This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Differential equations defined by Kreĭn-Feller operators on Riemannian manifolds

Sze-Man Ngai Beijing Institute of Mathematical Sciences and Applications, Huairou District, 101400, Beijing, China, and Key Laboratory of High Performance Computing and Stochastic Information Processing (HPCSIP) (Ministry of Education of China), College of Mathematics and Statistics, Hunan Normal University, Changsha, Hunan 410081, China. [email protected]  and  Lei Ouyang Key Laboratory of High Performance Computing and Stochastic Information Processing (HPCSIP) (Ministry of Education of China, College of Mathematics and Statistics, Hunan Normal University, Changsha, Hunan 410081, China. [email protected]
Abstract.

We study linear and semi-linear wave, heat, and Schrödinger equations defined by Kreĭn-Feller operator Δμ-\Delta_{\mu} on a complete Riemannian nn-manifolds MM, where μ\mu is a finite positive Borel measure on a bounded open subset Ω\Omega of MM with support contained in Ω¯\overline{\Omega}. Under the assumption that dim¯(μ)>n2\underline{\operatorname{dim}}_{\infty}(\mu)>n-2, we prove that for a linear or semi-linear equation of each of the above three types, there exists a unique weak solution. We study the crucial condition dim(μ)>n2\dim_{(}\mu)>n-2 and provide examples of measures on 𝕊2\mathbb{S}^{2} and 𝕋2\mathbb{T}^{2} that satisfy the condition. We also study weak solutions of linear equations of the above three classes by using examples on 𝕊1\mathbb{S}^{1}.

Key words and phrases:
Riemannian manifold; Kreĭn-Feller operator; wave equation; heat equation; Schrödinger equation.
2010 Mathematics Subject Classification:
Primary: 28A80; Secondary: 35D30, 35K05, 35Q41, 35L05.
The authors are supported in part by the National Natural Science Foundation of China, grant 12271156, and Construct Program of the Key Discipline in Hunan Province. The second author was supported in part by Beijing Institute of Mathematical Sciences and Applications (BIMSA)

1. Introduction

The Kreĭn-Feller operator, studied independently by Kreĭn and Feller, is of particular interest in fractal geometry. It is a natural generalization of the Laplace or Laplace-Beltrami operator, and has been applied successfully to study analytic properties of certain fractal measures. Let μ\mu be a finite positive Borel measure on a bounded open subset Ω\Omega of n\mathbb{R}^{n} with support contained in Ω¯\overline{\Omega}. If μ\mu satisfies the Poincaré inequality on Ω\Omega, then there exists a Laplacian Δμ\Delta_{\mu} defined by μ\mu. Δμ\Delta_{\mu} is also called a Kreĭn-Feller operator (see definition in Section 2) and has been studied extensively in connection with fractal geometry, such as existence of an orthonormal basis of eigenfunctions, spectral dimension and spectral asymptotics, eigenvalues and eigenfunctions, eigenvalue estimates, wave equations and wave speed, heat equation and heat kernel estimates, Schrödinger equation (see [22, 14, 15, 16, 17, 18, 29, 30, 31, 36, 38, 39, 4, 12, 43, 8, 44, 24, 45, 25] and references therein). Chan et al.[8] studied approximations of the solution of the wave equation defined by a one-dimensional fractal Laplacian. Tang and Wang [46] proved the existence and uniqueness of weak solution of the strong damping linear wave equation. Tang and Ngai [45] studied the heat equation on a bounded open set UnU\subseteq\mathbb{R}^{n} supporting a Borel measure and obtained asymptotic bounds for the solution. For a Schrödinger operator defined by a fractal measure with a continuous potential and a coupling parameter, Ngai and Tang [34] obtained an analog of a semiclassical asymptotic formula for the number of bound states as the parameter tends to infinity. Under the assumption that the Laplacian has compact resolvent, Ngai and Tang [35] proved that there exists a unique weak solution for a linear Schrödinger equation, and obtained the existence and uniqueness of a weak solution of a semi-linear Schrödinger equation.

Fractal phenomena on manifolds have been observed by physicists (see, e.g., [2, 5, 6, 3]); this partly motivated our work. In this paper, we let MM be a complete oriented smooth Riemannian nn-manifold, let ΩM\Omega\subseteq M be a bounded open set, and let μ\mu be a finite positive Borel measure on MM such that supp(μ)Ω¯{\rm supp}(\mu)\subseteq\overline{\Omega} and μ(Ω)>0\mu(\Omega)>0. Under the assumption dim¯(μ)>n2\underline{\operatorname{dim}}_{\infty}(\mu)>n-2 (see definition in (2.2)) the authors [32, 33] proved that a Kreĭn-Feller operator defined on MM has compact resolvent so that there exists an orthonormal basis of L2(Ω,μ)L^{2}(\Omega,\mu) consisting of eigenfunctions of Δμ\Delta_{\mu}. They also proved the Hodge theorem concerning the eigenvalues and eigenfunctions of the Kreĭn-Feller operator and generalization to the space of differential forms. The first objective of this paper is to study the solution of the following semi-linear wave equation defined by a Kreĭn-Feller operator on MM, subject to the specified initial and boundary conditions:

{ttuΔμu=F(u)onΩ×[0,T],u=0onΩ×[0,T],u=g,tu=honΩ×{t=0},\displaystyle\left\{\begin{array}[]{lll}\partial_{tt}u-\Delta_{\mu}u=F(u)&\text{on}\,\,\,\Omega\times[0,T],\\ u=0&\text{on}\,\,\,\partial\Omega\times[0,T],\\ u=g,\,\,\partial_{t}u=h&\text{on}\,\,\,\Omega\times\{t=0\},\end{array}\right. (1.4)

where u:=u(t)u:=u(t) is an L2([0,T],dom)L^{2}([0,T],\operatorname{dom}\mathcal{E})-valued function of tt and F()Lip(dom)F(\cdot)\in{\rm Lip}(\operatorname{dom}\mathcal{E}). The notations dom\operatorname{dom}\mathcal{E}, Lip(dom){\rm Lip}(\operatorname{dom}\mathcal{E}), and L2([0,T],dom)L^{2}([0,T],\operatorname{dom}\mathcal{E}) are defined in Section 2. Throughout this paper, if Ω=\partial\Omega=\emptyset, it is understood that the condition u=0u=0 on Ω×[0,T]\partial\Omega\times[0,T] imposes no restriction on the solution. The existence and uniqueness of weak solution of equation (1.4) will be proved in Theorem 3.4.

The second objective of this paper is to study the solution of the following semi-linear heat equation defined by Δμ\Delta_{\mu}:

{tuΔμu=F(u)onΩ×[0,T],u=0onΩ×[0,T],u=gonΩ×{t=0}.\displaystyle\left\{\begin{array}[]{lll}\partial_{t}u-\Delta_{\mu}u=F(u)&\text{on}\,\,\,\Omega\times[0,T],\\ u=0&\text{on}\,\,\,\partial\Omega\times[0,T],\\ u=g&\text{on}\,\,\,\Omega\times\{t=0\}.\end{array}\right. (1.8)

The existence and uniqueness of weak solution of this equation will be described in Theorem 4.4.

The third objective of this paper is to study the solution of the following semi-linear Schrödinger equation defined by Δμ\Delta_{\mu}:

{itu+Δμu=F(u)onΩ×[0,T],u=0onΩ×[0,T],u=gonΩ×{t=0}.\displaystyle\left\{\begin{array}[]{lll}i\partial_{t}u+\Delta_{\mu}u=F(u)&\text{on}\,\,\,\Omega\times[0,T],\\ u=0&\text{on}\,\,\,\partial\Omega\times[0,T],\\ u=g&\text{on}\,\,\,\Omega\times\{t=0\}.\end{array}\right. (1.12)

The existence and uniqueness of weak solution of equation (1.12) will be described in Theorem 5.4.

We also give two classes of measures that satisfy the condition dim¯(μ)>n2\underline{\operatorname{dim}}_{\infty}(\mu)>n-2. They are the invariant measures μ\mu of iterated function systems (IFS) on 𝕊2\mathbb{S}^{2} consisting of bi-Lipschitz mappings (Example 6.3), and graph iterated function systems (GIFS) of similitudes on the flat torus 𝕋2\mathbb{T}^{2} (Example 7.6). We also study weak solutions of linear equations of the above three classes by using examples constructed on 𝕊1\mathbb{S}^{1}.

This paper is organized as follows. In Section 2, we summarize some definitions and results that will be needed throughout the paper. The existence and uniqueness of weak solutions of the wave, heat, and Schrödinger equations are studied in Sections 3, 4, and 5, respectively. In Section 6, we give an example of the invariant measures μ\mu of iterated function systems (IFS) consisting bi-Lipschitz mappings on 𝕊2\mathbb{S}^{2} that satisfy dim¯(μ)>0\underline{\operatorname{dim}}_{\infty}(\mu)>0. In Section 7, we give another class of the invariant measures μ\mu of graph iterated function systems (GIFS) of similitudes on the torus 𝕋2\mathbb{T}^{2} that satisfy dim¯(μ)>0\underline{\operatorname{dim}}_{\infty}(\mu)>0. Section 8 illustrates weak solutions of the linear wave, heat, and Schrödinger equations by using examples.

2. Preliminaries

In this section, we summarize some notation, definitions, and preliminary results used throughout the rest of the paper.

2.1. Notation

Definition 2.1.

Let XX be a Banach space, u:(a,b)Xu:(a,b)\subseteq\mathbb{R}\to X, and t0(a,b)t_{0}\in(a,b). We say that uu is differentiable at t0t_{0} in the norm X\|\cdot\|_{X} if there exists v0Xv_{0}\in X such that

limh0u(t0+h)u(t0)hv0X=0.\displaystyle\lim_{h\to 0}\Big{\|}\frac{u(t_{0}+h)-u(t_{0})}{h}-v_{0}\Big{\|}_{X}=0.

v0v_{0} is called the derivative of uu at t0t_{0}, and we write

v0:=tu(t0):=limh0u(t0+h)u(t0)h.\displaystyle v_{0}:=\partial_{t}u(t_{0}):=\lim_{h\to 0}\frac{u(t_{0}+h)-u(t_{0})}{h}.

Similarly, the second-order derivative of uu at t0t_{0} denoted v1v_{1}, is defined as

v1:=ttu(t0):=limh0tu(t0+h)tu(t0)h.\displaystyle v_{1}:=\partial_{tt}u(t_{0}):=\lim_{h\to 0}\frac{\partial_{t}u(t_{0}+h)-\partial_{t}u(t_{0})}{h}.
Definition 2.2.

(see [8]) Let XX be a separable Banach space with norm X\|\cdot\|_{X}. Let Lp([0,T],X)L^{p}([0,T],X) be the space of all measurable functions u:[0,T]Xu:[0,T]\to X satisfying

  1. (1)

    uLp([0,T],X):=(0Tu(t)Xp𝑑t)1/p<\|u\|_{L^{p}([0,T],X)}:=\Big{(}\int_{0}^{T}\|u(t)\|_{X}^{p}\,dt\Big{)}^{1/p}<\infty, if 1p<1\leq p<\infty, and

  2. (2)

    uL([0,T],X):=esssup0tTu(t)X<\|u\|_{L^{\infty}([0,T],X)}:=\mathop{\operatorname{ess\,sup}}\limits_{0\leq t\leq T}\|u(t)\|_{X}<\infty, if p=p=\infty.

When no confusion is possible, we abbreviate these norms as up,X\|u\|_{p,X} and u,X\|u\|_{\infty,X}.

Remark 2.3.

For each 1p1\leq p\leq\infty, Lp([0,T],X)L^{p}([0,T],X) is a Banach space. Moreover, if 0p1p20\leq p_{1}\leq p_{2}\leq\infty, then Lp1([0,T],X)Lp2([0,T],X)L^{p_{1}}([0,T],X)\subseteq L^{p_{2}}([0,T],X). If (X,,X)(X,\langle\cdot,\cdot\rangle_{X}) is a separable Hilbert space, then L2([0,T],X)L^{2}([0,T],X) is a Hilbert space with the inner product

u,vL2([0,T],X):=0Tu(t),v(t)X𝑑t\displaystyle\langle u,v\rangle_{L^{2}([0,T],X)}:=\int_{0}^{T}\langle u(t),v(t)\rangle_{X}\,dt

(see, e.g., [1, 47]).

Definition 2.4.

Let XX be a Banach space. We define C([0,T],X)C([0,T],X) as the vector space of all continuous functions u:[0,T]Xu:[0,T]\to X such that

uC([0,T],X):=max0tTu(t)X<.\displaystyle\|u\|_{C([0,T],X)}:=\max_{0\leq t\leq T}\|u(t)\|_{X}<\infty.

Similarly, we define C1([0,T],X)C^{1}([0,T],X) to be the vector space of all continuous differentiable functions u:[0,T]Xu:[0,T]\to X such that

uC1([0,T],X):=max0tT(u(t)X+tu(t)X)<.\displaystyle\|u\|_{C^{1}([0,T],X)}:=\max_{0\leq t\leq T}\big{(}\|u(t)\|_{X}+\|\partial_{t}u(t)\|_{X}\big{)}<\infty.
Definition 2.5.

Let \mathcal{H} be a Hilbert space with norm \|\cdot\|_{\mathcal{H}}. We say that a map F:F:\mathcal{H}\to\mathcal{H} is Lipschitz continuous on \mathcal{H} if there exists some constant c>0c>0 such that

F(u)F(v)cuvfor allu,v.\displaystyle\|F(u)-F(v)\|_{\mathcal{H}}\leq c\|u-v\|_{\mathcal{H}}\quad\text{for all}\,\,u,v\in\mathcal{H}.

We denote the space of Lipschitz continuous function on \mathcal{H} by Lip(){\rm Lip}(\mathcal{H}).

Throughout this paper, we assume that a Riemannian manifold is smooth and oriented. Also, whenever the Riemannian distance function is involved, we assume that the manifold is connected. Let (M,g)(M,g) be a Riemannian nn-manifold with Riemannian metric gg. Let ν\nu be the Riemannian volume measure on MM, i.e.,

dν=detgijdx,\,d\nu=\sqrt{\det g_{ij}}\,dx,

where gijg_{ij} are the components of gg in a coordinate chart, and dxdx is the Lebesgue measure on n\mathbb{R}^{n}. For any FMF\subseteq M, we let F¯\overline{F}, F\partial F, and FF^{\circ} denote, respectively, the closure, boundary, and interior of FF. For a bounded open set ΩM\Omega\subseteq M, Cc(Ω)C_{c}(\Omega), C(Ω)C^{\infty}(\Omega), and Cc(Ω)C_{c}^{\infty}(\Omega) denote, respectively, the following spaces of functions on Ω\Omega: continuous functions with compact support, CC^{\infty} functions, and CC^{\infty} functions with compact support. For uC(Ω)u\in C^{\infty}(\Omega), in local coordinates, u=gijiuj\nabla u=g^{ij}\partial_{i}u\partial_{j}, where gij=(gij)1g^{ij}=(g_{ij})^{-1} and j=/xj\partial_{j}=\partial/\partial x^{j}. Let μ\mu be a finite positive Borel measure on MM with supp(μ)Ω¯{\rm supp}(\mu)\subseteq\overline{\Omega}. Let L2(Ω,μ):=L2(Ω,μ,)L^{2}(\Omega,\mu):=L^{2}(\Omega,\mu,\mathbb{C}) be the space of measurable functions uΩu\in\Omega\to\mathbb{C} such that

uμ:=(Ω|u|2𝑑μ)1/2<.\|u\|_{\mu}:=\Big{(}\int_{\Omega}|u|^{2}\,d\mu\Big{)}^{1/2}<\infty.

We regard L2(Ω,μ)L^{2}(\Omega,\mu) as a real Hilbert space with the scalar product ,μ\langle\cdot,\cdot\rangle_{\mu} associated to μ\|\cdot\|_{\mu} defined as

u,vμ:=reΩuv¯𝑑μ.\langle u,v\rangle_{\mu}:={\rm re}\int_{\Omega}u\bar{v}\,d\mu.

Let W1,2(Ω)W^{1,2}(\Omega) be the real Hilbert space equipped with the norm

uW1,2(Ω):=(Ω|u|2𝑑ν+Ω|u|2𝑑ν)12.\displaystyle\|u\|_{W^{1,2}(\Omega)}:=\Big{(}\int_{\Omega}|u|^{2}\,d\nu+\int_{\Omega}|\nabla u|^{2}\,d\nu\Big{)}^{\frac{1}{2}}. (2.1)

The scalar product ,W1,2(Ω)\langle\cdot,\cdot\rangle_{W^{1,2}(\Omega)} associated to W1,2(Ω)\|\cdot\|_{W^{1,2}(\Omega)} is defined as

u,vW1,2(Ω):=reΩuv¯𝑑ν+reΩu,v¯g𝑑ν,\left\langle u,v\right\rangle_{W^{1,2}(\Omega)}:={\rm re}\int_{\Omega}u\bar{v}\,d\nu+{\rm re}\int_{\Omega}\langle\nabla u,\nabla\bar{v}\rangle_{g}\,d\nu,

where ,g=g(,)\langle\cdot,\cdot\rangle_{g}=g(\cdot,\cdot). Let W01,2(Ω)W^{1,2}_{0}(\Omega) denote the closure of Cc(Ω)C^{\infty}_{c}(\Omega) in the W1,2(Ω)W^{1,2}(\Omega) norm.

We denote the Euclidean distance by d𝔼(,)d_{\mathbb{E}}(\cdot,\cdot). For a connected Riemannian nn-manifold MM, we denote the Riemannian distance by dM(,)d_{M}(\cdot,\cdot). Let

B(x,r):={yn:d𝔼(x,y)<r},xn,\displaystyle B(x,r):=\{y\in\mathbb{R}^{n}:d_{\mathbb{E}}(x,y)<r\},\quad x\in\mathbb{R}^{n},
BM(p,r):={qM:dM(p,q)<r},pM.\displaystyle B^{M}(p,r):=\{q\in M:d_{M}(p,q)<r\},\quad p\in M.

Let μ\mu be a finite positive Borel measure on MM. Recall that the lower and upper LL^{\infty}-dimensions of μ\mu are defined respectively as

dim¯(μ):=lim¯δ0+ln(supxμ(BM(x,δ)))lnδ\displaystyle\underline{\dim}_{\infty}(\mu):=\displaystyle{\varliminf_{\delta\to 0^{+}}}\frac{\ln(\sup_{x}\mu(B^{M}(x,\delta)))}{\ln\delta} (2.2)

where the supremum is taken over all xsupp(μ)x\in{\rm supp}(\mu). Similarly, one can define dim¯(μ)\overline{\dim}_{\infty}(\mu). If the limit exists, we denote the common value by dim(μ)\dim_{\infty}(\mu).

2.2. Laplacian defined by a measure

Let MM be a complete oriented smooth Riemannian nn-manifold. Let ΩM\Omega\subseteq M be a bounded open set and let μ\mu be a finite positive Borel measure on MM with supp(μ)Ω¯{\rm supp}(\mu)\subseteq\overline{\Omega}. Throughout this paper, we assume μ(Ω)>0\mu(\Omega)>0. We introduce the following Poincaré inequalities for a measure μ\mu:

  1. (MPID)

    (Dirichlet boundary condition) There exists a constant C>0C>0 such that for all uCc(Ω)u\in C^{\infty}_{c}(\Omega),

    Ω|u|2𝑑μCΩ|u|2𝑑ν.\displaystyle\int_{\Omega}|u|^{2}\,d\mu\leq C\int_{\Omega}|\nabla u|^{2}\,d\nu. (2.3)
  2. (MPIE)

    (Ω=\partial\Omega=\emptyset) There exists a constant C>0C>0 such that for all uCc(Ω)u\in C^{\infty}_{c}(\Omega),

    Ω|u|2𝑑μC(Ω|u|2𝑑ν+Ω|u|2𝑑ν).\displaystyle\int_{\Omega}|u|^{2}\,d\mu\leq C\Big{(}\int_{\Omega}|\nabla u|^{2}\,d\nu+\int_{\Omega}|u|^{2}\,d\nu\Big{)}. (2.4)

(MPID) (resp. (MPIE)) implies that each equivalence class uW01,2(Ω)u\in W^{1,2}_{0}(\Omega) (resp. uW1,2(Ω)u\in W^{1,2}(\Omega)) contains a unique (in L2(Ω,μ)L^{2}(\Omega,\mu) sense) member u¯\overline{u} that belongs to L2(Ω,μ)L^{2}(\Omega,\mu) and satisfies both conditions below:

  1. (1)

    There exists a sequence {uk}\left\{u_{k}\right\} in Cc(Ω)C_{c}^{\infty}(\Omega) such that uku¯u_{k}\rightarrow\overline{u} in W01,2(Ω)W^{1,2}_{0}(\Omega) (resp. W1,2(Ω)W^{1,2}(\Omega)) and uku¯u_{k}\rightarrow\overline{u} in L2(Ω,μ)L^{2}(\Omega,\mu);

  2. (2)

    u¯\overline{u} satisfies the inequality in (2.3) (resp. (2.4)).

We call u¯\overline{u} the L2(Ω,μ)L^{2}(\Omega,\mu)-representative of uu. Assume μ\mu satisfies (MPID) (resp. (MPIE)) on Ω\Omega and define a mapping ID:W01,2(Ω)L2(Ω,μ)I_{D}:W^{1,2}_{0}(\Omega)\rightarrow L^{2}(\Omega,\mu) (resp. IE:W1,2(Ω)L2(Ω,μ)I_{E}:W^{1,2}(\Omega)\rightarrow L^{2}(\Omega,\mu)) by

ID(u)=u¯,(resp.IE(u)=u¯).I_{D}(u)=\overline{u},\qquad(\text{resp.}\,\,I_{E}(u)=\overline{u}).

