This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Deuteron EDM induced by CP violating couplings of pseudoscalar mesons

Alexey S. Zhevlakov [email protected] Department of Physics, Tomsk State University, 634050 Tomsk, Russia Matrosov Institute for System Dynamics and Control Theory SB RAS Lermontov str., 134, 664033, Irkutsk, Russia    Valery E. Lyubovitskij [email protected] Institut für Theoretische Physik, Universität Tübingen, Kepler Center for Astro and Particle Physics, Auf der Morgenstelle 14, D-72076 Tübingen, Germany Departamento de Física y Centro Científico Tecnológico de Valparaíso-CCTVal, Universidad Técnica Federico Santa María, Casilla 110-V, Valparaíso, Chile
Abstract

We analyze contributions to the electric dipole (EDM) and Schiff (SFM) moments of deuteron induced by the CP-violating three-pseudoscalar meson couplings using phenomenological Lagrangian approach involving nucleons and pseudoscalar mesons P=π,K,η,ηP=\pi,K,\eta,\eta^{\prime}. Deuteron is considered as a proton-neutron bound state and its properties are defined by one- and two-body forces. One-body forces correspond to a picture there proton and neutron are quasi free constituents of deuteron and their contribution to the deuteron EDM (dEDM) is simply the sum of proton and neutron EDMs. Two-body forces in deuteron are induced by one-meson exchange between nucleons. They produce a contribution to the dEDM, which is estimated using corresponding potential approach. From numerical analysis of nucleon and deuteron EDMs we derive stringent limits on CP-violating hadronic couplings and θ¯\bar{\theta} parameter. We showed that proposed measurements of proton and deuteron EDMs at level of 1029\sim 10^{-29} by the Store Ring EDM and JEDI Collaborations will provide more stringent upper limits on the CP violating parameters.

I Introduction

Study of nature of CP-violation is one of the most important tasks in particle physics. Here the main puzzle consists in disagreement of predictions of Standard Model (SM) and existing data on CP-violating effects like, e.g., electric dipole moments (EDMs) of electron, nucleons, and more composite system like deuteron and nuclei. SM gives more stringent upper limits than experiments. It calls for search for a New Physics (new particles or mechanisms) contributing to CP-violating effects. In particular, data bounds on the hadron and lepton EDMs are very useful for derivation of more stringent limits on parameters of new particles Kirpichnikov:2020tcf ; Kirpichnikov:2020new . In QCD the source of the CP-violation is encoded in the so-called QCD vacuum angle θ¯\bar{\theta}, which is very small quantity (θ¯1010\bar{\theta}\sim 10^{-10}) due to Peccei-Quinn mechanism Peccei:1977hh . As it was shown in QCD sum rules Crewther:1979pi ; Shifman:1979if , this angle is related to the effective CP-violating hadronic couplings, which, e.g., define the EDMs of baryons. E.g., the expressions for the CP-violating η(η)ππ\eta(\eta^{\prime})\pi\pi couplings derived in Refs. Crewther:1979pi ; Shifman:1979if read:

fHππ\displaystyle f_{H\pi\pi} =\displaystyle= gHθ¯Mπ2RFπMH(1+R)2,H=η,η,\displaystyle-g_{H}\,\frac{\bar{\theta}\,M_{\pi}^{2}\,R}{F_{\pi}\,M_{H}\,(1+R)^{2}}\,,\quad H=\eta,\eta^{\prime}\,, (1)

where gη=1/3g_{\eta}=\sqrt{1/3}, gη=2/3g_{\eta^{\prime}}=\sqrt{2/3}, R=mu/mdR=m_{u}/m_{d} is the ratio of the uu and dd current quark masses, Fπ=92.4F_{\pi}=92.4 MeV is the pion decay constant, Mπ=139.57M_{\pi}=139.57 MeV, Mη=547.862M_{\eta}=547.862 MeV, and Mη=957.78M_{\eta^{\prime}}=957.78 MeV are the masses of the charged pion, η\eta, and η\eta^{\prime} mesons, respectively.

In series of papers Gutsche:2016jap -Zhevlakov:2019ymi we developed phenomenological Lagrangian approach involving nucleons, pseudoscalar mesons P=π,η,ηP=\pi,\eta,\eta^{\prime}, and photon for analysis of nucleon EDM and deriving upper limits for the CP-violating couplings between hadrons and θ¯\bar{\theta} angle. In particular, using existing upper limit on neutron EDM (nEDM) Tanabashi:2018oca

|dn|<2.9×1026ecm,\displaystyle|d_{n}|<2.9\times 10^{-26}\,\text{e}\cdot\text{cm}\,, (2)

which corresponds to the following boundary for the QCD angle |θ¯|<1010|\bar{\theta}|<10^{-10}, we derived more stringent upper limits for the CP-violating ηππ\eta\pi\pi and ηππ\eta^{\prime}\pi\pi couplings fηππ<4.4×1011f_{\eta\pi\pi}<4.4\times 10^{-11} and fηππ<3.8×1011f_{\eta^{\prime}\pi\pi}<3.8\times 10^{-11} than the ones deduced from experiment by the LHCb Collaboration Aaij:2016jaa : fηππ<6.7×104f_{\eta\pi\pi}<6.7\times 10^{-4} and fηππ<2.2×104f_{\eta^{\prime}\pi\pi}<2.2\times 10^{-4}. Using limits for these coupling one can estimate other hadronic EDMs where these couplings contribute. The proposed experiments for measurement of EDMs of charge particles (proton, deuteron, and possibly helium-3) with a sensitivity of 1029ecm10^{-29}e\cdot{\rm cm} by several Collaborations (the Storage Ring EDM at BNL Anastassopoulos:2015ura , the JEDI at JülichEversmann:2015jnk ; Abusaif:2019gry ) call for more accurate theoretical analysis of EDMs.

In this paper we extend our analysis to the deuteron, which is considered as proton-neutron bound state. In addition to the deuteron EDM (dEDM) we estimate the slope of the EDM form factor, which is known as the Schiff moment. We will take into account the contributions of one- and two-body forces to the dEDM. One-body forces correspond to a picture there proton and neutron are quasi free constituents of deuteron and their contribution to the dEDM is simply the sum of proton and neutron EDMs. Two-body forces in deuteron are induced by one-meson (π\pi, η\eta, and η\eta^{\prime}) exchange between nucleons. They produce a contribution to the dEDM, which is estimated using potential approach proposed in Ref. Khriplovich:1999qr . From numerical analysis of nucleon and deuteron EDMs we derive stringent limits on the CP-violating hadronic couplings and θ¯\bar{\theta} parameter. We show that proposed measurements of proton and deuteron EDMs at level of 1029\sim 10^{-29} by the Store Ring EDM and JEDI Collaborations will provide more stringent upper limits on the CP-violation parameters.

The paper is organized as follows. In Sec. II we briefly discuss our formalism and results for EDM and Schiff moments of nucleons. In Sec. III we extend our formalism to the dEDM. In Sec. IV we present our numerical results for the dEDM and discuss it in connection with planned experiments. In Appendix A we present the results for the KK- mesons contributions to the pseudoscalar meson and baryon CP-violating couplings relevant for the |ΔT|=0,1|\Delta T|=0,1 isospin transition.

II Formalism

Refer to caption
Figure 1: Diagrams describing the nEDM induced by the minimal electric coupling of photon with charged baryon. Interaction between mesons and baryons is described in the framework of PS approach. The solid square denotes the CP-violating ηπ+π\eta\,\pi^{+}\pi^{-} and ηπ0π0\eta\,\pi^{0}\pi^{0} vertices.

