{f^{*}\nabla}.

3.4.2. The classical Chern-Simons theory : [YY21, Example 4.56]

Here we explain the classical Chern-Simons theory which appeared in [YY21, Example 4.56]. This is essentially a generalization of Subsection 3.4.1, corresponding to the case E=HE=H\mathbb{Z}, 𝒢=τ:MTSOH\mathcal{G}=\tau\colon MT\mathrm{SO}\to H\mathbb{Z} is the usual orientation, and n=0n=0.

Recall that, given a compact Lie group HH and an element λHn(BH;)\lambda\in H^{n}(BH;\mathbb{Z}), the corresponding classical Chern-Simons theory of level λ\lambda is defined by choosing an (n+1)(n+1)-classifying object (,,)(\mathcal{E},\mathcal{B},\nabla_{\mathcal{E}}) in the category of manifolds with principal HH-bundles with connections, and fixing an element λ^H^n(;)\widehat{\lambda}\in\widehat{H}^{n}(\mathcal{B};\mathbb{Z}) lifting λ\lambda. Then we have the element

(3.43) (1λ,hCSλ^)(IΩdRSO×H^)n(pt),\displaystyle(1\otimes\lambda_{\mathbb{R}},h_{\mathrm{CS}_{\widehat{\lambda}}})\in(\widehat{I\Omega^{\mathrm{SO}\times H}_{\mathrm{dR}}})^{n}(\mathrm{pt}),

whose equivalence class in (IΩdRSO×H)n(pt)(I\Omega^{\mathrm{SO}\times H}_{\mathrm{dR}})^{n}(\mathrm{pt}) does not depend on the lift λ^\widehat{\lambda}.

Proposition 3.44.

The element I(1λ,hCSλ^)(IΩdRSO×H)n(pt)I(1\otimes\lambda_{\mathbb{R}},h_{\mathrm{CS}_{\widehat{\lambda}}})\in(I\Omega^{\mathrm{SO}\times H}_{\mathrm{dR}})^{n}(\mathrm{pt}) coincides with the following composition,

BH+MTSOλτΣnHHmultiΣnH𝛾ΣnI.\displaystyle BH^{+}\wedge MT\mathrm{SO}\xrightarrow{\lambda\wedge\tau}\Sigma^{n}H\mathbb{Z}\wedge H\mathbb{Z}\xrightarrow{\mathrm{multi}}\Sigma^{n}H\mathbb{Z}\xrightarrow{\gamma}\Sigma^{n}I\mathbb{Z}.
Proof.

The classifying map induces an equivalence π1(L(+MTSO)n1)π1(L(BH+MTSO)n1)\pi_{\leq 1}(L(\mathcal{B}^{+}\wedge MT\mathrm{SO})_{n-1})\simeq\pi_{\leq 1}(L(BH^{+}\wedge MT\mathrm{SO})_{n-1}). Moreover, by the pullback of the universal connection \nabla_{\mathcal{E}} it is refined to a functor of Picard groupoids,

(3.45) hBordn1SO()hBordn1SO×H(pt)\displaystyle h\mathrm{Bord}^{\mathrm{SO}}_{n-1}(\mathcal{B})\xrightarrow{\simeq}h\mathrm{Bord}^{\mathrm{SO}\times H}_{n-1}(\mathrm{pt})

which is naturally isomorphic to the above one under the equivalences hBordn1SO(X)π1(L(X+MTSO)n1)h\mathrm{Bord}^{\mathrm{SO}}_{n-1}(X)\simeq\pi_{\leq 1}(L(X^{+}\wedge MT\mathrm{SO})_{n-1}).

We have the element

(3.46) Φτ(λ^γH)(IΩdRSO^)n().\displaystyle\Phi_{\tau}(\widehat{\lambda}\otimes\gamma_{H})\in(\widehat{I\Omega^{\mathrm{SO}}_{\mathrm{dR}}})^{n}(\mathcal{B}).

Recall that an element (ω,h)(IΩdRG^)n(X)(\omega,h)\in(\widehat{I\Omega^{G}_{\mathrm{dR}}})^{n}(X) associates a functor F(ω,h):hBordn1G(X)(/)F_{(\omega,h)}\colon h\mathrm{Bord}^{G_{\nabla}}_{n-1}(X)\to(\mathbb{R}\to\mathbb{R}/\mathbb{Z}) by [YY21, (4.46)]. We claim that the functors associated to the elements (3.46) and (3.43) are related by

FΦτ(λ^γH):hBordn1SO()(3.45)hBordn1SO×H(pt)F(1λ,hCSλ^)(/).\displaystyle F_{\Phi_{\tau}(\widehat{\lambda}\otimes\gamma_{H})}\colon h\mathrm{Bord}^{\mathrm{SO}}_{n-1}(\mathcal{B})\xrightarrow{\eqref{eq_proof_CCS_0}}h\mathrm{Bord}^{\mathrm{SO}\times H}_{n-1}(\mathrm{pt})\xrightarrow{F_{(1\otimes\lambda_{\mathbb{R}},h_{\mathrm{CS}_{\widehat{\lambda}}})}}(\mathbb{R}\to\mathbb{R}/\mathbb{Z}).

Indeed, this follows from the fact that the Chern-Simons invariants are given by the pushforward in differential ordinary cohomology [YY21, (4.58)]. Applying Theorem 3.26 to the element (3.46), we get the result. ∎

3.4.3. The theory of massive free complex fermions : [YY21, Example 4.62]

Here we explain the example of the theory on massive free complex fermions which appeared in [YY21, Example 4.62]. This example corresponds to the case E=KE=K, 𝒢=ABS:MTSpincK\mathcal{G}=\mathrm{ABS}\colon MT\mathrm{Spin}^{c}\to K and n=0n=0.

Recall that, given a hermitian vector bundle with unitary connection (W,W)(W,\nabla^{W}) over a manifold XX, we get an element

((Ch(W)Todd)|2k,η¯W)(IΩphSpinc^)2k(X)(IΩdRSpinc^)2k(X).\displaystyle\left((\mathrm{Ch}(\nabla^{W})\otimes\mathrm{Todd})|_{2k},\overline{\eta}_{\nabla^{W}}\right)\in\left(\widehat{I\Omega^{\mathrm{Spin}^{c}}_{\mathrm{ph}}}\right)^{2k}(X)\simeq\left(\widehat{I\Omega^{\mathrm{Spin}^{c}}_{\mathrm{dR}}}\right)^{2k}(X).

On the other hand, in the case E=KE=K we have the canonical choice of an element in IK0(pt)IK^{0}(\mathrm{pt}), namely the self-duality element γKIK0(pt)\gamma_{K}\in IK^{0}(\mathrm{pt}). Thus we have the homomorphism

(3.47) ΦABS(γK):K^2k(X)(IΩdRSpinc^)2k(X).\displaystyle\Phi_{\mathrm{ABS}}(-\otimes\gamma_{K})\colon\widehat{K}^{2k}(X)\to(\widehat{I\Omega^{\mathrm{Spin}^{c}}_{\mathrm{dR}}})^{2k}(X).

Using the model of K^\widehat{K} in terms of hermitian vector bundles with unitary connections by Freed-Lott ([FL10]), we have the class [W,hW,W,0]K^0(X)K^2k(X)[W,h^{W},\nabla^{W},0]\in\widehat{K}^{0}(X)\simeq\widehat{K}^{2k}(X).

Proposition 3.48.

We have the following equality in (IΩdRSpinc^)2k(X)(\widehat{I\Omega^{\mathrm{Spin}^{c}}_{\mathrm{dR}}})^{2k}(X),

(3.49) ((Ch(W)Todd)|2k,η¯W)=ΦABS([W,hE,E,0]γK).\displaystyle((\mathrm{Ch}(\nabla^{W})\otimes\mathrm{Todd})|_{2k},\bar{\eta}_{\nabla^{W}})=\Phi_{\mathrm{ABS}}([W,h^{E},\nabla^{E},0]\otimes\gamma_{K}).

Moreover, the element I((Ch(W)Todd)|2k,η¯W)(IΩSpinc)2k(X)I((\mathrm{Ch}(\nabla^{W})\otimes\mathrm{Todd})|_{2k},\bar{\eta}_{\nabla^{W}})\in({I\Omega^{\mathrm{Spin}^{c}}})^{2k}(X) coincides with the following composition,

X+MTSpinc[E]ABSKKmultiKBottΣ2kKγKΣ2kI.\displaystyle X^{+}\wedge MT\mathrm{Spin}^{c}\xrightarrow{[E]\wedge\mathrm{ABS}}K\wedge K\xrightarrow{\mathrm{multi}}K\xrightarrow[\simeq]{\mathrm{Bott}}\Sigma^{2k}K\xrightarrow{\gamma_{K}}\Sigma^{2k}I\mathbb{Z}.
Proof.

The last statement follows from (3.49) and Theorem 3.26. Denote the Bott element by uK2(pt)u\in K^{-2}(\mathrm{pt}). The equality (3.49) follows from the fact that the self-duality element γK\gamma_{K} induces the canonical isomorphism K^1(pt)/\widehat{K}^{1}(\mathrm{pt})\simeq\mathbb{R}/\mathbb{Z} and K0(pt)K^{0}(\mathrm{pt})\simeq\mathbb{Z}, together with the following facts about K^\widehat{K} in [FL10]. The element [W,hW,W,0]K^0(X)[W,h^{W},\nabla^{W},0]\in\widehat{K}^{0}(X) satisfies

R([W,hE,E,0])=Ch(W)Ω0(X;VK)=Ω0(X;[u,u1]),\displaystyle R([W,h^{E},\nabla^{E},0])=\mathrm{Ch}(\nabla^{W})\in\Omega^{0}(X;V_{K}^{\bullet})=\Omega^{0}(X;\mathbb{R}[u,u^{-1}]),

and, given a map f:MXf\colon M\to X from an oriented (2k1)(2k-1)-dimensional closed manifold with a physical Spinc-structure (M,g)(M,g), the pushforward (pM,g):K^0(M)K^2k+1(pt)(p_{M},g)_{*}\colon\widehat{K}^{0}(M)\to\widehat{K}^{-2k+1}(\mathrm{pt}) is given by

(pM,g)f[W,hW,W,0]=η¯W(M,g,f)ukK^2k+1(pt)=(/)uk.\displaystyle(p_{M},g)_{*}f^{*}[W,h^{W},\nabla^{W},0]=\bar{\eta}_{\nabla^{W}}(M,g,f)\cdot u^{k}\in\widehat{K}^{-2k+1}(\mathrm{pt})=(\mathbb{R}/\mathbb{Z})\cdot u^{k}.

