This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Detection of kk-partite entanglement and kk-nonseparability of multipartite quantum states

Yan Hong School of Mathematics and Science, Hebei GEO University, Shijiazhuang 050031, China    Ting Gao [email protected] School of Mathematical Sciences, Hebei Normal University, Shijiazhuang 050024, China    Fengli Yan [email protected] College of Physics, Hebei Normal University, Shijiazhuang 050024, China
Abstract

Identifying the kk-partite entanglement and kk-nonseparability of general NN-partite quantum states are fundamental issues in quantum information theory. By use of computable inequalities of nonlinear operators, we present some simple and powerful kk-partite entanglement and kk-nonseparability criteria that works very well and allow for a simple and inexpensive test for the whole hierarchy of kk-partite entanglement and kk-separability of NN-partite systems with kk running from NN down to 2. We illustrate their strengths by considering several examples in which our criteria perform better than other known detection criteria. We are able to detect kk-partite entanglement and kk-nonseparabilty of multipartite systems which have previously not been identified. In addition, our results can be implemented in today’s experiments.

pacs:
03.65.Ud, 03.67.-a

I Introduction

Quantum entanglement is an important physical resource in quantum computation and quantum information processing and is also a key feature that distinguishes quantum theory from classical theory. So, it is very valuable for studying the characterization and detection of entanglement for general multipartite systems.

There are two different ways to characterize the entanglement of multipartite systems RPMK09 ; Guhne2009 , one is according to the question ”How many partitions are separable?”, the other is ”How many particles are entangled”. The former is described by kk-separability, the latter by kk-partite entanglement. kk-separability provides a fine graduation of states according to their degrees of separability, while kk-partite entanglement provides the hierarchic classification of states according to their degrees of entanglement. Detecting and characterizing kk-partite entanglement provide a refined insight in entanglement dynamics.

For NN-partite quantum systems, the kk-partite entanglement and kk-nonseparability are two different concepts of multipartite entanglement except that 22-partite entanglement is equivalent to NN-nonseparability and genuine NN-partite entanglement is equivalent to 22-nonseparability. Both kk-nonseparability and kk-partite entanglement can be used to characterize multipartite entanglement. There are some approaches to identify genuine NN-partite entanglement such as based on spin-squeezing inequality VitaglianoHyllus11 and elements of density matrix GuhneSeevinck10 ; HuberMintert10 ; GanHong10 ; GanHong11 ; WuKampermann12 ; ChenMa12 , Bell-type inequalities Seevinck02 , semidefinite program and state extensions Doherty02 ; Doherty04 ; Doherty05 , covariance matrices Gittsovich05 , etc.

The kk-partite entanglement of NN-partite quantum systems has been studied by using different tools and some progress has been made. Some of the complete set of generalized spin squeezing inequalities employed to detect kk-particle entanglement and bound entanglement VitaglianoHyllus11 . A hierarchic classification of all states from 22-partite entanglement to NN-partite entanglement based on Wigner-Yanase skew information was presented ChenZQ2011 . Entanglement criteria in terms of the quantum Fisher information Hyllus2012 ; Goth2012 were applied to detect several classes of kk-partite entanglement. Further approach had led to kk-particle entanglement criteria which was developed by a comparison of the Fisher information and the sum of variances of all local operators Gessner16 .

In recent years, kk-nonseparability of NN-partite quantum states has attracted more and more attention and extensively explored in various ways GaoYan14 ; GaoHong13 ; HongGaoYan12 ; ABMarcus10 ; Ananth15 ; HuberLlobet13 ; HongLuoSong15 ; HongLuo16 ; KlocklHuber15 . Some practical convenient inequalities only involving elements of density matrix for detecting kk-nonseparability were constructed in GaoYan14 ; GaoHong13 ; HongGaoYan12 ; ABMarcus10 ; Ananth15 , which can be used to distinguish NN-1 different classes of any high dimensional NN-partite kk-inseparable states. In HuberLlobet13 a method that derived from some inequalities in the form of entropy vector was developed to test kk-nonseparability, whose essence is also elements of density matrix. kk-nonseparable states can also be checked by quantum Fisher information and local uncertainty relations HongLuoSong15 ; HongLuo16 . From the Bloch vector decomposition of a density matrix, the tensor elements can reflect many important characteristics of multipartite quantum states. The correlation tensor norms used for determining kk-nonseparability in multipartite states KlocklHuber15 .

Much effort has been put into the detection and characterization of kk-nonseparability and kk-partite entanglement in multipartite systems, but it is far from perfect because of the extremely complex structure of entanglement of multipartite quantum states RPMK09 ; Guhne2009 . This paper is devoted to giving powerful inequalities that provide, upon violation, experimentally accessible sufficient conditions for kk-nonseparability and kk-partite entanglement in NN-partite systems. Compared with previous works, the resulting criteria are stronger. The inequalities for kk-nonseparability detection given in Ananth15 can be seen as special case of our results.

In this paper, we will further study the structure of entanglement of multipartite quantum states and present some inequalities to detect kk-partite entanglement and kk-nonseparability of multipartite quantum states. In Sec. II, some concepts and symbols are introduced. In Sec. III and Sec. IV, we derive a full hierarchy of kk-partite entanglement criteria and kk-nonseparability criteria based on linear local operators to characterize multipartite entanglement. Finally, we show their application ability and point out that they can be adapted in present-day experiments.

II Definitions

The kk-partite entanglement and kk-nonseparability are two different concepts involving the partitions of subsystem in NN-partite quantum system.

An NN-partite quantum pure state |ϕ|\phi\rangle is said to be kk-producible if it can be written as a tensor product |ϕ=i=1n|ϕAi|\phi\rangle=\bigotimes\limits_{i=1}^{n}|\phi_{A_{i}}\rangle such that each |ϕAi|\phi_{A_{i}}\rangle is a state of at most kk particles Guhne2009 . A pure state contains kk-partite entanglement if it is not (kk-1)-producible. For an NN-partite mixed state ρ\rho, if it can be written as a convex combination of kk-producible pure states, then it is called kk-producible. The individual pure states composing a kk-producible mixed state may be kk-producible under different partitions. If ρ\rho is not kk-producible, we say that ρ\rho contains (k+1)(k+1)-partite entanglement. Here 1kN11\leq k\leq N-1.

An NN-partite quantum pure state |ϕ|\phi\rangle is called kk-separable if there is a splitting of NN particles into kk partitions A1,A2,,AkA_{1},A_{2},\cdots,A_{k} such that |ϕ=i=1k|ϕAi|\phi\rangle=\bigotimes\limits_{i=1}^{k}|\phi_{A_{i}}\rangle Guhne2009 . For an NN-partite mixed state ρ\rho, if it can be written as a convex combination of kk-separable pure states, then it is called kk-separable. If ρ\rho is not kk-separable, we say that ρ\rho is kk-nonseparable. Here 2kN2\leq k\leq N.

In particular, the 11-producible (or NN-separable) states are just fully separable states, and the quantum states being not (N1)(N-1)-producible (or 2-separable) are genuinely entangled states.

For the following statement, let’s introduce some symbols. Let PP be the global permutation operator performing simultaneous permutations on all subsystems in (12N)2(\mathcal{H}_{1}\otimes\mathcal{H}_{2}\otimes\cdots\otimes\mathcal{H}_{N})^{\otimes 2}, while PαP_{\alpha} be local permutation operators permuting the two copies of all subsystems contained in the set α\alpha, that is,

P(i=1N|xi)(i=1N|yi)=(i=1N|yi)(i=1N|xi),P\Big{(}\bigotimes\limits_{i=1}^{N}|x_{i}\rangle\Big{)}\Big{(}\bigotimes\limits_{i=1}^{N}|y_{i}\rangle\Big{)}=\Big{(}\bigotimes\limits_{i=1}^{N}|y_{i}\rangle\Big{)}\Big{(}\bigotimes\limits_{i=1}^{N}|x_{i}\rangle\Big{)},
Pα(i=1N|xi)(i=1N|yi)=(iα|yiiα|xi)(iα|xiiα|yi).P_{\alpha}\Big{(}\bigotimes\limits_{i=1}^{N}|x_{i}\rangle\Big{)}\Big{(}\bigotimes\limits_{i=1}^{N}|y_{i}\rangle\Big{)}=\Big{(}\bigotimes\limits_{i\in\alpha}|y_{i}\rangle\bigotimes\limits_{i\notin\alpha}|x_{i}\rangle\Big{)}\Big{(}\bigotimes\limits_{i\in\alpha}|x_{i}\rangle\bigotimes\limits_{i\notin\alpha}|y_{i}\rangle\Big{)}.

