This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Different coalescence sources of light nuclei production in Au-Au collisions at sNN=3\sqrt{s_{NN}}=3 GeV

Rui-Qin Wang School of Physics and Physical Engineering, Qufu Normal University, Shandong 273165, China    Ji-Peng Lü School of Physics and Physical Engineering, Qufu Normal University, Shandong 273165, China    Yan-Hao Li School of Physics and Physical Engineering, Qufu Normal University, Shandong 273165, China    Jun Song School of Physical Science and Intelligent Engineering, Jining University, Shandong 273155, China    Feng-Lan Shao [email protected] School of Physics and Physical Engineering, Qufu Normal University, Shandong 273165, China
Abstract

We study the production of light nuclei in the coalescence mechanism in Au-Au collisions at midrapidity at sNN=3\sqrt{s_{NN}}=3 GeV. We derive analytic formulas of momentum distributions of two bodies, three bodies and four nucleons coalescing into light nuclei, respectively. We naturally explain the transverse momentum spectra of the deuteron (dd), triton (tt), helium-3 (3He) and helium-4 (4He). We reproduce the data of yield rapidity densities and averaged transverse momenta of dd, tt, 3He and 4He. We give proportions of contributions from different coalescence sources for tt, 3He and 4He in their productions. We find that besides nucleon coalescence, nucleon++nucleus coalescence and nucleus++nucleus coalescence may play requisite roles in light nuclei production in Au-Au collisions at sNN=3\sqrt{s_{NN}}=3 GeV.

pacs:
25.75.-q, 25.75.Dw, 27.10.+h

I Introduction

As a specific group of observables in relativistic heavy ion collisions Nagle et al. (1994); Chen et al. (2018); Blum and Takimoto (2019); Bazak and Mrowczynski (2020); Aichelin (1991); Gutbrod et al. (1976); Junnarkar and Mathur (2019); Andronic et al. (2018); Bzdak et al. (2020); Sun et al. (2017, 2018); Luo et al. (2020), light nuclei such as the deuteron (dd), triton (tt), helium-3 (3He) and helium-4 (4He) have always been under active investigation in recent decades both in experiment Adler et al. (2001); Afanasiev et al. (2007); Anticic et al. (2016); Albergo et al. (2002); Adam et al. (2016); Acharya et al. (2020); Adamczyk et al. (2016); Adam et al. (2020); Zhang (2021); Adam et al. (2019); STA (2022) and in theory Braun-Munzinger and Dönigus (2019); Oliinychenko (2021); Dover et al. (1991); Chen et al. (2003a); Mrowczynski (2020); Andronic et al. (2011). The STAR experiment at the BNL Relativistic Heavy Ion Collider (RHIC) and the ALICE experiment at the CERN Large Hadron Collider (LHC) have collected a wealth of data on light nuclei production. These data exhibit some fascinating features, especially their non-trivial energy-dependent behaviors in a wide collision energy range from GeV to TeV magnitude Adam et al. (2016); Acharya et al. (2020); Adamczyk et al. (2016); Adam et al. (2020); Zhang (2021); Adam et al. (2019); STA (2022). Theoretical studies have also made significant progress. Two production mechanisms, the thermal production mechanism Mekjian (1977); Siemens and Kapusta (1979); Andronic et al. (2011); Cleymans et al. (2011); Cai et al. (2019) and the coalescence mechanism Schwarzschild and Zupancic (1963); Sato and Yazaki (1981); Dover et al. (1991); Mattiello et al. (1995); Nagle et al. (1996); Mattiello et al. (1997); Chen et al. (2003a); Polleri et al. (1998); Scheibl and Heinz (1999); Sharma et al. (2018); Bazak and Mrowczynski (2018), have proved to be successful in describing light nuclei formation. In addition, transport scenario Danielewicz and Bertsch (1991); Oh et al. (2009); Oliinychenko et al. (2019, 2021); Staudenmaier et al. (2021); Kireyeu et al. (2022) is employed to study how light nuclei evolve and survive during the hadronic system evolution.

The coalescence mechanism, in which light nuclei are usually assumed to be produced by the coalescence of the jacent nucleons in the phase space, possesses its unique characteristics. Plenty of current experimental observations at high RHIC and LHC energies favor the nucleon coalescence Adamczyk et al. (2016); Adam et al. (2019); STA (2022); Acharya et al. (2020); Zhao et al. (2018, 2020); Wang et al. (2021). Recently the STAR collaboration has extended the beam energy scan program to lower collision energy and published the data of both hadrons and light nuclei in Au-Au collisions at sNN=3\sqrt{s_{NN}}=3 GeV Abdallah et al. (2022a, b, c); Liu (2022). These data show very different properties compared to those at high RHIC and LHC energies, such as the disappearance of partonic collectivity Abdallah et al. (2022a) and dominant baryonic interactions Abdallah et al. (2022b). At this low collision energy besides nucleons, light nuclei in particular of light dd, tt and 3He have been more abundantly created Liu (2022) compared to higher collision energies Bartsch (2021). It is easier in physics for these light nuclei to capture nucleons or other light nuclei to form heavier composite objects. In fact clear depletions below unity of protond-d and ddd-d correlation functions measured at such low collision energy indicate the strong final state interaction and further support the possible coalescence of the dd with the nucleon or other dd Mi (2023). How much space is there on earth for other particle coalescence except nucleons, e.g., composite particles of less mass numbers coalescing into light nuclei of larger mass numbers or composite particles capturing nucleons to recombine into heavier light nuclei?

In this article, we extend the coalescence model which has been successfully used to explain the momentum dependence of yields and coalescence factors of different light nuclei at high RHIC and LHC energies Wang et al. (2021); Zhao et al. (2022), to include nucleon++nucleus coalescence and nucleus++nucleus coalescence besides nucleon coalescence. We apply the extended coalescence model to hadronic systems created in Au-Au collisions at midrapidity area at sNN=3\sqrt{s_{NN}}=3 GeV to study the momentum and centrality dependence of light nuclei production in the low- and intermediate-pTp_{T} regions. We compute the transverse momentum (pTp_{T}) spectra, the yield rapidity densities (dN/dydN/dy) and the averaged transverse momenta (pT\langle p_{T}\rangle) of dd, tt, 3He and 4He from central to peripheral collisions. We give proportions of contributions from different coalescence sources for tt, 3He and 4He respectively in their productions. Our studies show that in 0100-10%, 102010-20% and 204020-40% centralities, besides nucleon coalescence, nucleon+d+d coalescence plays an important role in tt and 3He production and nucleon+d+d (tt, 3He) coalescence as well as d+dd+d coalescence occupy significant proportions in 4He production. But in the peripheral 408040-80% centrality, nucleon coalescence plays a dominant role, and nucleon++nucleus coalescence or nucleus++nucleus coalescence seems to disappear.

The rest of the paper is organized as follows. In Sec. II, we introduce the coalescence model. We present analytic formulas of momentum distributions of two bodies, three bodies, and four nucleons coalescing into light nuclei, respectively. In Sec. III, we apply the model to Au-Au collisions in different rapidity intervals at midrapidity area at sNN=3\sqrt{s_{NN}}=3 GeV to study momentum and centrality dependence of the production of various species of light nuclei in the low- and intermediate-pTp_{T} regions. We give proportions of contributions from different coalescence sources for tt, 3He and 4He in their productions. In Sec. IV we summarize our work.

II The coalescence model

In this section we introduce the coalescence model which is used to deal with the light nuclei production. The starting point of the model is a hadronic system produced at the late stage of the evolution of high energy collision. The hadronic system consists of different species of primordial mesons and baryons. In the first step of the model all primordial nucleons are allowed to form dd, tt, 3He and 4He via the nucleon coalescence. Then in the second step the formed dd, tt and 3He capture the remanent primordial nucleons, i.e., those excluding consumed ones in the nucleon coalescence process, or other light nuclei to recombine into nuclei with larger mass numbers. In this model only dd, tt, 3He and 4He are included, and those light nuclei with mass number larger than 4 are abandoned.

In the following we present the deduction of the formalism of the production of various species of light nuclei via different coalescence processes, respectively. First we give analytic results of two bodies coalescing into light nuclei, which can be applied to processes such as p+ndp+n\rightarrow d, n+dtn+d\rightarrow t, p+d3p+d\rightarrow^{3}He, p+t4p+t\rightarrow^{4}He, n+3n+^{3}He 4\rightarrow^{4}He and d+d4d+d\rightarrow^{4}He. Then we show analytic results of three bodies coalescing into light nuclei, which can be used to describe these processes, e.g., n+n+ptn+n+p\rightarrow t, p+p+n3p+p+n\rightarrow^{3}He and p+n+d4p+n+d\rightarrow^{4}He. Finally, we give the analytic result of four nucleons coalescing into 4He, i.e., p+p+n+n4p+p+n+n\rightarrow^{4}He.

II.1 Formalism of two bodies coalescing into light nuclei

We begin with a hadronic system produced at the final stage of the evolution of high energy collision and suppose light nuclei LjL_{j} are formed via the coalescence of two hadronic bodies h1h_{1} and h2h_{2}. The three-dimensional momentum distribution of the produced light nuclei fLj(𝒑)f_{L_{j}}(\bm{p}) is given by

fLj(𝒑)=\displaystyle f_{L_{j}}(\bm{p})= 𝑑𝒙1𝑑𝒙2𝑑𝒑1𝑑𝒑2fh1h2(𝒙1,𝒙2;𝒑1,𝒑2)\displaystyle\int d\bm{x}_{1}d\bm{x}_{2}d\bm{p}_{1}d\bm{p}_{2}f_{h_{1}h_{2}}(\bm{x}_{1},\bm{x}_{2};\bm{p}_{1},\bm{p}_{2}) (1)
×Lj(𝒙1,𝒙2;𝒑1,𝒑2,𝒑),\displaystyle~{}~{}\times\mathcal{R}_{L_{j}}(\bm{x}_{1},\bm{x}_{2};\bm{p}_{1},\bm{p}_{2},\bm{p}),

where fh1h2(𝒙1,𝒙2;𝒑1,𝒑2)f_{h_{1}h_{2}}(\bm{x}_{1},\bm{x}_{2};\bm{p}_{1},\bm{p}_{2}) is two-hadron joint coordinate-momentum distribution; Lj(𝒙1,𝒙2;𝒑1,𝒑2,𝒑)\mathcal{R}_{L_{j}}(\bm{x}_{1},\bm{x}_{2};\bm{p}_{1},\bm{p}_{2},\bm{p}) is the kernel function. Here and from now on we use bold symbols to denote three-dimensional coordinate or momentum vectors.

In terms of the normalized joint coordinate-momentum distribution denoted by the superscript ‘(n)(n)’, we have

fLj(𝒑)=\displaystyle f_{L_{j}}(\bm{p})= Nh1h2𝑑𝒙1𝑑𝒙2𝑑𝒑1𝑑𝒑2fh1h2(n)(𝒙1,𝒙2;𝒑1,𝒑2)\displaystyle N_{h_{1}h_{2}}\int d\bm{x}_{1}d\bm{x}_{2}d\bm{p}_{1}d\bm{p}_{2}f^{(n)}_{h_{1}h_{2}}(\bm{x}_{1},\bm{x}_{2};\bm{p}_{1},\bm{p}_{2}) (2)
×Lj(𝒙1,𝒙2;𝒑1,𝒑2,𝒑).\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}\times\mathcal{R}_{L_{j}}(\bm{x}_{1},\bm{x}_{2};\bm{p}_{1},\bm{p}_{2},\bm{p}).

Nh1h2N_{h_{1}h_{2}} is the number of all possible h1h2h_{1}h_{2}-pairs, and it is equal to Nh1Nh2N_{h_{1}}N_{h_{2}} and Nh1(Nh11)N_{h_{1}}(N_{h_{1}}-1) for h1h2h_{1}\neq h_{2} and h1=h2h_{1}=h_{2}, respectively. Nhi(i=1,2)N_{h_{i}}~{}(i=1,2) is the number of the hadrons hih_{i} in the considered hadronic system.

The kernel function Lj(𝒙1,𝒙2;𝒑1,𝒑2,𝒑)\mathcal{R}_{L_{j}}(\bm{x}_{1},\bm{x}_{2};\bm{p}_{1},\bm{p}_{2},\bm{p}) denotes the probability density for h1h_{1}, h2h_{2} with momenta 𝒑1\bm{p}_{1} and 𝒑2\bm{p}_{2} at 𝒙1\bm{x}_{1} and 𝒙2\bm{x}_{2} to recombine into a LjL_{j} of momentum 𝒑\bm{p}. It carries the kinetic and dynamical information of h1h_{1} and h2h_{2} recombining into light nuclei, and its precise expression should be constrained by such as the momentum conservation, constraints due to intrinsic quantum numbers e.g. spin, and so on Wang et al. (2019, 2021); Zhao et al. (2022). To take these constraints into account explicitly, we rewrite the kernel function in the following form

Lj(𝒙1,𝒙2;𝒑1,𝒑2,𝒑)=\displaystyle\mathcal{R}_{L_{j}}(\bm{x}_{1},\bm{x}_{2};\bm{p}_{1},\bm{p}_{2},\bm{p})= gLjLj(x,p)(𝒙1,𝒙2;𝒑1,𝒑2)\displaystyle g_{L_{j}}\mathcal{R}_{L_{j}}^{(x,p)}(\bm{x}_{1},\bm{x}_{2};\bm{p}_{1},\bm{p}_{2}) (3)
×δ(i=12𝒑i𝒑),\displaystyle\times\delta(\displaystyle{\sum^{2}_{i=1}}\bm{p}_{i}-\bm{p}),

where the spin degeneracy factor gLj=(2JLj+1)/[i=12(2Jhi+1)]g_{L_{j}}=(2J_{L_{j}}+1)/[\prod\limits_{i=1}^{2}(2J_{h_{i}}+1)]. JLjJ_{L_{j}} is the spin of the produced LjL_{j} and JhiJ_{h_{i}} is that of the primordial hadron hih_{i}. The Dirac δ\delta function guarantees the momentum conservation in the coalescence. The remaining Lj(x,p)(𝒙1,𝒙2;𝒑1,𝒑2)\mathcal{R}_{L_{j}}^{(x,p)}(\bm{x}_{1},\bm{x}_{2};\bm{p}_{1},\bm{p}_{2}) can be solved from the Wigner transformation once the wave function of LjL_{j} is given with the instantaneous coalescence approximation. It is as follows

Lj(x,p)(𝒙1,𝒙2;𝒑1,𝒑2)=8e(𝒙1𝒙2)22σ2e2σ2(m2𝒑1m1𝒑2)2(m1+m2)22c2,\displaystyle\mathcal{R}^{(x,p)}_{L_{j}}(\bm{x}_{1},\bm{x}_{2};\bm{p}_{1},\bm{p}_{2})=8e^{-\frac{(\bm{x}^{\prime}_{1}-\bm{x}^{\prime}_{2})^{2}}{2\sigma^{2}}}e^{-\frac{2\sigma^{2}(m_{2}\bm{p}^{\prime}_{1}-m_{1}\bm{p}^{\prime}_{2})^{2}}{(m_{1}+m_{2})^{2}\hbar^{2}c^{2}}}, (4)

as we adopt the wave function of a spherical harmonic oscillator as in Refs. Chen et al. (2003b); Zhu et al. (2015). The superscript ‘’ in the coordinate or momentum variable denotes the hadronic coordinate or momentum in the rest frame of the h1h2h_{1}h_{2}-pair. m1m_{1} and m2m_{2} are the rest mass of hadron h1h_{1} and that of hadron h2h_{2}. The width parameter σ=2(m1+m2)23(m12+m22)RLj\sigma=\sqrt{\frac{2(m_{1}+m_{2})^{2}}{3(m_{1}^{2}+m_{2}^{2})}}R_{L_{j}}, where RLjR_{L_{j}} is the root-mean-square radius of LjL_{j} and its values for different light nuclei can be found in Ref. Angeli and Marinova (2013). The factor c\hbar c comes from the used GeV\cdotfm unit, and it is 0.197 GeV\cdotfm.