3.4.4. An interpretation of Subsection 3.4.3 - Taking anomaly theories of free spinor field theories

Here we explain an interpretation of the result in Subsection 3.4.3 in terms of anomalies of free spinor field theories.

We briefly recall the explanation in [Fre19, Lecture 11] and [FH21, Section 9] about free spinor field theory and its anomalies. A real spinor representation 𝕊\mathbb{S} of Spin1,d1\mathrm{Spin}_{1,d-1} and a (contractible) choice of nonnegative symmetric invariant bilinear pairing Γ:𝕊×𝕊1,d1\Gamma\colon\mathbb{S}\times\mathbb{S}\to\mathbb{R}^{1,d-1} determine an dd-dimensional possibly anomalous theory called the free real spinor field theory F(𝕊,Γ)F_{(\mathbb{S},\Gamma)}. The spinor representation 𝕊\mathbb{S} gives an element [𝕊]π2dKO[\mathbb{S}]\in\pi_{2-d}{KO}.

An anomalous dd-dimensional field theory is formulated as a boundary theory of (d+1)(d+1)-dimensional invertible field theory called the associated anomaly theory, which is classified by (IΩG)d+2(I\Omega^{G})^{d+2}. In this case the relevant structure group is G=SpinG=\mathrm{Spin}. As explained in the references, the anomaly theory associated to F(𝕊,Γ)F_{(\mathbb{S},\Gamma)} has partition function given by suitable fraction of exponentiated reduced eta invariants, depending on dd mod 88.

Freed and Hopkins suggested the following conjecture.

Conjecture 3.50 ([Fre19, Conjecture 11.23], [FH21, Conjecture 9.70]).

The (d+1)(d+1)-dimensional anomaly theory associated to the dd-dimensional free real spinor field theory F(𝕊,Γ)F_{(\mathbb{S},\Gamma)} correponds to the element in (IΩSpin)d+2(pt)(I\Omega^{\mathrm{Spin}})^{d+2}(\mathrm{pt}) given by the following composotion.

(3.51) MTSpin[𝕊]ABSΣd2KOKOmultiΣd2KOγKOΣd+2I.\displaystyle MT\mathrm{Spin}\xrightarrow{[\mathbb{S}]\wedge\mathrm{ABS}}\Sigma^{d-2}KO\wedge KO\xrightarrow{\mathrm{multi}}\Sigma^{d-2}KO\xrightarrow{\gamma_{KO}}\Sigma^{d+2}I\mathbb{Z}.

Here ABS:MTSpinKO\mathrm{ABS}\colon MT\mathrm{Spin}\to KO is the Atiyah-Bott-Shapiro map and γKOIKO4(pt)\gamma_{KO}\in IKO^{4}(\mathrm{pt}) is the Anderson self-duality element for the KOKO-theory.

The composition 3.51 is the special case of the composition (3.27) for X=ptX=\mathrm{pt}. But actually at this point we do not have a proof for Conjecture 3.50, since we do not have the complete understanding of the pushforward in differential KOKO-theory. Before explaining the details, let us explain the complexified version where we can actually show the corresponding statement using the result in Subsection 3.4.3.

In the complexified settings, we have the corresponding story. A complex spinor representation 𝕊\mathbb{S} gives a class [𝕊]π2dKπ2dK[\mathbb{S}]\in\pi_{2-d}K\simeq\pi_{-2-d}K. In this case nontrivial classes appears only when dd is even, so we focus on this case.

Proposition 3.52 (Complex version of Conjecture 3.50).

The (2k1)(2k-1)-dimensional anomaly theory associated to the (2k2)(2k-2)-dimensional free complex spinor field theory F(𝕊,Γ)F_{(\mathbb{S},\Gamma)} correponds to the element in (IΩSpinc)2k(pt)(I\Omega^{\mathrm{Spin^{c}}})^{2k}(\mathrm{pt}) given by the following composotion.

(3.53) MTSpinc[𝕊]ABSΣ2kKKmultiΣ2kKγKΣ2kI.\displaystyle MT\mathrm{Spin^{c}}\xrightarrow{[\mathbb{S}]\wedge\mathrm{ABS}}\Sigma^{2k}K\wedge K\xrightarrow{\mathrm{multi}}\Sigma^{2k}K\xrightarrow{\gamma_{K}}\Sigma^{2k}I\mathbb{Z}.
Proof.

We apply the result in Subsection 3.4.3 for X=ptX=\mathrm{pt}. In this case, we simply have K^2k(pt)=K2k(pt)\widehat{K}^{2k}(\mathrm{pt})=K^{2k}(\mathrm{pt})\simeq\mathbb{Z} and (IΩSpinc^)2k(pt)(IΩSpinc)2k(pt)(\widehat{I\Omega^{\mathrm{Spin^{c}}}})^{2k}(\mathrm{pt})\simeq(I\Omega^{\mathrm{Spin^{c}}})^{2k}(\mathrm{pt}). We know from Proposition 3.48 that, in the case [𝕊]K2k(pt)[\mathbb{S}]\in K^{2k}(\mathrm{pt}) is the generator, the composition (3.53) equals to the element

(3.54) (Todd|2k,η¯)(IΩSpinc)2k(pt)\displaystyle(\mathrm{Todd}|_{2k},\bar{\eta})\in({I\Omega^{\mathrm{Spin}^{c}}})^{2k}(\mathrm{pt})

This is indeed the anomaly theory for F(𝕊,Γ)F_{(\mathbb{S},\Gamma)}, whose partition function is given by the exponentiated eta invariants. ∎

As we see from the proof, our result can be useful even when X=ptX=\mathrm{pt}. The general case of nontrivial XX can be regarded as giving the parametrized version. Also we see that the proof uses the knowledge of pushforward in differential KK-theory as reduced eta invariants.

Let us go back to the real case. We can apply Theorem 1.2 to deduce that the composition (3.51) gives the element999 In the case d20(mod4)d-2\equiv 0\pmod{4}, we have KO^d2(pt)=KOd2(pt)\widehat{KO}^{d-2}(\mathrm{pt})=KO^{d-2}(\mathrm{pt}). In other cases, since KOd2(pt)KO^{d-2}(\mathrm{pt}) is 0 or /2\mathbb{Z}/2, we have KOd2(pt)KO^d2(pt)KO^{d-2}(\mathrm{pt})\simeq\widehat{KO}^{d-2}(\mathrm{pt}) canonically.

(3.55) ΦABS([𝕊]γKO)(IΩdRSpin^)d+2(pt).\displaystyle\Phi_{\mathrm{ABS}}\left([\mathbb{S}]\otimes\gamma_{KO}\right)\in(\widehat{I\Omega^{\mathrm{Spin}}_{\mathrm{dR}}})^{d+2}(\mathrm{pt}).

The remaining problem is to understand this element, which is equivalent to understanding the pushforward in differential KOKO-theory. As far as the author is aware of, we do not have the enough understanding of this pushforward to verify Conjecture 3.50.

Remark 3.56.

In the examples in this subsection, we used the Anderson self-duality elements in IEn(pt)IE^{n}(\mathrm{pt}) for E=H,K,KOE=H\mathbb{Z},K,KO. However, the results in this subsection do not use the self-duality, and indeed there are many other interesting examples given by non-self-duality elements in IEn(pt)IE^{n}(\mathrm{pt}). For example, in the analysis of anomalies of the heterotic string theories in [TY21], we encounter such examples when E=TMFE=\mathrm{TMF} and E=KO((q))E=\mathrm{KO}((q)) with the Witten genus 𝒢=Wit:MTStringTMF\mathcal{G}=\mathrm{Wit}\colon MT\mathrm{String}\to\mathrm{TMF} and 𝒢=WitSpin:MTSpinKO((q))\mathcal{G}=\mathrm{Wit}_{\mathrm{Spin}}\colon MT\mathrm{Spin}\to\mathrm{KO}((q)).

Appendix A Differential pushforwards for proper submersions

As mentioned in Subsection 3.1, there are certain subtleties regarding the formulations of differential pushforwards. In this appendix, we explain that there is a nice theory on differential pushforwards for proper submersions under the assumption that EE is rationally even. The author believe that the results in this Appendix well-known among experts. It is convenient to start with multiplicative differential extensions E^\widehat{E} which are not necessarily the one given by the Hopkins-Singer. The minimal requirements for the differential extension E^\widehat{E} are,

  • For real vector bundles VXV\to X over manifolds, the properly supported differential cohomology groups

    (A.1) E^prop/X(V)\displaystyle\widehat{E}^{*}_{\mathrm{prop}/X}(V)

    are defined with a module structure over E^(X)\widehat{E}^{*}(X), so that they refine properly supported cohomologies and forms.

  • If we have a vector bundle WNW\to N and we have an open embedding ι:WV\iota\colon W\hookrightarrow V in the total space of another vector bundle VXV\to X, we have the corresponding map

    ι:E^prop/N(W)E^prop/X(V),\displaystyle\iota_{*}\colon\widehat{E}^{*}_{\mathrm{prop}/N}(W)\to\widehat{E}^{*}_{\mathrm{prop}/X}(V),

    refining the topological and form counterparts.

