This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Derivation of wealth distributions from biased exchange of money

Fei Cao111Arizona State University - School of Mathematical and Statistical Sciences, 900 S Palm Walk, Tempe, AZ 85287-1804, USA    Sebastien Motsch111Arizona State University - School of Mathematical and Statistical Sciences, 900 S Palm Walk, Tempe, AZ 85287-1804, USA
Abstract

In the manuscript, we are interested in using kinetic theory to better understand the time evolution of wealth distribution and their large scale behavior such as the evolution of inequality (e.g. Gini index). We investigate three type of dynamics denoted unbiased, poor-biased and rich-biased exchange models. At the individual level, one agent is picked randomly based on its wealth and one of its dollar is redistributed among the population. Proving the so-called propagation of chaos, we identify the limit of each dynamics as the number of individual approaches infinity using both coupling techniques [48] and martingale-based approach [36]. Equipped with the limit equation, we identify and prove the convergence to specific equilibrium for both the unbiased and poor-biased dynamics. In the rich-biased dynamics however, we observe a more complex behavior where a dispersive wave emerges. Although the dispersive wave is vanishing in time, its also accumulates all the wealth leading to a Gini approaching 11 (its maximum value). We characterize numerically the behavior of dispersive wave but further analytic investigation is needed to derive such dispersive wave directly from the dynamics.

Key words: Econophysics, Agent-based model, Propagation of chaos, Entropy, Dispersive wave

1 Introduction

Econophysics is an emerging branch of statistical physics that apply concepts and techniques of traditional physics to economics and finance [45, 18, 25]. It has attracted considerable attention in recent years raising challenges on how various economical phenomena could be explained by universal laws in statistical physics, and we refer to [15, 16, 41, 30] for a general review.

The primary motivation for study models arising from econophysics is at least two-fold: from the perspective of a policy maker, it is important to deal with the raise of income inequality [21, 22] in order to establish a more egalitarian society. From a mathematical point of view, we have to understand the fundamental mechanisms, such as money exchange resulting from individuals, which are usually agent-based models. Given an agent-based model, one is expected to identify the limit dynamics as the number of individuals tends to infinity and then its corresponding equilibrium when run the model for a sufficiently long time (if there is one), and this guiding approach is carried out in numerous works across different fields among literatures of applied mathematics, see for instance [38, 5, 12].

Although we will only consider three distinct binary exchange models in the present work, other exchange rules can also be imposed and studied, leading to different models. To name a few, the so-called immediate exchange model introduced in [27] assumes that pairs of agents are randomly and uniformly picked at each random time, and each of the agents transfer a random fraction of its money to the other agents, where these fractions are independent and uniformly distributed in [0,1][0,1]. The so-called uniform reshuffling model investigated in [25] and [32] suggests that the total amount of money of two randomly and uniformly picked agents possess before interaction is uniformly redistributed among the two agents after interaction. For models with saving propensity and with debts, we refer the readers to [14], [17] and [33].

1.1 Unbiased/poor-biased/rich-biased dynamics

In this work, we consider several dynamics for money exchange in a closed economical system, meaning that there are a fixed number of agents, denoted by NN, with an (fixed) average number of dollar mm. We denote by Si(t)S_{i}(t) the amount of dollars the agent ii has at time tt. Since it is a closed economical system, we have:

S1(t)++SN(t)=Constantfor all t0.S_{1}(t)+\dots+S_{N}(t)=\text{Constant}\qquad\text{for all }t\geq 0. (1.1)

As a first example of money exchange, we review the model proposed in [25]: at random time (exponential law), an agent ii is picked at random (uniformly) and if it has one dollar (i.e. Si1S_{i}\geq 1) it will give it to another agent jj picked at random (uniformly). If ii does not have one dollar (i.e. Si=0S_{i}=0), then nothing happens. From now on we will call this model as unbiased exchange model as all the agents are being picked with equal probability. We refer to this dynamics as follow:

unbiased:(Si,Sj)λ(Si1,Sj+1)(if Si1).\textbf{unbiased:}\qquad(S_{i},S_{j})\leavevmode\hbox to18.47pt{\vbox to14.72pt{\pgfpicture\makeatletter\hbox{\hskip 1.19998pt\lower-1.59998pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{} {}{} {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}} {{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}{{}}} {{{{}{}{{}} }}{{}} {}{}{} }{{{{}{}{{}} }}{{}} {{}{}{}{}} {{}{}{}{}} }{{{{}{}{{}} }}{{}} {{}{}{}{}} {{}{}{}{}} }{{{{}{}{{}} }}{{}} {{}{}{}{}} {{}{}{}{}} }{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{}} } {{{{}{}{{}} }}{{}} }{{{{}{}{{}} }}{{}}{{}}} {}{{ {\pgfsys@beginscope\pgfsys@setlinewidth{0.32pt}\pgfsys@setdash{}{0.0pt}\pgfsys@roundcap\pgfsys@roundjoin{} {}{}{} {}{}{} \pgfsys@moveto{-1.19998pt}{1.59998pt}\pgfsys@curveto{-1.09998pt}{0.99998pt}{0.0pt}{0.09999pt}{0.29999pt}{0.0pt}\pgfsys@curveto{0.0pt}{-0.09999pt}{-1.09998pt}{-0.99998pt}{-1.19998pt}{-1.59998pt}\pgfsys@stroke\pgfsys@endscope}} }{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{0.0pt}\pgfsys@curveto{0.71132pt}{0.0pt}{1.06697pt}{1.1381pt}{1.77829pt}{1.1381pt}\pgfsys@curveto{2.29327pt}{1.1381pt}{2.73714pt}{0.58272pt}{3.20093pt}{0.0pt}\pgfsys@curveto{3.6647pt}{-0.5827pt}{4.10857pt}{-1.1381pt}{4.62357pt}{-1.1381pt}\pgfsys@curveto{5.13855pt}{-1.1381pt}{5.58241pt}{-0.58272pt}{6.0462pt}{0.0pt}\pgfsys@curveto{6.50998pt}{0.5827pt}{6.95384pt}{1.1381pt}{7.46884pt}{1.1381pt}\pgfsys@curveto{7.98383pt}{1.1381pt}{8.42769pt}{0.58272pt}{8.89148pt}{0.0pt}\pgfsys@curveto{9.35526pt}{-0.5827pt}{9.79912pt}{-1.1381pt}{10.31412pt}{-1.1381pt}\pgfsys@lineto{10.31413pt}{0.0pt}\pgfsys@lineto{16.61183pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.61183pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} {\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.9109pt}{3.533pt}\pgfsys@invoke{ }\hbox{{\definecolor[named]{.}{rgb}{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\hbox{{\definecolor[named]{.}{rgb}{1,0,0}\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\small{$\lambda$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}(S_{i}-1,S_{j}+1)\quad(\text{if }S_{i}\geq 1). (1.2)

In other words, any agents with at least one dollar gives to all of the others agents at a fixed rate. Later on, we will adjust the rate λ\lambda (more exactly λ𝟙[1,+)(Si)\lambda\mathbbm{1}_{[1\!,+\infty)}(S_{i})) by normalizing by NN in order to have the correct asymptotic as N+N\to+\infty (the rate of one agent giving a dollar per unit time is of order NN otherwise).

Another possible dynamics is to pick the giver agent, i.e. agent ii, with higher probability if the agent is rich, i.e. SiS_{i} large. Thus, poor agent will have a lower frequency of being picked. From now on we will call this model as poor-biased model and it illustrates as follow:

poor-biased:(Si,Sj)λSi(Si1,Sj+1).\textbf{poor-biased:}\qquad(S_{i},S_{j})\leavevmode\hbox to19.69pt{\vbox to16.12pt{\pgfpicture\makeatletter\hbox{\hskip 1.30902pt\lower-1.3381pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{} {}{} {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}} {{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}{{}}} {{{{}{}{{}} }}{{}} {}{}{} }{{{{}{}{{}} }}{{}} {{}{}{}{}} {{}{}{}{}} }{{{{}{}{{}} }}{{}} {{}{}{}{}} {{}{}{}{}} }{{{{}{}{{}} }}{{}} {{}{}{}{}} {{}{}{}{}} }{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{}} } {{{{}{}{{}} }}{{}} }{{{{}{}{{}} }}{{}}{{}}} {}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{0.0pt}\pgfsys@curveto{0.71132pt}{0.0pt}{1.06697pt}{1.1381pt}{1.77829pt}{1.1381pt}\pgfsys@curveto{2.29327pt}{1.1381pt}{2.73714pt}{0.58272pt}{3.20093pt}{0.0pt}\pgfsys@curveto{3.6647pt}{-0.5827pt}{4.10857pt}{-1.1381pt}{4.62357pt}{-1.1381pt}\pgfsys@curveto{5.13855pt}{-1.1381pt}{5.58241pt}{-0.58272pt}{6.0462pt}{0.0pt}\pgfsys@curveto{6.50998pt}{0.5827pt}{6.95384pt}{1.1381pt}{7.46884pt}{1.1381pt}\pgfsys@curveto{7.98383pt}{1.1381pt}{8.42769pt}{0.58272pt}{8.89148pt}{0.0pt}\pgfsys@curveto{9.35526pt}{-0.5827pt}{9.79912pt}{-1.1381pt}{10.31412pt}{-1.1381pt}\pgfsys@lineto{10.31413pt}{0.0pt}\pgfsys@lineto{16.61183pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.61183pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} {\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{2.02399pt}{5.19499pt}\pgfsys@invoke{ }\hbox{{\definecolor[named]{.}{rgb}{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\hbox{{\definecolor[named]{.}{rgb}{1,0,0}\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\small{$\lambda S_{i}$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}(S_{i}-1,S_{j}+1). (1.3)

Notice that since the rate of giving is SiS_{i}, an agent with no money, i.e. Si=0S_{i}=0, will never have to give. As for the unbiased dynamics (1.2), we will also adjust the rate, normalizing by NN.

Our third dynamics that we would like to explore is the rich-biased model: we reverse the bias compared to the previous dynamics, rich agents are less likely to give:

rich-biased:(Si,Sj)λ/Si(Si1,Sj+1)(if Si1).\textbf{rich-biased:}\qquad(S_{i},S_{j})\leavevmode\hbox to28.63pt{\vbox to17.2pt{\pgfpicture\makeatletter\hbox{\hskip 5.7812pt\lower-1.3381pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{} {}{} {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}} {{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}{{}}} {{{{}{}{{}} }}{{}} {}{}{} }{{{{}{}{{}} }}{{}} {{}{}{}{}} {{}{}{}{}} }{{{{}{}{{}} }}{{}} {{}{}{}{}} {{}{}{}{}} }{{{{}{}{{}} }}{{}} {{}{}{}{}} {{}{}{}{}} }{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{}} } {{{{}{}{{}} }}{{}} }{{{{}{}{{}} }}{{}}{{}}} {}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{0.0pt}\pgfsys@curveto{0.71132pt}{0.0pt}{1.06697pt}{1.1381pt}{1.77829pt}{1.1381pt}\pgfsys@curveto{2.29327pt}{1.1381pt}{2.73714pt}{0.58272pt}{3.20093pt}{0.0pt}\pgfsys@curveto{3.6647pt}{-0.5827pt}{4.10857pt}{-1.1381pt}{4.62357pt}{-1.1381pt}\pgfsys@curveto{5.13855pt}{-1.1381pt}{5.58241pt}{-0.58272pt}{6.0462pt}{0.0pt}\pgfsys@curveto{6.50998pt}{0.5827pt}{6.95384pt}{1.1381pt}{7.46884pt}{1.1381pt}\pgfsys@curveto{7.98383pt}{1.1381pt}{8.42769pt}{0.58272pt}{8.89148pt}{0.0pt}\pgfsys@curveto{9.35526pt}{-0.5827pt}{9.79912pt}{-1.1381pt}{10.31412pt}{-1.1381pt}\pgfsys@lineto{10.31413pt}{0.0pt}\pgfsys@lineto{16.61183pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.61183pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} {\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.4482pt}{5.783pt}\pgfsys@invoke{ }\hbox{{\definecolor[named]{.}{rgb}{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\hbox{{\definecolor[named]{.}{rgb}{1,0,0}\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\small{$\lambda/S_{i}$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}(S_{i}-1,S_{j}+1)\quad(\text{if }S_{i}\geq 1). (1.4)

As a consequence of this dynamics, rich agents will tend to become even richer compared to poor agents creating a feedback that could lead to singular behavior. The adjustment of the rate for this dynamics is more delicate since the sum of the rates λ/Si\lambda/S_{i} is no longer constant. In particular, we will see that a normalization of the rates to have a constant rate of giving a dollar per agent will lead to finite time blow-up of the dynamics in the limit N+N\to+\infty.

We illustrate the dynamics in figure 1-left. The key question of interest is the exploration of the limiting money distribution among the agents as the total number of agents and the number of time steps become large. We illustrate numerically (see figure 2) the three previous dynamics using N=500N=500 agents. In the unbiased dynamics (pink), the wealth distribution is (approximately) exponential with the proportion of agent decaying as wealth increases. On the contrary, the poor-biased dynamics (blue) has the bulk of its distribution around $10\$10 (the average capital per agent). For the rich-biased dynamics (green), most of the agents are left with no money and few with large amounts (more than $30\$30). To visualize the temporal evolution of the three dynamics, we estimate the Gini index GG after each iteration in figure 1-right:

G=12μ1i,jN|SiSj|,G=\frac{1}{2\mu}\sum_{1\leq i,j\leq N}|S_{i}-S_{j}|, (1.5)

where μ\mu is the average wealth (μ=1Ni=1NSi\mu=\frac{1}{N}\sum_{i=1}^{N}S_{i}). The widely used inequality indicator Gini index GG measures the inequality in the wealth distribution and ranges from 0 (no inequality) to 11 (extreme inequality). Since all agents have the same amount of dollar initially (Si(t=0)=μS_{i}(t=0)=\mu), the Gini index starts at zero (i.e. G(t=0)=0G(t=0)=0). In the unbiased dynamics, the Gini index stabilizes around .5.5 (which corresponds to the Gini index of an exponential distribution). The Gini index is strongly reduced in the poor-biased dynamics (G.19G\approx.19). On the contrary, the Gini index keeps increasing in the rich-biased dynamics and seems to approach 11 (its maximum). We study in more details this phenoma in section 5.3. We emphasize that the “rich-get-richer” phenomenon, numerically observed in the rich-biased dynamics in the present work, has also been reported in other models from econophysics, and we refer interested readers to [7, 8] and references therein.

Refer to caption
Figure 1: Left: Illustration of the 33 dynamics: at random time, one dollar is passed from a “giver” ii to a “receiver” jj. Right: The rate of picking the “giver” ii depends on the wealth SiS_{i}.
Refer to caption
Refer to caption
Figure 2: Left: Distribution of wealth for the three dynamics after 50,00050,000 steps. The distribution decays for the unbiased dynamics (pink) i.e. poor agents are more frequent than rich agents, whereas in the poor-biased dynamics, the distribution (blue) is centered at the average $10\$10. For the rich-biased dynamics, almost all agents have zero dollars except a few with a large amount (more than $30\$30). Right: evolution of the Gini index (1.5) for the three dynamics. The Gini index is lower for the poor-biased dynamics (less inequality) whereas it is approaching 11 for the rich-biased dynamics.

1.2 Asymptotic dynamics: N+N\to+\infty and t+t\to+\infty

One of the main difficulty in any rigorous mathematical treatment lies in the general fact that models in econophysics typically consist of a large number of interacting (coupled) economic agents. Fortunately the framework of kinetic theories allows simplification of the mathematical analysis of certain such models under some appropriate limit processes.  For the unbiased model (1.2) and the poor-biased model (1.3), instead of taking the large time limit and then the large population limit as in [31], we first take the large population limit to achieve a transition from the large stochastic system of interacting agents to a deterministic system of ordinary differential equations by proving the so-called propagation of chaos [48, 36, 37, 39] through a well-designed coupling technique, see figure 3 for a illustration of these strategies. After that, analysis of the deterministic description is then built on its (discrete) Fokker-Planck formulation and we investigate the convergence toward an equilibrium distribution by employing entropy methods. [3, 34, 28]. For the rich-biased model, we prove the propagation of chaos by virtue of a novel martingale-based technique introduced in [36], and we report some interesting numerical behavior of the associated ODE system. We illustrate the various (limiting) ODE systems obtained in the present work in figure 4.

Refer to caption
Figure 3: Schematic illustration of the strategy of proof: The approach of sending tt\to\infty first and then taking NN\to\infty is carried out in [31] (see also [32, 33] for usage of this approach applied for a variety of models in econophysics). Our strategy is to perform the limit NN\to\infty before investigating the time asymptotic tt\to\infty.
Refer to caption
Figure 4: Summary of the limit ODE systems obtained in this manuscript. The exact form of the operator QQ will be model-dependent.

For the poor-biased model, we present an explicit rate of convergence of its associated system of ordinary differential equations toward its equilibrium via the Bakry-Emery approach [4]. Then, we resort to numerical simulation in the determination of the sharp rate of convergence and a heuristic argument is used in support of our numerical observation.

This paper is organized as follows: in section 2, we briefly review different approaches to tackle the propagation of chaos. Section 3 is devoted to the investigation of the unbiased exchange model, where the rigorous large population limit NN\to\infty is carried out via a coupling argument and the limiting system of ODEs is studied in detail. We perform the analysis, for the poor-biased model in section 4 and for the rich-biased model in section 5, in a parallel fashion that resembles section 3. A subsection is dedicated in 5.3 to the emergence of a dispersive traveling wave in the rich-biased dynamics. Finally, a conclusion is drawn in section 6.

2 Review propagation of chaos

2.1 Definition

We propose to review the method used to prove the so-called propagation of chaos. But first we need to carefully define what propagation of chaos means. With this aim, we consider a (stochastic) NN-particle system denoted (S1,,SN)(S_{1},\dots,S_{N}) where particles are indistinguishable. In other words, the particle system is invariant by permutation, i.e. for any test function φ\varphi and permutation σ𝒮N\sigma\in\mathcal{S}_{N}:

𝔼[φ(S1,,SN)]=𝔼[φ(Sσ(1),,Sσ(N))].\mathbb{E}[\varphi(S_{1},\dots,S_{N})]=\mathbb{E}[\varphi(S_{\sigma(1)},\dots,S_{\sigma(N)})].

In particular, all the single processes SiS_{i} for i=1,,Ni=1,\ldots,N have the same law (but they are in general not independent). Denote by 𝐩(N)(s1,,sN){\bf p}^{(N)}(s_{1},\dots,s_{N}) the density distribution of the NN-process and let 𝐩k(N){\bf p}^{(N)}_{k} be the marginal density, i.e. the law of the process (S1,,Sk)(S_{1},...,S_{k}) (for 1kN1\leq k\leq N):

𝐩k(N)(s1,,sk)=sk+1,,sN𝐩(N)(s1,,sN)dsk+1dsN.{\bf p}^{(N)}_{k}(s_{1},\dots,s_{k})=\int_{s_{k+1},\dots,s_{N}}{\bf p}^{(N)}(s_{1},\dots,s_{N})\,\mathrm{d}s_{k+1}\dots\mathrm{d}s_{N}.

Consider now a limit stochastic process (S¯1,,S¯k)(\overline{S}_{1},\dots,\overline{S}_{k}) where {S¯i}i=1,,k\{\overline{S}_{i}\}_{i=1,\ldots,k} are independent and identically distributed. Denote by 𝐩1{\bf p}_{1} the law of a single process, thus by independence assumption the law of all the processes is given by:

𝐩k(s1,,sk)=i=1k𝐩1(si).{\bf p}_{k}(s_{1},\dots,s_{k})=\prod_{i=1}^{k}{\bf p}_{1}(s_{i}).
Definition 1

We say that the stochastic process (S1,,SN)(S_{1},\dots,S_{N}) satisfies the propagation of chaos if for any fixed kk:

𝐩k(N)N+𝐩k{\bf p}^{(N)}_{k}\;\;\stackrel{{\scriptstyle N\to+\infty}}{{\rightharpoonup}}\;\;{\bf p}_{k} (2.1)

which is equivalent to have for any test function φ\varphi:

𝔼[φ(S1,,Sk)]N+𝔼[φ(S¯1,,S¯k)].\mathbb{E}[\varphi(S_{1},\dots,S_{k})]\stackrel{{\scriptstyle N\to+\infty}}{{\longrightarrow}}\mathbb{E}[\varphi(\overline{S}_{1},\dots,\overline{S}_{k})]. (2.2)

Remark. For binary collision models [13, 12], proving propagation of chaos is equivalent to show that 𝐩2(N)(s1,s2)𝐩1(N)(s1)𝐩1(N)(s2){\bf p}^{(N)}_{2}(s_{1},s_{2})\approx{\bf p}^{(N)}_{1}(s_{1})\,{\bf p}^{(N)}_{1}(s_{2}), i.e. collisions come from two independent particles.

2.2 Coupling method

The coupling method [48] consists in generating the two processes (S1,,SN)(S_{1},\dots,S_{N}) and (S¯1,,S¯k)(\overline{S}_{1},\dots,\overline{S}_{k}) simultaneously in such a way that:

  • i)

    (S1,,Sk)(S_{1},\dots,S_{k}) and (S¯1,,S¯k)(\overline{S}_{1},\dots,\overline{S}_{k}) satisfy their respective law,

  • ii)

    SiS_{i} and S¯i\overline{S}_{i} are closed for all 1ik1\leq i\leq k.

The main difficulty is that {S¯i}i=1,,k\{\overline{S}_{i}\}_{i=1,\ldots,k} are independent but {Si}i=1,,N\{S_{i}\}_{i=1,\ldots,N} are not, thus the two processes cannot be too closed. In practice, we expect to find a bound of the form:

𝔼[|SiS¯i|]CNN+0,for all 1ik.\mathbb{E}[|S_{i}-\overline{S}_{i}|]\leq\frac{C}{\sqrt{N}}\stackrel{{\scriptstyle N\to+\infty}}{{\longrightarrow}}0\quad,\quad\text{for all }1\leq i\leq k. (2.3)

Such result is sufficient111using as a test function φ(s1,,sk)=φ1(s1)φk(sk)\varphi(s_{1},\dots,s_{k})=\varphi_{1}(s_{1})\dots\varphi_{k}(s_{k}) to prove (2.2) and therefore one deduces propagation of chaos.

In a more abstract point of view, the inequality (2.3) gives an upper bound for the Wasserstein distance between 𝐩k(N){\bf p}_{k}^{(N)} and the limit density 𝐩k{\bf p}_{k}. Since convergence in Wasserstein distance is equivalent to weak-* convergence for measures, we can conclude about the propagation of chaos (2.1).

2.3 Empirical distribution - tightness of measure

Another approach to prove propagation of chaos is to study the so-called empirical measure:

𝐩emp(N)(s)=1Ni=1NδSi(s){\bf p}_{emp}^{(N)}(s)=\frac{1}{N}\sum_{i=1}^{N}\delta_{S_{i}}(s) (2.4)

where δ\delta is the Delta distribution, i.e. for a smooth test function φ(s)\varphi(s) the duality bracket is defined as:

𝐩emp(N),φ=1Ni=1Nφ(Si).\langle{\bf p}_{emp}^{(N)},\varphi\rangle=\frac{1}{N}\sum_{i=1}^{N}\varphi(S_{i}). (2.5)

Notice that 𝐩emp(N){\bf p}_{emp}^{(N)} is a distribution of a single variable, thus the domain of 𝐩emp(N){\bf p}_{emp}^{(N)} remains the same as NN increases which simplifies its study. However, 𝐩emp(N){\bf p}_{emp}^{(N)} is also a stochastic measure, i.e. 𝐩emp(N){\bf p}_{emp}^{(N)} is a random variable on the space of measures [6]. The link between propagation of chaos and empirical distribution relies on the following lemma.

Lemma 2.1

The stochastic process (S1,,SN)(S_{1},\ldots,S_{N}) satisfies the propagation of chaos (2.1) if and only if:

𝐩emp(N)N+𝐩1,{\bf p}_{emp}^{(N)}\stackrel{{\scriptstyle N\to+\infty}}{{\rightharpoonup}}{\bf p}_{1}, (2.6)

i.e. for any test function φ\varphi the random variable 𝐩emp(N),φ\langle{\bf p}_{emp}^{(N)},\varphi\rangle converges in law to the constant value 𝔼[φ(S¯1)]\mathbb{E}[\varphi(\overline{S}_{1})].

The proof can be found in [48] but for completeness we write our own in appendix 7.1.

3 Unbiased exchange model

3.1 Definition and limit equation

We consider first the unbiased model that is briefly mentioned in the introduction above. For the three models investigated in this work, we consider a (closed) economic market consisting of NN agents with μ\mu dollars per agents for some (fixed) μ+\mu\in\mathbb{N}_{+}, i.e. there are a total of μN\mu N dollars. We denote by Si(t)S_{i}(t) the amount of dollars that agent ii has (i.e. Si(t){0,,μN}S_{i}(t)\in\{0,\ldots,\mu N\} and i=1NSi(t)=μN\sum_{i=1}^{N}S_{i}(t)=\mu N for any t0t\geq 0).