The normalized two-hadron joint distribution fh1h2(n)(𝒙1,𝒙2;𝒑1,𝒑2)f^{(n)}_{h_{1}h_{2}}(\bm{x}_{1},\bm{x}_{2};\bm{p}_{1},\bm{p}_{2}) is generally coordinate and momentum coupled, especially in central heavy-ion collisions with relatively high collision energies where the collective expansion exists long. The coupling intensities and its specific forms are probably different at different phase spaces in different collision energies and different collision centralities. In this article, we try our best to derive production formulas analytically and present centrality and momentum dependence of light nuclei more intuitively in Au-Au collisions at low RHIC energy sNN=3\sqrt{s_{NN}}=3 GeV where the partonic collectivity disappears Abdallah et al. (2022a), so we consider a simple case that the joint distribution is coordinate and momentum factorized, i.e.,

fh1h2(n)(𝒙1,𝒙2;𝒑1,𝒑2)=fh1h2(n)(𝒙1,𝒙2)fh1h2(n)(𝒑1,𝒑2).\displaystyle f^{(n)}_{h_{1}h_{2}}(\bm{x}_{1},\bm{x}_{2};\bm{p}_{1},\bm{p}_{2})=f^{(n)}_{h_{1}h_{2}}(\bm{x}_{1},\bm{x}_{2})f^{(n)}_{h_{1}h_{2}}(\bm{p}_{1},\bm{p}_{2}). (5)

Substituting Equations (3-5) into Equation (2), we have

fLj(𝒑)=Nh1h2gLj𝑑𝒙1𝑑𝒙2fh1h2(n)(𝒙1,𝒙2)8e(𝒙1𝒙2)22σ2\displaystyle f_{L_{j}}(\bm{p})=N_{h_{1}h_{2}}g_{L_{j}}\int d\bm{x}_{1}d\bm{x}_{2}f^{(n)}_{h_{1}h_{2}}(\bm{x}_{1},\bm{x}_{2})8e^{-\frac{(\bm{x}^{\prime}_{1}-\bm{x}^{\prime}_{2})^{2}}{2\sigma^{2}}}
×d𝒑1d𝒑2fh1h2(n)(𝒑1,𝒑2)e2σ2(m2𝒑1m1𝒑2)2(m1+m2)22c2δ(i=12𝒑i𝒑)\displaystyle~{}~{}~{}~{}~{}~{}\times\int d\bm{p}_{1}d\bm{p}_{2}f^{(n)}_{h_{1}h_{2}}(\bm{p}_{1},\bm{p}_{2})e^{-\frac{2\sigma^{2}(m_{2}\bm{p}^{\prime}_{1}-m_{1}\bm{p}^{\prime}_{2})^{2}}{(m_{1}+m_{2})^{2}\hbar^{2}c^{2}}}\delta(\displaystyle{\sum^{2}_{i=1}}\bm{p}_{i}-\bm{p})
=Nh1h2gLj𝒜LjLj(𝒑),\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}=N_{h_{1}h_{2}}g_{L_{j}}\mathcal{A}_{L_{j}}\mathcal{M}_{L_{j}}(\bm{p}), (6)

where we use 𝒜Lj\mathcal{A}_{L_{j}} to denote the coordinate integral part in Equation (6) as

𝒜Lj=8𝑑𝒙1𝑑𝒙2fh1h2(n)(𝒙1,𝒙2)e(𝒙1𝒙2)22σ2,\displaystyle\mathcal{A}_{L_{j}}=8\int d\bm{x}_{1}d\bm{x}_{2}f^{(n)}_{h_{1}h_{2}}(\bm{x}_{1},\bm{x}_{2})e^{-\frac{(\bm{x}^{\prime}_{1}-\bm{x}^{\prime}_{2})^{2}}{2\sigma^{2}}}, (7)

and use Lj(𝒑)\mathcal{M}_{L_{j}}(\bm{p}) to denote the momentum integral part as

Lj(𝒑)=𝑑𝒑1𝑑𝒑2fh1h2(n)(𝒑1,𝒑2)e2σ2(m2𝒑1m1𝒑2)2(m1+m2)22c2δ(i=12𝒑i𝒑).\displaystyle\mathcal{M}_{L_{j}}(\bm{p})=\int d\bm{p}_{1}d\bm{p}_{2}f^{(n)}_{h_{1}h_{2}}(\bm{p}_{1},\bm{p}_{2})e^{-\frac{2\sigma^{2}(m_{2}\bm{p}^{\prime}_{1}-m_{1}\bm{p}^{\prime}_{2})^{2}}{(m_{1}+m_{2})^{2}\hbar^{2}c^{2}}}\delta(\displaystyle{\sum^{2}_{i=1}}\bm{p}_{i}-\bm{p}).
(8)

𝒜Lj\mathcal{A}_{L_{j}} stands for the probability of a h1h2h_{1}h_{2}-pair satisfying the coordinate requirement to recombine into LjL_{j}, and Lj(𝒑)\mathcal{M}_{L_{j}}(\bm{p}) stands for the probability density of a h1h2h_{1}h_{2}-pair satisfying the momentum requirement to recombine into LjL_{j} with momentum 𝒑\bm{p}.

Changing integral variables in Equation (7) to be 𝑿=𝒙1+𝒙22\bm{X}=\frac{\bm{x}_{1}+\bm{x}_{2}}{\sqrt{2}} and 𝒓=𝒙1𝒙22\bm{r}=\frac{\bm{x}_{1}-\bm{x}_{2}}{\sqrt{2}}, we have

𝒜Lj=8𝑑𝑿𝑑𝒓fh1h2(n)(𝑿,𝒓)e𝒓2σ2,\displaystyle\mathcal{A}_{L_{j}}=8\int d\bm{X}d\bm{r}f^{(n)}_{h_{1}h_{2}}(\bm{X},\bm{r})e^{-\frac{\bm{r}^{\prime 2}}{\sigma^{2}}}, (9)

and the normalizing condition

fh1h2(n)(𝑿,𝒓)𝑑𝑿𝑑𝒓=1.\displaystyle\int f^{(n)}_{h_{1}h_{2}}(\bm{X},\bm{r})d\bm{X}d\bm{r}=1. (10)

We further assume the coordinate joint distribution is coordinate variable factorized, i.e., fh1h2(n)(𝑿,𝒓)=fh1h2(n)(𝑿)fh1h2(n)(𝒓)f^{(n)}_{h_{1}h_{2}}(\bm{X},\bm{r})=f^{(n)}_{h_{1}h_{2}}(\bm{X})f^{(n)}_{h_{1}h_{2}}(\bm{r}). Adopting fh1h2(n)(𝒓)=1(πCwRf2)3/2e𝒓2CwRf2f^{(n)}_{h_{1}h_{2}}(\bm{r})=\frac{1}{(\pi C_{w}R_{f}^{2})^{3/2}}e^{-\frac{\bm{r}^{2}}{C_{w}R_{f}^{2}}} as in Refs. Mrowczynski (2017); Wang et al. (2021), we have

𝒜Lj=8(πCwRf2)3/2𝑑𝒓e𝒓2CwRf2e𝒓2σ2.\displaystyle\mathcal{A}_{L_{j}}=\frac{8}{(\pi C_{w}R_{f}^{2})^{3/2}}\int d\bm{r}e^{-\frac{\bm{r}^{2}}{C_{w}R_{f}^{2}}}e^{-\frac{\bm{r}^{\prime 2}}{\sigma^{2}}}. (11)

Here RfR_{f} is the effective radius of the hadronic system at the light nuclei freeze-out. CwC_{w} is a distribution width parameter and it is set to be 2, the same as that in Refs. Mrowczynski (2017); Wang et al. (2021).

Considering instantaneous coalescence in the rest frame of h1h2h_{1}h_{2}-pair, i.e., Δt=0\Delta t^{\prime}=0, we get

𝒓=𝒓+(γ1)𝒓𝜷β2𝜷,\displaystyle\bm{r}=\bm{r}^{\prime}+(\gamma-1)\frac{\bm{r}^{\prime}\cdot\bm{\beta}}{\beta^{2}}\bm{\beta}, (12)

where 𝜷\bm{\beta} is the three-dimensional velocity vector of the center-of-mass frame of h1h2h_{1}h_{2}-pair in the laboratory frame and the Lorentz contraction factor γ=1/1𝜷2\gamma=1/\sqrt{1-\bm{\beta}^{2}}. Substituting Equation (12) into Equation (11) and integrating from the relative coordinate variable, we can obtain

𝒜Lj=8σ3(CwRf2+σ2)Cw(Rf/γ)2+σ2.\displaystyle\mathcal{A}_{L_{j}}=\frac{8\sigma^{3}}{(C_{w}R_{f}^{2}+\sigma^{2})\sqrt{C_{w}(R_{f}/\gamma)^{2}+\sigma^{2}}}. (13)

Noticing that c/σ\hbar c/\sigma in Equation (8) has a small value of about 0.1, we can mathematically approximate the gaussian form of the momentum-dependent kernel function to be a δ\delta function form as follows

e(𝒑1m1m2𝒑2)2(1+m1m2)22c22σ2[cσ(1+m1m2)π2]3δ(𝒑1m1m2𝒑2).e^{-\frac{(\bm{p}^{\prime}_{1}-\frac{m_{1}}{m_{2}}\bm{p}^{\prime}_{2})^{2}}{(1+\frac{m_{1}}{m_{2}})^{2}\frac{\hbar^{2}c^{2}}{2\sigma^{2}}}}\approx\left[\frac{\hbar c}{\sigma}(1+\frac{m_{1}}{m_{2}})\sqrt{\frac{\pi}{2}}\right]^{3}\delta(\bm{p}^{\prime}_{1}-\frac{m_{1}}{m_{2}}\bm{p}^{\prime}_{2}). (14)

After integrating 𝒑1\bm{p}_{1} and 𝒑2\bm{p}_{2} from Equation (8) we can obtain

Lj(𝒑)=(cπ2σ)3γfh1h2(n)(m1𝒑m1+m2,m2𝒑m1+m2),\displaystyle\mathcal{M}_{L_{j}}(\bm{p})=(\frac{\hbar c\sqrt{\pi}}{\sqrt{2}\sigma})^{3}\gamma f^{(n)}_{h_{1}h_{2}}(\frac{m_{1}\bm{p}}{m_{1}+m_{2}},\frac{m_{2}\bm{p}}{m_{1}+m_{2}}), (15)

where γ\gamma comes from 𝒑1m1m2𝒑2=1γ(𝒑1m1m2𝒑2)\bm{p}^{\prime}_{1}-\frac{m_{1}}{m_{2}}\bm{p}^{\prime}_{2}=\frac{1}{\gamma}(\bm{p}_{1}-\frac{m_{1}}{m_{2}}\bm{p}_{2}).

Substituting Equations (13) and (15) into Equation (6) and ignoring correlations between h1h_{1} and h2h_{2} hadrons, we have

fLj(𝒑)\displaystyle f_{L_{j}}(\bm{p}) =\displaystyle= (2πc)3gLjγ(CwRf2+σ2)Cw(Rf/γ)2+σ2fh1(m1𝒑m1+m2)\displaystyle\frac{(\sqrt{2\pi}\hbar c)^{3}g_{L_{j}}\gamma}{(C_{w}R_{f}^{2}+\sigma^{2})\sqrt{C_{w}(R_{f}/\gamma)^{2}+\sigma^{2}}}f_{h_{1}}(\frac{m_{1}\bm{p}}{m_{1}+m_{2}}) (16)
×fh2(m2𝒑m1+m2).\displaystyle\times f_{h_{2}}(\frac{m_{2}\bm{p}}{m_{1}+m_{2}}).

Denoting the Lorentz invariant momentum distribution d2N2πpTdpTdy\dfrac{d^{2}N}{2\pi p_{T}dp_{T}dy} with f(inv)f^{(inv)}, we finally have

fLj(inv)(pT,y)\displaystyle f_{L_{j}}^{(inv)}(p_{T},y) =\displaystyle= (2πc)3gLj(CwRf2+σ2)Cw(Rf/γ)2+σ2m1+m2m1m2\displaystyle\frac{(\sqrt{2\pi}\hbar c)^{3}g_{L_{j}}}{(C_{w}R_{f}^{2}+\sigma^{2})\sqrt{C_{w}(R_{f}/\gamma)^{2}+\sigma^{2}}}\frac{m_{1}+m_{2}}{m_{1}m_{2}} (17)
×fh1(inv)(m1pTm1+m2,y)fh2(inv)(m2pTm1+m2,y),\displaystyle\times f_{h_{1}}^{(inv)}(\frac{m_{1}p_{T}}{m_{1}+m_{2}},y)f_{h_{2}}^{(inv)}(\frac{m_{2}p_{T}}{m_{1}+m_{2}},y),

where yy is the rapidity.

II.2 Formalism of three bodies coalescing into light nuclei

For light nuclei LjL_{j} formed via the coalescence of three hadronic bodies h1h_{1}, h2h_{2} and h3h_{3}, the three-dimensional momentum distribution fLj(𝒑)f_{L_{j}}(\bm{p}) is

fLj(𝒑)=\displaystyle f_{L_{j}}(\bm{p})= Nh1h2h3d𝒙1d𝒙2d𝒙3d𝒑1d𝒑2d𝒑3fh1h2h3(n)(𝒙1,𝒙2,𝒙3;\displaystyle N_{h_{1}h_{2}h_{3}}\int d\bm{x}_{1}d\bm{x}_{2}d\bm{x}_{3}d\bm{p}_{1}d\bm{p}_{2}d\bm{p}_{3}f^{(n)}_{h_{1}h_{2}h_{3}}(\bm{x}_{1},\bm{x}_{2},\bm{x}_{3}; (18)
𝒑1,𝒑2,𝒑3)Lj(𝒙1,𝒙2,𝒙3;𝒑1,𝒑2,𝒑3,𝒑).\displaystyle\bm{p}_{1},\bm{p}_{2},\bm{p}_{3})\mathcal{R}_{L_{j}}(\bm{x}_{1},\bm{x}_{2},\bm{x}_{3};\bm{p}_{1},\bm{p}_{2},\bm{p}_{3},\bm{p}).