  • We have the desuspension map,

    desusp:E^prop/X(k×X)E^k(X),\displaystyle\mathrm{desusp}\colon\widehat{E}_{\mathrm{prop}/X}^{*}(\mathbb{R}^{k}\times X)\to\widehat{E}^{*-k}(X),

    refining the topological and form counterparts.

Since we are assuming EE is rationally even, the Hopkins-Singer’s differential extension E^HS(;ιE)\widehat{E}^{*}_{\mathrm{HS}}(-;\iota_{E}) admits a canonical multiplicative structure by [Upm15], and the above properties are also satisfied.

A.1. The normal case

In this subsection we explain the normal case. The content of this subsection basically follows the unpublished survey by Bunke [Bun12, Section 4.8–4.10]. Let GG and EE be multiplicative with EE rationally even, and assume we are given a homomorphism of ring spectra,

(A.2) 𝒢:MGE,\displaystyle\mathcal{G}\colon MG\to E,

where MGMG is the Thom spectrum. Then for each real vector bundle VV of rank rr over a topological space XX equipped with a stable GG-structure gtopg^{\mathrm{top}}, we get the Thom class νEr(V¯)\nu\in E^{r}(\overline{V}), where we denote V¯:=Thom(V)\overline{V}:=\mathrm{Thom}(V). Its multiplication gives the Thom isomorphism E(X)E+r(V¯)E^{*}(X)\simeq E^{*+r}(\overline{V}). Its Chern-Dold character is an element ch(ν)Hr(V¯;VE)\mathrm{ch}(\nu)\in H^{r}(\overline{V};V_{E}^{\bullet}). We set

Td(ν):=V/Xch(ν)H0(X;Ori(V)VE).\displaystyle\mathrm{Td}(\nu):=\int_{V/X}\mathrm{ch}(\nu)\in H^{0}(X;\mathrm{Ori}(V)\otimes_{\mathbb{R}}V_{E}^{\bullet}).
Definition A.3 (Differential Thom classes, Td(ν^)\mathrm{Td}(\widehat{\nu}), homotopy).

Let VV be a smooth real vector bundle over a manifold MM of rank rr equipped with a stable GG-structure gtopg^{\mathrm{top}}.

  1. (1)

    A differential Thom class ν^E^prop/Mr(V)\widehat{\nu}\in\widehat{E}^{r}_{\mathrm{prop}/M}(V) is an element such that I(ν^)E^prop/Mr(V)I(\widehat{\nu})\in\widehat{E}^{r}_{\mathrm{prop}/M}(V) is the Thom class for (V,gtop)(V,g^{\mathrm{top}}).

  2. (2)

    For such a ν^\widehat{\nu}, we define

    (A.4) Td(ν^):=V/MR(ν^)Ωclo0(M;Ori(V)VE).\displaystyle\mathrm{Td}(\widehat{\nu}):=\int_{V/M}R(\widehat{\nu})\in\Omega_{\mathrm{clo}}^{0}(M;\mathrm{Ori}(V)\otimes_{\mathbb{R}}V_{E}^{\bullet}).
  3. (3)

    A homotopy between two differential Thom classes ν^0\widehat{\nu}_{0} and ν^1\widehat{\nu}_{1} is a differential Thom class ν^IE^prop/(I×M)r(I×V)\widehat{\nu}_{I}\in\widehat{E}^{r}_{\mathrm{prop}/(I\times M)}(I\times V) for prMV\mathrm{pr}_{M}^{*}V with ν^I|{i}×V=ν^i\widehat{\nu}_{I}|_{\{i\}\times V}=\widehat{\nu}_{i} for i=0,1i=0,1 such that

    (A.5) Td(ν^I)=prMTd(ν^0).\displaystyle\mathrm{Td}(\widehat{\nu}_{I})=\mathrm{pr}_{M}^{*}\mathrm{Td}(\widehat{\nu}_{0}).

    The homotopy class of ν^\widehat{\nu} is denoted by [ν^][\widehat{\nu}].

In particular, if ν^0\widehat{\nu}_{0} and ν^1\widehat{\nu}_{1} are homotopic, we have Td(ν^0)=Td(ν^1)\mathrm{Td}(\widehat{\nu}_{0})=\mathrm{Td}(\widehat{\nu}_{1}). Thus we use the notation Td([ν^])Ωclo0(M;Ori(V)VE)\mathrm{Td}([\widehat{\nu}])\in\Omega_{\mathrm{clo}}^{0}(M;\mathrm{Ori}(V)\otimes_{\mathbb{R}}V_{E}^{\bullet}).

Lemma A.6.

Let MM and (V,gtop)(V,g^{\mathrm{top}}) be as before, and ν\nu be the Thom class for (V,gtop)(V,g^{\mathrm{top}}). Assume we are given an element ωΩclo0(M;Ori(V)VE)\omega\in\Omega_{\mathrm{clo}}^{0}(M;\mathrm{Ori}(V)\otimes_{\mathbb{R}}V_{E}^{\bullet}) such that Rham(ω)=Td(ν)\mathrm{Rham}(\omega)=\mathrm{Td}(\nu).

  1. (1)

    There exists a differential Thom class ν^\widehat{\nu} with Td(ν^)=ωTd(\widehat{\nu})=\omega.

  2. (2)

    The set of homotopy classes [ν^][\widehat{\nu}] of differential Thom classes with Td([ν^])=ω\mathrm{Td}([\widehat{\nu}])=\omega is a torsor over

    (A.7) H1(M;Ori(V)VE)Td(ν)a(E1(M)).\displaystyle\frac{H^{-1}(M;\mathrm{Ori}(V)\otimes_{\mathbb{R}}V_{E}^{\bullet})}{\mathrm{Td}(\nu)\cup a(E^{-1}(M))}.
Proof.

The proof is in [Bun12, Problem 4.186], and essentially the same proof appears in [GS21, Proposition 49] in the case of KOKO-theory. We need the orientation bundles here because we allow GG to be un-oriented. ∎

If VV is equipped with a stable differential GG-structure gg, applying the Chern-Weil construction (2.8) to ch(𝒢)H0(MG;VE)\mathrm{ch}(\mathcal{G})\in H^{0}(MG;V_{E}^{\bullet}), we have

(A.8) cwg(ch(𝒢))Ωclo0(M;Ori(V)VE).\displaystyle\mathrm{cw}_{g}(\mathrm{ch}(\mathcal{G}))\in\Omega_{\mathrm{clo}}^{0}(M;\mathrm{Ori}(V)\otimes_{\mathbb{R}}V_{E}^{\bullet}).

This satisfies Rham(cwg(ch(𝒢)))=Td(ν)\mathrm{Rham}(\mathrm{cw}_{g}(\mathrm{ch}(\mathcal{G})))=\mathrm{Td}(\nu).

For (V,gV)(V,g_{V}) of rank rr represented by g~V=(d,P,,ψ:P×ρdd¯drV)\widetilde{g}_{V}=(d,P,\nabla,\psi\colon P\times_{\rho_{d}}\mathbb{R}^{d}\simeq\underline{\mathbb{R}}^{d-r}\oplus V) with dr+1d\geq r+1, we associate a differential stable GG-structure g¯Vg_{\underline{\mathbb{R}}\oplus V} on ¯V\underline{\mathbb{R}}\oplus V which is represented by (d,P,,ψ:P×ρdd¯dr1(¯V))(d,P,\nabla,\psi\colon P\times_{\rho_{d}}\mathbb{R}^{d}\simeq\underline{\mathbb{R}}^{d-r-1}\oplus(\underline{\mathbb{R}}\oplus V)). For a topological stable GG-structure gVtopg_{V}^{\mathrm{top}}, we define g¯Vtopg_{\underline{\mathbb{R}}\oplus V}^{\mathrm{top}} in the same way.

If we have a homotopy class of diffential Thom classes [ν^¯V][\widehat{\nu}_{\underline{\mathbb{R}}\oplus V}] for (¯V,g¯Vtop)(\underline{\mathbb{R}}\oplus V,g_{\underline{\mathbb{R}}\oplus V}^{\mathrm{top}}), the integration

[ν^¯V]\displaystyle\int_{\mathbb{R}}[\widehat{\nu}_{\underline{\mathbb{R}}\oplus V}]

defines a well-defined homotopy class of differential Thom classes for (V,gVtop)(V,g_{V}^{\mathrm{top}}). Moreover, by Lemma A.6, the above integration gives a bijection between the sets of homotopy classes of diffential Thom classes for (¯V,g¯Vtop)(\underline{\mathbb{R}}\oplus V,g_{\underline{\mathbb{R}}\oplus V}^{\mathrm{top}}) and for (V,gVtop)(V,g_{V}^{\mathrm{top}}).

Proposition A.9.
101010 In the proof we use the assumption that EE is rationally even. However, by a small modification of the proof, this assumption can be weakened to H1(MG;VE)=0H^{-1}(MG;V_{E}^{\bullet})=0. As a result, the results in this subsection hold under this weaker condition. The same remark applies to Proposition A.47.

There exists a unique way to assign a homotopy class [ν^(g)][\widehat{\nu}(g)] of differential Thom classes ν^(g)E^prop/MrankV(V)\widehat{\nu}(g)\in\widehat{E}^{\mathrm{rank}V}_{\mathrm{prop}/M}(V) to every real vector bundle with differential stable GG-structure (V,g)M(V,g)\to M such that the following three conditions hold.

  1. (1)

    It is compatible with pullbacks.

  2. (2)

    We have [ν^(g¯V)]=[ν^(gV)]\int_{\mathbb{R}}[\widehat{\nu}(g_{\underline{\mathbb{R}}\oplus V})]=[\widehat{\nu}(g_{V})].