Definition 2 (Unbiased Exchange Model)

The dynamics consist in choosing with uniform probability a “giver” ii and a “receiver” jj. If the receiver ii has at least one dollar (i.e. Si1S_{i}\geq 1), then it gives one dollar to the receiver jj. This exchange occurs according to a Poisson process with frequency λ/N>0\lambda/N>0.

The unbiased exchange model can be written as a stochastic differential equation [43, 46]. Introducing {Nt(i,j)}1i,jN\{\mathrm{N}_{t}^{(i,j)}\}_{1\leq i,j\leq N} independent Poisson processes with constant intensity λN\frac{\lambda}{N}, the evolution of each SiS_{i} is given by:

dSi(t)=j=1N𝟙[1,)(Si(t))dNt(i,j)i gives to j+j=1N𝟙[1,)(Sj(t))dNt(j,i)j gives to i.\mathrm{d}S_{i}(t)=-\sum\limits^{N}_{j=1}\underbrace{\mathbbm{1}_{[1,\infty)}\big{(}S_{i}(t-)\big{)}\mathrm{d}\mathrm{N}^{(i,j)}_{t}}_{\text{``$i$ gives to $j$''}}+\sum\limits^{N}_{j=1}\underbrace{\mathbbm{1}_{[1,\infty)}\big{(}S_{j}(t-)\big{)}\mathrm{d}\mathrm{N}^{(j,i)}_{t}}_{\text{``$j$ gives to $i$''}}. (3.1)

To gain some insight of the dynamics, we focus on i=1i=1 and introduce some notations:

𝐍t1=j=1NNt(1,j),𝐌t1=j=1NNt(j,1).\mathrm{\bf N}^{1}_{t}=\sum_{j=1}^{N}\mathrm{N}^{(1,j)}_{t},\quad\mathrm{\bf M}^{1}_{t}=\sum_{j=1}^{N}\mathrm{N}^{(j,1)}_{t}.

The two Poisson processes 𝐍t1\mathrm{\bf N}^{1}_{t} and 𝐌t1\mathrm{\bf M}^{1}_{t} are of intensity λ\lambda. The evolution of S1(t)S_{1}(t) can be written as:

dS1(t)=𝟙[1,)(S1(t))d𝐍t1+Y(t)d𝐌t1,\mathrm{d}S_{1}(t)=-\mathbbm{1}_{[1,\infty)}\big{(}S_{1}(t-)\big{)}\mathrm{d}\mathrm{\bf N}^{1}_{t}+Y(t-)\mathrm{d}\mathrm{\bf M}^{1}_{t}, (3.2)

with Y(t)Y(t) Bernoulli distribution with parameter r(t)r(t) (i.e. Y(t)(r(t))Y(t)\sim\mathcal{B}(r(t))) representing the proportion of “rich” people:

r(t)=1Nj=1N𝟙[1,)(Sj(t)).r(t)=\frac{1}{N}\sum_{j=1}^{N}\mathbbm{1}_{[1,\infty)}\big{(}S_{j}(t)\big{)}. (3.3)

Thus, the dynamics of S1S_{1} can be seen as a compound Poisson process.

Motivated by (3.2), we give the following definition of the limiting dynamics of S1(t)S_{1}(t) as NN\rightarrow\infty from the process point of view.

Definition 3 (Asymptotic Unbiased Exchange Model)

We define S¯1(t)\mkern 1.5mu\overline{\mkern-1.5muS\mkern-1.5mu}\mkern 1.5mu_{1}(t) to be the (nonlinear) compound Poisson process satisfying the following SDE:

dS¯1(t)=𝟙[1,)(S¯1(t))d𝐍¯t1+Y¯(t)d𝐌¯t1,\mathrm{d}\mkern 1.5mu\overline{\mkern-1.5muS\mkern-1.5mu}\mkern 1.5mu_{1}(t)=-\mathbbm{1}_{[1,\infty)}\big{(}\mkern 1.5mu\overline{\mkern-1.5muS\mkern-1.5mu}\mkern 1.5mu_{1}(t-)\big{)}\mathrm{d}\mkern 1.5mu\overline{\mkern-1.5mu\mathrm{\bf N}\mkern-1.5mu}\mkern 1.5mu^{1}_{t}+\mkern 1.5mu\overline{\mkern-1.5muY\mkern-1.5mu}\mkern 1.5mu(t-)\mathrm{d}\mkern 1.5mu\overline{\mkern-1.5mu\mathrm{\bf M}\mkern-1.5mu}\mkern 1.5mu^{1}_{t}, (3.4)

in which 𝐍¯t1\mkern 1.5mu\overline{\mkern-1.5mu\mathrm{\bf N}\mkern-1.5mu}\mkern 1.5mu^{1}_{t} and 𝐌¯t1\mkern 1.5mu\overline{\mkern-1.5mu\mathrm{\bf M}\mkern-1.5mu}\mkern 1.5mu^{1}_{t} are independent Poisson processes with intensity λ\lambda, and Y¯(t)(r¯(t))\mkern 1.5mu\overline{\mkern-1.5muY\mkern-1.5mu}\mkern 1.5mu(t)\sim\mathcal{B}(\mkern 1.5mu\overline{\mkern-1.5mur\mkern-1.5mu}\mkern 1.5mu(t)) independent Bernoulli variable with parameter

r¯(t):=(S¯1(t)>0)=  1(S¯1(t)=0).\mkern 1.5mu\overline{\mkern-1.5mur\mkern-1.5mu}\mkern 1.5mu(t)\;:=\;\mathbb{P}\big{(}\mkern 1.5mu\overline{\mkern-1.5muS\mkern-1.5mu}\mkern 1.5mu_{1}(t)>0\big{)}\;\;=\;\;1-\mathbb{P}\big{(}\mkern 1.5mu\overline{\mkern-1.5muS\mkern-1.5mu}\mkern 1.5mu_{1}(t)=0\big{)}. (3.5)

We denote by 𝐩(t)=(p0(t),p1(t),){\bf p}(t)=\big{(}p_{0}(t),p_{1}(t),\ldots\big{)} the law of the process S¯1(t)\mkern 1.5mu\overline{\mkern-1.5muS\mkern-1.5mu}\mkern 1.5mu_{1}(t), i.e. pn(t)=(S¯1(t)=n)p_{n}(t)=\mathbb{P}\big{(}\mkern 1.5mu\overline{\mkern-1.5muS\mkern-1.5mu}\mkern 1.5mu_{1}(t)=n). Its time evolution is given by:

ddt𝐩(t)=λQunbias[𝐩(t)]\frac{\mathrm{d}}{\mathrm{d}t}{\bf p}(t)=\lambda\,Q_{unbias}[{\bf p}(t)] (3.6)

with:

Qunbias[𝐩]n:={p1r¯p0if n=0pn+1+r¯pn1(1+r¯)pnfor n1Q_{unbias}[{\bf p}]_{n}:=\left\{\begin{array}[]{ll}p_{1}-\mkern 1.5mu\overline{\mkern-1.5mur\mkern-1.5mu}\mkern 1.5mu\,p_{0}&\quad\text{if }n=0\\ p_{n+1}+\mkern 1.5mu\overline{\mkern-1.5mur\mkern-1.5mu}\mkern 1.5mu\,p_{n-1}-(1+\mkern 1.5mu\overline{\mkern-1.5mur\mkern-1.5mu}\mkern 1.5mu)p_{n}&\quad\text{for }n\geq 1\end{array}\right. (3.7)

and r¯=1p0\mkern 1.5mu\overline{\mkern-1.5mur\mkern-1.5mu}\mkern 1.5mu=1-p_{0}.

3.2 Coupling for the unbiased exchange model

We now provide the coupling strategy to link the NN-particle system (S1,,SN)(S_{1},\dots,S_{N}) with the limit dynamics (S¯1,,S¯k)(\overline{S}_{1},\dots,\overline{S}_{k}). In [48], the core of the method is to use the same “noise” in both the NN-particle system and the limit system. Unfortunately, it is not possible in our settings: the clocks Nt(i,j)\mathrm{N}_{t}^{(i,j)} cannot be used “as it” since they would correlate the jump of S¯i\overline{S}_{i} with the jump of S¯j\overline{S}_{j} which is not acceptable. Indeed, if S¯i(t)\overline{S}_{i}(t) and S¯j(t)\overline{S}_{j}(t) are independent, they cannot jump at (exactly) the same time.

For this reason, we have to introduce an intermediate dynamics, denoted by {S^i}i1\{\widehat{S}_{i}\}_{i\geq 1}, which employs exactly the same “clocks” as our original dynamics (3.1), but the property of being rich or poor is decoupled.

Definition 4 (Intermediate model)

We define for {S^i}1iN\{\widehat{S}_{i}\}_{1\leq i\leq N} to be a collection of identically distributed (nonlinear) compound Poisson processes satisfying the following SDEs for each 1iN1\leq i\leq N:

dS^i(t)\displaystyle\mathrm{d}\widehat{S}_{i}(t) =\displaystyle= j=1,jiN𝟙[1,)(S^i(t))dNt(i,j)+j=1,jiNY¯(t)dNt(j,i)\displaystyle-\sum_{j=1,j\neq i}^{N}\mathbbm{1}_{[1,\infty)}\big{(}\widehat{S}_{i}(t-)\big{)}\mathrm{d}\mathrm{N}^{(i,j)}_{t}+\sum_{j=1,j\neq i}^{N}\mkern 1.5mu\overline{\mkern-1.5muY\mkern-1.5mu}\mkern 1.5mu(t-)\mathrm{d}\mathrm{N}^{(j,i)}_{t} (3.9)
𝟙[1,)(S^i(t))dN¯t(i,i)+Y¯(t)dM¯t(i,i)\displaystyle\quad-\mathbbm{1}_{[1,\infty)}\big{(}\widehat{S}_{i}(t-)\big{)}\mathrm{d}\mkern 1.5mu\overline{\mkern-1.5mu\mathrm{N}\mkern-1.5mu}\mkern 1.5mu^{(i,i)}_{t}+\mkern 1.5mu\overline{\mkern-1.5muY\mkern-1.5mu}\mkern 1.5mu(t-)\mathrm{d}\mkern 1.5mu\overline{\mkern-1.5mu\mathrm{M}\mkern-1.5mu}\mkern 1.5mu^{(i,i)}_{t}

in which Y¯(t)(r¯(t))\mkern 1.5mu\overline{\mkern-1.5muY\mkern-1.5mu}\mkern 1.5mu(t)\sim\mathcal{B}(\mkern 1.5mu\overline{\mkern-1.5mur\mkern-1.5mu}\mkern 1.5mu(t)), the Poisson clocks Nt(i,j)\mathrm{N}^{(i,j)}_{t} (1ijN1\leq i\neq j\leq N) are the same as those used in (3.1), the two extra clocks N¯t(i,i)\mkern 1.5mu\overline{\mkern-1.5mu\mathrm{N}\mkern-1.5mu}\mkern 1.5mu^{(i,i)}_{t} and M¯t(i,i)\mkern 1.5mu\overline{\mkern-1.5mu\mathrm{M}\mkern-1.5mu}\mkern 1.5mu^{(i,i)}_{t} are independent with rate λ/N\lambda/N.

We do not use the “self-giving” clocks Nt(i,i)\mathrm{N}^{(i,i)}_{t} since we want to decouple the receiving and giving dynamics.

Refer to caption
Figure 5: Schematic illustration of the coupling strategy. We use an intermediate process (S^1,,S^N)(\widehat{S}_{1},\dots,\widehat{S}_{N}) to decouple the “give” and “receive” parts of the dynamics.

An schematic illustration of the above coupling technique is shown in Fig 5 below. We first have to control the difference between the process (S1,,SN)(S_{1},\dots,S_{N}) and the intermediate dynamics (S^1,,S^N)(\widehat{S}_{1},\dots,\widehat{S}_{N}). The key idea is based on the following simple yet effective lemma that allows to create optimal coupling between two flipping coins [23].

Lemma 3.1

For any p,q(0,1)p,q\in(0,1), there exist X(p)X\sim\mathcal{B}(p) and Y(q)Y\sim\mathcal{B}(q) such that (XY)=|pq|\mathbb{P}(X\neq Y)=|p-q|.

Proof.

Let U𝒰[0,1]U\sim\mathcal{U}[0,1] a uniform random variable. Define the Bernoulli random variables as X:=𝟙[0,p)(U)X:=\mathbbm{1}_{[0,p)}(U) and Y:=𝟙[0,q)(U)Y:=\mathbbm{1}_{[0,q)}(U). It is straightforward to show that X(p)X\sim\mathcal{B}(p), Y(q)Y\sim\mathcal{B}(q) and (XY)=|pq|\mathbb{P}(X\neq Y)=|p-q|. \square

More generally, if NtN_{t} and MtM_{t} are two inhomogeneous Poisson processes with rate λ(t)\lambda(t) and μ(t)\mu(t), respectively, then there exists a coupling such that

d𝔼[|NtMt|]|λ(t)μ(t)|dt.\mathrm{d}\mathbbm{E}[|N_{t}-M_{t}|]\leq|\lambda(t)-\mu(t)|\mathrm{d}t.

This leads to the following proposition.

Proposition 3.2

Let (S1,,SN)\big{(}S_{1},\ldots,S_{N}\big{)} and (S^1,,S^N)\big{(}\widehat{S}_{1},\ldots,\widehat{S}_{N}\big{)} be solution to (3.1) and (3.9) respectively, with the same initial condition. Then for any 1iN1\leq i\leq N, we have

d𝔼[|Si(t)S^i(t)|]λ𝔼[|r(t)r¯(t)|]dt+λ2Ndt,\mathrm{d}\mathbbm{E}[|S_{i}(t)-\widehat{S}_{i}(t)|]\;\leq\;\lambda\,\mathbbm{E}[|r(t)-\mkern 1.5mu\overline{\mkern-1.5mur\mkern-1.5mu}\mkern 1.5mu(t)|]\,\mathrm{d}t\;+\;\lambda\frac{2}{N}\,\mathrm{d}t, (3.10)

where r(t)=1Nj=1N𝟙[1,)(Sj(t))r(t)=\frac{1}{N}\sum_{j=1}^{N}\mathbbm{1}_{[1,\infty)}\big{(}S_{j}(t)\big{)} and r¯(t)\mkern 1.5mu\overline{\mkern-1.5mur\mkern-1.5mu}\mkern 1.5mu(t) given by (3.5).

Proof.

The processes S^i(t)\widehat{S}_{i}(t) and Si(t)S_{i}(t) “share” the same clocks Nt(i,j)\mathrm{N}_{t}^{(i,j)} and Nt(j,i)\mathrm{N}_{t}^{(j,i)} for jij\neq i. Denote the ’rich or not’ random Bernoulli random variables:

Ri(t)=𝟙[1,)(Si(t)) and R^i(t)=𝟙[1,)(S^i(t)).R_{i}(t)=\mathbbm{1}_{[1,\infty)}\big{(}S_{i}(t)\big{)}\quad\text{ and }\quad\widehat{R}_{i}(t)=\mathbbm{1}_{[1,\infty)}\big{(}\widehat{S}_{i}(t)\big{)}. (3.11)

Once a clock Nt(i,j)\mathrm{N}_{t}^{(i,j)} rings, the processes become:

(Si,Sj)(SiRi,Sj+Ri),(S^i,S^j)(S^iR^i,S^j+Y¯).\begin{array}[]{ccc}(S_{i},S_{j})&\leavevmode\hbox to17.47pt{\vbox to2.68pt{\pgfpicture\makeatletter\hbox{\hskip 0.2pt\lower-1.3381pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{} {}{} {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}} {{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}{{}}} {{{{}{}{{}} }}{{}} {}{}{} }{{{{}{}{{}} }}{{}} {{}{}{}{}} {{}{}{}{}} }{{{{}{}{{}} }}{{}} {{}{}{}{}} {{}{}{}{}} }{{{{}{}{{}} }}{{}} {{}{}{}{}} {{}{}{}{}} }{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{}} } {{{{}{}{{}} }}{{}} }{{{{}{}{{}} }}{{}}{{}}} {}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{0.0pt}\pgfsys@curveto{0.71132pt}{0.0pt}{1.06697pt}{1.1381pt}{1.77829pt}{1.1381pt}\pgfsys@curveto{2.29327pt}{1.1381pt}{2.73714pt}{0.58272pt}{3.20093pt}{0.0pt}\pgfsys@curveto{3.6647pt}{-0.5827pt}{4.10857pt}{-1.1381pt}{4.62357pt}{-1.1381pt}\pgfsys@curveto{5.13855pt}{-1.1381pt}{5.58241pt}{-0.58272pt}{6.0462pt}{0.0pt}\pgfsys@curveto{6.50998pt}{0.5827pt}{6.95384pt}{1.1381pt}{7.46884pt}{1.1381pt}\pgfsys@curveto{7.98383pt}{1.1381pt}{8.42769pt}{0.58272pt}{8.89148pt}{0.0pt}\pgfsys@curveto{9.35526pt}{-0.5827pt}{9.79912pt}{-1.1381pt}{10.31412pt}{-1.1381pt}\pgfsys@lineto{10.31413pt}{0.0pt}\pgfsys@lineto{16.61183pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.61183pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}&(S_{i}-R_{i},S_{j}+R_{i}),\\ (\widehat{S}_{i},\widehat{S}_{j})&\leavevmode\hbox to17.47pt{\vbox to2.68pt{\pgfpicture\makeatletter\hbox{\hskip 0.2pt\lower-1.3381pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{} {}{} {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}} {{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}{{}}} {{{{}{}{{}} }}{{}} {}{}{} }{{{{}{}{{}} }}{{}} {{}{}{}{}} {{}{}{}{}} }{{{{}{}{{}} }}{{}} {{}{}{}{}} {{}{}{}{}} }{{{{}{}{{}} }}{{}} {{}{}{}{}} {{}{}{}{}} }{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{}} } {{{{}{}{{}} }}{{}} }{{{{}{}{{}} }}{{}}{{}}} {}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{0.0pt}\pgfsys@curveto{0.71132pt}{0.0pt}{1.06697pt}{1.1381pt}{1.77829pt}{1.1381pt}\pgfsys@curveto{2.29327pt}{1.1381pt}{2.73714pt}{0.58272pt}{3.20093pt}{0.0pt}\pgfsys@curveto{3.6647pt}{-0.5827pt}{4.10857pt}{-1.1381pt}{4.62357pt}{-1.1381pt}\pgfsys@curveto{5.13855pt}{-1.1381pt}{5.58241pt}{-0.58272pt}{6.0462pt}{0.0pt}\pgfsys@curveto{6.50998pt}{0.5827pt}{6.95384pt}{1.1381pt}{7.46884pt}{1.1381pt}\pgfsys@curveto{7.98383pt}{1.1381pt}{8.42769pt}{0.58272pt}{8.89148pt}{0.0pt}\pgfsys@curveto{9.35526pt}{-0.5827pt}{9.79912pt}{-1.1381pt}{10.31412pt}{-1.1381pt}\pgfsys@lineto{10.31413pt}{0.0pt}\pgfsys@lineto{16.61183pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.61183pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}&(\widehat{S}_{i}-\widehat{R}_{i},\widehat{S}_{j}+\mkern 1.5mu\overline{\mkern-1.5muY\mkern-1.5mu}\mkern 1.5mu).\end{array} (3.12)

Notice that the difference |SiS^i||S_{i}-\widehat{S}_{i}| can only decay after the jump from the clock Nt(i,j)\mathrm{N}_{t}^{(i,j)} (the ’give’ dynamics reduce the difference). However, the ’receive’ dynamics from the clock Nt(j,i)\mathrm{N}_{t}^{(j,i)} could increase the difference |SjS^j||S_{j}-\widehat{S}_{j}| if R^iY¯\widehat{R}_{i}\neq\mkern 1.5mu\overline{\mkern-1.5muY\mkern-1.5mu}\mkern 1.5mu. More precisely, we find:

d𝔼[|Si(t)S^i(t)|]0+j=1,jiN𝔼[|Rj(t)Y¯(t)|]λNdt+2λNdt\mathrm{d}\mathbb{E}[|S_{i}(t)-\widehat{S}_{i}(t)|]\leq 0+\sum_{j=1,j\neq i}^{N}\mathbb{E}[|R_{j}(t-)-\mkern 1.5mu\overline{\mkern-1.5muY\mkern-1.5mu}\mkern 1.5mu(t-)|]\frac{\lambda}{N}\,\mathrm{d}t\;+\;\frac{2\lambda}{N}\,\mathrm{d}t (3.13)

where the extra 2λNdt\frac{2\lambda}{N}\,\mathrm{d}t is due to the extra clocks N¯t(i,i)\mkern 1.5mu\overline{\mkern-1.5mu\mathrm{N}\mkern-1.5mu}\mkern 1.5mu^{(i,i)}_{t} and M¯t(i,i)\mkern 1.5mu\overline{\mkern-1.5mu\mathrm{M}\mkern-1.5mu}\mkern 1.5mu^{(i,i)}_{t} in (3.9).

Now we have to couple the Bernoulli process Y¯(t)\mkern 1.5mu\overline{\mkern-1.5muY\mkern-1.5mu}\mkern 1.5mu(t-) with Rj(t)R_{j}(t-) in a convenient way to make the difference as small as possible. Here is the strategy:

  • Step 1: generate a master Poisson clock 𝐍t\mathrm{\bf N}_{t} with intensity λN\lambda N which gives a collection of jumping times.

  • Step 2: to select which clock Nt(i,j)\mathrm{N}_{t}^{(i,j)} rings, calculate the proportions of “rich people” for the NN-particle system and for the limit dynamics:

    r(t)=1Nj=1N𝟙[1,)(Sj(t)),r¯(t)=1p0(t).r(t-)=\frac{1}{N}\sum_{j=1}^{N}\mathbbm{1}_{[1,\infty)}\big{(}S_{j}(t-)\big{)}\quad,\quad\mkern 1.5mu\overline{\mkern-1.5mur\mkern-1.5mu}\mkern 1.5mu(t-)=1-p_{0}(t-). (3.14)
  • Step 3: let U𝒰([0,1])U\sim\mathcal{U}([0,1]) a uniform random variable.

    • if U<r(t)U<r(t-), pick an index ii uniformly among the rich people (i.e. ii such that Si(t)>0S_{i}(t-)>0), otherwise we pick ii uniformly among the poor people (i.e. ii such that Si(t)=0S_{i}(t-)=0). Pick index jj uniformly among {1,2,,N}\{1,2,\ldots,N\}.

    • if U<r¯(t)U<\mkern 1.5mu\overline{\mkern-1.5mur\mkern-1.5mu}\mkern 1.5mu(t-), let Y¯(t)=1\mkern 1.5mu\overline{\mkern-1.5muY\mkern-1.5mu}\mkern 1.5mu(t-)=1, otherwise Y¯(t)=0\mkern 1.5mu\overline{\mkern-1.5muY\mkern-1.5mu}\mkern 1.5mu(t-)=0 (i.e. Y¯(t)=𝟙[0,r¯(t)](U)\mkern 1.5mu\overline{\mkern-1.5muY\mkern-1.5mu}\mkern 1.5mu(t-)=\mathbbm{1}_{[0,\mkern 1.5mu\overline{\mkern-1.5mur\mkern-1.5mu}\mkern 1.5mu(t-)]}(U)).

  • Step 4: if iji\neq j, update using (3.12)

Thanks to our coupling, the ’receiving’ dynamics of SiS_{i} and S^i\widehat{S}_{i} will differ with probability |rr¯||r-\mkern 1.5mu\overline{\mkern-1.5mur\mkern-1.5mu}\mkern 1.5mu|:

𝔼[|Rj(t)Y¯(t)|]=(Rj(t)Y¯(t))=𝔼[|rr¯|].\mathbb{E}[|R_{j}(t-)-\mkern 1.5mu\overline{\mkern-1.5muY\mkern-1.5mu}\mkern 1.5mu(t-)|]=\mathbbm{P}\big{(}R_{j}(t-)\neq\mkern 1.5mu\overline{\mkern-1.5muY\mkern-1.5mu}\mkern 1.5mu(t-)\big{)}=\mathbbm{E}\left[|r-\mkern 1.5mu\overline{\mkern-1.5mur\mkern-1.5mu}\mkern 1.5mu|\right]. (3.15)

Plug in the expression in (3.13) concludes the proof.

\square

Remark. The update formula (3.12) for (S^i,S^j)(\widehat{S}_{i},\widehat{S}_{j}) highlights that the ’give’ and ’receive’ dynamics are now independent in the auxiliary dynamics (i.e. R^i\widehat{R}_{i} and Y¯\mkern 1.5mu\overline{\mkern-1.5muY\mkern-1.5mu}\mkern 1.5mu are independent). In contrast, we use the same process RiR_{i} to update SiS_{i} and SjS_{j}.

