This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Determination of the density in a nonlinear elastic wave equation

Gunther Uhlmann Department of Mathematics, University of Washington, Seattle, WA 98195, USA; Institute for Advanced Study, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China ([email protected])  and  Jian Zhai School of Mathematical Sciences, Fudan University, Shanghai 200433, China ([email protected]).
Abstract.

This is a continuation of our study [41] on an inverse boundary value problem for a nonlinear elastic wave equation. We prove that all the linear and nonlinear coefficients can be recovered from the displacement-to-traction map, including the density, under some natural geometric conditions on the wavespeeds.

Key words and phrases:
elastic waves, inverse boundary value problem, quasilinear equation, Gaussian beams
J. Zhai is supported by National Key Research and Development Programs of China (No. 2023YFA1009103), Science and Technology Commission of Shanghai Municipality (23JC1400501)

1. Introduction

Let Ω3\Omega\subset\mathbb{R}^{3} be a bounded domain with smooth boundary Ω\partial\Omega. Denote x=(x1,x2,x3)x=(x_{1},x_{2},x_{3}) to be the Cartesian coordinates. Here Ω\Omega represents an elastic, nonhomogeneous, isotropic object with Lamé parameters λ,μ\lambda,\mu and density ρ\rho. We take into account the nonlinear behavior of elastic medium in this article. Let the vector u=(u1,u2,u3)u=(u_{1},u_{2},u_{3}) be the displacement vector, and the (nonlinear) strain tensor is

εij(u)=12(uixj+ujxi+ukxiukxj).\varepsilon_{ij}(u)=\frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}+\frac{\partial u_{k}}{\partial x_{i}}\frac{\partial u_{k}}{\partial x_{j}}\right).

We consider the nonlinear model of elasticity as in [11], whereas the stress tensor is of the form,

(1) Sij=λεmmδij+λε~mmuixj+2μ(εij+ε~jnuixn)+𝒜ε~inε~jn+(2ε~nnε~ij+ε~mnε~mnδij)+𝒞ε~mmε~nnδij+𝒪(u3),\begin{split}S_{ij}=&\lambda\varepsilon_{mm}\delta_{ij}+\lambda\widetilde{\varepsilon}_{mm}\frac{\partial u_{i}}{\partial x_{j}}+2\mu\left(\varepsilon_{ij}+\widetilde{\varepsilon}_{jn}\frac{\partial u_{i}}{\partial x_{n}}\right)\\ &+\mathscr{A}\widetilde{\varepsilon}_{in}\widetilde{\varepsilon}_{jn}+\mathscr{B}(2\widetilde{\varepsilon}_{nn}\widetilde{\varepsilon}_{ij}+\widetilde{\varepsilon}_{mn}\widetilde{\varepsilon}_{mn}\delta_{ij})+\mathscr{C}\widetilde{\varepsilon}_{mm}\widetilde{\varepsilon}_{nn}\delta_{ij}+\mathcal{O}(u^{3}),\end{split}

where ε~\widetilde{\varepsilon} is the linearized strain tensor

ε~ij(u)=12(uixj+ujxi),\widetilde{\varepsilon}_{ij}(u)=\frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right),

For the rest of the paper, we will just discard the 𝒪(u3)\mathcal{O}(u^{3}) terms in (1).

We consider the initial boundary value problem

(2) ρ2ut2S(x,u)=0,(t,x)(0,T)×Ω,u(t,x)=f(t,x),(t,x)(0,T)×Ω,u(0,x)=tu(0,x)=0,xΩ,\begin{split}&\rho\frac{\partial^{2}u}{\partial t^{2}}-\nabla\cdot S(x,u)=0,\quad(t,x)\in(0,T)\times\Omega,\\ &u(t,x)=f(t,x),\quad(t,x)\in(0,T)\times\partial\Omega,\\ &u(0,x)=\frac{\partial}{\partial t}u(0,x)=0,\quad x\in\Omega,\end{split}

where SS is of the form (1). Denote the displacement-to-traction map as

Λ:f=u|(0,T)×ΩνS(x,u)|(0,T)×Ω,\Lambda:f=u|_{(0,T)\times\partial\Omega}\rightarrow\nu\cdot S(x,u)|_{(0,T)\times\partial\Omega},

where ν\nu is the exterior normal unit vector to Ω\partial\Omega. We consider the inverse problem of determining λ,μ,ρ,𝒜,,𝒞\lambda,\mu,\rho,\mathscr{A},\mathscr{B},\mathscr{C} from Λ\Lambda. The well-posedness of the Dirichlet problem with small boundary data is established in [11].

Closely related is the inverse boundary value problem for the linear elastic wave equations

(3) ρ2ut2SL(x,u)=0,(t,x)(0,T)×Ω,u(t,x)=f(t,x),(t,x)(0,T)×Ω,u(0,x)=tu(0,x)=0,xΩ,\begin{split}&\rho\frac{\partial^{2}u}{\partial t^{2}}-\nabla\cdot S^{L}(x,u)=0,\quad(t,x)\in(0,T)\times\Omega,\\ &u(t,x)=f(t,x),\quad(t,x)\in(0,T)\times\partial\Omega,\\ &u(0,x)=\frac{\partial}{\partial t}u(0,x)=0,\quad x\in\Omega,\end{split}

for which one wants to recover λ,μ,ρ\lambda,\mu,\rho from the (linearized) Dirichlet-to-Neumann (DtN) map defined as

Λlin:f=u|(0,T)×ΩνSL(x,u)|(0,T)×Ω.\Lambda^{lin}:f=u|_{(0,T)\times\partial\Omega}\rightarrow\nu\cdot S^{L}(x,u)|_{(0,T)\times\partial\Omega}.

Here SLS^{L} is the linearized stress

SijL(x,u)=λε~mmδij+2με~ij.S^{L}_{ij}(x,u)=\lambda\widetilde{\varepsilon}_{mm}\delta_{ij}+2\mu\widetilde{\varepsilon}_{ij}.

Throughout the paper, we assume the strong ellipticity condition

(4) μ>0,3λ+2μ>0onΩ¯.\mu>0,\quad 3\lambda+2\mu>0~{}\text{on}~{}\overline{\Omega}.

Denote

cP=λ+2μρ,cS=μρ,c_{P}=\sqrt{\frac{\lambda+2\mu}{\rho}},\quad c_{S}=\sqrt{\frac{\mu}{\rho}},

which are actually the wavespeeds for P- and S- waves respectively. By the assumption (4), we have cP>cSc_{P}>c_{S} in Ω¯\overline{\Omega}. Denote the Riemannian metrics associated with the P/SP/S- wavespeeds to be

gP/S=cP/S2ds2,g_{P/S}=c_{P/S}^{-2}\mathrm{d}s^{2},

where ds2\mathrm{d}s^{2} is the Euclidean metric. Now, one can consider (Ω,g)(\Omega,g_{\bullet}) as a compact Riemannian manifold with boundary Ω\partial\Omega, where =P,S\bullet=P,S.

We assume that (Ω,g)(\Omega,g_{\bullet}) is non-trapping and Ω\partial\Omega is convex with respect to the metric gg_{\bullet}. Denote diamP/S(Ω)\mathrm{diam}_{P/S}(\Omega) be the diameter of Ω\Omega with respect to gP/Sg_{P/S}. More precisely,

diamP/S(Ω)=sup{lengths of all geodesics in (Ω,gP/S)}.\mathrm{diam}_{P/S}(\Omega)=\sup\{\textit{lengths of all geodesics in }(\Omega,g_{P/S})\}.

The main result of this paper is the following theorem.

Theorem 1.

Assume Ω\partial\Omega is strictly convex with respect to gP/Sg_{P/S}, and either of the following conditions holds

  1. (1)

    (Ω,gP/S)(\Omega,g_{P/S}) is simple;

  2. (2)

    (Ω,gP/S)(\Omega,g_{P/S}) satisfies the foliation condition.

If T>2max{diamS(Ω),diamP(Ω)}T>2\,\max\{\mathrm{diam}_{S}(\Omega),\mathrm{diam}_{P}(\Omega)\}, then Λ\Lambda determines λ,μ,ρ,𝒜,,𝒞\lambda,\mu,\rho,\mathscr{A},\mathscr{B},\mathscr{C} in Ω¯\overline{\Omega} uniquely.

Assume (Ω,g)(\Omega,g) is a compact Riemannian manifold with strictly convex boundary Ω\partial\Omega. We recall that (1) (Ω,g)(\Omega,g) called to be simple if any two points x,yΩx,y\in\Omega can be connected by a unique geodesic, contained in Ω\Omega, depending smoothly on xx and yy. (2) (Ω,g)(\Omega,g) satisfies the foliation condition if there is a smooth strictly convex function f:Mf:M\rightarrow\mathbb{R}. For more discussions on the foliation condition, we refer to [27]. We emphasize here that either of the two geometrical conditions implies that (Ω,g)(\Omega,g) is non-trapping. The foliation condition is satisfies if the manifold has negative sectional curvatures, or non-positive sectional curvatures if the manifolds is simply connected. The foliation condition allows for conjugate points.

For the inverse boundary value problem for the linear elastic wave equation (3), the uniqueness of the wavespeeds cP/Sc_{P/S}, under the above two geometrical conditions, is proved in [29, 35] respectively. The problem is reduced to the lens rigidity problem for a Riemannian metric which is conformally Euclidean. The related lens rigidity problem is solved under the simplicity condition in [25] and under the foliation condition in [34]. To recover λ,μ,ρ\lambda,\mu,\rho simultaneously, the uniqueness of ρ\rho needs to be proved additionally. For the uniqueness of the density, the problem can be reduced to the geodesic ray transform of a 2-tensor using P-wave measurements (cf. [30, 6]), but this reduction requires a technical assumption cP2cSc_{P}\neq 2c_{S}. The ss-injectivity of this geodesic ray transform is proved under the strictly convex foliation condition [36]. Under simplicity condition, the ss-injectivity is proved under extra curvature conditions [33, 10, 26].

In our previous work [41], we proved the uniqueness of 𝒜,,𝒞\mathscr{A},\mathscr{B},\mathscr{C} assuming λ,μ,ρ\lambda,\mu,\rho are known. For the uniqueness of ρ\rho, extra conditions are needed if one resorts to the result for the linear equation as mentioned above. In this paper, we will utilize the nonlinearity to show the uniqueness of ρ\rho, without any additional assumptions.

The proof is based on the construction of Gaussian beam solutions. Compared to our previous work [41], since now the density is not known, the reflection of waves at the boundary is hard to control. We remark here that elastic waves would undergo a P/SP/S mode conversion when reflected. We refer to the work [37] for this reflection behavior. The reflection of Gaussian beam solutions is carefully characterized below in Section 3.

The nonlinear interaction of distorted planes was first used in [21] to recover a Lorentzian metric in a semilinear wave equation. Since then, many inverse problems for nonlinear hyperbolic equations have been studied. See [40] for a review. We also refer to [24, 11, 39, 15, 41, 20, 43, 8, 7, 32, 23, 22, 2, 4, 31, 17, 16, 42, 9] and the references therein.

The rest of the paper is organized as follows. In Section 2, we construct Gaussian beam solutions for the linear elastic wave equations. In Section 3, the reflection of Gaussian beams on the boundary is carefully characterized. In Section 4, we give the proof of the main result.

2. Gaussian beams

In this section, we construct Gaussian beam solutions to the linear elastic wave equation

λ,μ,ρu:=ρ2ut2SL(x,u)=0,\mathcal{L}_{\lambda,\mu,\rho}u:=\rho\frac{\partial^{2}u}{\partial t^{2}}-\nabla\cdot S^{L}(x,u)=0,

Much of the work has been carried out in [41]. Gaussian beams have also been used to study various inverse problems for both elliptic and hyperbolic equations [19, 3, 5, 12, 13, 15, 14]. For the construction, we need to introduce the Fermi coordinates.

2.1. Fermi coordinates

Denote

M=×Ω,M=\mathbb{R}\times\Omega,

and consider MM as a Lorentzian manifold with metric g¯:=dt2+g=dt2+c2ds2\overline{g}_{\bullet}:=-\mathrm{d}t^{2}+g_{\bullet}=-\mathrm{d}t^{2}+c_{\bullet}^{-2}\mathrm{d}s^{2}, where =P\bullet=P or SS. We can extend gg_{\bullet} smoothly to a slightly larger domain Ω\Omega^{\prime}, such that ΩΩ\Omega\subset\subset\Omega^{\prime}, and consider the Lorentzian manifold (M,g¯):=(×Ω,g¯)(M^{\prime},\overline{g}_{\bullet}):=(\mathbb{R}\times\Omega^{\prime},\overline{g}_{\bullet}).

Consider a null-geodesic ϑ\vartheta in (M,g¯)(M^{\prime},\overline{g}_{\bullet}). Notice that ϑ\vartheta can be expressed as ϑ(t)=(t,γ(t))\vartheta(t)=(t,\gamma(t)), where γ\gamma is a unit-speed geodesic in the Riemannian manifold (Ω,g)(\Omega^{\prime},g_{\bullet}). Assume that ϑ\vartheta passes through two boundary points (t,γ(t))(t_{-},\gamma(t_{-})) and (t+,γ(t+))(t_{+},\gamma(t_{+})) of M\partial M, where t,t+(0,T)t_{-},t_{+}\in(0,T), t<t+t_{-}<t_{+} and γ(t),γ(t+)Ω\gamma(t_{-}),\gamma(t_{+})\in\partial\Omega. We assume ϑ:[tϵ,t++ϵ]M\vartheta:[t_{-}-\epsilon,t_{+}+\epsilon]\rightarrow M^{\prime}, by extending it if necessary, and introduce the Fermi coordinates in a neighborhood of ϑ\vartheta. We will follow the construction of the coordinates in [13]. See also [20], [39].

Assume γ(t0)=x0Ω\gamma(t_{0})=x_{0}\in\Omega where t0(t,t+)t_{0}\in(t_{-},t_{+}). Choose α2,α3Tx0Ω\alpha_{2},\alpha_{3}\in T_{x_{0}}\Omega^{\prime} such that {γ˙(t0),α2,α3}\{\dot{\gamma}(t_{0}),\alpha_{2},\alpha_{3}\} forms an orthonormal basis for Tx0ΩT_{x_{0}}\Omega^{\prime}. Let ss denote the arc length along γ\gamma from x0x_{0}. We note here that ss can be positive or negative, and (t0+s,γ(t0+s))=ϑ(t0+s)(t_{0}+s,\gamma(t_{0}+s))=\vartheta(t_{0}+s). For k=2,3k=2,3, let ek(s)Tγ(t0+s)Ωe_{k}(s)\in T_{\gamma(t_{0}+s)}\Omega^{\prime} be the parallel transport of the vector αk\alpha_{k} along γ\gamma to the point γ(t0+s)\gamma(t_{0}+s).

Define the coordinate system (y0=t,y1=s,y2,y3)(y^{0}=t,y^{1}=s,y^{2},y^{3}) through 1:1+3×Ω\mathcal{F}_{1}:\mathbb{R}^{1+3}\rightarrow\mathbb{R}\times\Omega^{\prime}:

1(y0=t,y1=s,y2,y3)=(t,expγ(t0+s)(y2e2(s)+y3e3(s))).\mathcal{F}_{1}(y^{0}=t,y^{1}=s,y^{2},y^{3})=(t,\exp_{\gamma(t_{0}+s)}\left(y^{2}e_{2}(s)+y^{3}e_{3}(s)\right)).

Then the null-geodesic ϑ\vartheta can be expressed as

ϑ={ts=t0,y2=y3=0}.\vartheta=\{t-s=t_{0},y^{2}=y^{3}=0\}.

Notice that (y1=s,y2,y3)(y^{1}=s,y^{2},y^{3}) gives a coordinate system on Ω\Omega^{\prime} in a neighborhood of γ\gamma such that

g|γ=j=13(dyj)2,andg,jkyi|γ=0,1i,j,k3.g_{\bullet}|_{\gamma}=\sum_{j=1}^{3}(\mathrm{d}y^{j})^{2},\quad\text{and}\quad\frac{\partial g_{\bullet,jk}}{\partial y^{i}}\Big{|}_{\gamma}=0,~{}1\leq i,j,k\leq 3.

Under this coordinate system, the Euclidean metric gE:=ds2g_{E}:=\mathrm{d}s^{2} in a neighborhood of γ\gamma takes the form

gE=c2g=1i,j3c2g,ijdyidyj,g_{E}=c_{\bullet}^{2}g_{\bullet}=\sum_{1\leq i,j\leq 3}c^{2}_{\bullet}g_{\bullet,ij}\mathrm{d}y^{i}\mathrm{d}y^{j},

and the Christoffel symbols for the Euclidean metric are given by

(5) Γαβ1=c1csg,αβ,Γ1αβ=δβαc1cs,Γ1α1=c1cyα,Γ11α=c1gαβcyβ,Γ111=c1cs,\begin{split}&\Gamma_{\alpha\beta}^{1}=-c_{\bullet}^{-1}\frac{\partial c_{\bullet}}{\partial s}g_{\bullet,\alpha\beta},\quad\Gamma_{1\alpha}^{\beta}=\delta^{\alpha}_{\beta}c_{\bullet}^{-1}\frac{\partial c_{\bullet}}{\partial s},\quad\Gamma_{1\alpha}^{1}=c_{\bullet}^{-1}\frac{\partial c_{\bullet}}{\partial y^{\alpha}},\\ &\Gamma_{11}^{\alpha}=-c_{\bullet}^{-1}g_{\bullet}^{\alpha\beta}\frac{\partial c_{\bullet}}{\partial y^{\beta}},\quad\Gamma_{11}^{1}=c_{\bullet}^{-1}\frac{\partial c_{\bullet}}{\partial s},\end{split}

where α,β{2,3}\alpha,\beta\in\{2,3\}.

Introduce the map (z0,z):=(z0,z1,z2,z3)=2(y0=t,y1=s,y2,y3)(z^{0},z^{\prime}):=(z^{0},z^{1},z^{2},z^{3})=\mathcal{F}_{2}(y^{0}=t,y^{1}=s,y^{2},y^{3}), where

z0=τ=12(tt0+s),z1=r=12(t+t0+s),zj=yj,j=2,3.z^{0}=\tau=\frac{1}{\sqrt{2}}(t-t_{0}+s),\quad z^{1}=r=\frac{1}{\sqrt{2}}(-t+t_{0}+s),\quad z^{j}=y^{j},\,j=2,3.

The Fermi coordinates (z0=τ,z1=r,z2,z3)(z^{0}=\tau,z^{1}=r,z^{2},z^{3}) near ϑ\vartheta is given by :1+3×Ω\mathcal{F}:\mathbb{R}^{1+3}\rightarrow\mathbb{R}\times\Omega^{\prime}, where =121\mathcal{F}=\mathcal{F}_{1}\circ\mathcal{F}_{2}^{-1}. Denote τ±=2(t±t0)\tau_{\pm}=\sqrt{2}(t_{\pm}-t_{0}). Then on ϑ\vartheta we have

g¯|ϑ=2dτdr+j=23(dzj)2andg¯,jkzi|ϑ=0,0i,j,k3.\overline{g}_{\bullet}|_{\vartheta}=2\mathrm{d}\tau\mathrm{d}r+\sum_{j=2}^{3}(\mathrm{d}z^{j})^{2}\quad\text{and}\quad\frac{\partial\overline{g}_{\bullet,jk}}{\partial z^{i}}\Big{|}_{\vartheta}=0,~{}0\leq i,j,k\leq 3.

2.2. Gaussian beams

With ϱ\varrho as a large parameter, the Gaussian beam solutions have the asymptotic form as

uϱ=𝔞eiϱφ,u_{\varrho}=\mathfrak{a}e^{\mathrm{i}\varrho\varphi},

with

φ=k=0Nφk(τ,z),𝔞(τ,z)=χ(|z|δ)k=0N+1ϱk𝐚k(τ,z),𝐚k(τ,z)=j=0N𝐚k,j(τ,z),\varphi=\sum_{k=0}^{N}\varphi_{k}(\tau,z^{\prime}),\quad\mathfrak{a}(\tau,z^{\prime})=\chi\left(\frac{|z^{\prime}|}{\delta}\right)\sum_{k=0}^{N+1}\varrho^{-k}\mathbf{a}_{k}(\tau,z^{\prime}),\quad\mathbf{a}_{k}(\tau,z^{\prime})=\sum_{j=0}^{N}\mathbf{a}_{k,j}(\tau,z^{\prime}),

which is compactly supported in a neighborhood of ϑ\vartheta,

𝒱={(τ,z)M|τ[τϵ2,τ++ϵ2],|z|<δ}.\mathcal{V}=\{(\tau,z^{\prime})\in M^{\prime}|\tau\in\left[\tau_{-}-\frac{\epsilon}{\sqrt{2}},\tau_{+}+\frac{\epsilon}{\sqrt{2}}\right],\,|z^{\prime}|<\delta\}.

Here δ>0\delta>0 is a small parameter. For each jj, φj\varphi_{j} and 𝐚k,j\mathbf{a}_{k,j} are complex valued homogeneous polynomials of degree jj with respect to the variables ziz^{i}, i=1,2,3i=1,2,3. The smooth function χ:[0,+)\chi:\mathbb{R}\rightarrow[0,+\infty) satisfies χ(t)=1\chi(t)=1 for |t|14|t|\leq\frac{1}{4} and χ(t)=0\chi(t)=0 for |t|12|t|\geq\frac{1}{2}. We refer to [15] for more details. Under the coordinates (y1,y2,y3)(y^{1},y^{2},y^{3}) on Ω\Omega^{\prime}, we denote the (co)vector 𝐚k=(ak1,ak2,ak3)\mathbf{a}_{k}=(a_{k1},a_{k2},a_{k3}). The parameter δ\delta is small enough such that 𝔞|t=0=𝔞|t=T=0\mathfrak{a}|_{t=0}=\mathfrak{a}|_{t=T}=0.