Nh1h2h3N_{h_{1}h_{2}h_{3}} is the number of all possible h1h2h3h_{1}h_{2}h_{3}-clusters and it is equal to Nh1Nh2Nh3,Nh1(Nh11)Nh3,Nh1(Nh11)(Nh12)N_{h_{1}}N_{h_{2}}N_{h_{3}},~{}N_{h_{1}}(N_{h_{1}}-1)N_{h_{3}},~{}N_{h_{1}}(N_{h_{1}}-1)(N_{h_{1}}-2) for h1h2h3h_{1}\neq h_{2}\neq h_{3}, h1=h2h3h_{1}=h_{2}\neq h_{3}, h1=h2=h3h_{1}=h_{2}=h_{3}, respectively. fh1h2h3(n)f^{(n)}_{h_{1}h_{2}h_{3}} is the normalized three-hadron joint coordinate-momentum distribution. Lj\mathcal{R}_{L_{j}} is the kernel function.

We rewrite the kernel function as

Lj(𝒙1,𝒙2,𝒙3;𝒑1,𝒑2,𝒑3,𝒑)=\displaystyle\mathcal{R}_{L_{j}}(\bm{x}_{1},\bm{x}_{2},\bm{x}_{3};\bm{p}_{1},\bm{p}_{2},\bm{p}_{3},\bm{p})= gLjLj(x,p)(𝒙1,𝒙2,𝒙3;𝒑1,𝒑2,𝒑3)\displaystyle g_{L_{j}}\mathcal{R}_{L_{j}}^{(x,p)}(\bm{x}_{1},\bm{x}_{2},\bm{x}_{3};\bm{p}_{1},\bm{p}_{2},\bm{p}_{3}) (19)
×δ(i=13𝒑i𝒑).\displaystyle\times\delta(\displaystyle{\sum^{3}_{i=1}}\bm{p}_{i}-\bm{p}).

The spin degeneracy factor gLj=(2JLj+1)/[i=13(2Jhi+1)]g_{L_{j}}=(2J_{L_{j}}+1)/[\prod\limits_{i=1}^{3}(2J_{h_{i}}+1)]. The Dirac δ\delta function guarantees the momentum conservation. Lj(x,p)(𝒙1,𝒙2,𝒙3;𝒑1,𝒑2,𝒑3)\mathcal{R}_{L_{j}}^{(x,p)}(\bm{x}_{1},\bm{x}_{2},\bm{x}_{3};\bm{p}_{1},\bm{p}_{2},\bm{p}_{3}) solving from the Wigner transformation Chen et al. (2003b); Zhu et al. (2015) is

Lj(x,p)(𝒙1,𝒙2,𝒙3;𝒑1,𝒑2,𝒑3)=82e(𝒙1𝒙2)22σ12e2(m1𝒙1m1+m2+m2𝒙2m1+m2𝒙3)23σ22\displaystyle\mathcal{R}^{(x,p)}_{L_{j}}(\bm{x}_{1},\bm{x}_{2},\bm{x}_{3};\bm{p}_{1},\bm{p}_{2},\bm{p}_{3})=8^{2}e^{-\frac{(\bm{x}^{\prime}_{1}-\bm{x}^{\prime}_{2})^{2}}{2\sigma_{1}^{2}}}e^{-\frac{2(\frac{m_{1}\bm{x}^{\prime}_{1}}{m_{1}+m_{2}}+\frac{m_{2}\bm{x}^{\prime}_{2}}{m_{1}+m_{2}}-\bm{x}^{\prime}_{3})^{2}}{3\sigma_{2}^{2}}}
×e2σ12(m2𝒑1m1𝒑2)2(m1+m2)22c2e3σ22[m3𝒑1+m3𝒑2(m1+m2)𝒑3]22(m1+m2+m3)22c2.\displaystyle~{}~{}\times e^{-\frac{2\sigma_{1}^{2}(m_{2}\bm{p}^{\prime}_{1}-m_{1}\bm{p}^{\prime}_{2})^{2}}{(m_{1}+m_{2})^{2}\hbar^{2}c^{2}}}e^{-\frac{3\sigma_{2}^{2}[m_{3}\bm{p}^{\prime}_{1}+m_{3}\bm{p}^{\prime}_{2}-(m_{1}+m_{2})\bm{p}^{\prime}_{3}]^{2}}{2(m_{1}+m_{2}+m_{3})^{2}\hbar^{2}c^{2}}}. (20)

The superscript ‘’ denotes the hadronic coordinate or momentum in the rest frame of the h1h2h3h_{1}h_{2}h_{3}-cluster. The width parameter σ1=m3(m1+m2)(m1+m2+m3)m1m2(m1+m2)+m2m3(m2+m3)+m3m1(m3+m1)RLj\sigma_{1}=\sqrt{\frac{m_{3}(m_{1}+m_{2})(m_{1}+m_{2}+m_{3})}{m_{1}m_{2}(m_{1}+m_{2})+m_{2}m_{3}(m_{2}+m_{3})+m_{3}m_{1}(m_{3}+m_{1})}}R_{L_{j}}, and σ2=4m1m2(m1+m2+m3)23(m1+m2)[m1m2(m1+m2)+m2m3(m2+m3)+m3m1(m3+m1)]RLj\sigma_{2}=\sqrt{\frac{4m_{1}m_{2}(m_{1}+m_{2}+m_{3})^{2}}{3(m_{1}+m_{2})[m_{1}m_{2}(m_{1}+m_{2})+m_{2}m_{3}(m_{2}+m_{3})+m_{3}m_{1}(m_{3}+m_{1})]}}R_{L_{j}}.

With the coordinate and momentum factorization assumption of the joint distribution, we have

fLj(𝒑)=Nh1h2h3gLj𝒜LjLj(𝒑).\displaystyle f_{L_{j}}(\bm{p})=N_{h_{1}h_{2}h_{3}}g_{L_{j}}\mathcal{A}_{L_{j}}\mathcal{M}_{L_{j}}(\bm{p}). (21)

Here we also use 𝒜Lj\mathcal{A}_{L_{j}} to denote the coordinate integral part as

𝒜Lj=\displaystyle\mathcal{A}_{L_{j}}= 82𝑑𝒙1𝑑𝒙2𝑑𝒙3fh1h2h3(n)(𝒙1,𝒙2,𝒙3)e(𝒙1𝒙2)22σ12\displaystyle 8^{2}\int d\bm{x}_{1}d\bm{x}_{2}d\bm{x}_{3}f^{(n)}_{h_{1}h_{2}h_{3}}(\bm{x}_{1},\bm{x}_{2},\bm{x}_{3})e^{-\frac{(\bm{x}^{\prime}_{1}-\bm{x}^{\prime}_{2})^{2}}{2\sigma_{1}^{2}}} (22)
×e2(m1𝒙1m1+m2+m2𝒙2m1+m2𝒙3)23σ22,\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}\times e^{-\frac{2(\frac{m_{1}\bm{x}^{\prime}_{1}}{m_{1}+m_{2}}+\frac{m_{2}\bm{x}^{\prime}_{2}}{m_{1}+m_{2}}-\bm{x}^{\prime}_{3})^{2}}{3\sigma_{2}^{2}}},

and use Lj(𝒑)\mathcal{M}_{L_{j}}(\bm{p}) to denote the momentum integral part as

Lj(𝒑)=\displaystyle\mathcal{M}_{L_{j}}(\bm{p})= 𝑑𝒑1𝑑𝒑2𝑑𝒑3fh1h2h3(n)(𝒑1,𝒑2,𝒑3)δ(i=13𝒑i𝒑)\displaystyle\int d\bm{p}_{1}d\bm{p}_{2}d\bm{p}_{3}f^{(n)}_{h_{1}h_{2}h_{3}}(\bm{p}_{1},\bm{p}_{2},\bm{p}_{3})\delta(\displaystyle{\sum^{3}_{i=1}}\bm{p}_{i}-\bm{p})
×e2σ12(m2𝒑1m1𝒑2)2(m1+m2)22c2e3σ22[m3𝒑1+m3𝒑2(m1+m2)𝒑3]22(m1+m2+m3)22c2.\displaystyle~{}~{}~{}~{}\times e^{-\frac{2\sigma_{1}^{2}(m_{2}\bm{p}^{\prime}_{1}-m_{1}\bm{p}^{\prime}_{2})^{2}}{(m_{1}+m_{2})^{2}\hbar^{2}c^{2}}}e^{-\frac{3\sigma_{2}^{2}[m_{3}\bm{p}^{\prime}_{1}+m_{3}\bm{p}^{\prime}_{2}-(m_{1}+m_{2})\bm{p}^{\prime}_{3}]^{2}}{2(m_{1}+m_{2}+m_{3})^{2}\hbar^{2}c^{2}}}.

We change integral variables in Equation (22) to be 𝒀=(m1𝒙1+m2𝒙2+m3𝒙3)/(m1+m2+m3)\bm{Y}=(m_{1}\bm{x}_{1}+m_{2}\bm{x}_{2}+m_{3}\bm{x}_{3})/(m_{1}+m_{2}+m_{3}), 𝒓1=(𝒙1𝒙2)/2\bm{r}_{1}=(\bm{x}_{1}-\bm{x}_{2})/\sqrt{2} and 𝒓2=23(m1𝒙1m1+m2+m2𝒙2m1+m2𝒙3)\bm{r}_{2}=\sqrt{\frac{2}{3}}(\frac{m_{1}\bm{x}_{1}}{m_{1}+m_{2}}+\frac{m_{2}\bm{x}_{2}}{m_{1}+m_{2}}-\bm{x}_{3}), and further assume the coordinate joint distribution is coordinate variable factorized, i.e., 33/2fh1h2h3(n)(𝒀,𝒓1,𝒓2)=fh1h2h3(n)(𝒀)fh1h2h3(n)(𝒓1)fh1h2h3(n)(𝒓2)3^{3/2}f^{(n)}_{h_{1}h_{2}h_{3}}(\bm{Y},\bm{r}_{1},\bm{r}_{2})=f^{(n)}_{h_{1}h_{2}h_{3}}(\bm{Y})f^{(n)}_{h_{1}h_{2}h_{3}}(\bm{r}_{1})f^{(n)}_{h_{1}h_{2}h_{3}}(\bm{r}_{2}). Adopting fh1h2h3(n)(𝒓1)=1(πC1Rf2)3/2e𝒓12C1Rf2f^{(n)}_{h_{1}h_{2}h_{3}}(\bm{r}_{1})=\frac{1}{(\pi C_{1}R_{f}^{2})^{3/2}}e^{-\frac{\bm{r}_{1}^{2}}{C_{1}R_{f}^{2}}} and fh1h2h3(n)(𝒓2)=1(πC2Rf2)3/2e𝒓22C2Rf2f^{(n)}_{h_{1}h_{2}h_{3}}(\bm{r}_{2})=\frac{1}{(\pi C_{2}R_{f}^{2})^{3/2}}e^{-\frac{\bm{r}_{2}^{2}}{C_{2}R_{f}^{2}}} as in Refs. Mrowczynski (2017); Wang et al. (2021), we have

𝒜Lj\displaystyle\mathcal{A}_{L_{j}} =\displaystyle= 821(πC1Rf2)3/2𝑑𝒓1e𝒓12C1Rf2e(𝒓1)2σ12\displaystyle 8^{2}\frac{1}{(\pi C_{1}R_{f}^{2})^{3/2}}\int d\bm{r}_{1}e^{-\frac{\bm{r}_{1}^{2}}{C_{1}R_{f}^{2}}}e^{-\frac{(\bm{r}^{\prime}_{1})^{2}}{\sigma_{1}^{2}}} (24)
×1(πC2Rf2)3/2𝑑𝒓2e𝒓22C2Rf2e(𝒓2)2σ22.\displaystyle\times\frac{1}{(\pi C_{2}R_{f}^{2})^{3/2}}\int d\bm{r}_{2}e^{-\frac{\bm{r}_{2}^{2}}{C_{2}R_{f}^{2}}}e^{-\frac{(\bm{r}^{\prime}_{2})^{2}}{\sigma_{2}^{2}}}.

Comparing relations of 𝒓1\bm{r}_{1}, 𝒓2\bm{r}_{2} with 𝒙1\bm{x}_{1}, 𝒙2\bm{x}_{2}, 𝒙3\bm{x}_{3} to that of 𝒓\bm{r} with 𝒙1\bm{x}_{1}, 𝒙2\bm{x}_{2} in Sec. II.1, we see that C1C_{1} is equal to CwC_{w} and C2C_{2} is 4Cw/34C_{w}/3 when ignoring the mass difference of m1m_{1} and m2m_{2} Mrowczynski (2017); Wang et al. (2021). Considering the Lorentz transformation and integrating from the relative coordinate variables in Equation (24), we obtain

𝒜Lj\displaystyle\mathcal{A}_{L_{j}} =\displaystyle= 82σ13σ23(C1Rf2+σ12)C1(Rf/γ)2+σ12\displaystyle\frac{8^{2}\sigma_{1}^{3}\sigma_{2}^{3}}{(C_{1}R_{f}^{2}+\sigma_{1}^{2})\sqrt{C_{1}(R_{f}/\gamma)^{2}+\sigma_{1}^{2}}} (25)
×1(C2Rf2+σ22)C2(Rf/γ)2+σ22.\displaystyle\times\frac{1}{(C_{2}R_{f}^{2}+\sigma_{2}^{2})\sqrt{C_{2}(R_{f}/\gamma)^{2}+\sigma_{2}^{2}}}.