III Detection of kk-partite entanglement

Now we state our main results in the detection of kk-partite entanglement.

Theorem 1. If ρ\rho is a kk-producible quantum state of NN-partite quantum system 12N\mathcal{H}_{1}\otimes\mathcal{H}_{2}\otimes\cdots\otimes\mathcal{H}_{N}, where dim i=di,i=1,2,,N\mathcal{H}_{i}=d_{i},i=1,2,\cdots,N, then

(2r2)Φ|ρ2P|Φ{α}Φ|Pαρ2Pα|Φ,\begin{array}[]{rl}(2^{r}-2)\sqrt{\langle\Phi|\rho^{\otimes 2}P|\Phi\rangle}\leq\sum\limits_{\{\alpha\}}\sqrt{\langle\Phi|P_{\alpha}^{\dagger}\rho^{\otimes 2}P_{\alpha}|\Phi\rangle},\end{array} (1)

where r=Nkr=\frac{N}{k} for k|Nk|N, r=[Nk]+1r=[\frac{N}{k}]+1 for kNk\nmid N, |Φ=|ϕ1|ϕ2|\Phi\rangle=|\phi_{1}\rangle|\phi_{2}\rangle with |ϕ1=i=1N|xi|\phi_{1}\rangle=\bigotimes\limits_{i=1}^{N}|x_{i}\rangle and |ϕ2=i=1N|yi|\phi_{2}\rangle=\bigotimes\limits_{i=1}^{N}|y_{i}\rangle being any fully separable states of NN-partite quantum system, and {α}\{\alpha\} consists of all possible nonempty proper subsets of {1,2,,N}\{1,2,\cdots,N\}. That is, an NN-partite state ρ\rho does not satisfy inequality (1), then ρ\rho contains k+1k+1-partite entanglement.

Proof. Let us first prove that inequality (1) holds for any kk-producible pure state. Suppose that pure state ρ=|φφ|\rho=|\varphi\rangle\langle\varphi| with |φ=i=1n|φAi|\varphi\rangle=\bigotimes\limits_{i=1}^{n}|\varphi_{A_{i}}\rangle is kk-producible, where every vector |φAi|\varphi_{A_{i}}\rangle involves at most kk parties. Then we have

Φ|ρ2P|Φ=|ϕ1|φφ|ϕ2|2=|{i=1n[(jAixj|)|φAi]}{i=1n[φAi|(jAi|yj)]}|2.\begin{array}[]{rl}&\langle\Phi|\rho^{\otimes 2}P|\Phi\rangle=|\langle\phi_{1}|\varphi\rangle\langle\varphi|\phi_{2}\rangle|^{2}\\ =&\Big{|}\Big{\{}\prod\limits_{i=1}^{n}\Big{[}(\bigotimes\limits_{j\in A_{i}}\langle x_{j}|)|\varphi_{A_{i}}\rangle\Big{]}\Big{\}}\Big{\{}\prod\limits_{i=1}^{n}\Big{[}\langle\varphi_{A_{i}}|(\bigotimes\limits_{j\in A_{i}}|y_{j}\rangle)\Big{]}\Big{\}}\Big{|}^{2}.\end{array} (2)

Let αj1,,jm=Aj1Aj2Ajm\alpha_{j_{1},\cdots,j_{m}}=A_{j_{1}}\cup A_{j_{2}}\cup\cdots\cup A_{j_{m}}, |φαj1,,jm=t=1m|φAjt|\varphi_{\alpha_{j_{1},\cdots,j_{m}}}\rangle=\bigotimes\limits_{t=1}^{m}|\varphi_{A_{j_{t}}}\rangle, and |φαj1,,jm¯=t=m+1n|φAjt|\varphi_{\overline{\alpha_{j_{1},\cdots,j_{m}}}}\rangle=\bigotimes\limits_{t=m+1}^{n}|\varphi_{A_{j_{t}}}\rangle, we derive

Φ|Pαj1,,jmρ2Pαj1,,jm|Φ=(jαj1,,jmyj|jαj1,,jmxj|)(l=1n|φAlφAl|)(jαj1,,jm|yjjαj1,,jm|xj)×(jαj1,,jmxj|jαj1,,jmyj|)(l=1n|φAlφAl|)(jαj1,,jm|xjjαj1,,jm|yj)=|{i=1n[(jAixj|)|φAi]}{i=1n[φAi|(jAi|yj]}|2.\begin{array}[]{rl}&\langle\Phi|P_{\alpha_{j_{1},\cdots,j_{m}}}^{\dagger}\rho^{\otimes 2}P_{\alpha_{j_{1},\cdots,j_{m}}}|\Phi\rangle\\ =&\Big{(}\bigotimes\limits_{j\in{\alpha_{j_{1},\cdots,j_{m}}}}\langle y_{j}|\bigotimes\limits_{j\notin{\alpha_{j_{1},\cdots,j_{m}}}}\langle x_{j}|\Big{)}\Big{(}\bigotimes\limits_{l=1}^{n}|\varphi_{A_{l}}\rangle\langle\varphi_{A_{l}}|\Big{)}\Big{(}\bigotimes\limits_{j\in{\alpha_{j_{1},\cdots,j_{m}}}}|y_{j}\rangle\bigotimes\limits_{j\notin{\alpha_{j_{1},\cdots,j_{m}}}}|x_{j}\rangle\Big{)}\\ &\times\Big{(}\bigotimes\limits_{j\in{\alpha_{j_{1},\cdots,j_{m}}}}\langle x_{j}|\bigotimes\limits_{j\notin{\alpha_{j_{1},\cdots,j_{m}}}}\langle y_{j}|\Big{)}\Big{(}\bigotimes\limits_{l=1}^{n}|\varphi_{A_{l}}\rangle\langle\varphi_{A_{l}}|\Big{)}\Big{(}\bigotimes\limits_{j\in{\alpha_{j_{1},\cdots,j_{m}}}}|x_{j}\rangle\bigotimes\limits_{j\notin{\alpha_{j_{1},\cdots,j_{m}}}}|y_{j}\rangle\Big{)}\\ =&\Big{|}\Big{\{}\prod\limits_{i=1}^{n}\Big{[}(\bigotimes\limits_{j\in A_{i}}\langle x_{j}|)|\varphi_{A_{i}}\rangle\Big{]}\Big{\}}\Big{\{}\prod\limits_{i=1}^{n}\Big{[}\langle\varphi_{A_{i}}|(\bigotimes\limits_{j\in A_{i}}|y_{j}\rangle\Big{]}\Big{\}}\Big{|}^{2}.\end{array} (3)

Combining (2) and (3) gives that

Φ|ρ2P|Φ=Φ|Pαj1,,jmρ2Pαj1,,jm|Φ,\begin{array}[]{ll}\sqrt{\langle\Phi|\rho^{\otimes 2}P|\Phi\rangle}=\sqrt{\langle\Phi|P_{\alpha_{j_{1},\cdots,j_{m}}}^{\dagger}\rho^{\otimes 2}P_{\alpha_{j_{1},\cdots,j_{m}}}|\Phi\rangle},\end{array}

which implies that inequality (1) holds for any kk-producible pure state.