Now we turn our attention to the coupling between the auxiliary dynamics (S^1,,S^N)(\widehat{S}_{1},\ldots,\widehat{S}_{N}) and the limit dynamics (S¯1,,S¯k)(\mkern 1.5mu\overline{\mkern-1.5muS\mkern-1.5mu}\mkern 1.5mu_{1},\ldots,\mkern 1.5mu\overline{\mkern-1.5muS\mkern-1.5mu}\mkern 1.5mu_{k}) for a fixed kk (while NN\rightarrow\infty). The idea is to remove the clocks Nt(i,j)\mathrm{N}_{t}^{(i,j)} for 1i,jk1\leq i,j\leq k to decouple the time of the jump in S¯i\mkern 1.5mu\overline{\mkern-1.5muS\mkern-1.5mu}\mkern 1.5mu_{i} and S¯j\mkern 1.5mu\overline{\mkern-1.5muS\mkern-1.5mu}\mkern 1.5mu_{j} as described in the figure 6.

Refer to caption
Figure 6: The clocks Nt(i,j)\mathrm{N}_{t}^{(i,j)} used to generate the unbiased dynamics (3.1) have to be modified to generate the limit dynamics (S¯1(t),,S¯k(t))(\mkern 1.5mu\overline{\mkern-1.5muS\mkern-1.5mu}\mkern 1.5mu_{1}(t),\ldots,\mkern 1.5mu\overline{\mkern-1.5muS\mkern-1.5mu}\mkern 1.5mu_{k}(t)) (3.4). The processes S¯i(t)\mkern 1.5mu\overline{\mkern-1.5muS\mkern-1.5mu}\mkern 1.5mu_{i}(t) and S¯j(t)\mkern 1.5mu\overline{\mkern-1.5muS\mkern-1.5mu}\mkern 1.5mu_{j}(t) have to be independent, thus the clocks Nt(i,j)\mathrm{N}_{t}^{(i,j)} for 1i,jk1\leq i,j\leq k cannot be used.
Proposition 3.3

Let (S^1,,S^N)\big{(}\widehat{S}_{1},\ldots,\widehat{S}_{N}\big{)} solution to (3.9) and {S¯i}1ik\{\mkern 1.5mu\overline{\mkern-1.5muS\mkern-1.5mu}\mkern 1.5mu_{i}\}_{1\leq i\leq k} independent processes solution to (3.4). Then for any fixed k+k\in\mathbb{N}_{+}, there exists a coupling such that for all t0t\geq 0:

d𝔼[|S^i(t)S¯i(t)|]λ4(k1)Ndt,for 1ik.\mathrm{d}\mathbbm{E}[|\widehat{S}_{i}(t)-\mkern 1.5mu\overline{\mkern-1.5muS\mkern-1.5mu}\mkern 1.5mu_{i}(t)|]\leq\lambda\frac{4(k-1)}{N}\,\mathrm{d}t\quad,\qquad\text{for }1\leq i\leq k. (3.16)
Proof.

We assume i=1i=1 to simplify the writing. To couple the two processes S^1\widehat{S}_{1} and S¯1\mkern 1.5mu\overline{\mkern-1.5muS\mkern-1.5mu}\mkern 1.5mu_{1}, we use the same Bernoulli variable Y¯(t)\mkern 1.5mu\overline{\mkern-1.5muY\mkern-1.5mu}\mkern 1.5mu(t-) to generate both ’receive’ dynamics:

{dS^1(t)=𝟙[1,)(S^1(t))d𝐍^t1+Y¯(t)d𝐌^t1,dS¯1(t)=𝟙[1,)(S¯1(t))d𝐍¯t1+Y¯(t)d𝐌¯t1.\begin{cases}\mathrm{d}\widehat{S}_{1}(t)&=-\mathbbm{1}_{[1,\infty)}\big{(}\widehat{S}_{1}(t-)\big{)}\mathrm{d}\widehat{\mathrm{\bf N}}^{1}_{t}+\mkern 1.5mu\overline{\mkern-1.5muY\mkern-1.5mu}\mkern 1.5mu(t-)\mathrm{d}\widehat{\mathrm{\bf M}}^{1}_{t},\\ \mathrm{d}\mkern 1.5mu\overline{\mkern-1.5muS\mkern-1.5mu}\mkern 1.5mu_{1}(t)&=-\mathbbm{1}_{[1,\infty)}\big{(}\mkern 1.5mu\overline{\mkern-1.5muS\mkern-1.5mu}\mkern 1.5mu_{1}(t-)\big{)}\mathrm{d}\mkern 1.5mu\overline{\mkern-1.5mu\mathrm{\bf N}\mkern-1.5mu}\mkern 1.5mu^{1}_{t}+\mkern 1.5mu\overline{\mkern-1.5muY\mkern-1.5mu}\mkern 1.5mu(t-)\mathrm{d}\mkern 1.5mu\overline{\mkern-1.5mu\mathrm{\bf M}\mkern-1.5mu}\mkern 1.5mu^{1}_{t}.\end{cases}

Meanwhile, the Poisson clocks 𝐍^t1,𝐌^t1\widehat{\mathrm{\bf N}}_{t}^{1},\,\widehat{\mathrm{\bf M}}_{t}^{1} are already determined in (3.9):

𝐍^t1=N¯t(1,1)+j=2NNt(1,j)and𝐌^t1=M¯t(1,1)+j=2NNt(j,1).\widehat{\mathrm{\bf N}}^{1}_{t}=\mkern 1.5mu\overline{\mkern-1.5mu\mathrm{N}\mkern-1.5mu}\mkern 1.5mu^{(1,1)}_{t}+\sum_{j=2}^{N}\mathrm{N}^{(1,j)}_{t}\quad\text{and}\quad\widehat{\mathrm{\bf M}}^{1}_{t}=\mkern 1.5mu\overline{\mkern-1.5mu\mathrm{M}\mkern-1.5mu}\mkern 1.5mu^{(1,1)}_{t}+\sum_{j=2}^{N}\mathrm{N}^{(j,1)}_{t}. (3.17)

Unfortunately, we cannot use the same definition for the clocks 𝐍¯t1\mkern 1.5mu\overline{\mkern-1.5mu\mathrm{\bf N}\mkern-1.5mu}\mkern 1.5mu_{t}^{1} and 𝐌¯t1\mkern 1.5mu\overline{\mkern-1.5mu\mathrm{\bf M}\mkern-1.5mu}\mkern 1.5mu_{t}^{1} as the clocks 𝐍^ti\widehat{\mathrm{\bf N}}_{t}^{i} and 𝐌^tj\widehat{\mathrm{\bf M}}_{t}^{j} are not independent (they both contain the clock Nt(i,j)\mathrm{N}_{t}^{(i,j)}). Thus, we need to remove those coupling clocks when defining 𝐍¯1\mkern 1.5mu\overline{\mkern-1.5mu\mathrm{\bf N}\mkern-1.5mu}\mkern 1.5mu^{1} and 𝐌¯1\mkern 1.5mu\overline{\mkern-1.5mu\mathrm{\bf M}\mkern-1.5mu}\mkern 1.5mu^{1}. Fortunately, we only have to generate the dynamics for kk process, thus we only have to replace the clocks N(1,i)\mathrm{N}^{(1,i)} and N(i,1)\mathrm{N}^{(i,1)} for i=1..ki=1..k (see figure 6):

𝐍¯t1=j=1kN¯t(1,j)+j=k+1NNt(1,j)and𝐌^t1=j=1kM¯t(1,j)+j=k+1NNt(j,1)\mkern 1.5mu\overline{\mkern-1.5mu\mathrm{\bf N}\mkern-1.5mu}\mkern 1.5mu^{1}_{t}=\sum_{j=1}^{k}\mkern 1.5mu\overline{\mkern-1.5mu\mathrm{N}\mkern-1.5mu}\mkern 1.5mu^{(1,j)}_{t}+\sum_{j=k+1}^{N}\mathrm{N}^{(1,j)}_{t}\quad\text{and}\quad\widehat{\mathrm{\bf M}}^{1}_{t}=\sum_{j=1}^{k}\mkern 1.5mu\overline{\mkern-1.5mu\mathrm{M}\mkern-1.5mu}\mkern 1.5mu^{(1,j)}_{t}+\sum_{j=k+1}^{N}\mathrm{N}^{(j,1)}_{t} (3.18)

where N¯t(1,j)\mkern 1.5mu\overline{\mkern-1.5mu\mathrm{N}\mkern-1.5mu}\mkern 1.5mu^{(1,j)}_{t} and M¯t(1,j)\mkern 1.5mu\overline{\mkern-1.5mu\mathrm{M}\mkern-1.5mu}\mkern 1.5mu^{(1,j)}_{t} are independent Poisson clocks with rate λN\frac{\lambda}{N}.

Using this coupling strategy, the difference |S^1S¯1||\widehat{S}_{1}-\mkern 1.5mu\overline{\mkern-1.5muS\mkern-1.5mu}\mkern 1.5mu_{1}| could only increase (by 11) if the clocks N¯t(1,j)\mkern 1.5mu\overline{\mkern-1.5mu\mathrm{N}\mkern-1.5mu}\mkern 1.5mu^{(1,j)}_{t}, M¯t(1,j)\mkern 1.5mu\overline{\mkern-1.5mu\mathrm{M}\mkern-1.5mu}\mkern 1.5mu^{(1,j)}_{t}, Nt(1,j)\mathrm{N}^{(1,j)}_{t} or Nt(j,1)\mathrm{N}^{(j,1)}_{t} ring for 2jk2\leq j\leq k leading to (3.16).

\square

Finally, combining propositions 3.2 and 3.3 gives rise to the following theorem.

Theorem 1

Let (S1,,SN)\big{(}S_{1},\ldots,S_{N}\big{)} to be a solution to (3.1). Then for any fixed k+k\in\mathbb{N}_{+} and t0t\geq 0, there exists a coupling between (S1,,Sk)\big{(}S_{1},\ldots,S_{k}\big{)} and (S¯1,,S¯k)\big{(}\mkern 1.5mu\overline{\mkern-1.5muS\mkern-1.5mu}\mkern 1.5mu_{1},\ldots,\mkern 1.5mu\overline{\mkern-1.5muS\mkern-1.5mu}\mkern 1.5mu_{k}\big{)} (with the same initial conditions) such that:

𝔼[|Si(t)S¯i(t)|]C(t)N(eλt1)λ+λ4(k1)tN\mathbbm{E}[|S_{i}(t)-\mkern 1.5mu\overline{\mkern-1.5muS\mkern-1.5mu}\mkern 1.5mu_{i}(t)|]\leq\frac{C(t)}{\sqrt{N}}\frac{(\mathrm{e}^{\lambda t}-1)}{\lambda}+\lambda\frac{4(k-1)t}{N} (3.19)

with C(t)=(14+λ4t)1/2+λ2NC(t)=\left(\frac{1}{4}+\lambda 4t\right)^{1/2}+\lambda\frac{2}{\sqrt{N}} holding for each 1ik1\leq i\leq k.

Proof.

We assume without loss of generality that i=1i=1. First, we show that the processes S1S_{1} and S^1\widehat{S}_{1} remain closed. We denote:

Ri=𝟙[1,)(Si),R^i=𝟙[1,)(S^i),R¯i=𝟙[1,)(S¯i).R_{i}=\mathbbm{1}_{[1,\infty)}\big{(}S_{i}\big{)}\quad,\quad\widehat{R}_{i}=\mathbbm{1}_{[1,\infty)}\big{(}\widehat{S}_{i}\big{)}\quad,\quad\mkern 1.5mu\overline{\mkern-1.5muR\mkern-1.5mu}\mkern 1.5mu_{i}=\mathbbm{1}_{[1,\infty)}\big{(}\mkern 1.5mu\overline{\mkern-1.5muS\mkern-1.5mu}\mkern 1.5mu_{i}\big{)}.

We have:

𝔼[|rr¯|]\displaystyle\mathbbm{E}[|r-\mkern 1.5mu\overline{\mkern-1.5mur\mkern-1.5mu}\mkern 1.5mu|] =\displaystyle= 𝔼[|1Ni=1NRir¯|]=𝔼[|1Ni=1N(RiR^i)+1Ni=1N(R^ir¯)|]\displaystyle\mathbbm{E}\left[\left|\frac{1}{N}\sum_{i=1}^{N}R_{i}-\mkern 1.5mu\overline{\mkern-1.5mur\mkern-1.5mu}\mkern 1.5mu\right|\right]=\mathbbm{E}\left[\left|\frac{1}{N}\sum_{i=1}^{N}(R_{i}-\widehat{R}_{i})\;\;+\;\;\frac{1}{N}\sum_{i=1}^{N}(\widehat{R}_{i}-\mkern 1.5mu\overline{\mkern-1.5mur\mkern-1.5mu}\mkern 1.5mu)\right|\right]
\displaystyle\leq 1Ni=1N𝔼[|RiR^i|]+𝔼[|1Ni=1N(R^ir¯)|]\displaystyle\frac{1}{N}\sum_{i=1}^{N}\mathbbm{E}[|R_{i}-\widehat{R}_{i}|]+\mathbbm{E}\left[\left|\frac{1}{N}\sum_{i=1}^{N}(\widehat{R}_{i}-\mkern 1.5mu\overline{\mkern-1.5mur\mkern-1.5mu}\mkern 1.5mu)\right|\right]
\displaystyle\leq 𝔼[|S1S^1|]+𝔼[(1Ni=1N(R^ir¯))2]1/2,\displaystyle\mathbbm{E}[|S_{1}-\widehat{S}_{1}|]+\mathbbm{E}\left[\left(\frac{1}{N}\sum_{i=1}^{N}(\widehat{R}_{i}-\mkern 1.5mu\overline{\mkern-1.5mur\mkern-1.5mu}\mkern 1.5mu)\right)^{2}\right]^{1/2},

where we use |RiR^i||SiS^i||R_{i}-\widehat{R}_{i}|\leq|S_{i}-\widehat{S}_{i}|. To control the variance, we expand:

𝔼[(1Ni=1N(R^ir¯))2]\displaystyle\mathbbm{E}\left[\left(\frac{1}{N}\sum_{i=1}^{N}(\widehat{R}_{i}-\mkern 1.5mu\overline{\mkern-1.5mur\mkern-1.5mu}\mkern 1.5mu)\right)^{2}\right] =\displaystyle= 1NVar[R^1]+N(N1)N2Cov(R^1,R^2)\displaystyle\frac{1}{N}\mathrm{Var}[\widehat{R}_{1}]+\frac{N(N-1)}{N^{2}}\mathrm{Cov}(\widehat{R}_{1},\widehat{R}_{2})
\displaystyle\leq 14N+Cov(R^1,R^2),\displaystyle\frac{1}{4N}+\mathrm{Cov}(\widehat{R}_{1},\widehat{R}_{2}),

since R^1\widehat{R}_{1} is a Bernoulli variable its variance is bounded by 1/41/4. Controlling the covariance of R^1\widehat{R}_{1} and R^2\widehat{R}_{2} is more delicate since the two processes are not independent due to the clocks Nt(1,2)\mathrm{N}^{(1,2)}_{t} and Nt(2,1)\mathrm{N}^{(2,1)}_{t}. Fortunately, these clocks have a rate of only λ/N\lambda/N and thus the covariance has to remain small for a given time interval. To prove it, let’s use the independent processes R¯1\mkern 1.5mu\overline{\mkern-1.5muR\mkern-1.5mu}\mkern 1.5mu_{1} and R¯2\mkern 1.5mu\overline{\mkern-1.5muR\mkern-1.5mu}\mkern 1.5mu_{2}:

Cov(R^1,R^2)\displaystyle\mathrm{Cov}(\widehat{R}_{1},\widehat{R}_{2}) =\displaystyle= Cov(R^1R¯1,R^2R¯2)(𝔼[|R^1R¯1|2]𝔼[|R^2R¯2|2])1/2\displaystyle\mathrm{Cov}(\widehat{R}_{1}-\mkern 1.5mu\overline{\mkern-1.5muR\mkern-1.5mu}\mkern 1.5mu_{1},\widehat{R}_{2}-\mkern 1.5mu\overline{\mkern-1.5muR\mkern-1.5mu}\mkern 1.5mu_{2})\leq\left(\mathbb{E}[|\widehat{R}_{1}-\mkern 1.5mu\overline{\mkern-1.5muR\mkern-1.5mu}\mkern 1.5mu_{1}|^{2}]\cdot\mathbb{E}[|\widehat{R}_{2}-\mkern 1.5mu\overline{\mkern-1.5muR\mkern-1.5mu}\mkern 1.5mu_{2}|^{2}]\right)^{1/2}

using Cauchy-Schwarz. Since the two processes S^i\widehat{S}_{i} and S¯i\mkern 1.5mu\overline{\mkern-1.5muS\mkern-1.5mu}\mkern 1.5mu_{i} remain close, we deduce:

𝔼[|R^1(t)R¯1(t)|2]\displaystyle\mathbb{E}[|\widehat{R}_{1}(t)-\mkern 1.5mu\overline{\mkern-1.5muR\mkern-1.5mu}\mkern 1.5mu_{1}(t)|^{2}] =\displaystyle= 𝔼[|R^1(t)R¯1(t)|]𝔼[|S^1(t)S¯1(t)|]λ4tN,\displaystyle\mathbb{E}[|\widehat{R}_{1}(t)-\mkern 1.5mu\overline{\mkern-1.5muR\mkern-1.5mu}\mkern 1.5mu_{1}(t)|]\leq\mathbb{E}[|\widehat{S}_{1}(t)-\mkern 1.5mu\overline{\mkern-1.5muS\mkern-1.5mu}\mkern 1.5mu_{1}(t)|]\leq\lambda\frac{4t}{N},

using proposition 3.3 (with k=2k=2). We conclude that:

𝔼[|r(t)r¯(t)|]𝔼[|S1(t)S^1(t)|]+(14N+λ4tN)1/2.\mathbbm{E}[|r(t)-\mkern 1.5mu\overline{\mkern-1.5mur\mkern-1.5mu}\mkern 1.5mu(t)|]\leq\mathbbm{E}[|S_{1}(t)-\widehat{S}_{1}(t)|]+\left(\frac{1}{4N}+\lambda\frac{4t}{N}\right)^{1/2}.

Going back to proposition 3.2, we find:

d𝔼[|Si(t)S^i(t)|]\displaystyle\mathrm{d}\mathbbm{E}[|S_{i}(t)-\widehat{S}_{i}(t)|] \displaystyle\leq λ𝔼[|S1(t)S^1(t)|]dt+(14N+λ4tN)1/2dt+λ2Ndt\displaystyle\lambda\,\mathbbm{E}[|S_{1}(t)-\widehat{S}_{1}(t)|]\,\mathrm{d}t+\left(\frac{1}{4N}+\lambda\frac{4t}{N}\right)^{1/2}\,\mathrm{d}t\;+\;\lambda\frac{2}{N}\,\mathrm{d}t
\displaystyle\leq λ𝔼[|S1(t)S^1(t)|]dt+C(t)Ndt\displaystyle\lambda\,\mathbbm{E}[|S_{1}(t)-\widehat{S}_{1}(t)|]\,\mathrm{d}t+\frac{C(t)}{\sqrt{N}}\,\mathrm{d}t

with C(t)=(14+λ4t)1/2+λ2N=𝒪(1)C(t)=\left(\frac{1}{4}+\lambda 4t\right)^{1/2}+\lambda\frac{2}{\sqrt{N}}=\mathcal{O}(1). Using Gronwall’s lemma, since |Si(0)S^i(0)|=0|S_{i}(0)-\widehat{S}_{i}(0)|=0, we obtain:

𝔼[|Si(t)S^i(t)|]C(t)N(eλt1)λ.\mathbbm{E}[|S_{i}(t)-\widehat{S}_{i}(t)|]\leq\frac{C(t)}{\sqrt{N}}\frac{(\mathrm{e}^{\lambda t}-1)}{\lambda}. (3.20)

We finally conclude by using proposition 3.3 and triangular inequality. \square

Remark. In the community of Markov chains, the process (𝐒(t):t0)({\bf S}(t)\colon t\geq 0) with 𝐒(t):=(S1(t),,SN(t)){\bf S}(t):=\left(S_{1}(t),\ldots,S_{N}(t)\right) can serve as an example a zero-range process [47], and it is also observed in [36] that the unbiased exchange model exhibits a cutoff phenomenon (see for instance [24, 1, 2]), which is now ubiquitous among literatures on interacting Markov chains.

3.3 Convergence to equilibrium

After we achieved the transition from the interacting system of SDEs (2) to the deterministic system of nonlinear ODEs (3.6), in this section we will analyze (3.6) with the intention of proving convergence of solution of (3.6) to its (unique) equilibrium solution. The main ingredient underlying our proof lies in the reformulation of (3.6) into a (discrete) Fokker-Planck type equation, combined with the standard entropy method [3, 34, 28]. We emphasize here that the convergence of the solution of (3.6) has already been established in [26, 36], but we include a sketch of our analysis here for the sake of completeness of the present manuscript.

To study the ODE system (3.6), we introduce some properties of the nonlinear binary collision operator QunbiasQ_{unbias}, whose proof is merely a straightforward calculations and will be omitted.

Lemma 3.4

If 𝐩(t)={pn(t)}n0{\bf p}(t)=\{p_{n}(t)\}_{n\geq 0} is a solution of (3.6), then

n=0Qunbias[𝐩]n=0,n=0nQunbias[𝐩]n=0.\sum_{n=0}^{\infty}Q_{unbias}[{\bf p}]_{n}=0\quad,\quad\sum_{n=0}^{\infty}n\,Q_{unbias}[{\bf p}]_{n}=0. (3.21)

In particular, the total mass and the mean value is conserved.

Thanks to these conservations, we have 𝐩(t)Vμ{\bf p}(t)\in V_{\mu} for all t0t\geq 0, where

Vμ:={𝐩n=0pn=1,pn0,n=0npn=μ}V_{\mu}:=\{{\bf p}\mid\sum_{n=0}^{\infty}p_{n}=1,~{}p_{n}\geq 0,~{}\sum_{n=0}^{\infty}n\,p_{n}=\mu\}

is the space of probability mass functions with the prescribed mean value μ\mu. Next, the equilibrium distribution of the limiting dynamics (3.6) is explicitly calculated.

Proposition 3.5

The (unique) equilibrium distribution 𝐩={pn}n{\bf p}^{*}=\{p^{*}_{n}\}_{n} in VμV_{\mu} associated with the limiting dynamics (3.6) is given by:

pn=p0(1p0)n,n0,p^{*}_{n}=p^{*}_{0}(1-p^{*}_{0})^{n},\quad n\geq 0, (3.22)

where p0=11+μp^{*}_{0}=\frac{1}{1+\mu} if we put initially that n=0npn(0)=μ\sum_{n=0}^{\infty}n\,p_{n}(0)=\mu for some μ+\mu\in\mathbb{N}_{+}.

This elementary observation can be verified through straightforward computations, which we will omit here.

Next, we recall the definition of entropy [19], which will play a major role in the analysis of the large time behavior of the system (3.6).

Definition 5

(Entropy) For a given probability mass function 𝐩Vμ{\bf p}\in V_{\mu}, the entropy of 𝐩{\bf p} is defined via

H[𝐩]=npnlogpn.\mathrm{H}[{\bf p}]=\sum_{n}p_{n}\log p_{n}.

Remark. It can be readily seen through the method of Lagrange multipliers that the geometric distribution (3.22) has the least amount of entropy among probability mass functions from VμV_{\mu}.

To prove (strong) convergence of the solution of (3.6) to its equilibrium solution (3.22), a major step is first to realize that the original ODE dynamics (3.6) can be reformulated as a variant of a Fokker-Planck equation [44]. Indeed, let us introduce 𝐬(t):={sn(t)}n0{\bf s}(t):=\{s_{n}(t)\}_{n\geq 0} with sn(t):=p0(t)[r¯(t)]ns_{n}(t):=p_{0}(t)[\mkern 1.5mu\overline{\mkern-1.5mur\mkern-1.5mu}\mkern 1.5mu(t)]^{n}. Notice that sn+1sn=r¯\frac{s_{n+1}}{s_{n}}=\mkern 1.5mu\overline{\mkern-1.5mur\mkern-1.5mu}\mkern 1.5mu. Thus, for n1n\geq 1 we can deduce that

pn=sn+1sn+1pn+1+snsn1pn1snsnpnsn+1snpn.p^{\prime}_{n}=\frac{s_{n+1}}{s_{n+1}}p_{n+1}+\frac{s_{n}}{s_{n-1}}p_{n-1}-\frac{s_{n}}{s_{n}}p_{n}-\frac{s_{n+1}}{s_{n}}p_{n}.