  3. (3)

    We have cwg(ch(𝒢))=Td([ν^(g)])\mathrm{cw}_{g}(\mathrm{ch}(\mathcal{G}))=\mathrm{Td}([\widehat{\nu}(g)]).

Moreover, the resulting homotopy class [ν^(g)][\widehat{\nu}(g)] only depends on the homotopy class (Definition 2.3 (4)) of differential stable GG-structure gg.

Proof.

By the condition (2), it is enough to consider only (V,g)(V,g) such that gg is represented by a representative of the form g~=(rank(V),P,,ψ)\widetilde{g}=(\mathrm{rank}(V),P,\nabla,\psi), i.e., without stabilization.

The proof basically follows that for [Bun12, Problem 4.197]. Suppose we have (V,g)(V,g) of rank rr over MM with dimM=n\dim M=n with a representative g~=(r,P,,ψ)\widetilde{g}=(r,P,\nabla,\psi). Take a manifold \mathcal{B} with an (n+1)(n+1)-connected map BGr\mathcal{B}\to BG_{r}. We can factor the classifying map for PP as M𝑓BGrM\xrightarrow{f}\mathcal{B}\to BG_{r} with ff smooth. Take a GrG_{r}-connection \nabla_{\mathcal{B}} on the pullback 𝒫\mathcal{P}\to\mathcal{B} of the universal bundle, and denote by the resulting differential GG-structure on 𝒱:=𝒫×Grr\mathcal{V}:=\mathcal{P}\times_{G_{r}}\mathbb{R}^{r} by g𝒱g_{\mathcal{V}}. We have maps fP:P𝒫f_{P}\colon P\to\mathcal{P} and fV:V𝒱f_{V}\colon V\to\mathcal{V} covering ff. We may assume that g𝒱g_{\mathcal{V}} pulls back to gg by (f,fP,fV)(f,f_{P},f_{V}).

The difference of any two choices of the homotopy classes [ν^(g𝒱)][\widehat{\nu}(g_{\mathcal{V}})] of differential Thom classes on (𝒱,g𝒱)(\mathcal{V},g_{\mathcal{V}}) is measured by an element in H1(;Ori(𝒱)VE)Td(ν(g𝒱))a(E1())\frac{H^{-1}(\mathcal{B};\mathrm{Ori}(\mathcal{V})\otimes_{\mathbb{R}}V_{E}^{\bullet})}{\mathrm{Td}(\nu(g_{\mathcal{V}}))\cup a(E^{-1}(\mathcal{B}))} by Proposition A.6. The pullback map f:H1(;Ori(𝒱)VE)H1(M;Ori(V)VE)f^{*}\colon H^{-1}(\mathcal{B};\mathrm{Ori}(\mathcal{V})\otimes_{\mathbb{R}}V_{E}^{\bullet})\to H^{-1}(M;\mathrm{Ori}(V)\otimes_{\mathbb{R}}V_{E}^{\bullet}) is zero because BGr\mathcal{B}\to BG_{r} is (n+1)(n+1)-connected and we have H1(BGr;(EGr×GrGr)VE)=0H^{-1}(BG_{r};(EG_{r}\times_{G_{r}}\mathbb{R}_{G_{r}})\otimes_{\mathbb{R}}V_{E}^{\bullet})=0 since EE is rationally even. Thus, taking any homotopy class [ν^(g𝒱)][\widehat{\nu}(g_{\mathcal{V}})] of differential Thom classes for (𝒱,g𝒱)(\mathcal{V},g_{\mathcal{V}}), the pullback

(A.10) fV[ν^(g𝒱)]\displaystyle f_{V}^{*}[\widehat{\nu}(g_{\mathcal{V}})]

defines a homotopy class of differential Thom classes for (V,g)(V,g) which does not depend on the choice of [ν^(g𝒱)][\widehat{\nu}(g_{\mathcal{V}})]. By the condition (1) and (2), we are forced to define the required homotopy class as

(A.11) [ν^(g)]:=fV[ν^(g𝒱)],\displaystyle[\widehat{\nu}(g)]:=f_{V}^{*}[\widehat{\nu}(g_{\mathcal{V}})],

by taking any [ν^(g𝒱)][\widehat{\nu}(g_{\mathcal{V}})] on (𝒱,g𝒱)(\mathcal{V},g_{\mathcal{V}}).

We need to check that the element (A.11) does not depend on the other choices made above. But this easily follows from the cofinality of such choices. Namely, given two choices with the underlying manifolds fi:Mif_{i}\colon M\to\mathcal{B}_{i} for i=1,2i=1,2, we may take another \mathcal{B} with maps gi:ig_{i}\colon\mathcal{B}_{i}\to\mathcal{B} so that g1f1=g2f2g_{1}\circ f_{1}=g_{2}\circ f_{2}, and other data on \mathcal{B} which pulls back to those given on i\mathcal{B}_{i}. From this, we conclude that the elements (A.11) defined using 1\mathcal{B}_{1} and 2\mathcal{B}_{2} coincide with the one defined using \mathcal{B}, so the element (A.11) is well-defined. By the arguments so far, they satisfy the required conditions and the uniqueness.

For the last statement, changing a differential stable GG-structure gg on VV to a homotopic one amounts to changing the vector bundle map fV:V𝒱f_{V}\colon V\to\mathcal{V} by a homotopy while fixing ff and fPf_{P} in the above procedure. Pulling back the homotopy class [ν^(g𝒱)][\widehat{\nu}(g_{\mathcal{V}})] by such a homotopy, we get a homotopy of differential Thom classes between the differential Thom classes pulled back at the endpoints. This completes the proof. ∎

Now we turn to differential pushforwards for proper submersions. Let p:NXp\colon N\to X be a proper submersion between manifolds of relative dimension rr, and assume it is equipped with a differential stable normal GG-structure gpg_{p}^{\perp} (Definition 2.4) on the relative tangent bundle T(p)T(p). Take a representative g~p=(k,P,,ψ)\widetilde{g}_{p}^{\perp}=(k,P,\nabla,\psi) of gpg_{p}^{\perp}. It induces a differntial stable GG-structure on P×GkrkrP\times_{G_{k-r}}\mathbb{R}^{k-r} which we denote gPg_{P}, represented by g~P=(kr,P,,id)\widetilde{g}_{P}=(k-r,P,\nabla,\mathrm{id}). By Proposition A.9 we have a differential Thom class whose homotopy class [ν^(gP)][\widehat{\nu}(g_{P})] is canonically determined,

(A.12) ν^(gP)E^prop/Nkr(P×Gkrkr)\displaystyle\widehat{\nu}(g_{P})\in\widehat{E}^{k-r}_{\mathrm{prop}/N}(P\times_{G_{k-r}}\mathbb{R}^{k-r})

If we stabilize kk to k+1k+1, the homotopy classes of (A.11) are related as Proposition A.9 (2).

Now, choose an embedding ι:Nk×X\iota\colon N\hookrightarrow\mathbb{R}^{k}\times X over XX (i.e., prXι=p\mathrm{pr}_{X}\circ\iota=p) for kk large enough, a tubular neighborhood WW of NN in k×X\mathbb{R}^{k}\times X with a vector bundle structure WNW\to N so that it is a map over XX (this is possible because pp is a submersion). Replacing kk larger if necessary, choose an isomorphism ψW:WP×Gkrkr\psi_{W}\colon W\simeq P\times_{G_{k-r}}\mathbb{R}^{k-r} of vector bundles over NN so that the isomorphism (P×Gkrkr)T(p)ψW1idWT(p)¯k(P\times_{G_{k-r}}\mathbb{R}^{k-r})\oplus T(p)\xrightarrow{\psi_{W}^{-1}\oplus\mathrm{id}}W\oplus T(p)\simeq\underline{\mathbb{R}}^{k} is homotopic to ψ\psi. The isomorphism ψW\psi_{W} induces a differential stable GG-structure gWg_{W} on WW, and the element (A.12) induces a differential Thom class on (W,gW)(W,g_{W}) denoted by

(A.13) ν^(gW):=ψWν^(gP)E^prop/Nkr(W).\displaystyle\widehat{\nu}(g_{W}):=\psi_{W}^{*}\widehat{\nu}(g_{P})\in\widehat{E}^{k-r}_{\mathrm{prop}/N}(W).

We consider the composition,

(A.14) E^n(N)ν^(gW)E^prop/Nn+kr(W)ιE^prop/Xn+kr(k×X)desuspE^nr(X),\displaystyle\widehat{E}^{n}(N)\xrightarrow{\cdot\widehat{\nu}(g_{W})}\widehat{E}^{n+k-r}_{\mathrm{prop}/N}(W)\xrightarrow{\iota_{*}}\widehat{E}^{n+k-r}_{\mathrm{prop}/X}(\mathbb{R}^{k}\times X)\xrightarrow{\mathrm{desusp}}\widehat{E}^{n-r}(X),

where the first map uses the module structure of the properly supported E^\widehat{E}, and the middle arrow is induced by the open embedding Wk×XW\hookrightarrow\mathbb{R}^{k}\times X.

Proposition A.15.

The composition (A.14) only depends on the differential stable normal GG-structure gpg_{p}^{\perp} on T(p)T(p).

Proof.

The above procedure includes the following ambigiuities : the choice of ν^(gP)\widehat{\nu}(g_{P}) representing [ν^(gP)][\widehat{\nu}(g_{P})] and the choice of the data of embedding with a tubular neighborhood and an isomorphism ψW\psi_{W}. The independence on ψW\psi_{W} directly follows from the last statement of Proposition A.9.