Next, we prove inequality (1) also holds for any kk-producible mixed state. Suppose that ρ=ipiρi=ipi|φiφi|\rho=\sum\limits_{i}p_{i}\rho_{i}=\sum\limits_{i}p_{i}|\varphi_{i}\rangle\langle\varphi_{i}| is kk-producible mixed state, where ρi=|φiφi|\rho_{i}=|\varphi_{i}\rangle\langle\varphi_{i}| is kk-producible. Then by triangle inequality and the Cauchy-Schwarz inequality, one has

(2r2)Φ|ρ2P|Φ(2r2)ipiΦ|ρi2P|Φipi{α}Φ|Pαρi2Pα|Φ={α}ipijαyj|jαxj|ρijα|yjjα|xjpijαxj|jαyj|ρijα|xjjα|yj{α}(ipijαyj|jαxj|ρijα|yjjα|xj)(ipijαxj|jαyj|ρijα|xjjα|yj)={α}Φ|Pαρ2Pα|Φ.\begin{array}[]{ll}&(2^{r}-2)\sqrt{\langle\Phi|\rho^{\otimes 2}P|\Phi\rangle}\\ \leq&(2^{r}-2)\sum\limits_{i}p_{i}\sqrt{\langle\Phi|\rho_{i}^{\otimes 2}P|\Phi\rangle}\\ \leq&\sum\limits_{i}p_{i}\sum\limits_{\{\alpha\}}\sqrt{\langle\Phi|P_{\alpha}^{\dagger}\rho_{i}^{\otimes 2}P_{\alpha}|\Phi\rangle}\\ =&\sum\limits_{\{\alpha\}}\sum\limits_{i}\sqrt{p_{i}\bigotimes\limits_{j\in\alpha}\langle y_{j}|\bigotimes\limits_{j\notin\alpha}\langle x_{j}|\rho_{i}\bigotimes\limits_{j\in\alpha}|y_{j}\rangle\bigotimes\limits_{j\notin\alpha}|x_{j}\rangle}\sqrt{p_{i}\bigotimes\limits_{j\in\alpha}\langle x_{j}|\bigotimes\limits_{j\notin\alpha}\langle y_{j}|\rho_{i}\bigotimes\limits_{j\in\alpha}|x_{j}\rangle\bigotimes\limits_{j\notin\alpha}|y_{j}\rangle}\\ \leq&\sum\limits_{\{\alpha\}}\sqrt{\Big{(}\sum\limits_{i}p_{i}\bigotimes\limits_{j\in\alpha}\langle y_{j}|\bigotimes\limits_{j\notin\alpha}\langle x_{j}|\rho_{i}\bigotimes\limits_{j\in\alpha}|y_{j}\rangle\bigotimes\limits_{j\notin\alpha}|x_{j}\rangle\Big{)}\Big{(}\sum\limits_{i}p_{i}\bigotimes\limits_{j\in\alpha}\langle x_{j}|\bigotimes\limits_{j\notin\alpha}\langle y_{j}|\rho_{i}\bigotimes\limits_{j\in\alpha}|x_{j}\rangle\bigotimes\limits_{j\notin\alpha}|y_{j}\rangle\Big{)}}\\ =&\sum\limits_{\{\alpha\}}\sqrt{\langle\Phi|P_{\alpha}^{\dagger}\rho^{\otimes 2}P_{\alpha}|\Phi\rangle}.\end{array}

The proof is complete.

Theorem 2. Suppose that ρ\rho is an NN-partite density matrix acting on Hilbert space N\mathcal{H}^{\otimes N} with dim =d\mathcal{H}=d. Let |Ψijst=|ψis|ψjt|\Psi^{st}_{ij}\rangle=|\psi^{s}_{i}\rangle|\psi^{t}_{j}\rangle, where |ψis=|x1xi1sxi+1xN|\psi^{s}_{i}\rangle=|x_{1}\cdots x_{i-1}sx_{i+1}\cdots x_{N}\rangle and |ψjt=|x1xj1txj+1xN|\psi^{t}_{j}\rangle=|x_{1}\cdots x_{j-1}tx_{j+1}\cdots x_{N}\rangle are fully separable states of N\mathcal{H}^{\otimes N}. If ρ\rho is a kk-producible, then

s,t{ω1,,ωT}1i,jN,ijΨijst|ρ2P|Ψijsts,t{ω1,,ωT}1i,jN,ijΨijst|Piρ2Pi|Ψijst+T(k1)s{ω1,,ωT}1iNΨiiss|Piρ2Pi|Ψiiss\begin{array}[]{rl}&\sum\limits_{\begin{subarray}{c}s,t\in\{\omega_{1},\cdots,\omega_{T}\}\\ 1\leq i,j\leq N,i\neq j\end{subarray}}\sqrt{\langle\Psi^{st}_{ij}|\rho^{\otimes 2}P|\Psi^{st}_{ij}\rangle}\\ \leq&\sum\limits_{\begin{subarray}{c}s,t\in\{\omega_{1},\cdots,\omega_{T}\}\\ 1\leq i,j\leq N,i\neq j\end{subarray}}\sqrt{\langle\Psi^{st}_{ij}|P_{i}^{\dagger}\rho^{\otimes 2}P_{i}|\Psi^{st}_{ij}\rangle}+T(k-1)\sum\limits_{\begin{subarray}{c}s\in\{\omega_{1},\cdots,\omega_{T}\}\\ 1\leq i\leq N\end{subarray}}\sqrt{\langle\Psi^{ss}_{ii}|P_{i}^{\dagger}\rho^{\otimes 2}P_{i}|\Psi^{ss}_{ii}\rangle}\end{array} (4)

for 2kN12\leq k\leq N-1, and

Ψijst|ρ2P|ΨijstΨijst|Piρ2Pi|Ψijst\begin{array}[]{rl}\sqrt{\langle\Psi^{st}_{ij}|\rho^{\otimes 2}P|\Psi^{st}_{ij}\rangle}\leq\sqrt{\langle\Psi^{st}_{ij}|P_{i}^{\dagger}\rho^{\otimes 2}P_{i}|\Psi^{st}_{ij}\rangle}\end{array} (5)

for k=1k=1. Here {|ω1,,|ωT}\{|\omega_{1}\rangle,\cdots,|\omega_{T}\rangle\}\subseteq\mathcal{H} is a quantum state set.

Of course, if an NN-partite state ρ\rho does not satisfy the above inequality (4) (respectively, inequality (5)), then ρ\rho contains k+1k+1-partite entanglement (2kN12\leq k\leq N-1) (respectively, 2-partite entanglement).

It should be pointed that there are 12n(n1)\frac{1}{2}n(n-1) inequalities in eq.(5)), and violation of any one of them implies 2-partite entanglement.

Proof. To establish the validity of ineq. (4) and ineq. (5) for all kk-producible states ρ\rho, let us first verify that this is true for any kk-producible pure state ρ\rho.

Suppose that pure state ρ=|φφ|\rho=|\varphi\rangle\langle\varphi| is kk-producible under partition {A1,A2,,An}\{A_{1},A_{2},\cdots,A_{n}\}, and |φ=l=1n|φAl|\varphi\rangle=\bigotimes\limits_{l=1}^{n}|\varphi_{A_{l}}\rangle. Then we have

Ψijst|ρ2P|Ψijst=ψis|ρ|ψisψjt|ρ|ψjtΨiiss|Piρ2Pi|Ψiiss+Ψjjtt|Pjρ2Pj|Ψjjtt2\begin{array}[]{rl}&\sqrt{\langle\Psi^{st}_{ij}|\rho^{\otimes 2}P|\Psi^{st}_{ij}\rangle}=\sqrt{\langle\psi^{s}_{i}|\rho|\psi^{s}_{i}\rangle\langle\psi^{t}_{j}|\rho|\psi^{t}_{j}\rangle}\\ \leq&\dfrac{\sqrt{\langle\Psi^{ss}_{ii}|P_{i}^{\dagger}\rho^{\otimes 2}P_{i}|\Psi^{ss}_{ii}\rangle}+\sqrt{\langle\Psi^{tt}_{jj}|P_{j}^{\dagger}\rho^{\otimes 2}P_{j}|\Psi^{tt}_{jj}\rangle}}{2}\end{array} (6)

in case of i,ji,j in same part, and

Ψijst|ρ2P|Ψijst=ψ|ρ|ψψijst|ρ|ψijst=Ψijst|Piρ2Pi|Ψijst\begin{array}[]{rl}&\sqrt{\langle\Psi^{st}_{ij}|\rho^{\otimes 2}P|\Psi^{st}_{ij}\rangle}=\sqrt{\langle\psi|\rho|\psi\rangle\langle\psi^{st}_{ij}|\rho|\psi^{st}_{ij}\rangle}=\sqrt{\langle\Psi^{st}_{ij}|P_{i}^{\dagger}\rho^{\otimes 2}P_{i}|\Psi^{st}_{ij}\rangle}\end{array} (7)

in case of i,ji,j in different parts (iAl,jAli\in A_{l},j\in A_{l^{\prime}} with lll\neq l^{\prime}) where |ψijst:=|x1xi1sxi+1xj1txj+1xN|\psi^{st}_{ij}\rangle:=|x_{1}\cdots x_{i-1}sx_{i+1}\cdots x_{j-1}tx_{j+1}\cdots x_{N}\rangle. Moreover, (7) indicates that inequality (5) hols with equality for any 1-producible pure states.