In the following calculations, we work under the coordinate system (y1,y2,y3)(y^{1},y^{2},y^{3}) on the Riemannian manifold (Ω,gE)(\Omega^{\prime},g_{E}). That is, all the inner products and covariant derivatives are with respect to the Euclidean metric gEg_{E}. For simplicity of notations, we denote g¯=g¯\overline{g}=\overline{g}_{\bullet}, g=gg=g_{\bullet} and c=cc=c_{\bullet}, =S,P\bullet=S,P. In a neighborhood of ϑ\vartheta, we can write (cf. [41])

(6) ρt2uϱSL(uϱ)=eiϱφ(ϱ21+k=0Nϱ1kk+2+𝒪(ϱN)),\rho\partial_{t}^{2}u_{\varrho}-\nabla\cdot S^{L}(u_{\varrho})=e^{\mathrm{i}\varrho\varphi}\left(\varrho^{2}\mathcal{I}_{1}+\sum_{k=0}^{N}\varrho^{1-k}\mathcal{I}_{k+2}+\mathcal{O}(\varrho^{-N})\right),

where

1=ρ(tφ)2𝐚0+(λ+μ)𝐚0,φφ+μ|φ|2𝐚0,\mathcal{I}_{1}=-\rho(\partial_{t}\varphi)^{2}\mathbf{a}_{0}+(\lambda+\mu)\langle\mathbf{a}_{0},\nabla\varphi\rangle\nabla\varphi+\mu|\nabla\varphi|^{2}\mathbf{a}_{0},

and

(2)i=ρ(t2φ)a0i+2ρtφta0i+iρ(tφ)2a1ic2(i(λa0kφ;gk)+λa0kφ;gkmgijgjm+m(μa0iφ;j+μa0jφ;i)gjm)c2(λa0k;gkφ;i+μ(a0i;j+aj;i)φ;mgjm+iλa1kφ;gkφ;i+iμ(a1iφ;jφ;mgjm+φ;ia1jφ;mgjm))+Γimngmjc2(λa0kφ;gkgnj+μa0nφ;j+μa0jφ;n)+Γjmngmjc2(λa0kφ;gkgni+μa0nφ;i+μa0iφ;n).\begin{split}(\mathcal{I}_{2})_{i}=&\rho(\partial^{2}_{t}\varphi)a_{0i}+2\rho\partial_{t}\varphi\partial_{t}a_{0i}+\mathrm{i}\rho(\partial_{t}\varphi)^{2}a_{1i}\\ &-c^{-2}\left(\partial_{i}(\lambda a_{0k}\varphi_{;\ell}g^{k\ell})+\lambda a_{0k}\varphi_{;\ell}g^{k\ell}\partial_{m}g_{ij}g^{jm}+\partial_{m}(\mu a_{0i}\varphi_{;j}+\mu a_{0j}\varphi_{;i})g^{jm}\right)\\ &-c^{-2}\left(\lambda a_{0k;\ell}g^{k\ell}\varphi_{;i}+\mu(a_{0i;j}+a_{j;i})\varphi_{;m}g^{jm}+\mathrm{i}\lambda a_{1k}\varphi_{;\ell}g^{k\ell}\varphi_{;i}+\mathrm{i}\mu(a_{1i}\varphi_{;j}\varphi_{;m}g^{jm}+\varphi_{;i}a_{1j}\varphi_{;m}g^{jm})\right)\\ &+\Gamma^{n}_{im}g^{mj}c^{-2}(\lambda a_{0k}\varphi_{;\ell}g^{k\ell}g_{nj}+\mu a_{0n}\varphi_{;j}+\mu a_{0j}\varphi_{;n})\\ &+\Gamma^{n}_{jm}g^{mj}c^{-2}(\lambda a_{0k}\varphi_{;\ell}g^{k\ell}g_{ni}+\mu a_{0n}\varphi_{;i}+\mu a_{0i}\varphi_{;n}).\end{split}

We will need to construct the phase function φ\varphi and the amplitude 𝔞\mathfrak{a} such that

(7) ΘzΘk=0 on ϑ\frac{\partial^{\Theta}}{\partial z^{\Theta}}\mathcal{I}_{k}=0\text{ on }\vartheta

for Θ=(0,Θ1,Θ2,Θ3)\Theta=(0,\Theta_{1},\Theta_{2},\Theta_{3}) with |Θ|N|\Theta|\leq N and k=1,2,,N+2k=1,2,\cdots,N+2.

2.3. S-waves

For the construction of S-waves, we note that g=gSg=g_{S}. In order for 1\mathcal{I}_{1} to vanish up to order NN on ϑ\vartheta (cf. (7) with k=1k=1), we take φ\varphi and 𝐚0\mathbf{a}_{0} such that

(8) ΘyΘ(𝒮φ)=0 on ϑ,\frac{\partial^{\Theta}}{\partial y^{\Theta}}(\mathcal{S}\varphi)=0\text{ on }\vartheta,

where 𝒮φ=μ|φ|2ρ(tφ)2\mathcal{S}\varphi=\mu|\nabla\varphi|^{2}-\rho(\partial_{t}\varphi)^{2}, and

(9) ΘyΘ𝐚0,φ=0 on ϑ,\frac{\partial^{\Theta}}{\partial y^{\Theta}}\langle\mathbf{a}_{0},\nabla\varphi\rangle=0\text{ on }\vartheta,

for any |Θ|N|\Theta|\leq N. Taking Θ=0\Theta=0 in (9), we conclude that a01|ϑ=0a_{01}|_{\vartheta}=0.

For the construction of the phase function φ\varphi, we can take

φ=k=0Nφk(τ,z)\varphi=\sum_{k=0}^{N}\varphi_{k}(\tau,z^{\prime})

such that

φ0(τ,r,z′′)=0,φ1(τ,r,z′′)=r,φ2(τ,z)=i,j=13Hij(τ)zizj,\varphi_{0}(\tau,r,z^{\prime\prime})=0,\quad\varphi_{1}(\tau,r,z^{\prime\prime})=r,\quad\varphi_{2}(\tau,z^{\prime})=\sum_{i,j=1}^{3}H_{ij}(\tau)z^{i}z^{j},

where HH is a symmetric matrix solving the Riccati equation

(10) ddτH+HCH+D=0,τ(τϵ2,τ++ϵ2),H(τ0)=H0, with H0>0,\frac{\mathrm{d}}{\mathrm{d}\tau}H+HCH+D=0,\tau\in\left(\tau_{-}-\frac{\epsilon}{2},\tau_{+}+\frac{\epsilon}{2}\right),\quad H(\tau_{0})=H_{0},\text{ with }\Im H_{0}>0,

where CC, DD are matrices with C11=0C_{11}=0, Cii=2C_{ii}=2, i=2,3i=2,3, Cij=0C_{ij}=0, iji\neq j, Dij=14(ij2g¯11)D_{ij}=\frac{1}{4}(\partial_{ij}^{2}\overline{g}^{11}), H0H_{0} is any given symmetric matrix with H0>0\Im H_{0}>0. Here (g¯ij)(\overline{g}^{ij}) is the inverse of the Lorentzian metric (g¯ij)(\overline{g}_{ij}) under the Fermi coordinates (z0,z1,z2,z3)(z^{0},z^{1},z^{2},z^{3}), i.e., g¯ij=g¯(zi,zj)\overline{g}_{ij}=\overline{g}(\frac{\partial}{\partial z^{i}},\frac{\partial}{\partial z^{j}}). Then the equation (10) has a unique solution with (H(τ))>0\Im(H(\tau))>0 for all τ\tau.

For solving the Ricatti equation (10), we take

H(τ)=Z(τ)Y(τ)1,H(\tau)=Z(\tau)Y(\tau)^{-1},

where Z(τ)Z(\tau) and Y(τ)Y(\tau) are solutions to the first order linear ODEs

ddτY=CZ,Y(τ0)=Y0,ddτZ=DY,Z(τ0)=H0Y0,\begin{split}\frac{\mathrm{d}}{\mathrm{d}\tau}Y=CZ,\quad Y(\tau_{0})=Y_{0},\\ \frac{\mathrm{d}}{\mathrm{d}\tau}Z=-DY,\quad Z(\tau_{0})=H_{0}Y_{0},\end{split}

where Y0Y_{0} is any non-degenerate matrix. Here Y(τ)Y(\tau) is non-degnerate for all τ\tau. Moreover, the following identity holds

det(H(τ))|det(Y(τ))|2=c0,\det(\Im H(\tau))|\det(Y(\tau))|^{2}=c_{0},

where c0c_{0} is a constant independent of τ\tau. For more discussions on the Ricatti equation, we refer to [18]. The higher order terms φk\varphi_{k}, k=3,,N,k=3,\cdots,N, can be constructed so that (8) is satisfied (cf. [13, 15]).

Next consider the equation (2)i=0(\mathcal{I}_{2})_{i}=0 for i=2,3i=2,3. We have, for α=2,3\alpha=2,3,

(ρt2φcS2μsφcS2μβ=232φyβyβ)a0α2(ρta0α+cS2μsa0αs)12cS2sμa0α+12μcS3cSsa0α+12ia1α(ρcS2μ)cS2(λ+μ)(12a01yα+β=23a0β2φyαyβ)=0.\begin{split}\left(\rho\partial^{2}_{t}\varphi-c_{S}^{-2}\mu\partial_{s}\varphi-c_{S}^{-2}\mu\sum_{\beta=2}^{3}\frac{\partial^{2}\varphi}{\partial y^{\beta}\partial y^{\beta}}\right)a_{0\alpha}\\ -\sqrt{2}\left(\rho\partial_{t}a_{0\alpha}+c_{S}^{-2}\mu\frac{\partial_{s}a_{0\alpha}}{\partial s}\right)&\\ -\frac{1}{\sqrt{2}}c_{S}^{-2}\partial_{s}\mu a_{0\alpha}+\frac{1}{\sqrt{2}}\mu c_{S}^{-3}\frac{\partial c_{S}}{\partial s}a_{0\alpha}+\frac{1}{2}\mathrm{i}a_{1\alpha}(\rho-c_{S}^{-2}\mu)&\\ -c_{S}^{-2}(\lambda+\mu)\left(\frac{1}{\sqrt{2}}\frac{\partial a_{01}}{\partial y^{\alpha}}+\sum_{\beta=2}^{3}a_{0\beta}\frac{\partial^{2}\varphi}{\partial y^{\alpha}\partial y^{\beta}}\right)&=0.\end{split}

Notice that the above equation can be rewritten as

(11) 𝒯a0α+12ia1α(ρcS2μ)cS2(λ+μ)(12a01yα+β=23a0β2φyαyβ)=0,\mathcal{T}a_{0\alpha}+\frac{1}{2}\mathrm{i}a_{1\alpha}(\rho-c_{S}^{-2}\mu)-c_{S}^{-2}(\lambda+\mu)\left(\frac{1}{\sqrt{2}}\frac{\partial a_{01}}{\partial y^{\alpha}}+\sum_{\beta=2}^{3}a_{0\beta}\frac{\partial^{2}\varphi}{\partial y^{\alpha}\partial y^{\beta}}\right)=0,

where

𝒯=2τ+[1μμτcS1cSτ+1det(YS)det(YS)τ].\mathcal{T}=2\frac{\partial}{\partial\tau}+\left[\frac{1}{\mu}\frac{\partial\mu}{\partial\tau}-c_{S}^{-1}\frac{\partial c_{S}}{\partial\tau}+\frac{1}{\det(Y_{S})}\frac{\partial\det(Y_{S})}{\partial\tau}\right].

Consider the equation (9) with |Θ|=1|\Theta|=1, we have

(12) 12a01yk+β=23a0β2φykyβ=0,\frac{1}{\sqrt{2}}\frac{\partial a_{01}}{\partial y^{k}}+\sum_{\beta=2}^{3}a_{0\beta}\frac{\partial^{2}\varphi}{\partial y^{k}\partial y^{\beta}}=0,

for k=1,2,3k=1,2,3. Insert (12) (with k=2,3k=2,3) into (11), together with the fact ρ=cS2μ\rho=c_{S}^{-2}\mu, we have the following transport equation for a0αa_{0\alpha}, α=2,3\alpha=2,3,

𝒯a0α=0.\mathcal{T}a_{0\alpha}=0.

By solving the above transport equation, one can determine a0α|ϑa_{0\alpha}|_{\vartheta} for α=2,3\alpha=2,3. In particular we can take

a0α(τ)=cαdet(YS(τ))1/2cS(τ,0)1/2ρ(τ,0)1/2,a_{0\alpha}(\tau)=c_{\alpha}\det(Y_{S}(\tau))^{-1/2}c_{S}(\tau,0)^{-1/2}\rho(\tau,0)^{-1/2},

where the constant cαc_{\alpha} depends on the initial value of a0αa_{0\alpha}. Using the equation (12) again, we can now determine Θa01yΘ|ϑ\frac{\partial^{\Theta}a_{01}}{\partial y^{\Theta}}\Big{|}_{\vartheta} for |Θ|=1|\Theta|=1.

Noting that we have determined 𝐚0\mathbf{a}_{0} and a01\partial a_{01} on ϑ\vartheta and using the equation (2)i=1=0(\mathcal{I}_{2})_{i=1}=0, we end up with

iρ(tφ)2a11icS2(λa1kφ;gkφ;1+μa11φ;jφ;mgjm+φ;1a1jφ;mgjm)+2ρtφta01cS2(λ1a0kφ;gk+(μma01φ;j+μma0jφ;1)gjm)cS2(λa0kgkφ;1+μ(ja01+1a0j)φ;mgjm)=F(𝐚0),\begin{split}\mathrm{i}\rho(\partial_{t}\varphi)^{2}a_{11}-\mathrm{i}c_{S}^{-2}(\lambda a_{1k}\varphi_{;\ell}g^{k\ell}\varphi_{;1}+\mu a_{11}\varphi_{;j}\varphi_{;m}g^{jm}+\varphi_{;1}a_{1j}\varphi_{;m}g^{jm})&\\ +2\rho\partial_{t}\varphi\partial_{t}a_{01}-c_{S}^{-2}(\lambda\partial_{1}a_{0k}\varphi_{;\ell}g^{k\ell}+(\mu\partial_{m}a_{01}\varphi_{;j}+\mu\partial_{m}a_{0j}\varphi_{;1})g^{jm})&\\ -c_{S}^{-2}(\lambda\partial_{\ell}a_{0k}g^{k\ell}\varphi_{;1}+\mu(\partial_{j}a_{01}+\partial_{1}a_{0j})\varphi_{;m}g^{jm})&=F(\mathbf{a}_{0}),\end{split}

which further simplifies to

(13) i(ρcS2(λ+2μ))a112cS2(λ+μ)(2a02+3a03)=F(𝐚0,a01).\mathrm{i}(\rho-c_{S}^{-2}(\lambda+2\mu))a_{11}-\sqrt{2}c_{S}^{-2}(\lambda+\mu)(\partial_{2}a_{02}+\partial_{3}a_{03})=F(\mathbf{a}_{0},\partial a_{01}).

Notice that ρcS2(λ+2μ)0\rho-c_{S}^{-2}(\lambda+2\mu)\neq 0. We will also use equation (9) with |Θ|=2|\Theta|=2, which can be written as

(14) 122a01ymyk+a0jyk2φymyj+a0iym2φykyi=F(𝐚0).\frac{1}{\sqrt{2}}\frac{\partial^{2}a_{01}}{\partial y^{m}\partial y^{k}}+\frac{\partial a_{0j}}{\partial y^{k}}\frac{\partial^{2}\varphi}{\partial y^{m}\partial y^{j}}+\frac{\partial a_{0i}}{\partial y^{m}}\frac{\partial^{2}\varphi}{\partial y^{k}\partial y^{i}}=F(\mathbf{a}_{0}).

Next use the equation

(ΘyΘ2)α=0\left(\frac{\partial^{\Theta}}{\partial y^{\Theta}}\mathcal{I}_{2}\right)_{\alpha}=0

for |Θ|=1|\Theta|=1 and α=2,3\alpha=2,3 and substitute a11a_{11} and 2a01\partial^{2}a_{01} using (13) and (14), we end up with a transport equation on ϑ\vartheta

(15) (τ+A)(a02y1a02y2a02y3a03y1a03y2a03y3)=F(𝐚0,a01).\left(\frac{\partial}{\partial\tau}+A\right)\left(\begin{array}[]{c}\frac{\partial a_{02}}{\partial y^{1}}\\ \frac{\partial a_{02}}{\partial y^{2}}\\ \frac{\partial a_{02}}{\partial y^{3}}\\ \frac{\partial a_{03}}{\partial y^{1}}\\ \frac{\partial a_{03}}{\partial y^{2}}\\ \frac{\partial a_{03}}{\partial y^{3}}\end{array}\right)=F(\mathbf{a}_{0},\partial a_{01}).

Here AA is a 6×66\times 6 matrix depending on λ,μ,ρ\lambda,\mu,\rho and φ\varphi. Solving the above transport equation, one can determine Θa0αyΘ|ϑ\frac{\partial^{\Theta}a_{0\alpha}}{\partial y^{\Theta}}|_{\vartheta} for any |Θ|=1|\Theta|=1 and α=2,3\alpha=2,3. Using (13) and (14) again, we can determine 2a01|ϑ\partial^{2}a_{01}|_{\vartheta} and a11|ϑa_{11}|_{\vartheta}.

Now we have already determined a01,a01,2a01,a0α,a0α,a11a_{01},\partial a_{01},\partial^{2}a_{01},a_{0\alpha},\partial a_{0\alpha},a_{11} on ϑ\vartheta, α=2,3\alpha=2,3. Then we can use the equations

(3)i=2,3=0,(2)i=1=0,31=0,(22)i=2,3=0(\mathcal{I}_{3})_{i=2,3}=0,\quad(\partial\mathcal{I}_{2})_{i=1}=0,\quad\partial^{3}\mathcal{I}_{1}=0,\quad(\partial^{2}\mathcal{I}_{2})_{i=2,3}=0

to determine 3a01,2a0α,a11,a1α\partial^{3}a_{01},\partial^{2}a_{0\alpha},\partial a_{11},a_{1\alpha} for α=2,3\alpha=2,3.

Continuing with the process, we can have (7) satisfied, and finish our construction of Gaussian beam solutions for S-waves.

2.4. P-waves

For the construction of P-waves, we take φ\varphi such that

ΘyΘ(𝒮φ)=0 on ϑ,\frac{\partial^{\Theta}}{\partial y^{\Theta}}(\mathcal{S}\varphi)=0\text{ on }\vartheta,

for any |Θ|N|\Theta|\leq N, where 𝒮φ=(λ+2μ)|φ|2ρ(tφ)2\mathcal{S}\varphi=(\lambda+2\mu)|\nabla\varphi|^{2}-\rho(\partial_{t}\varphi)^{2}. The phase function φ\varphi can be constructed similarly as for the S-waves. Now we denote g=gSg=g_{S}.

Take

𝐚0=APφ.\mathbf{a}_{0}=A_{P}\nabla\varphi.

Then the equation (7) is satisfied for k=1k=1 since 1=(𝒮φ)APφ\mathcal{I}_{1}=(\mathcal{S}\varphi)A_{P}\nabla\varphi.

First consider the equation (2)i=0(\mathcal{I}_{2})_{i}=0 for i=1i=1. We obtain

12(ρt2φcP2(λ+2μ)s2φcP2(λ+2μ)α=232φyαyα)AP(ρtAP+cP2(λ+2μ)sAP)+12(λ+2μ)cP3cPsAP12cP2s(λ+2μ)AP+i12b1[ρcP2(λ+2μ)]2(cP2(λ+2μ)2φs2+ρ2φst)AP=0.\begin{split}\frac{1}{\sqrt{2}}\left(\rho\partial^{2}_{t}\varphi-c_{P}^{-2}(\lambda+2\mu)\partial_{s}^{2}\varphi-c_{P}^{-2}(\lambda+2\mu)\sum_{\alpha=2}^{3}\frac{\partial^{2}\varphi}{\partial y^{\alpha}\partial y^{\alpha}}\right)A_{P}&\\ -\left(\rho\partial_{t}A_{P}+c_{P}^{-2}(\lambda+2\mu)\partial_{s}A_{P}\right)&\\ +\frac{1}{2}(\lambda+2\mu)c_{P}^{-3}\frac{\partial c_{P}}{\partial s}A_{P}-\frac{1}{2}c_{P}^{-2}\partial_{s}(\lambda+2\mu)A_{P}+\mathrm{i}\frac{1}{2}b_{1}[\rho-c_{P}^{-2}(\lambda+2\mu)]&\\ -\sqrt{2}\left(c_{P}^{-2}(\lambda+2\mu)\frac{\partial^{2}\varphi}{\partial s^{2}}+\rho\frac{\partial^{2}\varphi}{\partial s\partial t}\right)A_{P}&=0.\end{split}

We have proved in [41] that

cP2(λ+2μ)2φs2+ρ2φst=2ρτ(sφ)=0,on ϑ,c_{P}^{-2}(\lambda+2\mu)\frac{\partial^{2}\varphi}{\partial s^{2}}+\rho\frac{\partial^{2}\varphi}{\partial s\partial t}=\sqrt{2}\rho\frac{\partial}{\partial\tau}(\partial_{s}\varphi)=0,\quad\text{on }\vartheta,

since sφ=12\partial_{s}\varphi=\frac{1}{\sqrt{2}} is constant along ϑ\vartheta. Using the fact that ρcP2(λ+2μ)=0\rho-c_{P}^{-2}(\lambda+2\mu)=0 , the above equation can be rewritten as a transport equation

𝒯AP=0\mathcal{T}A_{P}=0

where

𝒯=2τ+[1λ+2μ(λ+2μ)τcP1cPτ+1det(YP)det(YP)τ].\mathcal{T}=2\frac{\partial}{\partial\tau}+\left[\frac{1}{\lambda+2\mu}\frac{\partial(\lambda+2\mu)}{\partial\tau}-c_{P}^{-1}\frac{\partial c_{P}}{\partial\tau}+\frac{1}{\det(Y_{P})}\frac{\partial\det(Y_{P})}{\partial\tau}\right].

Then AP|ϑA_{P}|_{\vartheta} can be determined by solving this transport equation. In particular, we can take

AP(τ)=cdet(YP(τ))1/2cP(τ,0)1/2ρ(τ,0)1/2,A_{P}(\tau)=c\det(Y_{P}(\tau))^{-1/2}c_{P}(\tau,0)^{-1/2}\rho(\tau,0)^{-1/2},

where the constant cc depends on the initial value of APA_{P}.

Using the equation (2)i=0(\mathcal{I}_{2})_{i}=0 with i=2,3i=2,3, we end up with

(16) i(ρcP2μ)a1αcP2(λ+μ)APyα=F(AP),\mathrm{i}(\rho-c_{P}^{-2}\mu)a_{1\alpha}-c_{P}^{-2}(\lambda+\mu)\frac{\partial A_{P}}{\partial y^{\alpha}}=F(A_{P}),

for α=2,3\alpha=2,3. Notice that ρcP2μ0\rho-c_{P}^{-2}\mu\neq 0. Next use the equation

(ΘyΘ2)α=0\left(\frac{\partial^{\Theta}}{\partial y^{\Theta}}\mathcal{I}_{2}\right)_{\alpha}=0

for |Θ|=1|\Theta|=1 and α=1\alpha=1 and substitute a1αa_{1\alpha}, α=2,3\alpha=2,3 using (16), we end up with a transport equation

(17) (τ+A)(APy1APy2APy3)=F(AP).\left(\frac{\partial}{\partial\tau}+A\right)\left(\begin{array}[]{c}\frac{\partial A_{P}}{\partial y^{1}}\\ \frac{\partial A_{P}}{\partial y^{2}}\\ \frac{\partial A_{P}}{\partial y^{3}}\end{array}\right)=F(A_{P}).

Solving the above transport equation, one can determine ΘAPyΘ|ϑ\frac{\partial^{\Theta}A_{P}}{\partial y^{\Theta}}|_{\vartheta} for any |Θ|=1|\Theta|=1. Using (16) again, we can determine a1α|ϑa_{1\alpha}|_{\vartheta} for α=2,3\alpha=2,3.

Similar as the construction for S-waves above, we can finish the construction of the P-wave Gaussian beam solutions such that (7) is satisfied.