First we show the independence on the choice of ν^(gP)\widehat{\nu}(g_{P}), with the other data fixed. Since its homotopy class [ν^(gP)][\widehat{\nu}(g_{P})] is fixed by Proposition A.9, any two choices ν^i(gP)\widehat{\nu}_{i}(g_{P}), i=0,1i=0,1, are connected by a homotopy ν^IE^prop/(I×N)kr(I×(P×Gkrkr))\widehat{\nu}_{I}\in\widehat{E}^{k-r}_{\mathrm{prop}/(I\times N)}(I\times(P\times_{G_{k-r}}\mathbb{R}^{k-r})). Its pullback by ψW\psi_{W} gives a homotopy ν^I×W:=ψWν^I\widehat{\nu}_{I\times W}:=\psi_{W}^{*}\widehat{\nu}_{I} between the corresponding differential Thom classes on (W,gW)(W,g_{W}). Denote the inclusion by it:N{t}×NI×Ni_{t}\colon N\simeq\{t\}\times N\hookrightarrow I\times N for t=0,1t=0,1. Consider the following commutative diagram,

(A.20) Ωn(I×N;VE)R(ν^I×W)Ωprop/(I×N)n+kr(I×W;VE)(I×W)/(I×X)Ωnr(I×X;VE)(I×X)/XΩnr1(X;VE)aE^n(I×N)ν^I×WRE^prop/(I×N)n+kr(I×W)(desusp)(idI×ι)RE^nr(I×X)Ri1i0E^nr(X).\displaystyle\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 33.9228pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&&&\\&&&&\crcr}}}\ignorespaces{\hbox{\kern-33.9228pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\Omega^{n}(I\times N;V_{E}^{\bullet})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 27.64658pt\raise 7.48611pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.73611pt\hbox{$\scriptstyle{\wedge R(\widehat{\nu}_{I\times W})}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 57.9228pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 57.9228pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\Omega^{n+k-r}_{\mathrm{prop}/(I\times N)}(I\times W;V_{E}^{\bullet})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 148.73941pt\raise 6.68056pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.18056pt\hbox{$\scriptstyle{\int_{(I\times W)/(I\times X)}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 193.47273pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 163.47273pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 193.47273pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\Omega^{n-r}(I\times X;V_{E}^{\bullet})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 264.57819pt\raise 6.68056pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.18056pt\hbox{$\scriptstyle{\int_{(I\times X)/X}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 289.81151pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 289.81151pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\Omega^{n-r-1}(X;V_{E}^{\bullet})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 319.61288pt\raise-18.2722pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.50694pt\hbox{$\scriptstyle{a}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 319.61288pt\raise-31.04442pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-24.61116pt\raise-42.4722pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\widehat{E}^{n}(I\times N)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 34.41447pt\raise-35.0111pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.76112pt\hbox{$\scriptstyle{\cdot\widehat{\nu}_{I\times W}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 67.23445pt\raise-42.4722pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-11.3691pt\raise-18.27222pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.39166pt\hbox{$\scriptstyle{R}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-5.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 67.23445pt\raise-42.4722pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\widehat{E}^{n+k-r}_{\mathrm{prop}/(I\times N)}(I\times W)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 137.21448pt\raise-35.9722pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{(\mathrm{desusp})\circ(\mathrm{id}_{I}\times\iota)_{*}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 202.78438pt\raise-42.4722pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 87.32867pt\raise-18.40277pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.39166pt\hbox{$\scriptstyle{R}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 98.69777pt\raise-6.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 163.47273pt\raise-42.4722pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 202.78438pt\raise-42.4722pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\widehat{E}^{n-r}(I\times X)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 218.27303pt\raise-18.27222pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.39166pt\hbox{$\scriptstyle{R}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 229.64212pt\raise-5.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 270.39993pt\raise-36.05414pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.12918pt\hbox{$\scriptstyle{i_{1}^{*}-i_{0}^{*}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 301.45648pt\raise-42.4722pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 301.45648pt\raise-42.4722pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\widehat{E}^{n-r}(X)}$}}}}}}}\ignorespaces}}}}\ignorespaces.

The commutativity of the middle square is because the vector bundle structure WNW\to N is a map over XX. The commutativity of the right square is by the homotopy formula ([BS10, Lemma 1]).

Take any element e^E^n(N)\widehat{e}\in\widehat{E}^{n}(N). Then the image of prNe^E^n(I×N)\mathrm{pr}_{N}^{*}\widehat{e}\in\widehat{E}^{n}(I\times N) under the composition of the bottom arrows in (A.20) is equal to the difference of the elements in E^nr(X)\widehat{E}^{n-r}(X) obtained by applying to e^\widehat{e} the composition (A.14) using ν^0(gP)\widehat{\nu}_{0}(g_{P}) and ν^1(gP)\widehat{\nu}_{1}(g_{P}). By the commutativity of (A.20), it is enough to check that the element R(prNe^)Ωclon(I×N;VE)R(\mathrm{pr}_{N}^{*}\widehat{e})\in\Omega_{\mathrm{clo}}^{n}(I\times N;V_{E}^{\bullet}) maps to zero under the composition of the top arrows in (A.20). Indeed, since WNW\to N is a map over XX, we can factor the upper middle horizontal integration in (A.20) on I×NI\times N, and the result is equal to

(A.21) (I×X)/X(I×N)/(I×X)prNR(e^)(I×W)/(I×N)R(ν^I×W),\displaystyle\int_{(I\times X)/X}\int_{(I\times N)/(I\times X)}\mathrm{pr}_{N}^{*}R(\widehat{e})\wedge\int_{(I\times W)/(I\times N)}R(\widehat{\nu}_{I\times W}),

and by (recall (A.5))

(I×W)/(I×N)R(ν^I×W)=Td(ν^I×W)=prNTd(ν^0(gP)),\displaystyle\int_{(I\times W)/(I\times N)}R(\widehat{\nu}_{I\times W})=\mathrm{Td}(\widehat{\nu}_{I\times W})=\mathrm{pr}_{N}^{*}\mathrm{Td}(\widehat{\nu}_{0}(g_{P})),

so (A.21) is equal to

(I×X)/XprXN/XR(e^)Td(ν^0(gP))=0,\displaystyle\int_{(I\times X)/X}\mathrm{pr}_{X}^{*}\int_{N/X}R(\widehat{e})\wedge\mathrm{Td}(\widehat{\nu}_{0}(g_{P}))=0,

as desired. Thus we conclude that, fixing the data of an embedding with a tubular neighborhood, the composition (A.14) only depends on the homotopy class [ν^(gP)][\widehat{\nu}(g_{P})].

Now consider the stabilization of the embeddings, increasing kk to (k+1)(k+1) and WW to ¯W\underline{\mathbb{R}}\oplus W. By the condition (2) in Proposition A.9 and the result so far, we also conclude that the composition (A.14) is invariant under this stabilization.

The desired independence of (A.14) on the remaining choices is also proved in a parallel way, by choosing corresponding objects on the cylinder so that they restrict to stabilizations of the given ones on the endpoints. This completes the proof of Proposition A.15.

Thus we define the following.

Definition A.22.

Let p:NXp\colon N\to X be a proper submersion of relative dimension rr, equipped with a differential stable normal GG-structure gpg_{p}^{\perp} on the relative tangent bundle T(p)T(p). We define the differential pushforward map,

(p,gp):E^n(N)E^nr(X)\displaystyle(p,g_{p}^{\perp})_{*}\colon\widehat{E}^{n}(N)\to\widehat{E}^{n-r}(X)

to be the composition (A.14). This does not depend on any choices by Proposition A.15.

By the construction, the following diagram commutes.

(A.27) Ωn1(N;VE)/im(d)aN/Xcwgp(ch(𝒢))E^n(N)(p,gp)IREn(N)(p,gp,top)Ωclon(N;VE)N/Xcwgp(ch(𝒢))Ωnr1(X;VE)/im(d)aE^nr(X)IREnr(X)Ωclonr(X;VE).\displaystyle\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 45.45938pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&&\\&&&\crcr}}}\ignorespaces{\hbox{\kern-43.2128pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\Omega^{n-1}(N;V_{E}^{\bullet})/\mathrm{im}(d)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 52.60933pt\raise 4.50694pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.50694pt\hbox{$\scriptstyle{a}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 71.70596pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 0.0pt\raise-20.56888pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.2589pt\hbox{$\scriptstyle{\int_{N/X}-\wedge\mathrm{cw}_{g_{p}^{\perp}}(\mathrm{ch}(\mathcal{G}))}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-29.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 71.70596pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\widehat{E}^{n}(N)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 87.61578pt\raise-20.56888pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{(p,g_{p}^{\perp})_{*}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 87.61578pt\raise-29.70998pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 113.55968pt\raise 5.39166pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.39166pt\hbox{$\scriptstyle{I}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 132.01877pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{}{}{{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}}{}\ignorespaces\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{{}{}{{}}{{}{}{}}{}}}}\ignorespaces{}\ignorespaces{}{}{}{{}{}}\ignorespaces\ignorespaces{\hbox{\kern 147.84874pt\raise 23.39166pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.39166pt\hbox{$\scriptstyle{R}$}}}\kern 3.0pt}}}}}}\ignorespaces{}{}{}{{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}}{\hbox{\kern 194.40987pt\raise 11.0782pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{{}{}{}{{}}{{}{}{}\lx@xy@spline@}{}}}}\ignorespaces{}\ignorespaces\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{{}{}{{}}{{}{}{}}{}}}}\ignorespaces{}{\hbox{\kern 132.01877pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{E^{n}(N)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 149.12996pt\raise-20.56888pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{(p,g_{p}^{\perp,\mathrm{top}})_{*}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 149.12996pt\raise-30.09889pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 192.48773pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\Omega_{\mathrm{clo}}^{n}(N;V_{E}^{\bullet})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 219.45076pt\raise-20.56888pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.2589pt\hbox{$\scriptstyle{\int_{N/X}-\wedge\mathrm{cw}_{g_{p}^{\perp}}(\mathrm{ch}(\mathcal{G}))}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 219.45076pt\raise-30.06pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-45.45938pt\raise-41.13776pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\Omega^{n-r-1}(X;V_{E}^{\bullet})/\mathrm{im}(d)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 52.60933pt\raise-36.63081pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.50694pt\hbox{$\scriptstyle{a}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 69.45938pt\raise-41.13776pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 69.45938pt\raise-41.13776pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\widehat{E}^{n-r}(X)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 113.55968pt\raise-35.7461pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.39166pt\hbox{$\scriptstyle{I}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 129.77219pt\raise-41.13776pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{}{}{{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}}{}\ignorespaces\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{{}{}{{}}{{}{}{}}{}}}}\ignorespaces{}\ignorespaces{}{}{}{{}{}}\ignorespaces\ignorespaces{\hbox{\kern 147.84874pt\raise-53.7461pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.39166pt\hbox{$\scriptstyle{R}$}}}\kern 3.0pt}}}}}}\ignorespaces{}{}{}{{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}}{\hbox{\kern 208.4753pt\raise-46.63289pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{{}{}{}{{}}{{}{}{}\lx@xy@spline@}{}}}}\ignorespaces{}\ignorespaces\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{{}{}{{}}{{}{}{}}{}}}}\ignorespaces{}{\hbox{\kern 129.77219pt\raise-41.13776pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{E^{n-r}(X)}$}}}}}}}{\hbox{\kern 192.5155pt\raise-41.13776pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\Omega_{\mathrm{clo}}^{n-r}(X;V_{E}^{\bullet})}$}}}}}}}\ignorespaces}}}}\ignorespaces.