Combining (6) and (7) ptoduces

s,t{ω1,,ωT}1ijNΨijst|ρ2P|Ψijst=s,t{ω1,,ωT}1i,jNiAl,jAl,llΨijst|ρ2P|Ψijst+s,t{ω1,,ωT}1i,jNi,jAl,ijΨijst|ρ2P|Ψijsts,t{ω1,,ωT}1i,jNiAl,jAl,llΨijst|Piρ2Pi|Ψijst+s,t{ω1,,ωT}1i,jNi,jAl,ijΨiiss|Piρ2Pi|Ψiiss+Ψjjtt|Pjρ2Pj|Ψjjtt2s,t{ω1,,ωT}1ijNΨijst|Piρ2Pi|Ψijst+T(k1)s{ω1,,ωT}1iNΨiiss|Piρ2Pi|Ψiiss.\begin{array}[]{rl}&\sum\limits_{\begin{subarray}{c}s,t\in\{\omega_{1},\cdots,\omega_{T}\}\\ 1\leq i\neq j\leq N\end{subarray}}\sqrt{\langle\Psi^{st}_{ij}|\rho^{\otimes 2}P|\Psi^{st}_{ij}\rangle}\\ =&\sum\limits_{\begin{subarray}{c}s,t\in\{\omega_{1},\cdots,\omega_{T}\}\\ 1\leq i,j\leq N\\ i\in A_{l},j\in A_{l^{\prime}},l\neq l^{\prime}\end{subarray}}\sqrt{\langle\Psi^{st}_{ij}|\rho^{\otimes 2}P|\Psi^{st}_{ij}\rangle}+\sum\limits_{\begin{subarray}{c}s,t\in\{\omega_{1},\cdots,\omega_{T}\}\\ 1\leq i,j\leq N\\ i,j\in A_{l},i\neq j\end{subarray}}\sqrt{\langle\Psi^{st}_{ij}|\rho^{\otimes 2}P|\Psi^{st}_{ij}\rangle}\\ \leq&\sum\limits_{\begin{subarray}{c}s,t\in\{\omega_{1},\cdots,\omega_{T}\}\\ 1\leq i,j\leq N\\ i\in A_{l},j\in A_{l^{\prime}},l\neq l^{\prime}\end{subarray}}\sqrt{\langle\Psi^{st}_{ij}|P_{i}^{\dagger}\rho^{\otimes 2}P_{i}|\Psi^{st}_{ij}\rangle}+\sum\limits_{\begin{subarray}{c}s,t\in\{\omega_{1},\cdots,\omega_{T}\}\\ 1\leq i,j\leq N\\ i,j\in A_{l},i\neq j\end{subarray}}\dfrac{\sqrt{\langle\Psi^{ss}_{ii}|P_{i}^{\dagger}\rho^{\otimes 2}P_{i}|\Psi^{ss}_{ii}\rangle}+\sqrt{\langle\Psi^{tt}_{jj}|P_{j}^{\dagger}\rho^{\otimes 2}P_{j}|\Psi^{tt}_{jj}\rangle}}{2}\\ \leq&\sum\limits_{\begin{subarray}{c}s,t\in\{\omega_{1},\cdots,\omega_{T}\}\\ 1\leq i\neq j\leq N\end{subarray}}\sqrt{\langle\Psi^{st}_{ij}|P_{i}^{\dagger}\rho^{\otimes 2}P_{i}|\Psi^{st}_{ij}\rangle}+T(k-1)\sum\limits_{\begin{subarray}{c}s\in\{\omega_{1},\cdots,\omega_{T}\}\\ 1\leq i\leq N\end{subarray}}\sqrt{\langle\Psi^{ss}_{ii}|P_{i}^{\dagger}\rho^{\otimes 2}P_{i}|\Psi^{ss}_{ii}\rangle}.\end{array} (8)

Hence, inequality (4) holds for any kk-producible pure state.

Now, let us prove (4) also holds for any kk-producible mixed state. Suppose that ρ=mpmρm=mpm|φmφm|\rho=\sum\limits_{m}p_{m}\rho_{m}=\sum\limits_{m}p_{m}|\varphi_{m}\rangle\langle\varphi_{m}| is kk-producible mixed state, where ρm=|φmφm|\rho_{m}=|\varphi_{m}\rangle\langle\varphi_{m}| is kk-producible. Then by triangle inequality and the Cauchy-Schwarz inequality, one has

s,t{ω1,,ωT}1ijNΨijst|ρ2P|Ψijstmpms,t{ω1,,ωT}1ijNΨijst|ρm2P|Ψijstmpm(s,t{ω1,,ωT}1ijNΨijst|Piρm2Pi|Ψijst+T(k1)s{ω1,,ωT}1iNΨiiss|Piρm2Pi|Ψiiss)s,t{ω1,,ωT}1ijNm(pmψ|ρm|ψ)(pmψijst|ρm|ψijst)+T(k1)s{ω1,,ωT}1iNmpmψis|ρm|ψiss,t{ω1,,ωT}1ijN(mpmψ|ρm|ψ)(mpmψijst|ρm|ψijst)+T(k1)s{ω1,,ωT}1iNψis|(mpmρm)|ψiss,t{ω1,,ωT}1ijNΨijst|Piρ2Pi|Ψijst+T(k1)s{ω1,,ωT}1iNΨiiss|Piρ2Pi|Ψiiss,\begin{array}[]{ll}&\sum\limits_{\begin{subarray}{c}s,t\in\{\omega_{1},\cdots,\omega_{T}\}\\ 1\leq i\neq j\leq N\end{subarray}}\sqrt{\langle\Psi^{st}_{ij}|\rho^{\otimes 2}P|\Psi^{st}_{ij}\rangle}\leq\sum\limits_{m}p_{m}\sum\limits_{\begin{subarray}{c}s,t\in\{\omega_{1},\cdots,\omega_{T}\}\\ 1\leq i\neq j\leq N\end{subarray}}\sqrt{\langle\Psi^{st}_{ij}|\rho_{m}^{\otimes 2}P|\Psi^{st}_{ij}\rangle}\\ \leq&\sum\limits_{m}p_{m}\Big{(}\sum\limits_{\begin{subarray}{c}s,t\in\{\omega_{1},\cdots,\omega_{T}\}\\ 1\leq i\neq j\leq N\end{subarray}}\sqrt{\langle\Psi^{st}_{ij}|P_{i}^{\dagger}\rho_{m}^{\otimes 2}P_{i}|\Psi^{st}_{ij}\rangle}+T(k-1)\sum\limits_{\begin{subarray}{c}s\in\{\omega_{1},\cdots,\omega_{T}\}\\ 1\leq i\leq N\end{subarray}}\sqrt{\langle\Psi^{ss}_{ii}|P_{i}^{\dagger}\rho_{m}^{\otimes 2}P_{i}|\Psi^{ss}_{ii}\rangle}\Big{)}\\ \leq&\sum\limits_{\begin{subarray}{c}s,t\in\{\omega_{1},\cdots,\omega_{T}\}\\ 1\leq i\neq j\leq N\end{subarray}}\sum\limits_{m}\sqrt{(p_{m}\langle\psi|\rho_{m}|\psi\rangle)(p_{m}\langle\psi^{st}_{ij}|\rho_{m}|\psi^{st}_{ij}\rangle)}+T(k-1)\sum\limits_{\begin{subarray}{c}s\in\{\omega_{1},\cdots,\omega_{T}\}\\ 1\leq i\leq N\end{subarray}}\sum\limits_{m}p_{m}\langle\psi^{s}_{i}|\rho_{m}|\psi^{s}_{i}\rangle\\ \leq&\sum\limits_{\begin{subarray}{c}s,t\in\{\omega_{1},\cdots,\omega_{T}\}\\ 1\leq i\neq j\leq N\end{subarray}}\sqrt{(\sum\limits_{m}p_{m}\langle\psi|\rho_{m}|\psi\rangle)(\sum\limits_{m}p_{m}\langle\psi^{st}_{ij}|\rho_{m}|\psi^{st}_{ij}\rangle)}+T(k-1)\sum\limits_{\begin{subarray}{c}s\in\{\omega_{1},\cdots,\omega_{T}\}\\ 1\leq i\leq N\end{subarray}}\langle\psi^{s}_{i}|(\sum\limits_{m}p_{m}\rho_{m})|\psi^{s}_{i}\rangle\\ \leq&\sum\limits_{\begin{subarray}{c}s,t\in\{\omega_{1},\cdots,\omega_{T}\}\\ 1\leq i\neq j\leq N\end{subarray}}\sqrt{\langle\Psi^{st}_{ij}|P_{i}^{\dagger}\rho^{\otimes 2}P_{i}|\Psi^{st}_{ij}\rangle}+T(k-1)\sum\limits_{\begin{subarray}{c}s\in\{\omega_{1},\cdots,\omega_{T}\}\\ 1\leq i\leq N\end{subarray}}\sqrt{\langle\Psi^{ss}_{ii}|P_{i}^{\dagger}\rho^{\otimes 2}P_{i}|\Psi^{ss}_{ii}\rangle},\end{array}

as desired.