Setting qn(t)=pn(t)sn(t)q_{n}(t)=\frac{p_{n}(t)}{s_{n}(t)}, we obtain

pn=sn+1[qn+1qn]sn[qnqn1],p^{\prime}_{n}=s_{n+1}[q_{n+1}-q_{n}]-s_{n}[q_{n}-q_{n-1}], (3.23)

with the convention that q11q_{-1}\equiv 1. This formulation leads to the following:

Proposition 3.6

Let {pn(t)}n0\{p_{n}(t)\}_{n\geq 0} be the solution to (3.6) and φ:\varphi\colon\mathbb{R}\to\mathbb{R} to be a continuous function, then

n=0pnφ(n)=n=0(r¯pnpn+1)(φ(n+1)φ(n)).\sum_{n=0}^{\infty}p^{\prime}_{n}\,\varphi(n)=\sum_{n=0}^{\infty}(\mkern 1.5mu\overline{\mkern-1.5mur\mkern-1.5mu}\mkern 1.5mup_{n}-p_{n+1})\big{(}\varphi(n+1)-\varphi(n)\big{)}. (3.24)
Corollary 3.7

Taking φ(n)1\varphi(n)\equiv 1 and φ(n)=n\varphi(n)=n for n0n\geq 0 in (3.24), we recover the facts that n=0pn\sum_{n=0}^{\infty}p_{n} and n=0npn\sum_{n=0}^{\infty}n\,p_{n} are preserved over time.

Inserting φ(n)=logpn\varphi(n)=\log p_{n}, we can deduce the following important result.

Proposition 3.8 (Entropy dissipation)

Let 𝐩(t)={pn(t)}n0{\bf p}(t)=\{p_{n}(t)\}_{n\geq 0} be the solution to (3.6) and H[𝐩]\mathrm{H}[{\bf p}] be the associated entropy, then for all t>0t>0,

ddtH[𝐩]=DKL(𝐩||𝐩~)DKL(𝐩~||𝐩)0,\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{H}[{\bf p}]=-\mathrm{D}_{\mathrm{KL}}\left({\bf p}||\mathbf{\tilde{p}}\right)-\mathrm{D}_{\mathrm{KL}}\left({\bf\tilde{p}}||{\bf p}\right)\leq 0,

where 𝐩~:={p~n}n0{\bf\tilde{p}}:=\{\tilde{p}_{n}\}_{n\geq 0} is defined by p~0=p0\tilde{p}_{0}=p_{0} and p~n=r¯pn1\tilde{p}_{n}=\mkern 1.5mu\overline{\mkern-1.5mur\mkern-1.5mu}\mkern 1.5mup_{n-1} for n1n\geq 1.

Proof.

It is worth noting that

n=0p~n=p0+n=0p~n+1=p0+r¯n=0pn=p0+r¯=1,\sum\limits^{\infty}_{n=0}\tilde{p}_{n}=p_{0}+\sum\limits^{\infty}_{n=0}\tilde{p}_{n+1}=p_{0}+\mkern 1.5mu\overline{\mkern-1.5mur\mkern-1.5mu}\mkern 1.5mu\sum\limits^{\infty}_{n=0}p_{n}=p_{0}+\mkern 1.5mu\overline{\mkern-1.5mur\mkern-1.5mu}\mkern 1.5mu=1,

so that {p~n}n\{\tilde{p}_{n}\}_{n} indeed defines a probability distribution (for all t0t\geq 0). Then we deduce from (3.24) that

ddtH[𝐩]\displaystyle\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{H}[{\bf p}] =n=0pnlogpn=n=0(r¯pnpn+1)logpn+1pn\displaystyle=\sum\limits^{\infty}_{n=0}p^{\prime}_{n}\log p_{n}=\sum\limits^{\infty}_{n=0}(\mkern 1.5mu\overline{\mkern-1.5mur\mkern-1.5mu}\mkern 1.5mup_{n}-p_{n+1})\log\frac{p_{n+1}}{p_{n}}
=n=0(pn+1p~n+1)(logr¯pnpn+1logr¯)\displaystyle=\sum\limits^{\infty}_{n=0}(p_{n+1}-\tilde{p}_{n+1})\Big{(}\log\frac{\mkern 1.5mu\overline{\mkern-1.5mur\mkern-1.5mu}\mkern 1.5mup_{n}}{p_{n+1}}-\log\mkern 1.5mu\overline{\mkern-1.5mur\mkern-1.5mu}\mkern 1.5mu\Big{)}
=n=0(pn+1p~n+1)logp~n+1pn+1\displaystyle=\sum\limits^{\infty}_{n=0}(p_{n+1}-\tilde{p}_{n+1})\log\frac{\tilde{p}_{n+1}}{p_{n+1}}
=n=0(pnp~n)logp~npn=n=0pnlogpnp~nn=0p~nlogp~npn\displaystyle=\sum\limits^{\infty}_{n=0}(p_{n}-\tilde{p}_{n})\log\frac{\tilde{p}_{n}}{p_{n}}=-\sum\limits^{\infty}_{n=0}p_{n}\log\frac{p_{n}}{\tilde{p}_{n}}-\sum\limits^{\infty}_{n=0}\tilde{p}_{n}\log\frac{\tilde{p}_{n}}{p_{n}}
=DKL(𝐩||𝐩~)DKL(𝐩~||𝐩)0,\displaystyle=-\mathrm{D}_{\mathrm{KL}}\left({\bf p}||{\bf\tilde{p}}\right)-\mathrm{D}_{\mathrm{KL}}\left({\bf\tilde{p}}||{\bf p}\right)\leq 0,

in which DKL(𝐩||𝐪):=n=0pnlogpnqn\mathrm{D}_{\mathrm{KL}}\left({\bf p}||{\bf q}\right):=\sum_{n=0}^{\infty}p_{n}\,\log\frac{p_{n}}{q_{n}} (0\geq 0) is the Kullback-Leiber divergence from the probability distribution 𝐪\mathbf{q} to 𝐩{\bf p}. \square

Remark. By a property of the Kullback-Leiber divergence [20], ddtH[𝐩]=0\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{H}[{\bf p}]=0 if and only if 𝐩=𝐩~{\bf p}={\bf\tilde{p}}, but it can be readily shown that 𝐩=𝐩~{\bf p}={\bf\tilde{p}} if and only if 𝐩{\bf p} coincides with the equilibrium distribution 𝐩{\bf p}^{*}.

Our next focus is on the demonstration of the strong convergence of solutions 𝐩(t)={pn(t)}n0{\bf p}(t)=\{p_{n}(t)\}_{n\geq 0} of (3.6) to its unique equilibrium solution given by (3.22). First of all, we notice that VμV_{\mu} is clearly closed and bounded in p\ell^{p} for each 1p1\leq p\leq\infty, whence there exists some 𝐩^={p^n}n0Vμ\widehat{{\bf p}}=\{\widehat{p}_{n}\}_{n\geq 0}\in V_{\mu} and a diverging sequence {tk}k\{t_{k}\}_{k} such that 𝐩(k):=𝐩(tk)𝐩^{\bf p}^{(k)}:={\bf p}(t_{k})\rightharpoonup\widehat{{\bf p}} weakly in p\ell^{p} (1<p<1<p<\infty) as kk\rightarrow\infty. In particular, we have the point-wise convergence

pn(k)p^nfor each n0.p^{(k)}_{n}\rightarrow\widehat{p}_{n}\quad\text{for each $n\geq 0$}.

Our ultimate goal is to show that 𝐩^=𝐩\widehat{{\bf p}}={\bf p}^{*}, for which we first establish the following proposition.

Proposition 3.9

Suppose that {𝐩(k)}k\{{\bf p}^{(k)}\}_{k} is a sequence of probability distributions in VmV_{m} such that

𝐩(k)p^{\bf p}^{(k)}\rightharpoonup\widehat{p}

weakly in p\ell^{p} for some 1<p<1<p<\infty. If the family {𝐩(k)}k\{{\bf p}^{(k)}\}_{k} satisfies the following uniform integrability condition [40]

n=0nγpn(k)<uniformly for all k\sum_{n=0}^{\infty}n^{\gamma}p^{(k)}_{n}<\infty\quad\text{uniformly for all $k$} (3.25)

for some γ>1\gamma>1, then

n=0pn(k)logpn(k)n=0p^nlogp^nas k.\sum_{n=0}^{\infty}p^{(k)}_{n}\log p^{(k)}_{n}\rightarrow\sum_{n=0}^{\infty}\widehat{p}_{n}\log\widehat{p}_{n}\quad\text{as $k\rightarrow\infty$.} (3.26)
Proof.

It suffices to show that for any given ε>0\varepsilon>0, there exists some universal constant N=N(ε)N=N(\varepsilon) such that

n=Npn(k)logpn(k)<εk0.\sum_{n=N}^{\infty}-p^{(k)}_{n}\log p^{(k)}_{n}<\varepsilon\quad\forall k\geq 0. (3.27)

Assume that n=0nγpn(k)C\sum_{n=0}^{\infty}n^{\gamma}p^{(k)}_{n}\leq C holds uniformly in kk for some constant γ>1\gamma>1, where C>0C>0 is fixed. Then pn(k)Cnγp^{(k)}_{n}\leq\frac{C}{n^{\gamma}} for all nn\in\mathbb{N} and kk\in\mathbb{N}. Since g(x):=xlogxg(x):=-x\log x is an increasing function for small x>0x>0, we have for some fixed sufficiently large NN that

n=Npn(k)logpn(k)n=NCnγlogCnγ<ε,\sum_{n=N}^{\infty}-p^{(k)}_{n}\log p^{(k)}_{n}\leq\sum_{n=N}^{\infty}-\frac{C}{n^{\gamma}}\log\frac{C}{n^{\gamma}}<\varepsilon,

and the proof is completed.

\square

The next lemma ensures that the solution {pn(t)}n0\{p_{n}(t)\}_{n\geq 0} of our limiting ODE system (3.6) is uniformly integrable (in time), whose proof is elementary and is thus skipped.

Lemma 3.10

Let {pn(t)}n0\{p_{n}(t)\}_{n\geq 0} to be the solution of (3.6). Assume that n=0pn(0)an<\sum_{n=0}^{\infty}p_{n}(0)a^{n}<\infty for some a>1a>1, then for each fixed γ>1\gamma>1,

n=0nγpn(t)<\sum_{n=0}^{\infty}n^{\gamma}p_{n}(t)<\infty

holds uniformly in time.

We are now in a position to prove the desired convergence result.

Proposition 3.11

The solution 𝐩(t)={pn(t)}n0{\bf p}(t)=\{p_{n}(t)\}_{n\geq 0} of (3.6) converges strongly in p\ell^{p} for 1<p<1<p<\infty as tt\to\infty to its unique equilibrium solution 𝐩={pn}n{\bf p}^{*}=\{p^{*}_{n}\}_{n} given by (3.22).

Proof.

Our proof follows closely to the general strategy presented in [42] and is in essence a continuity argument. We will denote the flow of the ODE system (3.6) with initial data 𝐩0Vμ{\bf p}^{0}\in V_{\mu} by ϕt(𝐩0)\phi_{t}({\bf p}^{0}). It is recalled that we only need to show that 𝐩^=𝐩\widehat{{\bf p}}={\bf p}^{*}. We argue by contradiction and suppose that 𝐩^𝐩\widehat{{\bf p}}\neq{\bf p}^{*}. Since H[𝐩(t)]\mathrm{H}[{\bf p}(t)] is strictly decreasing along trajectories of (3.6) and since 𝐩(tk)𝐩^{\bf p}(t_{k})\rightharpoonup\widehat{{\bf p}} weakly in p\ell^{p} (1<p<1<p<\infty) as kk\rightarrow\infty, we deduce that H[ϕtk(𝐩0)]H[𝐩^]\mathrm{H}[\phi_{t_{k}}({\bf p}^{0})]\rightarrow\mathrm{H}[\widehat{{\bf p}}] by combining proposition 3.9 and proposition 3.10, whence

H[ϕtk(𝐩0)]>H[𝐩^]\mathrm{H}[\phi_{t_{k}}({\bf p}^{0})]>\mathrm{H}[\widehat{{\bf p}}]

for all t>0t>0. But if 𝐩^𝐩\widehat{{\bf p}}\neq{\bf p}^{*}, then for all s>0s>0 we must have H[ϕs(𝐩^)]<H[𝐩^]\mathrm{H}[\phi_{s}(\widehat{{\bf p}})]<\mathrm{H}[\widehat{{\bf p}}], and by continuity, it follows that for all 𝐩Vμ{\bf p}\in V_{\mu} sufficiently close to 𝐩^\widehat{{\bf p}} in the p\ell^{p} norm (1<p<1<p<\infty) we have H[ϕs[𝐩]]<H[𝐩^]\mathrm{H}[\phi_{s}[{\bf p}]]<\mathrm{H}[\widehat{{\bf p}}] for all s>0s>0. But then for 𝐩:=ϕtk(𝐩0){\bf p}:=\phi_{t_{k}}({\bf p}^{0}) and sufficiently large kk, we have

H[ϕs+tk(𝐩0)]<H[𝐩^],\mathrm{H}[\phi_{s+t_{k}}({\bf p}^{0})]<\mathrm{H}[\widehat{{\bf p}}],

which contradicts the above inequality. Therefore we must have that 𝐩^=𝐩\widehat{{\bf p}}={\bf p}^{*} and hence 𝐩(t)𝐩{\bf p}(t)\rightharpoonup{\bf p}^{*} weakly in p\ell^{p} (1<p<1<p<\infty) as tt\rightarrow\infty. In particular, we have the pointwise convergence

pn(t)pnas t for each n0.p_{n}(t)\rightarrow p^{*}_{n}\quad\text{as $t\rightarrow\infty$ for each $n\geq 0$}.

Now since

𝐩(t)𝐩1:\displaystyle\|{\bf p}(t)-{\bf p}^{*}\|_{1}: =n=0|pn(t)pn|=n=0N|pn(t)pn|+n=N+1|pn(t)pn|\displaystyle=\sum_{n=0}^{\infty}|p_{n}(t)-p^{*}_{n}|=\sum_{n=0}^{N}|p_{n}(t)-p^{*}_{n}|+\sum_{n=N+1}^{\infty}|p_{n}(t)-p^{*}_{n}|
n=0N|pn(t)pn|+n=N+1(pn(t)+pn),\displaystyle\leq\sum_{n=0}^{N}|p_{n}(t)-p^{*}_{n}|+\sum_{n=N+1}^{\infty}(p_{n}(t)+p^{*}_{n}),

by taking NN to be sufficiently large and independent of tt, the desired strong convergence in p\ell^{p} for 1<p<1<p<\infty follows immediately. \square

4 Poor-biased exchange model

We now investigate our second model where the ’given’ dynamics is biased toward richer agent: the wealthier an agent becomes, the more likely it will give a dollar. As for the previous model, we first investigate the limit dynamics as the number of agents NN goes to infinity, then we study the large time behavior and show rigorously the convergence of the wealth distribution to a Poisson distribution.

4.1 Definition and limit equation

We use the same setting as the unbiased model: there are NN agents with initially the same amount of money Si(0)=μS_{i}(0)=\mu with μ+\mu\in\mathbb{N}_{+}.

Definition 6 (Poor-biased exchanged model)

The dynamics consists in choosing a “giver” ii with a probability proportional to its wealth (the wealthier an agent, the more likely it will be a “giver”). Then it gives one dollar to a “receiver” jj chosen uniformly.

From another point of view, the dynamics consist in taking one dollar from the common pot (tax system) and re-distribute the dollar uniformly among the individuals. Thus instead of ‘taxing the agents’ in the unbiased exchange model, the poor-biased model is ‘taxing the dollar’.

The poor-biased model can be written in term of stochastic differential equation, the wealth SiS_{i} of agent ii evolves according to:

dSi(t)=j=1NdNt(i,j)+j=1NdNt(j,i),\mathrm{d}S_{i}(t)=-\sum\limits^{N}_{j=1}\mathrm{d}\mathrm{N}^{(i,j)}_{t}+\sum\limits^{N}_{j=1}\mathrm{d}\mathrm{N}^{(j,i)}_{t}, (4.1)

with Nt(i,j)\mathrm{N}^{(i,j)}_{t} Poisson process with intensity λi,j(t)=λSi(t)N\lambda_{i,j}(t)=\frac{\lambda S_{i}(t)}{N}.

Since the clocks {Nti,j}1i,jN\{\mathrm{N}^{i,j}_{t}\}_{1\leq i,j\leq N} are now time dependent (in contrast to the unbiased model), the dynamics might appear more difficult to analyze. But it turns out to be simpler, since the rate of receiving a dollar is constant:

j=1Nλj,i(t)=j=1NλSj(t)N=λμ,\sum_{j=1}^{N}\lambda_{j,i}(t)=\sum_{j=1}^{N}\frac{\lambda S_{j}(t)}{N}=\lambda\mu,

where μ\mu is the (conserved) initial mean. In contrast, in the unbias dynamics, the rate of receiving a dollar is equal to the proportion of rich people r(t)r(t) which fluctuates in time. Let’s focus on i=1i=1 and sum up the clocks introducing:

𝐍t1=j=1NNt(1,j),𝐌t1=j=1NNt(j,1),\mathrm{\bf N}^{1}_{t}=\sum_{j=1}^{N}\mathrm{N}^{(1,j)}_{t},\quad\mathrm{\bf M}^{1}_{t}=\sum_{j=1}^{N}\mathrm{N}^{(j,1)}_{t}, (4.2)

where the two Poisson processes 𝐍t1\mathrm{\bf N}^{1}_{t} and 𝐌t1\mathrm{\bf M}^{1}_{t} have intensity λS1\lambda S_{1} and λμ\lambda\mu (respectively). Thus, the poor-biased model leads to the equation:

dS1(t)=d𝐍t1+d𝐌t1.\mathrm{d}S_{1}(t)=-\mathrm{d}\mathrm{\bf N}^{1}_{t}+\mathrm{d}\mathrm{\bf M}^{1}_{t}. (4.3)

Notice that S1(t)S_{1}(t) is not independent of Sj(t)S_{j}(t) as both processes can jump at the same time due to the two clocks Nt(1,j)\mathrm{N}^{(1,j)}_{t} and Nt(j,1)\mathrm{N}^{(j,1)}_{t}.

Motivated by the equation above, we give the following definition of the limiting dynamics as NN\rightarrow\infty.

Definition 7

(Asymptotic Poor-biased model) We define S¯1\mkern 1.5mu\overline{\mkern-1.5muS\mkern-1.5mu}\mkern 1.5mu_{1} to be the compound Poisson process satisfying the following SDE:

dS¯1(t)=d𝐍¯t1+d𝐌¯t1,\mathrm{d}\mkern 1.5mu\overline{\mkern-1.5muS\mkern-1.5mu}\mkern 1.5mu_{1}(t)=-\mathrm{d}\mkern 1.5mu\overline{\mkern-1.5mu\bf N\mkern-1.5mu}\mkern 1.5mu^{1}_{t}+\mathrm{d}\mkern 1.5mu\overline{\mkern-1.5mu\bf M\mkern-1.5mu}\mkern 1.5mu^{1}_{t}, (4.4)

in which 𝐍¯t1\mkern 1.5mu\overline{\mkern-1.5mu\bf N\mkern-1.5mu}\mkern 1.5mu^{1}_{t} and 𝐌¯t1\mkern 1.5mu\overline{\mkern-1.5mu\bf M\mkern-1.5mu}\mkern 1.5mu^{1}_{t} are independent Poisson processes with intensity λS¯1(t)\lambda\mkern 1.5mu\overline{\mkern-1.5muS\mkern-1.5mu}\mkern 1.5mu_{1}(t) and λm\lambda m (respectively) where μ\mu is the mean of S¯1(0)\mkern 1.5mu\overline{\mkern-1.5muS\mkern-1.5mu}\mkern 1.5mu_{1}(0) (i.e. μ=𝔼[S¯1(0)]\mu=\mathbb{E}[\mkern 1.5mu\overline{\mkern-1.5muS\mkern-1.5mu}\mkern 1.5mu_{1}(0)]).

If we denote by 𝐩(t)=(p0(t),p1(t),){\bf p}(t)=\big{(}p_{0}(t),p_{1}(t),\ldots\big{)} the law of the process S¯1(t)\mkern 1.5mu\overline{\mkern-1.5muS\mkern-1.5mu}\mkern 1.5mu_{1}(t), its time evolution is given by:

ddt𝐩(t)=λQpoor[𝐩(t)]\frac{\mathrm{d}}{\mathrm{d}t}{\bf p}(t)=\lambda\,Q_{poor}[{\bf p}(t)] (4.5)

with:

Qpoor[𝐩]n:={p1μp0if n=0(n+1)pn+1+μpn1(n+μ)pnfor n1Q_{poor}[{\bf p}]_{n}:=\left\{\begin{array}[]{ll}p_{1}-\mu\,p_{0}&\quad\text{if }n=0\\ (n+1)p_{n+1}+\mu\,p_{n-1}-(n+\mu)\,p_{n}&\quad\text{for }n\geq 1\end{array}\right. (4.6)

and μ=n=0+npn(t)=n=0+npn(0)\mu=\sum_{n=0}^{+\infty}n\,p_{n}(t)=\sum_{n=0}^{+\infty}n\,p_{n}(0).

4.2 Proof of propagation of chaos

The aim of this subsection is to prove the propagation of chaos, i.e. that the process (S1,,Sk)\big{(}S_{1},\ldots,S_{k}\big{)} converges to (S¯1,,S¯k)\big{(}\mkern 1.5mu\overline{\mkern-1.5muS\mkern-1.5mu}\mkern 1.5mu_{1},\ldots,\mkern 1.5mu\overline{\mkern-1.5muS\mkern-1.5mu}\mkern 1.5mu_{k}\big{)} as NN goes to infinity. As for the unbiased exchange model, the key is to define the Poisson clocks for the limit dynamics 𝐍¯ti\overline{\mathrm{\bf N}}^{i}_{t} and 𝐌¯ti\overline{\mathrm{\bf M}}^{i}_{t} close to the clocks of the NN-particle system 𝐍ti\mathrm{\bf N}^{i}_{t} and 𝐌ti\mathrm{\bf M}^{i}_{t} for 1ik1\leq i\leq k, but at the same time making the clocks independent. With this aim, we have to ’remove’ the clocks 𝐍t(i,j)\mathrm{\bf N}^{(i,j)}_{t} and 𝐌t(i,j)\mathrm{\bf M}^{(i,j)}_{t} for 1i,jk1\leq i,j\leq k.

Theorem 2

Let (S1,,SN)\big{(}S_{1},\ldots,S_{N}\big{)} to be a solution to (4.1) and (S¯1,,S¯k)\big{(}\mkern 1.5mu\overline{\mkern-1.5muS\mkern-1.5mu}\mkern 1.5mu_{1},\ldots,\mkern 1.5mu\overline{\mkern-1.5muS\mkern-1.5mu}\mkern 1.5mu_{k}\big{)} a solution to (4.4). Then for any fixed k+k\in\mathbb{N}_{+}, there exists a coupling between (S1,,Sk)\big{(}S_{1},\ldots,S_{k}\big{)} and (S¯1,,S¯k)\big{(}\mkern 1.5mu\overline{\mkern-1.5muS\mkern-1.5mu}\mkern 1.5mu_{1},\ldots,\mkern 1.5mu\overline{\mkern-1.5muS\mkern-1.5mu}\mkern 1.5mu_{k}\big{)} (with the same initial conditions) such that:

𝔼[|S¯i(t)Si(t)|]4kλμN(eλt1),\mathbb{E}[|\mkern 1.5mu\overline{\mkern-1.5muS\mkern-1.5mu}\mkern 1.5mu_{i}(t)-S_{i}(t)|]\leq\frac{4k\lambda\mu}{N}(\mathrm{e}^{\lambda t}-1), (4.7)

holding for each 1ik1\leq i\leq k.

Proof.