Notice that IDI_{D} and IEI_{E} are bounded linear operators but are not necessarily injective. Hence we consider a subspace 𝒩D\mathcal{N}_{D} of W01,2(Ω)W^{1,2}_{0}(\Omega) defined as

𝒩D:={uW01,2(Ω):ID(u)μ=0}.\mathcal{N}_{D}:=\left\{u\in W^{1,2}_{0}(\Omega):\|I_{D}(u)\|_{\mu}=0\right\}.

Similarly, we can define 𝒩E\mathcal{N}_{E}. Since μ\mu satisfies (MPID) (resp. (MPIE)) on Ω\Omega, 𝒩D\mathcal{N}_{D} (resp. 𝒩E\mathcal{N}_{E}) is a closed subspace of W01,2(Ω)W^{1,2}_{0}(\Omega) (resp. W1,2(Ω)W^{1,2}(\Omega)). Let 𝒩D\mathcal{N}_{D}^{\perp} (resp. 𝒩E\mathcal{N}_{E}^{\perp}) be the orthogonal complement of 𝒩D\mathcal{N}_{D} in W01,2(Ω)W^{1,2}_{0}(\Omega) (resp. 𝒩E\mathcal{N}_{E} in W1,2(Ω)W^{1,2}(\Omega)). Then ID:𝒩DL2(Ω,μ)I_{D}:\mathcal{N}_{D}^{\perp}\rightarrow L^{2}(\Omega,\mu) (resp. IE:𝒩EL2(Ω,μ)I_{E}:\mathcal{N}_{E}^{\perp}\rightarrow L^{2}(\Omega,\mu)) is injective. Throughout this paper, if no confusion is possible, we will denote u¯\overline{u} simply by uu.

Now, we consider non-negative bilinear forms D(,)\mathcal{E}_{D}(\cdot,\cdot) and E(,)\mathcal{E}_{E}(\cdot,\cdot) on L2(Ω,μ)L^{2}(\Omega,\mu) given by

E(u,v)=D(u,v):=Ωu,v𝑑ν\displaystyle\mathcal{E}_{E}(u,v)=\mathcal{E}_{D}(u,v):=\int_{\Omega}\langle\nabla u,\nabla v\rangle\,d\nu (2.5)

with dom(D)=𝒩D\operatorname{dom}(\mathcal{E}_{D})=\mathcal{N}_{D}^{\perp} and dom(E)=𝒩E\operatorname{dom}(\mathcal{E}_{E})=\mathcal{N}_{E}^{\perp}. (D,dom(D))(\mathcal{E}_{D},\operatorname{dom}(\mathcal{E}_{D})) and (E,dom(E))(\mathcal{E}_{E},\operatorname{dom}(\mathcal{E}_{E})) are closed quadratic forms on L2(Ω,μ)L^{2}(\Omega,\mu), and therefore there exists a non-negative definite self-adjoint operator ΔμD-\Delta_{\mu}^{D} on L2(Ω,μ)L^{2}(\Omega,\mu) such that domD=dom((ΔμD)1/2)\operatorname{dom}\mathcal{E}_{D}=\operatorname{dom}((\Delta_{\mu}^{D})^{1/2}) and

D(u,v)=(ΔμD)1/2u,(ΔμD)1/2uμfor allu,vdomD.\mathcal{E}_{D}(u,v)=\langle(-\Delta_{\mu}^{D})^{1/2}u,(-\Delta_{\mu}^{D})^{1/2}u\rangle_{\mu}\quad\text{for all}\,\,u,v\in\operatorname{dom}\mathcal{E}_{D}.

We call ΔμD-\Delta_{\mu}^{D} the Dirichlet Laplacian with respect to μ\mu. We also call ΔμD-\Delta_{\mu}^{D} a Kreĭn-Feller operator. Similarly, we can define ΔμE\Delta_{\mu}^{E}. In this paper, if no confusion is possible, we will denote ΔμD\Delta_{\mu}^{D} and ΔμE\Delta_{\mu}^{E} simply by Δμ\Delta_{\mu}. Similarly, we denote dom(D)\operatorname{dom}(\mathcal{E}_{D}) and dom(E)\operatorname{dom}(\mathcal{E}_{E}) simply by dom()\operatorname{dom}(\mathcal{E}).

It is known that udom(Δμ)u\in\operatorname{dom}(\Delta_{\mu}) if and only if udomu\in\operatorname{dom}\mathcal{E} and there exists fL2(Ω,μ)f\in L^{2}(\Omega,\mu) such that (u,v)=f,vμ\mathcal{E}(u,v)=\langle f,v\rangle_{\mu} for all vdomv\in\operatorname{dom}\mathcal{E} (see, e.g., [11]). In this paper, we let

dom:=(,).\|\cdot\|_{\operatorname{dom}\mathcal{E}}:=\sqrt{\mathcal{E}(\cdot,\cdot)}.

Note that dom\|\cdot\|_{\operatorname{dom}\mathcal{E}} is a norm on /{constants}\mathcal{E}/\{\text{constants}\}.

The authors proved the following results ([32, Theorem 2.2]): Let n1n\geq 1, MM be a complete connected Riemannian nn-manifold, and ΩM\Omega\subseteq M be a bounded open set. Let μ\mu be a finite positive Borel measure on MM such that supp(μ)Ω¯\operatorname{supp}(\mu)\subseteq\overline{\Omega} and μ(Ω)>0\mu(\Omega)>0. Assume that dim¯(μ)>n2\underline{\operatorname{dim}}_{\infty}(\mu)>n-2. Then there exists an orthonormal basis {φk}k=0\left\{\varphi_{k}\right\}_{k=0}^{\infty} of L2(Ω,μ)L^{2}(\Omega,\mu) consisting of eigenfunctions of Δμ.-\Delta_{\mu}. The eigenvalues {λk}k=0\left\{\lambda_{k}\right\}_{k=0}^{\infty} satisfy 0=λ0<λ1λ20=\lambda_{0}<\lambda_{1}\leq\lambda_{2}\leq\cdots, where λ0=0\lambda_{0}=0 only in the Ω=\partial\Omega=\emptyset case. If dim(dom)=\dim(\operatorname{dom}\mathcal{E})=\infty, then limkλk=\lim_{k\to\infty}\lambda_{k}=\infty. Hence we have

dom\displaystyle\operatorname{dom}\mathcal{E} ={k=0akφk:k=0|ak|2λk<}and\displaystyle=\Big{\{}\sum_{k=0}^{\infty}a_{k}\varphi_{k}:\sum_{k=0}^{\infty}|a_{k}|^{2}\lambda_{k}<\infty\Big{\}}\qquad\text{and} (2.6)
dom(Δμ)\displaystyle\operatorname{dom}(\Delta_{\mu}) ={k=0akφk:k=0|ak|2λk2<}.\displaystyle=\Big{\{}\sum_{k=0}^{\infty}a_{k}\varphi_{k}:\sum_{k=0}^{\infty}|a_{k}|^{2}\lambda_{k}^{2}<\infty\Big{\}}. (2.7)

By the Lax-Milgram theorem, for any w(dom)w\in(\operatorname{dom}\mathcal{E})^{\prime}, there exists a unique udomu\in\operatorname{dom}\mathcal{E} such that

(u,v):=w,vfor allvdom,\mathcal{E}(u,v):=\langle w,v\rangle\qquad\text{for all}\,\,v\in\operatorname{dom}\mathcal{E},

where throughout this paper, ,\langle\cdot,\cdot\rangle denotes the pairing between (dom)(\operatorname{dom}\mathcal{E})^{\prime} and dom\operatorname{dom}\mathcal{E}. Hence we can define a bijective operator LL from dom\operatorname{dom}\mathcal{E} to (dom)(\operatorname{dom}\mathcal{E})^{\prime} by

Lu=w,\displaystyle Lu=w, (2.8)

and equip (dom)(\operatorname{dom}\mathcal{E})^{\prime} with the scalar product

u,v(dom):=(L1u,L1v)\langle u,v\rangle_{(\operatorname{dom}\mathcal{E})^{\prime}}:=\mathcal{E}(L^{-1}u,L^{-1}v)

with the norm

w(dom):=L1wdomforw(dom).\displaystyle\|w\|_{(\operatorname{dom}\mathcal{E})^{\prime}}:=\|L^{-1}w\|_{\operatorname{dom}\mathcal{E}}\qquad\text{for}\,\,w\in(\operatorname{dom}\mathcal{E})^{\prime}.

Note that domL=dom\operatorname{dom}L=\operatorname{dom}\mathcal{E} and w,v=w,vμ\langle w,v\rangle=\langle w,v\rangle_{\mu} for all w(dom)w\in(\operatorname{dom}\mathcal{E})^{\prime} and vdomv\in\operatorname{dom}\mathcal{E}. It follows that LL is an extension of Δμ-\Delta_{\mu}.

By identifying L2(Ω,μ)L^{2}(\Omega,\mu) with (L2(Ω,μ))(L^{2}(\Omega,\mu))^{\prime}, we have that domL2(Ω,μ)(dom)\operatorname{dom}\mathcal{E}\hookrightarrow L^{2}(\Omega,\mu)\hookrightarrow(\operatorname{dom\mathcal{E}})^{\prime}, and {φk}k=0\{\varphi_{k}\}_{k=0}^{\infty} is a complete orthogonal set of dom\operatorname{dom}\mathcal{E}. Hence w=k=0akφk(dom)w=\sum_{k=0}^{\infty}a_{k}\varphi_{k}\in(\operatorname{dom}\mathcal{E})^{\prime} if and only if there exists a unique L1w=k=0bkφkdomL^{-1}w=\sum_{k=0}^{\infty}b_{k}\varphi_{k}\in\operatorname{dom}\mathcal{E} such that (L1w,u)=w,u\mathcal{E}(L^{-1}w,u)=\langle w,u\rangle for all vdomv\in\operatorname{dom}\mathcal{E} (see [35]). Substituting v=φkv=\varphi_{k} for k1k\geq 1, we get ak=w,φk=(L1w,φk)=bkλka_{k}=\langle w,\varphi_{k}\rangle=\mathcal{E}(L^{-1}w,\varphi_{k})=b_{k}\lambda_{k}. For k=0k=0, we have λk=0\lambda_{k}=0. Hence w=k=0akφk(dom)w=\sum_{k=0}^{\infty}a_{k}\varphi_{k}\in(\operatorname{dom\mathcal{E}})^{\prime} if and only if w(dom)2=L1wdom2=k=0ak2/λk<\|w\|_{(\operatorname{dom\mathcal{E}})^{\prime}}^{2}=\|L^{-1}w\|_{\operatorname{dom\mathcal{E}}}^{2}=\sum_{k=0}^{\infty}a_{k}^{2}/\lambda_{k}<\infty. Therefore, for every u=k=0akφkdomu=\sum_{k=0}^{\infty}a_{k}\varphi_{k}\in\operatorname{dom}\mathcal{E}, we have Lu=k=0akλkφk(dom)Lu=\sum_{k=0}^{\infty}a_{k}\lambda_{k}\varphi_{k}\in(\operatorname{dom}\mathcal{E})^{\prime}, and

(dom)={k=0akφk:k=1|ak|2/λk<}.\displaystyle(\operatorname{dom}\mathcal{E})^{\prime}=\Big{\{}\sum_{k=0}^{\infty}a_{k}\varphi_{k}:\sum_{k=1}^{\infty}|a_{k}|^{2}/\lambda_{k}<\infty\Big{\}}.
Definition 2.6.

For α0\alpha\geq 0, define

Eα(Ω,μ):={k=0bkφk:k=0|bk|2λkα<}\displaystyle E_{\alpha}(\Omega,\mu):=\Big{\{}\sum_{k=0}^{\infty}b_{k}\varphi_{k}:\sum_{k=0}^{\infty}|b_{k}|^{2}\lambda_{k}^{\alpha}<\infty\Big{\}}

with the norm Eα(Ω,μ)\|\cdot\|_{E_{\alpha}(\Omega,\mu)} given by

uEα(Ω,μ):=(k=0|bk|2λkα)1/2foru=k=0bkφk.\displaystyle\|u\|_{E_{\alpha}(\Omega,\mu)}:=\Big{(}\sum_{k=0}^{\infty}|b_{k}|^{2}\lambda_{k}^{\alpha}\Big{)}^{1/2}\qquad\text{for}\,\,u=\sum_{k=0}^{\infty}b_{k}\varphi_{k}.
Proposition 2.7.

Let MM be a complete oriented smooth Riemannian nn-manifold. Let ΩM\Omega\subseteq M be a bounded open set and let μ\mu be a finite positive Borel measure on MM with supp(μ)Ω¯{\rm supp}(\mu)\subseteq\overline{\Omega}. For all α0\alpha\geq 0, (Eα(Ω,μ),Eα(Ω,μ))(E_{\alpha}(\Omega,\mu),\|\cdot\|_{E_{\alpha}(\Omega,\mu)}) is a Hilbert space. In particular, E0(Ω,μ)=L2(Ω,μ)E_{0}(\Omega,\mu)=L^{2}(\Omega,\mu), E1(Ω,μ)=domE_{1}(\Omega,\mu)=\operatorname{dom}\mathcal{E}, and E2(Ω,μ)=dom(Δμ)E_{2}(\Omega,\mu)=\operatorname{dom}(\Delta_{\mu}). Moreover, Eα(Ω,μ)E_{\alpha}(\Omega,\mu) is dense in dom\operatorname{dom}\mathcal{E} for α>1\alpha>1.

The proof of Proposition 2.7 is similar to that of [20, Proposition 2.2]; we omit the details.

3. Weak solutions of wave equations

In this section, we let MM be a complete oriented smooth Riemannian nn-manifold. Let ΩM\Omega\subseteq M be a bounded open set and let μ\mu be a finite positive Borel measure on MM with supp(μ)Ω¯{\rm supp}(\mu)\subseteq\overline{\Omega}. We prove the existence and uniqueness of weak solutions of the semi-linear wave equation in (1.4).

Definition 3.1.

Let 0<T<0<T<\infty. Let gdomg\in\operatorname{dom}\mathcal{E}, hL2(Ω,μ)h\in L^{2}(\Omega,\mu) and fL([0,T],dom)f\in L^{\infty}([0,T],\operatorname{dom}\mathcal{E}). A function uL([0,T],dom)u\in L^{\infty}([0,T],\operatorname{dom}\mathcal{E}), tuL([0,T],L2(Ω,μ))\partial_{t}u\in L^{\infty}([0,T],L^{2}(\Omega,\mu)), and ttuL([0,T],(dom))\partial_{tt}u\in L^{\infty}([0,T],(\operatorname{dom}\mathcal{E})^{\prime}) is a weak solution of the following wave equation:

{ttuΔμu=f(t)onΩ×[0,T],u=0onΩ×[0,T],u=g,tu=honΩ×{t=0},\displaystyle\left\{\begin{array}[]{lll}\partial_{tt}u-\Delta_{\mu}u=f(t)&\text{on}\,\,\,\Omega\times[0,T],\\ u=0&\text{on}\,\,\,\partial\Omega\times[0,T],\\ u=g,\,\,\partial_{t}u=h&\text{on}\,\,\,\Omega\times\{t=0\},\\ \end{array}\right. (3.4)

if the following conditions are satisfied:

  1. (1)

    ttu,v+(u,v)=f(t),vμ\langle\partial_{tt}u,v\rangle+\mathcal{E}(u,v)=\langle f(t),v\rangle_{\mu} for each vdomv\in\operatorname{dom}\mathcal{E} and Lebesgue a.e. t[0,T]t\in[0,T];

  2. (2)

    u(0)=gu(0)=g and tu(0)=h\partial_{t}u(0)=h.

Remark 3.2.

Here we comment on Definition 3.1.

  1. (a)

    The boundary condition u|Ω=0u|_{\partial\Omega}=0 in (3.4) is included in the assumption u(t)domu(t)\in\operatorname{dom}\mathcal{E}. If uL([0,T],dom)u\in L^{\infty}([0,T],\operatorname{dom}\mathcal{E}), tuL([0,T],L2(Ω,μ))\partial_{t}u\in L^{\infty}([0,T],L^{2}(\Omega,\mu)), and ttuL([0,T],(dom))\partial_{tt}u\in L^{\infty}([0,T],\\ (\operatorname{dom}\mathcal{E})^{\prime}), then uC([0,T],L2(Ω,μ))u\in C([0,T],L^{2}(\Omega,\mu)), and thus the initial conditions u(0)=gu(0)=g and tu(0)=h\partial_{t}u(0)=h make sense.

  2. (b)

    Condition (1) is equivalent to

    ttu+Lu=f(t)in(dom)for Lebesgue a.e.t[0,T],\displaystyle\partial_{tt}u+Lu=f(t)\quad\text{in}\,\,(\operatorname{dom}\mathcal{E})^{\prime}\,\,\text{for Lebesgue a.e.}\,\,t\in[0,T],

    where LL is defined as in (2.8).

Let {φk}k=0\left\{\varphi_{k}\right\}_{k=0}^{\infty} be an orthonormal basis of L2(Ω,μ)L^{2}(\Omega,\mu) such that Δμφk=λkφk-\Delta_{\mu}\varphi_{k}=\lambda_{k}\varphi_{k}. Let

g=\displaystyle g= k=0αkφkL2(Ω,μ),h=k=0βkφkL2(Ω,μ),and\displaystyle\sum_{k=0}^{\infty}\alpha_{k}\varphi_{k}\in L^{2}(\Omega,\mu),\qquad h=\sum_{k=0}^{\infty}\beta_{k}\varphi_{k}\in L^{2}(\Omega,\mu),\quad\text{and}
f(t)\displaystyle f(t) =k=0γk(t)φkL2([0,T],L2(Ω,μ)),\displaystyle=\sum_{k=0}^{\infty}\gamma_{k}(t)\varphi_{k}\in L^{2}([0,T],L^{2}(\Omega,\mu)),

where γk(t)=f(t),φkμ\gamma_{k}(t)=\langle f(t),\varphi_{k}\rangle_{\mu} for k1k\geq 1. Let

u0(t):=k=1sin(λkt)λkβkφk+k=0αkcos(λkt)φk.\displaystyle u_{0}(t):=\sum_{k=1}^{\infty}\frac{\sin(\sqrt{\lambda_{k}}t)}{\sqrt{\lambda_{k}}}\beta_{k}\varphi_{k}+\sum_{k=0}^{\infty}\alpha_{k}\cos(\sqrt{\lambda_{k}}t)\varphi_{k}.

Define

u(t):=u0(t)+k=1φkλk0tsin(λk(tτ))γk(τ)dτ=:k=0ckφk,\displaystyle u(t):=u_{0}(t)+\sum_{k=1}^{\infty}\frac{\varphi_{k}}{\sqrt{\lambda_{k}}}\int_{0}^{t}\sin\big{(}\sqrt{\lambda_{k}}(t-\tau)\big{)}\gamma_{k}(\tau)d\tau=:\sum_{k=0}^{\infty}c_{k}\varphi_{k}, (3.5)
H(t):=\displaystyle H(t):= k=1βkcos(λkt)φkk=0αkλksin(λkt)φk\displaystyle\sum_{k=1}^{\infty}\beta_{k}\cos(\sqrt{\lambda_{k}}t)\varphi_{k}-\sum_{k=0}^{\infty}\alpha_{k}\sqrt{\lambda_{k}}\sin(\sqrt{\lambda_{k}}t)\varphi_{k}
+k=1φk0tcos(λk(tτ))γk(τ)dτ=:k=0dkφk\displaystyle+\sum_{k=1}^{\infty}\varphi_{k}\int_{0}^{t}\cos(\sqrt{\lambda_{k}}(t-\tau))\gamma_{k}(\tau)d\tau=:\sum_{k=0}^{\infty}d_{k}\varphi_{k} (3.6)

and

K(t):=\displaystyle K(t):= k=1λkβksin(λkt)φkk=0λkαkcos(λkt)φk+f(t)\displaystyle-\sum_{k=1}^{\infty}\sqrt{\lambda_{k}}\beta_{k}\sin(\sqrt{\lambda_{k}}t)\varphi_{k}-\sum_{k=0}^{\infty}\lambda_{k}\alpha_{k}\cos(\sqrt{\lambda_{k}}t)\varphi_{k}+f(t)
k=1λkφk0tsin(λk(tτ))γk(τ)𝑑τ.\displaystyle-\sum_{k=1}^{\infty}\sqrt{\lambda_{k}}\varphi_{k}\int_{0}^{t}\sin(\sqrt{\lambda_{k}}(t-\tau))\gamma_{k}(\tau)d\tau. (3.7)

We have the following theorem.

Theorem 3.3.

Let MM be a complete oriented smooth Riemannian nn-manifold. Let ΩM\Omega\subseteq M be a bounded open set and let μ\mu be a finite positive Borel measure on MM with supp(μ)Ω¯{\rm supp}(\mu)\subseteq\overline{\Omega}. Assume that dim¯(μ)>n2\underline{\operatorname{dim}}_{\infty}(\mu)>n-2. Let gg, hh, f(t)f(t), u(t)u(t), H(t)H(t) and K(t)K(t) be defines as above. For gdomg\in\operatorname{dom}\mathcal{E}, hL2(Ω,μ)h\in L^{2}(\Omega,\mu), and f(t)L([0,T],dom)f(t)\in L^{\infty}([0,T],\operatorname{dom}\mathcal{E}), the following hold:

  1. (a)

    tu=H(t)\partial_{t}u=H(t) in L2(Ω,μ)L^{2}(\Omega,\mu) for Lebesgue a.e. t[0,T]t\in[0,T].