3. Gaussian beams with reflections

We will discuss the reflection of Gaussian beams at the boundary in this section. The reflection condition we considered here is the traction-free boundary condition, which is natural in practice. The reflection of (real) geometric optics solutions is analyzed in [37]. We only give detailed characterization for the case where the boundary is locally flat, and non-flat case will not require much more work by flattening it [37]. Assume near a fixed point x0x_{0}, Ω\partial\Omega is locally expressed as x3=0x_{3}=0 and Ω\Omega is represented as {x3<0}\{x_{3}<0\}. We are looking for uϱu_{\varrho} as a sum of two solutions uϱ=uϱ++uϱu_{\varrho}=u_{\varrho}^{+}+u_{\varrho}^{-}, where uϱ+u_{\varrho}^{+} is the incident wave and uϱu_{\varrho}^{-} is the reflected wave generated by uϱ+u_{\varrho}^{+} hitting the boundary. We remark here that the reflected wave uϱu_{\varrho}^{-} can undergo further reflections, and after multiple reflections the behavior of the waves would become very complicated, but we only need to discuss single reflection.

3.1. P- incident waves

We first consider the case when the incident wave is a P-wave. The reflected wave is a combination of P- and S- waves. Assume the incident wave

uϱ+=k=0N+1ϱk𝐚P,k+χ+eiϱφP+u^{+}_{\varrho}=\sum_{k=0}^{N+1}\varrho^{-k}\mathbf{a}_{P,k}^{+}\chi^{+}e^{\mathrm{i}\varrho\varphi_{P}^{+}}

is a Gaussian beam traveling along the null-geodesic ϑ+\vartheta^{+} as constructed as in Section 2.4, and ϑ+\vartheta^{+} intersects with the boundary at the point p(0,T)×Ωp\in(0,T)\times\partial\Omega. We seek for reflected waves as

(18) uϱ=uP,ϱ+uS,ϱ:=k=0N+1ϱk𝐚P,kχPeiϱφP+k=0N+1ϱk𝐚S,kχSeiϱφS,u^{-}_{\varrho}=u^{-}_{P,\varrho}+u^{-}_{S,\varrho}:=\sum_{k=0}^{N+1}\varrho^{-k}\mathbf{a}_{P,k}^{-}\chi^{-}_{P}e^{\mathrm{i}\varrho\varphi_{P}^{-}}+\sum_{k=0}^{N+1}\varrho^{-k}\mathbf{a}_{S,k}^{-}\chi^{-}_{S}e^{\mathrm{i}\varrho\varphi_{S}^{-}},

where uP,ϱ,uS,ϱu^{-}_{P,\varrho},u^{-}_{S,\varrho} are also Gaussian beam solutions representing P- and S- waves respectively. Here 𝐚,k±=(a,k1±,a,k2±,a,k3±)\mathbf{a}^{\pm}_{\bullet,k}=(a^{\pm}_{\bullet,k1},a^{\pm}_{\bullet,k2},a^{\pm}_{\bullet,k3}). The reflected wave uϱu^{-}_{\varrho} is generated such that uϱ=uϱ++uϱu_{\varrho}=u^{+}_{\varrho}+u^{-}_{\varrho} satisfies the Neumann boundary condition

𝒩λ,μuϱ:=νSL(x,uϱ)|×Ω=0,\mathcal{N}_{\lambda,\mu}u_{\varrho}:=\nu\cdot S^{L}(x,u_{\varrho})|_{\mathbb{R}\times\partial\Omega}=0,

up to order NN, at the point pp.

Assume φP+(p)=ξP+=(ξP,1+,ξP,2+,ξP,3+)\nabla\varphi_{P}^{+}(p)=\xi^{+}_{P}=(\xi^{+}_{P,1},\xi^{+}_{P,2},\xi^{+}_{P,3}), φP(p)=ξP=(ξP,1,ξP,2,ξP,3)\nabla\varphi_{P}^{-}(p)=\xi^{-}_{P}=(\xi^{-}_{P,1},\xi^{-}_{P,2},\xi^{-}_{P,3}), φS(p)=ξS=(ξS,1,ξS,2,ξS,3)\nabla\varphi_{S}^{-}(p)=\xi^{-}_{S}=(\xi^{-}_{S,1},\xi^{-}_{S,2},\xi^{-}_{S,3}), where |ξP+|=|ξP|=1cP(p)|\xi^{+}_{P}|=|\xi^{-}_{P}|=\frac{1}{c_{P}(p)} and |ξS|=1cS(p)|\xi^{-}_{S}|=\frac{1}{c_{S}(p)}, ξP,3+>0\xi^{+}_{P,3}>0. By Snell’s law, we have

ξP,1+=ξP,1=ξS,1,ξP,2+=ξP,2=ξS,2,ξP,3=ξP,3,ξS,3=cS2(ξP,1+)2(ξP,2+)2.\xi^{+}_{P,1}=\xi^{-}_{P,1}=\xi^{-}_{S,1},\quad\xi^{+}_{P,2}=\xi^{-}_{P,2}=\xi^{-}_{S,2},\quad\xi^{-}_{P,3}=-\xi^{-}_{P,3},\quad\xi^{-}_{S,3}=-\sqrt{c_{S}^{-2}-(\xi^{+}_{P,1})^{2}-(\xi^{+}_{P,2})^{2}}.

To simplify the notation, we denote

ξP+=(ξ1,ξ2,ξ3),ξP=(ξ1,ξ2,ξ3),ξS=(ξ1,ξ2,ξS,3).\xi^{+}_{P}=(\xi_{1},\xi_{2},\xi_{3}),\quad\xi^{-}_{P}=(\xi_{1},\xi_{2},-\xi_{3}),\quad\xi^{-}_{S}=(\xi_{1},\xi_{2},-\xi_{S,3}).

The phase functions φP\varphi^{-}_{P} and φS\varphi^{-}_{S} can be constructed as in previous section such that φP|×Ω=φS|×Ω=φP+|×Ω\varphi^{-}_{P}|_{\mathbb{R}\times\partial\Omega}=\varphi^{-}_{S}|_{\mathbb{R}\times\partial\Omega}=\varphi^{+}_{P}|_{\mathbb{R}\times\partial\Omega} at pp up to order NN. Then note that we have the following asymptotics

𝒩λ,μuϱ=eiϱφ(ϱ𝒩0+𝒩1+ϱ1𝒩2+),\mathcal{N}_{\lambda,\mu}u_{\varrho}=e^{\mathrm{i}\varrho\varphi}(\varrho\mathcal{N}_{0}+\mathcal{N}_{1}+\varrho^{-1}\mathcal{N}_{2}+\cdots),

where φ=φP+|×Ω\varphi=\varphi^{+}_{P}|_{\mathbb{R}\times\partial\Omega}. We need

(19) Θ𝒩k=0 at p,for k0,|Θ|N.\partial^{\Theta}\mathcal{N}_{k}=0\text{ at }p,\quad\text{for }k\geq 0,\,|\Theta|\leq N.

By calculation, we obtain

𝒩0=(μ3φP+0μ1φP+0μ3φP+μ2φP+λ1φP+λ2φP+(λ+2μ)3φP+)(aP,01+aP,02+aP,03+)+(μ3φP0μ1φP0μ3φPμ2φPλ1φPλ2φP(λ+2μ)3φP)(aP,01aP,02aP,03)+(μ3φS0μ1φS0μ3φSμ2φSλ1φSλ2φS(λ+2μ)3φS)(aS,01aS,02aS,03).\begin{split}\mathcal{N}_{0}=&\left(\begin{array}[]{ccc}\mu\partial_{3}\varphi_{P}^{+}&0&\mu\partial_{1}\varphi_{P}^{+}\\ 0&\mu\partial_{3}\varphi_{P}^{+}&\mu\partial_{2}\varphi_{P}^{+}\\ \lambda\partial_{1}\varphi_{P}^{+}&\lambda\partial_{2}\varphi_{P}^{+}&(\lambda+2\mu)\partial_{3}\varphi_{P}^{+}\end{array}\right)\left(\begin{array}[]{c}a_{P,01}^{+}\\ a_{P,02}^{+}\\ a_{P,03}^{+}\end{array}\right)\\ &+\left(\begin{array}[]{ccc}\mu\partial_{3}\varphi_{P}^{-}&0&\mu\partial_{1}\varphi_{P}^{-}\\ 0&\mu\partial_{3}\varphi_{P}^{-}&\mu\partial_{2}\varphi_{P}^{-}\\ \lambda\partial_{1}\varphi_{P}^{-}&\lambda\partial_{2}\varphi_{P}^{-}&(\lambda+2\mu)\partial_{3}\varphi_{P}^{-}\end{array}\right)\left(\begin{array}[]{c}a_{P,01}^{-}\\ a_{P,02}^{-}\\ a_{P,03}^{-}\end{array}\right)\\ &+\left(\begin{array}[]{ccc}\mu\partial_{3}\varphi_{S}^{-}&0&\mu\partial_{1}\varphi_{S}^{-}\\ 0&\mu\partial_{3}\varphi_{S}^{-}&\mu\partial_{2}\varphi_{S}^{-}\\ \lambda\partial_{1}\varphi_{S}^{-}&\lambda\partial_{2}\varphi_{S}^{-}&(\lambda+2\mu)\partial_{3}\varphi_{S}^{-}\end{array}\right)\left(\begin{array}[]{c}a_{S,01}^{-}\\ a_{S,02}^{-}\\ a_{S,03}^{-}\end{array}\right).\end{split}

Using the fact

𝐚P,0=APφP,𝐚P,0+=AP+φP+,\mathbf{a}_{P,0}^{-}=A_{P}^{-}\nabla\varphi_{P}^{-},\quad\mathbf{a}_{P,0}^{+}=A_{P}^{+}\nabla\varphi_{P}^{+},

we have

(20) 𝒩0=(μ3φP0μ1φP0μ3φPμ2φPλ1φPλ2φP(λ+2μ)3φP)(1φP2φP3φP)AP+(μ3φS0μ1φS0μ3φSμ2φSλ1φSλ2φS(λ+2μ)3φS)(aS,01aS,02aS,03)+(μ3φP+0μ1φP+0μ3φP+μ2φP+λ1φP+λ2φP+(λ+2μ)3φP+)(1φP+2φP+3φP+)AP+.\begin{split}\mathcal{N}_{0}=&\left(\begin{array}[]{ccc}\mu\partial_{3}\varphi_{P}^{-}&0&\mu\partial_{1}\varphi_{P}^{-}\\ 0&\mu\partial_{3}\varphi_{P}^{-}&\mu\partial_{2}\varphi_{P}^{-}\\ \lambda\partial_{1}\varphi_{P}^{-}&\lambda\partial_{2}\varphi_{P}^{-}&(\lambda+2\mu)\partial_{3}\varphi_{P}^{-}\end{array}\right)\left(\begin{array}[]{c}\partial_{1}\varphi_{P}^{-}\\ \partial_{2}\varphi_{P}^{-}\\ \partial_{3}\varphi_{P}^{-}\end{array}\right)A_{P}^{-}\\ &+\left(\begin{array}[]{ccc}\mu\partial_{3}\varphi_{S}^{-}&0&\mu\partial_{1}\varphi_{S}^{-}\\ 0&\mu\partial_{3}\varphi_{S}^{-}&\mu\partial_{2}\varphi_{S}^{-}\\ \lambda\partial_{1}\varphi_{S}^{-}&\lambda\partial_{2}\varphi_{S}^{-}&(\lambda+2\mu)\partial_{3}\varphi_{S}^{-}\end{array}\right)\left(\begin{array}[]{c}a_{S,01}^{-}\\ a_{S,02}^{-}\\ a_{S,03}^{-}\end{array}\right)\\ &+\left(\begin{array}[]{ccc}\mu\partial_{3}\varphi_{P}^{+}&0&\mu\partial_{1}\varphi_{P}^{+}\\ 0&\mu\partial_{3}\varphi_{P}^{+}&\mu\partial_{2}\varphi_{P}^{+}\\ \lambda\partial_{1}\varphi_{P}^{+}&\lambda\partial_{2}\varphi_{P}^{+}&(\lambda+2\mu)\partial_{3}\varphi_{P}^{+}\end{array}\right)\left(\begin{array}[]{c}\partial_{1}\varphi_{P}^{+}\\ \partial_{2}\varphi_{P}^{+}\\ \partial_{3}\varphi_{P}^{+}\end{array}\right)A_{P}^{+}.\end{split}

Considering also the identity

(21) 𝐚S,0,φS=0,\langle\mathbf{a}_{S,0}^{-},\nabla\varphi_{S}^{-}\rangle=0,

we have the following equations at point pp:

(μξ30μξ10μξ3μξ2λξ1λξ2(λ+2μ)ξ3)(ξ1ξ2ξ3)AP(p)+(μξS,30μξ10μξS,3μξ2λξ1λξ2(λ+2μ)ξS,3)(aS,01(p)aS,02(p)aS,03(p))=(μξ30μξ10μξ3μξ2λξ1λξ2(λ+2μ)ξ3)(ξ1ξ2ξ3)AP+(p).\begin{split}\left(\begin{array}[]{ccc}-\mu\xi_{3}&0&\mu\xi_{1}\\ 0&-\mu\xi_{3}&\mu\xi_{2}\\ \lambda\xi_{1}&\lambda\xi_{2}&-(\lambda+2\mu)\xi_{3}\end{array}\right)\left(\begin{array}[]{c}\xi_{1}\\ \xi_{2}\\ -\xi_{3}\end{array}\right)A_{P}^{-}(p)\\ +\left(\begin{array}[]{ccc}-\mu\xi_{S,3}&0&\mu\xi_{1}\\ 0&-\mu\xi_{S,3}&\mu\xi_{2}\\ \lambda\xi_{1}&\lambda\xi_{2}&-(\lambda+2\mu)\xi_{S,3}\end{array}\right)\left(\begin{array}[]{c}a_{S,01}^{-}(p)\\ a_{S,02}^{-}(p)\\ a_{S,03}^{-}(p)\end{array}\right)\\ =-\left(\begin{array}[]{ccc}\mu\xi_{3}&0&\mu\xi_{1}\\ 0&\mu\xi_{3}&\mu\xi_{2}\\ \lambda\xi_{1}&\lambda\xi_{2}&(\lambda+2\mu)\xi_{3}\end{array}\right)\left(\begin{array}[]{c}\xi_{1}\\ \xi_{2}\\ \xi_{3}\end{array}\right)A_{P}^{+}(p).\end{split}

and

(ξ1,ξ2,ξS,3)(aS,01(p)aS,02(p)aS,03(p))=0.(\xi_{1},\xi_{2},-\xi_{S,3})\left(\begin{array}[]{c}a_{S,01}^{-}(p)\\ a_{S,02}^{-}(p)\\ a_{S,03}^{-}(p)\end{array}\right)=0.

The equations above can be formulated into the following linear system for (AP,aS,01,aS,02,aS,03)(A_{P}^{-},a_{S,01}^{-},a_{S,02}^{-},a_{S,03}^{-}) at pp:

(22) MP(ξ)(AP(p)aS,01(p)aS,02(p)aS,03(p)):=(2μξ1ξ3μξS,30μξ12μξ2ξ30μξS,3μξ2ρ2μ(ξ12+ξ22)λξ1λξ2(λ+2μ)ξS,30ξ1ξ2ξS,3)(AP(p)aS,01(p)aS,02(p)aS,03(p))=(2μξ1ξ3AP+(p)2μξ2ξ3AP+(p)ρ2μ(ξ12+ξ22)AP+(p)0).\begin{split}M_{P}(\xi)\left(\begin{array}[]{c}A_{P}^{-}(p)\\ a_{S,01}^{-}(p)\\ a_{S,02}^{-}(p)\\ a_{S,03}^{-}(p)\end{array}\right):=&\left(\begin{array}[]{cccc}-2\mu\xi_{1}\xi_{3}&-\mu\xi_{S,3}&0&\mu\xi_{1}\\ -2\mu\xi_{2}\xi_{3}&0&-\mu\xi_{S,3}&\mu\xi_{2}\\ \rho-2\mu(\xi_{1}^{2}+\xi_{2}^{2})&\lambda\xi_{1}&\lambda\xi_{2}&-(\lambda+2\mu)\xi_{S,3}\\ 0&\xi_{1}&\xi_{2}&-\xi_{S,3}\end{array}\right)\left(\begin{array}[]{c}A_{P}^{-}(p)\\ a_{S,01}^{-}(p)\\ a_{S,02}^{-}(p)\\ a_{S,03}^{-}(p)\end{array}\right)\\ =&-\left(\begin{array}[]{c}-2\mu\xi_{1}\xi_{3}A_{P}^{+}(p)\\ -2\mu\xi_{2}\xi_{3}A_{P}^{+}(p)\\ \rho-2\mu(\xi_{1}^{2}+\xi_{2}^{2})A_{P}^{+}(p)\\ 0\end{array}\right).\end{split}
Lemma 1.

The matrix MP(ξ)M_{P}(\xi) is invertible.

Proof.

To see that the matrix MP(ξ)M_{P}(\xi) is invertible, without loss of generality, we assume ξ2=0\xi_{2}=0. Consider the homogeneous equation

(23) M(ξ)(APaS,1aS,2aS,3)=0.M(\xi)\left(\begin{array}[]{c}A_{P}\\ a_{S,1}\\ a_{S,2}\\ a_{S,3}\end{array}\right)=0.

By the last equation, we can assume that

(aS,1aS,2aS,3)=ASH𝐞SH+ASV𝐞SV\left(\begin{array}[]{c}a_{S,1}\\ a_{S,2}\\ a_{S,3}\end{array}\right)=A_{SH}\mathbf{e}_{SH}+A_{SV}\mathbf{e}_{SV}

where

𝐞SH=(0cS10)\mathbf{e}_{SH}=\left(\begin{array}[]{c}0\\ -c_{S}^{-1}\\ 0\end{array}\right)
𝐞SV=(ξS,30ξ1).\mathbf{e}_{SV}=\left(\begin{array}[]{c}\xi_{S,3}\\ 0\\ \xi_{1}\end{array}\right).

The homogeneous equation simplifies into

MP(ξ)(AP,ASV,ASH)T=0,M^{\prime}_{P}(\xi)(A_{P},A_{SV},A_{SH})^{T}=0,

where

MP(ξ)=(2μξ1ξ3ρ+2μξ12000μcS1ξS,3ρ2μξ122μξ1ξS,30).M_{P}^{\prime}(\xi)=\left(\begin{array}[]{ccc}-2\mu\xi_{1}\xi_{3}&-\rho+2\mu\xi_{1}^{2}&0\\ 0&0&-\mu c_{S}^{-1}\xi_{S,3}\\ \rho-2\mu\xi_{1}^{2}&-2\mu\xi_{1}\xi_{S,3}&0\end{array}\right).

One immediately obtain that ASH=0A_{SH}=0. Then we only need to consider the matrix

(2μξ1ξ3μ(ξ12ξS,32)μ(ξ12ξS,32)2μξ1ξS,3),\left(\begin{array}[]{cc}-2\mu\xi_{1}\xi_{3}&\mu(\xi_{1}^{2}-\xi_{S,3}^{2})\\ -\mu(\xi_{1}^{2}-\xi_{S,3}^{2})&-2\mu\xi_{1}\xi_{S,3}\end{array}\right),

whose determinant is

μ2(4ξ12ξ3ξS,3+ξ142ξ12ξS,32+ξS,34)>0.\mu^{2}(4\xi_{1}^{2}\xi_{3}\xi_{S,3}+\xi_{1}^{4}-2\xi_{1}^{2}\xi_{S,3}^{2}+\xi_{S,3}^{4})>0.

This is because that ξ12ξ3ξS,3<ξ12ξS,32\xi_{1}^{2}\xi_{3}\xi_{S,3}<\xi_{1}^{2}\xi_{S,3}^{2}, which in turn yields

0<4ξ12ξ3ξS,32ξ12ξS,32<2ξ12ξS,32ξ14+ξS,34.0<4\xi_{1}^{2}\xi_{3}\xi_{S,3}-2\xi_{1}^{2}\xi_{S,3}^{2}<2\xi_{1}^{2}\xi_{S,3}^{2}\leq\xi_{1}^{4}+\xi_{S,3}^{4}.

This shows that the equation (23) has has only zero solutions, and therefore M(ξ)M(\xi) is invertible. ∎

By the above lemma, we can solve the linear system (22) to determine (AP,aS,01,aS,02,aS,03)(A_{P}^{-},a_{S,01}^{-},a_{S,02}^{-},a_{S,03}^{-}) at the point pp.

Next, we determine the tangential derivatives of (AP,aS,01,aS,02,aS,03)(A_{P}^{-},a_{S,01}^{-},a_{S,02}^{-},a_{S,03}^{-}) at pp. Use the fact that 𝒩0=0\mathcal{N}_{0}=0 needs to be satisfied up to order NN at pp, that is t,xα𝒩1(p)=0\partial_{t,x}^{\alpha}\mathcal{N}_{1}(p)=0, for α=(α0,α1,α2,0)\alpha=(\alpha_{0},\alpha_{1},\alpha_{2},0), |α|N|\alpha|\leq N. Let us first consider, for example, (1AP,1aS,01,1aS,02,1aS,03)(\partial_{1}A_{P}^{-},\partial_{1}a_{S,01}^{-},\partial_{1}a_{S,02}^{-},\partial_{1}a_{S,03}^{-}). Taking the first order derivative in x1x_{1} of (20) and (21), we obtain a linear system

M(ξ)(1AP(p)1aS,01(p)1aS,02(p)1aS,03(p))=F(AP(p),𝐚S,0(p)).M(\xi)\left(\begin{array}[]{c}\partial_{1}A_{P}^{-}(p)\\ \partial_{1}a_{S,01}^{-}(p)\\ \partial_{1}a_{S,02}^{-}(p)\\ \partial_{1}a_{S,03}^{-}(p)\end{array}\right)=F(A_{P}^{-}(p),\mathbf{a}_{S,0}^{-}(p)).

Here and below we suppress the dependence of FF on 𝐚P,k+\mathbf{a}^{+}_{P,k} and φP+,φP,φS\varphi^{+}_{P},\varphi^{-}_{P},\varphi^{-}_{S} (as well as their derivates). Because the matrix M(ξ)M(\xi) is invertible, we can determine (1AP,1aS,01,1aS,02,1aS,03)(\partial_{1}A_{P}^{-},\partial_{1}a_{S,01}^{-},\partial_{1}a_{S,02}^{-},\partial_{1}a_{S,03}^{-}) at the point pp. Continue with this process, one can determine (αAP,αaS,01,αaS,02,αaS,03)(p)(\partial^{\alpha}A_{P}^{-},\partial^{\alpha}a_{S,01}^{-},\partial^{\alpha}a_{S,02}^{-},\partial^{\alpha}a_{S,03}^{-})(p) for any α=(α0,α1,α2,0)\alpha=(\alpha_{0},\alpha_{1},\alpha_{2},0), |α|N|\alpha|\leq N.