Approximating the gaussian form of the momentum-dependent kernel function to be δ\delta function form and integrating 𝒑1\bm{p}_{1}, 𝒑2\bm{p}_{2} and 𝒑3\bm{p}_{3} from Equation (LABEL:eq:MLj3h), we can obtain

Lj(𝒑)=(π2c23σ1σ2)3γ2×\displaystyle\mathcal{M}_{L_{j}}(\bm{p})=\left(\frac{\pi\hbar^{2}c^{2}}{\sqrt{3}\sigma_{1}\sigma_{2}}\right)^{3}\gamma^{2}\times
fh1h2h3(n)(m1𝒑m1+m2+m3,m2𝒑m1+m2+m3,m3𝒑m1+m2+m3).\displaystyle~{}f^{(n)}_{h_{1}h_{2}h_{3}}(\frac{m_{1}\bm{p}}{m_{1}+m_{2}+m_{3}},\frac{m_{2}\bm{p}}{m_{1}+m_{2}+m_{3}},\frac{m_{3}\bm{p}}{m_{1}+m_{2}+m_{3}}).~{}~{}~{}~{}~{} (26)

Substituting Equations (25) and (26) into Equation (21) and ignoring correlations between h1h_{1}, h2h_{2} and h3h_{3} hadrons, we have

fLj(𝒑)\displaystyle f_{L_{j}}(\bm{p}) =\displaystyle= 64π36c6gLjγ233(C1Rf2+σ12)C1(Rf/γ)2+σ12\displaystyle\frac{64\pi^{3}\hbar^{6}c^{6}g_{L_{j}}\gamma^{2}}{3\sqrt{3}(C_{1}R_{f}^{2}+\sigma_{1}^{2})\sqrt{C_{1}(R_{f}/\gamma)^{2}+\sigma_{1}^{2}}} (27)
×1(C2Rf2+σ22)C2(Rf/γ)2+σ22fh1(m1𝒑m1+m2+m3)\displaystyle\times\frac{1}{(C_{2}R_{f}^{2}+\sigma_{2}^{2})\sqrt{C_{2}(R_{f}/\gamma)^{2}+\sigma_{2}^{2}}}f_{h_{1}}(\frac{m_{1}\bm{p}}{m_{1}+m_{2}+m_{3}})
×fh2(m2𝒑m1+m2+m3)fh3(m3𝒑m1+m2+m3).\displaystyle\times f_{h_{2}}(\frac{m_{2}\bm{p}}{m_{1}+m_{2}+m_{3}})f_{h_{3}}(\frac{m_{3}\bm{p}}{m_{1}+m_{2}+m_{3}}).

Finally we have the Lorentz invariant momentum distribution

fLj(inv)(pT,y)=64π36c6gLj33(C1Rf2+σ12)C1(Rf/γ)2+σ12\displaystyle f_{L_{j}}^{(inv)}(p_{T},y)=\frac{64\pi^{3}\hbar^{6}c^{6}g_{L_{j}}}{3\sqrt{3}(C_{1}R_{f}^{2}+\sigma_{1}^{2})\sqrt{C_{1}(R_{f}/\gamma)^{2}+\sigma_{1}^{2}}}
×1(C2Rf2+σ22)C2(Rf/γ)2+σ22m1+m2+m3m1m2m3\displaystyle~{}~{}~{}~{}~{}~{}\times\frac{1}{(C_{2}R_{f}^{2}+\sigma_{2}^{2})\sqrt{C_{2}(R_{f}/\gamma)^{2}+\sigma_{2}^{2}}}\frac{m_{1}+m_{2}+m_{3}}{m_{1}m_{2}m_{3}}
×fh1(inv)(m1pTm1+m2+m3,y)fh2(inv)(m2pTm1+m2+m3,y)\displaystyle~{}~{}~{}~{}~{}~{}\times f_{h_{1}}^{(inv)}(\frac{m_{1}p_{T}}{m_{1}+m_{2}+m_{3}},y)f_{h_{2}}^{(inv)}(\frac{m_{2}p_{T}}{m_{1}+m_{2}+m_{3}},y)
×fh3(inv)(m3pTm1+m2+m3,y).\displaystyle~{}~{}~{}~{}~{}~{}\times f_{h_{3}}^{(inv)}(\frac{m_{3}p_{T}}{m_{1}+m_{2}+m_{3}},y). (28)

II.3 Formalism of four nucleons coalescing into 4He

For 4He formed via the coalescence of four nucleons, the three-dimensional momentum distribution is

fHe4(𝒑)=Nppnn𝑑𝒙1𝑑𝒙2𝑑𝒙3𝑑𝒙4𝑑𝒑1𝑑𝒑2𝑑𝒑3𝑑𝒑4\displaystyle f_{{}^{4}\text{He}}(\bm{p})=N_{ppnn}\int d\bm{x}_{1}d\bm{x}_{2}d\bm{x}_{3}d\bm{x}_{4}d\bm{p}_{1}d\bm{p}_{2}d\bm{p}_{3}d\bm{p}_{4}
×fppnn(n)(𝒙1,𝒙2,𝒙3,𝒙4;𝒑1,𝒑2,𝒑3,𝒑4)\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}\times f^{(n)}_{ppnn}(\bm{x}_{1},\bm{x}_{2},\bm{x}_{3},\bm{x}_{4};\bm{p}_{1},\bm{p}_{2},\bm{p}_{3},\bm{p}_{4})
×He4(𝒙1,𝒙2,𝒙3,𝒙4;𝒑1,𝒑2,𝒑3,𝒑4,𝒑),\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}\times\mathcal{R}_{{}^{4}\text{He}}(\bm{x}_{1},\bm{x}_{2},\bm{x}_{3},\bm{x}_{4};\bm{p}_{1},\bm{p}_{2},\bm{p}_{3},\bm{p}_{4},\bm{p}), (29)

where Nppnn=Np(Np1)Nn(Nn1)N_{ppnn}=N_{p}(N_{p}-1)N_{n}(N_{n}-1) is the number of all possible ppnnppnn-clusters; fppnn(n)f^{(n)}_{ppnn} is the normalized four-nucleon joint coordinate-momentum distribution; He4\mathcal{R}_{{}^{4}\text{He}} is the kernel function.

We rewrite the kernel function as

He4(𝒙1,𝒙2,𝒙3,𝒙4;𝒑1,𝒑2,𝒑3,𝒑4,𝒑)=gHe4\displaystyle\mathcal{R}_{{}^{4}\text{He}}(\bm{x}_{1},\bm{x}_{2},\bm{x}_{3},\bm{x}_{4};\bm{p}_{1},\bm{p}_{2},\bm{p}_{3},\bm{p}_{4},\bm{p})=g_{{}^{4}\text{He}}
×He4(x,p)(𝒙1,𝒙2,𝒙3,𝒙4;𝒑1,𝒑2,𝒑3,𝒑4)δ(i=14𝒑i𝒑),\displaystyle~{}~{}~{}~{}\times\mathcal{R}_{{}^{4}\text{He}}^{(x,p)}(\bm{x}_{1},\bm{x}_{2},\bm{x}_{3},\bm{x}_{4};\bm{p}_{1},\bm{p}_{2},\bm{p}_{3},\bm{p}_{4})\delta(\displaystyle{\sum^{4}_{i=1}}\bm{p}_{i}-\bm{p}), (30)

where the spin degeneracy factor gHe4=1/16g_{{}^{4}\text{He}}=1/16, and

He4(x,p)(𝒙1,𝒙2,𝒙3,𝒙4;𝒑1,𝒑2,𝒑3,𝒑4)=83e(𝒙1𝒙2)22σHe42\displaystyle\mathcal{R}^{(x,p)}_{{}^{4}\text{He}}(\bm{x}_{1},\bm{x}_{2},\bm{x}_{3},\bm{x}_{4};\bm{p}_{1},\bm{p}_{2},\bm{p}_{3},\bm{p}_{4})=8^{3}e^{-\frac{(\bm{x}^{\prime}_{1}-\bm{x}^{\prime}_{2})^{2}}{2\sigma_{{}^{4}\text{He}}^{2}}}
×e(𝒙1+𝒙22𝒙3)26σHe42e(𝒙1+𝒙2+𝒙33𝒙4)212σHe42\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}\times e^{-\frac{(\bm{x}^{\prime}_{1}+\bm{x}^{\prime}_{2}-2\bm{x}^{\prime}_{3})^{2}}{6\sigma_{{}^{4}\text{He}}^{2}}}e^{-\frac{(\bm{x}^{\prime}_{1}+\bm{x}^{\prime}_{2}+\bm{x}^{\prime}_{3}-3\bm{x}^{\prime}_{4})^{2}}{12\sigma_{{}^{4}\text{He}}^{2}}}
×eσHe42(𝒑1𝒑2)222c2eσHe42(𝒑1+𝒑22𝒑3)262c2eσHe42(𝒑1+𝒑2+𝒑33𝒑4)2122c2.\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}\times e^{-\frac{\sigma_{{}^{4}\text{He}}^{2}(\bm{p}^{\prime}_{1}-\bm{p}^{\prime}_{2})^{2}}{2\hbar^{2}c^{2}}}e^{-\frac{\sigma_{{}^{4}\text{He}}^{2}(\bm{p}^{\prime}_{1}+\bm{p}^{\prime}_{2}-2\bm{p}^{\prime}_{3})^{2}}{6\hbar^{2}c^{2}}}e^{-\frac{\sigma_{{}^{4}\text{He}}^{2}(\bm{p}^{\prime}_{1}+\bm{p}^{\prime}_{2}+\bm{p}^{\prime}_{3}-3\bm{p}^{\prime}_{4})^{2}}{12\hbar^{2}c^{2}}}. (31)

Here σHe4=223RHe4\sigma_{{}^{4}\text{He}}=\frac{2\sqrt{2}}{3}R_{{}^{4}\text{He}}, and RHe4=1.6755R_{{}^{4}\text{He}}=1.6755 fm Angeli and Marinova (2013) is the root-mean-square radius of the 4He.

Assuming that the normalized joint distribution is coordinate and momentum factorized, we have

fHe4(𝒑)=NppnngHe4𝒜He4He4(𝒑).\displaystyle f_{{}^{4}\text{He}}(\bm{p})=N_{ppnn}g_{{}^{4}\text{He}}\mathcal{A}_{{}^{4}\text{He}}\mathcal{M}_{{}^{4}\text{He}}(\bm{p}). (32)

Here we use 𝒜He4\mathcal{A}_{{}^{4}\text{He}} to denote the coordinate integral part in Equation (32) as

𝒜He4=\displaystyle\mathcal{A}_{{}^{4}\text{He}}= 83𝑑𝒙1𝑑𝒙2𝑑𝒙3𝑑𝒙4fppnn(n)(𝒙1,𝒙2,𝒙3,𝒙4)\displaystyle 8^{3}\int d\bm{x}_{1}d\bm{x}_{2}d\bm{x}_{3}d\bm{x}_{4}f^{(n)}_{ppnn}(\bm{x}_{1},\bm{x}_{2},\bm{x}_{3},\bm{x}_{4}) (33)
×e(𝒙1𝒙2)22σHe42e(𝒙1+𝒙22𝒙3)26σHe42e(𝒙1+𝒙2+𝒙33𝒙4)212σHe42,\displaystyle~{}~{}~{}~{}~{}~{}\times e^{-\frac{(\bm{x}^{\prime}_{1}-\bm{x}^{\prime}_{2})^{2}}{2\sigma_{{}^{4}\text{He}}^{2}}}e^{-\frac{(\bm{x}^{\prime}_{1}+\bm{x}^{\prime}_{2}-2\bm{x}^{\prime}_{3})^{2}}{6\sigma_{{}^{4}\text{He}}^{2}}}e^{-\frac{(\bm{x}^{\prime}_{1}+\bm{x}^{\prime}_{2}+\bm{x}^{\prime}_{3}-3\bm{x}^{\prime}_{4})^{2}}{12\sigma_{{}^{4}\text{He}}^{2}}},

and use He4(𝒑)\mathcal{M}_{{}^{4}\text{He}}(\bm{p}) to denote the momentum integral part as

He4(𝒑)=𝑑𝒑1𝑑𝒑2𝑑𝒑3𝑑𝒑4fppnn(n)(𝒑1,𝒑2,𝒑3,𝒑4)\displaystyle\mathcal{M}_{{}^{4}\text{He}}(\bm{p})=\int d\bm{p}_{1}d\bm{p}_{2}d\bm{p}_{3}d\bm{p}_{4}f^{(n)}_{ppnn}(\bm{p}_{1},\bm{p}_{2},\bm{p}_{3},\bm{p}_{4})
×eσHe42(𝒑1𝒑2)222c2eσHe42(𝒑1+𝒑22𝒑3)262c2eσHe42(𝒑1+𝒑2+𝒑33𝒑4)2122c2δ(i=14𝒑i𝒑).\displaystyle\times e^{-\frac{\sigma_{{}^{4}\text{He}}^{2}(\bm{p}^{\prime}_{1}-\bm{p}^{\prime}_{2})^{2}}{2\hbar^{2}c^{2}}}e^{-\frac{\sigma_{{}^{4}\text{He}}^{2}(\bm{p}^{\prime}_{1}+\bm{p}^{\prime}_{2}-2\bm{p}^{\prime}_{3})^{2}}{6\hbar^{2}c^{2}}}e^{-\frac{\sigma_{{}^{4}\text{He}}^{2}(\bm{p}^{\prime}_{1}+\bm{p}^{\prime}_{2}+\bm{p}^{\prime}_{3}-3\bm{p}^{\prime}_{4})^{2}}{12\hbar^{2}c^{2}}}\delta(\displaystyle{\sum^{4}_{i=1}}\bm{p}_{i}-\bm{p}).
(34)

We change integral variables in Equation (33) to be 𝒁=(𝒙1+𝒙2+𝒙3+𝒙4)/2\bm{Z}=(\bm{x}_{1}+\bm{x}_{2}+\bm{x}_{3}+\bm{x}_{4})/2, 𝒓1=(𝒙1𝒙2)/2\bm{r}_{1}=(\bm{x}_{1}-\bm{x}_{2})/\sqrt{2}, 𝒓2=(𝒙1+𝒙22𝒙3)/6\bm{r}_{2}=(\bm{x}_{1}+\bm{x}_{2}-2\bm{x}_{3})/\sqrt{6} and 𝒓3=(𝒙1+𝒙2+𝒙33𝒙4)/12\bm{r}_{3}=(\bm{x}_{1}+\bm{x}_{2}+\bm{x}_{3}-3\bm{x}_{4})/\sqrt{12}, and assume fppnn(n)(𝒁,𝒓1,𝒓2,𝒓3)=fppnn(n)(𝒁)fppnn(n)(𝒓1)fppnn(n)(𝒓2)f^{(n)}_{ppnn}(\bm{Z},\bm{r}_{1},\bm{r}_{2},\bm{r}_{3})=f^{(n)}_{ppnn}(\bm{Z})f^{(n)}_{ppnn}(\bm{r}_{1})f^{(n)}_{ppnn}(\bm{r}_{2}) fppnn(n)(𝒓3)f^{(n)}_{ppnn}(\bm{r}_{3}). Adopting fppnn(n)(𝒓1)=1(πC1Rf2)3/2e𝒓12C1Rf2f^{(n)}_{ppnn}(\bm{r}_{1})=\frac{1}{(\pi C_{1}R_{f}^{2})^{3/2}}e^{-\frac{\bm{r}_{1}^{2}}{C_{1}R_{f}^{2}}}, fppnn(n)(𝒓2)=1(πC2Rf2)3/2e𝒓22C2Rf2f^{(n)}_{ppnn}(\bm{r}_{2})=\frac{1}{(\pi C_{2}R_{f}^{2})^{3/2}}e^{-\frac{\bm{r}_{2}^{2}}{C_{2}R_{f}^{2}}} and fppnn(n)(𝒓3)=1(πC3Rf2)3/2e𝒓32C3Rf2f^{(n)}_{ppnn}(\bm{r}_{3})=\frac{1}{(\pi C_{3}R_{f}^{2})^{3/2}}e^{-\frac{\bm{r}_{3}^{2}}{C_{3}R_{f}^{2}}}, we have

𝒜He4\displaystyle\mathcal{A}_{{}^{4}\text{He}} =\displaystyle= 83𝑑𝒓1𝑑𝒓2𝑑𝒓3fppnn(n)(𝒓1)fppnn(n)(𝒓2)fppnn(n)(𝒓3)\displaystyle 8^{3}\int d\bm{r}_{1}d\bm{r}_{2}d\bm{r}_{3}f^{(n)}_{ppnn}(\bm{r}_{1})f^{(n)}_{ppnn}(\bm{r}_{2})f^{(n)}_{ppnn}(\bm{r}_{3}) (35)
×e(𝒓1)2σHe42e(𝒓2)2σHe42e(𝒓3)2σHe42.\displaystyle~{}~{}~{}~{}~{}~{}\times e^{-\frac{(\bm{r}^{\prime}_{1})^{2}}{\sigma_{{}^{4}\text{He}}^{2}}}e^{-\frac{(\bm{r}^{\prime}_{2})^{2}}{\sigma_{{}^{4}\text{He}}^{2}}}e^{-\frac{(\bm{r}^{\prime}_{3})^{2}}{\sigma_{{}^{4}\text{He}}^{2}}}.