  2. (b)

    ttu=K(t)\partial_{tt}u=K(t) in (dom)(\operatorname{dom}\mathcal{E})^{\prime} for Lebesgue a.e. t[0,T]t\in[0,T].

  3. (c)

    u(t)u(t) is the unique weak solution of the wave equation (3.4).

  4. (d)

    If gEα(Ω,μ)g\in E_{\alpha}(\Omega,\mu) and fL([0,T],Eα(Ω,μ))f\in L^{\infty}([0,T],E_{\alpha}(\Omega,\mu)), where α2\alpha\geq 2, then u(t)L([0,T]u(t)\in L^{\infty}([0,T],
    Eα(Ω,μ))E_{\alpha}(\Omega,\mu)) and tu(t)L([0,T],Eα2(Ω,μ))\partial_{t}u(t)\in L^{\infty}([0,T],E_{\alpha-2}(\Omega,\mu)).

  5. (e)

    If f0f\equiv 0, then

    u(t)μc1hdom2+gμ2and(u,u)c2(h,h)+(g,g)for allt[0,T],\displaystyle\|u(t)\|_{\mu}\leq c_{1}\|h\|_{\operatorname{dom}\mathcal{E}}^{2}+\|g\|_{\mu}^{2}\quad\text{and}\quad\mathcal{E}(u,u)\leq c_{2}\mathcal{E}(h,h)+\mathcal{E}(g,g)\quad\text{for all}\,\,t\in[0,T],

    where c1c_{1} and c2c_{2} are positive constants.

Proof.

The proof of this theorem is similar to that of [35, Theorem 3.1]; we only indicate the modifications.

(a) Let δ\delta satisfy 0<2δ<T0<2\delta<T and δ<1\delta<1. Note that the classical derivative ck(t)=dk(t)c_{k}^{\prime}(t)=d_{k}(t) for Lebesgue a.e. t[0,T]t\in[0,T]. It follows that

sk(t,h):=ck(t+h)ck(t)hdk(t)0ash0\displaystyle s_{k}(t,h):=\frac{c_{k}(t+h)-c_{k}(t)}{h}-d_{k}(t)\to 0\quad\text{as}\quad h\to 0 (3.8)

for Lebesgue a.e. t[δ,Tδ]t\in[\delta,T-\delta] and h(δ,δ)h\in(-\delta,\delta). For all t[δ,Tδ]t\in[\delta,T-\delta] and each h(δ,δ)h\in(-\delta,\delta), we remark that

|tt+hsin(λk(t+hτ))γk(τ)𝑑τ|2\displaystyle\Big{|}\int_{t}^{t+h}\sin(\sqrt{\lambda_{k}}(t+h-\tau))\gamma_{k}(\tau)d\tau\Big{|}^{2}
\displaystyle\leq tt+h|sin(λk(t+h))cos(λkτ)cos(λk(t+h))sin(λk(τ))|2𝑑τtt+h|γk(τ)|2𝑑τ\displaystyle\int_{t}^{t+h}\big{|}\sin(\sqrt{\lambda_{k}}(t+h))\cos(\sqrt{\lambda_{k}}\tau)-\cos(\sqrt{\lambda_{k}}(t+h))\sin(\sqrt{\lambda_{k}}(\tau))\big{|}^{2}d\tau\int_{t}^{t+h}\big{|}\gamma_{k}(\tau)\big{|}^{2}d\tau
=\displaystyle= (h2sin(2λkh)4λk)tt+h|γk(τ)|2𝑑τ\displaystyle\Big{(}\frac{h}{2}-\frac{\sin(2\sqrt{\lambda_{k}}h)}{4\sqrt{\lambda_{k}}}\Big{)}\int_{t}^{t+h}\big{|}\gamma_{k}(\tau)\big{|}^{2}d\tau
\displaystyle\leq h4λk3esssupt[0,T]|γk(t)|2,\displaystyle\frac{h^{4}\lambda_{k}}{3}\mathop{\operatorname{ess\,sup}}\limits_{t\in[0,T]}\big{|}\gamma_{k}(t)\big{|}^{2},

where the last inequality follows by using the inequality sinxxx3/6\sin x\geq x-x^{3}/6. Hence for all t[δ,Tδ]t\in[\delta,T-\delta] and each h(δ,δ)h\in(-\delta,\delta),

|ck(t+h)ck(t)|2\displaystyle|c_{k}(t+h)-c_{k}(t)|^{2}
=\displaystyle= |sin(λk(t+h))sin(λkt)λkβk+(cos(λk(t+h))cos(λkt))αk\displaystyle\Bigg{|}\frac{\sin(\sqrt{\lambda_{k}}(t+h))-\sin(\sqrt{\lambda_{k}}t)}{\sqrt{\lambda_{k}}}\beta_{k}+\big{(}\cos(\sqrt{\lambda_{k}}(t+h))-\cos(\sqrt{\lambda_{k}}t)\big{)}\alpha_{k}
+1λktt+hsin(λk(t+hτ))γk(τ)𝑑τ\displaystyle+\frac{1}{\sqrt{\lambda_{k}}}\int_{t}^{t+h}\sin(\sqrt{\lambda_{k}}(t+h-\tau))\gamma_{k}(\tau)d\tau
+1λk0t(sin(λk(t+hτ))sin(λk(tτ)))γk(τ)dτ|2\displaystyle+\frac{1}{\sqrt{\lambda_{k}}}\int_{0}^{t}\big{(}\sin(\sqrt{\lambda_{k}}(t+h-\tau))-\sin(\sqrt{\lambda_{k}}(t-\tau))\big{)}\gamma_{k}(\tau)d\tau\Bigg{|}^{2}
\displaystyle\leq  3h2(|βk|2+λk|αk|2+T0T|γk(τ)|2𝑑τ)+h43esssupt[0,T]|γk(t)|2\displaystyle\,3h^{2}\Big{(}|\beta_{k}|^{2}+\lambda_{k}|\alpha_{k}|^{2}+T\int_{0}^{T}|\gamma_{k}(\tau)|^{2}d\tau\Big{)}+\frac{h^{4}}{3}\mathop{\operatorname{ess\,sup}}\limits_{t\in[0,T]}\big{|}\gamma_{k}(t)\big{|}^{2}
=:\displaystyle=: 3h2Mk+h43esssupt[0,T]|γk(t)|2,\displaystyle 3h^{2}M_{k}+\frac{h^{4}}{3}\mathop{\operatorname{ess\,sup}}\limits_{t\in[0,T]}\big{|}\gamma_{k}(t)\big{|}^{2}, (3.9)

where the facts |sin(xt+xh)sin(xt)||x|h|\sin(xt+xh)-\sin(xt)|\leq|x|h and |cos(xt+xh)cos(xt)||x|h|\cos(xt+xh)-\cos(xt)|\leq|x|h are used in the inequality. We remark that

k=1Mk=hμ2+gdom2+Tf(t)2,L2(Ω,μ)2<and\displaystyle\sum_{k=1}^{\infty}M_{k}=\|h\|_{\mu}^{2}+\|g\|_{\operatorname{dom}\mathcal{E}}^{2}+T\|f(t)\|_{2,L^{2}(\Omega,\mu)}^{2}<\infty\quad\text{and}
k=1esssupt[0,T]|γk(t)|2=f(t),L2(Ω,μ)<.\displaystyle\sum_{k=1}^{\infty}\mathop{\operatorname{ess\,sup}}\limits_{t\in[0,T]}\big{|}\gamma_{k}(t)\big{|}^{2}=\|f(t)\|_{\infty,L^{2}(\Omega,\mu)}<\infty. (3.10)

Using (3) and Ho¨\ddot{\rm o}lder’s inequality, we have

|dk(t)|23(|βk|2+λk|αk|2+T0T|γk(τ)|2𝑑τ)=3Mk.\displaystyle|d_{k}(t)|^{2}\leq 3\Big{(}|\beta_{k}|^{2}+\lambda_{k}|\alpha_{k}|^{2}+T\int_{0}^{T}|\gamma_{k}(\tau)|^{2}d\tau\Big{)}=3M_{k}. (3.11)

Combining (3) and (3.11), we have for Lebesgue a.e. t[δ,Tδ]t\in[\delta,T-\delta] and h(δ,δ)h\in(-\delta,\delta),

|sk(t,h)|22(|ck(t+h)ck(t)|2h2+|dk(t)|2)12Mk+esssupt[0,T]|γk(t)|2.\displaystyle|s_{k}(t,h)|^{2}\leq 2\Big{(}\frac{|c_{k}(t+h)-c_{k}(t)|^{2}}{h^{2}}+|d_{k}(t)|^{2}\Big{)}\leq 12M_{k}+\mathop{\operatorname{ess\,sup}}\limits_{t\in[0,T]}\big{|}\gamma_{k}(t)\big{|}^{2}. (3.12)

Using (3), (3.12), and Weierstrass’ M-test, we see the series k=0|sk(t,h)|2\sum_{k=0}^{\infty}|s_{k}(t,h)|^{2} converges uniformly for all h(δ,δ)h\in(-\delta,\delta) and Lebesgue a.e. t[δ,Tδ]t\in[\delta,T-\delta]. Thus, for Lebesgue a.e. t[δ,Tδ]t\in[\delta,T-\delta],

limh0u(t+h)u(t)hH(t)μ2=limh0k=0|sk(t,h)|2=k=0limh0|sk(t,h)|2=0,\displaystyle\lim_{h\to 0}\Big{\|}\frac{u(t+h)-u(t)}{h}-H(t)\Big{\|}_{\mu}^{2}=\lim_{h\to 0}\sum_{k=0}^{\infty}|s_{k}(t,h)|^{2}=\sum_{k=0}^{\infty}\lim_{h\to 0}|s_{k}(t,h)|^{2}=0,

where (3.8) is used in the last equality. It follows that tu(t)=H(t)\partial_{t}u(t)=H(t) in L2(Ω,μ)L^{2}(\Omega,\mu) for Lebesgue a.e. t[δ,Tδ]t\in[\delta,T-\delta]. The desired result follows by letting δ0+\delta\to 0^{+}.

(b) We can prove that ttu=K(t)\partial_{tt}u=K(t) in (dom)(\operatorname{dom}\mathcal{E})^{\prime} for Lebesgue a.e. t[0,T]t\in[0,T] by using a method similar to that in (a).

(c) We first note that u(0)=gu(0)=g, t(0)=h\partial_{t}(0)=h and

Lu=\displaystyle Lu= k=1sin(λkt)βkφkλk+k=0αkcos(λkt)λkφk\displaystyle\sum_{k=1}^{\infty}\sin(\sqrt{\lambda_{k}}t)\beta_{k}\varphi_{k}\sqrt{\lambda_{k}}+\sum_{k=0}^{\infty}\alpha_{k}\cos(\sqrt{\lambda_{k}}t)\lambda_{k}\varphi_{k}
+k=1λkφk0tsin(λk(tτ))γk(τ)𝑑τ,\displaystyle+\sum_{k=1}^{\infty}\sqrt{\lambda_{k}}\varphi_{k}\int_{0}^{t}\sin(\sqrt{\lambda_{k}}(t-\tau))\gamma_{k}(\tau)d\tau, (3.13)

where LL is defined as in (2.8). Combining (3) and part (b), we have ttu(t)+Lu(t)=f(t)\partial_{tt}u(t)+Lu(t)=f(t) on (dom)(\operatorname{dom}\mathcal{E})^{\prime} for Lebesgue a.e. t[0,T]t\in[0,T]. It follows from Remark 3.2 that u(t)u(t) is a weak solution of (3.4).

To prove uniqueness, it suffices to show that the only solution of (3.4) with f(t)gh0f(t)\equiv g\equiv h\equiv 0 is u(t)0u(t)\equiv 0. Let uu be a weak solution of (3.4) with f(t)gh0f(t)\equiv g\equiv h\equiv 0. Let tuL([0,T],L2(Ω,μ))\partial_{t}u\in L^{\infty}([0,T],L^{2}(\Omega,\mu)). Then

ttu,tuμ+(u,tu)=0for Lebesgue a.e. t[0,T].\displaystyle\langle\partial_{tt}u,\partial_{t}u\rangle_{\mu}+\mathcal{E}(u,\partial_{t}u)=0\qquad\text{for Lebesgue a.e. $t\in[0,T]$}.

Note that

ddttuμ2=2ttu,tuμandddtudom2=2(u,tu).\displaystyle\frac{d}{dt}\|\partial_{t}u\|_{\mu}^{2}=2\langle\partial_{tt}u,\partial_{t}u\rangle_{\mu}\qquad\text{and}\qquad\frac{d}{dt}\|u\|_{\operatorname{dom}\mathcal{E}}^{2}=2\mathcal{E}(u,\partial_{t}u).

Hence

ddt(12tuμ2+12udom2)=0,\displaystyle\frac{d}{dt}\Big{(}\frac{1}{2}\|\partial_{t}u\|_{\mu}^{2}+\frac{1}{2}\|u\|_{\operatorname{dom}\mathcal{E}}^{2}\Big{)}=0,

i.e., for Lebesgue a.e. s[0,T]s\in[0,T],

12tu(s)μ2+12u(s)dom2=0.\displaystyle\frac{1}{2}\|\partial_{t}u(s)\|_{\mu}^{2}+\frac{1}{2}\|u(s)\|_{\operatorname{dom}\mathcal{E}}^{2}=0.

We know that u(0)=0u(0)=0 and tu(0)=0\partial_{t}u(0)=0. Hence we have tu=0\partial_{t}u=0 in L([0,T],L2(Ω,μ))L^{\infty}([0,T],L^{2}(\Omega,\mu)) and u=0u=0 in L([0,T],dom)L^{\infty}([0,T],\operatorname{dom}\mathcal{E}).

(d) By using (3.5)–(3) and Ho¨\ddot{\rm o}lder’s inequality, we have u(t)L([0,T],Eα(Ω,μ))u(t)\in L^{\infty}([0,T],E_{\alpha}(\Omega,\mu)) and tu(t)L([0,T],Eα2(Ω,μ))\partial_{t}u(t)\in L^{\infty}([0,T],E_{\alpha-2}(\Omega,\mu)).

(e) Since f0f\equiv 0, by parts (a), (b), and (c), for all t[0,T]t\in[0,T], we have

u(t)μ2k=1|βk|2/λk+k=0|αk|2c1hdom2+gμ2and\displaystyle\|u(t)\|_{\mu}^{2}\leq\sum_{k=1}^{\infty}|\beta_{k}|^{2}/\lambda_{k}+\sum_{k=0}^{\infty}|\alpha_{k}|^{2}\leq c_{1}\|h\|_{\operatorname{dom}\mathcal{E}}^{2}+\|g\|_{\mu}^{2}\quad\text{and}
(u,u)k=1|βk|2+k=0|αk|2λkc2(h,h)+(g,g).\displaystyle\mathcal{E}(u,u)\leq\sum_{k=1}^{\infty}|\beta_{k}|^{2}+\sum_{k=0}^{\infty}|\alpha_{k}|^{2}\lambda_{k}\leq c_{2}\,\mathcal{E}(h,h)+\mathcal{E}(g,g).

Theorem 3.4.

Let MM be a complete oriented smooth Riemannian nn-manifold. Let ΩM\Omega\subseteq M be a bounded open set and let μ\mu be a finite positive Borel measure on MM with supp(μ)Ω¯{\rm supp}(\mu)\subseteq\overline{\Omega}. Assume that dim¯(μ)>n2\underline{\operatorname{dim}}_{\infty}(\mu)>n-2 and F()Lip(dom)F(\cdot)\in{\rm Lip}(\operatorname{dom}\mathcal{E}). Let g=k=0αkφkdomg=\sum_{k=0}^{\infty}\alpha_{k}\varphi_{k}\in\operatorname{dom}\mathcal{E} and h=k=0βkφkL2(Ω,μ)h=\sum_{k=0}^{\infty}\beta_{k}\varphi_{k}\in L^{2}(\Omega,\mu). Then the semi-linear wave equation (1.4) has a unique weak solution u(t)L([0,T],dom)u(t)\in L^{\infty}([0,T],\operatorname{dom}\mathcal{E}), which can be expressed as

u(t)=\displaystyle u(t)= k=1sin(λkt)λkβkφk+k=0αkcos(λkt)φk\displaystyle\sum_{k=1}^{\infty}\frac{\sin(\sqrt{\lambda_{k}}t)}{\sqrt{\lambda_{k}}}\beta_{k}\varphi_{k}+\sum_{k=0}^{\infty}\alpha_{k}\cos(\sqrt{\lambda_{k}}t)\varphi_{k}
+k=1φkλk0tsin(λk(tτ))F(u(τ)),φkμ𝑑τ.\displaystyle+\sum_{k=1}^{\infty}\frac{\varphi_{k}}{\sqrt{\lambda_{k}}}\int_{0}^{t}\sin(\sqrt{\lambda_{k}}(t-\tau))\langle F(u(\tau)),\varphi_{k}\rangle_{\mu}d\tau.

Moreover, under the additional assumptions that F()Lip(Eα(Ω,μ))F(\cdot)\in{\rm Lip}(E_{\alpha}(\Omega,\mu)), gEα(Ω,μ)g\in E_{\alpha}(\Omega,\mu), and hEα1(Ω,μ)h\in E_{\alpha-1}(\Omega,\mu) where α2\alpha\geq 2, we have u(t)L([0,T],Eα(Ω,μ))u(t)\in L^{\infty}([0,T],E_{\alpha}(\Omega,\mu)), tu(t)L([0,T],Eα1(Ω,μ))\partial_{t}u(t)\in L^{\infty}([0,T],\\ E_{\alpha-1}(\Omega,\mu)), and ttu(t)L([0,T],Eα2(Ω,μ))\partial_{tt}u(t)\in L^{\infty}([0,T],E_{\alpha-2}(\Omega,\mu)).

Proof.

The proof of this theorem is similar to that of [35, Theorem 1.1] and is omitted. ∎

4. Weak solutions of heat equations

In this section, we let MM be a complete oriented smooth Riemannian nn-manifold. Let ΩM\Omega\subseteq M be a bounded open set and let μ\mu be a finite positive Borel measure on MM with supp(μ)Ω¯{\rm supp}(\mu)\subseteq\overline{\Omega}.

Definition 4.1.

Let 0<T<0<T<\infty. Let gdomg\in\operatorname{dom}\mathcal{E} and fL([0,T],dom)f\in L^{\infty}([0,T],\operatorname{dom}\mathcal{E}). A function uL([0,T],dom)u\in L^{\infty}([0,T],\operatorname{dom}\mathcal{E}), with tuL([0,T],(dom))\partial_{t}u\in L^{\infty}([0,T],(\operatorname{dom}\mathcal{E})^{\prime}) is a weak solution of the heat equation

{tuΔμu=f(t)onΩ×[0,T],u=0onΩ×[0,T],u=gonΩ×{t=0},\displaystyle\left\{\begin{array}[]{lll}\partial_{t}u-\Delta_{\mu}u=f(t)&\text{on}\,\,\,\Omega\times[0,T],\\ u=0&\text{on}\,\,\,\partial\Omega\times[0,T],\\ u=g&\text{on}\,\,\,\Omega\times\{t=0\},\\ \end{array}\right. (4.4)

if the following conditions are satisfied:

  1. (1)

    tu,v+(u,v)=f(t),vμ\langle\partial_{t}u,v\rangle+\mathcal{E}(u,v)=\langle f(t),v\rangle_{\mu} for each vdomv\in\operatorname{dom}\mathcal{E} and Lebesgue a.e. t[0,T]t\in[0,T];

  2. (2)

    u(0)=gu(0)=g.

Remark 4.2.

Here we comment on Definition 4.1.

  1. (a)

    The boundary condition u|Ω=0u|_{\partial\Omega}=0 in (4.4) is included in the assumption u(t)domu(t)\in\operatorname{dom}\mathcal{E}. If uL([0,T],dom)u\in L^{\infty}([0,T],\operatorname{dom}\mathcal{E}) and tuL([0,T],(dom))\partial_{t}u\in L^{\infty}([0,T],(\operatorname{dom}\mathcal{E})^{\prime}), then uC([0,T],L2(Ω,μ))u\in C([0,T],\\ L^{2}(\Omega,\mu)), and thus the initial condition u(0)=gu(0)=g makes sense.

  2. (b)

    Condition (1) is equivalent to

    tu+Lu=f(t)in(dom)for Lebesgue a.e.t[0,T],\displaystyle\partial_{t}u+Lu=f(t)\quad\text{in}\,\,(\operatorname{dom}\mathcal{E})^{\prime}\,\,\text{for Lebesgue a.e.}\,\,t\in[0,T],

    where LL is defined as in (2.8).