In this sense, Definition A.22 refines the pushforwards on EE^{*} and Ω(;VE)\Omega^{*}(-;V_{E}^{\bullet}).

An important property of differential pushforwards is the Bordism formula [Bun12, Problem 4.235], which says that if we have a bordism (W,gW):(M,g)(M+,g+)(W,g_{W}^{\perp})\colon(M_{-},g_{-}^{\perp})\to(M_{+},g_{+}^{\perp}), the differential pushforwards at the boundary can be computed by the integration of the characteristic form on the bordism. Its normal variant is stated in the form we use in this paper as Fact 3.12. To prove it, we need to consider differential pushforwards for proper maps which is not submersions, namely boundary defining functions WIW\to I. The result easily follows by the homotopy formula ([BS10, Lemma 1]). For the details of the proof we refer [Bun12, Problem 4.235].

A.2. Differential pushforwards in Hopkins-Singer’s differential extensions

Now we turn to the Hopkins-Singer’s differential extensions. As we explain, the definition of differential pushforwards in [HS05] differs from the one in Subsection A.3. In this subsubsection, we clarify their relation in the settings of our interest (Proposition A.45).

Fix fundamental cocycles ιEZ0(E;VE)\iota_{E}\in Z^{0}(E;V_{E}^{\bullet}) and ιMGZ0(MG;VMG)\iota_{MG}\in Z^{0}(MG;V_{MG}^{\bullet}) for EE and MGMG, respectively. Since EE is rationally even, the Hopkins-Singer’s model E^HS(;ιE)\widehat{E}^{*}_{\mathrm{HS}}(-;\iota_{E}) admits a canonical multiplicative structure by [Upm15]. We briefly explain it here. We only explain the even-degrees. The remaining cases are induced by requiring the compatibility with the S1S^{1}-integration. Let nn and mm be even integers, and denote by μnm:EnEmEn+m\mu_{nm}\colon E_{n}\wedge E_{m}\to E_{n+m} a multiplication map. We need to choose a reduced cochain cnmC~n+m1(EnEm;VE)c_{nm}\in\widetilde{C}^{n+m-1}(E_{n}\wedge E_{m};V_{E}^{\bullet}) so that

(A.28) δcnm=ιnιmμnmιn+m.\displaystyle\delta c_{nm}=\iota_{n}\cup\iota_{m}-\mu_{nm}^{*}\iota_{n+m}.

Since EE is rationally even, we have H~n+m1(EnEm;VE)=0\widetilde{H}^{n+m-1}(E_{n}\wedge E_{m};V_{E}^{\bullet})=0 by the proof of [BS10, Lemma 3.8]. Thus any two choices of such cochains cnmc_{nm} differ by a coboundary. Using cnmc_{nm} we get the map of differential function spaces ([HS05, Remark 4.17]),

(A.29) (EnEm;(ιE)n(ιE)m)M(E;ιE)n+mM,\displaystyle(E_{n}\wedge E_{m};(\iota_{E})_{n}\cup(\iota_{E})_{m})^{M}\to(E;\iota_{E})_{n+m}^{M},

for any manifold MM. Also choose a natural cochain homotopy B:Ωn()Ωm()Cn+m1()B\colon\Omega^{n}(-)\otimes\Omega^{m}(-)\to C^{n+m-1}(-) cobounding the difference between \wedge on forms and \cup on singular cochains as in [HS05, (3.8)], [Upm15, Section 6]. Any two such choices are naturally cochain homotopic. It induces the map

(A.30) (E;ιE)nM×(E;ιE)mM(EnEm;(ιE)n(ιE)m)M,\displaystyle(E;\iota_{E})^{M}_{n}\times(E;\iota_{E})^{M}_{m}\to(E_{n}\wedge E_{m};(\iota_{E})_{n}\cup(\iota_{E})_{m})^{M},

for any MM. Combining (A.29) and (A.30), we get the multiplication map,

(A.31) :E^HSn(M;ιE)E^HSm(M;ιE)E^HSn+m(M;ιE).\displaystyle\cdot\colon\widehat{E}_{\mathrm{HS}}^{n}(M;\iota_{E})\otimes\widehat{E}_{\mathrm{HS}}^{m}(M;\iota_{E})\to\widehat{E}_{\mathrm{HS}}^{n+m}(M;\iota_{E}).

This does not depend on any of the choices above. For a real vector bundle VMV\to M, in the same way we get a map using the properly supported differential functions ([HS05, Section 4.3])

(A.32) (E;ιE)nM×(E;ιE)mV¯(E;ιE)n+mV¯,\displaystyle(E;\iota_{E})^{M}_{n}\times(E;\iota_{E})^{\overline{V}}_{m}\to(E;\iota_{E})^{\overline{V}}_{n+m},

which gives the module structure,

(A.33) :E^HSn(M;ιE)E^HS,prop/Mm(V;ιE)E^HS,prop/Mn+m(V;ιE).\displaystyle\cdot\colon\widehat{E}_{\mathrm{HS}}^{n}(M;\iota_{E})\otimes\widehat{E}_{\mathrm{HS},\mathrm{prop}/M}^{m}(V;\iota_{E})\to\widehat{E}_{\mathrm{HS},\mathrm{prop}/M}^{n+m}(V;\iota_{E}).

As we mentioned in Subsection 3.1, Hopkins-Singer’s normal differential BGBG-orientations are defined in terms of differential functions to (MG;ιMG)(MG;\iota_{MG}). A differential pushforward is defined by fixing a map of differential function spaces

(A.34) 𝒢^:(MGr(En)+;V𝒢(ιMG)rιE)(E;ιE)nr.\displaystyle\widehat{\mathcal{G}}\colon\left(MG_{-r}\wedge(E_{n})^{+};V_{\mathcal{G}}(\iota_{MG})_{-r}\cup\iota_{E}\right)\to(E;\iota_{E})_{n-r}.

whose underlying map factors as MGr(En)+𝒢idEr(En)+μr,nEnrMG_{-r}\wedge(E_{n})^{+}\xrightarrow{\mathcal{G}\wedge\mathrm{id}}E_{-r}\wedge(E_{n})^{+}\xrightarrow{\mu_{-r,n}}E_{n-r}. Here V𝒢:VMGVEV_{\mathcal{G}}\colon V_{MG}^{\bullet}\to V_{E}^{\bullet} is induced by 𝒢\mathcal{G}, so that V𝒢(ιMG)Z0(MG;VE)V_{\mathcal{G}}(\iota_{MG})\in Z^{0}(MG;V_{E}^{\bullet}) represents ch(𝒢)\mathrm{ch}(\mathcal{G}). We can take a c𝒢C1(MG;VE)c_{\mathcal{G}}\in C^{-1}(MG;V_{E}^{\bullet}) so that δc𝒢=𝒢ιEV𝒢(ιMG)\delta c_{\mathcal{G}}=\mathcal{G}^{*}\iota_{E}-V_{\mathcal{G}}(\iota_{MG}), and it is determined up to coboundary because H1(MG;VE)=0H^{-1}(MG;V_{E}^{\bullet})=0. We may take (A.34) to be the composition

(A.35) 𝒢^:(MGr(En)+;V𝒢(ιMG)r(ιE)n)(ErEn;(ιE)r(ιE)n)(A.29)(E;ιE)nr,\displaystyle\widehat{\mathcal{G}}\colon\left(MG_{-r}\wedge(E_{n})^{+};V_{\mathcal{G}}(\iota_{MG})_{-r}\cup(\iota_{E})_{n}\right)\to(E_{-r}\wedge E_{n};(\iota_{E})_{-r}\cup(\iota_{E})_{n})\xrightarrow{\eqref{eq_HS_multi_1}}(E;\iota_{E})_{n-r},

where the first map uses c𝒢c_{\mathcal{G}}. Let VMV\to M be a real vector bundle, and consider the following diagram.