To simplify the writing, we suppose i=1i=1. We define for 1ik1\leq i\leq k the clocks for the limit dynamics as follow:

𝐍¯t1=G¯1(j=k+1NNt(1,j))+N^t1,𝐌¯t1=(j=k+1NNt(j,1))+M^t1.\overline{\mathrm{\bf N}}^{1}_{t}=\mkern 1.5mu\overline{\mkern-1.5muG\mkern-1.5mu}\mkern 1.5mu_{1}\cdot\left(\sum_{j=k+1}^{N}\mathrm{N}^{(1,j)}_{t}\right)+\widehat{\mathrm{N}}^{1}_{t}\quad,\quad\overline{\mathrm{\bf M}}^{1}_{t}=\left(\sum_{j=k+1}^{N}\mathrm{N}^{(j,1)}_{t}\right)+\widehat{\mathrm{M}}^{1}_{t}. (4.8)

Here, G¯1\mkern 1.5mu\overline{\mkern-1.5muG\mkern-1.5mu}\mkern 1.5mu_{1} is a Bernoulli random variable that prevents the clocks to ring for S¯1\mkern 1.5mu\overline{\mkern-1.5muS\mkern-1.5mu}\mkern 1.5mu_{1} if the rates of the clocks Nt(1,j)\mathrm{N}^{(1,j)}_{t} from k+1jNk+1\leq j\leq N are too large compare to S¯1\mkern 1.5mu\overline{\mkern-1.5muS\mkern-1.5mu}\mkern 1.5mu_{1}. The parameter of this Bernoulli random variable is given by:

G¯1(t)(1NS¯1(t)(Nk)S1(t)),\mkern 1.5mu\overline{\mkern-1.5muG\mkern-1.5mu}\mkern 1.5mu_{1}(t)\sim\mathcal{B}\Big{(}1\wedge\frac{N\mkern 1.5mu\overline{\mkern-1.5muS\mkern-1.5mu}\mkern 1.5mu_{1}(t)}{(N-k)S_{1}(t)}\Big{)}, (4.9)

with ab=min{a,b}a\wedge b=\min\{a,b\} for any a,ba,b\in\mathbb{R}. On the contrary, the two processes N^t1\widehat{\mathrm{N}}^{1}_{t} and M^t1\widehat{\mathrm{M}}^{1}_{t} are used to compensate if the rates of the clocks Nt(1,j)\mathrm{N}^{(1,j)}_{t} and Nt(j,1)\mathrm{N}^{(j,1)}_{t} from k+1jNk+1\leq j\leq N are not large enough. Both processes N^t1\widehat{\mathrm{N}}^{1}_{t} and M^t1\widehat{\mathrm{M}}^{1}_{t} are independent (inhomogeneous) Poisson processes with rates respectively:

μ^(t)=λ(S¯1(t)(Nk)S1(t)N)+andν^(t)=λ(μj=k+1NSj(t)N)\widehat{\mu}(t)=\lambda\left(\mkern 1.5mu\overline{\mkern-1.5muS\mkern-1.5mu}\mkern 1.5mu_{1}(t)-\frac{(N-k)S_{1}(t)}{N}\right)_{+}\quad\text{and}\quad\widehat{\nu}(t)=\lambda\left(\mu-\sum_{j=k+1}^{N}\frac{S_{j}(t)}{N}\right) (4.10)

where a+=max{a,0}a_{+}=\max\{a,0\} for any aa\in\mathbb{R}. One can check that under the aforementioned setup (coupling of Poisson clocks), 𝐍¯t1\overline{\mathrm{\bf N}}^{1}_{t} and 𝐌¯t1\overline{\mathrm{\bf M}}^{1}_{t} are indeed independent counting processes with intensity λS¯i(t)\lambda\,\mkern 1.5mu\overline{\mkern-1.5muS\mkern-1.5mu}\mkern 1.5mu_{i}(t) and λμ\lambda\,\mu, respectively.

The difference |S¯1(t)S1(t)||\mkern 1.5mu\overline{\mkern-1.5muS\mkern-1.5mu}\mkern 1.5mu_{1}(t)-S_{1}(t)| could increase due to 33 types of events:

  • i)

    Nt(1,j)\mathrm{N}^{(1,j)}_{t} and Nt(j,1)\mathrm{N}^{(j,1)}_{t} ring for 1jk1\leq j\leq k,

  • ii)

    N^t1\widehat{\mathrm{N}}^{1}_{t} and M^t1\widehat{\mathrm{M}}^{1}_{t} ring

  • iii)

    Nt(1,j)\mathrm{N}^{(1,j)}_{t} ring for jk+1j\geq k+1 and G¯1=0\mkern 1.5mu\overline{\mkern-1.5muG\mkern-1.5mu}\mkern 1.5mu_{1}=0.

Notice that the third type of event leads to:

S1(t)=S1(t)1,S¯1(t)=S¯1(t)S_{1}(t)=S_{1}(t-)-1\quad,\quad\mkern 1.5mu\overline{\mkern-1.5muS\mkern-1.5mu}\mkern 1.5mu_{1}(t)=\mkern 1.5mu\overline{\mkern-1.5muS\mkern-1.5mu}\mkern 1.5mu_{1}(t-) (4.11)

i.e. only S1S_{1} gives. However, the event {G¯1=0}\{\mkern 1.5mu\overline{\mkern-1.5muG\mkern-1.5mu}\mkern 1.5mu_{1}=0\} only occurs if S1(t)>S¯1(t)S_{1}(t-)>\mkern 1.5mu\overline{\mkern-1.5muS\mkern-1.5mu}\mkern 1.5mu_{1}(t-). Therefore, the event iii) could only make |S¯1(t)S1(t)||\mkern 1.5mu\overline{\mkern-1.5muS\mkern-1.5mu}\mkern 1.5mu_{1}(t)-S_{1}(t)| to decay.

Therefore, we deduce:

d𝔼[|S¯1(t)S1(t)|]\displaystyle\mathrm{d}\mathbb{E}[|\mkern 1.5mu\overline{\mkern-1.5muS\mkern-1.5mu}\mkern 1.5mu_{1}(t)-S_{1}(t)|] \displaystyle\leq j=1kλN𝔼[S1(t)]dt+j=1kλN𝔼[Sj(t)]dt\displaystyle\sum_{j=1}^{k}\frac{\lambda}{N}\mathbb{E}[S_{1}(t)]\mathrm{d}t\;+\;\sum_{j=1}^{k}\frac{\lambda}{N}\mathbb{E}[S_{j}(t)]\mathrm{d}t (4.12)
+𝔼[μ^(t)]dt+𝔼[ν^(t)]dt\displaystyle\quad+\mathbb{E}[\widehat{\mu}(t)]\mathrm{d}t\;+\;\mathbb{E}[\widehat{\nu}(t)]\mathrm{d}t
\displaystyle\leq 2kλμNdt+𝔼[μ^(t)]dt+𝔼[ν^(t)]dt\displaystyle\frac{2k\lambda\mu}{N}\mathrm{d}t\;+\;\mathbb{E}[\widehat{\mu}(t)]\mathrm{d}t\;+\;\mathbb{E}[\widehat{\nu}(t)]\mathrm{d}t

using 𝔼[Sj(t)]=μ\mathbb{E}\left[S_{j}(t)\right]=\mu for any jj. Let’s bound the rates μ^\widehat{\mu} and ν^\widehat{\nu}:

𝔼[μ^]\displaystyle\mathbb{E}[\widehat{\mu}] =\displaystyle= 𝔼[λ(S¯1(Nk)S1N)+]λ𝔼[(S¯iSi)++kS1N]\displaystyle\mathbb{E}\left[\lambda\Big{(}\mkern 1.5mu\overline{\mkern-1.5muS\mkern-1.5mu}\mkern 1.5mu_{1}-\frac{(N-k)S_{1}}{N}\Big{)}_{+}\right]\;\;\leq\;\;\lambda\mathbb{E}\left[\big{(}\mkern 1.5mu\overline{\mkern-1.5muS\mkern-1.5mu}\mkern 1.5mu_{i}-S_{i}\big{)}_{+}\!+\!\frac{kS_{1}}{N}\right]
\displaystyle\leq λ𝔼[|S¯1S1|]+λkμN\displaystyle\lambda\mathbb{E}\left[|\mkern 1.5mu\overline{\mkern-1.5muS\mkern-1.5mu}\mkern 1.5mu_{1}-S_{1}|\right]+\frac{\lambda k\mu}{N}
𝔼[ν^]\displaystyle\mathbb{E}[\widehat{\nu}] =\displaystyle= 𝔼[λ(μj=k+1NSjN)]=λkμN.\displaystyle\mathbb{E}\left[\lambda\Big{(}\mu-\sum_{j=k+1}^{N}\frac{S_{j}}{N}\Big{)}\right]=\frac{\lambda k\mu}{N}.

We deduce from (4.12):

d𝔼[|S¯1(t)S1(t)|]λ𝔼[|S¯1(t)S1(t)|]dt+4kλμNdt.\mathrm{d}\mathbb{E}[|\mkern 1.5mu\overline{\mkern-1.5muS\mkern-1.5mu}\mkern 1.5mu_{1}(t)-S_{1}(t)|]\leq\lambda\mathbb{E}\left[|\mkern 1.5mu\overline{\mkern-1.5muS\mkern-1.5mu}\mkern 1.5mu_{1}(t)-S_{1}(t)|\right]\mathrm{d}t+\frac{4k\lambda\mu}{N}\mathrm{d}t. (4.13)

Applying the Gronwall’s lemma to (4.13) yields the result.

\square

4.3 Large time behavior

After we achieved the transition from the interacting system of SDEs (4.1) to the deterministic system of linear ODEs (4.5), we now analyze the long time behavior of the distribution 𝐩(t){\bf p}(t) and its convergence to an equilibrium. The main tool behind proof relies again on the reformulation of (4.5) into a (discrete) Fokker-Planck type equation, in conjunction with the standard entropy method [3, 34, 28].

Let’s introduce a function space to study 𝐩(t){\bf p}(t):

Vμ\displaystyle V_{\mu} :=\displaystyle:= {𝐩2()n=0pn=1,pn0,n=0npn=μ},\displaystyle\{{\bf p}\in\ell^{2}(\mathbb{N})\mid\sum_{n=0}^{\infty}p_{n}=1,~{}p_{n}\geq 0,~{}\sum_{n=0}^{\infty}n\,p_{n}=\mu\}, (4.14)
𝒟(Qpoor)\displaystyle\mathcal{D}(Q_{poor}) :=\displaystyle:= {𝐩2()Qpoor[𝐩]2()},\displaystyle\{{\bf p}\in\ell^{2}(\mathbb{N})\mid Q_{poor}[{\bf p}]\in\ell^{2}(\mathbb{N})\}, (4.15)

where 2\ell^{2} denote the vector space of square-summable sequences. In contrast to the unbias model with the dynamics (4.5), the operator QpoorQ_{poor} is an unbounded operator (i.e. 𝒟(Qpoor)2()\mathcal{D}(Q_{poor})\not\subset\ell^{2}(\mathbb{N})). For any 𝐩Vμ𝒟(Qpoor){\bf p}\in V_{\mu}\cap\mathcal{D}(Q_{poor}), it is straightforward to show that:

n=0Qpoor[𝐩]n=0,n=0nQpoor[𝐩]n=0,\sum_{n=0}^{\infty}Q_{poor}[{\bf p}]_{n}=0\quad,\quad\sum_{n=0}^{\infty}n\,Q_{poor}[{\bf p}]_{n}=0, (4.16)

which express that the total mass and the mean value is conserved. Moreover, there exists a unique equilibrium 𝐩{\bf p}^{*} for QpoorQ_{poor} in VμV_{\mu} given by a Poisson distribution:

pn=μnn!eμ,n0.p^{*}_{n}=\frac{\mu^{n}}{n!}\mathrm{e}^{-\mu},\quad n\geq 0. (4.17)

To investigate the convergence of 𝐩(t){\bf p}(t) solution to (4.5) to the equilibrium 𝐩{\bf p}_{*} (4.17), we introduce two function spaces.

Definition 8

We define the sub-vector spaces of 2\ell^{2}:

0\displaystyle\mathcal{H}^{0} =\displaystyle= {𝐩2()n=0pn2pn<+},\displaystyle\{{\bf p}\in\ell^{2}(\mathbb{N})\mid\sum_{n=0}^{\infty}\frac{p^{2}_{n}}{p^{*}_{n}}<+\infty\}, (4.18)
1\displaystyle\mathcal{H}^{1} =\displaystyle= {𝐩2()n=0pn(pn+1pn+1pnpn)2<+},\displaystyle\{{\bf p}\in\ell^{2}(\mathbb{N})\mid\sum_{n=0}^{\infty}p_{n}^{*}\left(\frac{p_{n+1}}{p_{n+1}^{*}}-\frac{p_{n}}{p_{n}^{*}}\right)^{2}<+\infty\}, (4.19)

and define corresponding scalar products:

𝐩,𝐪0:=n=0pnqnpn,𝐩,𝐪1:=n=0pn(pn+1pn+1pnpn)(qn+1pn+1qnpn).\langle{\bf p},\mathbf{q}\rangle_{\mathcal{H}^{0}}:=\sum_{n=0}^{\infty}\frac{p_{n}q_{n}}{p^{*}_{n}}\quad,\quad\langle{\bf p},\mathbf{q}\rangle_{\mathcal{H}^{1}}:=\sum_{n=0}^{\infty}p^{*}_{n}\left(\frac{p_{n+1}}{p_{n+1}^{*}}-\frac{p_{n}}{p_{n}^{*}}\right)\left(\frac{q_{n+1}}{p_{n+1}^{*}}-\frac{q_{n}}{p_{n}^{*}}\right). (4.20)

The advantage of using the scalar product .,.0\langle.,.\rangle_{\mathcal{H}^{0}} is that the operator QpoorQ_{poor} becomes symmetric. To prove it, we rewrite the operator a la Fokker-Planck.

Lemma 4.1

For any 𝐩0{\bf p}\in{\mathcal{H}^{0}}, we have:

Qpoor[𝐩]n=μD(pnD+(pnpn))Q_{poor}[{\bf p}]_{n}=\mu\,D^{-}\left(p^{*}_{n}D^{+}\!\left(\frac{p_{n}}{p^{*}_{n}}\right)\right) (4.21)

with D+(pn)=pn+1pnD^{+}(p_{n})=p_{n+1}-p_{n}, D(pn)=pnpn1D^{-}(p_{n})=p_{n}-p_{n-1} and the convention p1=p1=0p_{-1}=p_{-1}^{*}=0.

Proof.

Since pn/pn+1=(n+1)/μp_{n}^{*}/p_{n+1}^{*}=(n+1)/\mu, we find

1μQpoor[𝐩]n\displaystyle\frac{1}{\mu}Q_{poor}[{\bf p}]_{n} =\displaystyle= pnpn+1pn+1pn1pnpn(pnpnpnpn1pn1pn1)\displaystyle\frac{p_{n}^{*}}{p_{n+1}^{*}}p_{n+1}-\frac{p_{n-1}^{*}}{p_{n}^{*}}p_{n}-\left(\frac{p_{n}^{*}}{p_{n}^{*}}p_{n}-\frac{p_{n-1}^{*}}{p_{n-1}^{*}}p_{n-1}\right)
=\displaystyle= μpnun+1pn1un(pnunpn1un1)\displaystyle\mu p_{n}^{*}u_{n+1}-p_{n-1}^{*}u_{n}\;-\;\left(p_{n}^{*}u_{n}-p_{n-1}^{*}u_{n-1}\right)

with un=pn/pnu_{n}=p_{n}/p_{n}^{*}. Using the notation D+D^{+} and DD^{-}, we write:

1μQpoor[𝐩]n\displaystyle\frac{1}{\mu}Q_{poor}[{\bf p}]_{n} =\displaystyle= pnD+unpn1D+un1=D(pnD+un).\displaystyle p_{n}^{*}D^{+}u_{n}-p_{n-1}^{*}D^{+}u_{n-1}=D^{-}(p_{n}^{*}D^{+}u_{n}).

\square

Remark. Equation (4.21) has a flavor of a Fokker-Planck equation of the form

tρ=(ρ(ρρ)),\partial_{t}\rho=\nabla\cdot\left(\rho_{\infty}\nabla\left(\frac{\rho}{\rho_{\infty}}\right)\right), (4.22)

where ρ\rho_{\infty} is an equilibrium distribution to which ρ\rho converges (and ρ\rho_{\infty} may also depend on ρ\rho, making the equation nonlinear).

As a consequence, we deduce that the operator QpoorQ_{poor} is symmetric on 0{\mathcal{H}^{0}}.

Proposition 4.2

For any 𝐩,𝐪0{\bf p},\mathbf{q}\in{\mathcal{H}^{0}}, the operator QpoorQ_{poor} (4.6) satisfies:

Qpoor[𝐩],𝐪0=𝐩,Qpoor[𝐪]0for any 𝐩,𝐪0.\langle Q_{poor}[{\bf p}],\mathbf{q}\rangle_{\mathcal{H}^{0}}=\langle{\bf p},Q_{poor}[\mathbf{q}]\rangle_{\mathcal{H}^{0}}\qquad\text{for any }{\bf p},\mathbf{q}\in{\mathcal{H}^{0}}. (4.23)

Moreover,

Qpoor[𝐩],𝐩0=μn=0pn(D+(pnpn))2=μ𝐩12.\langle Q_{poor}[{\bf p}],{\bf p}\rangle_{\mathcal{H}^{0}}=-\mu\sum_{n=0}^{\infty}p^{*}_{n}\left(D^{+}\left(\frac{p_{n}}{p^{*}_{n}}\right)\right)^{2}=-\mu\|{\bf p}\|_{\mathcal{H}^{1}}^{2}. (4.24)
Proof.

We simply use integration by parts:

1μQpoor[𝐩],𝐪0\displaystyle\frac{1}{\mu}\langle Q_{poor}[{\bf p}],\mathbf{q}\rangle_{\mathcal{H}^{0}} =n=0D(pnD+pnpn)qnpn=n=0pn(D+pnpn)(D+qnpn)\displaystyle=\sum_{n=0}^{\infty}D^{-}\left(p^{*}_{n}D^{+}\frac{p_{n}}{p^{*}_{n}}\right)\frac{q_{n}}{p^{*}_{n}}=-\sum_{n=0}^{\infty}p^{*}_{n}\left(D^{+}\frac{p_{n}}{p^{*}_{n}}\right)\left(D^{+}\frac{q_{n}}{p^{*}_{n}}\right)
=n=0pnpnD(pnD+qnpn)=1μ𝐩,Qpoor[𝐪]0.\displaystyle=\sum_{n=0}^{\infty}\frac{p_{n}}{p^{*}_{n}}D^{-}\left(p^{*}_{n}D^{+}\frac{q_{n}}{p^{*}_{n}}\right)=\frac{1}{\mu}\langle{\bf p},Q_{poor}[\mathbf{q}]\rangle_{\mathcal{H}^{0}}.

\square

Furthermore, the operator Qpoor-Q_{poor} would have a so-called spectral gap if one can show that the norm .1\|.\|_{\mathcal{H}^{1}} controls the norm .0\|.\|_{\mathcal{H}^{0}}. To prove it, we establish a Poincaré inequality.

Lemma 4.3

There exists a constant Cp>0C_{p}>0 such that for any 𝐩1{\bf p}\in{\mathcal{H}^{1}} satisfying npn=1\sum_{n}p_{n}=1

𝐩𝐩02Cp𝐩12\|{\bf p}-{\bf p}^{*}\|_{\mathcal{H}^{0}}^{2}\leq C_{p}\|{\bf p}\|_{\mathcal{H}^{1}}^{2} (4.25)

where .0\|.\|_{\mathcal{H}^{0}} and .1\|.\|_{\mathcal{H}^{1}} are defined in (4.20) and 𝐩{\bf p}^{*} is the equilibrium (4.17).

Proof.

Similar to the standard proof of a classical Poincaré inequality we proceed by contradiction. Assume that no such CpC_{p} exists, then there exists a sequence (of sequence) 𝐩(k){\bf p}^{(k)} such that n=0pn(k)=1\sum_{n=0}^{\infty}p^{(k)}_{n}=1 and

𝐩(k)𝐩0k𝐩(k)1\|{\bf p}^{(k)}-{\bf p}^{*}\|_{\mathcal{H}^{0}}\geq k\|{\bf p}^{(k)}\|_{\mathcal{H}^{1}} (4.26)

for all kk\in\mathbb{N}. Denote 𝐬(k)=𝐩(k)𝐩n{\bf s}^{(k)}={\bf p}^{(k)}-{\bf p}^{*}_{n}. Then we have n=0sn(k)=0\sum_{n=0}^{\infty}s^{(k)}_{n}=0 and (4.26) reads

𝐬(k)0k𝐬(k)1.\|{\bf s}^{(k)}\|_{\mathcal{H}^{0}}\geq k\|{\bf s}^{(k)}\|_{\mathcal{H}^{1}}. (4.27)

Without loss of generality, we can assume the normalization condition 𝐬(k)0=1\|{\bf s}^{(k)}\|_{\mathcal{H}^{0}}=1 for all kk and thus 𝐬(k)11k\|{\bf s}^{(k)}\|_{\mathcal{H}^{1}}\leq\frac{1}{k}. By weak compactness, there exists 𝐬0{\bf s}^{\infty}\in\mathcal{H}^{0} such that 𝐬(k)𝐬{\bf s}^{(k)}\rightharpoonup{\bf s}^{\infty} in 0\mathcal{H}^{0} and in particular sn(k)ksns^{(k)}_{n}\xrightarrow[]{k\to\infty}s^{\infty}_{n} for all nn.
Since 𝐬(k)11k\|{\bf s}^{(k)}\|_{\mathcal{H}^{1}}\leq\frac{1}{k}, we also have sn+1(k)pn+1sn(k)pnk0\frac{s^{(k)}_{n+1}}{p^{*}_{n+1}}-\frac{s^{(k)}_{n}}{p^{*}_{n}}\xrightarrow[]{k\to\infty}0 for all kk, or equivalently, (n+1)sn+1NμsnNk0(n+1)s^{N}_{n+1}-\mu s^{N}_{n}\xrightarrow[]{k\to\infty}0. Thus, (n+1)sn+1=μsn(n+1)s^{\infty}_{n+1}=\mu s^{\infty}_{n} and therefore sn=μnn!s0s^{\infty}_{n}=\frac{\mu^{n}}{n!}s^{\infty}_{0} for all nn. As n=0sn=0\sum_{n=0}^{\infty}s^{\infty}_{n}=0, we must have s0=0s^{\infty}_{0}=0 and therefore 𝐬=0{\bf s}^{\infty}=0. Contradiction, 𝐬0=1\|{\bf s}^{\infty}\|_{\mathcal{H}^{0}}=1 since 𝐬(k)0=1\|{\bf s}^{(k)}\|_{\mathcal{H}^{0}}=1 for all kk.

\square

As a result of the lemma, the operator Qpoor-Q_{poor} has a spectral gap of at least 1/Cp1/C_{p} since:

Qpoor[𝐩𝐩],𝐩𝐩0=Qpoor[𝐩],𝐩0=𝐩121Cp𝐩𝐩02.\langle-Q_{poor}[{\bf p}-{\bf p}_{\infty}]\,,\,{\bf p}-{\bf p}_{\infty}\rangle_{\mathcal{H}^{0}}=\langle-Q_{poor}[{\bf p}]\,,\,{\bf p}\rangle_{\mathcal{H}^{0}}=\|{\bf p}\|_{\mathcal{H}^{1}}^{2}\geq\frac{1}{C_{p}}\|{\bf p}-{\bf p}^{*}\|_{\mathcal{H}^{0}}^{2}. (4.28)

We shall establish the existence of a unique global solution to the linear ODE system (4.5). The key ingredient in our proof relies heavily on standard theory of maximal monotone operators (see for instance Chapter 7 of [9]).

Proposition 4.4

Given any 𝐩0𝒟(Qpoor){\bf p}_{0}\in\mathcal{D}(Q_{poor}), there exists a unique function

𝐩(t)C1([0,);0)C([0,);𝒟(Qpoor)){\bf p}(t)\in C^{1}\big{(}[0,\infty);\mathcal{H}^{0})\cap C\big{(}[0,\infty);\mathcal{D}(Q_{poor})\big{)}

satisfying (4.5).

Proof.

We use the Hille-Yosida theorem and show that the (unbounded) linear operator Qpoor-Q_{poor} on 0\mathcal{H}^{0} is a maximal monotone operator. The monotonicity of Qpoor-Q_{poor} follows from its symmetric property on 0\mathcal{H}^{0}:

Qpoor[𝐯],𝐯0=μn=0pn(D+(vnpn))20for all 𝐯𝒟(Qpoor).\langle-Q_{poor}[\mathbf{v}],\mathbf{v}\rangle_{\mathcal{H}^{0}}=\mu\sum_{n=0}^{\infty}p^{*}_{n}\left(D^{+}\left(\frac{v_{n}}{p^{*}_{n}}\right)\right)^{2}\geq 0\quad\text{for all }\mathbf{v}\in\mathcal{D}(Q_{poor}).

To show the maximality of Qpoor-Q_{poor}, it suffices to show R(IQpoor)=0R(I-Q_{poor})=\mathcal{H}^{0}, i.e., for each 𝐟0\mathbf{f}\in\mathcal{H}^{0}, the equation 𝐩Qpoor[𝐩]=𝐟{\bf p}-Q_{poor}[{\bf p}]=\mathbf{f} admits at least one solution 𝐩𝒟(Qpoor){\bf p}\in\mathcal{D}(-Q_{poor}). To this end, the weak formulation of 𝐩Qpoor[𝐩]=𝐟{\bf p}-Q_{poor}[{\bf p}]=\mathbf{f} reads

𝐩,𝐪0+Qpoor[𝐩],𝐪0=𝐟,𝐪0for all 𝐪0,\langle{\bf p},\mathbf{q}\rangle_{\mathcal{H}^{0}}+\langle-Q_{poor}[{\bf p}],\mathbf{q}\rangle_{\mathcal{H}^{0}}=\langle\mathbf{f},\mathbf{q}\rangle_{\mathcal{H}^{0}}\quad\text{for all }~{}\mathbf{q}\in\mathcal{H}^{0}, (4.29)

whence the Lax-Milgram theorem yields a unique 𝐩1{\bf p}\in\mathcal{H}^{1}.

