This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Derivation of Two-fluid Model Based on Onsager Principle

Jiajia Zhou South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China    Masao Doi Center of Soft Matter Physics and its Applications, Beihang University, Beijing 100191, China Wenzhou Institute, University of Chinese Academy of Science, Wenzhou, Zhejiang, 325000, China
Abstract

Using Onsager variational principle, we study the dynamic coupling between the stress and the composition in polymer solution. In the original derivation of the two-fluid model [Doi and Onuki, J. Phys. II France 2, 1631 (1992)], the polymer stress was introduced a priopri, therefore a constitutive equation is required to close the equations. Based on our previous study of viscoelastic fluids with homogeneous composition [Phys. Rev. Fluids 3, 084004 (2018)], we start with a dumbbell model for the polymer, and derive all dynamic equations using the Onsager variational principle.

1 Introduction

In the studies of flow for polymeric liquids Bird et al. (1987a, b), the inclusion of polymers introduces two new variables in the system: the polymer concentration and the polymer conformation, which are absent in flow of simple liquids. It was well recognized that time evolution of the microscopic state variable, i.e., the local conformation of the polymer chain, is critically important in governing the dynamics of the polymer solution Beris and Edwards (1994); Öttinger (2005). The total stress of a polymer solution is therefore has two contributions, one from the polymer and another from the solvent. A prescribed constitutive equation is required to relate the polymer stress to the local flow conditions. On the other hand, in the standard treatment for the flow of polymeric liquids Bird et al. (1987a), the polymer concentration is assumed to be uniform in space. Therefore, the polymer concentration appears as a parameter in the framework, and there is no time evolution equation for the polymer concentration.

Experimentally, it has been shown that the polymer concentration can become non-uniform when the velocity gradient is not uniform Wu et al. (1991); van Egmond et al. (1992); van Egmond and Fuller (1993). Theoretically, phenomenological two-fluid model has been developed Milner (1991); Doi (1990); Doi and Onuki (1992) which incorporates the coupling between polymer stress and polymer diffusion in the continuum framework. A simple Hookean dumbbell model is used for the polymer chain, and there are a few studies based on different strategies Bhave et al. (1991); Mavrantzas and Beris (1992); Öttinger (1992); Beris and Mavrantzas (1994).

In this manuscript, we shall re-derive the two-fluid model based on Onsager principle Doi (2013). In section 2, we present a general derivation including all viscous coupling in the dissipation. In section 3, we repeat Doi-Onuki’s original derivation from Ref. Doi and Onuki (1992) for reference. In section 4, we start with a dumbbell model for the polymer, and derive the time evolution equations using the Onsager variational principle. We conclude with a summary in section 5.

2 Onsager principle

Firstly proposed by Onsager in his celebrated papers on the reciprocal relation Onsager (1931a, b), Onsager principle is a variational principle to systematically derive the time-evolution equations for out-of-equilibrium systems. The first step is to identify a set of state variables, x=(x1,x2,)x=(x_{1},x_{2},\cdots), which characterizes the nonequilibrium state of the system under study. Then the time evolution of the system is determined by the condition that the following quadratic function of x˙=(x˙1,x˙2,)\dot{x}=(\dot{x}_{1},\dot{x}_{2},\cdots) to be minimized with respect to x˙\dot{x},

=iAxix˙i+12i,jζijx˙ix˙j.\mathscr{R}=\sum_{i}\frac{\partial A}{\partial x_{i}}\dot{x}_{i}+\frac{1}{2}\sum_{i,\,j}\zeta_{ij}\dot{x}_{i}\dot{x}_{j}\,. (1)

Here we use the dot for the partial time derivative, x˙=x/t\dot{x}=\partial x/\partial t.