Next, consider the determination of 𝐚P,1\mathbf{a}_{P,1}^{-} and 𝐚S,1\mathbf{a}_{S,1}^{-} at the point pp. Notice that

(24) 𝒩1=(μ3φP0μ1φP0μ3φPμ2φPλ1φPλ2φP(λ+2μ)3φP)(aP,11aP,12aP,13)+(μ3φS0μ1φS0μ3φSμ2φSλ1φSλ2φS(λ+2μ)3φS)(aS,11aS,12aS,13)+F(𝐚P,0,𝐚S,0,𝐚P,0,𝐚S,0)\begin{split}\mathcal{N}_{1}=&\left(\begin{array}[]{ccc}\mu\partial_{3}\varphi_{P}^{-}&0&\mu\partial_{1}\varphi_{P}^{-}\\ 0&\mu\partial_{3}\varphi_{P}^{-}&\mu\partial_{2}\varphi_{P}^{-}\\ \lambda\partial_{1}\varphi_{P}^{-}&\lambda\partial_{2}\varphi_{P}^{-}&(\lambda+2\mu)\partial_{3}\varphi_{P}^{-}\end{array}\right)\left(\begin{array}[]{c}a_{P,11}^{-}\\ a_{P,12}^{-}\\ a_{P,13}^{-}\end{array}\right)\\ &+\left(\begin{array}[]{ccc}\mu\partial_{3}\varphi_{S}^{-}&0&\mu\partial_{1}\varphi_{S}^{-}\\ 0&\mu\partial_{3}\varphi_{S}^{-}&\mu\partial_{2}\varphi_{S}^{-}\\ \lambda\partial_{1}\varphi_{S}^{-}&\lambda\partial_{2}\varphi_{S}^{-}&(\lambda+2\mu)\partial_{3}\varphi_{S}^{-}\end{array}\right)\left(\begin{array}[]{c}a_{S,11}^{-}\\ a_{S,12}^{-}\\ a_{S,13}^{-}\end{array}\right)\\ &+F(\mathbf{a}^{-}_{P,0},\mathbf{a}^{-}_{S,0},\partial\mathbf{a}^{-}_{P,0},\partial\mathbf{a}^{-}_{S,0})\end{split}

Note that the full first-order derivatives of 𝐚P,0,𝐚S,0\mathbf{a}^{-}_{P,0},\mathbf{a}^{-}_{S,0} at point pp, 𝐚P,0(p),𝐚S,0(p)\partial\mathbf{a}^{-}_{P,0}(p),\partial\mathbf{a}^{-}_{S,0}(p) (not only the derivatives in (t,x1,x2)(t,x_{1},x_{2})), are determined since the transport equations for APA_{P}^{-} and 𝐚S,0\mathbf{a}^{-}_{S,0} are satisfied. The equation 𝒩1(p)=0\mathcal{N}_{1}(p)=0 can be rewritten as

(25) (μξ30μξ10μξ3μξ2λξ1λξ2(λ+2μ)ξ3)(aP,11(p)aP,12(p)aP,13(p))+(μξS,30μξ10μξS,3μξ2λξ1λξ2(λ+2μ)ξS,3)(aS,11(p)aS,12(p)aS,13(p))=F,\begin{split}\left(\begin{array}[]{ccc}-\mu\xi_{3}&0&\mu\xi_{1}\\ 0&-\mu\xi_{3}&\mu\xi_{2}\\ \lambda\xi_{1}&\lambda\xi_{2}&-(\lambda+2\mu)\xi_{3}\end{array}\right)\left(\begin{array}[]{c}a_{P,11}^{-}(p)\\ a_{P,12}^{-}(p)\\ a_{P,13}^{-}(p)\end{array}\right)\\ +\left(\begin{array}[]{ccc}-\mu\xi_{S,3}&0&\mu\xi_{1}\\ 0&-\mu\xi_{S,3}&\mu\xi_{2}\\ \lambda\xi_{1}&\lambda\xi_{2}&-(\lambda+2\mu)\xi_{S,3}\end{array}\right)\left(\begin{array}[]{c}a_{S,11}^{-}(p)\\ a_{S,12}^{-}(p)\\ a_{S,13}^{-}(p)\end{array}\right)=F,\end{split}

where FF have already been computed in the previous steps. Now, we have 33 equations for the 66 unknowns. The extra 33 equations come from equations (13) and (16), which can be rewritten as

(26) (ξ1,ξ2,ξS,3)(aS,11(p),aS,12(p),aS,13(p))=F1(𝐚P,0,(p),𝐚P,0,(p),𝐚S,0(p),𝐚S,0,(p)),(\xi_{1},\xi_{2},-\xi_{S,3})\cdot(a_{S,11}^{-}(p),a_{S,12}^{-}(p),a_{S,13}^{-}(p))=F_{1}(\mathbf{a}^{-}_{P,0,}(p),\partial\mathbf{a}^{-}_{P,0,}(p),\mathbf{a}^{-}_{S,0}(p),\partial\mathbf{a}^{-}_{S,0,}(p)),

and

(27) (ξ2,ξ1,0)(aP,11(p),aP,12(p),aP,13)(p)=F2(𝐚P,0(p),𝐚P,0(p),𝐚S,0(p),𝐚S,0(p)),(ξ1ξ3,ξ2ξ3,ξ12+ξ22)(aP,11(p),aP,12(p),aP,13(p))=F3(𝐚P,0(p),𝐚P,0(p),𝐚S,0(p),𝐚S,0(p)).\begin{split}(\xi_{2},-\xi_{1},0)\cdot(a_{P,11}^{-}(p),a_{P,12}^{-}(p),a_{P,13}^{-})(p)=F_{2}(\mathbf{a}^{-}_{P,0}(p),\partial\mathbf{a}^{-}_{P,0}(p),\mathbf{a}^{-}_{S,0}(p),\partial\mathbf{a}^{-}_{S,0}(p)),\\ (\xi_{1}\xi_{3},\xi_{2}\xi_{3},\xi_{1}^{2}+\xi_{2}^{2})\cdot(a_{P,11}^{-}(p),a_{P,12}^{-}(p),a_{P,13}^{-}(p))=F_{3}(\mathbf{a}^{-}_{P,0}(p),\partial\mathbf{a}^{-}_{P,0}(p),\mathbf{a}^{-}_{S,0}(p),\partial\mathbf{a}^{-}_{S,0}(p)).\end{split}

Using (27), we can reduce the linear system (25) to

(μξ30μξ10μξ3μξ2λξ1λξ2(λ+2μ)ξ3)(ξ1ξ2ξ3)AP,1(p)+(μξS,30μξ10μξS,3μξ2λξ1λξ2(λ+2μ)ξS,3)(aS,11(p)aS,12(p)aS,13(p))=F,\begin{split}\left(\begin{array}[]{ccc}-\mu\xi_{3}&0&\mu\xi_{1}\\ 0&-\mu\xi_{3}&\mu\xi_{2}\\ \lambda\xi_{1}&\lambda\xi_{2}&-(\lambda+2\mu)\xi_{3}\end{array}\right)\left(\begin{array}[]{c}\xi_{1}\\ \xi_{2}\\ -\xi_{3}\end{array}\right)A_{P,1}^{-}(p)\\ +\left(\begin{array}[]{ccc}-\mu\xi_{S,3}&0&\mu\xi_{1}\\ 0&-\mu\xi_{S,3}&\mu\xi_{2}\\ \lambda\xi_{1}&\lambda\xi_{2}&-(\lambda+2\mu)\xi_{S,3}\end{array}\right)\left(\begin{array}[]{c}a_{S,11}^{-}(p)\\ a_{S,12}^{-}(p)\\ a_{S,13}^{-}(p)\end{array}\right)=F,\end{split}

where AP,1(p)=(aP,11(p),aP,12(p),aP,13(p))(ξ1,ξ2,ξ3)A_{P,1}^{-}(p)=(a_{P,11}^{-}(p),a_{P,12}^{-}(p),a_{P,13}^{-}(p))\cdot(\xi_{1},\xi_{2},-\xi_{3}). Together with (26), we now have a system

MP(ξ)(AP,1(p),aS,11(p),aS,12(p),aS,13(p))T=F.M_{P}(\xi)(A_{P,1}^{-}(p),a_{S,11}^{-}(p),a_{S,12}^{-}(p),a_{S,13}^{-}(p))^{T}=F.

By Lemma 1, the matrix MP(ξ)M_{P}(\xi) is invertible. Then, aP,11,aP,12,aP,13,aS,11,aS,12,aS,13a_{P,11}^{-},a_{P,12}^{-},a_{P,13}^{-},a_{S,11}^{-},a_{S,12}^{-},a_{S,13}^{-} at point pp can be determined.

To determine the first order derivative (for example in x1x_{1}) of 𝐚P,1\mathbf{a}_{P,1}^{-} and 𝐚S,1\mathbf{a}_{S,1}^{-} at pp, we take the x1\partial_{x_{1}} derivative of (25), and also use the equations

(ξ1,ξ2,ξS,3)(x1aS,11(p),x1aS,12(p),x1aS,13(p))=F1,(ξ2,ξ1,0)(x1aP,11(p),x1aP,12(p),x1aP,13(p))=F2,(ξ1ξ3,ξ2ξ3,ξ12+ξ22)(x1aP,11(p),x1aP,12(p),x1aP,13(p))=F3,\begin{split}(\xi_{1},\xi_{2},-\xi_{S,3})\cdot(\partial_{x_{1}}a_{S,11}^{-}(p),\partial_{x_{1}}a_{S,12}^{-}(p),\partial_{x_{1}}a_{S,13}^{-}(p))=F_{1},\\ (\xi_{2},-\xi_{1},0)\cdot(\partial_{x_{1}}a_{P,11}^{-}(p),\partial_{x_{1}}a_{P,12}^{-}(p),\partial_{x_{1}}a_{P,13}^{-}(p))=F_{2},\\ (\xi_{1}\xi_{3},\xi_{2}\xi_{3},\xi_{1}^{2}+\xi_{2}^{2})\cdot(\partial_{x_{1}}a_{P,11}^{-}(p),\partial_{x_{1}}a_{P,12}^{-}(p),\partial_{x_{1}}a_{P,13}^{-}(p))=F_{3},\end{split}

which come from x1(2)i(p)=0\partial_{x_{1}}(\mathcal{I}_{2})_{i}(p)=0 (more precisely, i=2,3i=2,3 for P-wave, and i=1i=1 for S-wave). Consequently, we end up with a linear system as

(μξ30μξ1μξS,30μξ10μξ3μξ20μξS,3μξ2λξ1λξ2(λ+2μ)ξ3λξ1λξ2(λ+2μ)ξS,3000ξ1ξ2ξS,3ξ2ξ10000ξ1ξ3ξ2ξ3ξ12+ξ22000)(1aP,11(p)1aP,12(p)1aP,13(p)1aS,11(p)1aS,12(p)1aS,13(p))=F.\left(\begin{array}[]{cccccc}-\mu\xi_{3}&0&\mu\xi_{1}&-\mu\xi_{S,3}&0&\mu\xi_{1}\\ 0&-\mu\xi_{3}&\mu\xi_{2}&0&-\mu\xi_{S,3}&\mu\xi_{2}\\ \lambda\xi_{1}&\lambda\xi_{2}&-(\lambda+2\mu)\xi_{3}&\lambda\xi_{1}&\lambda\xi_{2}&-(\lambda+2\mu)\xi_{S,3}\\ 0&0&0&\xi_{1}&\xi_{2}&-\xi_{S,3}\\ \xi_{2}&-\xi_{1}&0&0&0&0\\ \xi_{1}\xi_{3}&\xi_{2}\xi_{3}&\xi_{1}^{2}+\xi_{2}^{2}&0&0&0\end{array}\right)\left(\begin{array}[]{c}\partial_{1}a_{P,11}^{-}(p)\\ \partial_{1}a_{P,12}^{-}(p)\\ \partial_{1}a_{P,13}^{-}(p)\\ \partial_{1}a_{S,11}^{-}(p)\\ \partial_{1}a_{S,12}^{-}(p)\\ \partial_{1}a_{S,13}^{-}(p)\end{array}\right)=F.

By similar consideration as above, this linear system is solvable, and thus we can determine 1aP,11,1aP,12,1aP,13,1aS,11,1aS,12,1aS,13\partial_{1}a_{P,11}^{-},\partial_{1}a_{P,12}^{-},\partial_{1}a_{P,13}^{-},\partial_{1}a_{S,11}^{-},\partial_{1}a_{S,12}^{-},\partial_{1}a_{S,13}^{-} at pp.

Continuing with this process, we can determine α𝐚P,k(p)\partial^{\alpha}\mathbf{a}^{-}_{P,k}(p) and α𝐚S,k(p)\partial^{\alpha}\mathbf{a}^{-}_{S,k}(p) for any kNk\leq N and |α|N|\alpha|\leq N. Now we finish the construction of the reflected waves.

3.2. S- incident waves

In this section, we assume that the incident wave is S-wave, i.e.,

uϱ+=eiϱφS+χ(k=0N+1ϱk𝐚S,k+).u^{+}_{\varrho}=e^{\mathrm{i}\varrho\varphi_{S}^{+}}\chi\left(\sum_{k=0}^{N+1}\varrho^{-k}\mathbf{a}_{S,k}^{+}\right).

We construct reflected waves given by (18). Denote

ξS+:=ξ=(ξ1,ξ2,ξ3),ξS=(ξ1,ξ2,ξ3),ξP=(ξ1,ξ2,ξP,3).\xi^{+}_{S}:=\xi=(\xi_{1},\xi_{2},\xi_{3}),\quad\xi^{-}_{S}=(\xi_{1},\xi_{2},-\xi_{3}),\quad\xi^{-}_{P}=(\xi_{1},\xi_{2},-\xi_{P,3}).

where

(28) ξP,3=cP2ξ12ξ22.\xi_{P,3}=\sqrt{c_{P}^{-2}-\xi_{1}^{2}-\xi_{2}^{2}}.

Then the phase functions satisfy

φS+(p)=ξS+,φP(p)=ξP,φS(p)=ξS.\nabla\varphi_{S}^{+}(p)=\xi^{+}_{S},\quad\nabla\varphi_{P}^{-}(p)=\xi^{-}_{P},\quad\nabla\varphi_{S}^{-}(p)=\xi^{-}_{S}.

First we consider the important case, for which ξ12+ξ22<cP2\xi_{1}^{2}+\xi_{2}^{2}<c_{P}^{-2}, so that ξP,3\xi_{P,3} is real and there is no evanescent wave. The reflected P- and S- waves are both progressing waves. The equation 𝒩0(p)=0\mathcal{N}_{0}(p)=0 would give a system

MS(ξ)(AP(p)aS,01(p)aS,02(p)aS,03(p))=F,M_{S}(\xi)\left(\begin{array}[]{c}A_{P}^{-}(p)\\ a_{S,01}^{-}(p)\\ a_{S,02}^{-}(p)\\ a_{S,03}^{-}(p)\end{array}\right)=F,

where

MS(ξ)=(2μξ1ξP,3μξ30μξ12μξ2ξP,30μξ3μξ2ρ2μ(ξ12+ξ22)λξ1λξ2(λ+2μ)ξ30ξ1ξ2ξ3).M_{S}(\xi)=\left(\begin{array}[]{cccc}-2\mu\xi_{1}\xi_{P,3}&-\mu\xi_{3}&0&\mu\xi_{1}\\ -2\mu\xi_{2}\xi_{P,3}&0&-\mu\xi_{3}&\mu\xi_{2}\\ \rho-2\mu(\xi_{1}^{2}+\xi_{2}^{2})&\lambda\xi_{1}&\lambda\xi_{2}&-(\lambda+2\mu)\xi_{3}\\ 0&\xi_{1}&\xi_{2}&-\xi_{3}\end{array}\right).

The matrix MS(ξ)=MP((ξ1,ξ2,ξP,3))M_{S}(\xi)=M_{P}((\xi_{1},\xi_{2},\xi_{P,3})) is invertible. Therefore, similar as in previous section, we can determine α𝐚P,k(p)\partial^{\alpha}\mathbf{a}^{-}_{P,k}(p) and α𝐚S,k(p)\partial^{\alpha}\mathbf{a}^{-}_{S,k}(p) for any kNk\leq N and |α|N|\alpha|\leq N.

Evanescent waves. Now we consider the case ξ12+ξ22>cP2.\xi_{1}^{2}+\xi_{2}^{2}>c_{P}^{-2}. In this case, ξP,3\xi_{P,3} is taken by

ξP,3=iξ12+ξ22cP2.\xi_{P,3}=\mathrm{i}\sqrt{\xi_{1}^{2}+\xi_{2}^{2}-c_{P}^{-2}}.

To be consistent with the formula (28), we can choose the square root function \sqrt{\,\cdot\,} such that z>0\Im\sqrt{z}>0 for z[0,+)z\in\mathbb{C}\setminus[0,+\infty). Then (iξP,3)>0\Re(-\mathrm{i}\xi_{P,3})>0, and we can then construct φP\varphi_{P}^{-} in a neighborhood of pp such that x3(φP)=ξP,3\partial_{x_{3}}(\varphi_{P}^{-})=-\xi_{P,3}. Then (iφP)<0\Re(\mathrm{i}\varphi_{P}^{-})<0 for x3<0x_{3}<0 and consequently

|eiϱφP|=𝒪(|x3|)|e^{\mathrm{i}\varrho\varphi_{P}^{-}}|=\mathcal{O}(|x_{3}|^{\infty})

near pp in ×Ω\mathbb{R}\times\Omega. Then we can construct uϱu_{\varrho}^{-} of the form (18) in a neighborhood of pp such that

ρt2uP,ϱSL(uP,ϱ)=0,up to order N at point p,\rho\partial_{t}^{2}u_{P,\varrho}^{-}-\nabla\cdot S^{L}(u_{P,\varrho}^{-})=0,\quad\text{up to order }N\text{ at point }p,

and now χP\chi^{-}_{P} is compactly supported in a neighborhood of pp. We also refer to [37] for a discussion on evanescent waves.

3.3. Full Gaussian beam asymptotic solutions

Now it is clear to see how to construct Gaussian beam solutions to the linear elastic wave equation incorporating all reflections at the boundary (0,T)×Ω(0,T)\times\partial\Omega.

Assume ϑ:(t,t+)M\vartheta:(t^{-},t^{+})\rightarrow M be a unit speed null-geodesic in (M,dt2+c2ds2)(M,-\mathrm{d}t^{2}+c_{\bullet}^{-2}\mathrm{d}s^{2}), with endpoints ϑ(t),ϑ(t+)M\vartheta(t^{-}),\vartheta(t^{+})\in\partial M. Let R0MR_{0}\subset\partial M be a neighborhood of ϑ(t)\vartheta(t^{-}). Assume that t(0,T)t^{-}\in(0,T). If ϑ\vartheta is a forward null-geodesic then t+>tt^{+}>t^{-}, if ϑ\vartheta is a backward null-geodesic then t+<tt^{+}<t^{-}.

Fix kk and KK, by above discussions, we can take NN large enough and construct asymptotic solutions uϱu_{\varrho} such that

λ,μ,ρuϱHk((0,T)×Ω)=𝒪(ϱK),\|\mathcal{L}_{\lambda,\mu,\rho}u_{\varrho}\|_{H^{k}((0,T)\times\Omega)}=\mathcal{O}(\varrho^{-K}),

the boundary values of uϱu_{\varrho} satisfy

𝒩λ,μuϱHk((0,T)×ΩR0)=𝒪(ϱK).\|\mathcal{N}_{\lambda,\mu}u_{\varrho}\|_{H^{k}((0,T)\times\partial\Omega\setminus R_{0})}=\mathcal{O}(\varrho^{-K}).

Actually, uϱ=uϱinc+uϱrefu_{\varrho}=u_{\varrho}^{\mathrm{inc}}+u_{\varrho}^{\mathrm{ref}}, where the incident wave uϱinc=uϱ+u_{\varrho}^{\mathrm{inc}}=u_{\varrho}^{+} is compactly supported in a neighborhood of ϑ\vartheta. We remark here that uϱincu_{\varrho}^{\mathrm{inc}} is a Gaussian beam starting from ϑ(t)\vartheta(t_{-}), and uρrefu_{\rho}^{\mathrm{ref}} is generated by the reflection of the incident wave uϱincu_{\varrho}^{\mathrm{inc}} at ϑ(t+)\vartheta(t_{+}) and subsequent reflections.

4. Proof of the main theorem

4.1. Second order linearization of the displacement-to-traction map

We first summarize the second order linearization of the displacement-to-traction map carried out in [41]. We also refer to [21, 24, 17] for the use of higher order linearization in the study of inverse problems for nonlinear equations.

Take ϵ1,ϵ2\epsilon_{1},\epsilon_{2}\in\mathbb{R} small enough, and let uϵu_{\epsilon} be the solution to the initial boundary value problem (2) with boundary value f=ϵ1f(1)+ϵ2f(2)f=\epsilon_{1}f^{(1)}+\epsilon_{2}f^{(2)}, then uϵu_{\epsilon} has the asymptotic expansion

uϵ=ϵ1u(1)+ϵ2u(2)+12ϵ12u(11)+12ϵ22u(22)+ϵ1ϵ2u(12)+higher order terms in ϵ1,ϵ2.u_{\epsilon}=\epsilon_{1}u^{(1)}+\epsilon_{2}u^{(2)}+\frac{1}{2}\epsilon_{1}^{2}u^{(11)}+\frac{1}{2}\epsilon_{2}^{2}u^{(22)}+\epsilon_{1}\epsilon_{2}u^{(12)}+\text{higher order terms in }\epsilon_{1},\epsilon_{2}.