In this section we briefly review our formalism, which is based on phenomenological Lagrangians formulated in terms of nucleons N=(p,n)N=(p,n), pseudoscalar mesons [pions π=(π±,π0)\pi=(\pi^{\pm},\pi^{0}) and etas H=(η,η)H=(\eta,\eta^{\prime})], and photon AμA_{\mu} (see details in Ref. Zhevlakov:2018rwo ). The full Lagrangian needed for the analysis of nucleon EDMs is conventionally divided on free 0{\cal L}_{0} and interaction int{\cal L}_{\rm int} parts  Zhevlakov:2018rwo . In particular, the interaction part int{\cal L}_{\rm int} is given a sum of CP-even and CP-odd strong interactions terms S{\cal L}_{S} and SCP{\cal L}_{S}^{\rm CP} and electromagnetic terms describing coupling of charged pions and nucleons with photon. In case of nucleons we take into account non-minimal coupling with photon induced by anomalous magnetic moment kNk_{N}:

int\displaystyle{\cal L}_{\rm int} =\displaystyle= πNN+HNN+HππCP+γNN+γππ,\displaystyle{\cal L}_{\pi NN}+{\cal L}_{HNN}+{\cal L}^{\rm CP}_{H\pi\pi}+{\cal L}_{\gamma NN}+{\cal L}_{\gamma\pi\pi}\,,
πNN\displaystyle{\cal L}_{\pi NN} =\displaystyle= gπNNN¯iγ5πτN,HNN=gHNNHN¯iγ5N,\displaystyle g_{\pi NN}\bar{N}i\gamma^{5}\vec{\pi\,}\vec{\tau\,}N\,,\ \ {\cal L}_{HNN}\ =\ g_{HNN}H\bar{N}i\gamma^{5}N\,,
HππCP\displaystyle{\cal L}^{\rm CP}_{H\pi\pi} =\displaystyle= fHππMHHπ2,\displaystyle f_{H\pi\pi}M_{H}H\vec{\pi\,}^{2}\,,
γNN\displaystyle{\cal L}_{\gamma NN} =\displaystyle= eAμN(γμQN+iσμνqν2MNkN)N,\displaystyle eA_{\mu}N\Big{(}\gamma^{\mu}Q_{N}+\frac{i\sigma^{\mu\nu}q_{\nu}}{2M_{N}}k_{N}\Big{)}N\,, (3)
γππ\displaystyle{\cal L}_{\gamma\pi\pi} =\displaystyle= eAμ(πiμπ+π+iμπ)+e2AμAμπ+π,\displaystyle eA_{\mu}\Big{(}\pi^{-}i\partial^{\mu}\pi^{+}-\pi^{+}i\partial^{\mu}\pi^{-}\Big{)}+e^{2}A_{\mu}A^{\mu}\pi^{+}\pi^{-}\,,

where gπNN=(gA/Fπ)mNg_{\pi NN}=(g_{A}/F_{\pi})\,m_{N}, gHNNg_{HNN}, and fHππf_{H\pi\pi} are corresponding coupling constants, γμ\gamma^{\mu}, γ5\gamma^{5} are the Dirac matrices, σμν=i2[γμ,γν]\sigma^{\mu\nu}=\frac{i}{2}[\gamma^{\mu},\gamma^{\nu}]. Here gA=1.275g_{A}=1.275 is the axial nucleon charge, For the constants gηNNg_{\eta NN} and gηNNg_{\eta^{\prime}NN} we use the values deduced from recent analysis of photoproduction on nucleons in Ref. Tiator:2018heh : gηNN=gηNN=0.9g_{\eta NN}=g_{\eta^{\prime}NN}=~{}0.9.

Refer to caption
Figure 2: Diagrams describing the nEDM induced by the minimal electric coupling of photon with charged pions. Interaction between mesons and baryons is described in the framework of PS approach. The solid square denotes the CP-violating ηπ+π\eta\,\pi^{+}\pi^{-} vertex.

Nucleon EDM is extracted from the electromagnetic vertex function, which is expanded in terms of four relativistic form factors FE(Q2)F_{E}(Q^{2}) (electric), FM(Q2)F_{M}(Q^{2}) (magnetic), FD(Q2)F_{D}(Q^{2}) (electric dipole), and FA(Q2)F_{A}(Q^{2}) (anapole) as EDM_PCQM ; EDM_SUSY :

Minv=u¯N(p2)Γμ(p1,p2)uN(p1),\displaystyle M_{\rm inv}=\bar{u}_{N}(p_{2})\,\Gamma^{\mu}(p_{1},p_{2})\,u_{N}(p_{1})\,, (4)
Γμ(p1,p2)=γμFE(Q2)+\displaystyle\Gamma^{\mu}(p_{1},p_{2})\,=\,\gamma^{\mu}\,F_{E}(Q^{2})+\qquad\qquad\qquad
+iσμν2mNqνFM(Q2)+σμν2mNqνγ5FD(Q2)+\displaystyle\,+\,\frac{i\sigma^{\mu\nu}}{2m_{N}}q_{\nu}\,F_{M}(Q^{2})+\frac{\sigma^{\mu\nu}}{2m_{N}}q_{\nu}\gamma^{5}\,F_{D}(Q^{2})+
+1mN2(γμq22mNqμ)γ5FA(Q2),\displaystyle\,+\,\frac{1}{m_{N}^{2}}(\gamma^{\mu}q^{2}-2m_{N}q^{\mu})\gamma^{5}\,F_{A}(Q^{2})\,, (5)

where p1p_{1} and p2p_{2} are momenta of initial and final nucleon states, Q2=(p2p1)2Q^{2}=(p_{2}-p_{1})^{2} is the transfer momentum squared. The nucleon EDM is defined as dNE=FD(0)/(2mN)d_{N}^{E}=-F_{D}(0)/(2m_{N}).

In preceding papers Gutsche:2016jap -Zhevlakov:2019ymi we analyzed the neutron EDM (nEDM), which is evaluated by taking into account the two-loop diagrams. E.g., in Figs. 1 and 2 we display the diagrams induced by minimal couplings of charged hadrons with photon (see details in Ref. Zhevlakov:2018rwo ). The contributions to the nEDM induced by non-minimal coupling of proton and neutron to the electromagnetic field have been analyzed in Ref. Zhevlakov:2019ymi . We showed that non-minimal contributions are of the same order of magnitude as the ones induced by minimal γ\gamma-proton coupling, but separate non-minimal contributions induced by anomalous magnetic moments of proton and neutron compensate each other due to their opposite sign. The total numerical contribution of the non-minimal couplings of the nucleon is relatively suppressed (by one order of magnitude) compared to the total contribution of the minimal coupling. Our final numerical results for the nEDM including minimal and non-minimal electromagnetic couplings of nucleons are Zhevlakov:2019ymi :

dnE(6.62fηππ+7.64fηππ)×1016ecm,\displaystyle d^{E}_{n}\simeq(6.62f_{\eta\pi\pi}+7.64f_{\eta^{\prime}\pi\pi})\times 10^{-16}\text{e}\cdot\text{cm}\,, (6)

in terms of the CP-violating ηππ\eta\pi\pi and ηππ\eta^{\prime}\pi\pi couplings and in terms of the QCD θ¯\bar{\theta} angle:

|dnE|0.64×1016θ¯ecm,\displaystyle|d^{E}_{n}|\simeq 0.64\times 10^{-16}\bar{\theta}\,\text{e}\cdot\text{cm}\,, (7)

using the ratio of uu- and dd- quarks R=0.556R=0.556 from ChPT at 1 GeV scale Gasser:1982ap and

|dnE|0.67×1016θ¯ecm,\displaystyle|d^{E}_{n}|\simeq 0.67\times 10^{-16}\bar{\theta}\,\text{e}\cdot\text{cm}\,, (8)

for the R=0.468R=0.468 taken from lattice QCD at scale of 2 GeV Tanabashi:2018oca . Then using data on the nEDM we deduced Zhevlakov:2019ymi the following upper limits on the QCD angle: |θ¯|<4.4×1010|\bar{\theta}|<4.4\times 10^{-10} (ChPT) and |θ¯|<4.7×1010|\bar{\theta}|<4.7\times 10^{-10} (lattice QCD).