Let {φk}k=0\left\{\varphi_{k}\right\}_{k=0}^{\infty} be an orthonormal basis of L2(Ω,μ)L^{2}(\Omega,\mu) such that Δμφk=λkφk-\Delta_{\mu}\varphi_{k}=\lambda_{k}\varphi_{k} and let

g:=k=0bkφkL2(Ω,μ)andf(t):=k=0βk(t)φkL2([0,T],L2(Ω,μ)),\displaystyle g:=\sum_{k=0}^{\infty}b_{k}\varphi_{k}\in L^{2}(\Omega,\mu)\quad\text{and}\quad f(t):=\sum_{k=0}^{\infty}\beta_{k}(t)\varphi_{k}\in L^{2}([0,T],L^{2}(\Omega,\mu)),

where βk(t):=f(t),φkμ\beta_{k}(t):=\langle f(t),\varphi_{k}\rangle_{\mu} for k1k\geq 1. Define

u(t):=k=0bkeλktφk+k=0(0teλk(tτ)βk(τ)𝑑τ)φk\displaystyle u(t):=\sum_{k=0}^{\infty}b_{k}e^{-\lambda_{k}t}\varphi_{k}+\sum_{k=0}^{\infty}\Big{(}\int_{0}^{t}e^{-\lambda_{k}(t-\tau)}\beta_{k}(\tau)d\tau\Big{)}\varphi_{k}

and

K(t):=k=0bkλkeλktφk+f(t)k=0λk(0teλk(tτ)βk(τ)𝑑τ)φk.\displaystyle K(t):=-\sum_{k=0}^{\infty}b_{k}\lambda_{k}e^{-\lambda_{k}t}\varphi_{k}+f(t)-\sum_{k=0}^{\infty}\lambda_{k}\Big{(}\int_{0}^{t}e^{-\lambda_{k}(t-\tau)}\beta_{k}(\tau)d\tau\Big{)}\varphi_{k}. (4.5)
Theorem 4.3.

Let MM be a complete oriented smooth Riemannian nn-manifold. Let ΩM\Omega\subseteq M be a bounded open set and let μ\mu be a finite positive Borel measure on MM with supp(μ)Ω¯{\rm supp}(\mu)\subseteq\overline{\Omega}. Assume that dim¯(μ)>n2\underline{\operatorname{dim}}_{\infty}(\mu)>n-2. Let gg, f(t)f(t), u(t)u(t), and K(t)K(t) be defined as above. If gdomg\in\operatorname{dom}\mathcal{E} and f(t)L([0,T],dom)f(t)\in L^{\infty}([0,T],\operatorname{dom}\mathcal{E}), then the following hold:

  1. (a)

    tu=K(t)\partial_{t}u=K(t) in (dom)(\operatorname{dom}\mathcal{E})^{\prime} for Lebesgue a.e. t[0,T]t\in[0,T].

  2. (b)

    u(t)u(t) is the unique weak solution of the heat equation (4.4).

  3. (c)

    If gEα(Ω,μ)g\in E_{\alpha}(\Omega,\mu) and fL([0,T],Eα(Ω,μ))f\in L^{\infty}([0,T],E_{\alpha}(\Omega,\mu)), where α2\alpha\geq 2, then u(t)L([0,T],Eα(Ω,μ))u(t)\in L^{\infty}([0,T],\\ E_{\alpha}(\Omega,\mu)) and tu(t)L([0,T],Eα2(Ω,μ))\partial_{t}u(t)\in L^{\infty}([0,T],E_{\alpha-2}(\Omega,\mu)).

  4. (d)

    If f0f\equiv 0, then

    u(t)μgμand(u,u)(g,g)for allt[0,T].\displaystyle\|u(t)\|_{\mu}\leq\|g\|_{\mu}\quad\text{and}\quad\mathcal{E}(u,u)\leq\mathcal{E}(g,g)\quad\text{for all}\,\,t\in[0,T].
Proof.

With some modifications, one can prove this theorem by following the arguments in [35, Theorem 3.1]. ∎

Theorem 4.4.

Let nn, MM, and μ\mu be as in Theorem 3.4. Assume that dim¯(μ)>n2\underline{\operatorname{dim}}_{\infty}(\mu)>n-2 and F()Lip(dom)F(\cdot)\in{\rm Lip}(\operatorname{dom}\mathcal{E}). Let g=k=0bkφkdomg=\sum_{k=0}^{\infty}b_{k}\varphi_{k}\in\operatorname{dom}\mathcal{E}. Then the semi-linear heat equation (1.8) has a unique weak solution u(t)L([0,T],dom)u(t)\in L^{\infty}([0,T],\operatorname{dom}\mathcal{E}), which can be expressed as

u(t)=k=0bkeλktφk+k=0(0teλk(tτ)F(u(τ)),φkμ𝑑τ)φk.\displaystyle u(t)=\sum_{k=0}^{\infty}b_{k}e^{-\lambda_{k}t}\varphi_{k}+\sum_{k=0}^{\infty}\Big{(}\int_{0}^{t}e^{-\lambda_{k}(t-\tau)}\langle F(u(\tau)),\varphi_{k}\rangle_{\mu}d\tau\Big{)}\varphi_{k}.

Moreover, under the additional assumptions that F()Lip(Eα(Ω,μ))F(\cdot)\in{\rm Lip}(E_{\alpha}(\Omega,\mu)) and gEα(Ω,μ)g\in E_{\alpha}(\Omega,\mu), where α2\alpha\geq 2, we have u(t)L([0,T],Eα(Ω,μ))u(t)\in L^{\infty}([0,T],E_{\alpha}(\Omega,\mu)) and tu(t)L([0,T],Eα2(Ω,μ))\partial_{t}u(t)\in L^{\infty}([0,T],E_{\alpha-2}(\Omega,\mu)).

Proof.

The proof follows by using the results of Theorem 4.3, and a similar argument as that in the proof of [35, Theorem 1.1]. ∎

5. Weak solutions of Schrödinger equations

In this section, we also let MM be a complete oriented smooth Riemannian nn-manifold. Let ΩM\Omega\subseteq M be a bounded open set and let μ\mu be a finite positive Borel measure on MM with supp(μ)Ω¯{\rm supp}(\mu)\subseteq\overline{\Omega}.

Definition 5.1.

Let 0<T<0<T<\infty. Let gdomg\in\operatorname{dom}\mathcal{E} and fL([0,T],dom)f\in L^{\infty}([0,T],\operatorname{dom}\mathcal{E}). A function uL([0,T],dom)u\in L^{\infty}([0,T],\operatorname{dom}\mathcal{E}), with tuL([0,T],(dom))\partial_{t}u\in L^{\infty}([0,T],(\operatorname{dom}\mathcal{E})^{\prime}) is a weak solution of the Schrödinger equation

{itu+Δμu=f(t)onΩ×[0,T],u=0onΩ×[0,T],u=gonΩ×{t=0},\displaystyle\left\{\begin{array}[]{lll}i\partial_{t}u+\Delta_{\mu}u=f(t)&\text{on}\,\,\,\Omega\times[0,T],\\ u=0&\text{on}\,\,\,\partial\Omega\times[0,T],\\ u=g&\text{on}\,\,\,\Omega\times\{t=0\},\\ \end{array}\right. (5.4)

if the following conditions are satisfied:

  1. (1)

    itu,v(u,v)=f(t),vμ\langle i\partial_{t}u,v\rangle-\mathcal{E}(u,v)=\langle f(t),v\rangle_{\mu} for each vdomv\in\operatorname{dom}\mathcal{E} and Lebesgue a.e. t[0,T]t\in[0,T];

  2. (2)

    u(0)=gu(0)=g.

Remark 5.2.

Here we comment on Definition 5.1.

  1. (a)

    The boundary condition u|Ω=0u|_{\partial\Omega}=0 in (5.4) is included in the assumption u(t)domu(t)\in\operatorname{dom}\mathcal{E}. If uL([0,T],dom)u\in L^{\infty}([0,T],\operatorname{dom}\mathcal{E}) and tuL([0,T],(dom))\partial_{t}u\in L^{\infty}([0,T],(\operatorname{dom}\mathcal{E})^{\prime}), then uC([0,T],L2(Ω,μ))u\in C([0,T],\\ L^{2}(\Omega,\mu)), and thus the initial condition u(0)=gu(0)=g makes sense.

  2. (b)

    Condition (1) is equivalent to

    ituLu=f(t)in(dom)for Lebesgue a.e.t[0,T],\displaystyle i\partial_{t}u-Lu=f(t)\quad\text{in}\,\,(\operatorname{dom}\mathcal{E})^{\prime}\,\,\text{for Lebesgue a.e.}\,\,t\in[0,T],

    where LL is defined as in (2.8).

Let

g=k=0bkφkL2(Ω,μ)andf(t)=k=0βk(t)φkL2([0,T],L2(Ω,μ)),\displaystyle g=\sum_{k=0}^{\infty}b_{k}\varphi_{k}\in L^{2}(\Omega,\mu)\quad\text{and}\quad f(t)=\sum_{k=0}^{\infty}\beta_{k}(t)\varphi_{k}\in L^{2}([0,T],L^{2}(\Omega,\mu)),

where βk(t)=f(t),φkμ\beta_{k}(t)=\langle f(t),\varphi_{k}\rangle_{\mu} for k1k\geq 1. Define

u(t):=k=0bkeiλktφkik=0(0teiλk(tτ)βk(τ)𝑑τ)φk\displaystyle u(t):=\sum_{k=0}^{\infty}b_{k}e^{-i\lambda_{k}t}\varphi_{k}-i\sum_{k=0}^{\infty}\Big{(}\int_{0}^{t}e^{-i\lambda_{k}(t-\tau)}\beta_{k}(\tau)d\tau\Big{)}\varphi_{k}

and

K(t):=ik=0bkλkeiλktφkif(t)k=0λk(0teiλk(tτ)βk(τ)𝑑τ)φk.\displaystyle K(t):=-i\sum_{k=0}^{\infty}b_{k}\lambda_{k}e^{-i\lambda_{k}t}\varphi_{k}-if(t)-\sum_{k=0}^{\infty}\lambda_{k}\Big{(}\int_{0}^{t}e^{-i\lambda_{k}(t-\tau)}\beta_{k}(\tau)d\tau\Big{)}\varphi_{k}. (5.5)
Theorem 5.3.

Let MM be a complete oriented smooth Riemannian nn-manifold. Let ΩM\Omega\subseteq M be a bounded open set and let μ\mu be a finite positive Borel measure on MM with supp(μ)Ω¯{\rm supp}(\mu)\subseteq\overline{\Omega}. Assume that dim¯(μ)>n2\underline{\operatorname{dim}}_{\infty}(\mu)>n-2. Let gg, f(t)f(t), u(t)u(t), and K(t)K(t) be defined as above. If gdomg\in\operatorname{dom}\mathcal{E} and f(t)L([0,T],dom)f(t)\in L^{\infty}([0,T],\operatorname{dom}\mathcal{E}), then the following hold:

  1. (a)

    tu=K(t)\partial_{t}u=K(t) in (dom)(\operatorname{dom}\mathcal{E})^{\prime} for Lebesgue a.e. t[0,T]t\in[0,T].

  2. (b)

    u(t)u(t) is the unique weak solution of the Schro¨\ddot{o}dinger equation (5.4).

  3. (c)

    If gEα(Ω,μ)g\in E_{\alpha}(\Omega,\mu) and fL([0,T],Eα(Ω,μ))f\in L^{\infty}([0,T],E_{\alpha}(\Omega,\mu)), where α2\alpha\geq 2, then u(t)L([0,T],Eα(Ω,μ))u(t)\in L^{\infty}([0,T],\\ E_{\alpha}(\Omega,\mu)) and tu(t)L([0,T],Eα2(Ω,μ))\partial_{t}u(t)\in L^{\infty}([0,T],E_{\alpha-2}(\Omega,\mu)).

  4. (d)

    If f0f\equiv 0, then

    u(t)μ=gμand(u,u)=(g,g)for allt[0,T].\displaystyle\|u(t)\|_{\mu}=\|g\|_{\mu}\quad\text{and}\quad\mathcal{E}(u,u)=\mathcal{E}(g,g)\quad\text{for all}\,\,t\in[0,T].

The proof of Theorem 5.3 is similar to that of [35, Theorem 3.1]; we omit the proof. We have the following theorem.

Theorem 5.4.

Let nn, MM, and μ\mu be as in Theorem 3.4. Assume that dim¯(μ)>n2\underline{\operatorname{dim}}_{\infty}(\mu)>n-2 and F()Lip(dom)F(\cdot)\in{\rm Lip}(\operatorname{dom}\mathcal{E}). Let g=k=0bkφkdomg=\sum_{k=0}^{\infty}b_{k}\varphi_{k}\in\operatorname{dom}\mathcal{E}. Then the semi-linear Schro¨\ddot{o}dinger equation (1.12) has a unique weak solution u(t)L([0,T],dom)u(t)\in L^{\infty}([0,T],\operatorname{dom}\mathcal{E}), which is given by

u(t)=k=0bkeiλktφkik=0(0teiλk(tτ)F(u(τ)),φkμ𝑑τ)φk.\displaystyle u(t)=\sum_{k=0}^{\infty}b_{k}e^{-i\lambda_{k}t}\varphi_{k}-i\sum_{k=0}^{\infty}\Big{(}\int_{0}^{t}e^{-i\lambda_{k}(t-\tau)}\langle F(u(\tau)),\varphi_{k}\rangle_{\mu}d\tau\Big{)}\varphi_{k}.

Moreover, under the additional assumptions that F()Lip(Eα(Ω,μ))F(\cdot)\in{\rm Lip}(E_{\alpha}(\Omega,\mu)) and gEα(Ω,μ)g\in E_{\alpha}(\Omega,\mu), where α2\alpha\geq 2, we have u(t)L([0,T],Eα(Ω,μ))u(t)\in L^{\infty}([0,T],E_{\alpha}(\Omega,\mu)) and tu(t)L([0,T],Eα2(Ω,μ))\partial_{t}u(t)\in L^{\infty}([0,T],E_{\alpha-2}(\Omega,\mu)).

Proof of Theorem 5.4.

This follows by using Theorem 5.3 and a similar proof as that of [35, Theorem 1.1]. ∎

6. Examples of IFS

In this section, we let MM be a complete nn-dimensional smooth Riemannian manifold. Let ΩM\Omega\subseteq M be a bounded open set. Let {fi}i=1m\{f_{i}\}_{i=1}^{m} be a finite set of contractions on MM, i.e., for each ii, there exists rir_{i} with 0<ri<10<r_{i}<1 such that

dM(fi(p),fi(q))ridM(p,q)for allp,qM.\displaystyle d_{M}(f_{i}(p),f_{i}(q))\leq r_{i}d_{M}(p,q)\quad\text{for all}\,\,p,q\in M. (6.1)

Then there exists a unique nonempty compact set KK such that K=i=1mfi(K)K=\bigcup^{m}_{i=1}f_{i}(K) (see Hutchinson[21]). We call a family of contractions {fi}i=1m\{f_{i}\}_{i=1}^{m} on MM an iterated function system (IFS), and call KK the invariant set or attractor of the IFS. If equality in (6.1) holds, then fif_{i} is called a contractive similitude. Let (p1,,pm)(p_{1},\ldots,p_{m}) be a probability vector, i.e., pi>0p_{i}>0 and i=1mpi=1\sum_{i=1}^{m}p_{i}=1. Then there is a unique Borel probability measure μ\mu with supp(μ)=K{\textup{{supp}}}(\mu)=K, called the invariant measure, that satisfies

μ=i=1mpiμfi1.\displaystyle\mu=\sum_{i=1}^{m}p_{i}\mu\circ f_{i}^{-1}.

For τ:=(i1,,ik)\tau:=\left(i_{1},\ldots,i_{k}\right), we denote by |τ|=k|\tau|=k the length of τ\tau and let fτ:=fi1fikf_{\tau}:=f_{i_{1}}\circ\cdots\circ f_{i_{k}}, pτ:=pi1pikp_{\tau}:=p_{i_{1}}\cdots p_{i_{k}}. For the invariant set KK, we let Kτ:=fτ(K)K_{\tau}:=f_{\tau}(K). We call {fi}i=1m:Ω¯Ω¯\left\{f_{i}\right\}_{i=1}^{m}:\overline{\Omega}\to\overline{\Omega} an IFS of bibi-Lipschitz contractions if for each i=i= 1,,m1,\ldots,m, there exist ci,ric_{i},r_{i} with 0<ciri<10<c_{i}\leq r_{i}<1 such that

cidM(p,q)dM(fi(p),fi(q))ridM(p,q) for all p,qΩ¯.\displaystyle c_{i}d_{M}(p,q)\leq d_{M}(f_{i}(p),f_{i}(q))\leq r_{i}d_{M}(p,q)\quad\text{ for all }p,q\in\overline{\Omega}. (6.2)

We have the following lemma.

Lemma 6.1.

Let MM be a complete nn-dimensional smooth Riemannian manifold. Let ΩM\Omega\subseteq M be a bounded open set. Let μ\mu be an invariant measure of an IFS {fi}i=1m\left\{f_{i}\right\}_{i=1}^{m} of bi-Lipschitz contractions on Ω¯\overline{\Omega}. Suppose the attractor KK is not a singleton. Then μ\mu is upper ss-regular for some s>0s>0, and hence dim¯(μ)>0\underline{\operatorname{dim}}_{\infty}(\mu)>0.

The proof of this lemma is similar to that of [22, Lemma 5.1] and is omitted.

Proposition 6.2.

Let 𝕊2\mathbb{S}^{2} be a unit 2-sphere with center OO. Let

𝕊+2:={(sinφcosθ,sinφsinθ,cosφ):0θ<2π,0φπ/2}\mathbb{S}^{2}_{+}:=\{(\sin\varphi\cos\theta,\sin\varphi\sin\theta,\cos\varphi):0\leq\theta<2\pi,0\leq\varphi\leq\pi/2\}

be a subset of 𝕊2\mathbb{S}^{2}, parameterized by the polar angle φ[0,π/2]\varphi\in[0,\pi/2] and the azimuthal angle θ[0,2π)\theta\in[0,2\pi). For any point p:=(sinφcosθ,sinφsinθ,cosφ)𝕊+2p:=(\sin\varphi\cos\theta,\sin\varphi\sin\theta,\cos\varphi)\in\mathbb{S}^{2}_{+}, let f:𝕊+2𝕊+2f:\mathbb{S}^{2}_{+}\to\mathbb{S}^{2}_{+} be a mapping defined by

f(p)=(sinφ2cosθ,sinφ2sinθ,cosφ2).\displaystyle f(p)=\Big{(}\sin\frac{\varphi}{2}\cos\theta,\sin\frac{\varphi}{2}\sin\theta,\cos\frac{\varphi}{2}\Big{)}.

Then ff is a bi-Lipschitz contraction on 𝕊+2\mathbb{S}^{2}_{+}, i.e., there exist c,rc,r with 0<cr<10<c\leq r<1 such that

cdM(p,q)dM(f(p),f(q))rdM(p,q) for all p,q𝕊+2.\displaystyle cd_{M}(p,q)\leq d_{M}(f(p),f(q))\leq rd_{M}(p,q)\quad\text{ for all }p,q\in\mathbb{S}^{2}_{+}. (6.3)
Proof.

For any two points p,q𝕊+2p,q\in\mathbb{S}^{2}_{+} with respect parameters (φ1,θ1)(\varphi_{1},\theta_{1}) and (φ2,θ2)(\varphi_{2},\theta_{2}), where φ1φ2\varphi_{1}\geq\varphi_{2}, we let a:=π/2φ1a:=\pi/2-\varphi_{1}, b:=π/2φ2b:=\pi/2-\varphi_{2}, α:=|θ1θ2|\alpha:=|\theta_{1}-\theta_{2}|. Then bab\geq a, a,b[0,π/2]a,b\in[0,\pi/2], and α[0,2π)\alpha\in[0,2\pi). It follows from distance formula on 𝕊2\mathbb{S}^{2} that

dM(p,q)=arccos(sinasinb+cosacosbcosα)\displaystyle d_{M}(p,q)=\arccos\big{(}\sin a\sin b+\cos a\cos b\cos\alpha\big{)} (6.4)

(see, e.g., [19, p35]). Let ww be the point at which the parallel of pp intersects the meridian of qq and let (φ1,θ2)(\varphi_{1},\theta_{2}) be its parameter. By the law of cosines on 𝕊2\mathbb{S}^{2} (see, e.g. [19, p6]) and (6.4), we have

dM(p,q)=\displaystyle d_{M}(p,q)= arccos(cos(dM(p,w))cos(dM(q,w)))=arccos((sin2a+cos2acosα)cos(ba)).\displaystyle\arccos\big{(}\cos(d_{M}(p,w))\cos(d_{M}(q,w))\big{)}=\arccos\big{(}(\sin^{2}a+\cos^{2}a\cos\alpha)\cos(b-a)\big{)}.