Here u(1),u(2)u^{(1)},u^{(2)} are solutions to the linearized equation

(29) ρ2u(j)t2SL(x,u(j))=0,(t,x)(0,T)×Ω,u(j)(t,x)=f(j)(t,x),(t,x)(0,T)×Ω,u(j)(0,x)=tu(j)(0,x)=0,xΩ,\begin{split}&\rho\frac{\partial^{2}u^{(j)}}{\partial t^{2}}-\nabla\cdot S^{L}(x,u^{(j)})=0,\quad(t,x)\in(0,T)\times\Omega,\\ &u^{(j)}(t,x)=f^{(j)}(t,x),\quad(t,x)\in(0,T)\times\partial\Omega,\\ &u^{(j)}(0,x)=\frac{\partial}{\partial t}u^{(j)}(0,x)=0,\quad x\in\Omega,\end{split}

and u(12)u^{(12)} is the solution to the equation

(30) ρ2u(12)t2SL(x,u(12))=G(u(1),u(2)),(t,x)(0,T)×Ω,u(12)(t,x)=0,(t,x)(0,T)×Ω,u(12)(0,x)=tu(12)(0,x)=0,xΩ,\begin{split}&\rho\frac{\partial^{2}u^{(12)}}{\partial t^{2}}-\nabla\cdot S^{L}(x,u^{(12)})=\nabla\cdot G(u^{(1)},u^{(2)}),\quad(t,x)\in(0,T)\times\Omega,\\ &u^{(12)}(t,x)=0,\quad(t,x)\in(0,T)\times\partial\Omega,\\ &u^{(12)}(0,x)=\frac{\partial}{\partial t}u^{(12)}(0,x)=0,\quad x\in\Omega,\end{split}

where GijG_{ij} comes from the second order term of uu in S(x,u)S(x,u),

(31) Gij(u(1),u(2))=(λ+)um(1)xnum(2)xnδij+2𝒞um(1)xmun(2)xnδij+um(1)xnun(2)xmδij+(um(1)xmuj(2)xi+um(2)xmuj(1)xi)+𝒜4(uj(1)xmum(2)xi+uj(2)xmum(1)xi)+(λ+)(um(1)xmui(2)xj+um(2)xmui(1)xj)+(μ+𝒜4)(um(1)xium(2)xj+um(2)xium(1)xj+ui(1)xmuj(2)xm+ui(2)xmuj(1)xm+ui(1)xmum(2)xj+ui(2)xmum(1)xj).\begin{split}G_{ij}(u^{(1)},u^{(2)})=&(\lambda+\mathscr{B})\frac{\partial u^{(1)}_{m}}{\partial x_{n}}\frac{\partial u^{(2)}_{m}}{\partial x_{n}}\delta_{ij}+2\mathscr{C}\frac{\partial u^{(1)}_{m}}{\partial x_{m}}\frac{\partial u^{(2)}_{n}}{\partial x_{n}}\delta_{ij}+\mathscr{B}\frac{\partial u_{m}^{(1)}}{\partial x_{n}}\frac{\partial u_{n}^{(2)}}{\partial x_{m}}\delta_{ij}\\ &+\mathscr{B}\left(\frac{\partial u^{(1)}_{m}}{\partial x_{m}}\frac{\partial u^{(2)}_{j}}{\partial x_{i}}+\frac{\partial u^{(2)}_{m}}{\partial x_{m}}\frac{\partial u^{(1)}_{j}}{\partial x_{i}}\right)+\frac{\mathscr{A}}{4}\left(\frac{\partial u^{(1)}_{j}}{\partial x_{m}}\frac{\partial u^{(2)}_{m}}{\partial x_{i}}+\frac{\partial u^{(2)}_{j}}{\partial x_{m}}\frac{\partial u^{(1)}_{m}}{\partial x_{i}}\right)\\ &+(\lambda+\mathscr{B})\left(\frac{\partial u^{(1)}_{m}}{\partial x_{m}}\frac{\partial u^{(2)}_{i}}{\partial x_{j}}+\frac{\partial u^{(2)}_{m}}{\partial x_{m}}\frac{\partial u^{(1)}_{i}}{\partial x_{j}}\right)\\ &+\left(\mu+\frac{\mathscr{A}}{4}\right)\Bigg{(}\frac{\partial u^{(1)}_{m}}{\partial x_{i}}\frac{\partial u^{(2)}_{m}}{\partial x_{j}}+\frac{\partial u^{(2)}_{m}}{\partial x_{i}}\frac{\partial u^{(1)}_{m}}{\partial x_{j}}+\frac{\partial u^{(1)}_{i}}{\partial x_{m}}\frac{\partial u^{(2)}_{j}}{\partial x_{m}}+\frac{\partial u^{(2)}_{i}}{\partial x_{m}}\frac{\partial u^{(1)}_{j}}{\partial x_{m}}\\ &\quad\quad+\frac{\partial u^{(1)}_{i}}{\partial x_{m}}\frac{\partial u^{(2)}_{m}}{\partial x_{j}}+\frac{\partial u^{(2)}_{i}}{\partial x_{m}}\frac{\partial u^{(1)}_{m}}{\partial x_{j}}\Bigg{)}.\end{split}

We define the linear map

ΛD:f(j)νSL(x,u(j))|(0,T)×Ω,\begin{split}\Lambda^{{}^{\prime}}_{D}:f^{(j)}&\mapsto\nu\cdot S^{L}(x,u^{(j)})|_{(0,T)\times\partial\Omega},\\ \end{split}

and the bilinear map

ΛD′′:(f(1),f(2))(νSL(u(12))+νG(u(1),u(2)))|(0,T)×Ω.\begin{split}\Lambda^{{}^{\prime\prime}}_{D}:(f^{(1)},f^{(2)})&\mapsto\left(\nu\cdot S^{L}(u^{(12)})+\nu\cdot G(u^{(1)},u^{(2)})\right)\Big{|}_{(0,T)\times\partial\Omega}.\\ \end{split}

Here f(1),f(2)f^{(1)},f^{(2)} vanish near {t=0}\{t=0\}. We remark here that formally

ΛD(f(j))=ϵjΛ(ϵjf(j))|ϵj=0,ΛD′′(f(1),f(2))=2ϵ1ϵ2Λ(ϵ1f(1)+ϵ2f(2))|ϵ1=ϵ2=0.\begin{split}\Lambda^{{}^{\prime}}_{D}(f^{(j)})&=\frac{\partial}{\partial\epsilon_{j}}\Lambda(\epsilon_{j}f^{(j)})|_{\epsilon_{j}=0},\\ \Lambda^{{}^{\prime\prime}}_{D}(f^{(1)},f^{(2)})&=\frac{\partial^{2}}{\partial\epsilon_{1}\partial\epsilon_{2}}\Lambda(\epsilon_{1}f^{(1)}+\epsilon_{2}f^{(2)})|_{\epsilon_{1}=\epsilon_{2}=0}.\end{split}

Therefore, we can recover ΛD,ΛD′′\Lambda^{\prime}_{D},\Lambda^{\prime\prime}_{D} from Λ\Lambda.

Assume that u(0)u^{(0)} solves the initial boundary value problem for the backward elastic wave equation

(32) ρ2t2u(0)SL(x,u(0))=0,(t,x)(0,T)×Ω,u(t,x)=f(0)(t,x),(t,x)(0,T)×Ω,u(0)(T,x)=tu(0)(T,x)=0,xΩ.\begin{split}&\rho\frac{\partial^{2}}{\partial t^{2}}u^{(0)}-\nabla\cdot S^{L}(x,u^{(0)})=0,\quad(t,x)\in(0,T)\times\Omega,\\ &u(t,x)=f^{(0)}(t,x),\quad(t,x)\in(0,T)\times\partial\Omega,\\ &u^{(0)}(T,x)=\frac{\partial}{\partial t}u^{(0)}(T,x)=0,\quad x\in\Omega.\end{split}

Using integration by parts, we have (cf. [41])

(33) 0TΩΛD′′(f(1),f(2))f(0)dSdt=0TΩ𝒢(u(1),u(2),u(0))dxdt,\int_{0}^{T}\int_{\partial\Omega}\Lambda^{{}^{\prime\prime}}_{D}(f^{(1)},f^{(2)})\cdot f^{(0)}\mathrm{d}S\mathrm{d}t\\ =\int_{0}^{T}\int_{\Omega}\mathcal{G}(\nabla u^{(1)},\nabla u^{(2)},\nabla u^{(0)})\mathrm{d}x\mathrm{d}t,

where

(34) 𝒢(u(1),u(2),u(0))=(λ+)(u(1):u(2))(u(0))+2𝒞(u(1))(u(2))(u(0))+(u(1):Tu(2))(u(0))+((u(1))(u(2):Tu(0))+(u(2))(u(1):Tu(0)))+𝒜4(uj(1)xmum(2)xi+uj(2)xmum(1)xi)ui(0)xj+(λ+)((u(1))(u(2):u(0))+(u(2))(u(1):u(0)))+(μ+𝒜4)(um(1)xium(2)xj+um(2)xium(1)xj+ui(1)xmuj(2)xm+ui(2)xmuj(1)xm+ui(1)xmum(2)xj+ui(2)xmum(1)xj)ui(0)xj.\begin{split}&\mathcal{G}(\nabla u^{(1)},\nabla u^{(2)},\nabla u^{(0)})\\ =&(\lambda+\mathscr{B})(\nabla u^{(1)}:\nabla u^{(2)})(\nabla\cdot u^{(0)})+2\mathscr{C}(\nabla\cdot u^{(1)})(\nabla\cdot u^{(2)})(\nabla\cdot u^{(0)})\\ &+\mathscr{B}(\nabla u^{(1)}:\nabla^{T}u^{(2)})(\nabla\cdot u^{(0)})\\ &+\mathscr{B}\left((\nabla\cdot u^{(1)})(\nabla u^{(2)}:\nabla^{T}u^{(0)})+(\nabla\cdot u^{(2)})(\nabla u^{(1)}:\nabla^{T}u^{(0)})\right)\\ &+\frac{\mathscr{A}}{4}\left(\frac{\partial u^{(1)}_{j}}{\partial x_{m}}\frac{\partial u^{(2)}_{m}}{\partial x_{i}}+\frac{\partial u^{(2)}_{j}}{\partial x_{m}}\frac{\partial u^{(1)}_{m}}{\partial x_{i}}\right)\frac{\partial u^{(0)}_{i}}{\partial x_{j}}\\ &+(\lambda+\mathscr{B})\left((\nabla\cdot u^{(1)})(\nabla u^{(2)}:\nabla u^{(0)})+(\nabla\cdot u^{(2)})(\nabla u^{(1)}:\nabla u^{(0)})\right)\\ &+\left(\mu+\frac{\mathscr{A}}{4}\right)\Bigg{(}\frac{\partial u^{(1)}_{m}}{\partial x_{i}}\frac{\partial u^{(2)}_{m}}{\partial x_{j}}+\frac{\partial u^{(2)}_{m}}{\partial x_{i}}\frac{\partial u^{(1)}_{m}}{\partial x_{j}}+\frac{\partial u^{(1)}_{i}}{\partial x_{m}}\frac{\partial u^{(2)}_{j}}{\partial x_{m}}+\frac{\partial u^{(2)}_{i}}{\partial x_{m}}\frac{\partial u^{(1)}_{j}}{\partial x_{m}}\\ &\quad\quad\quad\quad\quad\quad\quad\quad\quad+\frac{\partial u^{(1)}_{i}}{\partial x_{m}}\frac{\partial u^{(2)}_{m}}{\partial x_{j}}+\frac{\partial u^{(2)}_{i}}{\partial x_{m}}\frac{\partial u^{(1)}_{m}}{\partial x_{j}}\Bigg{)}\frac{\partial u^{(0)}_{i}}{\partial x_{j}}.\end{split}

Linearized traction-to-displacement map. Let vv be the solution to the initial boundary value problem with Neumann boundary value

(35) ρ2vt2SL(x,v)=0,(t,x)(0,T)×Ω,νSL(x,v)=g,(t,x)(0,T)×Ω,v(0,x)=tv(0,x)=0,xΩ,\begin{split}&\rho\frac{\partial^{2}v}{\partial t^{2}}-\nabla\cdot S^{L}(x,v)=0,\quad(t,x)\in(0,T)\times\Omega,\\ &\nu\cdot S^{L}(x,v)=g,\quad(t,x)\in(0,T)\times\partial\Omega,\\ &v(0,x)=\frac{\partial}{\partial t}v(0,x)=0,\quad x\in\Omega,\end{split}

where gg is supported away from {t=0}\{t=0\}. Denote the Neumann-to-Dirichlet map

ΛN:gv|(0,T)×Ω.\Lambda^{{}^{\prime}}_{N}:g\mapsto v|_{(0,T)\times\partial\Omega}.

It is clear to see that

ΛN=(ΛD)1.\Lambda^{{}^{\prime}}_{N}=(\Lambda^{{}^{\prime}}_{D})^{-1}.

Let v(j),j=1,2v^{(j)},j=1,2 be solution to (35) with g=g(1)g=g^{(1)}, and v(12)v^{(12)} be solution to the following initial boundary value problem

(36) ρ2v(12)t2SL(x,u(12))=G(v(1),v(2)),(t,x)(0,T)×Ω,νSL(x,v(12))=νG(v(1),v(2)),(t,x)(0,T)×Ω,v(12)(0,x)=tv(12)(0,x)=0,xΩ.\begin{split}&\rho\frac{\partial^{2}v^{(12)}}{\partial t^{2}}-\nabla\cdot S^{L}(x,u^{(12)})=\nabla\cdot G(v^{(1)},v^{(2)}),\quad(t,x)\in(0,T)\times\Omega,\\ &\nu\cdot S^{L}(x,v^{(12)})=-\nu\cdot G(v^{(1)},v^{(2)}),\quad(t,x)\in(0,T)\times\partial\Omega,\\ &v^{(12)}(0,x)=\frac{\partial}{\partial t}v^{(12)}(0,x)=0,\quad x\in\Omega.\end{split}

Denote then

ΛN′′:(g(1),g(2))v(12)|(0,T)×Ω.\Lambda^{{}^{\prime\prime}}_{N}:(g^{(1)},g^{(2)})\mapsto v^{(12)}|_{(0,T)\times\partial\Omega}.

Assume v(0)v^{(0)} solves the initial boundary value problem for the backward elastic wave equation

(37) ρ2t2v(0)SL(x,v(0))=0,(t,x)(0,T)×Ω,νSL(x,v(0))(t,x)=g(0),(t,x)(0,T)×Ω,v(0)(T,x)=tv(0)(T,x)=0,xΩ.\begin{split}&\rho\frac{\partial^{2}}{\partial t^{2}}v^{(0)}-\nabla\cdot S^{L}(x,v^{(0)})=0,\quad(t,x)\in(0,T)\times\Omega,\\ &\nu\cdot S^{L}(x,v^{(0)})(t,x)=g^{(0)},\quad(t,x)\in(0,T)\times\partial\Omega,\\ &v^{(0)}(T,x)=\frac{\partial}{\partial t}v^{(0)}(T,x)=0,\quad x\in\Omega.\end{split}

Using integration by parts, we calculate

(38) 0TΩΛN′′(g(1),g(2))g(0)dSdt=0TΩv(12)(νSL(x,v(0)))dSdt=0TΩ(SL(x,v(0)))v(12)dxdt+0TΩSL(x,v(0)):v(12)dxdt=0TΩρ2v(0)t2v(12)dxdt0TΩv(0)(SL(x,v(12)))dxdt+0TΩv(0)(νSL(x,v(12))dSdt=0TΩv(0)(ρ2v(12)t2SL(x,v(12)))dxdt0TΩv(0)(νG(v(1),v(2)))dSdt=0TΩv(0)(G(v(1),v(2)))dxdt0TΩv(0)(νG(v(1),v(2)))dSdt=0TΩ𝒢(v(1),v(2),v(0))dxdt,\begin{split}&\int_{0}^{T}\int_{\partial\Omega}\Lambda^{{}^{\prime\prime}}_{N}(g^{(1)},g^{(2)})\cdot g^{(0)}\mathrm{d}S\mathrm{d}t\\ =&\int_{0}^{T}\int_{\partial\Omega}v^{(12)}\cdot(\nu\cdot S^{L}(x,v^{(0)}))\mathrm{d}S\mathrm{d}t\\ =&\int_{0}^{T}\int_{\Omega}(\nabla\cdot S^{L}(x,v^{(0)}))\cdot v^{(12)}\mathrm{d}x\mathrm{d}t+\int_{0}^{T}\int_{\Omega}S^{L}(x,v^{(0)}):\nabla v^{(12)}\mathrm{d}x\mathrm{d}t\\ =&\int_{0}^{T}\int_{\Omega}\rho\frac{\partial^{2}v^{(0)}}{\partial t^{2}}\cdot v^{(12)}\mathrm{d}x\mathrm{d}t-\int_{0}^{T}\int_{\Omega}v^{(0)}\cdot(\nabla\cdot S^{L}(x,v^{(12)}))\mathrm{d}x\mathrm{d}t\\ &\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad+\int_{0}^{T}\int_{\partial\Omega}v^{(0)}\cdot(\nu\cdot S^{L}(x,v^{(12)})\mathrm{d}S\mathrm{d}t\\ =&\int_{0}^{T}\int_{\Omega}v^{(0)}\cdot\left(\rho\frac{\partial^{2}v^{(12)}}{\partial t^{2}}-\nabla\cdot S^{L}(x,v^{(12)})\right)\mathrm{d}x\mathrm{d}t-\int_{0}^{T}\int_{\partial\Omega}v^{(0)}\cdot(\nu\cdot G(v^{(1)},v^{(2)}))\mathrm{d}S\mathrm{d}t\\ =&\int_{0}^{T}\int_{\Omega}v^{(0)}\cdot(\nabla\cdot G(v^{(1)},v^{(2)}))\mathrm{d}x\mathrm{d}t-\int_{0}^{T}\int_{\partial\Omega}v^{(0)}\cdot(\nu\cdot G(v^{(1)},v^{(2)}))\mathrm{d}S\mathrm{d}t\\ =&-\int_{0}^{T}\int_{\Omega}\mathcal{G}(\nabla v^{(1)},\nabla v^{(2)},\nabla v^{(0)})\mathrm{d}x\mathrm{d}t,\end{split}

Note that

0TΩΛN′′(g(1),g(2))g(0)dSdt=0TΩ𝒢(v(1),v(2),v(0))dxdt=0TΩΛD′′(v(1),v(2))v(0)dSdt=0TΩΛD′′(ΛN(g(1)),ΛN(g(2)))ΛN(g(0))dSdt.\begin{split}&\int_{0}^{T}\int_{\partial\Omega}\Lambda^{{}^{\prime\prime}}_{N}(g^{(1)},g^{(2)})\cdot g^{(0)}\mathrm{d}S\mathrm{d}t\\ =&-\int_{0}^{T}\int_{\Omega}\mathcal{G}(\nabla v^{(1)},\nabla v^{(2)},\nabla v^{(0)})\mathrm{d}x\mathrm{d}t\\ =&-\int_{0}^{T}\int_{\partial\Omega}\Lambda^{{}^{\prime\prime}}_{D}(v^{(1)},v^{(2)})\cdot v^{(0)}\mathrm{d}S\mathrm{d}t\\ =&-\int_{0}^{T}\int_{\partial\Omega}\Lambda^{{}^{\prime\prime}}_{D}(\Lambda^{{}^{\prime}}_{N}(g^{(1)}),\Lambda^{{}^{\prime}}_{N}(g^{(2)}))\cdot\Lambda^{{}^{\prime}}_{N}(g^{(0)})\mathrm{d}S\mathrm{d}t.\end{split}

Therefore, for the rest of the paper, we only need to consider the problem of recovering the parameters λ,μ,ρ,𝒜,,𝒞\lambda,\mu,\rho,\mathscr{A},\mathscr{B},\mathscr{C} from ΛD\Lambda^{{}^{\prime}}_{D} and ΛN′′\Lambda^{{}^{\prime\prime}}_{N}.

Now assume that Λ\Lambda is the displacement-to-traction map associated with λ,μ,ρ,𝒜,,𝒞\lambda,\mu,\rho,\mathscr{A},\mathscr{B},\mathscr{C}, and Λ~\widetilde{\Lambda} is the displacement-to-traction map associated with λ~,μ~,ρ~,𝒜~,~,𝒞~\widetilde{\lambda},\widetilde{\mu},\widetilde{\rho},\widetilde{\mathscr{A}},\widetilde{\mathscr{B}},\widetilde{\mathscr{C}}. Our goal is to prove that Λ=Λ~\Lambda=\widetilde{\Lambda} implies

(λ,μ,ρ,𝒜,,𝒞)=(λ~,μ~,ρ~,𝒜~,~,𝒞~).(\lambda,\mu,\rho,\mathscr{A},\mathscr{B},\mathscr{C})=(\widetilde{\lambda},\widetilde{\mu},\widetilde{\rho},\widetilde{\mathscr{A}},\widetilde{\mathscr{B}},\widetilde{\mathscr{C}}).

4.2. Uniqueness of the wavespeeds

Now assume ΛD=Λ~D\Lambda^{\prime}_{D}=\widetilde{\Lambda}^{\prime}_{D} (or equivalently Λlin=Λ~lin\Lambda^{\mathrm{lin}}=\widetilde{\Lambda}^{\mathrm{lin}}) and denote

gP=cP2ds2=ρλ+2μds2,gS=cS2ds2=ρμds2,g_{P}=c_{P}^{-2}\mathrm{d}s^{2}=\frac{\rho}{\lambda+2\mu}\mathrm{d}s^{2},\quad g_{S}=c_{S}^{-2}\mathrm{d}s^{2}=\frac{\rho}{\mu}\mathrm{d}s^{2},

and similarly

g~P=c~P2ds2=ρ~λ~+2μ~ds2,g~S=c~S2ds2=ρ~μ~ds2.\widetilde{g}_{P}=\widetilde{c}_{P}^{-2}\mathrm{d}s^{2}=\frac{\widetilde{\rho}}{\widetilde{\lambda}+2\widetilde{\mu}}\mathrm{d}s^{2},\quad\widetilde{g}_{S}=\widetilde{c}_{S}^{-2}\mathrm{d}s^{2}=\frac{\widetilde{\rho}}{\widetilde{\mu}}\mathrm{d}s^{2}.

For the uniqueness of the two wavespeeds, we summarize the results in [29], [35] in the following proposition.

Proposition 1.

Assume that (Ω,g)(\Omega,g_{\bullet}) and (Ω,g~)(\Omega,\widetilde{g}_{\bullet}), where =P,S\bullet=P,S, satisfy either of the following two conditions

  1. (1)

    (Ω,g/g~)(\Omega,g_{\bullet}/\widetilde{g}_{\bullet}) is simple;

  2. (2)

    (Ω,g/g~)(\Omega,g_{\bullet}/\widetilde{g}_{\bullet}) satisfies the strictly convex foliation condition.

Then Λlin=Λ~lin\Lambda^{\mathrm{lin}}=\widetilde{\Lambda}^{\mathrm{lin}} implies that

(39) cP=c~P,cS=c~S, or equivalently, μρ=μ~ρ~,λρ=λ~ρ~,in Ω¯.c_{P}=\widetilde{c}_{P},\quad c_{S}=\widetilde{c}_{S},\text{ or equivalently, }\quad\frac{\mu}{\rho}=\frac{\widetilde{\mu}}{\widetilde{\rho}},\quad\frac{\lambda}{\rho}=\frac{\widetilde{\lambda}}{\widetilde{\rho}},\quad\text{in }\overline{\Omega}.

From now on we assume the equality (39) to hold, and therefore g=g~g_{\bullet}=\widetilde{g}_{\bullet} for =S,P\bullet=S,P. We only need to work with the metrics g=c2ds2g_{\bullet}=c_{\bullet}^{-2}\mathrm{d}s^{2} in the following.

4.3. An integral identity

Fix kk large enough. By previous section, we can construct uϱu_{\varrho} and u~ϱ\widetilde{u}_{\varrho} such that

(40) λ,μ,ρuϱHk=𝒪(ϱK),λ~,μ~,ρ~u~ϱHk=𝒪(ϱK),\|\mathcal{L}_{\lambda,\mu,\rho}u_{\varrho}\|_{H^{k}}=\mathcal{O}(\varrho^{-K}),\quad\|\mathcal{L}_{\widetilde{\lambda},\widetilde{\mu},\widetilde{\rho}}\widetilde{u}_{\varrho}\|_{H^{k}}=\mathcal{O}(\varrho^{-K}),

where uϱ=uϱinc+uϱrefu_{\varrho}=u_{\varrho}^{\mathrm{inc}}+u_{\varrho}^{\mathrm{ref}}, u~ϱ=u~ϱinc+u~ϱref\widetilde{u}_{\varrho}=\widetilde{u}_{\varrho}^{\mathrm{inc}}+\widetilde{u}_{\varrho}^{\mathrm{ref}}, and uϱincu^{\mathrm{inc}}_{\varrho} and u~ϱinc\widetilde{u}^{\mathrm{inc}}_{\varrho} are Gaussian beam solutions concentrating near a null-geodesic ϑ\vartheta in (M,dt2+c2ds2)(M,-\mathrm{d}t^{2}+c_{\bullet}^{-2}\mathrm{d}s^{2}). Furthermore we have

𝒩λ,μuϱHk((0,T)×ΩR0)=𝒪(ϱK),𝒩λ~,μ~u~ϱHk((0,T)×ΩR0)=𝒪(ϱK).\|\mathcal{N}_{\lambda,\mu}u_{\varrho}\|_{H^{k}((0,T)\times\partial\Omega\setminus R_{0})}=\mathcal{O}(\varrho^{-K}),\quad\|\mathcal{N}_{\widetilde{\lambda},\widetilde{\mu}}\widetilde{u}_{\varrho}\|_{H^{k}((0,T)\times\partial\Omega\setminus R_{0})}=\mathcal{O}(\varrho^{-K}).