(A.40)

Here the top horizontal arrow uses c𝒢c_{\mathcal{G}}, the left vertical arrow uses the cochain homotopy BB, and the remaining arrows are as before. The two triangles commute. The square does not commute on the level of differential function spaces, but we can easily check that the difference is a coboundary so the induced maps on the differential cohomology level,

(A.41) (MG^)HS,prop/Mr(V;ιMG)E^HSn(M;ιE)E^HS,prop/Mnr(V;ιE)\displaystyle(\widehat{MG})_{\mathrm{HS},\mathrm{prop}/M}^{-r}(V;\iota_{MG})\otimes\widehat{E}^{n}_{\mathrm{HS}}(M;\iota_{E})\to\widehat{E}^{n-r}_{\mathrm{HS},\mathrm{prop}/M}(V;\iota_{E})

are the same. Using the top factorization of (A.40), we see that (A.41) factors as

(A.42) (MG^)HS,prop/Mr(V;ιMG)E^HSn(M;ιE)E^HS,prop/Mr(V;ιE)E^HSn(M;ιE)E^HS,prop/Mnr(V;ιE)\displaystyle(\widehat{MG})_{\mathrm{HS},\mathrm{prop}/M}^{-r}(V;\iota_{MG})\otimes\widehat{E}^{n}_{\mathrm{HS}}(M;\iota_{E})\to\widehat{E}_{\mathrm{HS},\mathrm{prop}/M}^{-r}(V;\iota_{E})\otimes\widehat{E}^{n}_{\mathrm{HS}}(M;\iota_{E})\xrightarrow{\cdot}\widehat{E}^{n-r}_{\mathrm{HS},\mathrm{prop}/M}(V;\iota_{E})

To put them into the picture in Subsection A.1, apply the discussions there in the case E=MGE=MG and 𝒢=id:MGMG\mathcal{G}=\mathrm{id}\colon MG\to MG. Assume that we have a proper submersion p:NXp\colon N\to X equipped with a differential stable normal GG-structure gpg_{p}^{\perp} on the relative tangent bundle T(p)T(p), represented by g~p=(k,P,,ψ)\widetilde{g}_{p}^{\perp}=(k,P,\nabla,\psi). A Hopkins-Singer’s normal differential BGBG-orientation ([HS05, Section 4.9.2]) gp,HSg_{p}^{\perp,\mathrm{HS}} consists of choices of an embedding Nk×XN\hookrightarrow\mathbb{R}^{k}\times X over XX, a tubular neighborhood with a vector bundle structure WNW\to N, an isomorphism ψW:WP×Gkrkr\psi_{W}\colon W\simeq P\times_{G_{k-r}}\mathbb{R}^{k-r} as in Subsection A.1 (in general WNW\to N is not required to be a map over XX), and a lift of a classifying map for the induced GG-structure (W,gWtop)(W,g_{W}^{\mathrm{top}}) on WNW\to N to a differential function t(gp,HS):W¯(MGkr;(ιMG)kr)t(g_{p}^{\perp,\mathrm{HS}})\colon\overline{W}\to(MG_{k-r};(\iota_{MG})_{k-r}). Then, the differential function t(gp,HS)t(g_{p}^{\perp,\mathrm{HS}}) represents a differential Thom class for (W,gWtop)(W,g^{\mathrm{top}}_{W}),

(A.43) t(gp,HS)(MG^)HS,prop/Nkr(W;ιMG),\displaystyle\left\langle t(g_{p}^{\perp,\mathrm{HS}})\right\rangle\in(\widehat{MG})_{\mathrm{HS},\mathrm{prop}/N}^{k-r}(W;\iota_{MG}),

where we denoted by (c,h,ω)\langle(c,h,\omega)\rangle the differential cohomology class represented by a differential function (c,h,ω)(c,h,\omega). Now we define the following.

Definition A.44.

Let p:NXp\colon N\to X be a proper submersion between manifolds of relative dimension rr, and assume it is equipped with a differential stable normal GG-structure gpg_{p}^{\perp} on T(p)T(p). A Hopkins-Singer’s normal differential BGBG-orientation gp,HSg_{p}^{\perp,\mathrm{HS}} is said to be a lift of gpg_{p}^{\perp} if, in the notations above,

  • The vector bundle structure WNW\to N is a map over XX, and

  • The homotopy class [t(gp,HS)]\left[\left\langle t(g_{p}^{\perp,\mathrm{HS}})\right\rangle\right] of the differential Thom class t(gp,HS)\left\langle t(g_{p}^{\perp,\mathrm{HS}})\right\rangle is the one associated to gWg_{W} by Proposition A.9 (applied to E=MGE=MG).

In particular, this means that,

cwgW(ch(idMG))=Td(t(gp,HS)):=W/NR(t(gp,HS)).\displaystyle\mathrm{cw}_{g_{W}}(\mathrm{ch}(\mathrm{id}_{MG}))=\mathrm{Td}\left(\left\langle t(g_{p}^{\perp,\mathrm{HS}})\right\rangle\right):=\int_{W/N}R\left(\left\langle t(g_{p}^{\perp,\mathrm{HS}})\right\rangle\right).

where ch(idMG)H0(MG;VMG)\mathrm{ch}(\mathrm{id}_{MG})\in H^{0}(MG;V_{MG}^{\bullet}).

Now assume we are given an element e^E^HSn(N;ιE)\widehat{e}\in\widehat{E}_{\mathrm{HS}}^{n}(N;\iota_{E}). Then, in [HS05, Section 4.10] the differential pushforward of e^\widehat{e} is formulated as follows. Take a differential function t(e^):N(E;ι)nt(\widehat{e})\colon N\to(E;\iota)_{n} representing e^\widehat{e}. Apply the left bottom composition of (A.40) for the vector bundle WNW\to N to the pair (t(gp,HS),t(e^))(t(g_{p}^{\perp,\mathrm{HS}}),t(\widehat{e})) to get a differential function in (E;ιE)n+krW¯(E;\iota_{E})_{n+k-r}^{\overline{W}}. By the open embedding Wk×XW\hookrightarrow\mathbb{R}^{k}\times X we get a differential function in (E,ιE)n+krk¯×X(E,\iota_{E})_{n+k-r}^{\overline{\mathbb{R}^{k}}\times X}, and this represents the desired element (p,gp,HS)e^E^HSnr(X;ιE)(p,g_{p}^{\perp,\mathrm{HS}})_{*}\widehat{e}\in\widehat{E}_{\mathrm{HS}}^{n-r}(X;\iota_{E}). By the discussion so far, the result is the same if we use the top right composition in (A.40), and it is given by the composition (A.42). Then we see that the above definition of (p,gp,HS)e^(p,g_{p}^{\perp,\mathrm{HS}})_{*}\widehat{e} exactly translates into the definition of differential pushforwards (A.14) in the Subsection A.1. Thus we conclude that

Proposition A.45.

In the settings of Definition A.44, the differential pushforward map (p,gp):E^HS(N;ιE)E^HSnr(X;ιE)(p,g_{p}^{\perp})_{*}\colon\widehat{E}_{\mathrm{HS}}^{*}(N;\iota_{E})\to\widehat{E}_{\mathrm{HS}}^{n-r}(X;\iota_{E}) in Definition A.22 applied to E^HSn(;ιE)\widehat{E}_{\mathrm{HS}}^{n}(-;\iota_{E}) coincides with the differential pushforward map (p,gp,HS)(p,g_{p}^{\perp,\mathrm{HS}})_{*} in [HS05] as long as we use gp,HSg_{p}^{\perp,\mathrm{HS}} lifting gpg_{p}^{\perp}.

A.3. The tangential case

Now we explain the tangential variants of the last Subsections A.1 and A.2. The constructions and verifications are parallel to the normal case, so we go briefly.

In this case, we are given a homomorphism of ring spectra,

(A.46) 𝒢:MTGE,\displaystyle\mathcal{G}\colon MTG\to E,

where MTGMTG is the Madsen-Tillmann spectrum. MTGMTG is constructed as a direct limit of Thom spaces of stable normal bundles to the universal bundles over approximations of BGdBG_{d}’s, so classifies vector bundles with stable normal GG-structures. Then for each real vector bundle VV of rank rr over a topological space XX equipped with a topological stable normal GG-structure g,topg^{\perp,\mathrm{top}}, we get the Thom class νEr(V¯)\nu\in E^{r}(\overline{V}), whose multiplication gives the Thom isomorphism E(X)E+r(V¯)E^{*}(X)\simeq E^{*+r}(\overline{V}).

We formulate the notion of differential Thom classes as a differential refinements of the Thom classes, as well as differential forms Td(ν^)\mathrm{Td}(\widehat{\nu}) and homotopies in the same way as Definition A.3. By the exactly the same proof, the classification result of differential Thom classes corresponding to Lemma A.6 also holds in the case here. The Chern-Dold character for (A.46) is an element ch(𝒢)H0(MTG;VE)\mathrm{ch}(\mathcal{G})\in H^{0}(MTG;V_{E}^{\bullet}). If VMV\to M is equipped with a stable normal GG-structure gg^{\perp}, the characteristic form (A.8) is replaced by the form cwg(ch(𝒢))\mathrm{cw}_{g^{\perp}}(\mathrm{ch}(\mathcal{G})), where we use the Chern-Weil construction in (2.9). Then, the same proof as that of Proposition A.9 shows the following.

Proposition A.47.

There exists a unique way to assign a homotopy class [ν^(g)][\widehat{\nu}(g^{\perp})] of differential Thom classes ν^(g)E^prop/MrankV(V)\widehat{\nu}(g^{\perp})\in\widehat{E}^{\mathrm{rank}V}_{\mathrm{prop}/M}(V) to every real vector bundle with differential stable normal GG-structure (V,g)M(V,g^{\perp})\to M such that the following three conditions hold.

  1. (1)

    It is compatible with pullbacks.

  2. (2)

    We have [ν^(g¯V)]=[ν^(gV)]\int_{\mathbb{R}}[\widehat{\nu}(g^{\perp}_{\underline{\mathbb{R}}\oplus V})]=[\widehat{\nu}(g^{\perp}_{V})].

  3. (3)

    We have cwg(ch(𝒢))=Td([ν^(g)]):=V/MR(ν^(g))\mathrm{cw}_{g^{\perp}}(\mathrm{ch}(\mathcal{G}))=\mathrm{Td}([\widehat{\nu}({g^{\perp}})]):=\int_{V/M}R(\widehat{\nu}(g^{\perp})).