C1C_{1}, C2C_{2}, C3C_{3} are equal to be CwC_{w}, 4Cw/34C_{w}/3 and 3Cw/23C_{w}/2, respectively  Mrowczynski (2017); Wang et al. (2021). After the Lorentz transformation and integrating the relative coordinate variables from Equation (35), we obtain

𝒜He4\displaystyle\mathcal{A}_{{}^{4}\text{He}} =\displaystyle= 83σHe49(C1Rf2+σHe42)C1(Rf/γ)2+σHe42\displaystyle\frac{8^{3}\sigma_{{}^{4}\text{He}}^{9}}{(C_{1}R_{f}^{2}+\sigma_{{}^{4}\text{He}}^{2})\sqrt{C_{1}(R_{f}/\gamma)^{2}+\sigma_{{}^{4}\text{He}}^{2}}} (36)
×1(C2Rf2+σHe42)C2(Rf/γ)2+σHe42\displaystyle\times\frac{1}{(C_{2}R_{f}^{2}+\sigma_{{}^{4}\text{He}}^{2})\sqrt{C_{2}(R_{f}/\gamma)^{2}+\sigma_{{}^{4}\text{He}}^{2}}}
×1(C3Rf2+σHe42)C3(Rf/γ)2+σHe42.\displaystyle\times\frac{1}{(C_{3}R_{f}^{2}+\sigma_{{}^{4}\text{He}}^{2})\sqrt{C_{3}(R_{f}/\gamma)^{2}+\sigma_{{}^{4}\text{He}}^{2}}}.

Approximating the gaussian form of the momentum-dependent kernel function to be δ\delta function form and after integrating 𝒑1\bm{p}_{1}, 𝒑2\bm{p}_{2}, 𝒑3\bm{p}_{3} and 𝒑4\bm{p}_{4} in Equation (34), we can obtain

He4(𝒑)\displaystyle\mathcal{M}_{{}^{4}\text{He}}(\bm{p}) =\displaystyle= (π3/23c32σHe43)3γ3fp(n)(𝒑4)fp(n)(𝒑4)fn(n)(𝒑4)fn(n)(𝒑4).\displaystyle(\frac{\pi^{3/2}\hbar^{3}c^{3}}{2\sigma_{{}^{4}\text{He}}^{3}})^{3}\gamma^{3}f^{(n)}_{p}(\frac{\bm{p}}{4})f^{(n)}_{p}(\frac{\bm{p}}{4})f^{(n)}_{n}(\frac{\bm{p}}{4})f^{(n)}_{n}(\frac{\bm{p}}{4}).~{}~{}~{}~{}~{}~{} (37)

Substituting Equations (36) and (37) into Equation (32), we have

fHe4(𝒑)\displaystyle f_{{}^{4}\text{He}}(\bm{p}) =\displaystyle= 64gHe4γ3π9/29c9(C1Rf2+σHe42)C1(Rf/γ)2+σHe42\displaystyle\frac{64g_{{}^{4}\text{He}}\gamma^{3}\pi^{9/2}\hbar^{9}c^{9}}{(C_{1}R_{f}^{2}+\sigma_{{}^{4}\text{He}}^{2})\sqrt{C_{1}(R_{f}/\gamma)^{2}+\sigma_{{}^{4}\text{He}}^{2}}} (38)
×1(C2Rf2+σHe42)C2(Rf/γ)2+σHe42\displaystyle\times\frac{1}{(C_{2}R_{f}^{2}+\sigma_{{}^{4}\text{He}}^{2})\sqrt{C_{2}(R_{f}/\gamma)^{2}+\sigma_{{}^{4}\text{He}}^{2}}}
×1(C3Rf2+σHe42)C3(Rf/γ)2+σHe42\displaystyle\times\frac{1}{(C_{3}R_{f}^{2}+\sigma_{{}^{4}\text{He}}^{2})\sqrt{C_{3}(R_{f}/\gamma)^{2}+\sigma_{{}^{4}\text{He}}^{2}}}
×fp(𝒑4)fp(𝒑4)fn(𝒑4)fn(𝒑4).\displaystyle\times f_{p}(\frac{\bm{p}}{4})f_{p}(\frac{\bm{p}}{4})f_{n}(\frac{\bm{p}}{4})f_{n}(\frac{\bm{p}}{4}).

We finally have the Lorentz invariant momentum distribution

fHe4(inv)(pT,y)=256gHe4π9/29c9m3(C1Rf2+σHe42)C1(Rf/γ)2+σHe42\displaystyle f_{{}^{4}\text{He}}^{(inv)}(p_{T},y)=\frac{256g_{{}^{4}\text{He}}\pi^{9/2}\hbar^{9}c^{9}}{m^{3}(C_{1}R_{f}^{2}+\sigma_{{}^{4}\text{He}}^{2})\sqrt{C_{1}(R_{f}/\gamma)^{2}+\sigma_{{}^{4}\text{He}}^{2}}}
×1(C2Rf2+σHe42)C2(Rf/γ)2+σHe42\displaystyle~{}~{}\times\frac{1}{(C_{2}R_{f}^{2}+\sigma_{{}^{4}\text{He}}^{2})\sqrt{C_{2}(R_{f}/\gamma)^{2}+\sigma_{{}^{4}\text{He}}^{2}}}
×1(C3Rf2+σHe42)C3(Rf/γ)2+σHe42\displaystyle~{}~{}\times\frac{1}{(C_{3}R_{f}^{2}+\sigma_{{}^{4}\text{He}}^{2})\sqrt{C_{3}(R_{f}/\gamma)^{2}+\sigma_{{}^{4}\text{He}}^{2}}}
×fp(inv)(pT4,y)fp(inv)(pT4,y)fn(inv)(pT4,y)fn(inv)(pT4,y),\displaystyle~{}~{}\times f_{p}^{(inv)}(\frac{p_{T}}{4},y)f_{p}^{(inv)}(\frac{p_{T}}{4},y)f_{n}^{(inv)}(\frac{p_{T}}{4},y)f_{n}^{(inv)}(\frac{p_{T}}{4},y),~{}~{}~{} (39)

where mm is the nucleon mass.

As a short summary of this section, we want to state that Equations (17, 28, 39) show the relationship of light nuclei with primordial hadronic bodies in momentum space in the laboratory frame. They can be directly used to calculate the yields and pTp_{T} distributions of light nuclei formed via different coalescence channels as long as the primordial hadronic momentum distributions are given. In the case of ignoring the mass differences of primordial hadrons, Equations (17) and (28) return to our previous results for dd, tt and 3He in Refs. Wang et al. (2021); Zhao et al. (2022) where only nucleon coalescence was considered.

III Results and discussions

In this section, we apply the coalescence model in Sec. II to Au-Au collisions at sNN=3\sqrt{s_{NN}}=3 GeV to study the momentum and centrality dependence of the production of different light nuclei in the low- and intermediate-pTp_{T} regions in different rapidity intervals at midrapidity area. We first introduce the pTp_{T} spectra of the nucleons. We then present pTp_{T} dependence of different coalescence sources for dd, tt, 3He and 4He in their productions. We finally give the yield rapidity densities dN/dydN/dy and the averaged transverse momenta pT\langle p_{T}\rangle of different light nuclei.

III.1 pTp_{T} spectra of nucleons

The invariant pTp_{T} distributions at different rapidity intervals of primordial protons fp,pri(inv)(pT,y)f_{p,\text{pri}}^{(\text{inv})}(p_{T},y) and neutrons fn,pri(inv)(pT,y)f_{n,\text{pri}}^{(\text{inv})}(p_{T},y) are necessary inputs for computing pTp_{T} distributions of light nuclei in our model. The relationship of primordial protons and those final-state ones is as follows

fp,pri(inv)(pT,y)fp,lignucl(inv)(pT,y)+fp,hypdec(inv)(pT,y)=\displaystyle f_{p,\text{pri}}^{(\text{inv})}(p_{T},y)-f_{p,\text{lignucl}}^{(\text{inv})}(p_{T},y)+f_{p,\text{hypdec}}^{(\text{inv})}(p_{T},y)= fp,fin(inv)(pT,y).\displaystyle f_{p,\text{fin}}^{(\text{inv})}(p_{T},y).

The last three terms in the equation denote the invariant pTp_{T} distributions of protons consumed in light nuclei production, those coming from hyperon weak decays and those final-state ones, respectively. The feed-down contribution from the weak decays of hyperons to protons is about 1.5%1.5\% Liu (2023) and that entering into light nuclei takes about 20%20\% Liu (2022). Considering that most of primordial protons, more than 80%, evolve to be final-state ones, we ignore the variation of the shape of the pTp_{T} spectra of primordial protons and final-state ones. In this case, we can get fp,pri(inv)(pT,y)181.5%fp,fin(inv)(pT,y)f_{p,\text{pri}}^{(\text{inv})}(p_{T},y)\approx\frac{1}{81.5\%}f_{p,\text{fin}}^{(\text{inv})}(p_{T},y).

We here use the blast-wave model to get invariant pTp_{T} distribution functions of final-state protons by fitting the proton experimental data in Ref. Liu (2022). The blast-wave function Schnedermann et al. (1993) is given as

fp,fin(inv)(pT,y)=d2Np,fin2πpTdpTdy\displaystyle f_{p,fin}^{(inv)}(p_{T},y)=\frac{d^{2}N_{p,fin}}{2\pi p_{T}dp_{T}dy}\propto 0Rr𝑑rmTI0(pTsinhρTkin)\displaystyle\int_{0}^{R}rdrm_{T}I_{0}\left(\frac{p_{T}sinh\rho}{T_{kin}}\right) (41)
×K1(mTcoshρTkin),\displaystyle~{}~{}~{}~{}~{}\times K_{1}\left(\frac{m_{T}cosh\rho}{T_{kin}}\right),

where rr is the radial distance in the transverse plane and RR is the radius of the fireball. mTm_{T} is the transverse mass of the proton. I0I_{0} and K1K_{1} are the modified Bessel functions, and the velocity profile ρ=tanh1[βs(rR)n]\rho=tanh^{-1}[\beta_{s}(\frac{r}{R})^{n}]. The surface velocity βs\beta_{s}, the kinetic freeze-out temperature TkinT_{kin} and nn are fitting parameters.

Refer to caption
Figure 1: (Color online) Invariant pTp_{T} spectra of protons in different rapidity intervals at midrapidity in Au-Au collisions at sNN=3\sqrt{s_{NN}}=3 GeV in centralities (a) 0100-10%, (b) 102010-20%, (c) 204020-40%, (d) 408040-80%. Filled symbols are experimental data Liu (2022). Different lines are the fitting results by the blast-wave model.

Figure 1 shows the invariant pTp_{T} spectra of final-state protons in different rapidity intervals 0.1<y<0-0.1<y<0, 0.2<y<0.1-0.2<y<-0.1, 0.3<y<0.2-0.3<y<-0.2, 0.4<y<0.3-0.4<y<-0.3, 0.5<y<0.4-0.5<y<-0.4 in Au-Au collisions at sNN=3\sqrt{s_{NN}}=3 GeV in centralities 0100-10%, 102010-20%, 204020-40%, 408040-80%. The spectra in different rapidity intervals are scaled by different factors for clarity as shown in the figure. Filled symbols are experimental data from the STAR collaboration Liu (2022). Different lines are the results of the blast-wave model. Since we focus on testing the validity of the coalescence mechanism in describing the light nuclei production at low collision energy instead of predicting the momentum distributions of light nuclei, we only include the best fit from the blast-wave model for the proton, and do not consider the fitting errors. Here, the proton dN/dydN/dy and pT\langle p_{T}\rangle obtained by these blast-wave results are just equal to central values of the corresponding data given by the STAR collaboration in Ref. Liu (2022).

Table 1: Values of ZnpZ_{np} and RfR_{f} in different rapidity intervals and different centralities in Au-Au collisions at sNN=3\sqrt{s_{NN}}=3 GeV.
Centrality Rapidity Znp~{}~{}~{}~{}~{}Z_{np}~{}~{}~{}~{}~{} RfR_{f} (fm)
010%0-10\% 0.1<y<0-0.1<y<0~{}~{}~{}~{}~{} 1.331.33 3.303.30
0.2<y<0.1-0.2<y<-0.1 1.331.33 3.213.21
0.3<y<0.2-0.3<y<-0.2 1.291.29 3.103.10
0.4<y<0.3-0.4<y<-0.3 1.341.34 3.093.09
0.5<y<0.4-0.5<y<-0.4 1.361.36 3.083.08
1020%10-20\% 0.1<y<0-0.1<y<0~{}~{}~{}~{}~{} 1.341.34 2.932.93
0.2<y<0.1-0.2<y<-0.1 1.341.34 2.842.84
0.3<y<0.2-0.3<y<-0.2 1.271.27 2.782.78
0.4<y<0.3-0.4<y<-0.3 1.301.30 2.762.76
0.5<y<0.4-0.5<y<-0.4 1.331.33 2.702.70
2040%20-40\% 0.1<y<0-0.1<y<0~{}~{}~{}~{}~{} 1.351.35 2.512.51
0.2<y<0.1-0.2<y<-0.1 1.321.32 2.422.42
0.3<y<0.2-0.3<y<-0.2 1.251.25 2.352.35
0.4<y<0.3-0.4<y<-0.3 1.281.28 2.342.34
0.5<y<0.4-0.5<y<-0.4 1.281.28 2.322.32
4080%40-80\% 0.1<y<0-0.1<y<0~{}~{}~{}~{}~{} 1.151.15 1.421.42
0.2<y<0.1-0.2<y<-0.1 1.131.13 1.411.41
0.3<y<0.2-0.3<y<-0.2 1.011.01 1.401.40
0.4<y<0.3-0.4<y<-0.3 1.051.05 1.351.35
0.5<y<0.4-0.5<y<-0.4 1.051.05 1.341.34

For the neutron, we assume the same normalized pTp_{T} distribution as that of the proton in the same rapidity interval and the same collision centrality. For absolute yield density of the neutron, it is generally not equal to that of the proton due to the prominent influences of net nucleons from the colliding Au nuclei. We here use ZnpZ_{np} to denote the extent of the yield density asymmetry of the neutron and the proton and take their relation as

dNndy=dNpdy×Znp.\displaystyle\frac{dN_{n}}{dy}=\frac{dN_{p}}{dy}\times Z_{np}. (42)

Znp=1Z_{np}=1 corresponds to the complete isospin equilibration and Znp=1.49Z_{np}=1.49 to isospin asymmetry in the whole Au nucleus. We here set ZnpZ_{np} to be a free parameter, and its values in different centrality and rapidity windows are put in Table LABEL:tab:AnpRf. Values of ZnpZ_{np} in central and semi-central 0100-10%, 102010-20%, 204020-40% centralities are comparable and they are close to that evaluated in Ref. Kittiratpattana et al. (2022). ZnpZ_{np} in 408040-80% centrality becomes a little smaller. From the viewpoint of the effect of the neutron skin et al. (2022), ZnpZ_{np} is expected to increase in peripheral collisions. But note that we here study light nuclei production in the midrapidity area, i.e., y<0.5y<0.5, in peripheral collisions the transparency of nucleons from the colliding nuclei become stronger due to smaller reaction area and they move to relative larger rapidity Liu (2022). The participant nucleons from colliding nuclei become less in midrapidity region, so the yield asymmetry extent due to the participant nucleons decreases.