\square

We can now prove the convergence of 𝐩(t){\bf p}(t) solution of (4.5) to its equilibrium solution (4.17).

Theorem 3

Let 𝐩(t){\bf p}(t) be the solution of (4.5) and 𝐩{\bf p}^{*} the corresponding equilibrium. Then:

𝐩(t)𝐩0𝐩0𝐩0eλCpt\|{\bf p}(t)\!-\!{\bf p}^{*}\|_{\mathcal{H}^{0}}\leq\|{\bf p}_{0}\!-\!{\bf p}^{*}\|_{\mathcal{H}^{0}}\mathrm{e}^{-\frac{\lambda}{C_{p}}t} (4.30)

where 𝐩0{\bf p}_{0} is the initial condition, i.e. 𝐩(t=0)=𝐩0{\bf p}(t=0)={\bf p}_{0}.

Proof.

Taking the derivative of the square norm gives:

12ddt𝐩(t)𝐩02\displaystyle\frac{1}{2}\frac{d}{dt}\|{\bf p}(t)-{\bf p}^{*}\|_{\mathcal{H}^{0}}^{2} =\displaystyle= 𝐩(t),𝐩(t)𝐩0=λQpoor[𝐩(t)],𝐩(t)𝐩0\displaystyle\langle{\bf p}^{\prime}(t)\,,\,{\bf p}(t)-{\bf p}^{*}\rangle_{\mathcal{H}^{0}}=\lambda\langle Q_{poor}[{\bf p}(t)]\,,\,{\bf p}(t)-{\bf p}^{*}\rangle_{\mathcal{H}^{0}} (4.31)
=\displaystyle= λ𝐩(t),Qpoor[𝐩(t)]0=λ𝐩(t)12,\displaystyle\lambda\langle{\bf p}(t)\,,\,Q_{poor}[{\bf p}(t)]\rangle_{\mathcal{H}^{0}}=-\lambda\|{\bf p}(t)\|_{\mathcal{H}^{1}}^{2},

using the symmetry of QpoorQ_{poor} and the relation (4.24). Using the Poincaré constant from lemma (4.3), we deduce:

12ddt𝐩(t)𝐩02\displaystyle\frac{1}{2}\frac{d}{dt}\|{\bf p}(t)-{\bf p}^{*}\|_{\mathcal{H}^{0}}^{2} \displaystyle\leq λCp𝐩(t)𝐩02.\displaystyle-\frac{\lambda}{C_{p}}\|{\bf p}(t)-{\bf p}^{*}\|_{\mathcal{H}^{0}}^{2}.

Applying the Gronwall’s lemma leads to the result.

\square

To finish our investigation of the poor-biased dynamics, we would like to find an explicit rate for the decay of the solution 𝐩(t){\bf p}(t) toward the equilibrium 𝐩{\bf p}^{*}, i.e. find an explicit value for the Poincaré constant CpC_{p} in lemma (4.3). The key idea, due to Bakry and Emery [4], is to compute the second time derivative of 𝐩(t)𝐩0\|{\bf p}(t)-{\bf p}^{*}\|_{\mathcal{H}^{0}}.

Lemma 4.5

For any 𝐩Vμ𝒟(Qpoor){\bf p}\in V_{\mu}\cap\mathcal{D}(Q_{poor}), we have:

Qpoor[Qpoor[𝐩]],𝐩0μQpoor[𝐩],𝐩0.\langle Q_{poor}[Q_{poor}[{\bf p}]]\,,\,{\bf p}\rangle_{\mathcal{H}^{0}}\geq-\mu\langle Q_{poor}[{\bf p}]\,,\,{\bf p}\rangle_{\mathcal{H}^{0}}. (4.32)
Proof.

Using the symmetry of QpoorQ_{poor}, we have:

Qpoor[Qpoor[𝐩]],𝐩0\displaystyle\langle Q_{poor}[Q_{poor}[{\bf p}]]\,,\,{\bf p}\rangle_{\mathcal{H}^{0}} =\displaystyle= Qpoor[𝐩],Qpoor[𝐩]0=μ2n=0D(pnzn)D(pnzn)1pn\displaystyle\langle Q_{poor}[{\bf p}]\,,\,Q_{poor}[{\bf p}]\rangle_{\mathcal{H}^{0}}=\mu^{2}\sum_{n=0}^{\infty}D^{-}\left(p^{*}_{n}\,z_{n}\right)D^{-}\left(p^{*}_{n}\,z_{n}\right)\frac{1}{p_{n}^{*}}

with zn=D+(pnpn)z_{n}=D^{+}\!\left(\frac{p_{n}}{p^{*}_{n}}\right). Since D(pnzn)1pn=μznnzn1D^{-}\left(p^{*}_{n}\,z_{n}\right)\frac{1}{p_{n}^{*}}=\mu z_{n}-nz_{n-1}, integration by parts gives:

1μ2Qpoor[Qpoor[𝐩]],𝐩0\displaystyle\frac{1}{\mu^{2}}\langle Q_{poor}[Q_{poor}[{\bf p}]]\,,\,{\bf p}\rangle_{\mathcal{H}^{0}} =\displaystyle= n=0D(pnzn)(znnμzn1)\displaystyle\sum_{n=0}^{\infty}D^{-}\left(p^{*}_{n}\,z_{n}\right)(z_{n}-\frac{n}{\mu}z_{n-1})
=\displaystyle= n=0D(pnzn)zn+n=0pnznD+(nμzn1).\displaystyle\sum_{n=0}^{\infty}D^{-}\left(p^{*}_{n}\,z_{n}\right)z_{n}\;+\;\sum_{n=0}^{\infty}p^{*}_{n}\,z_{n}D^{+}\left(\frac{n}{\mu}z_{n-1}\right).

Using D+(nμzn1)=nμD(zn)+znμD^{+}(\frac{n}{\mu}z_{n-1})=\frac{n}{\mu}D^{-}(z_{n})+\frac{z_{n}}{\mu}, we deduce:

1μ2Qpoor[Qpoor[𝐩]],𝐩0\displaystyle\frac{1}{\mu^{2}}\langle Q_{poor}[Q_{poor}[{\bf p}]]\,,\,{\bf p}\rangle_{\mathcal{H}^{0}} =\displaystyle= n=0D(pnzn)zn+n=0pnznnμD(zn)+n=0pnzn2μ\displaystyle\sum_{n=0}^{\infty}D^{-}\left(p^{*}_{n}\,z_{n}\right)z_{n}\;+\;\sum_{n=0}^{\infty}p^{*}_{n}\,z_{n}\frac{n}{\mu}D^{-}(z_{n})+\sum_{n=0}^{\infty}p^{*}_{n}\frac{z_{n}^{2}}{\mu}
=\displaystyle= n=0(D(pnzn)zn+pnznnμD(zn))+1μQpoor[𝐩],𝐩0\displaystyle\sum_{n=0}^{\infty}\Big{(}D^{-}\left(p^{*}_{n}\,z_{n}\right)z_{n}+p^{*}_{n}\,z_{n}\frac{n}{\mu}D^{-}(z_{n})\Big{)}+\frac{1}{\mu}\langle Q_{poor}[{\bf p}]\,,\,{\bf p}\rangle_{\mathcal{H}^{0}}
=:\displaystyle=: A+1μQpoor[𝐩],𝐩0\displaystyle A\;+\;\frac{1}{\mu}\langle Q_{poor}[{\bf p}]\,,\,{\bf p}\rangle_{\mathcal{H}^{0}}

To conclude we have to show that A0A\geq 0. Notice that pnnμ=pn1p^{*}_{n}\frac{n}{\mu}=p_{n-1}^{*}, thus:

A\displaystyle A =\displaystyle= n=0(D(pnzn)zn+pn1znD(zn))\displaystyle\sum_{n=0}^{\infty}\Big{(}D^{-}\left(p^{*}_{n}\,z_{n}\right)z_{n}+p^{*}_{n-1}\,z_{n}D^{-}(z_{n})\Big{)}
=\displaystyle= n=0pnznD+(zn)+n=0pnzn+1D(zn+1)\displaystyle-\sum_{n=0}^{\infty}p^{*}_{n}\,z_{n}D^{+}(z_{n})+\sum_{n=0}^{\infty}p^{*}_{n}\,z_{n+1}D^{-}(z_{n+1})
=\displaystyle= n=0pn(znD+(zn)+zn+1D(zn+1))\displaystyle\sum_{n=0}^{\infty}p^{*}_{n}\Big{(}-z_{n}D^{+}(z_{n})+z_{n+1}D^{-}(z_{n+1})\Big{)}
=\displaystyle= n=0pn(zn+1zn)20.\displaystyle\sum_{n=0}^{\infty}p^{*}_{n}\Big{(}z_{n+1}-z_{n}\Big{)}^{2}\geq 0.

\square

Remark. In general, the computation of the second time derivative of the energy (in our case, 𝐩(t)𝐩0\|{\bf p}(t)-{\bf p}^{*}\|_{\mathcal{H}^{0}}) requires a number of smartly-chosen integration by parts. However, these computations can actually be made more tractable and organized to some extent. We refer interested readers to [35, 29, 10] for ample illustration of the technique known as systematic integration by parts.

Proposition 4.6

The exponential decay rate in theorem (3) is at least λ\lambda, i.e. 𝐩(t)𝐩0Ceλt\|{\bf p}(t)\!-\!{\bf p}^{*}\|_{\mathcal{H}^{0}}\leq C\mathrm{e}^{-\lambda t}.

Proof.

Taking the second derivative and using the symmetry of QpoorQ_{poor} give:

12d2dt2𝐩(t)𝐩02\displaystyle\frac{1}{2}\frac{d^{2}}{dt^{2}}\|{\bf p}(t)-{\bf p}^{*}\|_{\mathcal{H}^{0}}^{2} =\displaystyle= ddtλQpoor[𝐩(t)],𝐩(t)0=2λ2Qpoor[𝐩(t)],Qpoor[𝐩(t)]0\displaystyle\frac{d}{dt}\lambda\langle Q_{poor}[{\bf p}(t)]\,,\,{\bf p}(t)\rangle_{\mathcal{H}^{0}}=2\lambda^{2}\langle Q_{poor}[{\bf p}(t)]\,,\,Q_{poor}[{\bf p}(t)]\rangle_{\mathcal{H}^{0}}
\displaystyle\geq 2λ2μQpoor[𝐩],𝐩0=λddt𝐩(t)𝐩02\displaystyle-2\lambda^{2}\mu\langle Q_{poor}[{\bf p}]\,,\,{\bf p}\rangle_{\mathcal{H}^{0}}=-\lambda\frac{d}{dt}\|{\bf p}(t)-{\bf p}^{*}\|_{\mathcal{H}^{0}}^{2}

thanks to (4.32) and (4.31). Denoting ϕ(t)=𝐩(t)𝐩02\phi(t)=\|{\bf p}(t)-{\bf p}^{*}\|_{\mathcal{H}^{0}}^{2}, we have: ϕ′′2λϕ\phi^{\prime\prime}\geq-2\lambda\phi^{\prime}. Integrating over the interval (t,+)(t,+\infty) yields:

0ϕ(t)2λ(0ϕ(t))ϕ(t)2λϕ(t)0-\phi^{\prime}(t)\geq-2\lambda(0-\phi(t))\quad\Rightarrow\quad\phi^{\prime}(t)\leq-2\lambda\phi(t)

and the Gronwall’s lemma allows to obtain our result.
It remains to justify that limt+ϕ(t)=limt+ϕ(t)=0\lim_{t\to+\infty}\phi^{\prime}(t)=\lim_{t\to+\infty}\phi(t)=0. Theorem (3) already shows that limt+ϕ(t)=0\lim_{t\to+\infty}\phi(t)=0. Moreover, denoting g(t)=ϕ(t)0g(t)=-\phi^{\prime}(t)\geq 0, we have g2λgg^{\prime}\leq-2\lambda g. Thus, by Gronwall’s lemma, g(t)t+0g(t)\stackrel{{\scriptstyle t\to+\infty}}{{\longrightarrow}}0.

\square

4.4 Numerical illustration poor-biased model

We investigate numerically the convergence of 𝐩(t){\bf p}(t) solution to the poor-biased model (4.5) to the equilibrium distribution 𝐩{\bf p}^{*} (4.17). We use μ=5\mu=5 (average money) and λ=1\lambda=1 (rate of jumps) for the model. To discretize the model, we use 1,0011,001 components to describe the distribution 𝐩(t){\bf p}(t) (i.e. (p0(t),,p1000(t))(p_{0}(t),\dots,p_{1000}(t))). As initial condition, we use pμ(0)=1p_{\mu}(0)=1 and pi(0)=0p_{i}(0)=0 for iμi\neq\mu. The standard Runge-Kutta fourth-order method (e.g. RK4) is used to discretize the ODE system (4.5) with the time step Δt=0.01\Delta t=0.01.

We plot in figure (7)-left the numerical solution 𝐩{\bf p} at t=12t=12 unit time and compare it to the equilibrium distribution 𝐩{\bf p}^{*}. The two distributions are indistinguishable. Indeed, plotting the evolution of the difference 𝐩(t)𝐩0\|{\bf p}(t)-{\bf p}^{*}\|_{\mathcal{H}^{0}} (figure (7)-right) shows that the difference is already below 101010^{-10}. Moreover, the decay is clearly exponential as we use semi-logarithmic scale.

Refer to caption
Refer to caption
Figure 7: Left: comparison between the numerical solution 𝐩(t){\bf p}(t) (4.5) of the poor-bias model and the equilibrium 𝐩{\bf p}^{*} (4.17). The two distributions are indistinguishable. Right: decay of the difference 𝐩(t)𝐩0\|{\bf p}(t)-{\bf p}^{*}\|_{\mathcal{H}^{0}} in semilog scale. The decay is exponential as predicted by the theorem 3.

Notice that the numerical simulation suggests that the optimal decay rate of 𝐩(t)𝐩0\|{\bf p}(t)-{\bf p}^{*}\|_{\mathcal{H}^{0}} is 2λ2\lambda, which is twice the analytical decay rate λ\lambda proved in proposition 4.6. The reason for this discrepancy is that the solution of 𝐩(t){\bf p}(t) remains in the subspace Vμ𝒟(Qpoor)V_{\mu}\cap\mathcal{D}(Q_{poor}), i.e. the mean of 𝐩(t){\bf p}(t) is preserved. The analysis of the spectral gap of QpoorQ_{poor} in the proposition 4.6 does not take account this constraint.

We numerically investigate the spectrum of Qpoor-Q_{poor} denoted {αn}n=1\{\alpha_{n}\}_{n=1}^{\infty}. The first eigenvalue satisfies α1=0\alpha_{1}=0 due to the equilibrium 𝐩{\bf p}^{*} (i.e. Qpoor[𝐩]=0Q_{poor}[{\bf p}^{*}]=0). The other eigenvalues are αn=n1\alpha_{n}=n-1 and in particular the spectral gap is α2=1\alpha_{2}=1. One can find explicitly a corresponding eigenfunction given by:

𝐩(2)=D(𝐩)=(p0,p1p0,,pnpn1,).{\bf p}^{(2)}=D^{-}({\bf p}^{*})=(p^{*}_{0},p^{*}_{1}-p^{*}_{0},\ldots,p^{*}_{n}-p^{*}_{n-1},\ldots). (4.33)

Thus, for any 𝐩Vμ𝒟(Qpoor){\bf p}\in V_{\mu}\cap\mathcal{D}(Q_{poor}), we find:

𝐩,𝐩(2)0=n=0pn(pnpn1)1pn=n=0pn(1n/μ)=1μ/μ=0.\langle{\bf p}\,,\,{\bf p}^{(2)}\rangle_{\mathcal{H}^{0}}=\sum_{n=0}^{\infty}p_{n}(p^{*}_{n}-p^{*}_{n-1})\frac{1}{p^{*}_{n}}=\sum_{n=0}^{\infty}p_{n}(1-n/\mu)=1-\mu/\mu=0.

This explains why the effective spectral gap for the dynamics is given by α3\alpha_{3} and not α2\alpha_{2}: the solution 𝐩(t){\bf p}(t) (4.5) lives in Vμ𝒟(Qpoor)V_{\mu}\cap\mathcal{D}(Q_{poor}) and therefore it is orthogonal to 𝐩(2){\bf p}^{(2)}.

Remark. We can find explicitly the exact formulation of the eigenfunction 𝐩(k){\bf p}^{(k)} of Qpoor-Q_{poor} for all k+k\in\mathbb{N}_{+}. We find by induction:

𝐩(k)=(p0,p1(k1)p0,,pn+j=0n1(1)nj=1nj(k)(nj)!pj,){\bf p}^{(k)}=\left(p^{*}_{0},p^{*}_{1}-(k-1)p^{*}_{0},\cdots,p^{*}_{n}+\sum_{j=0}^{n-1}(-1)^{n-j}\frac{\prod_{\ell=1}^{n-j}(k-\ell)}{(n-j)!}p^{*}_{j},\cdots\right) (4.34)

leading to:

pn(k)=j=0n(k1j)(1)jμnj(nj)!eμ,n0,p^{(k)}_{n}=\sum_{j=0}^{n}\binom{k-1}{j}(-1)^{j}\frac{\mu^{n-j}}{(n-j)!}\mathrm{e}^{-\mu},\quad n\geq 0, (4.35)

with (kj)\binom{k}{j} binomial coefficient (i.e. (kj)=k!(kj)!j!\binom{k}{j}=\frac{k!}{(k-j)!\,j!}). Moreover, through an induction argument and some combinatorial identities, we can verify that 𝐩(m),𝐩(k)0=0\langle{\bf p}^{(m)},{\bf p}^{(k)}\rangle_{\mathcal{H}^{0}}=0 for mkm\neq k. We speculate that {𝐩(k)}k=1\{{\bf p}^{(k)}\}_{k=1}^{\infty} spans the entire space 0\mathcal{H}^{0}, but we do not have a proof for this conjecture.

5 Rich-biased exchange model

In our third model, the selection of the ’giver’ is biased toward the poor instead of the rich, i.e. the more money an individual has the less likely it will be chosen.

5.1 Definition and limit equation

As before, the definition of the model is given first.

Definition 9

(Rich-biased exchange model) A “giver” ii is chosen with inverse proportionality of its wealth. The “receiver” jj is chosen uniformly.

The rich-biased model leads to the following stochastic differential equation:

dSi(t)=j=1NdNt(i,j)+j=1NdNt(j,i),\mathrm{d}S_{i}(t)=-\sum\limits^{N}_{j=1}\mathrm{d}\mathrm{N}^{(i,j)}_{t}+\sum\limits^{N}_{j=1}\mathrm{d}\mathrm{N}^{(j,i)}_{t}, (5.1)

with Nt(i,j)\mathrm{N}^{(i,j)}_{t} Poisson process with intensity λij\lambda_{ij} given by:

λij={0 if Si=0λN1Si if Si>0\lambda_{ij}=\left\{\begin{array}[]{cl}0&\text{ if }S_{i}=0\\ \frac{\lambda}{N}\cdot\frac{1}{S_{i}}&\text{ if }S_{i}>0\end{array}\right. (5.2)

An agent ii receives a dollar at rate λw\lambda w where ww is the inverse of the harmonic mean:

w=1NSk>01Sk.w=\frac{1}{N}\sum_{S_{k}>0}\frac{1}{S_{k}}. (5.3)
Definition 10

(Asymptotic Rich-biased model)

dS¯1(t)=d𝐍¯t1+d𝐌¯t1,\mathrm{d}\mkern 1.5mu\overline{\mkern-1.5muS\mkern-1.5mu}\mkern 1.5mu_{1}(t)=-\mathrm{d}\mkern 1.5mu\overline{\mkern-1.5mu\bf N\mkern-1.5mu}\mkern 1.5mu^{1}_{t}+\mathrm{d}\mkern 1.5mu\overline{\mkern-1.5mu\bf M\mkern-1.5mu}\mkern 1.5mu^{1}_{t}, (5.4)

in which 𝐍¯t1\mkern 1.5mu\overline{\mkern-1.5mu\bf N\mkern-1.5mu}\mkern 1.5mu^{1}_{t} and 𝐌¯t1\mkern 1.5mu\overline{\mkern-1.5mu\bf M\mkern-1.5mu}\mkern 1.5mu^{1}_{t} are independent Poisson processes with intensity λ/S¯1(t)\lambda/\mkern 1.5mu\overline{\mkern-1.5muS\mkern-1.5mu}\mkern 1.5mu_{1}(t) (if S¯1(t)>0\mkern 1.5mu\overline{\mkern-1.5muS\mkern-1.5mu}\mkern 1.5mu_{1}(t)>0) and λw¯(t)\lambda\mkern 1.5mu\overline{\mkern-1.5muw\mkern-1.5mu}\mkern 1.5mu(t) respectively. The inverse mean w¯(t)\mkern 1.5mu\overline{\mkern-1.5muw\mkern-1.5mu}\mkern 1.5mu(t) is given by:

w¯[𝐩(t)]:=n=1pn(t)n\overline{w}[{\bf p}(t)]:=\sum_{n=1}^{\infty}\frac{p_{n}(t)}{n} (5.5)

where 𝐩(t)=(p0(t),p1(t),){\bf p}(t)=\big{(}p_{0}(t),p_{1}(t),\ldots\big{)} the law of the process S¯1(t)\mkern 1.5mu\overline{\mkern-1.5muS\mkern-1.5mu}\mkern 1.5mu_{1}(t). The time evolution of 𝐩(t){\bf p}(t) is given by:

ddt𝐩(t)=λQrich[𝐩(t)]\frac{\mathrm{d}}{\mathrm{d}t}{\bf p}(t)=\lambda\,Q_{rich}[{\bf p}(t)] (5.6)

with:

Qrich[𝐩]n:={p1w¯p0if n=0pn+1n+1+w¯pn1(1n+w¯)pnfor n1Q_{rich}[{\bf p}]_{n}:=\left\{\begin{array}[]{ll}p_{1}-\overline{w}\,p_{0}&\quad\text{if }n=0\\ \frac{p_{n+1}}{n+1}+\overline{w}p_{n-1}-\left(\frac{1}{n}+\overline{w}\right)p_{n}&\quad\text{for }n\geq 1\end{array}\right. (5.7)

We will also need the weak form of the operator: for any test function φ\varphi:

Qrich[𝐩],φ=n0pn(w¯φ(n+1)+𝟙{n1}nφ(n1)(w¯+𝟙{n1}n)φ(n))\langle Q_{rich}[{\bf p}]\,,\,\varphi\rangle=\sum_{n\geq 0}p_{n}\left(\overline{w}\varphi(n+1)+\frac{\mathbbm{1}_{\{n\geq 1\}}}{n}\varphi(n-1)-\Big{(}\overline{w}+\frac{\mathbbm{1}_{\{n\geq 1\}}}{n}\Big{)}\varphi(n)\right) (5.8)

5.2 Propagation of chaos using empirical measure

We investigate the propagation of chaos for the rich-biased dynamics using the empirical measure (see subsection 2.3). We consider {Si(t)}1iN\{S_{i}(t)\}_{1\leq i\leq N} the solution to (5.1) and introduce the empirical measure:

𝐩emp(t)=1Ni=1NδSi(t)(s).{\bf p}_{emp}(t)=\frac{1}{N}\sum_{i=1}^{N}\delta_{S_{i}(t)}(s). (5.9)

The goal is to show that the stochastic measure 𝐩emp(t){\bf p}_{emp}(t) converges to the deterministic density 𝐩(t){\bf p}(t) solution of (5.6). The main difficulty is that the empirical measure is a stochastic process on a Banach space 1()\ell^{1}(\mathbb{N}) and thus of infinite dimension. Fortunately, the space is a discreet (i.e. \mathbb{N}) and therefore we do not have to consider stochastic partial differential equations which are famously difficult. Moreover, we only have to consider a finite number of possible jumps.