Hence

dM(f(p),f(q))dM(p,q)\displaystyle\frac{d_{M}(f(p),f(q))}{d_{M}(p,q)}
=\displaystyle= arccos((sin2(a/2+π/4)+cos2(a/2+π/4)cosα)cos((ba)/2))arccos((sin2a+cos2acosα)cos(ba)).\displaystyle\frac{\arccos\big{(}(\sin^{2}(a/2+\pi/4)+\cos^{2}(a/2+\pi/4)\cos\alpha)\cos((b-a)/2)\big{)}}{\arccos\big{(}(\sin^{2}a+\cos^{2}a\cos\alpha)\cos(b-a)\big{)}}. (6.5)

Step 1. We first show that (6) has a positive lower bound cc. Since arccosx\arccos x is non-negative and decreasing on [1,1][-1,1], the right-hand side of (6) is non-negative and equals zero only when a=b=α=0a=b=\alpha=0 and a=b=π/2a=b=\pi/2. Using (6) and L’Hôpital’s rule, we have

lim(α,a,b)(0,0,0)dM(f(p),f(q))dM(p,q)=12and\displaystyle\lim\limits_{(\alpha,a,b)\to(0,0,0)}\frac{d_{M}(f(p),f(q))}{d_{M}(p,q)}=\frac{1}{2}\qquad\text{and} (6.6)
lim(a,b)(π/2,π/2)dM(f(p),f(q))dM(p,q)=12.\displaystyle\lim\limits_{(a,b)\to(\pi/2,\pi/2)}\frac{d_{M}(f(p),f(q))}{d_{M}(p,q)}=\frac{1}{2}. (6.7)

For any ϵ1(0,1/4)\epsilon_{1}\in(0,1/4), there exists δ1>0\delta_{1}>0 such that for α,a,b[0,δ1)\alpha,a,b\in[0,\delta_{1}),

|dM(f(p),f(q))dM(p,q)12|<ϵ1,\displaystyle\Big{|}\frac{d_{M}(f(p),f(q))}{d_{M}(p,q)}-\frac{1}{2}\Big{|}<\epsilon_{1},

For any ϵ2(0,1/4)\epsilon_{2}\in(0,1/4), there exists δ2>0\delta_{2}>0 such that for α[0,2π)\alpha\in[0,2\pi) and a,b(π/2δ2,π/2]a,b\in(\pi/2-\delta_{2},\pi/2] with bab\geq a,

|dM(f(p),f(q))dM(p,q)12|<ϵ2,\displaystyle\Big{|}\frac{d_{M}(f(p),f(q))}{d_{M}(p,q)}-\frac{1}{2}\Big{|}<\epsilon_{2},

Let c1:=min{1/2+ϵ1,1/2+ϵ2}c_{1}:=\min\{1/2+\epsilon_{1},1/2+\epsilon_{2}\}. Then for any α[δ1,2π)\alpha\in[\delta_{1},2\pi) and a,b[δ1,π/2δ2]a,b\in[\delta_{1},\pi/2-\delta_{2}] with bab\geq a,

dM(f(p),f(q))dM(p,q)c1.\displaystyle\frac{d_{M}(f(p),f(q))}{d_{M}(p,q)}\geq c_{1}.

For any δ1~δ1\widetilde{\delta_{1}}\geq\delta_{1}, by (6.6) and the continuity of dM(f(p),f(q))/dM(p,q)d_{M}(f(p),f(q))/d_{M}(p,q), there exists c2(0,1)c_{2}\in(0,1) such that for a,b,c[0,δ1~]a,b,c\in[0,\widetilde{\delta_{1}}],

dM(f(p),f(q))dM(p,q)c2.\displaystyle\frac{d_{M}(f(p),f(q))}{d_{M}(p,q)}\geq c_{2}.

For any δ2~δ2\widetilde{\delta_{2}}\geq\delta_{2}, by (6.7) and the continuity of dM(f(p),f(q))/dM(p,q)d_{M}(f(p),f(q))/d_{M}(p,q), there exists c3(0,1)c_{3}\in(0,1) such that for a,b[2πδ2~,2π)a,b\in[2\pi-\widetilde{\delta_{2}},2\pi) and α[0,2π)\alpha\in[0,2\pi),

dM(f(p),f(q))dM(p,q)c3.\displaystyle\frac{d_{M}(f(p),f(q))}{d_{M}(p,q)}\geq c_{3}.

Hence for any a,b[0,π/2]a,b\in[0,\pi/2] and α[0,2π)\alpha\in[0,2\pi) with bab\geq a,

dM(f(p),f(q))dM(p,q)c,\displaystyle\frac{d_{M}(f(p),f(q))}{d_{M}(p,q)}\geq c, (6.8)

where c:=min{1/2,c1,c2,c3}c:=\min\{1/2,c_{1},c_{2},c_{3}\}.

We will often assume that a,ba,b lie in the following intervals:

a[0,π/4],b[0,π/2],ba,a0orbπ/2.\displaystyle a\in[0,\pi/4],\quad b\in[0,\pi/2],\quad b\geq a,\quad a\neq 0\,\,\text{or}\,\,b\neq\pi/2. (6.9)

Step 2. We show that (6) has a positive lower bound rr. Let

g(a,b,α):=\displaystyle g(a,b,\alpha):= (sin2(a/2+π/4)+cos2(a/2+π/4)cosα)cos((ba)/2),\displaystyle\big{(}\sin^{2}(a/2+\pi/4)+\cos^{2}(a/2+\pi/4)\cos\alpha\big{)}\cos((b-a)/2),
h(a,b,α):=\displaystyle h(a,b,\alpha):= (sin2a+cos2acosα)cos(ba),\displaystyle(\sin^{2}a+\cos^{2}a\cos\alpha)\cos(b-a), (6.10)
F(a,b,α):=\displaystyle F(a,b,\alpha):= g(a,b,α)h(a,b,α).\displaystyle\frac{g(a,b,\alpha)}{h(a,b,\alpha)}.

Then

α(F(a,b,α))=cos((ba)/2)sec(ba)(sina+cos(2a))sinα2(cos2acosα+sin2a)2.\displaystyle\partial_{\alpha}(F(a,b,\alpha))=\frac{\cos((b-a)/2)\sec(b-a)(\sin a+\cos(2a))\sin\alpha}{2(\cos^{2}a\cos\alpha+\sin^{2}a)^{2}}. (6.11)

For α[0,π]\alpha\in[0,\pi] and a,b[0,π/2]a,b\in[0,\pi/2] with bab\geq a, if h(a,b,α)=0h(a,b,\alpha)=0, then either a=0a=0 and b=π/2b=\pi/2, or α=arccos(tan2a)\alpha=\arccos(-\tan^{2}a). Similarly, for α[π,2π)\alpha\in[\pi,2\pi) and a,b[0,π/2]a,b\in[0,\pi/2] with bab\geq a, if h(a,b,α)=0h(a,b,\alpha)=0, then either a=0a=0 and b=π/2b=\pi/2, or α=2πarccos(tan2a)\alpha=2\pi-\arccos(-\tan^{2}a). Hence we consider the following three cases.

Case I. a,ba,b as in (6.9), and α[0,2π)\alpha\in[0,2\pi). We further subdivide this into four subcases, according to the value of α\alpha.

Subcase 1. α[0,arccos(tan2a)][0,π/2]\alpha\in[0,\arccos(-\tan^{2}a)]\subseteq[0,\pi/2]. In this subcase, α(F(a,b,α))0\partial_{\alpha}(F(a,b,\alpha))\geq 0. Hence F(a,b,α)F(a,b,\alpha) is an increasing function of α\alpha and thus

1=F(b,b,0)F(a,b,0)F(a,b,α)F(a,b,arccos(tan2a)),\displaystyle 1=F(b,b,0)\leq F(a,b,0)\leq F(a,b,\alpha)\leq F(a,b,\arccos(-\tan^{2}a)),

where the first inequality follows by a direct verification. Therefore, for any ϵ3(0,1/4)\epsilon_{3}\in(0,1/4), there exists δ3>0\delta_{3}>0 such that for α(0,δ3)\alpha\in(0,\delta_{3}) and |ab|<δ3|a-b|<\delta_{3},

|F(a,b,α)1|<ϵ3.\displaystyle|F(a,b,\alpha)-1|<\epsilon_{3}.

Thus for α[δ3,arccos(tan2a)]\alpha\in[\delta_{3},\arccos(-\tan^{2}a)], and a,ba,b as in (6.9) with |ab|δ3|a-b|\geq\delta_{3},

arccos(g(a,b,α))arccos((1+ϵ3)h(a,b,α)).\displaystyle\arccos(g(a,b,\alpha))\leq\arccos((1+\epsilon_{3})h(a,b,\alpha)). (6.12)

By the mean-value theorem, there exists

ξ(a,b,α)(h(a,b,α),(1+ϵ3)h(a,b,α))\displaystyle\xi(a,b,\alpha)\in\big{(}h(a,b,\alpha),(1+\epsilon_{3})h(a,b,\alpha)\big{)} (6.13)

such that

arccos((1+ϵ3)h(a,b,α))arccos(h(a,b,α))(1+ϵ3)h(a,b,α)h(a,b,α)=arccos(ξ(a,b,α)).\displaystyle\frac{\arccos((1+\epsilon_{3})h(a,b,\alpha))-\arccos(h(a,b,\alpha))}{(1+\epsilon_{3})h(a,b,\alpha)-h(a,b,\alpha)}=\arccos^{\prime}(\xi(a,b,\alpha)). (6.14)

Combining (6.12) and (6.14), we have

arccos(g(a,b,α))\displaystyle\arccos(g(a,b,\alpha))\leq arccos(h(a,b,α))(1|ϵ3h(a,b,α)arccos(ξ(a,b,α))arccos(h(a,b,α))|)\displaystyle\arccos(h(a,b,\alpha))\Big{(}1-\Big{|}\frac{\epsilon_{3}h(a,b,\alpha)\arccos^{\prime}(\xi(a,b,\alpha))}{\arccos(h(a,b,\alpha))}\Big{|}\Big{)} (6.15)
=:\displaystyle=: (1|ϵ3η1|)arccos(h(a,b,α)),\displaystyle(1-|\epsilon_{3}\eta_{1}|)\arccos(h(a,b,\alpha)),

where

η1:=h(a,b,α)arccos(ξ(a,b,α))arccos(h(a,b,α)).\displaystyle\eta_{1}:=\frac{h(a,b,\alpha)\arccos^{\prime}(\xi(a,b,\alpha))}{\arccos(h(a,b,\alpha))}. (6.16)

We claim that for ϵ~3(0,1/4)\widetilde{\epsilon}_{3}\in(0,1/4) sufficiently small, there exists some δ~3>0\widetilde{\delta}_{3}>0 such that for a,ba,b as in (6.9) with |ab|δ3|a-b|\geq\delta_{3}, we have

η1ϵ~3.\displaystyle\eta_{1}\geq\widetilde{\epsilon}_{3}. (6.17)

In fact, by the definition of hh in (6.10), arccos(tan2a)\arccos(-\tan^{2}a) is the unique α\alpha such that h(a,b,α)=0h(a,b,\alpha)=0. Hence for α[δ3,arccos(tan2a)]\alpha\in[\delta_{3},\arccos(-\tan^{2}a)], h(a,b,α)0h(a,b,\alpha)\geq 0, and thus

h(a,b,α)arccos(h(a,b,α))h(a,b,arccos(tan2a))arccos(h(a,b,arccos(tan2a)))=0.\frac{h(a,b,\alpha)}{\arccos(h(a,b,\alpha))}\geq\frac{h(a,b,\arccos(-\tan^{2}a))}{\arccos(h(a,b,\arccos(-\tan^{2}a)))}=0.

Thus by the continuity of hh, for ϵ~3(0,1/4)\widetilde{\epsilon}_{3}\in(0,1/4) sufficiently small, there exists δ~3>0\widetilde{\delta}_{3}>0 such that for α[δ3,arccos(tan2a)δ~3]\alpha\in[\delta_{3},\arccos(-\tan^{2}a)-\widetilde{\delta}_{3}], and a,ba,b as in (6.9) with |ab|δ3|a-b|\geq\delta_{3},

h(a,b,α)arccos(h(a,b,α))ϵ~3.\displaystyle\frac{h(a,b,\alpha)}{\arccos(h(a,b,\alpha))}\geq\widetilde{\epsilon}_{3}. (6.18)

As h(a,b,α)h(a,b,\alpha) is a decreasing function of α\alpha on [δ3,arccos(tan2a)δ~3][\delta_{3},\arccos(-\tan^{2}a)-\widetilde{\delta}_{3}], for all such that α\alpha and all a,ba,b as in (6.9) with |ab|δ3|a-b|\geq\delta_{3}, we have

h(a,b,α)h(a,b,δ3)<1.\displaystyle h(a,b,\alpha)\leq h(a,b,\delta_{3})<1. (6.19)

It follows from the continuity of hh and (6.19) that

δ3:=min{1h(a,b,δ3):a,bas  in(6.9),|ab|δ3}<0.\delta_{3}^{\prime}:=\min\big{\{}1-h(a,b,\delta_{3}):\,a,b\,\,\text{as\,\,in}\,\,\eqref{eq:int1},\,\,|a-b|\geq\delta_{3}\big{\}}<0.

Now we properly adjust ϵ3\epsilon_{3} so that for all ϵ3>0\epsilon_{3}>0 sufficiently small, we have

1(1+ϵ3)h(a,b,α))δ3/2.\displaystyle 1-(1+\epsilon_{3})h(a,b,\alpha))\leq\delta_{3}^{\prime}/2. (6.20)

It follows from (6.13) and (6.20) that ξ(a,b,α)<1\xi(a,b,\alpha)<1, and thus |arccos(ξ(a,b,α))|>1|\arccos^{\prime}(\xi(a,b,\alpha))|>1. Combining (6.16) and (6.18) yields η1ϵ~3\eta_{1}\geq\widetilde{\epsilon}_{3}. Proving the claim.

It follows by combining (6) and (6.15) that for α[δ3,arccos(tan2a)δ~3]\alpha\in[\delta_{3},\arccos(-\tan^{2}a)-\widetilde{\delta}_{3}], and a,ba,b as in (6.9) with |ab|δ3|a-b|\geq\delta_{3},

dM(f(p),f(q))dM(p,q)=arccos(g(a,b,δ3))arccos(h(a,b,δ3))1ϵ3ϵ~3.\displaystyle\frac{d_{M}(f(p),f(q))}{d_{M}(p,q)}=\frac{\arccos(g(a,b,\delta_{3}))}{\arccos(h(a,b,\delta_{3}))}\leq 1-\epsilon_{3}\widetilde{\epsilon}_{3}. (6.21)

By direct calculation,

lim(α,a)(0,b)dM(f(p),f(q))dM(p,q)=12.\displaystyle\lim\limits_{(\alpha,a)\to(0,b)}\frac{d_{M}(f(p),f(q))}{d_{M}(p,q)}=\frac{1}{2}. (6.22)

For any δ¯3δ3\bar{\delta}_{3}\geq\delta_{3}, by (6.22) and the continuity of dM(f(p),f(q))/dM(p,q)d_{M}(f(p),f(q))/d_{M}(p,q), there exists r1(0,1)r_{1}\in(0,1) such that for α[0,δ¯3]\alpha\in[0,\bar{\delta}_{3}], a[0,π/4]a\in[0,\pi/4], and b[a,a+δ¯3]b\in[a,a+\bar{\delta}_{3}],

dM(f(p),f(q))dM(p,q)r1.\displaystyle\frac{d_{M}(f(p),f(q))}{d_{M}(p,q)}\leq r_{1}. (6.23)

By direct evaluation,

limαarccos(tan2a)\displaystyle\lim\limits_{\begin{subarray}{c}\alpha\to\arccos(-\tan^{2}a)\end{subarray}} dM(f(p),f(q))dM(p,q)\displaystyle\frac{d_{M}(f(p),f(q))}{d_{M}(p,q)}
=\displaystyle= 2arccos[cos((ba)/2)sec2a(sina+cos(2a))/2]π\displaystyle\frac{2\arccos[\cos((b-a)/2)\sec^{2}a(\sin a+\cos(2a))/2]}{\pi}
\displaystyle\leq 2arccos(2/4)π<1.\displaystyle\frac{2\arccos(\sqrt{2}/4)}{\pi}<1. (6.24)

For any δ¯4δ~3\bar{\delta}_{4}\geq\widetilde{\delta}_{3}, by (6) and the continuity of dM(f(p),f(q))/dM(p,q)d_{M}(f(p),f(q))/d_{M}(p,q), there exists r2(0,1)r_{2}\in(0,1) such that for α[arccos(tan2a)δ¯4,arccos(tan2a)+δ¯4]\alpha\in[\arccos(-\tan^{2}a)-\bar{\delta}_{4},\arccos(-\tan^{2}a)+\bar{\delta}_{4}], and a,ba,b as in (6.9),

dM(f(p),f(q))dM(p,q)r2.\displaystyle\frac{d_{M}(f(p),f(q))}{d_{M}(p,q)}\leq r_{2}. (6.25)

Combining (6.21), (6.23), and (6.25), for α[0,arccos(tan2a)]\alpha\in[0,\arccos(-\tan^{2}a)], a,ba,b as in (6.9),

dM(f(p),f(q))dM(p,q)r3,\displaystyle\frac{d_{M}(f(p),f(q))}{d_{M}(p,q)}\leq r_{3}, (6.26)

where r3:=max{1ϵ3ϵ~3,r1,r2}<1r_{3}:=\max\{1-\epsilon_{3}\widetilde{\epsilon}_{3},r_{1},r_{2}\}<1.

Subcase 2. α(arccos(tan2a),π]\alpha\in(\arccos(-\tan^{2}a),\pi]. Similarly, we can show that for ϵ3,ϵ~3(0,1/4)\epsilon_{3},\widetilde{\epsilon}_{3}\in(0,1/4), there exist δ3>0\delta_{3}>0 and δ~3>0\widetilde{\delta}_{3}>0 such that for α[arccos(tan2a)+δ~3,πδ4])\alpha\in[\arccos(-\tan^{2}a)+\widetilde{\delta}_{3},\pi-\delta_{4}]), a[δ4,π/4]a\in[\delta_{4},\pi/4], b[δ4,π/2]b\in[\delta_{4},\pi/2], and bab\geq a,

dM(f(p),f(q))dM(p,q)1ϵ4ϵ~3.\displaystyle\frac{d_{M}(f(p),f(q))}{d_{M}(p,q)}\leq 1-\epsilon_{4}\widetilde{\epsilon}_{3}. (6.27)

By direct evaluation,

lim(α,a,b)(π,0,0)dM(f(p),f(q))dM(p,q)=12.\displaystyle\lim\limits_{(\alpha,a,b)\to(\pi,0,0)}\frac{d_{M}(f(p),f(q))}{d_{M}(p,q)}=\frac{1}{2}. (6.28)

For any δ4δ4\delta_{4}^{\prime}\geq\delta_{4}, by (6.28) and the continuity of dM(f(p),f(q))/dM(p,q)d_{M}(f(p),f(q))/d_{M}(p,q), there exists r4(0,1)r_{4}\in(0,1) such that for α[πδ¯4,π+δ4]\alpha\in[\pi-\bar{\delta}_{4},\pi+\delta_{4}^{\prime}], a[0,δ4]a\in[0,\delta_{4}^{\prime}], b[0,δ4]b\in[0,\delta_{4}^{\prime}], and bab\geq a,

dM(f(p),f(q))dM(p,q)r4.\displaystyle\frac{d_{M}(f(p),f(q))}{d_{M}(p,q)}\leq r_{4}. (6.29)

Combining (6.25), (6.27), and (6.29), for α[arccos(tan2a),π]\alpha\in[\arccos(-\tan^{2}a),\pi], and a,ba,b as in (6.9),

dM(f(p),f(q))dM(p,q)r5,\displaystyle\frac{d_{M}(f(p),f(q))}{d_{M}(p,q)}\leq r_{5}, (6.30)

where r5:=max{1ϵ4ϵ~3,r2,r5}<1r_{5}:=\max\{1-\epsilon_{4}\widetilde{\epsilon}_{3},r_{2},r_{5}\}<1.

Subcase 3. α(π,2πarccos(tan2a))\alpha\in(\pi,2\pi-\arccos(-\tan^{2}a)). Similarly, we can show that for ϵ4,ϵ~4(0,1/4)\epsilon_{4},\widetilde{\epsilon}_{4}\in(0,1/4), there exist δ4>0\delta_{4}>0 and δ~4>0\widetilde{\delta}_{4}>0 such that for α[π+δ4,2πarccos(tan2a)δ~4])\alpha\in[\pi+\delta_{4},2\pi-\arccos(-\tan^{2}a)-\widetilde{\delta}_{4}]), a[δ4,π/4]a\in[\delta_{4},\pi/4], b[δ4,π/2]b\in[\delta_{4},\pi/2], and bab\geq a,

dM(f(p),f(q))dM(p,q)1ϵ4ϵ~4.\displaystyle\frac{d_{M}(f(p),f(q))}{d_{M}(p,q)}\leq 1-\epsilon_{4}\widetilde{\epsilon}_{4}. (6.31)

By direct evaluation,

limα2πarccos(tan2a)\displaystyle\lim\limits_{\begin{subarray}{c}\alpha\to 2\pi-\arccos(-\tan^{2}a)\end{subarray}} dM(f(p),f(q))dM(p,q)\displaystyle\frac{d_{M}(f(p),f(q))}{d_{M}(p,q)}
=\displaystyle= 2arccos[cos((ba)/2)sec2(a)(sina+cos(2a))/2]π<1.\displaystyle\frac{2\arccos[\cos((b-a)/2)\sec^{2}(a)(\sin a+\cos(2a))/2]}{\pi}<1. (6.32)

For any δ¯5δ~4\bar{\delta}_{5}\geq\widetilde{\delta}_{4}, by (6) and the continuity of dM(f(p),f(q))/dM(p,q)d_{M}(f(p),f(q))/d_{M}(p,q), there exists r6(0,1)r_{6}\in(0,1) such that for α[2πarccos(tan2a)δ¯5,2πarccos(tan2a)+δ¯5]\alpha\in[2\pi-\arccos(-\tan^{2}a)-\bar{\delta}_{5},2\pi-\arccos(-\tan^{2}a)+\bar{\delta}_{5}], a,ba,b as in (6.9),

dM(f(p),f(q))dM(p,q)r6.\displaystyle\frac{d_{M}(f(p),f(q))}{d_{M}(p,q)}\leq r_{6}. (6.33)

Combining (6.29), (6.31), and (6.33), for α(π,2πarccos(tan2a)]\alpha\in(\pi,2\pi-\arccos(-\tan^{2}a)] and a,ba,b as in (6.9),

dM(f(p),f(q))dM(p,q)r7,\displaystyle\frac{d_{M}(f(p),f(q))}{d_{M}(p,q)}\leq r_{7}, (6.34)

where r7:=max{1ϵ4ϵ~7,r4,r6}<1r_{7}:=\max\{1-\epsilon_{4}\widetilde{\epsilon}_{7},r_{4},r_{6}\}<1.