The other parameter in our model is RfR_{f}, which is fixed by the data of the yield rapidity density of dd Liu (2022). Values of RfR_{f} in different rapidity intervals and different centralities in Au-Au collisions at sNN=3\sqrt{s_{NN}}=3 GeV are listed in Table LABEL:tab:AnpRf. For 0-10% centrality, our fixed values locate in the range evaluated by the linear dependence on the cube root of the rapidity density of charged particles, i.e., Rf(dNch/dy)1/3R_{f}\propto(dN_{ch}/dy)^{1/3}  Zhao et al. (2022); Kimelman (2022). For other collision centralities, RfR_{f} cannot be evaluated by the relation Rf(dNch/dy)1/3R_{f}\propto(dN_{ch}/dy)^{1/3} due to the lack of the data of π±\pi^{\pm} and K±K^{\pm} currently. From Table LABEL:tab:AnpRf, one can see RfR_{f} decreases very slightly as the increasing rapidity for the same centrality and it decreases from central to peripheral collisions. The smaller RfR_{f} in more peripheral collisions leads to the stronger suppression of light nuclei production because of the non-negligible light nuclei sizes compared to RfR_{f} as shown in Equations (17, 28, 39). This suppression effect of light nuclei production in small collision systems has been systematically studied in Ref. Sun et al. (2019).

III.2 pTp_{T} spectra of light nuclei

Refer to caption
Figure 2: (Color online) Invariant pTp_{T} spectra of deuterons in different rapidity intervals at midrapidity in Au-Au collisions at sNN=3\sqrt{s_{NN}}=3 GeV in centralities (a) 0100-10%, (b) 102010-20%, (c) 204020-40%, (d) 408040-80%. Filled symbols are experimental data Liu (2022). Different lines are the theoretical results for final-state deuterons.

With Equation (17), we first compute the invariant pTp_{T} distributions of deuterons in rapidity intervals 0.1<y<0-0.1<y<0, 0.2<y<0.1-0.2<y<-0.1, 0.3<y<0.2-0.3<y<-0.2, 0.4<y<0.3-0.4<y<-0.3, 0.5<y<0.4-0.5<y<-0.4 in Au-Au collisions at sNN=3\sqrt{s_{NN}}=3 GeV in centralities 0100-10%, 102010-20%, 204020-40%, 408040-80%, respectively. Here, h1h_{1} and h2h_{2} in Equation (17) refer to the proton and the neutron. Different lines scaled by different factors for clarity in Figure 2 are our theoretical results for final-state deuterons, i.e., those obtained by subtracting consumed ones in the nucleus coalescence from formed ones via the p+np+n coalescence. Filled symbols with error bars are experimental data from the STAR collaboration Liu (2022). From Figure 2, one can see our results can well reproduce the available data in different rapidity intervals at midrapidity area from central to peripheral Au-Au collisions at sNN=3\sqrt{s_{NN}}=3 GeV.

Refer to caption
Figure 3: (Color online) Invariant pTp_{T} spectra of tritons in different rapidity intervals at midrapidity in Au-Au collisions at sNN=3\sqrt{s_{NN}}=3 GeV in centralities (a) 0100-10%, (b) 102010-20%, (c) 204020-40%, (d) 408040-80%. Filled symbols are experimental data Liu (2022). Solid, dashed and dotted lines are the theoretical results of final tritons, n+n+pn+n+p coalescence and n+dn+d coalescence, respectively.

We then study the invariant pTp_{T} distributions of tt, 3He and 4He in rapidity intervals 0.1<y<0-0.1<y<0, 0.2<y<0.1-0.2<y<-0.1, 0.3<y<0.2-0.3<y<-0.2, 0.4<y<0.3-0.4<y<-0.3, 0.5<y<0.4-0.5<y<-0.4 in Au-Au collisions at sNN=3\sqrt{s_{NN}}=3 GeV in centralities 0100-10%, 102010-20%, 204020-40%, 408040-80%, respectively. Figure 3 shows the invariant pTp_{T} spectra of tritons. The spectra in different rapidity intervals are scaled by different factors for clarity as shown in the figure. Filled symbols with error bars are experimental data from the STAR collaboration Liu (2022). Dashed lines are the results of the nucleon coalescence, i.e., the contribution of the channel n+n+ptn+n+p\rightarrow t. Dotted lines are the results of the n+dn+d coalescence. Solid lines are the final results of the n+n+pn+n+p coalescence plus n+dn+d coalescence minus consumed in p+tp+t coalescence. Panels (a), (b) and (c) in Figure 3 show results of n+n+pn+n+p coalescence plus n+dn+d coalescence minus consumed in p+tp+t coalescence can describe the available data well in central and semi-central Au-Au collisions at sNN=3\sqrt{s_{NN}}=3 GeV, while panel (d) shows triton production in peripheral 408040-80% Au-Au collisions favors n+n+pn+n+p coalescence.

Refer to caption
Figure 4: (Color online) Invariant pTp_{T} spectra of 3He in different rapidity intervals at midrapidity in Au-Au collisions at sNN=3\sqrt{s_{NN}}=3 GeV in centralities (a) 0100-10%, (b) 102010-20%, (c) 204020-40%, (d) 408040-80%. Filled symbols are experimental data Liu (2022). Solid, dashed and dotted lines are the theoretical results of final 3He’s, p+p+np+p+n coalescence and p+dp+d coalescence, respectively.

Figure 4 shows the invariant pTp_{T} spectra of 3He. The spectra in different rapidity intervals are also scaled by different factors for clarity as shown in the figure. Filled symbols with error bars are experimental data from the STAR collaboration Liu (2022). Dashed lines are the results of the nucleon coalescence, i.e., the contribution of the channel p+p+n3p+p+n\rightarrow^{3}He. Dotted lines are the results of the p+dp+d coalescence. Solid lines are the final results of the p+p+np+p+n coalescence plus p+dp+d coalescence minus consumed in n+3n+^{3}He coalescence. From panels (a), (b) and (c) in Figure 4, one can see results of p+p+np+p+n coalescence plus p+dp+d coalescence minus consumed in n+3n+^{3}He coalescence can describe the available data well in central and semi-central Au-Au collisions at sNN=3\sqrt{s_{NN}}=3 GeV. But panel (d) in Figure 4 shows that 3He production in peripheral Au-Au collisions favors p+p+np+p+n coalescence. This is similar to that of the triton.

Refer to caption
Figure 5: (Color online) Invariant pTp_{T} spectra of 4He in different rapidity intervals at midrapidity in Au-Au collisions at sNN=3\sqrt{s_{NN}}=3 GeV in centralities (a) 0100-10%, (b) 102010-20%, (c) 204020-40%, (d) 408040-80%. Filled symbols are experimental data Liu (2022). Different lines are the theoretical results.

Figure 5 shows the invariant pTp_{T} spectra of 4He. The spectra in different rapidity intervals are scaled by different factors for clarity as shown in the figure. Filled symbols with error bars are experimental data from the STAR collaboration Liu (2022). Short-dashed lines are the results of the nucleon coalescence, i.e., the contribution of the channel p+p+n+n4p+p+n+n\rightarrow^{4}He. Long-dashed lines are the results of the contributions from the channel p+t4p+t\rightarrow^{4}He, and large-gap dotted lines are the results of the contributions from the channel n+3n+^{3}He4\rightarrow^{4}He. Small-gap dotted lines are the results of the contributions from the channel d+d4d+d\rightarrow^{4}He. Dashed-dotted lines are the results of the contributions from the channel p+n+d4p+n+d\rightarrow^{4}He. Solid lines are the total results including the above five coalescence channels. From panels (a), (b) and (c) in Figure 5, one can see total results including the above five coalescence processes can describe the available data in central and semi-central Au-Au collisions at sNN=3\sqrt{s_{NN}}=3 GeV. But panel (d) in Figure 5 shows that 4He production in peripheral Au-Au collisions favors nucleon coalescence, i.e., p+p+n+np+p+n+n coalescence. The other four coalescence cases involving nucleon++nucleus or nucleus++nucleus coalescence may not occur.

When calculating contributions from different coalescence channels, we base on the hypothesis that the nucleon coalescence happens first and subsequently the formed lighter cluster captures other particle to form heavier cluster if they meet the coalescence requirements in the phase space. This coalescence time order is constrained to the local freeze-out instead of the whole phase space. Results in Figures 2, 3 and 4 show that our final results of pTp_{T} spectra of dd, tt and 3He can describe the experimental data in 0100-10%, 102010-20%, 204020-40% centralities while in 408040-80% centrality our results of nucleon coalescence itself can reproduce the available data. Results in Figure 5 show that our total results of nucleon coalescence plus nucleon+d+d (tt, 3He) coalescence plus d+dd+d coalescence can describe the data of pTp_{T} spectra of 4He in 0100-10%, 102010-20%, 204020-40% centralities while in 408040-80% centrality nucleon coalescence itself can reproduce the 4He data. This indicates that besides nucleon coalescence, nucleon/nucleus++nucleus coalescence plays an important role in central and semicentral collisions. But in peripheral collisions nucleus coalescence seems to disappear. This is probably due to that the interactions between hadronic rescatterings become not so strong that the formed light nuclei can not capture other particles to form heavier objects.