Next, we prove that (5) also holds for any 1-producible mixed state. Suppose that ρ=mpmρm=mpm|φmφm|\rho=\sum\limits_{m}p_{m}\rho_{m}=\sum\limits_{m}p_{m}|\varphi_{m}\rangle\langle\varphi_{m}| is 11-producible mixed state, where ρm=|φmφm|\rho_{m}=|\varphi_{m}\rangle\langle\varphi_{m}| is 11-producible. Then by (7), triangle inequality and the Cauchy-Schwarz inequality, one has

Ψijst|ρ2P|ΨijstmpmΨijst|ρm2P|Ψijst=mpmΨijst|Piρm2Pi|Ψijst(mpmψ|ρm|ψ)(mpmψijst|ρm|ψijst)=ψ|ρ|ψψijst|ρ|ψijst=Ψijst|Piρ2Pi|Ψijst.\begin{array}[]{ll}&\sqrt{\langle\Psi^{st}_{ij}|\rho^{\otimes 2}P|\Psi^{st}_{ij}\rangle}\leq\sum\limits_{m}p_{m}\sqrt{\langle\Psi^{st}_{ij}|\rho_{m}^{\otimes 2}P|\Psi^{st}_{ij}\rangle}=\sum\limits_{m}p_{m}\sqrt{\langle\Psi^{st}_{ij}|P_{i}^{\dagger}\rho_{m}^{\otimes 2}P_{i}|\Psi^{st}_{ij}\rangle}\\ \leq&\sqrt{(\sum\limits_{m}p_{m}\langle\psi|\rho_{m}|\psi\rangle)(\sum\limits_{m}p_{m}\langle\psi^{st}_{ij}|\rho_{m}|\psi^{st}_{ij}\rangle)}=\sqrt{\langle\psi|\rho|\psi\rangle\langle\psi^{st}_{ij}|\rho|\psi^{st}_{ij}\rangle}=\sqrt{\langle\Psi^{st}_{ij}|P_{i}^{\dagger}\rho^{\otimes 2}P_{i}|\Psi^{st}_{ij}\rangle}.\end{array}

Hence, inequality (5) holds for any 1-producible states. This complete the proof.

IV Detection of kk-nonseparability

Here we present our main results in the detection kk-nonseparability.

Theorem 3. If ρ\rho is a kk-separable NN-partite quantum state acting on Hilbert space 12N\mathcal{H}_{1}\otimes\mathcal{H}_{2}\otimes\cdots\otimes\mathcal{H}_{N}, where dim i=di,i=1,2,,N\mathcal{H}_{i}=d_{i},i=1,2,\cdots,N, then

(2k2)Φ|ρ2P|Φ{α}Φ|Pαρ2Pα|Φ.\begin{array}[]{rl}(2^{k}-2)\sqrt{\langle\Phi|\rho^{\otimes 2}P|\Phi\rangle}\leq\sum\limits_{\{\alpha\}}\sqrt{\langle\Phi|P_{\alpha}^{\dagger}\rho^{\otimes 2}P_{\alpha}|\Phi\rangle}.\end{array} (9)

Here |Φ=|ϕ1|ϕ2|\Phi\rangle=|\phi_{1}\rangle|\phi_{2}\rangle with |ϕ1=j=1N|xj|\phi_{1}\rangle=\bigotimes\limits_{j=1}^{N}|x_{j}\rangle and |ϕ2=j=1N|yj|\phi_{2}\rangle=\bigotimes\limits_{j=1}^{N}|y_{j}\rangle being any fully separable states of NN-partite quantum system, and {α}\{\alpha\} consists of all possible nonempty proper subsets of {1,2,,N}\{1,2,\cdots,N\}.

Of course, ρ\rho is a kk-nonseparable NN-partite state if it violates the above inequality (9).

The proof is similar to that of Theorem 1.

Criterion 1 of Ref. Ananth15 is the special case of Theorem 3 when |Φ=|000|(d11)(d21)(dN1)|\Phi\rangle=|00\cdots 0\rangle|(d_{1}-1)(d_{2}-1)\cdots(d_{N}-1)\rangle.

Theorem 4. If ρ\rho is a kk-separable NN-partite quantum state acting on Hilbert space N\mathcal{H}^{\otimes N}, where dim =d\mathcal{H}=d, then

s,t{ω1,,ωT}1i,jN,ijΨijst|ρ2P|Ψijsts,t{ω1,,ωT}1i,jN,ijΨijst|Piρ2Pi|Ψijst+T(Nk)s{ω1,,ωT}1iNΨijss|Piρ2Pi|Ψiiss,\begin{array}[]{rl}&\sum\limits_{\begin{subarray}{c}s,t\in\{\omega_{1},\cdots,\omega_{T}\}\\ 1\leq i,j\leq N,i\neq j\end{subarray}}\sqrt{\langle\Psi^{st}_{ij}|\rho^{\otimes 2}P|\Psi^{st}_{ij}\rangle}\\ \leq&\sum\limits_{\begin{subarray}{c}s,t\in\{\omega_{1},\cdots,\omega_{T}\}\\ 1\leq i,j\leq N,i\neq j\end{subarray}}\sqrt{\langle\Psi^{st}_{ij}|P_{i}^{\dagger}\rho^{\otimes 2}P_{i}|\Psi^{st}_{ij}\rangle}+T(N-k)\sum\limits_{\begin{subarray}{c}s\in\{\omega_{1},\cdots,\omega_{T}\}\\ 1\leq i\leq N\end{subarray}}\sqrt{\langle\Psi^{ss}_{ij}|P_{i}^{\dagger}\rho^{\otimes 2}P_{i}|\Psi^{ss}_{ii}\rangle},\end{array} (10)

for 2kN12\leq k\leq N-1. Inequality (5) holds for any NN-separable states. Here {|ω1,,|ωT}\{|\omega_{1}\rangle,\cdots,|\omega_{T}\rangle\}\subseteq\mathcal{H}, |Ψijst=|ψis|ψjt|\Psi^{st}_{ij}\rangle=|\psi^{s}_{i}\rangle|\psi^{t}_{j}\rangle with |ψis=|x1xi1sxi+1xN|\psi^{s}_{i}\rangle=|x_{1}\cdots x_{i-1}sx_{i+1}\cdots x_{N}\rangle and |ψjt=|x1xj1txj+1xN|\psi^{t}_{j}\rangle=|x_{1}\cdots x_{j-1}tx_{j+1}\cdots x_{N}\rangle.

If an NN-partite state ρ\rho does not satisfy the above inequality (10), then ρ\rho is not k-separable (k-nonseparable).

The proof is similar to that of Theorem 2.

We need to emphasize that inequality (5) holds for any NN-separable states because NN-separable states are the same as 1-producible states in NN-partite quantum system.

Criterion 2 of Ref. Ananth15 is the special case of Theorem 4 when |ψ=|000|\psi\rangle=|00\cdots 0\rangle and {ω1,,ωT}={1,2,,d1}\{\omega_{1},\cdots,\omega_{T}\}=\{1,2,\cdots,d-1\}.

V Illustration

In this section, we illustrate our main results with some explicit examples. We indeed detects kk-partite entangled states and kk-nonseparable mixed multipartite states which beyond all previously studied criteria.

For convenience of comparison, we first list the criteria which can identify kk-partite entanglement and kk-separability of some quantum states.

For an NN-qubit quantum state ρ\rho, let quantum Fisher information F(ρ,H)=l,l2(λlλl)2(λl+λl)|l|H|l|2F(\rho,H)=\sum\limits_{l,l^{\prime}}\dfrac{2(\lambda_{l}-\lambda_{l^{\prime}})^{2}}{(\lambda_{l}+\lambda_{l^{\prime}})}|\langle l|H|l^{\prime}\rangle|^{2}, where H=12i=1Nσz(i)H=\frac{1}{2}\sum\limits_{i=1}^{N}\sigma_{z}^{(i)} with σz(i)=|00||11|\sigma_{z}^{(i)}=|0\rangle\langle 0|-|1\rangle\langle 1| acting on the ii-th qubit.