In this paper we first do an extension of our formalism to the proton EDM (pEDM), which is straightforward. Our numerical results for the pEDM in terms of the CP-violating ηππ\eta\pi\pi and ηππ\eta^{\prime}\pi\pi couplings are

dpE(1.66fηππ+1.77fηππ)×1016ecm.\displaystyle d^{E}_{p}\simeq(1.66f_{\eta\pi\pi}+1.77f_{\eta^{\prime}\pi\pi})\times 10^{-16}\text{e}\cdot\text{cm}\,. (9)

Using relations of the ηππ\eta\pi\pi and ηππ\eta^{\prime}\pi\pi couplings with θ¯\bar{\theta} we express the pEDM in terms of the θ¯\bar{\theta} as:

|dpE|0.15×1016θ¯ecm,\displaystyle|d^{E}_{p}|\simeq 0.15\times 10^{-16}\bar{\theta}\,\text{e}\cdot\text{cm}\,, (10)

for R=0.556R=0.556 from ChPT and same

|dpE|0.16×1016θ¯ecm,\displaystyle|d^{E}_{p}|\simeq 0.16\times 10^{-16}\bar{\theta}\,\text{e}\cdot\text{cm}\,, (11)

for R=0.468R=0.468 from lattice QCD. The magnitude of pEDM is less then the one for nEDM because in case of pEDM the contributions from diagrams in Fig. 1 and Fig. 2 have different sign in comparison with their contribution to the nEDM. Due to the leading diagrams to the pEDM and nEDM are induced by the coupling of photon with charged pions with opposite charge, i.e. with π\pi^{-} and π+\pi^{+}, respectively, the nucleon EDMs should have different signs.

After substitution of upper limits for the θ¯\bar{\theta} derived in the neutron case we get the following upper limits for the pEDM: |dpE|0.72×1026ecm|d^{E}_{p}|\simeq 0.72\times 10^{-26}\,\text{e}\cdot\text{cm} (ChPT) and |dpE|0.68×1026ecm|d^{E}_{p}|\simeq 0.68\times 10^{-26}\,\text{e}\cdot\text{cm} (lattice QCD). These limits are more stringent than existing limit |dpE|<2.5×1025|d^{E}_{p}|<2.5\times 10^{-25} obtained in indirect way from analysis of the Hg atoms Griffith:2009zz ; Sahoo:2016zvr ; Dmitriev:2003sc and have the same order of magnitude as the nEDM.

We go further and estimate the Schiff moments (SFMs) of nucleons. The nucleon SFM is defined as the slope of its EDM form factor Faessler:2005gd :

SN=dNE(Q2)dQ2|Q2=0.\displaystyle S^{\prime}_{N}=-\frac{d_{N}^{E}(Q^{2})}{dQ^{2}}\Bigg{|}_{Q^{2}=0}\,. (12)

Our numerical results for the nucleon SFMs are:

|Sn|<(4.1fηππ+4.4fηππ)103efm3,\displaystyle|S^{\prime}_{n}|<(4.1\,f_{\eta\pi\pi}+4.4\,f_{\eta^{\prime}\pi\pi})\cdot 10^{-3}\,\text{e}\cdot\text{fm}^{3}\,, (13)
|Sp|<(3.7fηππ+3.9fηππ)103efm3\displaystyle|S^{\prime}_{p}|<(3.7\,f_{\eta\pi\pi}+3.9\,f_{\eta^{\prime}\pi\pi})\cdot 10^{-3}\,\text{e}\cdot\text{fm}^{3} (14)

in terms of the CP-violating ηππ\eta\pi\pi and ηππ\eta^{\prime}\pi\pi couplings and in terms of the QCD vacuum angle

|Sn|<3.9104θ¯efm3,\displaystyle|S^{\prime}_{n}|<3.9\cdot 10^{-4}\,\bar{\theta}\,\text{e}\cdot\text{fm}^{3}\,, (15)
|Sp|<3.6104θ¯efm3,\displaystyle|S^{\prime}_{p}|<3.6\cdot 10^{-4}\,\bar{\theta}\,\text{e}\cdot\text{fm}^{3}\,, (16)

for the ChPT set and

|Sn|<3.7104θ¯efm3,\displaystyle|S^{\prime}_{n}|<3.7\cdot 10^{-4}\,\bar{\theta}\,\text{e}\cdot\text{fm}^{3}\,, (17)
|Sp|<3.4104θ¯efm3,\displaystyle|S^{\prime}_{p}|<3.4\cdot 10^{-4}\,\bar{\theta}\,\text{e}\cdot\text{fm}^{3}\,, (18)

for the lattice QCD set. Main contribution to the nucleon SFMs comes from the diagram describing the coupling of photon with charged pions (see Fig. 2), while the contribution of the graphs in Fig. 1 is suppressed. It is different from the nucleon EDMs, which are generated by both sets of diagrams in Figs. 1 and 2 with equal contribution on magnitude.

Note that our result for the neutron SFM is in good agreement with prediction of ChPT at the leading-order in the chiral expansion Thomas:1994wi :

|Sn|=egπNNgπNNCP48π2Mπ2mN<4.4104θ¯efm3\displaystyle|S^{\prime}_{n}|=\frac{eg_{\pi NN}g_{\pi NN}^{CP}}{48\pi^{2}M_{\pi}^{2}m_{N}}<4.4\cdot 10^{-4}\,\bar{\theta}\,\text{e}\cdot\text{fm}^{3}\, (19)

and perturbative chiral quark model EDM_PCQM :

|Sn|<3.0104θ¯efm3.\displaystyle|S^{\prime}_{n}|<3.0\cdot 10^{-4}\,\bar{\theta}\,\text{e}\cdot\text{fm}^{3}\,. (20)

III Deuteron EDM

The CP-violating HNNHNN, H=η,ηH=\eta,\eta^{\prime} couplings have been calculated in ChPT in Ref. Gutsche:2016jap . It is defined by pion-loop diagram and its value at the leading order in chiral expansion reads:

gHNNCP\displaystyle g_{HNN}^{\rm CP} =\displaystyle= 3gA2fHππ16π2Fπ2MHmN\displaystyle-\frac{3g_{A}^{2}f_{H\pi\pi}}{16\pi^{2}F_{\pi}^{2}}\,\,M_{H}\,m_{N} (21)
=\displaystyle= 3gπNN2fHππ16π2MHmN.\displaystyle-\frac{3\,g_{\pi NN}^{2}\,f_{H\pi\pi}}{16\pi^{2}}\,\frac{M_{H}}{m_{N}}\,.