Since Λlin=Λ~lin\Lambda^{\mathrm{lin}}=\widetilde{\Lambda}^{\mathrm{lin}}, we know that jets of (λ,μ,ρ)(\lambda,\mu,\rho) and (λ~,μ~,ρ~)(\widetilde{\lambda},\widetilde{\mu},\widetilde{\rho}) at Ω\partial\Omega are equal (cf. [28]). Therefore we can denote

𝒩=𝒩λ,μ=𝒩λ~,μ~.\mathcal{N}=\mathcal{N}_{\lambda,\mu}=\mathcal{N}_{\widetilde{\lambda},\widetilde{\mu}}.

Also we can extend (λ,μ,ρ)(\lambda,\mu,\rho) and (λ~,μ~,ρ~)(\widetilde{\lambda},\widetilde{\mu},\widetilde{\rho}) smoothly to Ω~\widetilde{\Omega} such that (λ,μ,ρ)=(λ~,μ~,ρ~)(\lambda,\mu,\rho)=(\widetilde{\lambda},\widetilde{\mu},\widetilde{\rho}) on Ω~Ω\widetilde{\Omega}\setminus\Omega. By the constructions in Section 2, we can arrange the boundary values of uϱincu_{\varrho}^{\mathrm{inc}} and u~ϱinc\widetilde{u}_{\varrho}^{\mathrm{inc}} such that

(41) 𝒩(uϱu~ϱ)Hk(R0)=𝒩(uϱincu~ϱinc)Hk(R0)CϱK.\|\mathcal{N}(u_{\varrho}-\widetilde{u}_{\varrho})\|_{H^{k}(R_{0})}=\|\mathcal{N}(u^{\mathrm{inc}}_{\varrho}-\widetilde{u}^{\mathrm{inc}}_{\varrho})\|_{H^{k}(R_{0})}\leq C\varrho^{-K}.

We refer to [16] for more details.

Let fϱ=uϱ|(0,T)×Ωf_{\varrho}=u_{\varrho}|_{(0,T)\times\partial\Omega}. Then one can construct solutions uu and u~\widetilde{u} to

(42) λ,μ,ρu=0,on (0,T)×Ω,𝒩u=fϱ,on (0,T)×Ω,u(0,x)=tu(0,x)=0,for xΩ.\begin{split}\mathcal{L}_{\lambda,\mu,\rho}u&=0,\quad\text{on }(0,T)\times\Omega,\\ \mathcal{N}u&=f_{\varrho},\quad\text{on }(0,T)\times\partial\Omega,\\ u(0,x)=\partial_{t}u(0,x)&=0,\quad\text{for }x\in\Omega.\end{split}

and

(43) λ~,μ~,ρ~u~=0,on (0,T)×Ω,𝒩u~=fϱ,on (0,T)×Ω,u~(0,x)=tu~(0,x)=0,for xΩ.\begin{split}\mathcal{L}_{\widetilde{\lambda},\widetilde{\mu},\widetilde{\rho}}\widetilde{u}&=0,\quad\text{on }(0,T)\times\Omega,\\ \mathcal{N}\widetilde{u}&=f_{\varrho},\quad\text{on }(0,T)\times\partial\Omega,\\ \widetilde{u}(0,x)=\partial_{t}\widetilde{u}(0,x)&=0,\quad\text{for }x\in\Omega.\end{split}

To be more precise, we construct above solutions such that

u=uϱ+Rϱ,u~=u~ϱ+R~ϱ,u=u_{\varrho}+R_{\varrho},\quad\widetilde{u}=\widetilde{u}_{\varrho}+\widetilde{R}_{\varrho},

where RϱR_{\varrho} and R~ϱ\widetilde{R}_{\varrho} satisfy

(44) λ,μ,ρRϱ=λ,μ,ρuϱ,on (0,T)×Ω,𝒩R=0,on (0,T)×Ω,R(0,x)=tR(0,x)=0,for xΩ,\begin{split}\mathcal{L}_{\lambda,\mu,\rho}R_{\varrho}&=-\mathcal{L}_{\lambda,\mu,\rho}u_{\varrho},\quad\text{on }(0,T)\times\Omega,\\ \mathcal{N}R&=0,\quad\text{on }(0,T)\times\partial\Omega,\\ R(0,x)=\partial_{t}R(0,x)&=0,\quad\text{for }x\in\Omega,\end{split}

and

(45) λ~,μ~,ρ~R~ϱ=λ~,μ~,ρ~u~ϱ,on (0,T)×Ω,𝒩R~=(uϱu~ϱ)|(0,T)×Ω,on (0,T)×Ω,R~(0,x)=tR~(0,x)=0,for xΩ.\begin{split}\mathcal{L}_{\widetilde{\lambda},\widetilde{\mu},\widetilde{\rho}}\widetilde{R}_{\varrho}&=-\mathcal{L}_{\widetilde{\lambda},\widetilde{\mu},\widetilde{\rho}}\widetilde{u}_{\varrho},\quad\text{on }(0,T)\times\Omega,\\ \mathcal{N}\widetilde{R}&=(u_{\varrho}-\widetilde{u}_{\varrho})|_{(0,T)\times\partial\Omega},\quad\text{on }(0,T)\times\partial\Omega,\\ \widetilde{R}(0,x)=\partial_{t}\widetilde{R}(0,x)&=0,\quad\text{for }x\in\Omega.\end{split}

By (40) and (41), one can obtain

RϱHk+1,R~ϱHk+1CϱK.\|R_{\varrho}\|_{H^{k+1}},\|\widetilde{R}_{\varrho}\|_{H^{k+1}}\leq C\varrho^{-K}.

using standard theory for linear hyperbolic systems. Take KK large enough, then if k>2k>2 we can use Sobolev imbedding to have

RϱW1,3,R~ϱW1,3=𝒪(ϱ1/2).\|R_{\varrho}\|_{W^{1,3}},\|\widetilde{R}_{\varrho}\|_{W^{1,3}}=\mathcal{O}(\varrho^{-1/2}).

We note also that

uϱW1,3,u~ϱW1,3=𝒪(ϱ1/2).\|u_{\varrho}\|_{W^{1,3}},\|\widetilde{u}_{\varrho}\|_{W^{1,3}}=\mathcal{O}(\varrho^{1/2}).

Let ϑ(j)\vartheta^{(j)} be a null-geodesic, and construct Gaussian beam solutions uκjϱ(j)u^{(j)}_{\kappa_{j}\varrho} and u~κjϱ(j)\widetilde{u}^{(j)}_{\kappa_{j}\varrho}, whose incident waves uκjϱ(j),incu^{(j),\mathrm{inc}}_{\kappa_{j}\varrho} and u~κjϱ(j),inc\widetilde{u}^{(j),\mathrm{inc}}_{\kappa_{j}\varrho} concentrate near ϑ(j)\vartheta^{(j)}, where κj\kappa_{j} is a constant. Then we construct u(j)u^{(j)} and u~(j)\widetilde{u}^{(j)}, j=1,2j=1,2 be solutions to (42) and (43) with fκjϱ=uκjϱ(j)|(0,T)×Ωf_{\kappa_{j}\varrho}=u^{(j)}_{\kappa_{j}\varrho}|_{(0,T)\times\partial\Omega}. Also, let ϑ(0)\vartheta^{(0)} be a backward null-geodesic, and construct Gaussian beam solution uκ0ϱ(0)u^{(0)}_{\kappa_{0}\varrho}, u~κ0ϱ(0)\widetilde{u}^{(0)}_{\kappa_{0}\varrho}, whose incident waves uκ0ϱ(0),incu^{(0),\mathrm{inc}}_{\kappa_{0}\varrho} and u~κ0ϱ(0),inc\widetilde{u}^{(0),\mathrm{inc}}_{\kappa_{0}\varrho} concentrate near ϑ(0)\vartheta^{(0)}. Then let fκ0ϱ(0)=uκ0ϱ(0)|(0,T)×Ωf^{(0)}_{\kappa_{0}\varrho}=u^{(0)}_{\kappa_{0}\varrho}|_{(0,T)\times\partial\Omega} and construct exact solutions u(0)u^{(0)}, u~(0)\widetilde{u}^{(0)} to the backward elastic wave equations

(46) λ,μ,ρu(0)=0,on (0,T)×Ω,𝒩u(0)=fκ0ϱ(0),on (0,T)×Ω,u(0)(T,x)=tu(0)(T,x)=0,for xΩ,\begin{split}\mathcal{L}_{\lambda,\mu,\rho}u^{(0)}&=0,\quad\text{on }(0,T)\times\Omega,\\ \mathcal{N}u^{(0)}&=f^{(0)}_{\kappa_{0}\varrho},\quad\text{on }(0,T)\times\partial\Omega,\\ u^{(0)}(T,x)=\partial_{t}u^{(0)}(T,x)&=0,\quad\text{for }x\in\Omega,\end{split}

and

(47) λ~,μ~,ρ~u~(0)=0,on (0,T)×Ω,𝒩u~(0)=fκ0ϱ(0),on (0,T)×Ω,u~(0)(T,x)=tu~(0)(T,x)=0,for xΩ.\begin{split}\mathcal{L}_{\widetilde{\lambda},\widetilde{\mu},\widetilde{\rho}}\widetilde{u}^{(0)}&=0,\quad\text{on }(0,T)\times\Omega,\\ \mathcal{N}\widetilde{u}^{(0)}&=f^{(0)}_{\kappa_{0}\varrho},\quad\text{on }(0,T)\times\partial\Omega,\\ \widetilde{u}^{(0)}(T,x)=\partial_{t}\widetilde{u}^{(0)}(T,x)&=0,\quad\text{for }x\in\Omega.\end{split}

Then we carry out the second order linearization of traction-to-displacement map Λ\Lambda (and Λ~\widetilde{\Lambda}), the identity

Λ=Λ~,\Lambda=\widetilde{\Lambda},

yields

0TΩΛN′′(fκ1ϱ(1),fκ2ϱ(2))fκ0ϱ(0)dSdt=0TΩΛ~N′′(fκ1ϱ(1),fκ2ϱ(2))fκ0ϱ(0)dSdt,\int_{0}^{T}\int_{\partial\Omega}\Lambda_{N}^{\prime\prime}(f^{(1)}_{\kappa_{1}\varrho},f^{(2)}_{\kappa_{2}\varrho})\cdot f^{(0)}_{\kappa_{0}\varrho}\mathrm{d}S\mathrm{d}t=\int_{0}^{T}\int_{\partial\Omega}\widetilde{\Lambda}_{N}^{\prime\prime}(f^{(1)}_{\kappa_{1}\varrho},f^{(2)}_{\kappa_{2}\varrho})\cdot f^{(0)}_{\kappa_{0}\varrho}\mathrm{d}S\mathrm{d}t,

and using (38) we obtain

(48) :=0TΩ𝒢(u(1),u(2),u(0))dxdt=0TΩ𝒢~(u~(1),u~(2),u~(0))dxdt=:~,\mathcal{I}:=\int_{0}^{T}\int_{\Omega}\mathcal{G}(\nabla u^{(1)},\nabla u^{(2)},\nabla u^{(0)})\,\mathrm{d}x\mathrm{d}t=\int_{0}^{T}\int_{\Omega}\widetilde{\mathcal{G}}(\nabla\widetilde{u}^{(1)},\nabla\widetilde{u}^{(2)},\nabla\widetilde{u}^{(0)})\,\mathrm{d}x\mathrm{d}t=:\widetilde{\mathcal{I}},

In the following, for the sake of simplicity we denote

uκ1ϱ(1),inc=eiκ1ϱφ(1)χ(1)(𝐚(1)+𝒪(ϱ1)),uκ2ϱ(2),inc=eiκ2ϱφ(2)χ(2)(𝐚(2)+𝒪(ϱ1)),uκ0ϱ(0),inc=eiκ0ϱφ(0)χ(0)(𝐚(0)+𝒪(ϱ1)),\begin{split}u_{\kappa_{1}\varrho}^{(1),\mathrm{inc}}=e^{\mathrm{i}\kappa_{1}\varrho\varphi^{(1)}}\chi^{(1)}(\mathbf{a}^{(1)}+\mathcal{O}(\varrho^{-1})),\\ u_{\kappa_{2}\varrho}^{(2),\mathrm{inc}}=e^{\mathrm{i}\kappa_{2}\varrho\varphi^{(2)}}\chi^{(2)}(\mathbf{a}^{(2)}+\mathcal{O}(\varrho^{-1})),\\ u_{\kappa_{0}\varrho}^{(0),\mathrm{inc}}=e^{\mathrm{i}\kappa_{0}\varrho\varphi^{(0)}}\chi^{(0)}(\mathbf{a}^{(0)}+\mathcal{O}(\varrho^{-1})),\end{split}

where 𝐚(j):=𝐚0(j)\mathbf{a}^{(j)}:=\mathbf{a}_{0}^{(j)}. If the support of uκ1ϱ(1)uκ2ϱ(2)uκ0ϱ(0)u_{\kappa_{1}\varrho}^{(1)}u_{\kappa_{2}\varrho}^{(2)}u_{\kappa_{0}\varrho}^{(0)} is equal to the support of uκ1ϱ(1),incuκ2ϱ(2),incuκ0ϱ(0),incu_{\kappa_{1}\varrho}^{(1),\mathrm{inc}}u_{\kappa_{2}\varrho}^{(2),\mathrm{inc}}u_{\kappa_{0}\varrho}^{(0),\mathrm{inc}} (which is the case in the following proof), we have (see [41] for more details)

(49) ϱ1iκ1κ2κ3=ρ20TΩeiϱSχ(1)χ(2)χ(0)𝒜dxdt+𝒪(ϱ1/2),\varrho^{-1}\frac{\mathrm{i}}{\kappa_{1}\kappa_{2}\kappa_{3}}\mathcal{I}=\rho^{2}\int_{0}^{T}\int_{\Omega}e^{\mathrm{i}\varrho S}\chi^{(1)}\chi^{(2)}\chi^{(0)}\mathcal{A}\mathrm{d}x\mathrm{d}t+\mathcal{O}(\varrho^{-1/2}),

where

(50) S=κ1φ(1)+κ2φ(2)+κ0φ(0)S=\kappa_{1}\varphi^{(1)}+\kappa_{2}\varphi^{(2)}+\kappa_{0}\varphi^{(0)}

and

𝒜:=𝒢(𝐚(1)φ(1),𝐚(2)φ(2),𝐚(0)φ(0))\mathcal{A}:=\mathcal{G}(\mathbf{a}^{(1)}\otimes\nabla\varphi^{(1)},\mathbf{a}^{(2)}\otimes\nabla\varphi^{(2)},\mathbf{a}^{(0)}\otimes\nabla\varphi^{(0)})

with

𝒢(𝐚(1)φ(1),𝐚(2)φ(2),𝐚(0)φ(0))=[(𝐚(1)φ(1))(𝐚(2)φ(0))(𝐚(0)φ(2))+(𝐚(2)φ(2))(𝐚(1)φ(0))(𝐚(0)φ(1))+(𝐚(2)φ(1))(𝐚(1)φ(2))(𝐚(0)φ(0))]+𝒜4((𝐚(2)φ(1))(𝐚(1)φ(0))(𝐚(0)φ(2))+(𝐚(1)φ(2))(𝐚(2)φ(0))(𝐚(0)φ(1)))+(λ+)[(𝐚(1)φ(1))(𝐚(2)𝐚(0))(φ(2)φ(0))+(𝐚(2)φ(2))(𝐚(1)𝐚(0))(φ(1)φ(0))+(𝐚(1)𝐚(2))(φ(1)φ(2))(𝐚(0)φ(0))]+2𝒞(𝐚(1)φ(1))(𝐚(2)φ(2))(𝐚(0)φ(0))+(μ+𝒜4)((𝐚(1)𝐚(2))(φ(1)𝐚(0))(φ(2)φ(0))+(φ(1)φ(2))(𝐚(1)𝐚(0))(𝐚(2)φ(0))+(𝐚(2)𝐚(1))(φ(2)𝐚(0))(φ(1)φ(0))+(𝐚(2)𝐚(0))(𝐚(1)φ(0))(φ(1)φ(2))+(φ(1)𝐚(2))(φ(2)φ(0))(𝐚(1)𝐚(0))+(φ(2)𝐚(1))(φ(1)φ(0))(𝐚(2)𝐚(0))).\begin{split}&\mathcal{G}(\mathbf{a}^{(1)}\otimes\nabla\varphi^{(1)},\mathbf{a}^{(2)}\otimes\nabla\varphi^{(2)},\mathbf{a}^{(0)}\otimes\nabla\varphi^{(0)})\\ =&\mathscr{B}[(\mathbf{a}^{(1)}\cdot\nabla\varphi^{(1)})(\mathbf{a}^{(2)}\cdot\nabla\varphi^{(0)})(\mathbf{a}^{(0)}\cdot\nabla\varphi^{(2)})+(\mathbf{a}^{(2)}\cdot\nabla\varphi^{(2)})(\mathbf{a}^{(1)}\cdot\nabla\varphi^{(0)})(\mathbf{a}^{(0)}\cdot\nabla\varphi^{(1)})\\ &\quad\quad\quad\quad+(\mathbf{a}^{(2)}\cdot\nabla\varphi^{(1)})(\mathbf{a}^{(1)}\cdot\nabla\varphi^{(2)})(\mathbf{a}^{(0)}\cdot\nabla\varphi^{(0)})]\\ &+\frac{\mathscr{A}}{4}\left((\mathbf{a}^{(2)}\cdot\nabla\varphi^{(1)})(\mathbf{a}^{(1)}\cdot\nabla\varphi^{(0)})(\mathbf{a}^{(0)}\cdot\nabla\varphi^{(2)})+(\mathbf{a}^{(1)}\cdot\nabla\varphi^{(2)})(\mathbf{a}^{(2)}\cdot\nabla\varphi^{(0)})(\mathbf{a}^{(0)}\cdot\nabla\varphi^{(1)})\right)\\ &+(\lambda+\mathscr{B})[(\mathbf{a}^{(1)}\cdot\nabla\varphi^{(1)})(\mathbf{a}^{(2)}\cdot\mathbf{a}^{(0)})(\nabla\varphi^{(2)}\cdot\nabla\varphi^{(0)})+(\mathbf{a}^{(2)}\cdot\nabla\varphi^{(2)})(\mathbf{a}^{(1)}\cdot\mathbf{a}^{(0)})(\nabla\varphi^{(1)}\cdot\nabla\varphi^{(0)})\\ &\quad\quad+(\mathbf{a}^{(1)}\cdot\mathbf{a}^{(2)})(\nabla\varphi^{(1)}\cdot\nabla\varphi^{(2)})(\mathbf{a}^{(0)}\cdot\nabla\varphi^{(0)})]+2\mathscr{C}(\mathbf{a}^{(1)}\cdot\nabla\varphi^{(1)})(\mathbf{a}^{(2)}\cdot\nabla\varphi^{(2)})(\mathbf{a}^{(0)}\cdot\nabla\varphi^{(0)})\\ &+(\mu+\frac{\mathscr{A}}{4})\Big{(}(\mathbf{a}^{(1)}\cdot\mathbf{a}^{(2)})(\nabla\varphi^{(1)}\cdot\mathbf{a}^{(0)})(\nabla\varphi^{(2)}\cdot\nabla\varphi^{(0)})+(\nabla\varphi^{(1)}\cdot\nabla\varphi^{(2)})(\mathbf{a}^{(1)}\cdot\mathbf{a}^{(0)})(\mathbf{a}^{(2)}\cdot\nabla\varphi^{(0)})\\ &\quad\quad+(\mathbf{a}^{(2)}\cdot\mathbf{a}^{(1)})(\nabla\varphi^{(2)}\cdot\mathbf{a}^{(0)})(\nabla\varphi^{(1)}\cdot\nabla\varphi^{(0)})+(\mathbf{a}^{(2)}\cdot\mathbf{a}^{(0)})(\mathbf{a}^{(1)}\cdot\nabla\varphi^{(0)})(\nabla\varphi^{(1)}\cdot\nabla\varphi^{(2)})\\ &\quad\quad+(\nabla\varphi^{(1)}\cdot\mathbf{a}^{(2)})(\nabla\varphi^{(2)}\cdot\nabla\varphi^{(0)})(\mathbf{a}^{(1)}\cdot\mathbf{a}^{(0)})+(\nabla\varphi^{(2)}\cdot\mathbf{a}^{(1)})(\nabla\varphi^{(1)}\cdot\nabla\varphi^{(0)})(\mathbf{a}^{(2)}\cdot\mathbf{a}^{(0)})\Big{)}.\end{split}

4.4. Construction of S-S-P waves

We first introduce the notation

Lq,±M:={(τ,ξ)TqM,τ2=c2|ξ|2,±τ>0},L_{q}^{\bullet,\pm}M:=\{(\tau,\xi)\in T^{*}_{q}M,\,\tau^{2}=c_{\bullet}^{2}|\xi|^{2},\,\pm\tau>0\},

where =P,S\bullet=P,S.

Fix a point x0Ωx_{0}\in\Omega and take q=(T2,x0)Mq=(\frac{T}{2},x_{0})\in M. Take ϑ(j):(t(j),t+(j))Ω\vartheta^{(j)}:(t_{-}^{(j)},t_{+}^{(j)})\rightarrow\Omega be a null-geodesic in ((0,T)×Ω,g¯S)((0,T)\times\Omega,\overline{g}_{S}) for j=1,2j=1,2, and ϑ(0):(t+(0),t(0))(0,T)×Ω\vartheta^{(0)}:(t_{+}^{(0)},t_{-}^{(0)})\rightarrow(0,T)\times\Omega be a backward null-geodesic in ((0,T)×Ω,g¯P)((0,T)\times\Omega,\overline{g}_{P}), satisfying the following conditions:

  1. (1)

    ϑ(1),ϑ(2),ϑ(0)\vartheta^{(1)},\vartheta^{(2)},\vartheta^{(0)} intersect at qq, that is

    ϑ(1)(T2)=ϑ(2)(T2)=ϑ(0)(T2)=p;\vartheta^{(1)}\left(\frac{T}{2}\right)=\vartheta^{(2)}\left(\frac{T}{2}\right)=\vartheta^{(0)}\left(\frac{T}{2}\right)=p;
  2. (2)

    denote ζ(j)=dϑ(j)|q\zeta^{(j)}=\mathrm{d}\vartheta^{(j)}|_{q}, then ζ(1),ζ(2)LqS,+M\zeta^{(1)},\zeta^{(2)}\in L^{S,+}_{q}M, ζ(0)LqP,M\zeta^{(0)}\in L^{P,-}_{q}M such that

    κ1ζ(1)+κ2ζ(2)+κ0ζ(0)=0.\kappa_{1}\zeta^{(1)}+\kappa_{2}\zeta^{(2)}+\kappa_{0}\zeta^{(0)}=0.

    with κ1,κ2,κ0\kappa_{1},\kappa_{2},\kappa_{0} not equal to zero at the same time, ζ(1)\zeta^{(1)} and ζ(2)\zeta^{(2)} are linearly independent.