Equation (1) defines the Rayleighian of the system. It consists of two parts: One is the time derivative of the free energy A˙(x)=i(A/xi)x˙i\dot{A}(x)=\sum_{i}(\partial A/\partial x_{i})\dot{x}_{i}. The other part is called the dissipation function Φ=12i,jζijx˙ix˙j\Phi=\frac{1}{2}\sum_{i,j}\zeta_{ij}\dot{x}_{i}\dot{x}_{j}, where 2Φ2\Phi represents the energy dissipated in the system per unit time when the state variables are changing at rate x˙\dot{x}. The coefficient ζij\zeta_{ij} is called friction coefficient, which is generally a function of state variables xix_{i}. The dissipation function must be a quadratic function of x˙i\dot{x}_{i}. The minimum condition of the Rayleighian /x˙i=0\partial\mathscr{R}/\partial\dot{x}_{i}=0 determines the time evolution of the state variables:

Axi=jζijx˙j.-\frac{\partial A}{\partial x_{i}}=\sum_{j}\zeta_{ij}\dot{x}_{j}\,. (2)

Equation (2) is an analogue to the force balance equation, where the left-hand side is the thermodynamic driving force and the right-hand side is the friction force. The reciprocal relation ζij=ζji\zeta_{ij}=\zeta_{ji} is required in this derivation.

Onsager principle is particularly useful for soft matter systems when inertia is not important. Many time evolution equations used in soft matter, such as Stokes equation, Fick’s diffusion equation, Nernst-Planck equation, Cahn-Hilliard equation, Ericksen-Leslie equation, etc., can be derived based on Onsager principle Doi (2013, 2012, 2021). In a previous work Zhou and Doi (2018), we have shown that the continuum mechanical equation for viscoelastic fluids can also be derived from the Onsager principle. Here we use the same framework to derive the time evolution equations of two-fluid model for polymer solutions, by taking into consideration of the coupling between stress and diffusion.

2.1 State variables

We first need to identify the state variables that characterize the non-equilibrium state of flowing polymer solutions. We choose the state variables as follows:

  • Volume fraction of the polymer ϕ\phi.

    The corresponding “velocity” variable is 𝐯(p)\mathbf{v}^{(p)}, the polymer velocity. The polymer volume fraction and the polymer velocity are related by the conservation law

    ϕ˙=(ϕ𝐯(p))=α(ϕvα(p)).\dot{\phi}=-\bm{\nabla}\cdot\Big{(}\phi\mathbf{v}^{(p)}\Big{)}=-\nabla_{\alpha}\Big{(}\phi{v}^{(p)}_{\alpha}\Big{)}. (3)

    Here ϕ˙=ϕ/t\dot{\phi}=\partial\phi/\partial t and α=/xα\nabla_{\alpha}=\partial/\partial x_{\alpha}.

  • Conformation tensor 𝒄\bm{\mathsfit{c}}.

    𝒄\bm{\mathsfit{c}} is a non-dimensional tensor to characterize the microscopic state of the polymer chain. The 𝒄\bm{\mathsfit{c}}-tensor is equal to unit tensor 𝑰\bm{\mathsfit{I}} when the polymer is at equilibrium, and deviates from 𝑰\bm{\mathsfit{I}} when the polymer is deformed. Late we will introduce the dumbbell model that presents the polymer chain as a dumbbell consisting of two beads at positions 𝐫1\mathbf{r}_{1} and 𝐫2\mathbf{r}_{2}. These two beads are connected by an elastic spring that has an end-to-end vector 𝐫=𝐫1𝐫2\mathbf{r}=\mathbf{r}_{1}-\mathbf{r}_{2} and a spring constant kk. The conformation of the dumbbell is then specified by the 𝒄\bm{\mathsfit{c}}-tensor defined by 𝒄=kkBT𝐫𝐫\bm{\mathsfit{c}}=\frac{k}{k_{B}T}\langle\mathbf{r}\mathbf{r}\rangle.

    The corresponding “velocity” variable is the material time derivative of 𝒄\bm{\mathsfit{c}} defined by

    Dt(p)𝒄=𝒄t+𝐯(p)𝒄,orDt(p)cαβ=cαβt+vγ(p)γcαβ.D_{t}^{(p)}\bm{\mathsfit{c}}=\frac{\partial\bm{\mathsfit{c}}}{\partial t}+\mathbf{v}^{(p)}\cdot\bm{\nabla}\bm{\mathsfit{c}},\quad{\rm or}\,\,\,D_{t}^{(p)}c_{\alpha\beta}=\frac{\partial c_{\alpha\beta}}{\partial t}+{v}^{(p)}_{\gamma}\nabla_{\gamma}c_{\alpha\beta}. (4)

    Notice that here we are using the polymer velocity 𝐯(p)\mathbf{v}^{(p)} to define the material time derivative, not the medium velocity 𝐯\mathbf{v} which will be introduced next.