Moreover, the resulting homotopy class [ν^(g)][\widehat{\nu}(g^{\perp})] only depends on the homotopy class (Definition 2.4 (4)) of differential stable normal GG-structure gg^{\perp}.

Let p:NXp\colon N\to X be a proper submersion between manifolds of relative dimension rr, equipped with a differential stable GG-structure gpg_{p} on the relative tangent bundle T(p)T(p) represented by g~p=(d,P,,ψ)\widetilde{g}_{p}=(d,P,\nabla,\psi). Choose an embedding ι:Nk×X\iota\colon N\hookrightarrow\mathbb{R}^{k}\times X over XX for kk large enough, a tubular neighborhood WW of NN in k×X\mathbb{R}^{k}\times X with a vector bundle structure WNW\to N so that it is a map over XX (this is possible because pp is a submersion). Then we get an isomorphism

(A.48) ψW:(P×Gdd)W¯dnT(p)W¯dn+k\displaystyle\psi_{W}\colon(P\times_{G_{d}}\mathbb{R}^{d})\oplus W\simeq\underline{\mathbb{R}}^{d-n}\oplus T(p)\oplus W\simeq\underline{\mathbb{R}}^{d-n+k}

of vector bundles over NN. As a result, we get a differential stable normal GG-structure gWg_{W}^{\perp} on the vector bundle WNW\to N, represented by g~W=(dn+k,P,,ψW)\widetilde{g}_{W}^{\perp}=(d-n+k,P,\nabla,\psi_{W}). For gWg_{W}^{\perp}, Proposition A.47 assigns a differential Thom class whose homotopy class is canonically determined,

(A.49) ν^(gW)E^prop/Nkr(W).\displaystyle\widehat{\nu}(g_{W}^{\perp})\in\widehat{E}^{k-r}_{\mathrm{prop}/N}(W).

We consider the composition,

(A.50) E^n(N)ν^(g~W)E^prop/Nn+kr(W)ιE^prop/Xn+kr(k×X)desuspE^nr(X).\displaystyle\widehat{E}^{n}(N)\xrightarrow{\cdot\widehat{\nu}(\widetilde{g}_{W}^{\perp})}\widehat{E}^{n+k-r}_{\mathrm{prop}/N}(W)\xrightarrow{\iota_{*}}\widehat{E}^{n+k-r}_{\mathrm{prop}/X}(\mathbb{R}^{k}\times X)\xrightarrow{\mathrm{desusp}}\widehat{E}^{n-r}(X).

The following proposition can be shown in the same way as Proposition A.15.

Proposition A.51.

The composition (A.50) only depends on the differential stable GG-structure gpg_{p} on T(p)T(p).

Proposition A.51 allows us to define the following.

Definition A.52.

Let p:NXp\colon N\to X be a proper submersion between manifolds of relative dimension rr, equipped with a differential stable GG-structure gpg_{p} on the relative tangent bundle T(p)T(p). We define the differential pushforward map,

(p,gp):E^n(N)E^nr(X)\displaystyle(p,g_{p})_{*}\colon\widehat{E}^{n}(N)\to\widehat{E}^{n-r}(X)

to be the composition (A.50).

Now we turn to the Hopkins-Singer’s models as in Subsection A.2. Take fundamental cocycles ιE\iota_{E} and ιMTG\iota_{MTG} for EE and MTGMTG, respectively. As explained there, E^HS(;ιE)\widehat{E}^{*}_{\mathrm{HS}}(-;\iota_{E}) admits a canonical multiplicative structure. In the normal case, a differential pushforward is defined by a map of differential function spaces

(A.53) 𝒢^:(MTGr(En)+;V𝒢(ιMTG)rιE)(E;ιE)nr.\displaystyle\widehat{\mathcal{G}}\colon\left(MTG_{-r}\wedge(E_{n})^{+};V_{\mathcal{G}}(\iota_{MTG})_{-r}\cup\iota_{E}\right)\to(E;\iota_{E})_{n-r}.

whose underlying map factors as MTGr(En)+𝒢idEr(En)+μr,nEnrMTG_{-r}\wedge(E_{n})^{+}\xrightarrow{\mathcal{G}\wedge\mathrm{id}}E_{-r}\wedge(E_{n})^{+}\xrightarrow{\mu_{-r,n}}E_{n-r}. By the same argument to the normal case, the map (A.53) induces the map of differential cohomologies for any real vector bundle VMV\to M,

(A.54) (MTG^)HS,prop/Mr(V;ιMTG)E^HSn(M;ιE)E^HS,prop/Mr(V;ιE)E^HSn(M;ιE)E^HS,prop/Mnr(V;ιE).\displaystyle(\widehat{MTG})_{\mathrm{HS},\mathrm{prop}/M}^{-r}(V;\iota_{MTG})\otimes\widehat{E}^{n}_{\mathrm{HS}}(M;\iota_{E})\to\widehat{E}_{\mathrm{HS},\mathrm{prop}/M}^{-r}(V;\iota_{E})\otimes\widehat{E}^{n}_{\mathrm{HS}}(M;\iota_{E})\xrightarrow{\cdot}\widehat{E}^{n-r}_{\mathrm{HS},\mathrm{prop}/M}(V;\iota_{E}).

Let p:NXp\colon N\to X be a proper submersion between manifolds of relative dimension rr, equipped with a differential stable GG-structure gpg_{p} on the relative tangent bundle T(p)T(p) represented by g~p=(d,P,,ψ)\widetilde{g}_{p}=(d,P,\nabla,\psi). A Hopkins-Singer’s tangential differential BGBG-orientation gpHSg_{p}^{\mathrm{HS}} consists of choices of an embedding Nk×XN\subset\mathbb{R}^{k}\times X, a tubular neighborhood WW, a vector bundle structure WNW\to N as in the first part of this subsection (in general WNW\to N is not required to be a map over XX), and a lift of a classifying map for (W,gW,top)(W,g_{W}^{\perp,\mathrm{top}}) of the induced normal structure to a differential function t(gpHS):W¯(MTGkr;(ιMTG)kr)t(g_{p}^{\mathrm{HS}})\colon\overline{W}\to(MTG_{k-r};(\iota_{MTG})_{k-r}). Then, the differential function t(gpHS)t(g_{p}^{\mathrm{HS}}) represents a differential Thom class for (W,gW,top)(W,g^{\perp,\mathrm{top}}_{W}),

(A.55) t(gpHS)(MTG^)HS,prop/Nkr(W;ιMTG).\displaystyle\left\langle t(g_{p}^{\mathrm{HS}})\right\rangle\in(\widehat{MTG})_{\mathrm{HS},\mathrm{prop}/N}^{k-r}(W;\iota_{MTG}).

Now we define the following.

Definition A.56.

In the above settings, Hopkins-Singer’s tangential differential BGBG-orientation gpHSg_{p}^{\mathrm{HS}} is said to be a lift of gpg_{p} if, in the notations above,

  • The vector bundle structure WNW\to N is a map over XX, and

  • The homotopy class [t(gpHS)]\left[\left\langle t(g_{p}^{\mathrm{HS}})\right\rangle\right] of the differential Thom class t(gpHS)\left\langle t(g_{p}^{\mathrm{HS}})\right\rangle is the one associated to gWg^{\perp}_{W} by Proposition A.47 (applied to E=MTGE=MTG).

In particular, this means that,

cwgW(ch(idMTG))=Td([t(gpHS)]):=W/NR([t(gpHS)]).\displaystyle\mathrm{cw}_{g^{\perp}_{W}}(\mathrm{ch}(\mathrm{id}_{MTG}))=\mathrm{Td}\left(\left[t(g_{p}^{\mathrm{HS}})\right]\right):=\int_{W/N}R\left(\left[t(g_{p}^{\mathrm{HS}})\right]\right).

where ch(idMTG)H0(MTG;VMTG)\mathrm{ch}(\mathrm{id}_{MTG})\in H^{0}(MTG;V_{MTG}^{\bullet}).

Let us take e^E^HSn(N;ιE)\widehat{e}\in\widehat{E}_{\mathrm{HS}}^{n}(N;\iota_{E}). By the same procedure as in the last paragraph of Subsection A.2, the tangential variant of [HS05, Section 4.10] using the map (A.53) and the open embedding Wk×XW\hookrightarrow\mathbb{R}^{k}\times X produces the element (p,gpHS)e^E^HSnr(X;ιE)(p,g_{p}^{\mathrm{HS}})_{*}\widehat{e}\in\widehat{E}_{\mathrm{HS}}^{n-r}(X;\iota_{E}). We get

Proposition A.57.

In the settings of Definition A.56, the differential pushforward map (p,gp):E^HSn(N;ιE)E^HSnr(X;ιE)(p,g_{p})_{*}\colon\widehat{E}_{\mathrm{HS}}^{n}(N;\iota_{E})\to\widehat{E}_{\mathrm{HS}}^{n-r}(X;\iota_{E}) in Definition A.52 applied to E^HS(;ιE)\widehat{E}_{\mathrm{HS}}^{*}(-;\iota_{E}) coincides with the tangential variant of the differential pushforward map (p,gpHS)(p,g_{p}^{\mathrm{HS}})_{*} in [HS05] as long as we use gpHSg_{p}^{\mathrm{HS}} lifting gpg_{p}.

Thus we conclude that the differential pushforward maps in Definition A.52 for E^HS(;ιE)\widehat{E}_{\mathrm{HS}}^{*}(-;\iota_{E}) comes from maps between differential function spaces (A.53). As we mentioned in Footnote 3, this is the reason why we want to use the Hopkins-Singer’s formulation.

Acknowledgment

The author is grateful to Kiyonori Gomi and Kazuya Yonekura for helpful discussion and comments. She is supported by Grant-in-Aid for JSPS KAKENHI Grant Number 20K14307 and JST CREST program JPMJCR18T6.

References