(I) If

F(ρ,H)>sk2+(Nsk)2,F(\rho,H)>sk^{2}+(N-sk)^{2},

then ρ\rho is not kk-producible and contains (k+1)(k+1)-partite entanglement Hyllus2012 . Here s=Nks=\lfloor\frac{N}{k}\rfloor is the largest integer smaller than or equal to Nk\frac{N}{k}.

(II) If

F(ρ,H)>(Nk+1)2+k1,F(\rho,H)>(N-k+1)^{2}+k-1,

then ρ\rho is kk-nonseparable HongLuoSong15 .

Suppose that ρ\rho is an NN partite state acting on Hilbert space N\mathcal{H}^{\otimes N} with dim=d\mathcal{H}=d. Let {gm}m=1d21\{g_{m}\}_{m=1}^{d^{2}-1} be the SU(dd) generators and Gm=i=1Ngm(i)G_{m}=\sum\limits_{i=1}^{N}g_{m}^{(i)}, where gm(i)g_{m}^{(i)} means that gmg_{m} acts on the ii-th subsystem.

(III) If an NN partite state ρ\rho acting on Hilbert space N\mathcal{H}^{\otimes N} satisfies

i=1d21V(ρ,Gm)<{2N(d2), if N is even,2N(d2)+2, if N is odd,\sum\limits_{i=1}^{d^{2}-1}V(\rho,G_{m})<\left\{\begin{array}[]{ll}2N(d-2),&\quad\textrm{ if $N$ is even},\\ \\ 2N(d-2)+2,&\quad\textrm{ if $N$ is odd},\end{array}\right.

then ρ\rho is not 22-producible and contains 3-partite entanglement VitaglianoHyllus11 . Here V(ρ,Gm)=tr[ρ(Gm)2][trρ(Gm)]2V(\rho,G_{m})=\textrm{tr}[\rho(G_{m})^{2}]-[\textrm{tr}\rho(G_{m})]^{2}.

(IV) If ρ\rho is a kk-separable NN-partite quantum state acting on Hilbert space N\mathcal{H}^{\otimes N}, where dim =d\mathcal{H}=d. Then Ananth15

1i,jNp,q=1,2,,d1|ρp×dNi+1,q×dNj+1|1i,jNp,q=1,2,,d1ρ1,1ρp×dNi+q×dNj+1,p×dNi+q×dNj+1+(Nk)1iNp=1,2,,d1ρp×dNi+1,p×dNj+1.\begin{array}[]{rl}&\sum\limits_{\begin{subarray}{c}1\leq i,j\leq N\\ p,q=1,2,\cdots,d-1\end{subarray}}|\rho_{p\times d^{N-i}+1,q\times d^{N-j}+1}|\\ \leq&\sum\limits_{\begin{subarray}{c}1\leq i,j\leq N\\ p,q=1,2,\cdots,d-1\end{subarray}}\sqrt{\rho_{1,1}\rho_{p\times d^{N-i}+q\times d^{N-j}+1,p\times d^{N-i}+q\times d^{N-j}+1}}+(N-k)\sum\limits_{\begin{subarray}{c}1\leq i\leq N\\ p=1,2,\cdots,d-1\end{subarray}}\rho_{p\times d^{N-i}+1,p\times d^{N-j}+1}.\end{array}

Example 1. Consider the 1010-qubit mixed states,

ρ(p,q)=p|GG|+q|G~G~|+1pq2101,\displaystyle\rho(p,q)=p|G\rangle\langle G|+q|\widetilde{G}\rangle\langle\widetilde{G}|+\frac{1-p-q}{2^{10}}\textbf{1},

where |G=12(|010+|110),|G~=12(|010i|110).|G\rangle=\frac{1}{\sqrt{2}}(|0\rangle^{\otimes 10}+|1\rangle^{\otimes 10}),|\widetilde{G}\rangle=\frac{1}{\sqrt{2}}(|0\rangle^{\otimes 10}-i|1\rangle^{\otimes 10}).

We choose |Φ=|010|110|\Phi\rangle=|0\rangle^{\otimes 10}|1\rangle^{\otimes 10} for our Theorem 1 and Theorem 3.

The parameter ranges of 10-qubit mixed states ρ(p,q)\rho(p,q) containing (k+1)(k+1)-partite entanglement (with kk =3 and kk = 4) detected by Theorem 1 and (I) are illustrated in Fig. 1. We can see that the quantum states containing 4-partite entanglement in the area enclosed by red line aa, the pp axis, blue line aa^{\prime} and qq axis are detected only by Theorem 1. Similarly, we find that the quantum states containing 5-partite entanglement in the area enclosed by orange line bb, the pp axis, green line bb^{\prime} and qq axis are detected only by Theorem 1.

For 10-qubit mixed states ρ(p,q)\rho(p,q), the parameter ranges for kk-nonseparability (with kk =3 and kk = 4) detected by Theorem 3 and (II) are illustrated in Fig. 2. We can see that these 33-nonseparable quantum states in the area enclosed by purple line cc, pp axis, cyan line c′′c^{\prime\prime}, line q=1pq=1-p, cyan line cc^{\prime} and qq axis are detected only by Theorem 3. Similarly, we find that these 44-nonseparable quantum states in the area enclosed by magenta line dd, pp axis, brown line d′′d^{\prime\prime}, line q=1pq=1-p, brown line dd^{\prime} and qq axis are detected only by Theorem 3.

Refer to caption
Refer to caption
Figure 1: The 4-partite entanglement and 5-partite entanglement detection for ρ(p,q)=p|GG|+q|G~G~|+1pq2101\rho(p,q)=p|G\rangle\langle G|+q|\widetilde{G}\rangle\langle\widetilde{G}|+\frac{1-p-q}{2^{10}}\textbf{1}. Here the red line aa represents the threshold of the detection for 4-partite entangled states given by Theorem 1, and the area enclosed by red line aa, pp axis, line q=1pq=1-p and qq axis corresponds to the quantum states containing 4-partite entanglement detected by Theorem 1; the blue line aa^{\prime} represents the threshold given by (I), the area enclosed by blue line aa^{\prime}, pp axis, line q=1pq=1-p and qq axis corresponds to the quantum states containing 4-partite entanglement detected by (I). These quantum states containing 4-partite entanglement in the area enclosed by red line aa, pp axis, blue line aa^{\prime} and qq axis are detected only by Theorem 1. Similarly, the orange line bb and green line bb^{\prime} represent the thresholds of the detection for 5-partite entangled states identified by Theorem 1 and (I), respectively. these quantum states containing 5-partite entanglement in the area enclosed by orange line bb, pp axis, green line bb^{\prime} and qq axis are detected only by Theorem 1.
Refer to caption
Refer to caption
Figure 2: The detection power of Theorem 3 and (II) for ρ(p,q)=p|GG|+q|G~G~|+1pq2101\rho(p,q)=p|G\rangle\langle G|+q|\widetilde{G}\rangle\langle\widetilde{G}|+\frac{1-p-q}{2^{10}}\textbf{1} when k=3k=3 and k=4k=4. Here the purple line cc represents the threshold given by Theorem 3, and the area enclosed by purple line cc, pp axis, line q=1pq=1-p and qq axis corresponds to 3-nonseparable quantum states detected by Theorem 3, while the cyan lines cc^{\prime} and c′′c^{\prime\prime} represent the thresholds given by (II), and the area enclosed by cyan line c′′c^{\prime\prime}, pp axis and line q=1pq=1-p and the area enclosed by cyan line cc^{\prime}, qq axis and line q=1pq=1-p corresponds to 3-nonseparable quantum states detected by (II). These 3-nonseparable quantum states in the area enclosed by purple line cc, pp axis, cyan line c′′c^{\prime\prime}, line q=1pq=1-p, cyan line cc^{\prime} and qq axis are only detected by Theorem 3, but not by (II). Similarly, the magenta line dd represents the threshold of the detection for 4-nonseparable states identified by Theorem 3, the brown lines cc^{\prime} and c′′c^{\prime\prime} represent the thresholds given by (II), and the area encircled by magenta line dd, pp axis, brown line d′′d^{\prime\prime}, line q=1pq=1-p, brown line dd^{\prime} and qq axis contains 4-nonseparable quantum states detected only by Theorem 3, but not by (II).