Since (Ω,g)(\Omega,g_{\bullet}) is non-trapping and Ω\partial\Omega is convex with respect to gg_{\bullet}, we can choose γ(1)\gamma^{(1)} and γ(0)\gamma^{(0)} such that

  • γ(1)([t(1),T2])\gamma^{(1)}([t_{-}^{(1)},\frac{T}{2}]), as a geodesic in (Ω¯,gS)(\overline{\Omega},g_{S}), has no conjugate points on it;

  • γ(0)([T2,t(0)])\gamma^{(0)}([\frac{T}{2},t_{-}^{(0)}]), as a geodesic in (Ω¯,gP)(\overline{\Omega},g_{P}), has no conjugate points on it.

For ζ(1),ζ(0)\zeta^{(1)},\zeta^{(0)} given, the vector ζ(2)\zeta^{(2)} can be chosen in the following way (see also [11]). Take ζ(1)LqS,+M\zeta^{(1)}\in L_{q}^{S,+}M, ζ(0)LqP,M\zeta^{(0)}\in L_{q}^{P,-}M. We write ζ(1)=(τ(1),ξ(1))\zeta^{(1)}=(\tau^{(1)},\xi^{(1)}), ζ(0)=(τ(0),ξ(0))\zeta^{(0)}=(\tau^{(0)},\xi^{(0)}), ξ(1),ξ(0)3\xi^{(1)},\xi^{(0)}\in\mathbb{R}^{3}, |ξ(1)|=|ξ(0)|=1|\xi^{(1)}|=|\xi^{(0)}|=1. Then we have

(τ(1))2=cS2|ξ(1)|2,(τ(0))2=cP2|ξ(0)|2.(\tau^{(1)})^{2}=c_{S}^{2}|\xi^{(1)}|^{2},\quad(\tau^{(0)})^{2}=c_{P}^{2}|\xi^{(0)}|^{2}.

Then, we have τ(1)=cS\tau^{(1)}=c_{S} and τ(0)=cP\tau^{(0)}=-c_{P}. Then we consider the vector ζ(2)\zeta^{(2)} of the form ζ(2)=aζ(1)+bζ(0)\zeta^{(2)}=a\zeta^{(1)}+b\zeta^{(0)}, a,ba,b\in\mathbb{R}. Without loss of generality, we take b=1b=1. In order for ζ(2)\zeta^{(2)} to be in LqS,+ML_{q}^{S,+}M and ζ(1),ζ(2)\zeta^{(1)},\zeta^{(2)} are linearly independent, we need

(aτ(1)+τ(0))2=cS2|aξ(1)+ξ(0)|2.(a\tau^{(1)}+\tau^{(0)})^{2}=c_{S}^{2}|a\xi^{(1)}+\xi^{(0)}|^{2}.

The above equation, by simple calculation, is equivalent to

2a(cS2ξ(1)ξ(0)+cScP)=cP2cS2.2a\left(c_{S}^{2}\xi^{(1)}\cdot\xi^{(0)}+c_{S}c_{P}\right)=c_{P}^{2}-c_{S}^{2}.

Since |cS2ξ(1)ξ(0)|cS2<cScP|c_{S}^{2}\xi^{(1)}\cdot\xi^{(0)}|\leq c_{S}^{2}<c_{S}c_{P}, the above equation always has a solution

a=cP2cS22(cS2cosψ+cScP)0.a=\frac{c_{P}^{2}-c_{S}^{2}}{2(c_{S}^{2}\cos\psi+c_{S}c_{P})}\neq 0.

Then we get a vector ζ(2)LpS,+M\zeta^{(2)}\in L_{p}^{S,+}M.

Assume ϑ\vartheta is a null-geodesic with endpoints on M\partial M, we extend ϑ\vartheta to a (collection of) broken null-geodesics Υ\Upsilon in the following inductive way. If ϑ([t0,t1])Υ\vartheta([t_{0},t_{1}])\subset\Upsilon is a null-geodesic in (M¯,g¯)(\overline{M},\overline{g}_{\bullet}) joining two boundary boundary points ϑ(t0)\vartheta(t_{0}) and ϑ(t1)\vartheta(t_{1}) with t1<Tt_{1}<T, then add the segments ϑref,P\vartheta^{\mathrm{ref},P} and ϑref,S\vartheta^{\mathrm{ref},S} to Υ\Upsilon, where

  • ϑref,P:[t1,t2P]\vartheta^{\mathrm{ref},P}:[t_{1},t_{2}^{P}] is a null-geodesic in (M¯,g¯P)(\overline{M},\overline{g}_{P}) connecting two boundary points ϑref,P(t1)\vartheta^{\mathrm{ref},P}(t_{1}) and ϑref,P(t2P)\vartheta^{\mathrm{ref},P}(t_{2}^{P}), with ϑref,P(t1)=ϑ(t1)\vartheta^{\mathrm{ref},P}(t_{1})=\vartheta(t_{1}) and ϑ˙ref,P(t1)|TM=ϑ˙(t1)|TM\dot{\vartheta}^{\mathrm{ref},P}(t_{1})^{\flat}|_{T\partial M}=\dot{\vartheta}(t_{1})^{\flat}|_{T\partial M};

  • ϑref,S:[t1,t2S]\vartheta^{\mathrm{ref},S}:[t_{1},t_{2}^{S}] is a null-geodesic in (M¯,g¯S)(\overline{M},\overline{g}_{S}) connecting two boundary points ϑref,S(t1)\vartheta^{\mathrm{ref},S}(t_{1}) and ϑref,S(t2S)\vartheta^{\mathrm{ref},S}(t_{2}^{S}), with ϑref,S(t1)=ϑ(t1)\vartheta^{\mathrm{ref},S}(t_{1})=\vartheta(t_{1}) and ϑ˙ref,S(t1)|TM=ϑ˙(t1)|TM\dot{\vartheta}^{\mathrm{ref},S}(t_{1})^{\flat}|_{T\partial M}=\dot{\vartheta}(t_{1})^{\flat}|_{T\partial M}.

Following the above procedure, we extend ϑ(1)\vartheta^{(1)} and ϑ(2)\vartheta^{(2)} to Υ(1)\Upsilon^{(1)} and Υ(2)\Upsilon^{(2)}, and extend ϑ(0)\vartheta^{(0)} backward to Υ(0)\Upsilon^{(0)}. Notice that

Υ(1)([t(1),T2])=ϑ(1)([t(1),T2]),Υ(2)([t(2),T2])=ϑ(2)([t(2),T2]),Υ(0)([T2,t(0)])=ϑ(0)([T2,t(0)]).\Upsilon^{(1)}([t_{-}^{(1)},\frac{T}{2}])=\vartheta^{(1)}([t_{-}^{(1)},\frac{T}{2}]),\quad\Upsilon^{(2)}([t_{-}^{(2)},\frac{T}{2}])=\vartheta^{(2)}([t_{-}^{(2)},\frac{T}{2}]),\quad\Upsilon^{(0)}([\frac{T}{2},t_{-}^{(0)}])=\vartheta^{(0)}([\frac{T}{2},t_{-}^{(0)}]).

Since γ(1)([t(1),T2])\gamma^{(1)}([t_{-}^{(1)},\frac{T}{2}]) has no conjugate points, ϑ(1)([t(1),T2])\vartheta^{(1)}([t_{-}^{(1)},\frac{T}{2}]) and ϑ(2)([t(2),T2])\vartheta^{(2)}([t_{-}^{(2)},\frac{T}{2}]) intersect only at pp. Because γ(0):[T2,t(0)]Ω\gamma^{(0)}:[\frac{T}{2},t_{-}^{(0)}]\rightarrow\Omega is length-minimizing (w.r.t. the metric gPg_{P}) for any two points on it and cP>cSc_{P}>c_{S}, so Υ(j)\Upsilon^{(j)} (j=1,2)(j=1,2) can not intersect ϑ(0)((T2,t(0)])\vartheta^{(0)}((\frac{T}{2},t_{-}^{(0)}]). In conclusion, we know that Υ(1),Υ(2),Υ(0)\Upsilon^{(1)},\Upsilon^{(2)},\Upsilon^{(0)} intersect only at the point qq, that is,

Υ(1)Υ(2)Υ(0)={q}.\Upsilon^{(1)}\cap\Upsilon^{(2)}\cap\Upsilon^{(0)}=\{q\}.

Now, construct u(j),u~(j)u^{(j)},\widetilde{u}^{(j)}, j=1,2,0j=1,2,0 as in Section 4.3. Consider u(j)u^{(j)} first, we can write

u(j)=uκjϱ(j)+Rκjϱ(j),uκjϱ(j)=uκjϱ(j),inc+uκjϱ(j),ref,u^{(j)}=u^{(j)}_{\kappa_{j}\varrho}+R^{(j)}_{\kappa_{j}\varrho},\quad u^{(j)}_{\kappa_{j}\varrho}=u^{(j),\mathrm{inc}}_{\kappa_{j}\varrho}+u^{(j),\mathrm{ref}}_{\kappa_{j}\varrho},

for j=1,2,0j=1,2,0, where uκjϱ(j),incu^{(j),\mathrm{inc}}_{\kappa_{j}\varrho} is a Gaussian beam solution concentrating near ϑ(j)\vartheta^{(j)}. We have similar expressions for u~(j)\widetilde{u}^{(j)}. We note that uκjϱ(1),inc,uκjϱ(2),incu^{(1),\mathrm{inc}}_{\kappa_{j}\varrho},u^{(2),\mathrm{inc}}_{\kappa_{j}\varrho} represent two incident S-waves, uκjϱ(0),incu^{(0),\mathrm{inc}}_{\kappa_{j}\varrho} represents an incident P-wave. By the above consideration, the solutions can be constructed such that the intersection of the supports of uκjϱ(1),uκjϱ(2),uκjϱ(0)u^{(1)}_{\kappa_{j}\varrho},u^{(2)}_{\kappa_{j}\varrho},u^{(0)}_{\kappa_{j}\varrho} is a small neighborhood of pp. By the constructions in Section 2, we have

𝐚(1)|ϑ(1)=det(YS(1))1/2cS1/2ρ1/2𝐞(1),𝐚(2)|ϑ(2)=det(YS(2))1/2cS1/2ρ1/2𝐞(2),𝐚(0)|ϑ(0)=det(YP(0))1/2cP1/2ρ1/2φ(0),\begin{split}\mathbf{a}^{(1)}|_{\vartheta^{(1)}}=&\det(Y_{S}^{(1)})^{-1/2}c_{S}^{-1/2}\rho^{-1/2}\mathbf{e}^{(1)},\\ \mathbf{a}^{(2)}|_{\vartheta^{(2)}}=&\det(Y_{S}^{(2)})^{-1/2}c_{S}^{-1/2}\rho^{-1/2}\mathbf{e}^{(2)},\\ \mathbf{a}^{(0)}|_{\vartheta^{(0)}}=&\det(Y_{P}^{(0)})^{-1/2}c_{P}^{-1/2}\rho^{-1/2}\nabla\varphi^{(0)},\ \end{split}

where 𝐞(j)\mathbf{e}^{(j)} is a parallel vector field on γ(j)\gamma^{(j)}, which is normal to γ(j)\gamma^{(j)}, for j=1,2j=1,2. We can, without loss of generality, assume that

φ(j)(q)=cS1(q)ξ(j),𝐞(j)(q)=cS1(q)α(j),j=1,2,φ(0)(q)=cP1(q)ξ(0),\nabla\varphi^{(j)}(q)=c_{S}^{-1}(q)\xi^{(j)},\quad\mathbf{e}^{(j)}(q)=c_{S}^{-1}(q)\alpha^{(j)},\quad j=1,2,\quad\nabla\varphi^{(0)}(q)=c_{P}^{-1}(q)\xi^{(0)},

with α(j)3\alpha^{(j)}\in\mathbb{R}^{3}, |α(j)|=1|\alpha^{(j)}|=1, and α(j)ξ(j)\alpha^{(j)}\perp\xi^{(j)}.

With the above choice of ζ(1),ζ(2),ζ(0)\zeta^{(1)},\zeta^{(2)},\zeta^{(0)} we have (cf. [41, Lemma 4])

  1. (1)

    S(q)=0S(q)=0;

  2. (2)

    (tS(q),S(q))=0(\partial_{t}S(q),\nabla S(q))=0;

  3. (3)

    S(x)cd(x,q)2\Im S(x)\geq cd(x,q)^{2} for xx in a neighborhood of qq, where c>0c>0 is a constant,

where SS is defined in (50). Substituting these solutions into (48), and using the method of stationary phase, we end up with (cf. (49))

ϱ1iκ1κ2κ3=c0𝒜(q)+𝒪(ϱ1/2)=c0𝒜~(q)+𝒪(ϱ1/2)=ϱ1iκ1κ2κ3~,\varrho^{-1}\frac{\mathrm{i}}{\kappa_{1}\kappa_{2}\kappa_{3}}\mathcal{I}=c_{0}\mathcal{A}(q)+\mathcal{O}(\varrho^{-1/2})=c_{0}\widetilde{\mathcal{A}}(q)+\mathcal{O}(\varrho^{-1/2})=\varrho^{-1}\frac{\mathrm{i}}{\kappa_{1}\kappa_{2}\kappa_{3}}\widetilde{\mathcal{I}},

with some constant c00c_{0}\neq 0. Letting ϱ+\varrho\rightarrow+\infty, we have

(51) 𝒜(q)=𝒜~(q)\mathcal{A}(q)=\widetilde{\mathcal{A}}(q)

We refer to [41] for more details.

4.5. Determination of ρ3/2(λ+)\rho^{-3/2}(\lambda+\mathscr{B}) and ρ3/2(4μ+𝒜)\rho^{-3/2}(4\mu+\mathscr{A})

We assume α(1)=α(2)=α\alpha^{(1)}=\alpha^{(2)}=\alpha and αspan{ξ(2),ξ(0)}\alpha\perp\mathrm{span}\{\xi^{(2)},\xi^{(0)}\}. Since ξ(1)span{ξ(2),ξ(0)}\xi^{(1)}\in\mathrm{span}\{\xi^{(2)},\xi^{(0)}\}, αξ(1)=0\alpha\cdot\xi^{(1)}=0. Now we compute

det(YS(1))1/2det(YS(2))1/2det(YP(0))1/2cP5/2cS5ρ3/2𝒜(q)=(x0)[(αξ(1))(αξ(0))(ξ(0)ξ(2))+(αξ(2))(αξ(0))(ξ(0)ξ(1))+(αξ(1))(αξ(2))(ξ(0)ξ(0))]+𝒜4(x0)((αξ(1))(α(1)ξ(0))(ξ(0)ξ(2))+(αξ(2))(αξ(0))(ξ(0)ξ(1)))+(λ+)(x0)[(αξ(1))(αξ(0))(ξ(2)ξ(0))+(αξ(2))(αξ(0))(ξ(1)ξ(0))+(αα)(ξ(1)ξ(2))(ξ(0)ξ(0))]+2𝒞(x0)(αξ(1))(αξ(2))(ξ(0)ξ(0))+(μ+𝒜4)(x0)((αα)(ξ(1)ξ(0))(ξ(2)ξ(0))+(ξ(1)ξ(2))(αξ(0))(αξ(0))+(αα)(ξ(2)ξ(0))(ξ(1)ξ(0))+(αξ(0))(αξ(0))(ξ(1)ξ(2))+(ξ(1)α)(ξ(2)ξ(0))(αξ(0))+(ξ(2)α)(ξ(1)ξ(0))(αξ(0)))=(λ+)(x0)ξ(1)ξ(2)+(2μ+𝒜2)(x0)(ξ(1)ξ(0))(ξ(2)ξ(0)).\begin{split}&\det(Y_{S}^{(1)})^{1/2}\det(Y_{S}^{(2)})^{1/2}\det(Y_{P}^{(0)})^{1/2}c_{P}^{5/2}c_{S}^{5}\rho^{3/2}\mathcal{A}(q)\\ =&\mathscr{B}(x_{0})[(\alpha\cdot\xi^{(1)})(\alpha\cdot\xi^{(0)})(\xi^{(0)}\cdot\xi^{(2)})+(\alpha\cdot\xi^{(2)})(\alpha\cdot\xi^{(0)})(\xi^{(0)}\cdot\xi^{(1)})\\ &\quad\quad\quad\quad+(\alpha\cdot\xi^{(1)})(\alpha\cdot\xi^{(2)})(\xi^{(0)}\cdot\xi^{(0)})]\\ &+\frac{\mathscr{A}}{4}(x_{0})\left((\alpha\cdot\xi^{(1)})(\alpha^{(1)}\cdot\xi^{(0)})(\xi^{(0)}\cdot\xi^{(2)})+(\alpha\cdot\xi^{(2)})(\alpha\cdot\xi^{(0)})(\xi^{(0)}\cdot\xi^{(1)})\right)\\ &+(\lambda+\mathscr{B})(x_{0})[(\alpha\cdot\xi^{(1)})(\alpha\cdot\xi^{(0)})(\xi^{(2)}\cdot\xi^{(0)})+(\alpha\cdot\xi^{(2)})(\alpha\cdot\xi^{(0)})(\xi^{(1)}\cdot\xi^{(0)})\\ &\quad\quad+(\alpha\cdot\alpha)(\xi^{(1)}\cdot\xi^{(2)})(\xi^{(0)}\cdot\xi^{(0)})]+2\mathscr{C}(x_{0})(\alpha\cdot\xi^{(1)})(\alpha\cdot\xi^{(2)})(\xi^{(0)}\cdot\xi^{(0)})\\ &+(\mu+\frac{\mathscr{A}}{4})(x_{0})\Big{(}(\alpha\cdot\alpha)(\xi^{(1)}\cdot\xi^{(0)})(\xi^{(2)}\cdot\xi^{(0)})+(\xi^{(1)}\cdot\xi^{(2)})(\alpha\cdot\xi^{(0)})(\alpha\cdot\xi^{(0)})\\ &\quad\quad+(\alpha\cdot\alpha)(\xi^{(2)}\cdot\xi^{(0)})(\xi^{(1)}\cdot\xi^{(0)})+(\alpha\cdot\xi^{(0)})(\alpha\cdot\xi^{(0)})(\xi^{(1)}\cdot\xi^{(2)})\\ &\quad\quad+(\xi^{(1)}\cdot\alpha)(\xi^{(2)}\cdot\xi^{(0)})(\alpha\cdot\xi^{(0)})+(\xi^{(2)}\cdot\alpha)(\xi^{(1)}\cdot\xi^{(0)})(\alpha\cdot\xi^{(0)})\Big{)}\\ =&(\lambda+\mathscr{B})(x_{0})\xi^{(1)}\cdot\xi^{(2)}+(2\mu+\frac{\mathscr{A}}{2})(x_{0})(\xi^{(1)}\cdot\xi^{(0)})(\xi^{(2)}\cdot\xi^{(0)}).\end{split}

Assume that

ξ(1)ξ(0)=cosψ,\xi^{(1)}\cdot\xi^{(0)}=\cos\psi,

then

ξ(1)ξ(2)=ξ(1)(aξ(1)+ξ(0))=a|ξ(1)|2+ξ(1)ξ(0)=cP2cS22(cS2cosψ+cScP)+cosψ,ξ(2)ξ(0)=(aξ(1)+ξ(0))ξ(0)=aξ(1)ξ(0)+|ξ(0)|2=1+cP2cS22(cS2cosψ+cScP)cosψ.\begin{split}&\xi^{(1)}\cdot\xi^{(2)}=\xi^{(1)}\cdot(a\xi^{(1)}+\xi^{(0)})=a|\xi^{(1)}|^{2}+\xi^{(1)}\cdot\xi^{(0)}=\frac{c_{P}^{2}-c_{S}^{2}}{2(c_{S}^{2}\cos\psi+c_{S}c_{P})}+\cos\psi,\quad\\ &\xi^{(2)}\cdot\xi^{(0)}=(a\xi^{(1)}+\xi^{(0)})\cdot\xi^{(0)}=a\xi^{(1)}\cdot\xi^{(0)}+|\xi^{(0)}|^{2}=1+\frac{c_{P}^{2}-c_{S}^{2}}{2(c_{S}^{2}\cos\psi+c_{S}c_{P})}\cos\psi.\end{split}

Thus we have

det(YS(1))1/2det(YS(2))1/2det(YP(0))1/2cP5/2cS5ρ3/2𝒜(q)=(λ+)[cP2cS22(cS2cosψ+cScP)+cosψ]+(2μ+𝒜2)[1+cP2cS22(cS2cosψ+cScP)cosψ]cosψ.\begin{split}&\det(Y_{S}^{(1)})^{1/2}\det(Y_{S}^{(2)})^{1/2}\det(Y_{P}^{(0)})^{1/2}c_{P}^{5/2}c_{S}^{5}\rho^{3/2}\mathcal{A}(q)\\ =&(\lambda+\mathscr{B})\left[\frac{c_{P}^{2}-c_{S}^{2}}{2(c_{S}^{2}\cos\psi+c_{S}c_{P})}+\cos\psi\right]+(2\mu+\frac{\mathscr{A}}{2})\left[1+\frac{c_{P}^{2}-c_{S}^{2}}{2(c_{S}^{2}\cos\psi+c_{S}c_{P})}\cos\psi\right]\cos\psi.\end{split}

Similarly, if we replace u(j)u^{(j)} by u~(j)\widetilde{u}^{(j)} in the above procedure, and notice that u(j),incu^{(j),\mathrm{inc}} and u~(j),inc\widetilde{u}^{(j),\mathrm{inc}} are Gaussian beam solutions along the same null-geodesic ϑ(j)\vartheta^{(j)}, we have

𝐚~(1)|ϑ(1)=det(YS(1))1/2cS1/2ρ~1/2𝐞(1),𝐚~(2)|ϑ(2)=det(YS(2))1/2cS1/2ρ~1/2𝐞(2),𝐚~(0)|ϑ(0)=det(YP(0))1/2cP1/2ρ~1/2φ(0),\begin{split}\widetilde{\mathbf{a}}^{(1)}|_{\vartheta^{(1)}}=&\det(Y_{S}^{(1)})^{-1/2}c_{S}^{-1/2}\widetilde{\rho}^{-1/2}\mathbf{e}^{(1)},\\ \widetilde{\mathbf{a}}^{(2)}|_{\vartheta^{(2)}}=&\det(Y_{S}^{(2)})^{-1/2}c_{S}^{-1/2}\widetilde{\rho}^{-1/2}\mathbf{e}^{(2)},\\ \widetilde{\mathbf{a}}^{(0)}|_{\vartheta^{(0)}}=&\det(Y_{P}^{(0)})^{-1/2}c_{P}^{-1/2}\widetilde{\rho}^{-1/2}\nabla\varphi^{(0)},\ \end{split}

Then have

det(YS(1))1/2det(YS(2))1/2det(YP(0))1/2cP5/2cS5ρ~3/2𝒜~(q)=((λ~+~)[cP2cS22(cS2cosψ+cScP)+cosψ]+(2μ~+𝒜~2)[1+cP2cS22(cS2cosψ+cScP)cosψ]cosψ)(x0).\begin{split}&\det(Y_{S}^{(1)})^{1/2}\det(Y_{S}^{(2)})^{1/2}\det(Y_{P}^{(0)})^{1/2}c_{P}^{5/2}c_{S}^{5}\widetilde{\rho}^{3/2}\widetilde{\mathcal{A}}(q)\\ =&\left((\widetilde{\lambda}+\widetilde{\mathscr{B}})\left[\frac{c_{P}^{2}-c_{S}^{2}}{2(c_{S}^{2}\cos\psi+c_{S}c_{P})}+\cos\psi\right]+(2\widetilde{\mu}+\frac{\widetilde{\mathscr{A}}}{2})\left[1+\frac{c_{P}^{2}-c_{S}^{2}}{2(c_{S}^{2}\cos\psi+c_{S}c_{P})}\cos\psi\right]\cos\psi\right)(x_{0}).\end{split}

Consequently, we have the following identity from (51),

((λ+)[cP2cS22(cS2cosψ+cScP)+cosψ]+(2μ+𝒜2)[1+cP2cS22(cS2cosψ+cScP)cosψ]cosψ)ρ3/2(x0)=((λ~+~)[cP2cS22(cS2cosψ+cScP)+cosψ]+(2μ~+𝒜~2)[1+cP2cS22(cS2cosψ+cScP)cosψ]cosψ)ρ~3/2(x0)\begin{split}&\left((\lambda+\mathscr{B})\left[\frac{c_{P}^{2}-c_{S}^{2}}{2(c_{S}^{2}\cos\psi+c_{S}c_{P})}+\cos\psi\right]+(2\mu+\frac{\mathscr{A}}{2})\left[1+\frac{c_{P}^{2}-c_{S}^{2}}{2(c_{S}^{2}\cos\psi+c_{S}c_{P})}\cos\psi\right]\cos\psi\right)\rho^{-3/2}(x_{0})\\ =&\left((\widetilde{\lambda}+\widetilde{\mathscr{B}})\left[\frac{c_{P}^{2}-c_{S}^{2}}{2(c_{S}^{2}\cos\psi+c_{S}c_{P})}+\cos\psi\right]+(2\widetilde{\mu}+\frac{\widetilde{\mathscr{A}}}{2})\left[1+\frac{c_{P}^{2}-c_{S}^{2}}{2(c_{S}^{2}\cos\psi+c_{S}c_{P})}\cos\psi\right]\cos\psi\right)\widetilde{\rho}^{-3/2}(x_{0})\end{split}

By varying ψ\psi in the above identity, we end up with

(52) ρ3/2(λ+)(x0)=ρ~3/2(λ~+~)(x0),ρ3/2(4μ+𝒜)(x0)=ρ~3/2(4μ~+𝒜~)(x0).\rho^{-3/2}(\lambda+\mathscr{B})(x_{0})=\widetilde{\rho}^{-3/2}(\widetilde{\lambda}+\widetilde{\mathscr{B}})(x_{0}),\quad\quad\rho^{-3/2}(4\mu+\mathscr{A})(x_{0})=\widetilde{\rho}^{-3/2}(4\widetilde{\mu}+\widetilde{\mathscr{A}})(x_{0}).