Subcase 4. α[2πarccos(tan2a),2π)\alpha\in[2\pi-\arccos(-\tan^{2}a),2\pi). Similarly, we can show that for ϵ5>0\epsilon_{5}>0 sufficiently small and ϵ~4(0,1/4)\widetilde{\epsilon}_{4}\in(0,1/4), there exist δ5>0\delta_{5}>0 and δ~4>0\widetilde{\delta}_{4}>0 such that for α[2πarccos(tan2a)+δ~4,2πδ5]\alpha\in[2\pi-\arccos(-\tan^{2}a)+\widetilde{\delta}_{4},2\pi-\delta_{5}] and a,ba,b as in (6.9) with |ab|δ5|a-b|\geq\delta_{5},

dM(f(p),f(q))dM(p,q)1ϵ5ϵ~4.\displaystyle\frac{d_{M}(f(p),f(q))}{d_{M}(p,q)}\leq 1-\epsilon_{5}\widetilde{\epsilon}_{4}. (6.35)

By direct evaluation,

lim(α,a)(2π,b)dM(f(p),f(q))dM(p,q)=12.\displaystyle\lim\limits_{(\alpha,a)\to(2\pi,b)}\frac{d_{M}(f(p),f(q))}{d_{M}(p,q)}=\frac{1}{2}. (6.36)

For any δ¯5δ5\bar{\delta}_{5}\geq\delta_{5}, by (6.36) and the continuity of dM(f(p),f(q))/dM(p,q)d_{M}(f(p),f(q))/d_{M}(p,q), there exists r8(0,1)r_{8}\in(0,1) such that for α[δ¯5,2π)\alpha\in[\bar{\delta}_{5},2\pi), a[0,π/4]a\in[0,\pi/4], and b[a,a+δ¯5]b\in[a,a+\bar{\delta}_{5}],

dM(f(p),f(q))dM(p,q)r8.\displaystyle\frac{d_{M}(f(p),f(q))}{d_{M}(p,q)}\leq r_{8}. (6.37)

Combining (6.33), (6.35), and (6.37), for α(2πarccos(tan2a),2π)\alpha\in(2\pi-\arccos(-\tan^{2}a),2\pi), a,ba,b as in (6.9),

dM(f(p),f(q))dM(p,q)r9,\displaystyle\frac{d_{M}(f(p),f(q))}{d_{M}(p,q)}\leq r_{9}, (6.38)

where r9:=max{1ϵ5ϵ~4,r6,r8}<1r_{9}:=\max\{1-\epsilon_{5}\widetilde{\epsilon}_{4},r_{6},r_{8}\}<1.

Case II. a(π/4,π/2]a\in(\pi/4,\pi/2], b(π/4,π/2]b\in(\pi/4,\pi/2], bab\geq a and α[0,2π)\alpha\in[0,2\pi). Similarly, we can show that for ϵ6>0\epsilon_{6}>0 sufficiently small, ϵ~6(0,1/4)\widetilde{\epsilon}_{6}\in(0,1/4), there exist δ6>0\delta_{6}>0 and δ~6>0\widetilde{\delta}_{6}>0 such that for α[δ6,πδ~6]\alpha\in[\delta_{6},\pi-\widetilde{\delta}_{6}], a,b[π/4+δ~6,π/2]a,b\in[\pi/4+\widetilde{\delta}_{6},\pi/2], and baδ6b-a\geq\delta_{6},

dM(f(p),f(q))dM(p,q)(1ϵ6ϵ~6).\displaystyle\frac{d_{M}(f(p),f(q))}{d_{M}(p,q)}\leq(1-\epsilon_{6}\widetilde{\epsilon}_{6}). (6.39)

By direct evaluation,

lim(α,a)(0,b)dM(f(p),f(q))dM(p,q)=12.\displaystyle\lim\limits_{(\alpha,a)\to(0,b)}\frac{d_{M}(f(p),f(q))}{d_{M}(p,q)}=\frac{1}{2}. (6.40)

For any δ¯6δ6\bar{\delta}_{6}\geq\delta_{6}, by (6.40) and the continuity of dM(f(p),f(q))/dM(p,q)d_{M}(f(p),f(q))/d_{M}(p,q), there exists r10(0,1)r_{10}\in(0,1) such that for α[0,δ¯6]\alpha\in[0,\bar{\delta}_{6}], a(π/4,π/2]a\in(\pi/4,\pi/2], and b[a,a+δ¯6]b\in[a,a+\bar{\delta}_{6}],

dM(f(p),f(q))dM(p,q)r10.\displaystyle\frac{d_{M}(f(p),f(q))}{d_{M}(p,q)}\leq r_{10}. (6.41)

By direct evaluation,

lim(α,a,b)(π,π/4,π/4)dM(f(p),f(q))dM(p,q)=12.\displaystyle\lim\limits_{(\alpha,a,b)\to(\pi,\pi/4,\pi/4)}\frac{d_{M}(f(p),f(q))}{d_{M}(p,q)}=\frac{1}{2}. (6.42)

For any δ¯7δ~6\bar{\delta}_{7}\geq\widetilde{\delta}_{6}, by (6.42) and the continuity of dM(f(p),f(q))/dM(p,q)d_{M}(f(p),f(q))/d_{M}(p,q), there exists r11(0,1)r_{11}\in(0,1) such that for α[πδ¯7,π+δ¯7]\alpha\in[\pi-\bar{\delta}_{7},\pi+\bar{\delta}_{7}], a,b(π/4,π/4+δ¯7]a,b\in(\pi/4,\pi/4+\bar{\delta}_{7}], and bab\geq a,

dM(f(p),f(q))dM(p,q)r11.\displaystyle\frac{d_{M}(f(p),f(q))}{d_{M}(p,q)}\leq r_{11}. (6.43)

Combining (6.39), (6.41), and (6.43), for α[0,π]\alpha\in[0,\pi], a(π/2]a\in(\pi/2], b(π/4,π/2]b\in(\pi/4,\pi/2], and bab\geq a,

dM(f(p),f(q))dM(p,q)r12,\displaystyle\frac{d_{M}(f(p),f(q))}{d_{M}(p,q)}\leq r_{12}, (6.44)

where r12:=max{1ϵ6ϵ~6,r10,r11}<1r_{12}:=\max\{1-\epsilon_{6}\widetilde{\epsilon}_{6},r_{10},r_{11}\}<1.

Similarly, for ϵ7>0\epsilon_{7}>0 sufficiently small, ϵ~6(0,1/4)\widetilde{\epsilon}_{6}\in(0,1/4), there exist δ7>0\delta_{7}>0 and δ~6>0\widetilde{\delta}_{6}>0 such that for α[π+δ~6,2πδ7]\alpha\in[\pi+\widetilde{\delta}_{6},2\pi-\delta_{7}], a,b[π/4+δ~6,π/2]a,b\in[\pi/4+\widetilde{\delta}_{6},\pi/2], and |ab|δ7|a-b|\geq\delta_{7},

dM(f(p),f(q))dM(p,q)(1ϵ7ϵ~6).\displaystyle\frac{d_{M}(f(p),f(q))}{d_{M}(p,q)}\leq(1-\epsilon_{7}\widetilde{\epsilon}_{6}). (6.45)

By direct evaluation,

lim(α,a)(2π,b)dM(f(p),f(q))dM(p,q)=12.\displaystyle\lim\limits_{(\alpha,a)\to(2\pi,b)}\frac{d_{M}(f(p),f(q))}{d_{M}(p,q)}=\frac{1}{2}. (6.46)

For any δ¯7δ7\bar{\delta}_{7}\geq\delta_{7}, by (6.46) and the continuity of dM(f(p),f(q))/dM(p,q)d_{M}(f(p),f(q))/d_{M}(p,q), there exists r10(0,1)r_{10}\in(0,1) such that for α[2πδ¯7,2π)\alpha\in[2\pi-\bar{\delta}_{7},2\pi), a(π/4,π/2]a\in(\pi/4,\pi/2], and b[a,a+δ¯7]b\in[a,a+\bar{\delta}_{7}],

dM(f(p),f(q))dM(p,q)r13.\displaystyle\frac{d_{M}(f(p),f(q))}{d_{M}(p,q)}\leq r_{13}. (6.47)

Combining (6.43), (6.45), and (6.47), for α(π,2π)\alpha\in(\pi,2\pi), a(π/4,π/2]a\in(\pi/4,\pi/2], b(π/4,π/2]b\in(\pi/4,\pi/2], and bab\geq a,

dM(f(p),f(q))dM(p,q)r14,\displaystyle\frac{d_{M}(f(p),f(q))}{d_{M}(p,q)}\leq r_{14}, (6.48)

where r14:=max{1ϵ7ϵ~6,r11,r13}<1r_{14}:=\max\{1-\epsilon_{7}\widetilde{\epsilon}_{6},r_{11},r_{13}\}<1.

Case III. a=0a=0 and b=π/2b=\pi/2. In this case, by direct evaluation, we have

dM(f(p),f(q))dM(p,q)=12.\displaystyle\frac{d_{M}(f(p),f(q))}{d_{M}(p,q)}=\frac{1}{2}. (6.49)

Combining (6.26), (6.30), (6.34), (6.38), (6.44), and (6.49), for α[0,2π)\alpha\in[0,2\pi), a[0,π/2]a\in[0,\pi/2], b[0,π/2]b\in[0,\pi/2], and bab\geq a, we have

dM(f(p),f(q))dM(p,q)r,\displaystyle\frac{d_{M}(f(p),f(q))}{d_{M}(p,q)}\leq r, (6.50)

where r:=max{1/2,r3,r5,r7,r9,r12,r14}r:=\max\{1/2,r_{3},r_{5},r_{7},r_{9},r_{12},r_{14}\}.

Combining (6.8) and (6.50) proves that ff is a bi-Lipschitz contraction on 𝕊+2\mathbb{S}^{2}_{+}. ∎

As a consequence of Lemma 6.1, the closure of a bounded open set of a complete smooth Riemannian 2-manifold MM, the above measure μ\mu satisfies dim¯(μ)>0\underline{\operatorname{dim}}_{\infty}(\mu)>0. Next, we construct an IFS on 𝕊+2\mathbb{S}^{2}_{+} that satisfies the conditions of Lemma 6.1.

Rotations about the xx-axis and the yy-axis through an angle α\alpha are given respectively by the matrices

Rx(α):=(1000cosαsinα0sinαcosα)andRy(α):=(cosα0sinα010sinα0cosα).R_{x}(\alpha):=\begin{pmatrix}1&0&0\\ 0&\cos\alpha&-\sin\alpha\\ 0&\sin\alpha&\cos\alpha\end{pmatrix}\qquad\text{and}\qquad R_{y}(\alpha):=\begin{pmatrix}\cos\alpha&0&\sin\alpha\\ 0&1&0\\ -\sin\alpha&0&\cos\alpha\end{pmatrix}.

     

Refer to caption
Refer to caption
Refer to caption
Figure 1. Iterations and attractor of the IFS {fi}i=13\{f_{i}\}_{i=1}^{3} on 𝕊+2\mathbb{S}^{2}_{+} described in Example 6.3. (a) First iteration. (b) Second iteration. (c) Attractor.
Example 6.3.

Let ff, 𝕊2\mathbb{S}^{2}, and 𝕊+2\mathbb{S}^{2}_{+} be defined as in Proposition 6.2. Let

D:={(sinφcosθ,sinφsinθ,cosφ):0θπ/2,  0φπ/2}D:=\{(\sin\varphi\cos\theta,\sin\varphi\sin\theta,\cos\varphi):0\leq\theta\leq\pi/2,\,\,0\leq\varphi\leq\pi/2\}

be the subset parametrizing 𝕊+2\mathbb{S}_{+}^{2}. Let

f1:=f|D,f2:=Ry(π/4)f1,f3:=Rx(π/4)f1\displaystyle f_{1}:=f|_{D},\qquad f_{2}:=R_{y}(\pi/4)\circ f_{1},\qquad f_{3}:=R_{x}(-\pi/4)\circ f_{1}

be a family bi-Lipschitz contractions on DD (see Figure 1(a)). Let μ\mu be an invariant measure of the IFS {fi}i=13\left\{f_{i}\right\}_{i=1}^{3}. Then dim¯(μ)>0\underline{\operatorname{dim}}_{\infty}(\mu)>0. It follows that the conclusions of Theorems 3.3, 4.3, and 5.3 hold for μ\mu, and the conclusions of Theorems 3.4, 4.4, and 5.4 hold for all such μ\mu and all FLip(dom)F\in{\rm Lip}(\operatorname{dom}\mathcal{E}).

Proof.

We need to show that for any pDp\in D with parameter (φ,θ)(\varphi,\theta), fi(p)Df_{i}(p)\in D, i=1,2,3i=1,2,3. It is obvious that f1(p)Df_{1}(p)\in D. In Euclidean coordinates, let

h(θ):=22(cosθ,sinθ,1).\displaystyle h(\theta):=\frac{\sqrt{2}}{2}(\cos\theta,\sin\theta,1).

Then

Ry(π/4)h(θ)=(12cosθ+1222sinθ12cosθ+12)andRx(π/4)h(θ)=(22cosθ12sinθ+1212sinθ+12).R_{y}(\pi/4)\circ h(\theta)=\begin{pmatrix}\vspace{0.15cm}\frac{1}{2}\cos\theta+\frac{1}{2}\\ \vspace{0.15cm}\frac{\sqrt{2}}{2}\sin\theta\\ -\frac{1}{2}\cos\theta+\frac{1}{2}\end{pmatrix}\quad\text{and}\quad R_{x}(-\pi/4)\circ h(\theta)=\begin{pmatrix}\vspace{0.15cm}\frac{\sqrt{2}}{2}\cos\theta\\ \vspace{0.15cm}\frac{1}{2}\sin\theta+\frac{1}{2}\\ -\frac{1}{2}\sin\theta+\frac{1}{2}\end{pmatrix}.

For θ[0,π/2]\theta\in[0,\pi/2], sinθ/2+1/20-\sin\theta/2+1/2\geq 0 and cosθ/2+1/20-\cos\theta/2+1/2\geq 0. Hence f2(p),f3(p)Df_{2}(p),f_{3}(p)\in D. By Lemma 6.1 and Proposition 6.2, we have dim¯(μ)>0\underline{\operatorname{dim}}_{\infty}(\mu)>0. Furthermore, we see that the measures μ\mu in this example satisfies the assumptions on μ\mu in Theorems 3.3, 3.3, 4.3, 4.4, 5.3, and 5.4. The asserted results follow. ∎

7. Examples of GIFS

Let G=(V,E)G=(V,E) be a graph, where V={1,,t}V=\{1,\ldots,t\} is the set of vertices and EE is the set of all directed edges. It is possible that the initial and terminal vertices are the same. We allow more than one edge between two vertices. A directed path in GG is a finite string 𝐞=e1ek\mathbf{e}=e_{1}\cdots e_{k} of edges in EE such that the terminal vertex of each eie_{i} is the initial vertex of the edge ei+1e_{i+1}. For such a path, denote the length of 𝐞\mathbf{e} by |v|=k|v|=k. For any two vertices i,jVi,j\in V and any positive integer kk, let Ei,jE^{i,j} be the set of all directed edges from ii to jj, Eki,jE^{i,j}_{k} be the set of all directed paths of length pp from ii to jj, EkE_{k} be the set of all directed paths of length kk, and EE^{*} be the set of all directed paths, i.e.,

Ek:=i,j=1kEki,jandE:=k=1Ek.\displaystyle E_{k}:=\bigcup_{i,j=1}^{k}E^{i,j}_{k}\qquad\text{and}\qquad E^{*}:=\bigcup_{k=1}^{\infty}E_{k}.

Recall that a directed graph G=(V,E)G=(V,E) is said to be strongly connected provided that whenever i,ji,j, there exists a directed path from ii to jj.

Let MM be a smooth oriented complete Riemannian nn-manifold. A graph-directed iterated function system (GIFS) on MM consists of

  1. (1)

    a finite collection of compact subsets of MM: W1,,WtW_{1},\ldots,W_{t} such that each WiW_{i} has a nonempty interior;

  2. (2)

    a directed graph GG with vertex set consisting of the integers 1,,t1,\ldots,t and contractions Se:WjWiS_{e}:W_{j}\to W_{i} with constant of contraction ρe\rho_{e}, where eEi,je\in E^{i,j} and i,jVi,j\in V.

Then there exists a unique collection of nonempty compact sets {Ki}iV\{K_{i}\}_{i\in V} satisfying

Ki=j=1teEi,jSe(Kj),iV\displaystyle K_{i}=\bigcup_{j=1}^{t}\bigcup_{e\in E^{i,j}}S_{e}(K_{j}),\qquad i\in V

and a unique collection of Borel probability measures {μi}iV\{\mu_{i}\}_{i\in V} satisfying

μi=j=1teEi,jpeμjSe1,iV,\displaystyle\mu_{i}=\sum_{j=1}^{t}\sum_{e\in E^{i,j}}p_{e}\mu_{j}\circ S_{e}^{-1},\qquad i\in V, (7.1)

where {pe}eE\{p_{e}\}_{e\in E} are probability weights such that pe(0,1)p_{e}\in(0,1) and

j=1teEi,jpe=1,iV\displaystyle\sum_{j=1}^{t}\sum_{e\in E^{i,j}}p_{e}=1,\qquad i\in V (7.2)

(see, e.g., [28, 13, 42]). Define

K:=i=1tKiandμ:=i=1tμi.\displaystyle K:=\bigcup_{i=1}^{t}K_{i}\qquad\text{and}\qquad\mu:=\bigcup_{i=1}^{t}\mu_{i}.

KK is called the graph self-similar set and μ\mu the graph self-similar measure.

Let S𝐞:=Se1SekS_{\mathbf{e}}:=S_{e_{1}}\circ\cdots\circ S_{e_{k}}. For the invariant set KK, we let K𝐞:=S𝐞(K)K_{\mathbf{e}}:=S_{\mathbf{e}}(K). We have the following lemma.

Lemma 7.1.

Let MM be a smooth oriented complete Riemannian n-manifold and WMW\subseteq M be a compact set. Let μ\mu be an invariant measure of a GIFS {Se}eE\left\{S_{e}\right\}_{e\in E} of bi-Lipschitz contractions on WW. Suppose the attractor KK is not a singleton. Then μ\mu is upper ss-regular for some s>0s>0, and hence dim¯(μ)>0\underline{\operatorname{dim}}_{\infty}(\mu)>0.

Proof.

The proof of this theorem is similar to that of [22, Lemma 5.1]; we only describe the modifications. Let ce,rec_{e},r_{e}, where eEe\in E, be given as in (6.3) and let {pe}eE\{p_{e}\}_{e\in E} be given as in (7.2). Since KK is not a singleton, there are indices 𝐞1,𝐞2\mathbf{e}_{1},\mathbf{e}_{2} of the same length such that

(𝐞1Ei,j1K𝐞1)(𝐞2Ei,j2K𝐞2)=.\Big{(}\bigcup_{\mathbf{e}_{1}\in E^{i,j_{1}}}K_{\mathbf{e}_{1}}\Big{)}\bigcap\Big{(}\bigcup_{\mathbf{e}_{2}\in E^{i,j_{2}}}K_{\mathbf{e}_{2}}\Big{)}=\emptyset.

Hence, without loss of generality, we assume that (eEi,1Ke)(eEi,2Ke)=(\cup_{e\in E^{i,1}}K_{e})\cap(\cup_{e\in E^{i,2}}K_{e})=\emptyset. There exists r0>0r_{0}>0 such that for any xWx\in W, the ball BM(x,r0)B^{M}(x,r_{0}) intersects at most one of the two sets eEi,1Ke\cup_{e\in E^{i,1}}K_{e} and eEi,2Ke\cup_{e\in E^{i,2}}K_{e}. Let

p:=min1itmin{eEi,1pe,eEi,2pe}<1andc:=mineE{ce}.p:=\min_{1\leq i\leq t}\min\Big{\{}\sum_{e\in E^{i,1}}p_{e},\sum_{e\in E^{i,2}}p_{e}\Big{\}}<1\quad\text{and}\quad c:=\min_{e\in E}\left\{c_{e}\right\}.

Let

ϕ(r):=max1itsupxMμi(BM(x,r))(r0).\phi(r):=\max_{1\leq i\leq t}\sup_{x\in M}\mu_{i}\left(B^{M}(x,r)\right)\quad(r\geq 0).

For xWx\in W and 0<rr00<r\leq r_{0}, either BM(x,r)(eEi,1Ke)=B^{M}(x,r)\cap(\cup_{e\in E^{i,1}}K_{e})=\emptyset or BM(x,r)(eEi,2Ke)=.B^{M}(x,r)\cap(\cup_{e\in E^{i,2}}K_{e})=\emptyset. We only consider the former case; the latter case can be treated similarly. In this case, Therefore

Se1(BM(x,r))BM(Se1(x),r/c).\displaystyle S_{e}^{-1}(B^{M}(x,r))\subseteq B^{M}(S_{e}^{-1}(x),r/c). (7.3)

Hence

μ(BM(x,r))\displaystyle\mu(B^{M}(x,r)) =i=1tj2eEi,2peμj(Se1(BM(x,r)))(by(7.1))\displaystyle=\sum_{i=1}^{t}\sum_{j\neq 2}\sum_{e\notin E^{i,2}}p_{e}\mu_{j}\Big{(}S_{e}^{-1}\big{(}B^{M}(x,r)\big{)}\Big{)}\qquad(\text{by}\,\,\eqref{eq:mea})
i=1tj2eEi,2peμj(BM(Se1(x),r/c))(by(7.3))\displaystyle\leq\sum_{i=1}^{t}\sum_{j\neq 2}\sum_{e\notin E^{i,2}}p_{e}\mu_{j}(B^{M}(S_{e}^{-1}(x),r/c))\qquad(\text{by}\,\,\eqref{eq:si})
i=1t(1eEi,2pe)ϕ(r/c)\displaystyle\leq\sum_{i=1}^{t}\Big{(}1-\sum_{e\in E^{i,2}}p_{e}\Big{)}\phi(r/c)
t(1p)ϕ(r/c).\displaystyle\leq t(1-p)\phi(r/c).