Here, by analogy we also calculate the CP-violating πNN\pi NN coupling, which is generated by similar loop diagram in Fig. 3a:

gπNNCP\displaystyle g_{\pi NN}^{\rm CP} =\displaystyle= gπNNCP(Mη)+gπNNCP(Mη),\displaystyle g_{\pi NN}^{\rm CP}(M_{\eta})+g_{\pi NN}^{\rm CP}(M_{\eta^{\prime}})\,, (22)
gηNNCP=gηNNCP(Mπ),gηNNCP=gηNNCP(Mπ),\displaystyle g_{\eta NN}^{\rm CP}=g_{\eta NN}^{\rm CP}(M_{\pi})\,,\qquad g_{\eta^{\prime}NN}^{\rm CP}=g_{\eta^{\prime}NN}^{\rm CP}(M_{\pi})\,, (23)
gπNNCP(MH)\displaystyle g_{\pi NN}^{\rm CP}(M_{H}) =\displaystyle= gπNNgHNNfHππ4π2MHmN\displaystyle-\frac{g_{\pi NN}g_{HNN}\,f_{H\pi\pi}}{4\pi^{2}}\,\frac{M_{H}}{m_{N}} (24)
×\displaystyle\times [1+A(MH2)A(Mπ2)2mN2(MH2Mπ2)],\displaystyle\biggl{[}1+\frac{A(M_{H}^{2})-A(M_{\pi}^{2})}{2m_{N}^{2}(M_{H}^{2}-M_{\pi}^{2})}\biggr{]}\,,
gHNNCP(M)\displaystyle g_{HNN}^{\rm CP}(M) =\displaystyle= 3gπNN2fHππ16π2MHmN[1+B(M2)mN2],\displaystyle-3\,\frac{g_{\pi NN}^{2}\,f_{H\pi\pi}}{16\pi^{2}}\,\frac{M_{H}}{m_{N}}\,\biggl{[}1+\frac{B(M^{2})}{m_{N}^{2}}\biggr{]}\,,\,\,\,\,\,\, (25)

where

A(M2)\displaystyle A(M^{2}) =\displaystyle= M4logmN2M2M34mN2M2C(M),\displaystyle M^{4}\log\frac{m_{N}^{2}}{M^{2}}-M^{3}\sqrt{4m_{N}^{2}-M^{2}}\,C(M)\,,
B(M2)\displaystyle B(M^{2}) =\displaystyle= M2logmN2M22M3mN2M24mN2M2C(M),\displaystyle M^{2}\log\frac{m_{N}^{2}}{M^{2}}-2M\frac{3m_{N}^{2}-M^{2}}{\sqrt{4m_{N}^{2}-M^{2}}}\,C(M)\,,
C(M)\displaystyle C(M) =\displaystyle= arctan2mN2M24mN2M2M4\displaystyle\arctan\frac{2m_{N}^{2}-M^{2}}{\sqrt{4m_{N}^{2}M^{2}-M^{4}}} (26)
+\displaystyle+ arctanM4mN2M2.\displaystyle\arctan\frac{M}{\sqrt{4m_{N}^{2}-M^{2}}}\,.

As it is seen, that the CP-violating ηNN\eta NN coupling dominates over the πNN\pi NN one. It is why it makes sense to take into account the η\eta exchange in the evaluation of the dEDM. Note that our CP-violating couplings have microscopic (loop) origin. Therefore, it is interesting to compare our loop results for the CP-violating meson-nucleon couplings with the results for these couplings derived using chiral techniques. In particular, the CP-violating πNN\pi NN coupling at the leading order in chiral expansion was obtained in Ref. Crewther:1979pi in terms of current quark masses and mΞmNm_{\Xi}-m_{N} baryon mass difference:

gπNNCP=θ¯(mΞmN)RFπ(1+R)(2Rs1R),\displaystyle g_{\pi NN}^{\rm CP}=-\bar{\theta}\,\frac{(m_{\Xi}-m_{N})\,R}{F_{\pi}\,(1+R)\,(2R_{s}-1-R)}\,, (27)

where Rs=ms/mdR_{s}=m_{s}/m_{d} and mΞ=1321.71m_{\Xi}=1321.71 MeV is the mass of the Ξ(1321)\Xi(1321)^{-} hyperon. Both gπNNCPg_{\pi NN}^{\rm CP} and gηNNCPg_{\eta NN}^{\rm CP} couplings can be presented in terms of matrix elements of quark operators projected over nucleon states (nucleon condensates) Crewther:1979pi :

gπNNCP\displaystyle g_{\pi NN}^{\rm CP} =\displaystyle= θ¯mdRFπ(1+R)N|q¯τ3q|N=0.021θ¯,\displaystyle-\bar{\theta}\,\frac{m_{d}R}{F_{\pi}\,(1+R)}\,\langle N|\bar{q}\tau^{3}q|N\rangle\,=-0.021\,\bar{\theta}\,,\,\,\, (28)
gηNNCP\displaystyle g_{\eta NN}^{\rm CP} =\displaystyle= θ¯3mdRFπ(1+R)N|q¯q|N=0.132θ¯,\displaystyle-\frac{\bar{\theta}}{\sqrt{3}}\,\frac{m_{d}R}{F_{\pi}\,(1+R)}\,\langle N|\bar{q}q|N\rangle\,=-0.132\,\bar{\theta}\,,\,\,\, (29)
gηNNCP\displaystyle g_{\eta^{\prime}NN}^{\rm CP} =\displaystyle= θ¯23mdRFπ(1+R)N|q¯q|N=0.28θ¯,\displaystyle-\bar{\theta}\sqrt{\frac{2}{3}}\,\frac{m_{d}R}{F_{\pi}\,(1+R)}\,\langle N|\bar{q}q|N\rangle\,=-0.28\,\bar{\theta}\,,\,\,\,\,\,\, (30)

for RR from lattice data at scale 2 GeV Tanabashi:2018oca . Matrix elements N|q¯τ3q|N\langle N|\bar{q}\tau^{3}q|N\rangle and N|q¯q|N\langle N|\bar{q}q|N\rangle can be related to the nucleon axial charge gAg_{A} Faessler:2007pp and pion-nucleon sigma-term σπN\sigma_{\pi N} Gasser:1990ce ; Lyubovitskij:2000sf :

N|q¯τ3q|N=35gA=0.765,\displaystyle\langle N|\bar{q}\tau^{3}q|N\rangle=\frac{3}{5}\,g_{A}=0.765\,, (31)
N|q¯q|N=σπNm¯=8.286,\displaystyle\langle N|\bar{q}q|N\rangle=\frac{\sigma_{\pi N}}{\bar{m}}=8.286\,, (32)

where m¯=(mu+md)/2=7\bar{m}=(m_{u}+m_{d})/2=7 MeV Gasser:1982ap . For the σπN\sigma_{\pi N} we use the latest update 58 MeV derived in Ref. RuizdeElvira:2017stg .

Our numerical results for the CP-violating constants in terms of the θ¯\bar{\theta} parameter are:

gπNNCP\displaystyle g_{\pi NN}^{\rm CP} =\displaystyle= 0.021θ¯,\displaystyle-0.021\,\bar{\theta}\,, (33)
gηNNCP\displaystyle g_{\eta NN}^{\rm CP} =\displaystyle= 0.093θ¯,\displaystyle-0.093\,\bar{\theta}\,, (34)
gηNNCP\displaystyle g_{\eta^{\prime}NN}^{\rm CP} =\displaystyle= 0.125θ¯.\displaystyle-0.125\,\bar{\theta}\,. (35)

including contribution of all pseudoscalar mesons in the loop diagrams (see details in Appendix A) and

gπNNCP\displaystyle g_{\pi NN}^{\rm CP} =\displaystyle= 0.01θ¯,\displaystyle-0.01\,\bar{\theta}\,, (36)
gηNNCP\displaystyle g_{\eta NN}^{\rm CP} =\displaystyle= 0.11θ¯,\displaystyle-0.11\,\bar{\theta}\,, (37)
gηNNCP\displaystyle g_{\eta^{\prime}NN}^{\rm CP} =\displaystyle= 0.15θ¯,\displaystyle-0.15\,\bar{\theta}\,, (38)

when we restrict to the contribution of pion and η\eta meson in the loop diagrams. One can see, that our prediction for the full gπNNCPg_{\pi NN}^{\rm CP} coupling (33) is close to the prediction 0.027θ¯0.027\bar{\theta} of Ref. Crewther:1979pi and in agreement with central value of Ref. Bsaisou:2012rg : (0.018±0.007)θ¯(-0.018\pm 0.007)\,\bar{\theta}. On the other hand, the CP-violating constants gηNNCPg_{\eta NN}^{\rm CP} and gηNNCPg_{\eta^{\prime}NN}^{\rm CP} dominate over gπNNCPg_{\pi NN}^{\rm CP} by a one order of magnitude. They are so-called isospin |ΔT|=0|\Delta T|=0 CP-violating couplings Khriplovich:1999qr ; Bsaisou:2012rg .