III.3 Yield rapidity densities of light nuclei

Table 2: Yield rapidity densities dN/dydN/dy of dd in different rapidity intervals and different centralities in Au-Au collisions at sNN=3\sqrt{s_{NN}}=3 GeV. Data in the third column are from Ref. Liu (2022), and the errors denote the systematical uncertainties. Theopn, Theodep{}_{\text{dep}} and Theofin{}_{\text{fin}} in the last three columns denote those from pnpn coalescence, depletions in forming tt, 3He, 4He, and final-state ones, respectively.
Centrality Rapidity dd
Data Theopn Theodep{}_{\text{dep}} Theofin{}_{\text{fin}}
010%0-10\% 0.1<y<0-0.1<y<0~{}~{}~{}~{}~{} 16.21±1.4516.21\pm 1.45 17.80 1.45 16.35
0.2<y<0.1-0.2<y<-0.1 16.07±1.4216.07\pm 1.42 17.45 1.47 15.98
0.3<y<0.2-0.3<y<-0.2 15.26±1.1215.26\pm 1.12 16.02 1.37 14.65
0.4<y<0.3-0.4<y<-0.3 14.69±1.1914.69\pm 1.19 16.04 1.40 14.64
0.5<y<0.4-0.5<y<-0.4 14.17±0.9614.17\pm 0.96 15.72 1.40 14.32
1020%10-20\% 0.1<y<0-0.1<y<0~{}~{}~{}~{}~{} 9.36±1.029.36\pm 1.02 10.46 0.82 9.64
0.2<y<0.1-0.2<y<-0.1 9.64±1.119.64\pm 1.11 10.50 0.86 9.64
0.3<y<0.2-0.3<y<-0.2 9.65±0.729.65\pm 0.72 10.29 0.87 9.42
0.4<y<0.3-0.4<y<-0.3 9.83±0.759.83\pm 0.75 10.54 0.92 9.62
0.5<y<0.4-0.5<y<-0.4 10.54±0.8510.54\pm 0.85 11.05 1.04 10.01
2040%20-40\% 0.1<y<0-0.1<y<0~{}~{}~{}~{}~{} 4.59±0.534.59\pm 0.53 4.79 0.33 4.46
0.2<y<0.1-0.2<y<-0.1 4.84±0.654.84\pm 0.65 4.92 0.36 4.56
0.3<y<0.2-0.3<y<-0.2 5.05±0.505.05\pm 0.50 5.00 0.39 4.61
0.4<y<0.3-0.4<y<-0.3 5.30±0.505.30\pm 0.50 5.39 0.44 4.95
0.5<y<0.4-0.5<y<-0.4 6.09±0.426.09\pm 0.42 6.16 0.57 5.59
4080%40-80\% 0.1<y<0-0.1<y<0~{}~{}~{}~{}~{} 0.88±0.120.88\pm 0.12 0.90 0.05 0.85
0.2<y<0.1-0.2<y<-0.1 0.99±0.050.99\pm 0.05 1.00 0.07 0.93
0.3<y<0.2-0.3<y<-0.2 1.07±0.101.07\pm 0.10 1.03 0.07 0.96
0.4<y<0.3-0.4<y<-0.3 1.25±0.071.25\pm 0.07 1.17 0.09 1.08
0.5<y<0.4-0.5<y<-0.4 1.60±0.111.60\pm 0.11 1.53 0.14 1.39
Table 3: Yield rapidity densities dN/dydN/dy of tt and 3He in different rapidity intervals and different centralities in Au-Au collisions at sNN=3\sqrt{s_{NN}}=3 GeV. Data are from Ref. Liu (2022), and the errors denote the systematical uncertainties.
Centrality Rapidity tt 3He
Data Theonnp Theond Theodep{}_{\text{dep}} Theofin{}_{\text{fin}} Data Theoppn Theopd Theodep{}_{\text{dep}} Theofin{}_{\text{fin}}
010%0-10\% 0.1<y<0-0.1<y<0~{}~{}~{}~{}~{} 1.968±0.2181.968\pm 0.218 1.199 0.820 0.042 1.977 1.356±0.1501.356\pm 0.150 0.823 0.582 0.039 1.366
0.2<y<0.1-0.2<y<-0.1 1.959±0.2121.959\pm 0.212 1.228 0.830 0.044 2.014 1.343±0.1351.343\pm 0.135 0.840 0.587 0.041 1.386
0.3<y<0.2-0.3<y<-0.2 1.804±0.1441.804\pm 0.144 1.146 0.762 0.042 1.866 1.299±0.1221.299\pm 0.122 0.806 0.556 0.039 1.323
0.4<y<0.3-0.4<y<-0.3 1.854±0.1291.854\pm 0.129 1.189 0.790 0.044 1.935 1.263±0.0911.263\pm 0.091 0.805 0.555 0.040 1.320
0.5<y<0.4-0.5<y<-0.4 1.891±0.1181.891\pm 0.118 1.201 0.798 0.045 1.954 1.238±0.0801.238\pm 0.080 0.798 0.550 0.041 1.307
1020%10-20\% 0.1<y<0-0.1<y<0~{}~{}~{}~{}~{} 1.167±0.1551.167\pm 0.155 0.714 0.464 0.024 1.154 0.772±0.1170.772\pm 0.117 0.477 0.323 0.022 0.778
0.2<y<0.1-0.2<y<-0.1 1.201±0.1501.201\pm 0.150 0.761 0.486 0.026 1.221 0.801±0.0840.801\pm 0.084 0.507 0.339 0.024 0.822
0.3<y<0.2-0.3<y<-0.2 1.169±0.1141.169\pm 0.114 0.764 0.483 0.028 1.219 0.830±0.0660.830\pm 0.066 0.533 0.352 0.025 0.860
0.4<y<0.3-0.4<y<-0.3 1.252±0.0911.252\pm 0.091 0.817 0.515 0.031 1.301 0.861±0.0570.861\pm 0.057 0.556 0.367 0.027 0.896
0.5<y<0.4-0.5<y<-0.4 1.441±0.0861.441\pm 0.086 0.939 0.584 0.037 1.486 0.955±0.0720.955\pm 0.072 0.624 0.408 0.033 0.999
2040%20-40\% 0.1<y<0-0.1<y<0~{}~{}~{}~{}~{} 0.488±0.0640.488\pm 0.064 0.315 0.190 0.009 0.496 0.319±0.0300.319\pm 0.030 0.203 0.129 0.008 0.324
0.2<y<0.1-0.2<y<-0.1 0.522±0.0570.522\pm 0.057 0.350 0.207 0.011 0.546 0.345±0.0410.345\pm 0.041 0.228 0.143 0.010 0.361
0.3<y<0.2-0.3<y<-0.2 0.543±0.0710.543\pm 0.071 0.375 0.217 0.013 0.579 0.379±0.0490.379\pm 0.049 0.256 0.158 0.011 0.403
0.4<y<0.3-0.4<y<-0.3 0.647±0.0480.647\pm 0.048 0.431 0.249 0.015 0.665 0.438±0.0290.438\pm 0.029 0.289 0.177 0.013 0.453
0.5<y<0.4-0.5<y<-0.4 0.803±0.0800.803\pm 0.080 0.553 0.318 0.022 0.849 0.553±0.0360.553\pm 0.036 0.369 0.226 0.019 0.576
4080%40-80\% 0.1<y<0-0.1<y<0~{}~{}~{}~{}~{} 0.074±0.0150.074\pm 0.015 0.074 0.031 0.002 0.103 0.047±0.0100.047\pm 0.010 0.047 0.023 0.002 0.068
0.2<y<0.1-0.2<y<-0.1 0.086±0.0150.086\pm 0.015 0.087 0.037 0.003 0.121 0.055±0.0070.055\pm 0.007 0.057 0.027 0.002 0.082
0.3<y<0.2-0.3<y<-0.2 0.088±0.0060.088\pm 0.006 0.089 0.038 0.003 0.124 0.064±0.0090.064\pm 0.009 0.065 0.031 0.002 0.094
0.4<y<0.3-0.4<y<-0.3 0.116±0.0070.116\pm 0.007 0.119 0.049 0.005 0.163 0.081±0.0050.081\pm 0.005 0.083 0.038 0.003 0.118
0.5<y<0.4-0.5<y<-0.4 0.172±0.0100.172\pm 0.010 0.188 0.075 0.008 0.255 0.120±0.0100.120\pm 0.010 0.131 0.060 0.007 0.184
Table 4: Yield rapidity densities dN/dydN/dy of 4He in different rapidity intervals and different centralities in Au-Au collisions at sNN=3\sqrt{s_{NN}}=3 GeV. Data are from Ref. Liu (2022), and the errors denote the systematical uncertainties. The last column is the averaged deviation degree δdevi\delta_{devi} of dd, tt, 3He and 4He.
Centrality Rapidity Data Theototal{}_{\text{total}} Theoppnn Theopnd Theopt Theon3He{}_{n^{3}\text{He}} Theodd δdevi~{}~{}\delta_{devi}~{}~{}
010%0-10\% 0.1<y<0-0.1<y<0~{}~{}~{}~{}~{} 0.2160±0.02300.2160\pm 0.0230 0.1490 0.0320 0.0192 0.0416 0.0386 0.0176 8.3%
0.2<y<0.1-0.2<y<-0.1 0.2139±0.01850.2139\pm 0.0185 0.1571 0.0342 0.0202 0.0439 0.0406 0.0182 8.3%
0.3<y<0.2-0.3<y<-0.2 0.2058±0.01920.2058\pm 0.0192 0.1513 0.0335 0.0194 0.0423 0.0389 0.0172 9.0%
0.4<y<0.3-0.4<y<-0.3 0.1971±0.01220.1971\pm 0.0122 0.1562 0.0346 0.0201 0.0437 0.0401 0.0177 7.5%
0.5<y<0.4-0.5<y<-0.4 0.1840±0.01010.1840\pm 0.0101 0.1595 0.0353 0.0205 0.0446 0.0410 0.0181 5.8%
1020%10-20\% 0.1<y<0-0.1<y<0~{}~{}~{}~{}~{} 0.1056±0.01810.1056\pm 0.0181 0.0842 0.0190 0.0108 0.0236 0.0215 0.0093 6.3%
0.2<y<0.1-0.2<y<-0.1 0.1129±0.02050.1129\pm 0.0205 0.0939 0.0216 0.0121 0.0263 0.0238 0.0101 5.3%
0.3<y<0.2-0.3<y<-0.2 0.1220±0.01220.1220\pm 0.0122 0.1004 0.0233 0.0129 0.0281 0.0254 0.0107 7.0%
0.4<y<0.3-0.4<y<-0.3 0.1408±0.00860.1408\pm 0.0086 0.1087 0.0254 0.0139 0.0304 0.0275 0.0115 8.2%
0.5<y<0.4-0.5<y<-0.4 0.1605±0.00900.1605\pm 0.0090 0.1322 0.0312 0.0169 0.0370 0.0333 0.0138 7.6%
2040%20-40\% 0.1<y<0-0.1<y<0~{}~{}~{}~{}~{} 0.0427±0.00290.0427\pm 0.0029 0.0328 0.0080 0.0042 0.0092 0.0081 0.0033 7.3%
0.2<y<0.1-0.2<y<-0.1 0.0465±0.00270.0465\pm 0.0027 0.0392 0.0097 0.0050 0.0110 0.0097 0.0038 7.6%
0.3<y<0.2-0.3<y<-0.2 0.0555±0.00410.0555\pm 0.0041 0.0458 0.0116 0.0059 0.0128 0.0112 0.0043 9.8%
0.4<y<0.3-0.4<y<-0.3 0.0696±0.00870.0696\pm 0.0087 0.0550 0.0139 0.0070 0.0154 0.0135 0.0052 8.5%
0.5<y<0.4-0.5<y<-0.4 0.0967±0.00810.0967\pm 0.0081 0.0785 0.0200 0.0100 0.0220 0.0192 0.0073 9.2%
4080%40-80\% 0.1<y<0-0.1<y<0~{}~{}~{}~{}~{} 0.0034±0.00060.0034\pm 0.0006 0.0079 0.0026 0.0010 0.0021 0.0017 0.0005 55.2% (6.2%)
0.2<y<0.1-0.2<y<-0.1 0.0044±0.00090.0044\pm 0.0009 0.0102 0.0034 0.0013 0.0028 0.0021 0.0006 57.3% (6.7%)
0.3<y<0.2-0.3<y<-0.2 0.0059±0.00040.0059\pm 0.0004 0.0116 0.0039 0.0015 0.0031 0.0024 0.0007 48.8% (10.2%)
0.4<y<0.3-0.4<y<-0.3 0.0098±0.00100.0098\pm 0.0010 0.0170 0.0059 0.0021 0.0046 0.0035 0.0009 43.3% (12.7%)
0.5<y<0.4-0.5<y<-0.4 0.0159±0.00310.0159\pm 0.0031 0.0318 0.0113 0.0039 0.0085 0.0064 0.0017 53.6% (12.8%)

To see contribution proportions of different coalescence sources of tt, 3He and 4He in their production and depletion proportions of dd, tt and 3He more clearly, we in this subsection study the yield rapidity densities dN/dydN/dy of light nuclei. After integrating over the pTp_{T}, we can get dN/dydN/dy. Table LABEL:tab:dNdy-d shows our results of dd and Table LABEL:tab:dNdy-tHe3 shows those of tt and 3He in different rapidity intervals and different centralities in Au-Au collisions at sNN=3\sqrt{s_{NN}}=3 GeV. Data with errors are from Ref. Liu (2022), and the errors denote the systematical uncertainties. Theopn in the fourth column in Table LABEL:tab:dNdy-d denotes the result of p+np+n coalescing into dd. Theonnp and Theond in the fourth and fifth columns in Table LABEL:tab:dNdy-tHe3 denote the result of n+n+pn+n+p coalescing into tt and that of n+dn+d coalescing into tt. Theoppn and Theopd in the ninth and tenth columns in Table LABEL:tab:dNdy-tHe3 denote the result of p+p+np+p+n coalescing into 3He and that of p+dp+d coalescing into 3He. Theodep{}_{\text{dep}} in the fifth column of Table LABEL:tab:dNdy-d and in the sixth and eleventh columns of Table LABEL:tab:dNdy-tHe3 denote the consumed dd, tt and 3He in the nucleus coalescence process where they capture other particles to form objects with larger mass numbers. Theofin{}_{\text{fin}} in the sixth column of Table LABEL:tab:dNdy-d and in the seventh and twelfth columns of Table LABEL:tab:dNdy-tHe3 denote the final-state dd, tt and 3He. From Tables LABEL:tab:dNdy-d and LABEL:tab:dNdy-tHe3, one can see that our results Theofin{}_{\text{fin}} agree well with the experimental data in 0-10%, 10-20% and 20-40% centralities. But in the peripheral 40-80% centrality, our Theofin{}_{\text{fin}} of dd underestimates the data and Theofin{}_{\text{fin}} of tt and 3He overestimates the data; our results only including nucleon coalescence Theopn, Theonnp and Theoppn can describe the corresponding data much better. This further indicates that nucleon coalescence is the dominant production for light nuclei in peripheral 408040-80% collisions, and other coalescence channels involving nucleon++nucleus and nucleus++nucleus may not occur.

Table LABEL:tab:dNdy-He4 shows results of 4He in different rapidity intervals and different centralities in Au-Au collisions at sNN=3\sqrt{s_{NN}}=3 GeV. Data with errors are from Ref. Liu (2022), and the errors denote the systematical uncertainties. Theoppnn, Theopnd, Theopt, Theon3He{}_{n^{3}\text{He}} and Theodd in the fifth, sixth, seventh, eighth and ninth columns denote the results of p+p+n+np+p+n+n, p+n+dp+n+d, p+tp+t, n+3n+^{3}He and d+dd+d coalescing into 4He, respectively. Theototal{}_{\text{total}} in fourth column denote total results including all five coalescence sources for 4He. Theototal{}_{\text{total}} in 0-10%, 10-20% and 20-40% centralities and Theoppnn in the peripheral 40-80% centrality give about 20%3020\%\sim 30% underestimations of the central values of the experimental data. This may be due to that we do not consider decay contributions from the excited states of 4He. If decay properties of these excited states become clear and these contributions are included in the future, theoretical results will approach to the data better. We employ the averaged deviation degree δdevi\delta_{devi} to quantitatively characterize the deviation extent of our theoretical results from the data, and it is defined as

δdevi=14j=d,t,3He,4He|TheoryjDatajDataj|.\displaystyle\delta_{devi}=\frac{1}{4}\sum\limits_{j=d,t,^{3}\text{He},^{4}\text{He}}\left|\frac{\text{Theory}_{j}-\text{Data}_{j}}{\text{Data}_{j}}\right|. (43)

Values of δdevi\delta_{devi} calculated with Theofin{}_{\text{fin}} for dd, tt, 3He and Theototal{}_{\text{total}} for 4He are put in the last column in Table LABEL:tab:dNdy-He4, and those in the parentheses for the 4080%40-80\% centrality are calculated with the results only including nucleon coalescence.

Our theoretical results in Tables LABEL:tab:dNdy-d, LABEL:tab:dNdy-tHe3 and LABEL:tab:dNdy-He4 clearly show contribution proportions of different production sources for dd, tt, 3He and 4He in their production in 0100-10%, 102010-20% and 204020-40% centralities. The proportion of nucleon coalescence and that of nucleon+d+d coalescence in tt and 3He production take about 60% and 40%, respectively. The proportion of nucleon coalescence and those of p+n+dp+n+d coalescence, p+tp+t coalescence, n+3n+^{3}He coalescence and d+dd+d coalescence in 4He production take about 20%, 15%, 30%, 25% and 10%, respectively. Tables LABEL:tab:dNdy-d and LABEL:tab:dNdy-tHe3 also show that the depletion of dd takes about 7%9%7\%\sim 9\% while the depletions of tt and 3He are both less than 3%. These results tell us that besides nucleon coalescence, other particle coalescences, e.g., composite particles of less mass numbers coalescing into light nuclei of larger mass numbers or composite particles capturing nucleons to recombine into heavier light nuclei, also play important roles in light nuclei production in central and semi-central collisions at relatively low collision energies. This provides a new possible window to cognize the underestimations of the yield densities of light nuclei in some specific models only including nucleon coalescence such as in Ref. Bratkovskaya et al. (2023).