It follows that for r(0,r0]r\in(0,r_{0}], ϕ(r)t(1p)ϕ(r/c)\phi(r)\leq t(1-p)\phi(r/c). Therefore, for any n0n\geqslant 0 and any 0<rr00<r\leq r_{0}, ϕ(cnr)t(1p)ϕ(cn1r)tn(1p)nϕ(r).\phi\left(c^{n}r\right)\leq t(1-p)\phi\left(c^{n-1}r\right)\leq\cdots\leq t^{n}(1-p)^{n}\phi(r). This implies that

μ(BM(x,r0cn))C(r0cn)s,\mu\left(B^{M}(x,r_{0}c^{n})\right)\leq C\left(r_{0}c^{n}\right)^{s},

where s=ln(ttp)/lncs=\ln(t-tp)/\ln c and C=exp(ln(ttp)lnr0/lnc)C=\exp\left(-\ln(t-tp)\ln r_{0}/\ln c\right). Hence μ\mu is upper ss -regular, and thus dim¯(μ)>0\underline{\operatorname{dim}}_{\infty}(\mu)>0. ∎

Let 𝕋2:=𝕊1×𝕊1\mathbb{T}^{2}:=\mathbb{S}^{1}\times\mathbb{S}^{1} be a 2-torus, viewed as [0,1]×[0,1][0,1]\times[0,1] with opposite sides identified, and 𝕋2\mathbb{T}^{2} be endowed with the Riemannian metric induced from 2\mathbb{R}^{2}. We consider the following IFS with overlaps on 2\mathbb{R}^{2}:

h~1(𝒙)=12𝒙+(0,14),h~2(𝒙)=12𝒙+(14,14),\displaystyle\tilde{h}_{1}(\bm{x})=\frac{1}{2}\bm{x}+\Big{(}0,\frac{1}{4}\Big{)},\qquad\tilde{h}_{2}(\bm{x})=\frac{1}{2}\bm{x}+\Big{(}\frac{1}{4},\frac{1}{4}\Big{)},
h~3(𝒙)=12𝒙+(12,14),h~4(𝒙)=12𝒙+(14,34).\displaystyle\tilde{h}_{3}(\bm{x})=\frac{1}{2}\bm{x}+\Big{(}\frac{1}{2},\frac{1}{4}\Big{)},\qquad\tilde{h}_{4}(\bm{x})=\frac{1}{2}\bm{x}+\Big{(}\frac{1}{4},\frac{3}{4}\Big{)}.

Iterations of {h~m}m=14\{\tilde{h}_{m}\}_{m=1}^{4} induce iterations {hm}m=14\{h_{m}\}_{m=1}^{4} on 𝕋2=2\2\mathbb{T}^{2}=\mathbb{R}^{2}\backslash{\mathbb{Z}}^{2}, defined

hm(𝒙):=h~m(𝒙)(mod2),𝒙Ω0:=[0,1)×[0,1)h_{m}(\bm{x}):=\tilde{h}_{m}(\bm{x})(\text{\rm mod}\,{\mathbb{Z}}^{2}),\quad\bm{x}\in\Omega_{0}:=[0,1)\times[0,1)

(see [41]). Let W:=m=14hm(Ω0)¯W:=\cup_{m=1}^{4}\overline{h_{m}(\Omega_{0})}. Iterations {hm}m=14\{h_{m}\}_{m=1}^{4} on WW generates a compact set K𝕋2K\subseteq\mathbb{T}^{2} defined as

K:=l=1m{1,,4}lhm(W).K:=\bigcap_{l=1}^{\infty}\bigcup_{m\in\{1,\ldots,4\}^{l}}h_{m}(W).

We call KK the attractor of {hm}m=14\{h_{m}\}_{m=1}^{4} on 𝕋2\mathbb{T}^{2}.

Next we consider the GIFS G=(V,E)G=(V,E) with V={1,,12}V=\{1,\ldots,12\}, E={e1,,e48}E=\{e_{1},\ldots,e_{48}\}, and invariant family {Wi}i=112\{W_{i}\}_{i=1}^{12}, where

W1=[14,12]×[34,1],\displaystyle W_{1}=\Big{[}\frac{1}{4},\frac{1}{2}\Big{]}\times\Big{[}\frac{3}{4},1\Big{]},\,\,\,\, W2=[12,34]×[34,1],\displaystyle W_{2}=\Big{[}\frac{1}{2},\frac{3}{4}\Big{]}\times\Big{[}\frac{3}{4},1\Big{]}, W3=[0,14]×[12,34],\displaystyle W_{3}=\Big{[}0,\frac{1}{4}\Big{]}\times\Big{[}\frac{1}{2},\frac{3}{4}\Big{]},
W4=[14,12]×[12,34],\displaystyle W_{4}=\Big{[}\frac{1}{4},\frac{1}{2}\Big{]}\times\Big{[}\frac{1}{2},\frac{3}{4}\Big{]},\,\,\,\, W5=[12,34]×[12,34],\displaystyle W_{5}=\Big{[}\frac{1}{2},\frac{3}{4}\Big{]}\times\Big{[}\frac{1}{2},\frac{3}{4}\Big{]}, W6=[34,1]×[12,34],\displaystyle W_{6}=\Big{[}\frac{3}{4},1\Big{]}\times\Big{[}\frac{1}{2},\frac{3}{4}\Big{]},
W7=[0,14]×[14,12],\displaystyle W_{7}=\Big{[}0,\frac{1}{4}\Big{]}\times\Big{[}\frac{1}{4},\frac{1}{2}\Big{]},\,\,\,\, W8=[14,12]×[14,12],\displaystyle W_{8}=\Big{[}\frac{1}{4},\frac{1}{2}\Big{]}\times\Big{[}\frac{1}{4},\frac{1}{2}\Big{]}, W9=[12,34]×[14,12],\displaystyle W_{9}=\Big{[}\frac{1}{2},\frac{3}{4}\Big{]}\times\Big{[}\frac{1}{4},\frac{1}{2}\Big{]},
W10=[34,1]×[14,12],\displaystyle W_{10}=\Big{[}\frac{3}{4},1\Big{]}\times\Big{[}\frac{1}{4},\frac{1}{2}\Big{]},\,\,\,\, W11=[14,12]×[0,14],\displaystyle W_{11}=\Big{[}\frac{1}{4},\frac{1}{2}\Big{]}\times\Big{[}0,\frac{1}{4}\Big{]}, W12=[12,34]×[0,14]\displaystyle W_{12}=\Big{[}\frac{1}{2},\frac{3}{4}\Big{]}\times\Big{[}0,\frac{1}{4}\Big{]}

(see Figure 2 (b)) and

e1E1,7e_{1}\in E^{1,7} e2E1,8e_{2}\in E^{1,8} e3E1,11e_{3}\in E^{1,11} e4E2,9e_{4}\in E^{2,9} e5E2,10e_{5}\in E^{2,10} e6E2,12e_{6}\in E^{2,12}
e7E3,1e_{7}\in E^{3,1} e8E3,3e_{8}\in E^{3,3} e9E3,4e_{9}\in E^{3,4} e10E4,1e_{10}\in E^{4,1} e11E4,2e_{11}\in E^{4,2} e12E4,3e_{12}\in E^{4,3}
e13E4,4e_{13}\in E^{4,4} e14E4,5e_{14}\in E^{4,5} e15E4,6e_{15}\in E^{4,6} e16E5,1e_{16}\in E^{5,1} e17E5,2e_{17}\in E^{5,2}\quad e18E5,3e_{18}\in E^{5,3}
e19E5,4e_{19}\in E^{5,4} e20E5,5e_{20}\in E^{5,5} e21E5,6e_{21}\in E^{5,6} e22E6,2e_{22}\in E^{6,2} e23E6,5e_{23}\in E^{6,5} e24E6,6e_{24}\in E^{6,6}
e25E7,7e_{25}\in E^{7,7} e26E7,8e_{26}\in E^{7,8} e27E7,11e_{27}\in E^{7,11} e28E8,7e_{28}\in E^{8,7} e29E8,8e_{29}\in E^{8,8} e30E8,9e_{30}\in E^{8,9}
e31E8,10e_{31}\in E^{8,10} e32E8,11e_{32}\in E^{8,11} e33E8,12e_{33}\in E^{8,12} e34E9,7e_{34}\in E^{9,7} e35E9,8e_{35}\in E^{9,8} e36E9,9e_{36}\in E^{9,9}
e37E9,10e_{37}\in E^{9,10} e38E9,11e_{38}\in E^{9,11} e39E9,12e_{39}\in E^{9,12} e40E10,9e_{40}\in E^{10,9} e41E10,10e_{41}\in E^{10,10} e42E10,12e_{42}\in E^{10,12}
e43E11,1e_{43}\in E^{11,1} e44E11,3e_{44}\in E^{11,3} e45E11,4e_{45}\in E^{11,4} e46E12,2e_{46}\in E^{12,2} e47E12,5e_{47}\in E^{12,5} e48E12,6e_{48}\in E^{12,6}
Table 1. All the edges in Example 7.6.

Note that W=i=112WiW=\cup_{i=1}^{12}W_{i}. The associated similitudes SeS_{e}, eEe\in E, are defined as Sei(𝒙):=𝒙/2+diS_{e_{i}}(\bm{x}):=\bm{x}/2+d_{i}, where 𝒙W\bm{x}\in W and

ii did_{i} ii did_{i} ii did_{i} ii did_{i} ii did_{i}
1 (14,38)\big{(}\frac{1}{4},-\frac{3}{8}\big{)} 11 (14,18)\big{(}-\frac{1}{4},-\frac{1}{8}\big{)} 21 (18,0)\big{(}-\frac{1}{8},0\big{)} 31 (38,18)\big{(}-\frac{3}{8},\frac{1}{8}\big{)} 41 (18,18)\big{(}\frac{1}{8},\frac{1}{8}\big{)}
2 (18,38)\big{(}\frac{1}{8},-\frac{3}{8}\big{)} 12 (14,0)\big{(}\frac{1}{4},0\big{)} 22 (14,18)\big{(}\frac{1}{4},-\frac{1}{8}\big{)} 32 (18,14)\big{(}\frac{1}{8},\frac{1}{4}\big{)} 42 (14,14)\big{(}\frac{1}{4},\frac{1}{4}\big{)}
3 (18,14)\big{(}\frac{1}{8},-\frac{1}{4}\big{)} 13 (18,0)\big{(}\frac{1}{8},0\big{)} 23 (14,0)\big{(}\frac{1}{4},0\big{)} 33 (14,14)\big{(}-\frac{1}{4},\frac{1}{4}\big{)} 43 (18,38)\big{(}\frac{1}{8},-\frac{3}{8}\big{)}
4 (0,38)\big{(}0,-\frac{3}{8}\big{)} 14 (14,0)\big{(}-\frac{1}{4},0\big{)} 24 (18,0)\big{(}\frac{1}{8},0\big{)} 34 (12,18)\big{(}\frac{1}{2},\frac{1}{8}\big{)} 44 (14,12)\big{(}\frac{1}{4},-\frac{1}{2}\big{)}
5 (18,38)\big{(}-\frac{1}{8},-\frac{3}{8}\big{)} 15 (38,0)\big{(}-\frac{3}{8},0\big{)} 25 (0,18)\big{(}0,\frac{1}{8}\big{)} 35 (38,18)\big{(}\frac{3}{8},\frac{1}{8}\big{)} 45 (18,12)\big{(}\frac{1}{8},-\frac{1}{2}\big{)}
6 (0,14)\big{(}0,-\frac{1}{4}\big{)} 16 (38,18)\big{(}\frac{3}{8},-\frac{1}{8}\big{)} 26 (18,18)\big{(}-\frac{1}{8},\frac{1}{8}\big{)} 36 (0,18)\big{(}0,\frac{1}{8}\big{)} 46 (0,38)\big{(}0,-\frac{3}{8}\big{)}
7 (18,18)\big{(}-\frac{1}{8},-\frac{1}{8}\big{)} 17 (0,18)\big{(}0,-\frac{1}{8}\big{)} 27 (18,14)\big{(}-\frac{1}{8},\frac{1}{4}\big{)} 37 (18,18)\big{(}-\frac{1}{8},\frac{1}{8}\big{)} 47 (0,12)\big{(}0,-\frac{1}{2}\big{)}
8 (0,0)\big{(}0,0\big{)} 18 (12,0)\big{(}\frac{1}{2},0\big{)} 28 (14,18)\big{(}\frac{1}{4},\frac{1}{8}\big{)} 38 (38,14)\big{(}\frac{3}{8},\frac{1}{4}\big{)} 48 (18,12)\big{(}-\frac{1}{8},-\frac{1}{2}\big{)}
9 (18,0)\big{(}-\frac{1}{8},0\big{)} 19 (38,0)\big{(}\frac{3}{8},0\big{)} 29 (18,18)\big{(}\frac{1}{8},\frac{1}{8}\big{)} 39 (0,14)\big{(}0,-\frac{1}{4}\big{)}
10 (18,18)\big{(}\frac{1}{8},-\frac{1}{8}\big{)} 20 (0,0)\big{(}0,0\big{)} 30 (14,18)\big{(}-\frac{1}{4},\frac{1}{8}\big{)} 40 (14,18)\big{(}\frac{1}{4},\frac{1}{8}\big{)}
Table 2. The translations did_{i} for the GIFS in Example 7.6.

We notice that

h1|W3=(Se7+Se8+Se9)|W3,\displaystyle h_{1}|_{W_{3}}=(S_{e_{7}}+S_{e_{8}}+S_{e_{9}})|_{W_{3}},\qquad\qquad\qquad h1|W4=(Se11+Se12+Se13+Se14+Se15)|W4,\displaystyle h_{1}|_{W_{4}}=(S_{e_{11}}+S_{e_{12}}+S_{e_{13}}+S_{e_{14}}+S_{e_{15}})|_{W_{4}},
h1|W7=(Se25+Se26+Se27)|W7,\displaystyle h_{1}|_{W_{7}}=(S_{e_{25}}+S_{e_{26}}+S_{e_{27}})|_{W_{7}},\quad\qquad\qquad h1|W8=(Se28+Se29+Se30+Se31+Se33)|W8,\displaystyle h_{1}|_{W_{8}}=(S_{e_{28}}+S_{e_{29}}+S_{e_{30}}+S_{e_{31}}+S_{e_{33}})|_{W_{8}},
h2|W4=(Se10+Se12+Se13+Se14+Se15)|W4,\displaystyle h_{2}|_{W_{4}}=(S_{e_{10}}+S_{e_{12}}+S_{e_{13}}+S_{e_{14}}+S_{e_{15}})|_{W_{4}}, h2|W5=(Se17+Se18+Se19+Se20+Se21)|W5,\displaystyle h_{2}|_{W_{5}}=(S_{e_{17}}+S_{e_{18}}+S_{e_{19}}+S_{e_{20}}+S_{e_{21}})|_{W_{5}},
h2|W8=(Se28+Se29+Se30+Se31+Se32)|W8,\displaystyle h_{2}|_{W_{8}}=(S_{e_{28}}+S_{e_{29}}+S_{e_{30}}+S_{e_{31}}+S_{e_{32}})|_{W_{8}}, h2|W9=(Se34+Se35+Se36+Se37+Se39)|W9,\displaystyle h_{2}|_{W_{9}}=(S_{e_{34}}+S_{e_{35}}+S_{e_{36}}+S_{e_{37}}+S_{e_{39}})|_{W_{9}},
h3|W5=(Se16+Se18+Se19+Se20+Se21)|W5,\displaystyle h_{3}|_{W_{5}}=(S_{e_{16}}+S_{e_{18}}+S_{e_{19}}+S_{e_{20}}+S_{e_{21}})|_{W_{5}}, h3|W6=(Se22+Se23+Se24)|W6,\displaystyle h_{3}|_{W_{6}}=(S_{e_{22}}+S_{e_{23}}+S_{e_{24}})|_{W_{6}},
h3|W9=(Se34+Se35+Se36+Se37+Se38)|W9,\displaystyle h_{3}|_{W_{9}}=(S_{e_{34}}+S_{e_{35}}+S_{e_{36}}+S_{e_{37}}+S_{e_{38}})|_{W_{9}}, h3|W10=(Se40+Se41+Se42)|W10,\displaystyle h_{3}|_{W_{10}}=(S_{e_{40}}+S_{e_{41}}+S_{e_{42}})|_{W_{10}},
h4|W1=(Se1+Se2+Se3)|W1,\displaystyle h_{4}|_{W_{1}}=(S_{e_{1}}+S_{e_{2}}+S_{e_{3}})|_{W_{1}},\quad\qquad\qquad\qquad h4|W2=(Se4+Se5+Se6)|W2,\displaystyle h_{4}|_{W_{2}}=(S_{e_{4}}+S_{e_{5}}+S_{e_{6}})|_{W_{2}},
h4|W11=(Se43+Se44+Se45)|W11,\displaystyle h_{4}|_{W_{11}}=(S_{e_{43}}+S_{e_{44}}+S_{e_{45}})|_{W_{11}},\qquad\qquad h4|W12=(Se46+Se47+Se48)|W12.\displaystyle h_{4}|_{W_{12}}=(S_{e_{46}}+S_{e_{47}}+S_{e_{48}})|_{W_{12}}.

Hence

m=14hm(W)=m=14i=112hm(Wi)=i,j=112eEi,jSe(Wj).\displaystyle\bigcup_{m=1}^{4}h_{m}(W)=\bigcup_{m=1}^{4}\bigcup_{i=1}^{12}h_{m}(W_{i})=\bigcup_{i,j=1}^{12}\bigcup_{e\in E^{i,j}}S_{e}(W_{j}).

It follows by induction that for l1l\geq 1,

m{1,,4}lhm(W)=i,j=112𝐞Eli,jS𝐞(Wj).\displaystyle\bigcup_{m\in\{1,\ldots,4\}^{l}}h_{m}(W)=\bigcup_{i,j=1}^{12}\bigcup_{\mathbf{e}\in E^{i,j}_{l}}S_{\mathbf{e}}(W_{j}).

Thus

K=l=1i,j=112𝐞Eli,jS𝐞(Wj).K=\bigcap_{l=1}^{\infty}\bigcup_{i,j=1}^{12}\bigcup_{\mathbf{e}\in E^{i,j}_{l}}S_{\mathbf{e}}(W_{j}).

Hence KK is the graph self-similar set generated by the GIFS G=(V,E)G=(V,E) associated to {Se}eE\{S_{e}\}_{e\in E}.

Remark 7.2.

For any x,yWix,y\in W_{i} for some iVi\in V, there exists some jVj\in V, such that Se(x),Se(y)WjS_{e}(x),S_{e}(y)\in W_{j}.

Proposition 7.3.

Let G=(V,E)G=(V,E) be defined as above. Then GG is strongly connected.

Proof.

We write iji\to j if there is a directed edge from ii to jj. By the definition of EE, for all i,jVi,j\in V, we have the following edges:

17,8,11;  29,10,12; 31,3,4;   41,2,3,4,5,6;\displaystyle 1\to 7,8,11;\qquad\qquad\,\,2\to 9,10,12;\quad\,3\to 1,3,4;\quad\,\,\,4\to 1,2,3,4,5,6;
51,2,3,4,5,6;62,5,6;  77,8,11;87,8,9,10,11,12;\displaystyle 5\to 1,2,3,4,5,6;\qquad 6\to 2,5,6;\qquad\,\,7\to 7,8,11;\quad 8\to 7,8,9,10,11,12;
97,8,9,10,11,12;  109,10,12;111,3,4;122,5,6.\displaystyle 9\to 7,8,9,10,11,12;\,\,10\to 9,10,12;\quad 11\to 1,3,4;\quad 12\to 2,5,6.

Therefore, the following path passes through all the vertices:

1812291134562978101251.\displaystyle 1\to 8\to 12\to 2\to 9\to 11\to 3\to 4\to 5\to 6\to 2\to 9\to 7\to 8\to 10\to 12\to 5\to 1.

Hence GG is strongly connected. ∎

Lemma 7.4.

Let GG, 𝕋2\mathbb{T}^{2}, and {Wi}i=112\{W_{i}\}_{i=1}^{12} be defined as above. Fix iVi\in V and let x,yWix,y\in W_{i}. Then

d𝕋2(x,y)=d𝔼(x,y).d_{\mathbb{T}^{2}}(x,y)=d_{\mathbb{E}}(x,y).
Proof.

We only show that for any x,yW1x,y\in W_{1},

d𝕋2(x,y)=d𝔼(x,y);d_{\mathbb{T}^{2}}(x,y)=d_{\mathbb{E}}(x,y);

the proofs for x,yWix,y\in W_{i}, i=2,,8i=2,\ldots,8 are the same. Let the four boundaries of W1W_{1} be l1,l2,l3,l4l_{1},l_{2},l_{3},l_{4}, respectively (see Figure 2(b)). Let x,yW1x,y\in W_{1}, where xx is above yy, or at the same level. Then d𝔼(x,y)2/4.d_{\mathbb{E}}(x,y)\leq\sqrt{2}/4. We prove that

dM(x,y)<d𝔼(x,y)d_{M}(x,y)<d_{\mathbb{E}}(x,y)

by considering the following eight cases:

Case 1. xx goes up to l1l_{1}, goes through W11,W8,W4W_{11},W_{8},W_{4}, and then back to the interior of W1W_{1}.