Refer to caption
Figure 3: CP-violating πNN\pi NN and ηNN\eta NN couplings: (a) diagram induced by isospin-symmetric (|ΔT|=1|\Delta T|=1) vertices; (b) and (c) diagrams induced by isospin-violating (|ΔT|=1|\Delta T|=1) vertices induced by the internal π0η\pi^{0}-\eta mixing; (d) diagram induced by isospin-violating (|ΔT|=1|\Delta T|=1) pion-nucleon vertex and by the external π0η\pi^{0}-\eta mixing. The cross symbol ×\times denotes the π0η\pi^{0}-\eta mixing; (e) diagram induced by CP-violating isospin-breaking coupling of three pseudoscalar mesons from Lagrangian (A). The black box symbol denotes the CP-violating isospin-symmetric P3P^{3} vertex. The white box symbol denotes the CP-violating isospin-breaking P3P^{3} vertex.

In this section we discuss calculation of the dEDM dDEd_{D}^{E}, which is defined as the coupling of the external electric field E\vec{E} with deuteron spin S\vec{S}: H=dDE(SE)H=-d_{D}^{E}\,(\vec{S}\cdot\vec{E}). The contributions to the dEDM comes from one-body forces (additive sum of the pEDM and nEDM) and from two-body forces due one-meson exchanges between nucleons. The two-body contribution to the dEDM is induced by the CP-violating meson-nucleon coupling. Therefore, the dEDM is defined as:

dDE=dpE+dnE+dDπNN,\displaystyle d_{D}^{E}=d_{p}^{E}+d_{n}^{E}+d_{D}^{\pi NN}, (39)

where dDπNNd_{D}^{\pi NN} is the two-body contribution due to pion meson exchange generated by π0η\pi^{0}-\eta and π0η\pi^{0}-\eta^{\prime} mixing.

The two-body contributions can be estimated using potential approach proposed and developed in Ref. Khriplovich:1999qr . In case of the pion exchange it was shown that the dominant contribution comes due to the isospin triplet coupling Khriplovich:1999qr :

dDπNN=egπNNgπNNCP(1)12πMπρπ,\displaystyle d_{D}^{\pi NN}=-\frac{eg_{\pi NN}\,g^{\rm CP(1)}_{\pi NN}}{12\pi M_{\pi}}\,\rho_{\pi}\,, (40)

where

ρP=1+ξP(1+2ξP)2,ξP=mNϵDMP.\displaystyle\rho_{P}=\frac{1+\xi_{P}}{(1+2\xi_{P})^{2}}\,,\quad\xi_{P}=\frac{\sqrt{m_{N}\epsilon_{D}}}{M_{P}}\,. (41)

Here P=π,η,ηP=\pi,\eta,\eta^{\prime} and ϵD=2.23\epsilon_{D}=2.23 MeV is the deuteron binding energy, gπNNCP(1)g^{\rm CP(1)}_{\pi NN} is the CP-violating πNN\pi NN isospin-breaking coupling constant Khriplovich:1999qr ; Lebedev:2004va ; Bsaisou:2012rg including the ηπ\eta-\pi and ηπ\eta^{\prime}-\pi mixing

gπNNCP(1)=gπNNCP(πη)+gπNNCP(πη),\displaystyle g^{\rm CP(1)}_{\pi NN}=g^{\rm CP(\pi\eta)}_{\pi NN}+g^{\rm CP(\pi\eta^{\prime})}_{\pi NN}\,, (42)
gπNNCP(πη)=ϵgηCP(Mη),gπNNCP(πη)=ϵgηCP(Mη),\displaystyle g^{\rm CP(\pi\eta)}_{\pi NN}=\epsilon g^{\rm CP}_{\eta}(M_{\eta})\,,\quad g^{\rm CP(\pi\eta^{\prime})}_{\pi NN}=\epsilon^{\prime}g^{\rm CP}_{\eta^{\prime}}(M_{\eta}^{\prime})\,,\,\,\,\,\,\,\, (43)

where

gHCP(MH)\displaystyle g^{\rm CP}_{H}(M_{H}) =\displaystyle= gHCP,Int(MH)+gHCP,Ext(MH),\displaystyle g^{\rm CP,Int}_{H}(M_{H})+g^{\rm CP,Ext}_{H}(M_{H})\,, (44)
gHCP,Int(MH)\displaystyle g^{\rm CP,Int}_{H}(M_{H}) =\displaystyle= gπNNCP43gHNNCP(MH),\displaystyle g^{\rm CP}_{\pi NN}-\frac{4}{3}g^{CP}_{HNN}(M_{H})\,, (45)
gHCP,Ext(MH)\displaystyle g^{\rm CP,Ext}_{H}(M_{H}) =\displaystyle= (ρHMπρπMH1)(gHNNCPgπNNCPgHNNgπNN),\displaystyle\biggl{(}\frac{\rho_{H}M_{\pi}}{\rho_{\pi}M_{H}}-1\biggr{)}\biggl{(}g_{HNN}^{CP}-g_{\pi NN}^{CP}\frac{g_{HNN}}{g_{\pi NN}}\biggr{)}\,,

where SUf(3)SU_{f}(3) flavor breaking coefficients ϵ\epsilon and ϵ\epsilon^{\prime} Leutwyler:1996np ; Kroll:2004rs ; Gardner:1998gz defined as

ϵ=ϵ0χcosφ,\displaystyle\epsilon=\epsilon_{0}\chi\cos\varphi\,, (46)
ϵ=2ϵ0(1/χ)sinφ,\displaystyle\epsilon^{\prime}=-2\epsilon_{0}(1/\chi)\sin\varphi\,, (47)

with parameter ϵ0\epsilon_{0} encoding the isospin breaking effects:

ϵ0=3(1R)2(2Rs1R),\displaystyle\epsilon_{0}=\frac{\sqrt{3}(1-R)}{2(2R_{s}-1-R)}\,, (48)

and χ=1+(4MK23Mη2Mπ2)/(Mη2Mη2)1.23\chi=1+(4M_{K}^{2}-3M_{\eta}^{2}-M_{\pi}^{2})/(M_{\eta^{\prime}}^{2}-M_{\eta}^{2})\simeq 1.23. Here φ21.60\varphi\simeq-21.6^{0} is mixing angle between η\eta and η\eta^{\prime} mesons which is fixed from relation sin2φ=(42/3)(MK2Mπ2)/(Mη2Mη2)\sin 2\varphi=-(4\sqrt{2}/3)(M_{K}^{2}-M_{\pi}^{2})/(M_{\eta^{\prime}}^{2}-M_{\eta}^{2}) Leutwyler:1996np ; Kroll:2004rs ; Gardner:1998gz . Resulting values are ϵ=0.017\epsilon=0.017 and ϵ=0.004\epsilon^{\prime}=0.004.