III.4 Averaged transverse momenta of light nuclei

Table 5: Averaged transverse momenta pT\langle p_{T}\rangle of dd, tt and 3He in different rapidity intervals and different centralities in Au-Au collisions at sNN=3\sqrt{s_{NN}}=3 GeV. Data are from Ref. Liu (2022), and the errors denote the systematical uncertainties.
Centrality Rapidity dd tt 3He
Data pTfin\langle p_{T}\rangle_{\text{fin}} Data pTfin\langle p_{T}\rangle_{\text{fin}} pTnnp\langle p_{T}\rangle_{nnp} pTnd\langle p_{T}\rangle_{nd} Data pTfin\langle p_{T}\rangle_{\text{fin}} pTppn\langle p_{T}\rangle_{ppn} pTpd\langle p_{T}\rangle_{pd}
010%0-10\% 0.1<y<0-0.1<y<0~{}~{}~{}~{}~{} 1.048±0.0331.048\pm 0.033 1.033 1.363±0.0441.363\pm 0.044 1.343 1.347 1.337 1.412±0.0441.412\pm 0.044 1.340 1.344 1.335
0.2<y<0.1-0.2<y<-0.1 1.049±0.0321.049\pm 0.032 1.028 1.350±0.0471.350\pm 0.047 1.338 1.342 1.332 1.405±0.0411.405\pm 0.041 1.335 1.338 1.330
0.3<y<0.2-0.3<y<-0.2 1.036±0.0261.036\pm 0.026 1.015 1.320±0.0371.320\pm 0.037 1.318 1.322 1.312 1.384±0.0451.384\pm 0.045 1.315 1.318 1.310
0.4<y<0.3-0.4<y<-0.3 1.019±0.0311.019\pm 0.031 1.004 1.291±0.0301.291\pm 0.030 1.308 1.312 1.302 1.358±0.0341.358\pm 0.034 1.305 1.309 1.300
0.5<y<0.4-0.5<y<-0.4 0.987±0.0240.987\pm 0.024 0.976 1.242±0.0201.242\pm 0.020 1.274 1.277 1.268 1.308±0.0241.308\pm 0.024 1.271 1.274 1.266
1020%10-20\% 0.1<y<0-0.1<y<0~{}~{}~{}~{}~{} 0.996±0.0420.996\pm 0.042 0.965 1.256±0.0431.256\pm 0.043 1.242 1.246 1.236 1.306±0.0521.306\pm 0.052 1.239 1.243 1.234
0.2<y<0.1-0.2<y<-0.1 0.992±0.0450.992\pm 0.045 0.962 1.239±0.0351.239\pm 0.035 1.238 1.242 1.232 1.297±0.0391.297\pm 0.039 1.235 1.238 1.230
0.3<y<0.2-0.3<y<-0.2 0.974±0.0240.974\pm 0.024 0.941 1.217±0.0441.217\pm 0.044 1.209 1.213 1.203 1.275±0.0301.275\pm 0.030 1.206 1.209 1.201
0.4<y<0.3-0.4<y<-0.3 0.956±0.0250.956\pm 0.025 0.935 1.200±0.0301.200\pm 0.030 1.204 1.208 1.199 1.261±0.0251.261\pm 0.025 1.202 1.205 1.197
0.5<y<0.4-0.5<y<-0.4 0.924±0.0320.924\pm 0.032 0.919 1.164±0.0141.164\pm 0.014 1.188 1.191 1.182 1.217±0.0321.217\pm 0.032 1.185 1.188 1.180
2040%20-40\% 0.1<y<0-0.1<y<0~{}~{}~{}~{}~{} 0.908±0.0340.908\pm 0.034 0.893 1.136±0.0531.136\pm 0.053 1.137 1.140 1.131 1.183±0.0501.183\pm 0.050 1.134 1.137 1.129
0.2<y<0.1-0.2<y<-0.1 0.898±0.0420.898\pm 0.042 0.888 1.122±0.0431.122\pm 0.043 1.129 1.132 1.123 1.171±0.0531.171\pm 0.053 1.126 1.129 1.121
0.3<y<0.2-0.3<y<-0.2 0.880±0.0340.880\pm 0.034 0.872 1.093±0.0511.093\pm 0.051 1.109 1.112 1.103 1.153±0.0571.153\pm 0.057 1.106 1.109 1.101
0.4<y<0.3-0.4<y<-0.3 0.869±0.0310.869\pm 0.031 0.863 1.067±0.0271.067\pm 0.027 1.097 1.100 1.092 1.115±0.0211.115\pm 0.021 1.094 1.097 1.090
0.5<y<0.4-0.5<y<-0.4 0.833±0.0190.833\pm 0.019 0.834 1.039±0.0411.039\pm 0.041 1.061 1.064 1.056 1.063±0.0201.063\pm 0.020 1.059 1.061 1.055
4080%40-80\% 0.1<y<0-0.1<y<0~{}~{}~{}~{}~{} 0.779±0.0230.779\pm 0.023 0.779 0.925±0.0190.925\pm 0.019 0.971 0.974 0.966 0.978±0.0460.978\pm 0.046 0.968 0.970 0.964
0.2<y<0.1-0.2<y<-0.1 0.774±0.0010.774\pm 0.001 0.767 0.911±0.0280.911\pm 0.028 0.952 0.954 0.946 0.947±0.0260.947\pm 0.026 0.949 0.951 0.945
0.3<y<0.2-0.3<y<-0.2 0.761±0.0230.761\pm 0.023 0.748 0.900±0.0110.900\pm 0.011 0.927 0.929 0.922 0.931±0.0320.931\pm 0.032 0.925 0.926 0.921
0.4<y<0.3-0.4<y<-0.3 0.736±0.0010.736\pm 0.001 0.739 0878±0.0110878\pm 0.011 0.916 0.918 0.911 0.899±0.0040.899\pm 0.004 0.914 0.915 0.910
0.5<y<0.4-0.5<y<-0.4 0.706±0.0130.706\pm 0.013 0.719 0.833±0.0090.833\pm 0.009 0.895 0.897 0.890 0.854±0.0250.854\pm 0.025 0.893 0.894 0.889
Table 6: Averaged transverse momenta pT\langle p_{T}\rangle of 4He in different rapidity intervals and different centralities in Au-Au collisions at sNN=3\sqrt{s_{NN}}=3 GeV. Data are from Ref. Liu (2022), and the errors denote the systematical uncertainties.
Centrality Rapidity Data pTtotal\langle p_{T}\rangle_{\text{total}} pTppnn\langle p_{T}\rangle_{ppnn} pTpnd\langle p_{T}\rangle_{pnd} pTpt\langle p_{T}\rangle_{pt} pTn3He\langle p_{T}\rangle_{n^{3}\text{He}} pTdd\langle p_{T}\rangle_{dd}
010%0-10\% 0.1<y<0-0.1<y<0~{}~{}~{}~{}~{} 1.591±0.0481.591\pm 0.048 1.621 1.631 1.620 1.621 1.618 1.609
0.2<y<0.1-0.2<y<-0.1 1.566±0.0411.566\pm 0.041 1.615 1.625 1.614 1.615 1.612 1.603
0.3<y<0.2-0.3<y<-0.2 1.535±0.0461.535\pm 0.046 1.588 1.598 1.587 1.588 1.585 1.576
0.4<y<0.3-0.4<y<-0.3 1.508±0.0221.508\pm 0.022 1.582 1.591 1.581 1.582 1.579 1.570
0.5<y<0.4-0.5<y<-0.4 1.483±0.0031.483\pm 0.003 1.542 1.551 1.541 1.542 1.539 1.531
1020%10-20\% 0.1<y<0-0.1<y<0~{}~{}~{}~{}~{} 1.496±0.0811.496\pm 0.081 1.487 1.496 1.486 1.486 1.484 1.475
0.2<y<0.1-0.2<y<-0.1 1.487±0.0801.487\pm 0.080 1.481 1.491 1.480 1.481 1.478 1.469
0.3<y<0.2-0.3<y<-0.2 1.446±0.0461.446\pm 0.046 1.444 1.454 1.443 1.444 1.442 1.433
0.4<y<0.3-0.4<y<-0.3 1.397±0.0201.397\pm 0.020 1.442 1.451 1.441 1.441 1.439 1.430
0.5<y<0.4-0.5<y<-0.4 1.363±0.0061.363\pm 0.006 1.426 1.435 1.425 1.426 1.423 1.415
2040%20-40\% 0.1<y<0-0.1<y<0~{}~{}~{}~{}~{} 1.316±0.0361.316\pm 0.036 1.348 1.357 1.347 1.348 1.345 1.337
0.2<y<0.1-0.2<y<-0.1 1.296±0.0241.296\pm 0.024 1.337 1.346 1.336 1.337 1.334 1.326
0.3<y<0.2-0.3<y<-0.2 1.262±0.0061.262\pm 0.006 1.314 1.322 1.312 1.313 1.311 1.302
0.4<y<0.3-0.4<y<-0.3 1.227±0.0581.227\pm 0.058 1.300 1.308 1.299 1.299 1.297 1.289
0.5<y<0.4-0.5<y<-0.4 1.173±0.0381.173\pm 0.038 1.259 1.266 1.257 1.258 1.256 1.248
4080%40-80\% 0.1<y<0-0.1<y<0~{}~{}~{}~{}~{} 1.139±0.0481.139\pm 0.048 1.135 1.142 1.133 1.133 1.130 1.123
0.2<y<0.1-0.2<y<-0.1 1.095±0.0431.095\pm 0.043 1.109 1.115 1.107 1.107 1.104 1.098
0.3<y<0.2-0.3<y<-0.2 1.062±0.0051.062\pm 0.005 1.075 1.080 1.072 1.072 1.070 1.064
0.4<y<0.3-0.4<y<-0.3 1.005±0.0261.005\pm 0.026 1.066 1.072 1.064 1.064 1.062 1.056
0.5<y<0.4-0.5<y<-0.4 0.972±0.0720.972\pm 0.072 1.044 1.050 1.043 1.043 1.041 1.035

The averaged transverse momenta of different light nuclei reflect the collective motion and bulk properties of the hadronic matter at kinetic freezeout. In this subsection we study the averaged transverse momenta pT\langle p_{T}\rangle of dd, tt, 3He and 4He in rapidity intervals 0.1<y<0-0.1<y<0, 0.2<y<0.1-0.2<y<-0.1, 0.3<y<0.2-0.3<y<-0.2, 0.4<y<0.3-0.4<y<-0.3, 0.5<y<0.4-0.5<y<-0.4 in Au-Au collisions at sNN=3\sqrt{s_{NN}}=3 GeV in centralities 0100-10%, 102010-20%, 204020-40%, 408040-80%, respectively. Table LABEL:tab:avepT-dtHe3 and Table LABEL:tab:avepT-He4 show the results. Data with errors are from Ref. Liu (2022), and the errors denote the systematical uncertainties. The pTfin\langle p_{T}\rangle_{\text{fin}} in the fourth, sixth and tenth columns in Table LABEL:tab:avepT-dtHe3 denotes our theoretical results for final-state dd, tt, 3He, respectively, and pTtotal\langle p_{T}\rangle_{\text{total}} in the fourth column in Table LABEL:tab:avepT-He4 denotes total results including all five coalescence sources for 4He. pTnnp\langle p_{T}\rangle_{nnp} and pTnd\langle p_{T}\rangle_{nd} in the seventh and eighth columns in Table LABEL:tab:avepT-dtHe3 denote the result of n+n+pn+n+p coalescing into tt and that of n+dn+d coalescing into tt. pTppn\langle p_{T}\rangle_{ppn} and pTpd\langle p_{T}\rangle_{pd} in the eleventh and twelfth columns in Table LABEL:tab:avepT-dtHe3 denote the result of p+p+np+p+n coalescing into 3He and that of p+dp+d coalescing into 3He. pTppnn\langle p_{T}\rangle_{ppnn}, pTpnd\langle p_{T}\rangle_{pnd}, pTpt\langle p_{T}\rangle_{pt}, pTn3He\langle p_{T}\rangle_{n^{3}\text{He}} and pTdd\langle p_{T}\rangle_{dd} in the fifth, sixth, seventh, eighth and ninth columns in Table LABEL:tab:avepT-He4 denote the results of p+p+n+np+p+n+n, p+n+dp+n+d, p+tp+t, n+3n+^{3}He and d+dd+d coalescing into 4He, respectively.

Table LABEL:tab:avepT-dtHe3 and Table LABEL:tab:avepT-He4 show that for tt, 3He and 4He, the calculated pT\langle p_{T}\rangle from different coalescence sources are almost the same. This is very different from dN/dydN/dy. Our theoretical results agree with the data, and the deviations are less than 10%. pT\langle p_{T}\rangle of dd, tt, 3He and 4He decreases gradually as the increasing rapidity from central to peripheral collisions. This further indicates the stronger transverse collective motion at midrapidity area in more central collisions.

At the end of Sec. III, we want to state that our results show the coalescence mechanism still works in describing light nuclei production in Au-Au collisions at sNN=3\sqrt{s_{NN}}=3 GeV. Compared to those at high RHIC and LHC energies in our previous works Wang et al. (2021); Zhao et al. (2022), relativistic heavy ion collisions at lower collision energies have some new characteristics in light nuclei production, e.g., isospin asymmetry from the colliding nuclei and the non-negligible nucleus++nucleon/nucleus coalescence.

IV summary

In the coalescence mechanism, we studied different coalescence sources of the production of various species of light nuclei in relativistic heavy ion collisions. We firstly extended the coalescence model to include two bodies, three bodies, and four nucleons coalescing into light nuclei, respectively. We used the assumption of the coordinate-momentum factorization of joint hadronic distributions. We adopted gaussian forms for the relative coordinate distributions. Based on these simplifications, we obtained analytic formulas of momentum distributions of light nuclei formed from different production sources which coalesced by different hadrons.

We then applied the extended coalescence model to Au-Au collisions at sNN=3\sqrt{s_{NN}}=3 GeV to simultaneously investigate the pTp_{T} spectra of the dd, tt, 3He and 4He in different rapidity intervals at midrapidity area from central to peripheral collisions. We presented the pTp_{T} dependence of different coalescence sources for dd, tt, 3He and 4He. We also studied yield rapidity densities dN/dydN/dy and averaged transverse momenta pT\langle p_{T}\rangle of dd, tt, 3He and 4He. We gave proportions of yield densities from different coalescence sources for tt, 3He and 4He in their production and those of depletions for dd, tt and 3He. We found yield densities from different coalescence sources for a specific kind of light nuclei were very different, but averaged transverse momenta were almost unchanged.

Our results showed that (1) results of p+np+n coalescence minus those depleted in nucleus coalescence reproduced the available data of dd well in central and semi-central collisions and the data in peripheral collisions favored p+np+n coalescence; (2) the nucleon coalescence plus nucleon+d+d coalescence reproduced the available data of tt and 3He in central and semi-central collisions (their depletions in forming 4He are less than 3%) and the data in peripheral collisions favored only nucleon coalescence; (3) the nucleon coalescence plus nucleon++nucleus coalescence and nucleus++nucleus coalescence described the available data of 4He in central and semi-central collisions and the data in peripheral collisions favored only p+p+n+np+p+n+n coalescence.

Acknowledgements

We thank Prof. Xiao-Feng Luo for helpful discussions and thank the STAR collaboration for providing us the preliminary data of pTp_{T} spectra of dd, tt, 3He and 4He in Au-Au collisions at sNN=3\sqrt{s_{NN}}=3 GeV. This work was supported in part by the National Natural Science Foundation of China under Grants No. 12175115 and No. 12375074, the Natural Science Foundation of Shandong Province, China, under Grants No. ZR2020MA097 and Higher Educational Youth Innovation Science and Technology Program of Shandong Province under Grants No. 2020KJJ004 and No. 2019KJJ010.

References