Example 2. Let us consider the family of 4-qutrit quantum states,

ρ(p,q)=p|WW|+qσ4|WW|σ4+1pq341,\displaystyle\rho(p,q)=p|W\rangle\langle W|+q\sigma^{\otimes 4}|W\rangle\langle W|\sigma^{\otimes 4}+\frac{1-p-q}{3^{4}}\textbf{1},

where |W=122(i=12|i000+|0i00+|00i0+|000i),|W\rangle=\frac{1}{2\sqrt{2}}(\sum\limits_{i=1}^{2}|i000\rangle+|0i00\rangle+|00i0\rangle+|000i\rangle), and σ|0=|1\sigma|0\rangle=|1\rangle, σ|1=|2\sigma|1\rangle=|2\rangle, σ|2=|0\sigma|2\rangle=|0\rangle.

We choose |ψ=|04,{ω1,ω2,,ωT}={1,2}|\psi\rangle=|0\rangle^{\otimes 4},\{\omega_{1},\omega_{2},\cdots,\omega_{T}\}=\{1,2\}, and |ψ=|14,{ω1,ω2,,ωT}={1,2}|\psi\rangle=|1\rangle^{\otimes 4},\{\omega_{1},\omega_{2},\cdots,\omega_{T}\}=\{1,2\} for our Theorem 2 and Theorem 4 .

For 4-qutrit mixed states ρ(p,q)\rho(p,q), Fig. 3 shows that Theorem 2 is more powerful than (III) for the detection of 3-partite entanglement. These quantum states containing 3-partite entanglement in the area enclosed by red line ee, pp axis, blue line ff and qq axis only are detected by Theorem 2, but not by (III).

Refer to caption
Figure 3: The 3-partite entanglement detection for ρ(p,q)=p|WW|+qσ4|WW|σ4+1pq341\rho(p,q)=p|W\rangle\langle W|+q\sigma^{\otimes 4}|W\rangle\langle W|\sigma^{\otimes 4}+\frac{1-p-q}{3^{4}}\textbf{1}. The red line ee represents the threshold given by Theorem 2, and the area enclosed by red line ee, pp axis, line q=1pq=1-p and qq axis corresponds to the quantum states containing 3-partite entanglement detected by Theorem 2. The blue line ff represents the threshold given by (III), and the area enclosed by blue line ff, pp axis, line q=1pq=1-p and qq axis corresponds to the quantum states containing 3-partite entanglement detected by (II). The area enclosed by red line ee, pp axis, blue line ff and qq axis are quantum states containing 3-partite entanglement detected only by Theorem 2, but not by (III).

For these 4-qutrit mixed states ρ(p,q)\rho(p,q), Theorem 4 is also stronger than (IV), which will be illuminated in Fig. 4. (IV) can determine 3-nonseparability in the area enclosed by green line gg, pp axis, and line q=1pq=1-p, and Theorem 4 with {ω1,ω2,,ωT}={1,2},|ψ=|04\{\omega_{1},\omega_{2},\cdots,\omega_{T}\}=\{1,2\},|\psi\rangle=|0\rangle^{\otimes 4} at the same time. But Theorem 4 can identify other 3-nonseparable quantum states enclosed by orange line hh, line q=1pq=1-p and qq axis with {ω1,ω2,,ωT}={1,2},,|ψ=|14\{\omega_{1},\omega_{2},\cdots,\omega_{T}\}=\{1,2\},,|\psi\rangle=|1\rangle^{\otimes 4}. In other words, these 3-nonseparable states in the area enclosed by green line gg, orange line hh, and qq axis are detected only by Theorem 4, not by (IV).

Refer to caption
Figure 4: The detection of 3-nonseparability for ρ(p,q)=p|WW|+qσ4|WW|σ4+1pq341\rho(p,q)=p|W\rangle\langle W|+q\sigma^{\otimes 4}|W\rangle\langle W|\sigma^{\otimes 4}+\frac{1-p-q}{3^{4}}\textbf{1}. The green line gg represents the threshold given by Theorem 4 with |ψ=|04|\psi\rangle=|0\rangle^{\otimes 4} and {ω1,ω2,,ωT}={1,2}\{\omega_{1},\omega_{2},\cdots,\omega_{T}\}=\{1,2\}, and (IV) at the same time. The orange line hh represents the threshold given by Theorem 4 with |ψ=|14,|\psi\rangle=|1\rangle^{\otimes 4}, and {ω1,ω2,,ωT}={1,2}\{\omega_{1},\omega_{2},\cdots,\omega_{T}\}=\{1,2\}. The area enclosed by green line gg, pp axis, and line q=1pq=1-p corresponds to the 3-nonseparable states detected by Theorem 4 and (IV), the area enclosed by orange line hh, line q=1pq=1-p and qq axis corresponds to the 3-nonseparable states detected by Theorem 4. Hence, the area enclosed by green line gg, orange line hh and qq axis corresponds to the 3-nonseparable states detected only by Theorem 4, not by (IV).

VI experimental implementation

Our criteria can be implemented in today’s experiment. Next we provide the local observables required to implement our criteria by using the methods GanHong10 ; GaoHong13 ; GuhneLu2007 ; SeevinckUffink2008 .

The left-hand sides of inequality (1) and (9) Φ|ρ2P|Φ=|ϕ1|ρ|ϕ2|\sqrt{\langle\Phi|\rho^{\otimes 2}P|\Phi\rangle}=|\langle\phi_{1}|\rho|\phi_{2}\rangle| can be implemented by two local observables MM and M~\widetilde{M} because of M=2Reϕ1|ρ|ϕ2\langle M\rangle=2\textrm{Re}\langle\phi_{1}|\rho|\phi_{2}\rangle and M~=2Imϕ1|ρ|ϕ2\langle\widetilde{M}\rangle=-2\textrm{Im}\langle\phi_{1}|\rho|\phi_{2}\rangle, where M=|ϕ1ϕ2|+|ϕ2ϕ1|M=|\phi_{1}\rangle\langle\phi_{2}|+|\phi_{2}\rangle\langle\phi_{1}| and M~=i|ϕ1ϕ2|+i|ϕ2ϕ1|\widetilde{M}=-\textrm{i}|\phi_{1}\rangle\langle\phi_{2}|+\textrm{i}|\phi_{2}\rangle\langle\phi_{1}|. Let |ϕ1=n=1N|xn|\phi_{1}\rangle=\bigotimes\limits_{n=1}^{N}|x_{n}\rangle, |ϕ2=n=1N|yn|\phi_{2}\rangle=\bigotimes\limits_{n=1}^{N}|y_{n}\rangle, and

l=n=1N[cos(lπN)(|ynxn|+|xnyn|)+sin(lπN)(i|ynxn|i|xnyn|)],~l=n=1N[cos(lπ+π/2N)(|ynxn|+|xnyn|)+sin(lπ+π/2N)(i|ynxn|i|xnyn|)],\begin{array}[]{rl}\mathcal{M}_{l}=&\bigotimes\limits_{n=1}^{N}\big{[}\cos(\frac{l\pi}{N})(|y_{n}\rangle\langle x_{n}|+|x_{n}\rangle\langle y_{n}|)+\sin(\frac{l\pi}{N})(\textrm{i}|y_{n}\rangle\langle x_{n}|-\textrm{i}|x_{n}\rangle\langle y_{n}|)\big{]},\\ \mathcal{\widetilde{M}}_{l}=&\bigotimes\limits_{n=1}^{N}\big{[}\cos(\frac{l\pi+\pi/2}{N})(|y_{n}\rangle\langle x_{n}|+|x_{n}\rangle\langle y_{n}|)+\sin(\frac{l\pi+\pi/2}{N})(\textrm{i}|y_{n}\rangle\langle x_{n}|-\textrm{i}|x_{n}\rangle\langle y_{n}|)\big{]},\end{array}

where 1lN1\leq l\leq N. Then they satisfy l=1N(1)ll=NM\sum\limits_{l=1}^{N}(-1)^{l}\mathcal{M}_{l}=NM, and l=1N(1)l~l=N~\sum\limits_{l=1}^{N}(-1)^{l}\mathcal{\widetilde{M}}_{l}=N\mathcal{\widetilde{M}}. The right-hand side of inequality (1) and (9) can be implemented by local observables (nα|ynyn|)(nα|xnxn|)(\bigotimes\limits_{n\in\alpha}|y_{n}\rangle\langle y_{n}|)\otimes(\bigotimes\limits_{n\notin\alpha}|x_{n}\rangle\langle x_{n}|).