First term in Eq. (44) is induced by the π0η\pi^{0}-\eta mixing in the triangle loop diagrams in Figs. 3c and  3d. Second term in Eq. (44) is induced by π0η\pi^{0}-\eta mixing in the external meson leg (see Fig. 3b). Therefore, one can denote two mechanisms of isospin violation due to the π0η\pi^{0}-\eta mixing as internal mechanism (depicted in Figs. 3c and 3d) and as external mechanism (depicted in Fig. 3b). One should note that the internal mechanism is strongly suppressed in comparison with external mechanism by a factor 10210^{-2} . We get the following numerical results for the CP-violating gπNNCP(1)g^{\rm CP(1)}_{\pi NN} coupling:

gπNNCP(πη)=0.0016θ¯\displaystyle g^{\rm CP(\pi\eta)}_{\pi NN}=0.0016\,\bar{\theta} (49)

due to πη\pi-\eta mixing and

gπNNCP(πη)=0.0005θ¯\displaystyle g^{\rm CP(\pi\eta^{\prime})}_{\pi NN}=0.0005\,\bar{\theta} (50)

due to πη\pi-\eta^{\prime} mixing without KK-mesons contribution. The total result with taking into account KK-mesons contribution (see details in Appendix A) for the isospin breaking |ΔT|=1|\Delta T|=1 CP-violating pion-nucleon coupling is gπNNCP(1)=0.0025θ¯g^{\rm CP(1)}_{\pi NN}=0.0025\,\bar{\theta}, which is in good agreement with prediction of Refs. Bsaisou:2012rg ; Dekens:2014jka : g¯1=(0.003±0.002)θ¯\bar{g}^{1}=(0.003\pm 0.002)\,\bar{\theta}.

The ratio of the full CP-violating πNN\pi NN coupling constants corresponding to the |ΔT|=1|\Delta T|=1 and |ΔT|=0|\Delta T|=0 is:

RπNN=gπNNCP(1)gπNNCP=g¯1g¯0=0.12.\displaystyle R_{\pi NN}=\frac{g^{\rm CP(1)}_{\pi NN}}{g^{\rm CP}_{\pi NN}}=\frac{\bar{g}^{1}}{\bar{g}^{0}}=-0.12\,. (51)

The latter expression also gives the prediction for the ratio of the couplings g¯1\bar{g}^{1} and g¯0\bar{g}^{0}. One can see that our result for the RπNNR_{\pi NN} is close to the lower boundary of the prediction of Ref. Bsaisou:2012rg : RπNN0.2±0.1R_{\pi NN}\sim-0.2\pm 0.1.

Finally, resulting contribution from one-meson exchange is:

|dDπNN|\displaystyle|d_{D}^{\pi NN}| =\displaystyle= 0.281018θ¯e cm,\displaystyle 0.28\cdot 10^{-18}\,\bar{\theta}\,\text{e cm}\,, (52)

which is in good agreement with data (see Ref. Bsaisou:2012rg ).

IV Discussion

The dEDM is contributed by the EDMs of constituent nucleons and correction due to one-meson exchange in the isospin channel |ΔT|=1|\Delta T|=1. The latter is induced due to isospin breaking effects (ηπ\eta-\pi and ηπ\eta^{\prime}-\pi mixing) and, therefore, it is relatively suppressed. Our final prediction for the dEDM in terms of the θ¯\bar{\theta} angle reads:

|dD|=0.4821016θ¯e cm.\displaystyle|d_{D}|=0.482\cdot 10^{-16}\,\bar{\theta}\,\text{e cm}\,. (53)

Next using the upper limit for the θ¯\bar{\theta} Zhevlakov:2019ymi we get

|dD|<2.21026e cm.\displaystyle|d_{D}|<2.2\cdot 10^{-26}\,\text{e cm}\,. (54)

Here we take into account that proton and neutron EDMs have different signs.

In prospects of future experiments an observation that the dEDM is proportional to the nucleon EDM and the other contributions are suppressed has big importance. A comparison between our theoretical prediction and sensitivity of future experimental measurements of the dEDM at the level of accuracy 1029\sim 10^{-29} from the EDM Collaboration Anastassopoulos:2015ura gives more stringent limit on the CP-violating parameter θ¯\bar{\theta}:

|θ¯|<21013.\displaystyle|\bar{\theta}|<2\cdot 10^{-13}\,. (55)

The same order of magnitude for the θ¯\bar{\theta} has been obtained in framework of supersymmetric approach MSSM Lebedev:2004va . These limits on the dEDM and θ¯\bar{\theta} allow to derive new bounds on nucleon EDMs at level 102910^{-29} and more stringent limits on the decay rates of the CP-violation processes ηππ\eta\to\pi\pi and ηππ\eta^{\prime}\to\pi\pi. In connection with planned EDM experiments one can derive the limits for the branching ratios of these rare processes decays at level 1021\sim 10^{-21} and 1023\sim 10^{-23} for η\eta and η\eta^{\prime} mesons, respectively. Direct observation of these decays at a such level of accuracy is impossible. There is the same situation in case of future experiment on measurement of the proton EDM by the JEDI Collaboration Eversmann:2015jnk ; Abusaif:2019gry . We would like to stress that direct measurement of the decay rates of the CP-violation processes ηππ\eta\to\pi\pi and ηππ\eta^{\prime}\to\pi\pi at level higher than limitations from data on EDMs could potentially signal about manifestation of New Physics.

In conclusion, we derived limits on the proton EDM and nucleon SFMs from existing experimental data on neutron EDM. We calculated the dEDM with taking into account one- and two-body forces in deuteron. All these quantities were calculated using phenomenological Lagrangian approach involving the PS-coupling between baryons and pseudoscalar mesons and the CP-violating couplings 3P3P couplings of pseudoscalar mesons. Note that these couplings are proportional to the QCD CP-violating parameter θ¯\bar{\theta} and, therefore, encode a source of the strong CP-violation in our formalism. Complementary we also derived the dependence of the dEDM on θ¯\bar{\theta}. In future, we plan to continue our study of the EDMs of baryons and nuclei induced by strong CP-violating effects, e.g., by taking into account of the CP-violation three-pseudoscalar meson vertices involving all nonet states (π\pi, KK, η\eta, and η\eta^{\prime}) and all isospin transitions |ΔT|=0,1,2|\Delta T|=0,1,2.

Acknowledgements.
The work of A.S.Zh. was funded by Russian Science Foundation grant (RSF 18-72-00046). The work of V.E.L. was funded by “Verbundprojekt 05A2017-CRESST-XENON: Direkte Suche nach Dunkler Materie mit XENON1T/nT und CRESST-III. Teilprojekt 1 (Förderkennzeichen 05A17VTA)”, by ANID PIA/APOYO AFB180002 and by FONDECYT (Chile) under Grant No. 1191103.

Appendix A SU(3) baryon-meson Lagrangian and CP-violating constants

The baryon-meson interaction Lagrangian involving nucleon, Λ\Lambda, and Σ\Sigma states in the framework of SU(3)SU(3) scheme reads Stoks:1996yj ; deVries:2015una

BBM\displaystyle{\cal L}_{BBM} =\displaystyle= gπNNπN¯iγ5τN+gΛNK(N¯iγ5ΛK+H.c.)\displaystyle g_{\pi NN}\vec{\pi}\bar{N}i\gamma_{5}\vec{\tau}N+g_{\Lambda NK}\Big{(}\bar{N}i\gamma_{5}\Lambda K+{\rm H.c.}\Big{)} (56)
+\displaystyle+ gΣNK(N¯iγ5ΣτK+H.c.),\displaystyle g_{\Sigma NK}\Big{(}\bar{N}i\gamma_{5}\vec{\Sigma}\vec{\tau}K+{\rm H.c.}\Big{)}\,,

where the relations between meson-baryon couplings are

gΛNK\displaystyle g_{\Lambda NK} =\displaystyle= gπNN3mΛ+mN2mN(1+α),\displaystyle-\frac{g_{\pi NN}}{\sqrt{3}}\frac{m_{\Lambda}+m_{N}}{2m_{N}}(1+\alpha)\,, (57)
gΣNK\displaystyle g_{\Sigma NK} =\displaystyle= gπNNmΣ+mN2mN(12α),\displaystyle g_{\pi NN}\frac{m_{\Sigma}+m_{N}}{2m_{N}}(1-2\alpha)\,, (58)

and α=F/(F+D)\alpha=F/(F+D). We use the averaged values for F=0.47F=0.47 and D=0.8D=0.8 Gutsche:2016jap ; deVries:2015una ; Ledwig:2014rfa fixed from data.