Case 2. xx goes up to l1l_{1}, then moves along l1l_{1} by a distance 0\geq 0, and finally back to the interior of W1W_{1}.

Case 3. xx turns right and goes to l4l_{4}, goes through W2W_{2} all the way to the gluing edge, and goes from l2l_{2} into the interior of W1W_{1}.

Case 4. xx goes to the right to l4l_{4}, then moves along l4l_{4} by a distance 0\geq 0, and finally returns to the interior of W1W_{1}.

Case 5. xx turns left and goes to l2l_{2}, then goes to the gluing edge, and finally traverses W2W_{2} from l4l_{4} into the interior of W1W_{1}.

Case 6. xx turns left and goes to the l2l_{2}, then moves along l2l_{2} by a distance 0\geq 0, and finally returns to the interior of W1W_{1}.

Case 7. xx goes down to l3l_{3}, then goes through W4,W8,W11W_{4},W_{8},W_{11}, and finally goes back to the interior of W1W_{1}.

Case 8. xx goes down to l3l_{3}, then moves along l3l_{3} by a distance 0\geq 0, and finally returns to the interior of the W1W_{1}.

For Case 1, it is easy to see that

dM(x,y)34>d𝔼(x,y).d_{M}(x,y)\geq\frac{3}{4}>d_{\mathbb{E}}(x,y).

For Case 2, the triangular inequality implies that dM(x,y)>d𝔼(x,y).d_{M}(x,y)>d_{\mathbb{E}}(x,y). Similarly, we can prove the other cases and thus complete the proof. ∎

Lemma 7.5.

Let G=(V,E)G=(V,E), 𝕋2\mathbb{T}^{2}, {Wi}i=112\{W_{i}\}_{i=1}^{12}, and {Se}eE\{S_{e}\}_{e\in E} be defined as above. Fix iVi\in V and let x,yWix,y\in W_{i}. Then

d𝕋2(Se(x),Se(y))=d𝔼(Se(x),Se(x)).d_{\mathbb{T}^{2}}(S_{e}(x),S_{e}(y))=d_{\mathbb{E}}(S_{e}(x),S_{e}(x)).
Proof.

For the fixed iVi\in V, by Remark 7.2, there exists some jVj\in V such that Se(x),Se(y)WjS_{e}(x),S_{e}(y)\subseteq W_{j}. By Lemma 7.4, we have

d𝕋2(Se(x),Se(y))=d𝔼(Se(x),Se(x)).d_{\mathbb{T}^{2}}(S_{e}(x),S_{e}(y))=d_{\mathbb{E}}(S_{e}(x),S_{e}(x)).

Example 7.6.

Let G=(V,E)G=(V,E), 𝕋2\mathbb{T}^{2}, WW, {hm}m=14\{h_{m}\}_{m=1}^{4}, {Se}eE\{S_{e}\}_{e\in E}, and KK be defined as above. Let μ\mu be an invariant measure of the GIFS {Se}eE\{S_{e}\}_{e\in E} of bi-Lipschitz contractions on WW. Then dim¯(μ)>0\underline{\operatorname{dim}}_{\infty}(\mu)>0. Consequently, the conclusions of Theorems 3.3, 4.3, and 5.3 hold for μ\mu, and the conclusions of Theorems 3.4, 4.4, and 5.4 hold for all such μ\mu and all FLip(dom)F\in{\rm Lip}(\operatorname{dom}\mathcal{E}).

Proof.

This follows by combining Lemmas 7.1 and 7.5. ∎

  
   

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 2. (a) {hm}m=14\{h_{m}\}_{m=1}^{4} on 2\2\mathbb{R}^{2}\backslash{\mathbb{Z}}^{2}. (b) First iteration of GG on 2\mathbb{R}^{2} associated to the relations induced by {hm}m=14\{h_{m}\}_{m=1}^{4}. (c) Second iteration. (d) Attractor.

8. Example of solutions

In this section, we study weak solutions of linear wave, heat, and Schrödinger equations by using examples on 𝕊1\mathbb{S}^{1}.

Example 8.1.

Let M=𝕊1:={(cos(θ+π/2),sin(θ+π/2)):θ[π,π]}M=\mathbb{S}^{1}:=\{(\cos(\theta+\pi/2),\sin(\theta+\pi/2)):\theta\in[-\pi,\pi]\} and let Ω:={(cos(θ+π/2),sin(θ+π/2)):θ(π/2,π/2)}M\Omega:=\{(\cos(\theta+\pi/2),\sin(\theta+\pi/2)):\theta\in(-\pi/2,\pi/2)\}\subseteq M be an open set. Let μ\mu be the Dirac point mass at the north pole θ=0\theta=0. Then dim(L2(Ω,μ))=1\dim(L^{2}(\Omega,\mu))=1. Let

φ={2θπ+1,θ[π/2,0],2θπ+1,θ(0,π/2].\displaystyle\varphi=\left\{\begin{aligned} &\frac{2\theta}{\pi}+1,\qquad\,\,\,\,&&\theta\in[-\pi/2,0],\\ &-\frac{2\theta}{\pi}+1,\qquad&&\theta\in(0,\pi/2].\\ \end{aligned}\right.

Then φ\varphi is an eigenfunction of Δμ-\Delta_{\mu} with λ=4/π\lambda=4/\pi being an eigenvalue. Moreover, dim¯(μ)=0\underline{\operatorname{dim}}_{\infty}(\mu)=0.

Proof.

We use the eigenvalues equation (see [32])

Ω(Δφ)v𝑑ν=λΩφv𝑑μvCc(Ω).\displaystyle\int_{\Omega}(-\Delta\varphi)v\,d\nu=\lambda\int_{\Omega}\varphi v\,d\mu\qquad v\in C_{c}^{\infty}(\Omega).

Since

Ω(Δφ)v𝑑ν=Ω(4δ0π)v𝑑ν=4πv(π2)\int_{\Omega}(-\Delta\varphi)v\,d\nu=\int_{\Omega}\Big{(}\frac{4\delta_{0}}{\pi}\Big{)}v\,d\nu=\frac{4}{\pi}v\Big{(}\frac{\pi}{2}\Big{)}

and λΩφv𝑑μ=λv(π/2)\lambda\int_{\Omega}\varphi v\,d\mu=\lambda v(\pi/2), we conclude that 4/π4/\pi is an eigenvalue and φ\varphi is an eigenfunction. ∎

Example 8.2.

Let MM, Ω\Omega, μ\mu, φ\varphi, and λ\lambda be defined as in Example 8.1.

  1. (a)

    Let g=φ/4g=\varphi/4, h=0h=0, and f=0f=0. Then the weak solution of the linear wave equation (3.4) is

    u(t)=φ4cos(2tπ).\displaystyle u(t)=\frac{\varphi}{4}\cos\Big{(}\frac{2t}{\sqrt{\pi}}\Big{)}.

    See Figure 3. Note that the solution is periodic.

  2. (b)

    Let g=φ/4g=\varphi/4 and f=cf=c, where cc is constant. Then the weak solution of the linear heat equation (4.4) is

    u(t)=φ4(e4t/π(1cπ)+cπ).\displaystyle u(t)=\frac{\varphi}{4}\big{(}e^{-4t/\pi}\big{(}1-c\pi\big{)}+c\pi\big{)}.

    See Figures 46. Note that if c=0c=0, then u(t)u(t) tends to zero due to heat dissipation at the boundary points. If c=1/8c=1/8, u(t)u(t) decreases as heat dissipation exceeds heat supply, and then it reaches an equilibrium when the rate of heat dissipation equals that rate of heat supply. If c=3/4c=3/4, u(t)u(t) increases since heat supply exceeds heat dissipation, and again, u(t)u(t) reaches an equilibrium when the rate of heat dissipation equals that of heat supply.

  3. (c)

    Let g=φ/4g=\varphi/4 and f=0f=0. Then the weak solution of the linear Schrödinger equation (5.4) is

    u(t)=φ4ei4t/π.\displaystyle u(t)=\frac{\varphi}{4}e^{-i4t/\pi}.

    Note that both the real and imaginary parts of u(t)u(t) exhibit periodic motion.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 3. Graphs of the solution u(t)u(t) of the linear wave equation (3.4) with g=φ/4g=\varphi/4, h=0h=0, and f=0f=0. The graphs are drawn with t=0t=0, 2ππ/92\pi\sqrt{\pi}/9, 4ππ/94\pi\sqrt{\pi}/9, 7ππ/97\pi\sqrt{\pi}/9, ππ\pi\sqrt{\pi}.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 4. Graphs of u(t)u(t) of the linear heat equation (4.4) for t=0t=0, 1/21/2, 11, 3/23/2, 22. The graphs are drawn with g=φ/4g=\varphi/4 and f=0f=0. u(t)u(t) decreases to 0 as tt\to\infty.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 5. Graphs of u(t)u(t) of the linear heat equation (4.4) for t=0t=0, 1/21/2, 11, 3/23/2, 22. The graphs are drawn with g=φ/4g=\varphi/4 and f=1/8f=1/8. u(t)u(t) decreases to a nonzero equilibrium less than its initial value as tt\to\infty.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 6. Graphs of u(t)u(t) of the linear heat equation (4.4) for t=0t=0, 1/21/2, 11, 3/23/2, 22. The graphs are drawn with g=φ/4g=\varphi/4 and f=3/4f=3/4. u(t)u(t) increases to an equilibrium state greater than its initial value as tt\to\infty.
Example 8.3.

Let M=𝕊1:={(cos(θ+π/2),sin(θ+π/2)):πθπ}M=\mathbb{S}^{1}:=\{(\cos(\theta+\pi/2),\sin(\theta+\pi/2)):-\pi\leq\theta\leq\pi\}. Let μ\mu be two Dirac point mass at the north pole θ=0\theta=0 and the south pole θ=π\theta=\pi. Let φ1=c1\varphi_{1}=c_{1} and

φ2={2θπ+1θ[π,0],2θπ+1θ(0,π].\displaystyle\varphi_{2}=\left\{\begin{aligned} &\frac{2\theta}{\pi}+1&\qquad\theta\in[-\pi,0],\\ &\frac{-2\theta}{\pi}+1&\qquad\theta\in(0,\pi].\\ \end{aligned}\right.

Then φ1\varphi_{1} and φ2\varphi_{2} are eigenfunctions of Δμ-\Delta_{\mu} with the corresponding eigenvalues are λ1=0\lambda_{1}=0 and λ2=4/π\lambda_{2}=4/\pi, respectively. Moreover, dim¯(μ)=0\underline{\operatorname{dim}}_{\infty}(\mu)=0.

The proof of Example 8.3 is similar to that of Example 8.1; we omit the proof.

Example 8.4.

Let MM, μ\mu, φ1\varphi_{1}, φ2\varphi_{2}, and λ\lambda be defined in Example 8.3.

  1. (a)

    Let g=φ2/4g=\varphi_{2}/4, h=0h=0, and f=0f=0. Then the weak solution of the linear wave equation (3.4) is

    u(t)=φ24cos(2tπ).\displaystyle u(t)=\frac{\varphi_{2}}{4}\cos\Big{(}\frac{2t}{\sqrt{\pi}}\Big{)}.

    Figure 7 shows the periodic wave motion.

  2. (b)

    Let g=c1+c2φ2g=c_{1}+c_{2}\varphi_{2} and f=cf=c, where cc is a constant. Then the weak solution of the linear heat equation (4.4) is

    u(t)=c1+φ2(e4t/π(c2π4c)+π4c).\displaystyle u(t)=c_{1}+\varphi_{2}\Big{(}e^{-4t/\pi}\Big{(}c_{2}-\frac{\pi}{4}c\Big{)}+\frac{\pi}{4}c\Big{)}.

    For example, if c1=1c_{1}=1, c2=1c_{2}=1, and c=0c=0, then u(t)=1+φ2e4t/π.u(t)=1+\varphi_{2}e^{-4t/\pi}. In this case, the temperature of points in the upper semicircle decreases to 1, while that of points on the lower semicircle increases to 1. Total heat energy is conserved.

  3. (c)

    Let g=φ2/4g=\varphi_{2}/4 and f=0f=0. Then the weak solution of the linear Schrödinger equation (5.4) is

    u(t)=φ24ei4t/π.\displaystyle u(t)=\frac{\varphi_{2}}{4}e^{-i4t/\pi}.

    Figures 8 and 9 show the periodic behavior of u(t)u(t).

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 7. Graphs of the solution u(t)u(t) of the linear wave equation (3.4) with g=φ2/4g=\varphi_{2}/4, h=0h=0, and f=0f=0. The graphs are drawn with t=kππ/9t=k\pi\sqrt{\pi}/9, k=0,2,4,8,9k=0,2,4,8,9. Note that u(t)u(t) undergoes periodic motion.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 8. Real part of the solution u(t)u(t) of the linear Schrödinger equation (5.4) with g=φ2/4g=\varphi_{2}/4 and f=0f=0. The graphs are ploted with t=kπ2/2t=k\pi^{2}/2, k=0,2,4,6,9k=0,2,4,6,9.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 9. Imaginary part of the solution u(t)u(t) of the linear Schrödinger equation (5.4). The graphs are ploted by using the same initial data and tt values as in Figure.

Acknowledgement

Part of this work was carried out while the second author was visiting Beijing Institute of Mathematical Sciences and Applications (BIMSA). She thanks the institute for its hospitality and support.

References

  • [1] R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
  • [2] J. Ambjørn, J. Jurkiewicz and R. Loll, The spectral dimension of the universe is scale dependent, Phys. Rev. Lett. 95 (2005), 171301.
  • [3] D. Benedetti and J. Henson, Spectral geometry as a probe of quantum spacetime, Phys. Rev. D 80 (2009), 124036.
  • [4] E. J. Bird, S.-M. Ngai, and A. Teplyaev, Fractal Laplacians on the unit interval, Ann. Sci. Math. Que´\acute{e}bec 27 (2003), 135–168.
  • [5] G. Calcagni, Fractal universe and quantum gravity, Phys. Rev. Lett. 104 (2010), 251301.
  • [6] G. Calcagni, Gravity on a multifractal, Phys. Lett. B 679 (2011), 251–253.
  • [7] K. Coletta, K. Dias, and R. S. Strichartz, Numerical analysis on the Sierpinski gasket, with applications to Schrödinger equations, wave equation, and Gibbs’ phenomenon, Fractals 12 (2004), 413–449.
  • [8] J. F.-C. Chan, S.-M. Ngai, and A. Teplyaev, One-dimensional wave equations defined by fractal Laplacians, J. Anal. Math. 127 (2015), 219–246.
  • [9] J. Chen and S.-M. Ngai, Eigenvalues and eigenfunctions of one-dimensional fractal Laplacians defined by iterated function systems with overlaps, J. Math. Anal. Appl. 364 (2010), 222–241.
  • [10] R. Cawley and R. D. Mauldin, Multifractal decompositions of Moran fractals, Adv. Math. 92 (1992), 196–236.
  • [11] E. B. Davies, Spectral Theory and Differential Operators, Cambridge Stud. Adv. Math., vol. 42, Cambridge Univ. Press, Cambridge, 1995.
  • [12] D.-W. Deng and S.-M. Ngai, Eigenvalue estimates for Laplacians on measure spaces, J. Funct. Anal. 268 (2015), 2231–2260.
  • [13] G. A. Edgar, Measure, Topology, and Fractal Geometry, Springer, New York, 1990.
  • [14] U. Freiberg, Analytical properties of measure geometric Kreĭn-Feller-operators on the real line, Math. Nachr. 260 (2003), 34–47.
  • [15] U. Freiberg, Spectral asymptotics of generalized measure geometric Laplacians on cantor like sets, Forum Math. 17 (2005), 87–104.
  • [16] U. Freiberg, Refinement of the spectral asymptotics of generalized Kreĭn Feller operators. Forum Math. 23 (2011), 427–445.
  • [17] U. Freiberg and M. Zähle, Harmonic calculus on fractals—a measure geometric approach, Potential Anal. 16 (2002), 265–277.
  • [18] Q. Gu, J. Hu, and S.-M. Ngai, Geometry of self-similar measures on intervals with overlaps and applications to sub-Gaussian heat kernel estimates, Commun. Pure Appl. Anal. 19 (2020), 641–676.
  • [19] R. M. Green, Spherical Astronomy, Cambridge Univ. Press, Cambridge, 1985.
  • [20] J. Hu, Nonlinear wave equations on a class of bounded fractal sets. J. Math. Anal. Appl. 270 (2002), 657–680.
  • [21] J. E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), 713–747.
  • [22] J. Hu, K.-S. Lau, and S.-M. Ngai, Laplace operators related to self-similar measures on d\mathbb{R}^{d}, J. Funct. Anal. 239 (2006), 542–565.
  • [23] M. Kessebo¨\ddot{o}hmer and A. Niemann, Spectral asymptotics of Kreĭn-Feller operators for weak Gibbs measures on self-conformal fractals with overlaps, Adv. Math. 403 (2022), Paper No. 108384.
  • [24] M. Kesseböhmer and A. Niemann, Spectral dimensions of Kreĭn-Feller operators and LqL^{q}-spectra, Adv. Math. 399 (2022), Paper No. 108253.
  • [25] M. Kesseböhmer and A. Niemann, Spectral dimensions of Kreĭn-Feller operators in higher dimensions, arXiv: 2202.05247 (2022).
  • [26] J. Kigami, A harmonic calculus on the Sierpinski spaces, Japan J. Appl. Math. 6 (1989), 259–290.
  • [27] J. Kigami and M. L. Lapidus, Weyl’s problem for the spectral distribution of Laplacians on p.c.f. self-similar fractals, Comm. Math. Phys. 158 (1993), 93–125.
  • [28] R. D. Mauldin and S.C. Williams, Hausdorff dimension in graph directed constructions, Trans. Am. Math. Soc. 309 (1988), 811–829.
  • [29] K. Naimark and M. Solomyak, On the eigenvalue behaviour for a class of operators related to self-similar measures on d\mathbb{R}^{d}, C. R. Acad. Sci. Paris Se´\acute{e}r. I Math. 319 (1994), 837–842.
  • [30] K. Naimark and M. Solomyak, The eigenvalue behaviour for the boundary value problems related to self-similar measures on d\mathbb{R}^{d}, Math. Res. Lett. 2 (1995), 279–298.
  • [31] S.-M. Ngai, Spectral asymptotics of Laplacians associated with one-dimensional iterated function systems with overlaps, Canad. J. Math. 63 (2011), 648–688.
  • [32] S.-M. Ngai and L. Ouyang, Kreĭn-Feller operators on Riemannian manifolds and a compact embedding theorem, arXiv:2301.06438 (2023).
  • [33] S.-M. Ngai and L. Ouyang, Hodge Theorem for Kreĭn-Feller operators on compact Riemannian manifolds, arXiv:2403.06182.
  • [34] S.-M. Ngai and W. Tang, Eigenvalue asymptotics and Bohr’s formula for fractal Schrödinger operators, Pacific J. Math. 300 (2019), 83–119.
  • [35] S.-M. Ngai and W. Tang, Schrödinger equations defined by a class of self-similar measures. J. Fractal Geom. 10 (2023), 209–241.
  • [36] S.-M. Ngai, W. Tang, and Y. Y. Xie, Spectral asymptotics of one-dimensional fractal Laplacians in the absence of second-order identities, Discrete Cont. Dyn. Syst. 38 (2018), 1849–1887.
  • [37] S.-M. Ngai, W. Tang, and Y. Y. Xie, Wave propagation speed on fractals, J. Fourier Anal. Appl. 26 (2020), 1–38.
  • [38] S.-M. Ngai and Y. Y. Xie, Spectral asymptotics of Laplacians related to one-dimensional graph-directed self-similar measures with overlaps, Ark. Mat. 58 (2020), 393–435.
  • [39] S.-M. Ngai and Y. Y. Xie, Spectral asymptotics of Laplacians associated with a class of higher-dimensional graph-directed self-similar measures, Nonlinearity 34 (2021), 5375–5398.
  • [40] S.-M. Ngai and Y. Y. Xu, Existence of LqL^{q}-dimension and entropy dimension of self-conformal measures on Riemannian manifolds, Nonlinear Anal. 230 (2023), Paper No. 113226.
  • [41] S.-M. Ngai and Y. Y. Xu, Separation conditions for iterated function systems with overlaps on Riemannian manifolds, J. Geom. Anal. 33 (2023), no. 8, Paper No. 262.
  • [42] L. Olsen, Random Geometrically Graph Directed Self-Similar Multifractals, Pitman Res. Notes Math. Ser., vol. 307, New York, 1994.
  • [43] J. P. Pinasco and C. Scarola, Eigenvalue bounds and spectral asymptotics for fractal Laplacians, J. Fractal Geom. 6 (2019), 109–126.
  • [44] J. P. Pinasco and C. Scarola, A nodal inverse problem for measure geometric Laplacians, Commun Nonlinear Sci. Numer. Simul. 94 (2021), 105542.
  • [45] W. Tang and S.-M. Ngai, Heat equations defined by a class of self-similar measures with overlaps, Fractals 30 (2022), Paper No. 2250073.
  • [46] W. Tang and Z. Y. Wang, Strong damping wave equations defined by a class of self-similar measures with overlaps, J. Anal. Math. 150 (2023), 249–274.
  • [47] J. Wloka, Partial Differential Equations, Cambridge University Press, Cambridge, 1987.