The left-hand sides of inequality (4) and (10) Ψijst|ρ2P|Ψijst=|ψis|ρ|ψjt|\sqrt{\langle\Psi^{st}_{ij}|\rho^{\otimes 2}P|\Psi^{st}_{ij}\rangle}=|\langle\psi_{i}^{s}|\rho|\psi_{j}^{t}\rangle| can be implemented by two local observables MijstM_{ij}^{st} and M~ijst\widetilde{M}_{ij}^{st} because of Mijst=4Reψis|ρ|ψjt\langle M_{ij}^{st}\rangle=4\textrm{Re}\langle\psi_{i}^{s}|\rho|\psi_{j}^{t}\rangle and M~ijst=4Imψis|ρ|ψjt\langle\widetilde{M}_{ij}^{st}\rangle=-4\textrm{Im}\langle\psi_{i}^{s}|\rho|\psi_{j}^{t}\rangle, where

Mijst=|ψisψjt|+|ψjtψis|=MisMjt(ni,j|xnxn|)+M~isM~jt(ni,j|xnxn|),M~ijst=|ψisψjt|+|ψjtψis|=MisM~jt(ni,j|xnxn|)M~isMjt(ni,j|xnxn|).\begin{array}[]{rl}M_{ij}^{st}=&|\psi_{i}^{s}\rangle\langle\psi_{j}^{t}|+|\psi_{j}^{t}\rangle\langle\psi_{i}^{s}|\\ =&M_{i}^{s}\otimes M_{j}^{t}\otimes(\bigotimes\limits_{n\neq i,j}|x_{n}\rangle\langle x_{n}|)+\widetilde{M}_{i}^{s}\otimes\widetilde{M}_{j}^{t}\otimes(\bigotimes\limits_{n\neq i,j}|x_{n}\rangle\langle x_{n}|),\\ \widetilde{M}_{ij}^{st}=&|\psi_{i}^{s}\rangle\langle\psi_{j}^{t}|+|\psi_{j}^{t}\rangle\langle\psi_{i}^{s}|\\ =&M_{i}^{s}\otimes\widetilde{M}_{j}^{t}\otimes(\bigotimes\limits_{n\neq i,j}|x_{n}\rangle\langle x_{n}|)-\widetilde{M}_{i}^{s}\otimes M_{j}^{t}\otimes(\bigotimes\limits_{n\neq i,j}|x_{n}\rangle\langle x_{n}|).\end{array}

Here Mis=|sxi|+|xis|M_{i}^{s}=|s\rangle\langle x_{i}|+|x_{i}\rangle\langle s|, M~is=i|sxi|i|xis|\widetilde{M}_{i}^{s}=\textrm{i}|s\rangle\langle x_{i}|-\textrm{i}|x_{i}\rangle\langle s|. Hence, The left-hand sides of inequality (4) and (10) can be implemented by local observables. The right-hand sides of inequality (4) and (10) can be implemented by the local observables n=1N|xnxn|,(|ss|)(|tt|)(ni,j|xnxn|)\bigotimes\limits_{n=1}^{N}|x_{n}\rangle\langle x_{n}|,(|s\rangle\langle s|)\otimes(|t\rangle\langle t|)\otimes(\bigotimes\limits_{n\neq i,j}|x_{n}\rangle\langle x_{n}|) and (|ss|)(ni|xnxn|)(|s\rangle\langle s|)\otimes(\bigotimes\limits_{n\neq i}|x_{n}\rangle\langle x_{n}|).

VII Conclusions

In conclusion, we exploit some nonlinear operators to develop a series of inequalities, which can be used to efficiently identify kk-partite entanglement and kk-nonseparability of NN-partite mixed quantum states in arbitrary dimensional systems. These inequalities present sufficient conditions for the detection of kk-partite entanglement and kk-nonseparability, distinguish different classes of multipartite inseparable states, and can identify some kk-partite entanglement and kk-nonseparability that had not been identified so far. These reveal the practicability and efficiency of our results. Moreover, our criteria can be applied to experiment and we give the corresponding local observables required to implement them.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China under Grant Nos. 12071110 and 11701135, the Hebei Natural Science Foundation of China under Grant No. A2020205014 and No. A2017403025, the education Department of Hebei Province Natural Science Foundation under Grant No. ZD2020167, and the Foundation of Hebei GEO University under Grant No. BQ201615.

References

  • (1) O. Gu¨\ddot{\textrm{u}}hne and G. To´\acute{\textrm{o}}th, Phys. Rep. 474, 1 (2009).
  • (2) R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Rev. Mod. Phys. 81, 865 (2009).
  • (3) G. Vitagliano, P. Hyllus, I. L. Egusquiza, and G. To´\acute{\textrm{o}}th, Phys. Rev. Lett. 107, 240502 (2011).
  • (4) O. Gu¨\ddot{\textrm{u}}hne and M. Seevinck, New J. Phys. 12, 053002 (2010).
  • (5) M. Huber, F. Mintert, A. Gabriel, and B. C. Hiesmayr, Phys. Rev. Lett. 104, 210501 (2010).
  • (6) T. Gao and Y. Hong, Phys. Rev. A 82, 062113 (2010).
  • (7) T. Gao and Y. Hong, Eur. Phys. J. D 61, 765 (2011).
  • (8) J. Y. Wu, H. Kampermann, and D. Bruß{\ss}, Phys. Rev. A 86, 022319 (2012).
  • (9) Z. H. Chen, Z. H. Ma, J. L. Chen, and S. Severini, Phys. Rev. A 85, 062320 (2012).
  • (10) M. Seevinck and G. Svetlichny, Phys. Rev. Lett. 89, 060401 (2002).
  • (11) A. C. Doherty, P. A. Parrilo, and F. M. Spedalieri, Phys. Rev. Lett. 88, 187904 (2002).
  • (12) A. C. Doherty, P. A. Parrilo, and F. M. Spedalieri, Phys. Rev. A 69, 022308 (2004).
  • (13) A. C. Doherty, P. A. Parrilo, and F. M. Spedalieri, Phys. Rev. A 71, 032333 (2005).
  • (14) O. Gittsovich, P. Hyllus, and O. Gu¨\ddot{\textrm{u}}hne, Phys. Rev. A 82, 032306 (2010).
  • (15) Z. Q. Chen. Phys. Rev. A 71, 052302 (2005).
  • (16) P. Hyllus, W. Laskowski, R. Krischek, C. Schwemmer, W. Wieczorek, H. Weinfurter, L. Pezze´\acute{\textrm{e}}, and A. Smerzi, Phys. Rev. A 85, 022321 (2012).
  • (17) G. To´\acute{\textrm{o}}th, Phys. Rev. A 85, 022322 (2012).
  • (18) M. Gessner, L. Pezze`\grave{\textrm{e}}, and A. Smerzi, Phys. Rev. A 94, 020101 (2016).
  • (19) T. Gao, F. L. Yan, and S. J. van Enk, Phys. Rev. Lett. 112, 180501 (2014).
  • (20) Y. Hong, T. Gao, and F. L. Yan, Phys. Rev. A 86, 062323 (2012).
  • (21) T. Gao, Y. Hong, Y. Lu, and F. L. Yan, Europhys. Lett. 104, 20007 (2013).
  • (22) A. Gabriel, B. C. Hiesmayr, and M. Huber, Quantum Inf. Comput. 10, 829 (2010).
  • (23) N. Ananth, V. K. Chandrasekar, and M. Senthilvelan, Eur. Phys. J. D 69, 56 (2015).
  • (24) M. Huber, M. Perarnau-Llobet, and J. I. de Vicente, Phys. Rev. A 88, 042328 (2013).
  • (25) Y. Hong, S. Luo, and H. Song, Phys. Rev. A 91, 042313 (2015).
  • (26) Y. Hong and S. Luo, Phys. Rev. A 93, 042310 (2016).
  • (27) C. Klo¨\ddot{\textrm{o}}ckl and M. Huber, Phys. Rev. A 91, 042339 (2015).
  • (28) O. Gu¨\ddot{\textrm{u}}hne, C. Y. Lu, W. B. Gao, and J. W. Pan, Phys. Rev. A 76, 030305(R) (2007).
  • (29) M. Seevinck and J. Uffink, Phys. Rev. A 78, 032101 (2008).