Effective Lagrangian for three meson couplings inducing the CP-violating processes with taking into account of isospin breaking effects reads Crewther:1979pi ; deVries:2015una :

CP\displaystyle{\cal L}_{CP} =\displaystyle= θ¯Mπ26Fπmumd(mu+md)2Tr(P3),\displaystyle-\bar{\theta}\,\frac{M_{\pi}^{2}}{6F_{\pi}}\frac{m_{u}m_{d}}{(m_{u}+m_{d})^{2}}\mathrm{Tr}(P^{3})\,, (59)

where P=PaλaP=P^{a}\lambda^{a} is the matrix of pseudoscalar fields. In terms of physical states this Lagrangian takes the form:

CP\displaystyle{\cal L}_{CP} =\displaystyle= Mπ26Fπm¯mθ¯3[ηπ2+3KπτKηKK\displaystyle-\frac{M_{\pi}^{2}}{6F_{\pi}\bar{m}}m^{*}\bar{\theta}\sqrt{3}\,\biggl{[}\eta\,\vec{\pi}^{2}+\sqrt{3}\,K^{\dagger}\vec{\pi}\vec{\tau}K-\eta\,K^{\dagger}K
+\displaystyle+ ϕ(π0π2π0KK3ηKτ3K)]\displaystyle\phi\,\biggl{(}\pi^{0}\,\vec{\pi}^{2}-\pi^{0}\,K^{\dagger}K-\sqrt{3}\,\eta\,K^{\dagger}\tau^{3}K\biggr{)}\biggr{]}
+\displaystyle+ 𝒪(ϕ2),\displaystyle{\cal O}(\phi^{2})\,,

where ϕ\phi is the SU(3)SU(3) breaking parameter

ϕ\displaystyle\phi =\displaystyle= 3m¯ϵ~2(msm¯),m¯=mu+md2,\displaystyle\frac{\sqrt{3}\bar{m}\tilde{\epsilon}}{2(m_{s}-\bar{m})}\,,\quad\bar{m}=\frac{m_{u}+m_{d}}{2}\,, (61)
m\displaystyle m^{*} =\displaystyle= mumdmsms(mu+md)+mumd,ϵ~=mdmumd+mu.\displaystyle\frac{m_{u}m_{d}m_{s}}{m_{s}(m_{u}+m_{d})+m_{u}m_{d}}\,,\quad\tilde{\epsilon}=\frac{m_{d}-m_{u}}{m_{d}+m_{u}}\,.\,\,\,\,

This Lagrangian generates the CP-violating couplings involving π\pi, KK, η\eta mesons and corresponds to the change of the isospin |ΔT|=0|\Delta T|=0 and |ΔT|=1|\Delta T|=1. Below we present the contribution of KK-mesons to the gπNNCPg^{CP}_{\pi NN}, gηNNCPg^{CP}_{\eta NN}, and gηNNCPg^{CP}_{\eta^{\prime}NN} couplings:

gπNNCP,K\displaystyle g^{CP,K}_{\pi NN} =\displaystyle= gπNNCP,Λ+gπNNCP,Σ,\displaystyle g^{CP,\Lambda}_{\pi NN}+g^{CP,\Sigma}_{\pi NN}\,, (62)
gη(η)NNCP,K\displaystyle g^{CP,K}_{\eta(\eta^{\prime})NN} =\displaystyle= 3(gπNNCP,Λ+gπNNCP,Σ)fKKη(η)fKKπ,\displaystyle-3\left(g^{CP,\Lambda}_{\pi NN}+g^{CP,\Sigma}_{\pi NN}\right)\frac{f_{KK\eta(\eta^{\prime})}}{f_{KK\pi}}\,,
gπNNCP,B\displaystyle g^{CP,B}_{\pi NN} =\displaystyle= gBNK2fKKπ(2mNmB)16π2mN2\displaystyle-\frac{g_{BNK}^{2}f_{KK\pi}(2m_{N}-m_{B})}{16\pi^{2}m_{N}^{2}}
×[1+A(mB)C(mB)],\displaystyle\times[1+A(m_{B})-C(m_{B})]\,,

where

A(mB)\displaystyle A(m_{B}) =\displaystyle= mB2MK2mN2log(mB2MK2),\displaystyle\frac{m_{B}^{2}-M_{K}^{2}}{m_{N}^{2}}\log\left(\frac{m_{B}^{2}}{M_{K}^{2}}\right)\,, (64)
C(mB)\displaystyle C(m_{B}) =\displaystyle= (MK2mB2)2mN2(MK2+mB2)mN2ζ,\displaystyle\frac{(M_{K}^{2}-m_{B}^{2})^{2}-m_{N}^{2}(M_{K}^{2}+m_{B}^{2})}{m_{N}^{2}\zeta}\,,
×\displaystyle\times [arctan((mB2MK2mN2)ζ1)\displaystyle\left[\arctan\left((m_{B}^{2}-M_{K}^{2}-m_{N}^{2})\zeta^{-1}\right)\right.
\displaystyle- arctan((mB2MK2+mN2)ζ1)],\displaystyle\left.\arctan\left((m_{B}^{2}-M_{K}^{2}+m_{N}^{2})\zeta^{-1}\right)\right]\,,
ζ\displaystyle\zeta =\displaystyle= 2MK2(mB2+mN2)(mB2mN2)2MK4,\displaystyle\sqrt{2M_{K}^{2}(m_{B}^{2}+m_{N}^{2})-(m_{B}^{2}-m_{N}^{2})^{2}-M_{K}^{4}}\,,

where B=Λ,ΣB=\Lambda,\Sigma denotes hyperons and fP1P2P3f_{P_{1}P_{2}P_{3}} is the CP-violating three-pseudoscalar meson transition couplings obtained from Eq. (A).

The KK-meson contribution to the |ΔT|=1|\Delta T|=1 CP-violating coupling shown in Fig. 3e is

gπNNCP,K\displaystyle g_{\pi NN}^{CP,K} =\displaystyle= ϕ(23fπ0π+πfηππgHNNCP(Mπ)+3gπNNCP,K).\displaystyle\phi\left(\frac{2}{3}\frac{f_{\pi^{0}\pi^{+}\pi^{-}}}{f_{\eta\pi\pi}}g^{CP}_{HNN}(M_{\pi})+3g^{CP,K}_{\pi NN}\right)\,.\,\,\,\,\,\,\,\,\, (65)

This contribution has the same magnitude as the value generated by the internal mechanism from diagrams Figs.3.c-3.d due to fηππf_{\eta\pi\pi} CP-violating coupling, the gHNNCP(Mπ)g^{CP}_{HNN}(M_{\pi}) function was denote before in eq.(25). Main contribution to |ΔT|=1|\Delta T|=1 CP-violated coupling of pion and nucleons due to KK-mesons propagating in the loop also comes from the external mechanism (see Fig. 3b) which is given by the same structure integral:

gπNNCP(1)\displaystyle g^{\rm CP(1)}_{\pi NN} =\displaystyle= gπNNCP,K(πη)+gπNNCP,K(πη),\displaystyle g^{\rm CP,K(\pi\eta)}_{\pi NN}+g^{\rm CP,K(\pi\eta^{\prime})}_{\pi NN}\,, (66)
gπNNCP,K(πη)\displaystyle g^{\rm CP,K(\pi\eta)}_{\pi NN} =\displaystyle= ϵgηCP(Mη),gπNNCP,K(πη)=ϵgηCP(Mη),\displaystyle\epsilon g^{\rm CP}_{\eta}(M_{\eta})\,,\quad g^{\rm CP,K(\pi\eta^{\prime})}_{\pi NN}=\epsilon^{\prime}g^{\rm CP}_{\eta^{\prime}}(M_{\eta^{\prime}})\,,
gHCP,Ext(MH)\displaystyle g^{\rm CP,Ext}_{H}(M_{H}) =\displaystyle= (ρHMπρπMH1)(gHNNCP,KgπNNCP,KgHNNgπNN),\displaystyle\biggl{(}\frac{\rho_{H}M_{\pi}}{\rho_{\pi}M_{H}}-1\biggr{)}\biggl{(}g_{HNN}^{CP,K}-g_{\pi NN}^{CP,K}\frac{g_{HNN}}{g_{\pi NN}}\biggr{)}\,,

where H=η,ηH=\eta,\eta^{\prime}. It contributes by amount of 15%15\% to the CP-violating πNN\pi NN coupling in case of the |ΔT|=1|\Delta T|=1 isospin transition.