When agent ii gives a dollar to jj (i.e. (Si,Sj)(Si1,Sj+1)(S_{i},S_{j})\;\leavevmode\hbox to17.47pt{\vbox to2.68pt{\pgfpicture\makeatletter\hbox{\hskip 0.2pt\lower-1.3381pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{} {}{} {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}} {{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}{{}}} {{{{}{}{{}} }}{{}} {}{}{} }{{{{}{}{{}} }}{{}} {{}{}{}{}} {{}{}{}{}} }{{{{}{}{{}} }}{{}} {{}{}{}{}} {{}{}{}{}} }{{{{}{}{{}} }}{{}} {{}{}{}{}} {{}{}{}{}} }{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{}} } {{{{}{}{{}} }}{{}} }{{{{}{}{{}} }}{{}}{{}}} {}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{0.0pt}\pgfsys@curveto{0.71132pt}{0.0pt}{1.06697pt}{1.1381pt}{1.77829pt}{1.1381pt}\pgfsys@curveto{2.29327pt}{1.1381pt}{2.73714pt}{0.58272pt}{3.20093pt}{0.0pt}\pgfsys@curveto{3.6647pt}{-0.5827pt}{4.10857pt}{-1.1381pt}{4.62357pt}{-1.1381pt}\pgfsys@curveto{5.13855pt}{-1.1381pt}{5.58241pt}{-0.58272pt}{6.0462pt}{0.0pt}\pgfsys@curveto{6.50998pt}{0.5827pt}{6.95384pt}{1.1381pt}{7.46884pt}{1.1381pt}\pgfsys@curveto{7.98383pt}{1.1381pt}{8.42769pt}{0.58272pt}{8.89148pt}{0.0pt}\pgfsys@curveto{9.35526pt}{-0.5827pt}{9.79912pt}{-1.1381pt}{10.31412pt}{-1.1381pt}\pgfsys@lineto{10.31413pt}{0.0pt}\pgfsys@lineto{16.61183pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.61183pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\;(S_{i}-1,S_{j}+1)), the empirical measure is transformed as

𝐩emp𝐩emp+1N(δSi1+δSj+1δSiδSj).{\bf p}_{emp}\;\;\leavevmode\hbox to17.47pt{\vbox to2.68pt{\pgfpicture\makeatletter\hbox{\hskip 0.2pt\lower-1.3381pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}{} {}{} {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}} {{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}{{}}} {{{{}{}{{}} }}{{}} {}{}{} }{{{{}{}{{}} }}{{}} {{}{}{}{}} {{}{}{}{}} }{{{{}{}{{}} }}{{}} {{}{}{}{}} {{}{}{}{}} }{{{{}{}{{}} }}{{}} {{}{}{}{}} {{}{}{}{}} }{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{}} } {{{{}{}{{}} }}{{}} }{{{{}{}{{}} }}{{}}{{}}} {}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{0.0pt}\pgfsys@curveto{0.71132pt}{0.0pt}{1.06697pt}{1.1381pt}{1.77829pt}{1.1381pt}\pgfsys@curveto{2.29327pt}{1.1381pt}{2.73714pt}{0.58272pt}{3.20093pt}{0.0pt}\pgfsys@curveto{3.6647pt}{-0.5827pt}{4.10857pt}{-1.1381pt}{4.62357pt}{-1.1381pt}\pgfsys@curveto{5.13855pt}{-1.1381pt}{5.58241pt}{-0.58272pt}{6.0462pt}{0.0pt}\pgfsys@curveto{6.50998pt}{0.5827pt}{6.95384pt}{1.1381pt}{7.46884pt}{1.1381pt}\pgfsys@curveto{7.98383pt}{1.1381pt}{8.42769pt}{0.58272pt}{8.89148pt}{0.0pt}\pgfsys@curveto{9.35526pt}{-0.5827pt}{9.79912pt}{-1.1381pt}{10.31412pt}{-1.1381pt}\pgfsys@lineto{10.31413pt}{0.0pt}\pgfsys@lineto{16.61183pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.61183pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\;\;{\bf p}_{emp}+\frac{1}{N}\Big{(}\delta_{S_{i}-1}+\delta_{S_{j}+1}-\delta_{S_{i}}-\delta_{S_{j}}\Big{)}. (5.10)

To write down the evolution equation satisfied by 𝐩emp{\bf p}_{emp}, we regroup the agents with the same number of dollars (i.e. we project the dynamics on a subspace).

Proposition 5.1

The empirical measure 𝐩emp(t){\bf p}_{emp}(t) (5.9) satisfies:

d𝐩emp(t)=1Nk=1,l=0+(δk1+δl+1δkδl)dNt(k,l)\mathrm{d}{\bf p}_{emp}(t)=\frac{1}{N}\sum_{k=1,l=0}^{+\infty}\Big{(}\delta_{k-1}+\delta_{l+1}-\delta_{k}-\delta_{l}\Big{)}\mathrm{d}\mathrm{N}_{t}^{(k,l)} (5.11)

where Nt(k,l)\mathrm{N}_{t}^{(k,l)} independent Poisson clock with intensity:

λk,l=Npemp,k(Npemp,l𝟙{k=l})λkN\lambda_{k,l}=N\cdot p_{emp,k}\cdot(N\cdot p_{emp,l}-\mathbbm{1}_{\{k=l\}})\cdot\frac{\lambda}{k\cdot N} (5.12)

where pemp,kp_{emp,k} is the kk-th coordinate of 𝐩emp{\bf p}_{emp}.

Proof.

Following the jump process given in (5.10), the empirical measure satisfies:

d𝐩emp(t)=1Ni,j=1,ijN(δSi1+δSj+1δSiδSj)dNt(i,j)\mathrm{d}{\bf p}_{emp}(t)=\frac{1}{N}\sum_{i,j=1,i\neq j}^{N}\Big{(}\delta_{S_{i}-1}+\delta_{S_{j}+1}-\delta_{S_{i}}-\delta_{S_{j}}\Big{)}\mathrm{d}\mathrm{N}_{t}^{(i,j)} (5.13)

Introducing Nt(k,l)\mathrm{N}_{t}^{(k,l)} the Poisson process regrouping all the clocks corresponding to a giver with kk dollars giving to a receiver with ll dollars:

Nt(k,l)={ij|Si=k,Sj=l}Nt(i,j),\mathrm{N}_{t}^{(k,l)}=\sum_{\{i\neq j\,|\,S_{i}=k,S_{j}=l\}}\mathrm{N}_{t}^{(i,j)}, (5.14)

In this sum, each clock Nt(i,j)\mathrm{N}_{t}^{(i,j)} has the same intensity λ/(SiN)=λ/(kN)\lambda/(S_{i}\cdot N)=\lambda/(k\cdot N). Moreover, counting the number of clocks involved in the sum (5.14) leads to (5.12). The indicator 𝟙{k=l}\mathbbm{1}_{\{k=l\}} is here to remove the self-giving clocks Nt(i,i)\mathrm{N}_{t}^{(i,i)}: when an agent gives to itself, nothing happens. \square

Corollary 5.2

For any test function φ\varphi, the empirical measure 𝐩emp(t){\bf p}_{emp}(t) (5.9) satisfies:

d𝔼[𝐩emp(t),φ]=λ𝔼[Qrich[𝐩emp(t)],φ]dtλN𝔼[R[𝐩emp(t)],φ]dt\mathrm{d}\mathbb{E}[\langle{\bf p}_{emp}(t),\varphi\rangle]=\lambda\mathbb{E}[\langle Q_{rich}[{\bf p}_{emp}(t)],\varphi\rangle]\mathrm{d}t\;\;-\;\;\frac{\lambda}{N}\mathbb{E}[\langle R[{\bf p}_{emp}(t)],\varphi\rangle]\mathrm{d}t (5.15)

where QrichQ_{rich} is the operator defined in (5.7) and RR defined by:

R[𝐩]n:=pn+1n+1+pn1n1𝟙{n2}2npn𝟙{n1}.R[{\bf p}]_{n}:=\frac{p_{n+1}}{n+1}+\frac{p_{n-1}}{n-1}\mathbbm{1}_{\{n\geq 2\}}-\frac{2}{n}p_{n}\mathbbm{1}_{\{n\geq 1\}}. (5.16)
Proof.

From the proposition 5.1, we find:

d𝔼[𝐩emp(t),φ]\displaystyle\mathrm{d}\mathbb{E}[\langle{\bf p}_{emp}(t),\varphi\rangle] =\displaystyle= 𝔼[k=1,l=0+(φ(k1)+φ(l+1)φ(k)φ(l))pemp,kpemp,lλk]dt\displaystyle\mathbb{E}\left[\sum_{k=1,l=0}^{+\infty}\Big{(}\varphi(k-1)+\varphi(l+1)-\varphi(k)-\varphi(l)\Big{)}p_{emp,k}\cdot p_{emp,l}\cdot\frac{\lambda}{k}\right]\mathrm{d}t
1N𝔼[k=1+(φ(k1)+φ(k+1)2φ(k))pemp,kλk]dt\displaystyle\quad-\frac{1}{N}\mathbb{E}\left[\sum_{k=1}^{+\infty}\Big{(}\varphi(k-1)+\varphi(k+1)-2\varphi(k)\Big{)}p_{emp,k}\cdot\frac{\lambda}{k}\right]\mathrm{d}t
=\displaystyle= λ𝔼[k=1+(φ(k1)φ(k))pemp,kk]dt\displaystyle\lambda\mathbb{E}\left[\sum_{k=1}^{+\infty}\Big{(}\varphi(k-1)-\varphi(k)\Big{)}\frac{p_{emp,k}}{k}\right]\mathrm{d}t
+λ𝔼[l=0+(φ(l+1)φ(l))w¯[𝐩emp]pemp,l]dt\displaystyle\quad+\lambda\mathbb{E}\left[\sum_{l=0}^{+\infty}\Big{(}\varphi(l+1)-\varphi(l)\Big{)}\overline{w}[{\bf p}_{emp}]\cdot p_{emp,l}\right]\mathrm{d}t
λN𝔼[k=1+(φ(k1)+φ(k+1)2φ(k))pemp,k1k]dt\displaystyle\quad-\frac{\lambda}{N}\mathbb{E}\left[\sum_{k=1}^{+\infty}\Big{(}\varphi(k-1)+\varphi(k+1)-2\varphi(k)\Big{)}p_{emp,k}\cdot\frac{1}{k}\right]\mathrm{d}t

where w¯[𝐩emp]\overline{w}[{\bf p}_{emp}] is defined in (5.5). We recognize the weak formulation of QrichQ_{rich} (5.8) leading to (5.15). \square

The operator RR (5.16) corresponds to the bias in the evolution of the empirical measure 𝐩emp(t){\bf p}_{emp}(t) compared to the evolution of 𝐩(t){\bf p}(t) solution to the limit equation (5.6). This bias vanishes as λ/N\lambda/N goes to zero when the number of agents NN becomes large. The other source of discrepancy between 𝐩emp(t){\bf p}_{emp}(t) and 𝐩(t){\bf p}(t) is the variance of 𝐩emp(t){\bf p}_{emp}(t) (as it is a stochastic measure). Let’s review an elementary result on compensated Poisson process.

Remark. Denote Z(t)Z(t) a compound jump process and M(t)M(t) its compensated version:

dZ(t)=Y(t)dNt,M(t)=Z(t)0tμ(s)λ(s)ds\mathrm{d}Z(t)=Y(t)\,\mathrm{d}\mathrm{N}_{t}\quad,\quad M(t)=Z(t)-\int_{0}^{t}\mu(s)\lambda(s)\,\mathrm{d}s (5.17)

where Y(t)Y(t) denotes the (independent) jumps and Nt\mathrm{N}_{t} Poisson process with intensity λ(t)\lambda(t) and μ(t)=𝔼[Y(t)]\mu(t)=\mathbb{E}[Y(t)]. The Ito’s formula is given by:

d𝔼[φ(M(t))]=𝔼[φ(M(t)+Y(t))φ(M(t)]λ(t)dt𝔼[φ(M(t))μ(t)λ(t)]dt.\mathrm{d}\mathbb{E}[\varphi(M(t))]=\mathbb{E}\Big{[}\varphi\Big{(}M(t-)+Y(t-)\Big{)}-\varphi(M(t-)\Big{]}\lambda(t)\mathrm{d}t\;-\;\mathbb{E}[\varphi^{\prime}(M(t))\mu(t)\lambda(t)]\,\mathrm{d}t.

In particular, for φ(x)=x2\varphi(x)=x^{2}, we obtain:

d𝔼[M2(t)]\displaystyle\mathrm{d}\mathbb{E}[M^{2}(t)] =\displaystyle= 𝔼[2M(t)Y(t)+Y2(t)]λ(t)dt𝔼[2M(t)μ(t)λ(t)]dt\displaystyle\mathbb{E}[2M(t-)Y(t-)+Y^{2}(t-)]\,\lambda(t)\mathrm{d}t-\mathbb{E}[2M(t)\mu(t)\lambda(t)]\,\mathrm{d}t (5.18)
=\displaystyle= 𝔼[Y2(t)]λ(t)dt.\displaystyle\mathbb{E}[Y^{2}(t)]\,\lambda(t)\mathrm{d}t.

Here, we assume that the jump Y(t)Y(t) is independent of the value Z(t)Z(t). To generalize the formula, one has to replace μ(t)=𝔼[Y(t)]\mu(t)=\mathbb{E}[Y(t)] by 𝔼[Y(t)|Z(t)]\mathbb{E}[Y(t)|Z(t)].

Motivated by this remark, we obtain the following result.

Proposition 5.3

Denote M(t)M(t) the compensated process of the empirical measure 𝐩emp(t){\bf p}_{emp}(t):

M(t)=𝐩emp(t)(𝐩emp(0)+λ0t(Qrich[𝐩emp(s)]+1NR[𝐩emp(s)])ds)M(t)={\bf p}_{emp}(t)-\left({\bf p}_{emp}(0)+\lambda\int_{0}^{t}\Big{(}Q_{rich}[{\bf p}_{emp}(s)]+\frac{1}{N}R[{\bf p}_{emp}(s)]\Big{)}\mathrm{d}s\right) (5.19)

then M(t)M(t) is a 1\ell^{1}-value martingale and satisfies:

𝔼[M(t)1]4λNt.\mathbb{E}[\|M(t)\|_{\ell^{1}}]\leq\sqrt{\frac{4\lambda}{N}}\,t. (5.20)
Proof.

The key observation is that the jump (5.10) for the empirical measure are of order 𝒪(1/N)\mathcal{O}(1/N). Indeed:

E[1N(δk1+δl+1δkδl)12]4N2.E\left[\Big{\|}\frac{1}{N}(\delta_{k-1}+\delta_{l+1}-\delta_{k}-\delta_{l})\Big{\|}_{\ell^{1}}^{2}\right]\leq\frac{4}{N^{2}}. (5.21)

Applying the formula (5.18) we obtain::

d𝔼[M(t)12]k=1,l=0+𝔼[4N2Npemp,kNpemp,l]λkNdt4λNdt.\mathrm{d}\mathbb{E}[\|M(t)\|_{\ell^{1}}^{2}]\leq\sum_{k=1,l=0}^{+\infty}\mathbb{E}\left[\frac{4}{N^{2}}\,\cdot\,Np_{emp,k}\cdot Np_{emp,l}\right]\frac{\lambda}{k\cdot N}\mathrm{d}t\;\leq\;\frac{4\lambda}{N}\mathrm{d}t. (5.22)

Integrating in time gives (5.20). \square

We are now ready to prove the propagation of chaos for the rich-biased dynamics by showing that the empirical measure 𝐩emp(t){\bf p}_{emp}(t) converges to 𝐩(t){\bf p}(t) as N+N\to+\infty. The key

Lemma 5.4

The operator QrichQ_{rich} (5.7) is globally Lipschitz on 1()𝒫()\ell^{1}(\mathbb{N})\cap\mathcal{P}(\mathbb{N}) and RR is an bounded on 1()\ell^{1}(\mathbb{N}).

Qrich[𝐩]Qrich[𝐪]1\displaystyle\|Q_{rich}[{\bf p}]-Q_{rich}[{\bf q}]\|_{\ell^{1}} \displaystyle\leq 4𝐩𝐪1for any 𝐩,𝐪1()𝒫()\displaystyle 4\|{\bf p}-{\bf q}\|_{\ell^{1}}\qquad\text{for any }{\bf p},{\bf q}\in\ell^{1}(\mathbb{N})\cap\mathcal{P}(\mathbb{N}) (5.23)
R[𝐩]1\displaystyle\|R[{\bf p}]\|_{\ell^{1}} \displaystyle\leq 4𝐩1for any 𝐩1()\displaystyle 4\|{\bf p}\|_{\ell^{1}}\qquad\qquad\text{for any }{\bf p}\in\ell^{1}(\mathbb{N}) (5.24)
Proof.

Since 𝐩1()𝒫(){\bf p}\in\ell^{1}(\mathbb{N})\cap\mathcal{P}(\mathbb{N}), the rate of receiving w[𝐩]w[{\bf p}] (5.3) satisfies 0w[𝐩]10\leq w[{\bf p}]\leq 1. Thus,

|Qrich[𝐩]nQrich[𝐪]n||pn+1qn+1|+|pn1qn1|+2|pnqn|.|Q_{rich}[{\bf p}]_{n}-Q_{rich}[{\bf q}]_{n}|\leq|p_{n+1}-q_{n+1}|+|p_{n-1}-q_{n-1}|+2|p_{n}-q_{n}|.

Summing in nn gives the result. We proceed similarly for the operator RR. \square

Theorem 4

Consider 𝐩(t){\bf p}(t) solution to the limit equation (5.6) and 𝐩emp(t){\bf p}_{emp}(t) empirical measure (5.9). Then:

𝔼[𝐩emp(t)𝐩(t)1]𝒪(te4λtN),\mathbb{E}[\|{\bf p}_{emp}(t)-{\bf p}(t)\|_{\ell^{1}}]\leq\mathcal{O}\left(\frac{t\mathrm{e}^{4\lambda t}}{\sqrt{N}}\right), (5.25)

in particular 𝐩emp(t)N+𝐩(t){\bf p}_{emp}(t)\stackrel{{\scriptstyle N\to+\infty}}{{\rightharpoonup}}{\bf p}(t) for any t0t\geq 0.

Proof.

First we write down the integral form of the equation satisfied by both 𝐩(t){\bf p}(t) and 𝐩emp(t){\bf p}_{emp}(t):

𝐩(t)\displaystyle{\bf p}(t) =\displaystyle= 𝐩0+0tQrich[𝐩(s)]ds\displaystyle{\bf p}_{0}+\int_{0}^{t}Q_{rich}[{\bf p}(s)]\,\mathrm{d}s
𝐩emp(t)\displaystyle{\bf p}_{emp}(t) =\displaystyle= 𝐩0+0tQrich[𝐩emp(s)]ds+1N0tR[𝐩emp(s)]ds+M(t)\displaystyle{\bf p}_{0}+\int_{0}^{t}Q_{rich}[{\bf p}_{emp}(s)]\,\mathrm{d}s+\frac{1}{N}\int_{0}^{t}R[{\bf p}_{emp}(s)]\,\mathrm{d}s+M(t)

Combining the two equations give:

𝐩emp(t)𝐩(t)1\displaystyle\|{\bf p}_{emp}(t)-{\bf p}(t)\|_{\ell^{1}} \displaystyle\leq λ0tQrich[𝐩emp(s)]Qrich[𝐩(s)]1ds\displaystyle\lambda\int_{0}^{t}\|Q_{rich}[{\bf p}_{emp}(s)]-Q_{rich}[{\bf p}(s)]\|_{\ell^{1}}\,\mathrm{d}s
+λN0tR[𝐩emp(s)]1ds+M(t)1\displaystyle\quad+\frac{\lambda}{N}\int_{0}^{t}\|R[{\bf p}_{emp}(s)]\|_{\ell^{1}}\,\mathrm{d}s+\|M(t)\|_{\ell^{1}}
\displaystyle\leq 4λ0t𝐩emp(s)𝐩(s)1ds+λ4tN+M(t)1\displaystyle 4\lambda\int_{0}^{t}\|{\bf p}_{emp}(s)-{\bf p}(s)\|_{\ell^{1}}\,\mathrm{d}s+\frac{\lambda 4t}{N}+\|M(t)\|_{\ell^{1}}

using lemma 5.4. Denoting ϕ(t)=𝔼[𝐩emp(t)𝐩(t)1]\phi(t)=\mathbb{E}[\|{\bf p}_{emp}(t)-{\bf p}(t)\|_{\ell^{1}}], we deduce from the bound (5.20) of M(t)M(t):

ϕ(t)4λ0tϕ(s)ds+λ4tN+4λNt.\phi(t)\leq 4\lambda\int_{0}^{t}\phi(s)\,\mathrm{d}s+\frac{\lambda 4t}{N}+\sqrt{\frac{4\lambda}{N}}t.

Applying Gronwall’s lemma leads to:

ϕ(t)(λ4tN+4λNt)e4λt\phi(t)\leq\left(\frac{\lambda 4t}{N}+\sqrt{\frac{4\lambda}{N}}t\right)\mathrm{e}^{4\lambda t}

leading to the result. \square

Remark. The martingale-based technique, developed in [36] and employed here for justifying the propagation of chaos, is remarkable since it does not require us to study the NN-particle process (S1,,SN)(S_{1},\ldots,S_{N}) but solely its generator. One drawback is that this method might not work if the generator QQ of the limit process is unbounded, which is the case for the generator QpoorQ_{poor} of the (limit) poor-biased dynamics (4.5).

5.3 Dispersive wave leading to vanishing wealth

As illustrated in the introduction (figure 2), the rich-biased dynamics tend to accentuate inequality, i.e. the Gini index G(t)G(t) was approaching 11 (its maximum value) for the agent-based model (1.4) (5.1). We would like to investigate numerically the behavior of the solution to the rich-biased dynamics using the limit equation (5.6) and the distribution 𝐩(t)=(p0(t),p1(t),){\bf p}(t)=(p_{0}(t),p_{1}(t),\ldots).

Refer to caption
Figure 8: Evolution of the wealth distribution 𝐩(t){\bf p}(t) for the rich-biased dynamics (5.6). The distribution spreads in two parts: a large proportion starts to concentrate at zero (“poor distribution”) and while the other part form a dispersive traveling wave. Parameters: Δt=5103\Delta t=5\cdot 10^{-3}, 𝐩(t)(p0(t),p1(t),,p1,000(t)){\bf p}(t)\approx(p_{0}(t),p_{1}(t),\dots,p_{1,000}(t)). A standard Runge-Kutta of order 44 has been used to discretize the system.
Refer to caption
Figure 9: Left: Estimation of the center c(t)c(t) and standard deviation σ(t)\sigma(t) of the dispersive wave along with their parametric (power-law) estimation (5.27). Right: Comparison of the distribution 𝐩(t){\bf p}(t) (see figure 8) with the dispersive wave using ϕ\phi the standard normal distribution.

In figure 8, we plot the evolution of the distribution 𝐩(t){\bf p}(t) starting from a Dirac distribution with mean μ=5\mu=5 (i.e. p5=1p_{5}=1 and pi=0p_{i}=0 for i5i\neq 5). We observe that the distribution spreads in two parts: the bulk of the distribution moves toward zero whereas a smaller proportion is moving to the right. One can identify the two pieces as the “poor” and the “rich”. Thus, the dynamics could be interpreted as the poor getting poorer and the rich getting richer. Notice that the proportion of poor is increasing (e.g. p0(t)p_{0}(t) is increasing) whereas the “rich” distribution resembles a dispersive traveling wave. Since both the total mass and the total amount of dollar are preserved (i.e. nnpn(t)=μ\sum_{n}n\cdot p_{n}(t)=\mu for any tt), the dispersive traveling wave contains the bulk of the money but it is also vanishing in time.

To investigate more carefully the dispersive wave, we try to fit numerically its profile. After numerically examination, we choose to approximate by a Gaussian distribution. Meanwhile we approximate the “poor” distribution by a Dirac centered at zero δ0\delta_{0}. Thus, we approximate the distribution 𝐩(t){\bf p}(t) by the following Ansatz:

pn(t)(1r(t))δ0+r(t)1σ(t)ϕ(nc(t)σ(t)),p_{n}(t)\;\approx\;(1-r(t))\cdot\delta_{0}\quad+\quad r(t)\cdot\frac{1}{\sigma(t)}\phi\left(\frac{n-c(t)}{\sigma(t)}\right), (5.26)

where ϕ\phi is the standard normal distribution (i.e. ϕ(x)=ex2/2/2π\phi(x)=\mathrm{e}^{-x^{2}/2}/\sqrt{2\pi}), c(t)c(t) is the center of the profile, σ(t)\sigma(t) its standard deviation and r(t)r(t) the proportion of rich. The speed of the wave c(t)c(t) and its standard deviation σ(t)\sigma(t) are estimated numerically and plotted in figure 9. Their growth is well-approximated by a power-law of the form:

c(t)=1.4748t.466,σ(t)=0.9261t.399.c(t)=1.4748\cdot t^{.466}\quad,\quad\sigma(t)=0.9261\cdot t^{.399}. (5.27)

Since the total amount of money is preserved, the proportion of rich r(t)r(t) can be easily deduced from c(t)c(t) since we must have μ=r(t)c(t)\mu=r(t)\cdot c(t). Such approximation leads to the fitting in figure 8-right (dotted-black curves). We notice that the proportion of rich in our Ansatz is vanishing:

r(t)=μc(t)t+0.r(t)=\frac{\mu}{c(t)}\stackrel{{\scriptstyle t\to+\infty}}{{\longrightarrow}}0. (5.28)

Thus, we make the conjecture that 𝐩(t){\bf p}(t) converges weakly toward δ0\delta_{0}, i.e. all the money will asymptotically disappear.