Since x0x_{0} is an arbitrary point in Ω\Omega, and have

ρ3/2(4μ+𝒜)=ρ~3/2(4μ~+𝒜~),in Ω¯.\rho^{-3/2}(4\mu+\mathscr{A})=\widetilde{\rho}^{-3/2}(4\widetilde{\mu}+\widetilde{\mathscr{A}}),\quad\text{in }\overline{\Omega}.

4.6. Determination of (2μ+2+𝒜)ρ3/2\left(2\mu+2\mathscr{B}+\mathscr{A}\right)\rho^{-3/2}

We can rescale ξ(2)\xi^{(2)} such that |ξ(2)|=1|\xi^{(2)}|=1. Assume α(1),α(2)span{ξ(2),ξ(0)}\alpha^{(1)},\alpha^{(2)}\in\mathrm{span}\{\xi^{(2)},\xi^{(0)}\}, |α(1)|=|α(2)|=1|\alpha^{(1)}|=|\alpha^{(2)}|=1 and α(1)ξ(1)\alpha^{(1)}\perp\xi^{(1)}, α(2)ξ(2)\alpha^{(2)}\perp\xi^{(2)}. This means that ξ(1),ξ(2),ξ(0),α(1),α(2)\xi^{(1)},\xi^{(2)},\xi^{(0)},\alpha^{(1)},\alpha^{(2)} are all in the same plane. Still denote

ξ(1)ξ(0)=cosψ,ξ(1)ξ(2)=cosα.\xi^{(1)}\cdot\xi^{(0)}=\cos\psi,\quad\xi^{(1)}\cdot\xi^{(2)}=\cos\alpha.

Then we have

α(2)ξ(1)=sinα,α(1)ξ(2)=sinα,α(1)ξ(0)=sinψ,α(2)ξ(0)=sin(αψ),α(1)α(2)=cosα.\begin{split}\alpha^{(2)}\cdot\xi^{(1)}&=\sin\alpha,\quad\alpha^{(1)}\cdot\xi^{(2)}=-\sin\alpha,\quad\alpha^{(1)}\cdot\xi^{(0)}=-\sin\psi,\\ &\alpha^{(2)}\cdot\xi^{(0)}=\sin(\alpha-\psi),\quad\alpha^{(1)}\cdot\alpha^{(2)}=\cos\alpha.\end{split}

Now we calculate

det(YS(1))1/2det(YS(2))1/2det(YP(0))1/2cP5/2cS5ρ3/2𝒜(p)=(x0)(α(2)ξ(1))(α(1)ξ(2))(ξ(0)ξ(0))+𝒜4(x0)((α(2)ξ(1))(α(1)ξ(0))(ξ(0)ξ(2))+(α(1)ξ(2))(α(2)ξ(0))(ξ(0)ξ(1)))+(λ+)(x0)(α(1)α(2))(ξ(1)ξ(2))(ξ(0)ξ(0))+(μ+𝒜4)(x0)((α(1)α(2))(ξ(1)ξ(0))(ξ(2)ξ(0))+(ξ(1)ξ(2))(α(1)ξ(0))(α(2)ξ(0))+(α(1)α(2))(ξ(2)ξ(0))(ξ(1)ξ(0))+(α(2)ξ(0))(α(1)ξ(0))(ξ(1)ξ(2))+(ξ(1)α(2))(ξ(2)ξ(0))(α(1)ξ(0))+(ξ(2)α(1))(ξ(1)ξ(0))(α(2)ξ(0)))=(x0)sin2α+𝒜4(x0)(sinαsinψcos(αψ)sinαsin(αψ)cosψ)+(λ+)(x0)cos2α+(μ+𝒜4)(x0)(2cosαcosψcos(αψ)2cosαsinψsin(αψ)sinαcos(αψ)sinψsinαcosψsin(αψ))=(x0)sin2α𝒜4(x0)sin2α+(λ+)(x0)cos2α+(μ+𝒜4)(x0)(2cos2αsin2α)=(λ+2μ++𝒜2)(x0)cos2α(μ++𝒜2)(x0)sin2α.\begin{split}&\det(Y_{S}^{(1)})^{1/2}\det(Y_{S}^{(2)})^{1/2}\det(Y_{P}^{(0)})^{1/2}c_{P}^{5/2}c_{S}^{5}\rho^{3/2}\mathcal{A}(p)\\ =&\mathscr{B}(x_{0})(\alpha^{(2)}\cdot\xi^{(1)})(\alpha^{(1)}\cdot\xi^{(2)})(\xi^{(0)}\cdot\xi^{(0)})\\ &+\frac{\mathscr{A}}{4}(x_{0})\left((\alpha^{(2)}\cdot\xi^{(1)})(\alpha^{(1)}\cdot\xi^{(0)})(\xi^{(0)}\cdot\xi^{(2)})+(\alpha^{(1)}\cdot\xi^{(2)})(\alpha^{(2)}\cdot\xi^{(0)})(\xi^{(0)}\cdot\xi^{(1)})\right)\\ &+(\lambda+\mathscr{B})(x_{0})(\alpha^{(1)}\cdot\alpha^{(2)})(\xi^{(1)}\cdot\xi^{(2)})(\xi^{(0)}\cdot\xi^{(0)})\\ &+(\mu+\frac{\mathscr{A}}{4})(x_{0})\Big{(}(\alpha^{(1)}\cdot\alpha^{(2)})(\xi^{(1)}\cdot\xi^{(0)})(\xi^{(2)}\cdot\xi^{(0)})+(\xi^{(1)}\cdot\xi^{(2)})(\alpha^{(1)}\cdot\xi^{(0)})(\alpha^{(2)}\cdot\xi^{(0)})\\ &\quad\quad+(\alpha^{(1)}\cdot\alpha^{(2)})(\xi^{(2)}\cdot\xi^{(0)})(\xi^{(1)}\cdot\xi^{(0)})+(\alpha^{(2)}\cdot\xi^{(0)})(\alpha^{(1)}\cdot\xi^{(0)})(\xi^{(1)}\cdot\xi^{(2)})\\ &\quad\quad+(\xi^{(1)}\cdot\alpha^{(2)})(\xi^{(2)}\cdot\xi^{(0)})(\alpha^{(1)}\cdot\xi^{(0)})+(\xi^{(2)}\cdot\alpha^{(1)})(\xi^{(1)}\cdot\xi^{(0)})(\alpha^{(2)}\cdot\xi^{(0)})\Big{)}\\ =&-\mathscr{B}(x_{0})\sin^{2}\alpha+\frac{\mathscr{A}}{4}(x_{0})\left(-\sin\alpha\sin\psi\cos(\alpha-\psi)-\sin\alpha\sin(\alpha-\psi)\cos\psi\right)\\ &+(\lambda+\mathscr{B})(x_{0})\cos^{2}\alpha\\ &+(\mu+\frac{\mathscr{A}}{4})(x_{0})\Big{(}2\cos\alpha\cos\psi\cos(\alpha-\psi)-2\cos\alpha\sin\psi\sin(\alpha-\psi)\\ &\quad\quad\quad\quad\quad\quad\quad\quad-\sin\alpha\cos(\alpha-\psi)\sin\psi-\sin\alpha\cos\psi\sin(\alpha-\psi)\Big{)}\\ =&-\mathscr{B}(x_{0})\sin^{2}\alpha-\frac{\mathscr{A}}{4}(x_{0})\sin^{2}\alpha+(\lambda+\mathscr{B})(x_{0})\cos^{2}\alpha+(\mu+\frac{\mathscr{A}}{4})(x_{0})\left(2\cos^{2}\alpha-\sin^{2}\alpha\right)\\ =&\left(\lambda+2\mu+\mathscr{B}+\frac{\mathscr{A}}{2}\right)(x_{0})\cos^{2}\alpha-\left(\mu+\mathscr{B}+\frac{\mathscr{A}}{2}\right)(x_{0})\sin^{2}\alpha.\end{split}

Using similar argument as above, we obtain

(53) ((λ+2μ++𝒜2)cos2α(μ++𝒜2)sin2α)ρ3/2(x0)=((λ~+2μ~+~+𝒜~2)cos2α(μ~+~+𝒜~2)sin2α)ρ~3/2(x0).\begin{split}&\left(\left(\lambda+2\mu+\mathscr{B}+\frac{\mathscr{A}}{2}\right)\cos^{2}\alpha-\left(\mu+\mathscr{B}+\frac{\mathscr{A}}{2}\right)\sin^{2}\alpha\right)\rho^{-3/2}(x_{0})\\ =&\left(\left(\widetilde{\lambda}+2\widetilde{\mu}+\widetilde{\mathscr{B}}+\frac{\widetilde{\mathscr{A}}}{2}\right)\cos^{2}\alpha-\left(\widetilde{\mu}+\widetilde{\mathscr{B}}+\frac{\widetilde{\mathscr{A}}}{2}\right)\sin^{2}\alpha\right)\widetilde{\rho}^{-3/2}(x_{0}).\end{split}

By (52), we already have

(54) (λ+2μ++𝒜2)ρ3/2(x0)=(λ~+2μ~+~+𝒜~2)ρ~3/2(x0).\left(\lambda+2\mu+\mathscr{B}+\frac{\mathscr{A}}{2}\right)\rho^{-3/2}(x_{0})=\left(\widetilde{\lambda}+2\widetilde{\mu}+\widetilde{\mathscr{B}}+\frac{\widetilde{\mathscr{A}}}{2}\right)\widetilde{\rho}^{-3/2}(x_{0}).

For α0\alpha\neq 0, we obtain from (53) and (54)

(55) (2μ+2+𝒜)ρ3/2(x0)=(2μ~+2~+𝒜~)ρ~3/2(x0).\left(2\mu+2\mathscr{B}+\mathscr{A}\right)\rho^{-3/2}(x_{0})=\left(2\widetilde{\mu}+2\widetilde{\mathscr{B}}+\widetilde{\mathscr{A}}\right)\widetilde{\rho}^{-3/2}(x_{0}).

4.7. Determination of 𝒞\mathscr{C}

Using (54) and (55), we can conclude that

ρ3/2(λ+μ)=ρ~3/2(λ~+μ~)in Ω¯.\rho^{-3/2}(\lambda+\mu)=\widetilde{\rho}^{-3/2}(\widetilde{\lambda}+\widetilde{\mu})\quad\text{in }\overline{\Omega}.

Since μρ=μ~ρ~\frac{\mu}{\rho}=\frac{\widetilde{\mu}}{\widetilde{\rho}} and λρ=λ~ρ~\frac{\lambda}{\rho}=\frac{\widetilde{\lambda}}{\widetilde{\rho}}, we have

(λ,μ,ρ)=(λ~,μ~,ρ~)in Ω¯.(\lambda,\mu,\rho)=(\widetilde{\lambda},\widetilde{\mu},\widetilde{\rho})\quad\text{in }\overline{\Omega}.

Using (52), we have

(𝒜,)=(𝒜~,~)in Ω¯.(\mathscr{A},\mathscr{B})=(\widetilde{\mathscr{A}},\widetilde{\mathscr{B}})\quad\text{in }\overline{\Omega}.

For the final step, we can apply the result in [41] to obtain

𝒞=𝒞~in Ω¯\mathscr{C}=\widetilde{\mathscr{C}}\quad\text{in }\overline{\Omega}

by inverting a Jacobi-weighted ray transform of the first kind on (Ω,gP)(\Omega,g_{P}). See also [1] for more details.

Invertibility of this kind of weighted ray transform is proved in [14] under the no conjugate points assumption.

Now assume that (Ω,gP)(\Omega,g_{P}) satisfies the the foliation condition. Recall that Ω\partial\Omega is strictly convex with respect to gPg_{P}. Let ϖC(Ω~)\varpi\in C^{\infty}(\widetilde{\Omega}) be a defining function of Ω\partial\Omega, such that ϖ>0\varpi>0 in ΩΩ\Omega\setminus\partial\Omega, φ<0\varphi<0 in Ω~Ω¯\widetilde{\Omega}\setminus\overline{\Omega}, and ϖ\varpi vanishes non-degenerately on Ω\partial\Omega. For any pΩp\in\partial\Omega, there exists a function x~C(Ω~)\tilde{x}\in C^{\infty}(\widetilde{\Omega}) with x~(p)=0\tilde{x}(p)=0, dx~(p)=dϖ(p)\mathrm{d}\tilde{x}(p)=-\mathrm{d}\varpi(p), such that for c>0c>0 small enough, Op={x~>c}O_{p}=\{\tilde{x}>-c\} has no conjugate points. Then the above Jacobi-weighted ray transform is invertible on OpO_{p}. A layer stripping scheme can be used to derive global invertibility [38, 27].

References

  • [1] S. Acosta, G. Uhlmann, and J. Zhai. Nonlinear ultrasound imaging modeled by a westervelt equation. SIAM Journal on Applied Mathematics, 82(2):408–426, 2022.
  • [2] T. Balehowsky, A. Kujanpää, M. Lassas, and T. Liimatainen. An inverse problem for the relativistic boltzmann equation. Communications in Mathematical Physics, 396(3):983–1049, 2022.
  • [3] G. Bao and H. Zhang. Sensitivity analysis of an inverse problem for the wave equation with caustics. Journal of the American Mathematical Society, 27(4):953–981, 2014.
  • [4] A. S. Barreto and P. Stefanov. Recovery of a general nonlinearity in the semilinear wave equation. arXiv preprint arXiv:2107.08513, 2021.
  • [5] M. Belishev and A. Katchalov. Boundary control and quasiphotons in the problem of reconstruction of a Riemannian manifold via dynamic data. Journal of Mathematical Sciences, 79(4):1172–1190, 1996.
  • [6] S. Bhattacharyya. Local uniqueness of the density from partial boundary data for isotropic elastodynamics. Inverse Problems, 34(12):125001, 2018.
  • [7] X. Chen, M. Lassas, L. Oksanen, and G. P. Paternain. Detection of hermitian connections in wave equations with cubic non-linearity. Journal of the European Mathematical Society, 24(7):2191–2232, 2021.
  • [8] X. Chen, M. Lassas, L. Oksanen, and G. P. Paternain. Inverse problem for the yang–mills equations. Communications in Mathematical Physics, 384:1187–1225, 2021.
  • [9] X. Chen, M. Lassas, L. Oksanen, and G. P. Paternain. Retrieving yang–mills–higgs fields in minkowski space from active local measurements. arXiv preprint arXiv:2204.12776, 2022.
  • [10] N. S. Dairbekov. Integral geometry problem for nontrapping manifolds. Inverse Problems, 22(2):431, 2006.
  • [11] M. de Hoop, G. Uhlmann, and Y. Wang. Nonlinear interaction of waves in elastodynamics and an inverse problem. Mathematische Annalen, 376(1-2):765–795, 2020.
  • [12] D. Dos Santos Ferreira, Y. Kurylev, M. Lassas, and M. Salo. The Calderón problem in transversally anisotropic geometries. Journal of the European Mathematical Society, 18(11):2579–2626, 2016.
  • [13] A. Feizmohammadi, J. Ilmavirta, Y. Kian, and L. Oksanen. Recovery of time dependent coefficients from boundary data for hyperbolic equations. J. Spectr. Theory, 11(3):1107–1143, 2021.
  • [14] A. Feizmohammadi and L. Oksanen. An inverse problem for a semi-linear elliptic equation in riemannian geometries. Journal of Differential Equations, 269(6):4683–4719, 2020.
  • [15] A. Feizmohammadi and L. Oksanen. Recovery of zeroth order coefficients in non-linear wave equations. Journal of the Institute of Mathematics of Jussieu, 21(2):367–393, 2022.
  • [16] P. Hintz, G. Uhlmann, and J. Zhai. The dirichlet-to-neumann map for a semilinear wave equation on lorentzian manifolds. Communications in Partial Differential Equations, 47(12):2363–2400, 2022.
  • [17] P. Hintz, G. Uhlmann, and J. Zhai. An inverse boundary value problem for a semilinear wave equation on lorentzian manifolds. International Mathematics Research Notices, 2022(17):13181–13211, 2022.
  • [18] A. Kachalov, Y. Kurylev, and M. Lassas. Inverse boundary spectral problems. CRC Press, 2001.
  • [19] A. Katchalov and Y. Kurylev. Multidimensional inverse problem with incomplete boundary spectral data. Communications in Partial Differential Equations, 23(1-2):27–59, 1998.
  • [20] Y. Kurylev, M. Lassas, L. Oksanen, and G. Uhlmann. Inverse problem for Einstein-scalar field equations. Duke Math. J., 171(16):3215–3282, 2022.
  • [21] Y. Kurylev, M. Lassas, and G. Uhlmann. Inverse problems for Lorentzian manifolds and non-linear hyperbolic equations. Inventiones mathematicae, 212(3):781–857, 2018.
  • [22] M. Lassas, T. Liimatainen, L. Potenciano-Machado, and T. Tyni. Uniqueness and stability of an inverse problem for a semi-linear wave equation. arXiv preprint arXiv:2006.13193, 2020.
  • [23] M. Lassas, T. Liimatainen, L. Potenciano-Machado, and T. Tyni. Stability estimates for inverse problems for semi-linear wave equations on lorentzian manifolds. arXiv preprint arXiv:2106.12257, 2021.
  • [24] M. Lassas, G. Uhlmann, and Y. Wang. Inverse problems for semilinear wave equations on Lorentzian manifolds. Communications in Mathematical Physics, 360(2):555–609, 2018.
  • [25] R. G. Muhometov and V. G. Romanov. On the problem of finding an isotropic riemannian metric in an n-dimensional space. In Doklady Akademii Nauk, volume 243, pages 41–44. Russian Academy of Sciences, 1978.
  • [26] G. P. Paternain, M. Salo, and G. Uhlmann. Invariant distributions, Beurling transforms and tensor tomography in higher dimensions. Mathematische Annalen, 363(1-2):305–362, 2015.
  • [27] G. P. Paternain, M. Salo, G. Uhlmann, and H. Zhou. The geodesic X-ray transform with matrix weights. American Journal of Mathematics, 141(6):1707–1750, 2019.
  • [28] L. Rachele. Boundary determination for an inverse problem in elastodynamics. Communications in Partial Differential Equations, 25(11-12):1951–1996, 2000.
  • [29] L. Rachele. An inverse problem in elastodynamics: uniqueness of the wave speeds in the interior. Journal of Differential Equations, 162(2):300–325, 2000.
  • [30] L. Rachele. Uniqueness of the density in an inverse problem for isotropic elastodynamics. Transactions of the American Mathematical Society, 355(12):4781–4806, 2003.
  • [31] A. Sá Barreto and P. Stefanov. Recovery of a cubic non-linearity in the wave equation in the weakly non-linear regime. Communications in Mathematical Physics, 392(1):25–53, 2022.
  • [32] A. Sá Barreto and Y. Wang. Singularities generated by the triple interaction of semilinear conormal waves. Analysis & PDE, 14(1):135–170, 2021.
  • [33] V. A. Sharafutdinov. Integral geometry of a tensor field on a manifold with upper-bounded curvature. Sibirskii Matematicheskii Zhurnal, 33(3):192–204, 1992.
  • [34] P. Stefanov, G. Uhlmann, and A. Vasy. Boundary rigidity with partial data. Journal of the American Mathematical Society, 29(2):299–332, 2016.
  • [35] P. Stefanov, G. Uhlmann, and A. Vasy. Local recovery of the compressional and shear speeds from the hyperbolic DN map. Inverse Problems, 34(1):014003, 2017.
  • [36] P. Stefanov, G. Uhlmann, and A. Vasy. Inverting the local geodesic x-ray transform on tensors. Journal d’Analyse Mathematique, 136(1):151–208, 2018.
  • [37] P. Stefanov, G. Uhlmann, and A. Vasy. The transmission problem in linear isotropic elasticity. Pure and Applied Analysis, 3(1):109–161, 2021.
  • [38] G. Uhlmann and A. Vasy. The inverse problem for the local geodesic ray transform. Inventiones mathematicae, 205(1):83–120, 2016.
  • [39] G. Uhlmann and Y. Wang. Determination of space-time structures from gravitational perturbations. Communications on Pure and Applied Mathematics, 73(6):1315–1367, 2020.
  • [40] G. Uhlmann and J. Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems: Series A, 41(1), 2021.
  • [41] G. Uhlmann and J. Zhai. On an inverse boundary value problem for a nonlinear elastic wave equation. Journal de Mathématiques Pures et Appliquées, 153:114–136, 2021.
  • [42] G. Uhlmann and Y. Zhang. Inverse boundary value problems for wave equations with quadratic nonlinearities. Journal of Differential Equations, 309:558–607, 2022.
  • [43] Y. Wang and T. Zhou. Inverse problems for quadratic derivative nonlinear wave equations. Communications in Partial Differential Equations, 44(11):1140–1158, 2019.