References

  • (1) D. V. Kirpichnikov, V. E. Lyubovitskij, A. S. Zhevlakov,
    arXiv:2002.07496 [hep-ph].
  • (2) D. V. Kirpichnikov, V. E. Lyubovitskij, A. S. Zhevlakov,
    in preparation.
  • (3) R. D. Peccei and H. R. Quinn, Phys. Rev. Lett.  38, 1440 (1977); Phys. Rev. D 16, 1791 (1977).
  • (4) R. J. Crewther, P. Di Vecchia, G. Veneziano, and E. Witten, Phys. Lett. B 88, 123 (1979), B 91, 487(E) (1980).
  • (5) M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Nucl. Phys. B 166, 493 (1980).
  • (6) T. Gutsche, A. N. Hiller Blin, S. Kovalenko, S. Kuleshov, V. E. Lyubovitskij, M. J. Vicente Vacas, and
    A. Zhevlakov, Phys. Rev. D 95, 36022 (2017)
    [arXiv:1612.02276 [hep-ph]]; Few Body Syst. 59, 66
    (2018) [arXiv:1801.10101 [hep-ph]].
  • (7) A. S. Zhevlakov, M. Gorchtein, A. N. Hiller Blin,
    T. Gutsche, and V. E. Lyubovitskij, Phys. Rev. D 99, 031703(R) (2019) [arXiv:1812.00171 [hep-ph]].
  • (8) A. S. Zhevlakov, T. Gutsche, and V. E. Lyubovitskij, Phys. Rev. D 99, 115004 (2019) [arXiv:1904.08154 [hep-ph]]; EPJ Web Conf. 212, 07005 (2019).
  • (9) M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018).
  • (10) R. Aaij et al. (LHCb Collaboration), Phys. Lett. B 764, 233 (2017) [arXiv:1610.03666 [hep-ex]].
  • (11) V. Anastassopoulos et al., Rev. Sci. Instrum.  87, 115116 (2016) [arXiv:1502.04317 [physics.acc-ph]].
  • (12) D. Eversmann et al. (JEDI Collaboration), Phys. Rev. Lett.  115, 094801 (2015) [arXiv:1504.00635 [physics.acc-ph]].
  • (13) F. Abusaif et al., arXiv:1912.07881 [hep-ex].
  • (14) I. B. Khriplovich and R. A. Korkin, Nucl. Phys. A 665, 365 (2000) [nucl-th/9904081].
  • (15) C. Dib, A. Faessler, T. Gutsche, S. Kovalenko, J. Kuckei, V. E. Lyubovitskij, and K. Pumsa-ard, J. Phys. G 32, 547 (2006); J. Kuckei, C. Dib, A. Faessler, T. Gutsche, S. Kovalenko, V. E. Lyubovitskij, and K. Pumsa-ard, Phys. Atom. Nucl.  70, 349 (2007).
  • (16) A. Faessler, T. Gutsche, S. Kovalenko, and
    V. E. Lyubovitskij, Phys. Rev. D 73, 114023 (2006).
  • (17) S. Haciomeroglu and Y. K. Semertzidis, Phys. Rev. 
    Accel. Beams 22, 034001 (2019) [arXiv:1806.09319
    [physics.acc-ph]].
  • (18) L. Tiator et al., Eur. Phys. J. A 54, 210 (2018)
    [arXiv:1807.04525 [nucl-th]].
  • (19) J. Gasser and H. Leutwyler, Phys. Rept.  87, 77 (1982).
  • (20) W. C. Griffith, M. D. Swallows, T. H. Loftus, M. V. Romalis, B. R. Heckel, and E. N. Fortson, Phys. Rev. Lett.  102, 101601 (2009) [arXiv:0901.2328 [physics.atom-ph]].
  • (21) B. K. Sahoo, Phys. Rev. D 95, 013002 (2017)
    [arXiv:1612.09371 [hep-ph]].
  • (22) V. F. Dmitriev and R. A. Sen’kov, Phys. Rev. Lett.  91, 212303 (2003) [nucl-th/0306050].
  • (23) F. K. Guo and U. G. Meissner, JHEP 1212, 097 (2012) [arXiv:1210.5887 [hep-ph]].
  • (24) E. Mereghetti, J. de Vries, W. H. Hockings,
    C. M. Maekawa, and U. van Kolck, Phys. Lett. B 696, 97 (2011) [arXiv:1010.4078 [hep-ph]].
  • (25) A. Faessler, T. Gutsche, V. E. Lyubovitskij, and
    K. Pumsa-ard, Phys. Rev. D 73, 114021 (2006) [hep-ph/0511319].
  • (26) J. Bsaisou, C. Hanhart, S. Liebig, U.-G. Meissner, A. Nogga, and A. Wirzba, Eur. Phys. J. A 49, 31 (2013) [arXiv:1209.6306 [hep-ph]].
  • (27) S. D. Thomas, Phys. Rev. D 51, 3955 (1995) [hep-ph/9402237].
  • (28) A. Faessler, T. Gutsche, B. R. Holstein, and
    V. E. Lyubovitskij, Phys. Rev. D 77, 114007 (2008) [arXiv:0712.3437 [hep-ph]].
  • (29) J. Gasser, H. Leutwyler, and M. E. Sainio, Phys. Lett. B 253, 252 (1991).
  • (30) V. E. Lyubovitskij, T. Gutsche, A. Faessler, and
    E. G. Drukarev, Phys. Rev. D 63, 054026 (2001) [hep-ph/0009341].
  • (31) J. Ruiz de Elvira, M. Hoferichter, B. Kubis, and
    U. G. Meißner, J. Phys. G 45, 024001 (2018)
    [arXiv:1706.01465 [hep-ph]].
  • (32) W. Dekens, J. de Vries, J. Bsaisou, W. Bernreuther, C. Hanhart, U. G. Meißner, A. Nogga, and A. Wirzba, JHEP 1407 (2014) 069 [arXiv:1404.6082 [hep-ph]].
  • (33) H. Leutwyler, Phys. Lett. B 374 (1996) 181 [hep-ph/9601236].
  • (34) P. Kroll, Int. J. Mod. Phys. A 20 (2005) 331 [hep-ph/0409141].
  • (35) S. Gardner, Phys. Rev. D 59 (1999) 077502 [hep-ph/9806423].
  • (36) O. Lebedev, K. A. Olive, M. Pospelov, and A. Ritz, Phys. Rev. D 70, 016003 (2004) [hep-ph/0402023].
  • (37) V. G. J. Stoks and T. A. Rijken, Nucl. Phys. A 613 (1997) 311
  • (38) J. de Vries, E. Mereghetti and A. Walker-Loud, Phys. Rev. C 92 045201 (2015).
  • (39) T. Ledwig, J. Martin Camalich, L. S. Geng, and M. J. Vicente Vacas, Phys. Rev. D 90 054502 (2014).