To further assess our conjecture, we measure the evolution of the Gini index for the distribution 𝐩(t){\bf p}(t):

G[𝐩]=12μi=0+j=0+|ij|pipjG[{\bf p}]=\frac{1}{2\mu}\sum_{i=0}^{+\infty}\sum_{j=0}^{+\infty}|i-j|p_{i}p_{j} (5.29)

with μ\mu the standard mean. Using the Ansatz (5.26), we can approximate the value of the Gini index given (see appendix 7.2):

G(t)1μc(t)+μσ(t)πc2(t).G(t)\approx 1-\frac{\mu}{c(t)}+\frac{\mu\cdot\sigma(t)}{\sqrt{\pi}\,c^{2}(t)}. (5.30)

We plot in figure 10-left the evolution of the Gini index G(t)G(t) along with its approximation (5.30). We observe a good agreement between the two curves. To examine closely the long time behavior of the curves, we plot the evolution of 1G(t)1-G(t) in log-scales (figure 10-right) over a longer time interval (up to t=105t=10^{5}). Both curves seem to converges similarly toward 0 (indicating that G(t)t+1G(t)\stackrel{{\scriptstyle t\to+\infty}}{{\longrightarrow}}1) with a slight overshoot for the Ansatz. This overshoot might be due to our approximation that the “poor distribution” of 𝐩(t){\bf p}(t) is concentrated exactly at zero (i.e. (1r(t))δ0(1-r(t))\delta_{0}). This approximation amplifies the inequality between the “poor” and “rich” parts of the distribution and hence increases slightly the Gini index. But overall the asymptotic behavior of the Gini index for 𝐩(t){\bf p}(t) matches with the formula (5.30) and thus strengthens our assumption that 𝐩(t){\bf p}(t) will converge (weakly) to a Dirac δ0\delta_{0}. However, further analytically studies are needed to derive the asymptotic behavior of 𝐩(t){\bf p}(t) directly from the rich-biased evolution equation (5.6).

Refer to caption
Figure 10: Left: Evolution of the corresponding Gini index (5.29) along with the analytical approximation using the dispersive wave profile (5.30). Right The Gini index converges to 11 due to the vanishing dispersive wave transporting all the wealth to infinity.

6 Conclusion

In this manuscript, we have investigated three related models for money exchange originated from econophysics. For the unbiased and poor biased dynamics, we rigorously proved the so-called propagation of chaos by virtue of a coupling technique, and we found an explicit rate of convergence of the limit dynamics for the poor biased model thanks to the Bakry-Emery approach. We have also introduced a more challenging dynamics referred to as the rich biased model, and a propagation of chaos result was established via a powerful martingale-based argument presented in [36]. In contrast to the two other dynamics, the rich-biased dynamics do not converge (strongly) to an equilibrium. Instead, we have found numerically evidence of the emergence of a (vanishing) dispersive wave. Such wave of extreme wealthy individual increases the inequality in the wealth distribution making the corresponding Gini index converging to its maximum 11.

Although we have shown numerically strong evidence of a dispersive wave, it is desirable to derive such emerging behavior directly from the evolution equation. One direction of future work would be to derive space continuous dynamics of evolution equations in order to investigate analytically the profile of traveling waves. However, space continuous description such as the uniform reshuffling model could lead to additional challenges. For instance, proving propagation of chaos using the martingale technique for the uniform reshuffling model was more involved [11].

From a modeling perspective, one should explore how selecting the "receiver" as well as the "giver" could impact the dynamics. Indeed, in the three dynamics studied in the manuscript, the re-distribution process (how the one-dollar is redistributed) is uniform among all the agent. It would be reasonable to have the redistribution of the dollar based on the individual wealth (e.g. poor individual being more likely to receive a dollar). The interplay between receiver and giver selection could lead to novel emerging behaviors.

7 Appendix

7.1 Proof of lemma 2.1

Proof.

Suppose first that the stochastic process (S1,,SN)(S_{1},\dots,S_{N}) satisfies the propagation of chaos. Let φ\varphi be a test function, Z(N)=ρemp(N),φZ^{(N)}=\langle\rho_{emp}^{(N)},\varphi\rangle a random variable and Z¯=𝔼[φ(S¯1)]\overline{Z}=\mathbb{E}[\varphi(\overline{S}_{1})] a constant. For notation convenience, we write [N]:={1,2,,N}[N]:=\{1,2,\ldots,N\}. To prove that Z(N)Z^{(N)} converges in law to Z¯\overline{Z}, it is sufficient to prove the convergence in L2L^{2}:

𝔼[|Z(N)Z¯]|2]\displaystyle\mathbb{E}[|Z^{(N)}-\overline{Z}]|^{2}] =\displaystyle= 𝔼[|1Ni=1Nφ(Si)Z¯|2]\displaystyle\mathbb{E}\left[\left|\frac{1}{N}\sum_{i=1}^{N}\varphi(S_{i})-\overline{Z}\right|^{2}\right]
=\displaystyle= 1N2i,j,ij𝔼[φ(Si)φ(Sj)]+1N2i=1N𝔼[φ2(Si)]\displaystyle\frac{1}{N^{2}}\sum_{i,j,i\neq j}\mathbb{E}[\varphi(S_{i})\varphi(S_{j})]+\frac{1}{N^{2}}\sum_{i=1}^{N}\mathbb{E}[\varphi^{2}(S_{i})]
2Ni=1N𝔼[φ(Si)]Z¯+Z¯2\displaystyle\qquad-\frac{2}{N}\sum_{i=1}^{N}\mathbb{E}[\varphi(S_{i})]\overline{Z}\;\;+\;\;\overline{Z}^{2}
N+\displaystyle\stackrel{{\scriptstyle N\to+\infty}}{{\longrightarrow}} Z¯2+02Z¯Z¯+Z¯2=0\displaystyle\overline{Z}^{2}+0-2\overline{Z}\cdot\overline{Z}+\overline{Z}^{2}=0

using (2.2) with k=2k=2 and k=1k=1.

Proving the converse is more challenging. Let’s take as test function φ(s1,,sk)=φ1(s1)φk(sk)\varphi(s_{1},\dots,s_{k})=\varphi_{1}(s_{1})\dots\varphi_{k}(s_{k}) and denote the random variable Zi=ρemp(N),φiZ_{i}=\langle\rho_{emp}^{(N)},\varphi_{i}\rangle for all ii. By assumption, ZiZ_{i} converges in law to the constant ρ¯1,φi=𝔼[φi(S¯1)]\langle\mkern 1.5mu\overline{\mkern-1.5mu\rho\mkern-1.5mu}\mkern 1.5mu_{1},\varphi_{i}\rangle=\mathbb{E}[\varphi_{i}(\overline{S}_{1})]. We deduce:

|𝔼[φ1(S1)φk(Sk)]𝔼[φ1(S¯1)φk(S¯k)]|\displaystyle\Big{|}\mathbb{E}[\varphi_{1}(S_{1})\cdots\varphi_{k}(S_{k})]-\mathbb{E}[\varphi_{1}(\overline{S}_{1})\cdots\varphi_{k}(\overline{S}_{k})]\Big{|} \displaystyle\leq |𝔼[φ1(S1)φk(Sk)]𝔼[Z1Zk]|\displaystyle\Big{|}\mathbb{E}[\varphi_{1}(S_{1})\cdots\varphi_{k}(S_{k})]-\mathbb{E}[Z_{1}\cdots Z_{k}]\Big{|}
+|𝔼[Z1Zk]𝔼[φ1(S¯1)φk(S¯k)]|\displaystyle\qquad+\Big{|}\mathbb{E}[Z_{1}\cdots Z_{k}]-\mathbb{E}[\varphi_{1}(\overline{S}_{1})\cdots\varphi_{k}(\overline{S}_{k})]\Big{|}
=:\displaystyle=: |A|+|B|.\displaystyle|A|\;+\;|B|.

Since each ZiZ_{i} converges to the constant 𝔼[φi(S¯i)]\mathbb{E}[\varphi_{i}(\overline{S}_{i})], all the product in BB convergence to zero using Slutsky’s theorem. For AA, we use the invariance by permutations:

A\displaystyle A =\displaystyle= 1N!σ𝒮N𝔼[φ1(Sσ(1))φk(Sσ(k))]1Nk(i1,,ik)[N]k𝔼[φ1(Si1)φk(Sik)]\displaystyle\frac{1}{N!}\sum_{\sigma\in\mathcal{S}_{N}}\mathbb{E}[\varphi_{1}(S_{\sigma(1)})\cdots\varphi_{k}(S_{\sigma(k)})]-\frac{1}{N^{k}}\!\!\!\!\sum_{(i_{1},\dots,i_{k})\in[N]^{k}}\!\!\!\!\!\!\!\mathbb{E}[\varphi_{1}(S_{i_{1}})\cdots\varphi_{k}(S_{i_{k}})]
=\displaystyle= (Nk)!N!(i1,,ik)𝒫N,k𝔼[φ1(Si1)φk(Sik)]1Nk(i1,,ik)[N]k𝔼[φ1(Si1)φk(Sik)],\displaystyle\frac{(N-k)!}{N!}\sum_{(i_{1},\dots,i_{k})\in\mathcal{P}_{N,k}}\!\!\!\!\!\!\!\!\mathbb{E}[\varphi_{1}(S_{i_{1}})\cdots\varphi_{k}(S_{i_{k}})]-\frac{1}{N^{k}}\sum_{(i_{1},\dots,i_{k})\in[N]^{k}}\!\!\!\!\!\!\!\!\mathbb{E}[\varphi_{1}(S_{i_{1}})\cdots\varphi_{k}(S_{i_{k}})],

where 𝒫N,k[N]k\mathcal{P}_{N,k}\subset[N]^{k} is the set of all the permutations of kk elements in [N][N] and in particular |𝒫N,k|=N!/(Nk)!|\mathcal{P}_{N,k}|=N!/(N-k)!. To conclude, we split the set [N]k[N]^{k} in two parts:

A\displaystyle A =\displaystyle= (11NkN!(Nk)!)(Nk)!N!(i1,,ik)𝒫N,k𝔼[φi1(Si1)φik(Sik)]\displaystyle\left(1-\frac{1}{N^{k}}\cdot\frac{N!}{(N-k)!}\right)\cdot\frac{(N-k)!}{N!}\sum_{(i_{1},\dots,i_{k})\in\mathcal{P}_{N,k}}\!\!\!\!\!\!\!\!\mathbb{E}[\varphi_{i_{1}}(S_{i_{1}})\cdots\varphi_{i_{k}}(S_{i_{k}})]
1Nk(i1,,ik)[N]k𝒫N,k𝔼[φ1(Si1)φk(Sik)]\displaystyle\quad-\frac{1}{N^{k}}\sum_{(i_{1},\dots,i_{k})\in[N]^{k}\setminus\mathcal{P}_{N,k}}\!\!\!\!\!\!\!\!\mathbb{E}[\varphi_{1}(S_{i_{1}})\cdots\varphi_{k}(S_{i_{k}})]

Thus, denoting CC an upper-bound for any 𝔼[φ1(Si1)φk(Sik)]\mathbb{E}[\varphi_{1}(S_{i_{1}})\cdots\varphi_{k}(S_{i_{k}})]:

|A|\displaystyle|A| \displaystyle\leq (1N!Nk(Nk)!)C+1Nk(Nk|𝒫N,k|)C\displaystyle\left(1-\frac{N!}{N^{k}(N-k)!}\right)C\;\;+\;\;\frac{1}{N^{k}}(N^{k}-|\mathcal{P}_{N,k}|)C
=\displaystyle= 2(1N!Nk(Nk)!)C=2(1(Nk+1)NN1NNN)CN+0.\displaystyle 2\left(1-\frac{N!}{N^{k}(N-k)!}\right)C=2\left(1-\frac{(N\!-\!k+1)}{N}\cdots\frac{N\!-\!1}{N}\cdot\frac{N}{N}\right)C\;\;\stackrel{{\scriptstyle N\to+\infty}}{{\longrightarrow}}0.

\square

7.2 Gini index dispersive wave

We estimate the Gini coefficient for a (continuous) distribution of the form:

ρ(x)=(1r)δ0(x)+r1σϕ(xcσ)\rho(x)=(1-r)\cdot\delta_{0}(x)+r\cdot\frac{1}{\sigma}\phi\left(\frac{x-c}{\sigma}\right) (7.4)

where ϕ\phi is the standard normal distribution, r,c,σr,c,\sigma some positive constant with r[0,1]r\in[0,1]. The law ρ\rho can be represented by a random variable:

X=(1Y)0+Y(c+σZ)X=(1-Y)\cdot 0+Y\cdot(c+\sigma Z) (7.5)

with YY random Bernoulli variable with probability rr (i.e. YB(r)Y\sim B(r)), ZZ a random variable with normal law (i.e. Z𝒩(0,1)Z\sim\mathcal{N}(0,1)), YY and ZZ being independent. To estimate the Gini index of ρ\rho, we take two independent random variables X1X_{1} and X2X_{2} with such law and estimate the expectation of their difference:

G\displaystyle G =\displaystyle= 12μ𝔼[|X1X2|]=12μ𝔼[|Y1(c+σZ1)Y2(c+σZ2)|]\displaystyle\frac{1}{2\mu}\mathbb{E}[|X_{1}-X_{2}|]=\frac{1}{2\mu}\mathbb{E}[|Y_{1}\cdot(c+\sigma Z_{1})\;-\;Y_{2}\cdot(c+\sigma Z_{2})|] (7.6)
=\displaystyle= 12μ𝔼[|c(Y1Y2)+σ(Y1Z1Y2Z2)|]\displaystyle\frac{1}{2\mu}\mathbb{E}[|c(Y_{1}-Y_{2})+\sigma(Y_{1}Z_{1}-Y_{2}Z_{2})|]

We then take the conditional expectation with respect to Y1Y_{1} and Y2Y_{2}:

2μG\displaystyle 2\mu G =\displaystyle= 0+𝔼[|c+σZ1|][Y1=1,Y2=0]\displaystyle 0+\mathbb{E}[|c+\sigma Z_{1}|]\mathbb{P}[Y_{1}=1,Y_{2}=0] (7.7)
+𝔼[|cσZ2|][Y1=0,Y2=1]\displaystyle\quad+\mathbb{E}[|-c-\sigma Z_{2}|]\mathbb{P}[Y_{1}=0,Y_{2}=1]
+𝔼[|σ(Z1Z2)|][Y1=1,Y2=1]\displaystyle\qquad+\mathbb{E}[|\sigma(Z_{1}-Z_{2})|]\mathbb{P}[Y_{1}=1,Y_{2}=1]
=\displaystyle= 2𝔼[|c+σZ1|]r(1r)+𝔼[|σ(Z1Z2)|]r2\displaystyle 2\cdot\mathbb{E}[|c+\sigma Z_{1}|]r(1-r)+\mathbb{E}[|\sigma(Z_{1}-Z_{2})|]r^{2}

For large cc, we made the approximation 𝔼[|c+σZ1|]𝔼[c+σZ1]=c\mathbb{E}[|c+\sigma Z_{1}|]\approx\mathbb{E}[c+\sigma Z_{1}]=c. Moreover, the expectation of the difference between two standard Gaussian random variables is known explicitly: 𝔼[|Z1Z2|]=2/π\mathbb{E}[|Z_{1}-Z_{2}|]=2/\sqrt{\pi}. We deduce:

2μG2cr(1r)+σ2πr2.2\mu G\approx 2c\cdot r(1-r)+\sigma\frac{2}{\sqrt{\pi}}r^{2}. (7.8)

Furthermore, if r=μ/cr=\mu/c, we obtain:

G1μc+σμπc2.G\approx 1-\frac{\mu}{c}+\frac{\sigma\mu}{\sqrt{\pi}c^{2}}. (7.9)

References

  • [1] David Aldous. Random walks on finite groups and rapidly mixing Markov chains. In Séminaire de Probabilités XVII 1981/82, pages 243–297. Springer, 1983.
  • [2] David Aldous and Persi Diaconis. Shuffling cards and stopping times. The American Mathematical Monthly, 93(5):333–348, 1986.
  • [3] Anton Arnold, Peter Markowich, Giuseppe Toscani, and Andreas Unterreiter. On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations. 2001. Publisher: Taylor & Francis.
  • [4] Dominique Bakry and Michel Émery. Diffusions hypercontractives. In Séminaire de Probabilités XIX 1983/84, pages 177–206. Springer, 1985.
  • [5] Alethea BT Barbaro and Pierre Degond. Phase transition and diffusion among socially interacting self-propelled agents. Discrete & Continuous Dynamical Systems-B, 19(5):1249, 2014. Publisher: American Institute of Mathematical Sciences.
  • [6] Patrick Billingsley. Convergence of probability measures. John Wiley & Sons, 2013.
  • [7] Bruce M. Boghosian, Adrian Devitt-Lee, Merek Johnson, Jie Li, Jeremy A. Marcq, and Hongyan Wang. Oligarchy as a phase transition: The effect of wealth-attained advantage in a Fokker–Planck description of asset exchange. Physica A: Statistical Mechanics and its Applications, 476:15–37, 2017. Publisher: Elsevier.
  • [8] Bruce M. Boghosian, Merek Johnson, and Jeremy A. Marcq. An H theorem for Boltzmann’s equation for the Yard-Sale Model of asset exchange. Journal of Statistical Physics, 161(6):1339–1350, 2015. Publisher: Springer.
  • [9] Haim Brezis. Functional analysis, Sobolev spaces and partial differential equations. Springer Science & Business Media, 2010.
  • [10] Mario Bukal, Ansgar Jüngel, and Daniel Matthes. Entropies for radially symmetric higher-order nonlinear diffusion equations. Communications in Mathematical Sciences, 9(2):353–382, 2011. Publisher: International Press of Boston.
  • [11] Fei Cao, Pierre-Emmanuel Jabin, and Sebastien Motsch. Entropy dissipation and propagation of chaos for the uniform reshuffling model. arXiv preprint arXiv:2104.01302, 2021.
  • [12] Eric Carlen, Robin Chatelin, Pierre Degond, and Bernt Wennberg. Kinetic hierarchy and propagation of chaos in biological swarm models. Physica D: Nonlinear Phenomena, 260:90–111, 2013. Publisher: Elsevier.
  • [13] Eric Carlen, Pierre Degond, and Bernt Wennberg. Kinetic limits for pair-interaction driven master equations and biological swarm models. Mathematical Models and Methods in Applied Sciences, 23(07):1339–1376, 2013. Publisher: World Scientific.
  • [14] Anirban Chakraborti and Bikas K. Chakrabarti. Statistical mechanics of money: how saving propensity affects its distribution. The European Physical Journal B-Condensed Matter and Complex Systems, 17(1):167–170, 2000.
  • [15] Anirban Chakraborti, Ioane Muni Toke, Marco Patriarca, and Frédéric Abergel. Econophysics review: I. Empirical facts. Quantitative Finance, 11(7):991–1012, 2011.
  • [16] Anirban Chakraborti, Ioane Muni Toke, Marco Patriarca, and Frédéric Abergel. Econophysics review: II. Agent-based models. Quantitative Finance, 11(7):1013–1041, 2011.
  • [17] Arnab Chatterjee, Bikas K. Chakrabarti, and S. S. Manna. Pareto law in a kinetic model of market with random saving propensity. Physica A: Statistical Mechanics and its Applications, 335(1-2):155–163, 2004.
  • [18] Arnab Chatterjee, Sudhakar Yarlagadda, and Bikas K. Chakrabarti. Econophysics of wealth distributions: Econophys-Kolkata I. Springer Science & Business Media, 2007.
  • [19] Thomas M. Cover. Elements of information theory. John Wiley & Sons, 1999.
  • [20] Imre Csiszár and Paul C. Shields. Information theory and statistics: A tutorial. Foundations and Trends® in Communications and Information Theory, 1(4):417–528, 2004.
  • [21] Ms Era Dabla-Norris, Ms Kalpana Kochhar, Mrs Nujin Suphaphiphat, Mr Frantisek Ricka, and Ms Evridiki Tsounta. Causes and consequences of income inequality: A global perspective. International Monetary Fund, 2015.
  • [22] Jakob De Haan and Jan-Egbert Sturm. Finance and income inequality: A review and new evidence. European Journal of Political Economy, 50:171–195, 2017. Publisher: Elsevier.
  • [23] Frank den Hollander. Probability theory: The coupling method. Lecture notes available online (http://websites. math. leidenuniv. nl/probability/lecturenotes/CouplingLectures. pdf), 2012.
  • [24] Persi Diaconis. The cutoff phenomenon in finite Markov chains. Proceedings of the National Academy of Sciences, 93(4):1659–1664, 1996.
  • [25] Adrian Dragulescu and Victor M. Yakovenko. Statistical mechanics of money. The European Physical Journal B-Condensed Matter and Complex Systems, 17(4):723–729, 2000.
  • [26] Benjamin T. Graham. Rate of relaxation for a mean-field zero-range process. The Annals of Applied Probability, 19(2):497–520, 2009.
  • [27] Els Heinsalu and Marco Patriarca. Kinetic models of immediate exchange. The European Physical Journal B, 87(8):170, 2014.
  • [28] Ansgar Jüngel. Entropy methods for diffusive partial differential equations. Springer, 2016.
  • [29] Ansgar Jüngel and Daniel Matthes. An algorithmic construction of entropies in higher-order nonlinear PDEs. Nonlinearity, 19(3):633, 2006. Publisher: IOP Publishing.
  • [30] Ryszard Kutner, Marcel Ausloos, Dariusz Grech, Tiziana Di Matteo, Christophe Schinckus, and H. Eugene Stanley. Econophysics and sociophysics: Their milestones & challenges. Physica A: Statistical Mechanics and its Applications, 516:240–253, 2019. Publisher: Elsevier.
  • [31] Nicolas Lanchier. Rigorous Proof of the Boltzmann–Gibbs Distribution of Money on Connected Graphs. Journal of Statistical Physics, 167(1):160–172, 2017.
  • [32] Nicolas Lanchier and Stephanie Reed. Rigorous results for the distribution of money on connected graphs. Journal of Statistical Physics, 171(4):727–743, 2018.
  • [33] Nicolas Lanchier and Stephanie Reed. Rigorous results for the distribution of money on connected graphs (models with debts). Journal of Statistical Physics, pages 1–23, 2018.
  • [34] Daniel Matthes. Entropy methods and related functional inequalities. Lecture Notes, Pavia, Italy. http://www-m8. ma. tum. de/personen/matthes/papers/lecpavia. pdf, 2007.
  • [35] Daniel Matthes, Ansgar Jüngel, and Giuseppe Toscani. Convex Sobolev inequalities derived from entropy dissipation. Archive for rational mechanics and analysis, 199(2):563–596, 2011. Publisher: Springer.
  • [36] Mathieu Merle and Justin Salez. Cutoff for the mean-field zero-range process. Annals of Probability, 47(5):3170–3201, 2019. Publisher: Institute of Mathematical Statistics.
  • [37] Sylvie Méléard and Sylvie Roelly-Coppoletta. A propagation of chaos result for a system of particles with moderate interaction. Stochastic processes and their applications, 26:317–332, 1987.
  • [38] Giovanni Naldi, Lorenzo Pareschi, and Giuseppe Toscani. Mathematical modeling of collective behavior in socio-economic and life sciences. Springer Science & Business Media, 2010.
  • [39] Karl Oelschlager. A martingale approach to the law of large numbers for weakly interacting stochastic processes. The Annals of Probability, 12(2):458–479, 1984.
  • [40] Bernt Oksendal. Stochastic differential equations: an introduction with applications. Springer Science & Business Media, 2013.
  • [41] Eder Johnson de Area Leão Pereira, Marcus Fernandes da Silva, and HB de B. Pereira. Econophysics: Past and present. Physica A: Statistical Mechanics and its Applications, 473:251–261, 2017. Publisher: Elsevier.
  • [42] Lawrence Perko. Differential equations and dynamical systems, volume 7. Springer Science & Business Media, 2013.
  • [43] Nicolas Privault. Stochastic finance: an introduction with market examples. Chapman and Hall/CRC, 2013.
  • [44] Hannes Risken. Fokker-planck equation. In The Fokker-Planck Equation, pages 63–95. Springer, 1996.
  • [45] Gheorghe Savoiu. Econophysics: Background and Applications in Economics, Finance, and Sociophysics. Academic Press, 2013.
  • [46] Steven E. Shreve. Stochastic calculus for finance II: Continuous-time models, volume 11. Springer Science & Business Media, 2004.
  • [47] Frank Spitzer. Interaction of Markov processes. In Random Walks, Brownian Motion, and Interacting Particle Systems, pages 66–110. Springer, 1991.
  • [48] Alain-Sol Sznitman. Topics in propagation of chaos. In Ecole d’été de probabilités de Saint-Flour XIX—1989, pages 165–251. Springer, 1991.