  • In order to discuss the phenomena of diffusion or migration of polymers, we need to introduce another “velocity” variable representing the velocity of the surrounding. This can be represented by the solvent velocity 𝐯(s)\mathbf{v}^{(s)}, or the medium velocity (volume-average velocity) defined by

    𝐯=ϕ𝐯(p)+(1ϕ)𝐯(s).\mathbf{v}=\phi\mathbf{v}^{(p)}+(1-\phi)\mathbf{v}^{(s)}. (5)

    Here we will use 𝐯\mathbf{v} following rheology convention.

The local flow condition is characterized by the velocity gradient tensor 𝐯\bm{\nabla}\mathbf{v}

αvβ=vβxα,\nabla_{\alpha}v_{\beta}=\frac{\partial v_{\beta}}{\partial x_{\alpha}}, (6)

and the related rate-of-strain tensor

𝜸˙=(𝐯)t+𝐯=(vαxβ+vβxα).\dot{\bm{\mathsfit{\gamma}}}=(\bm{\nabla}\mathbf{v})^{t}+\bm{\nabla}\mathbf{v}=\left(\frac{\partial v_{\alpha}}{\partial x_{\beta}}+\frac{\partial v_{\beta}}{\partial x_{\alpha}}\right). (7)

2.2 Free energy

The general form of the free energy of polymer solution can be written as

A=d𝐫a(ϕ,𝒄).A=\int\mathrm{d}\mathbf{r}\,a(\phi,\bm{\mathsfit{c}}). (8)

where a(ϕ,𝒄)a(\phi,\bm{\mathsfit{c}}) is the free energy density. We assume that a(ϕ,𝒄)a(\phi,\bm{\mathsfit{c}}) has the following form

a(ϕ,𝒄)=f(ϕ)+ϕg(𝒄).a(\phi,\bm{\mathsfit{c}})=f(\phi)+\phi g(\bm{\mathsfit{c}}). (9)

The first term f(ϕ)f(\phi) is the free energy density of polymer solutions at equilibrium. This term includes the entropic term ϕlnϕ\phi\ln\phi, the interaction term of Flory-Huggins form χϕ(1ϕ)\chi\phi(1-\phi), and the interfacial energy which depends on the concentration gradient |ϕ|2|\nabla\phi|^{2}. The second term includes g(𝒄)g(\bm{\mathsfit{c}}) that represents the elastic energy of deformed polymer chains and is a function of the conformation tensor 𝒄\bm{\mathsfit{c}}. The second term is proportional to the polymer volume fraction ϕ\phi.

The change rate of the free energy is given by

A˙\displaystyle\dot{A} =\displaystyle= d𝐫[aϕϕ˙+acαβc˙αβ]\displaystyle\int\mathrm{d}\mathbf{r}\Bigg{[}\frac{\partial a}{\partial\phi}\dot{\phi}+\frac{\partial a}{\partial c_{\alpha\beta}}\dot{c}_{\alpha\beta}\Bigg{]} (10)
=\displaystyle= d𝐫[aϕγ(ϕvγ(p))+acαβc˙αβ]\displaystyle\int\mathrm{d}\mathbf{r}\Bigg{[}-\frac{\partial a}{\partial\phi}\nabla_{\gamma}\big{(}\phi{v}^{(p)}_{\gamma}\big{)}+\frac{\partial a}{\partial c_{\alpha\beta}}\dot{c}_{\alpha\beta}\Bigg{]}
=\displaystyle= d𝐫[ϕvγ(p)γ(aϕ)+acαβ(Dt(p)cαβvγ(p)γcαβ)]\displaystyle\int\mathrm{d}\mathbf{r}\Bigg{[}\phi{v}^{(p)}_{\gamma}\nabla_{\gamma}\big{(}\frac{\partial a}{\partial\phi}\big{)}+\frac{\partial a}{\partial c_{\alpha\beta}}\Big{(}D_{t}^{(p)}{c}_{\alpha\beta}-{v}^{(p)}_{\gamma}\nabla_{\gamma}c_{\alpha\beta}\Big{)}\Bigg{]}
=\displaystyle= d𝐫[vγ(p)γ(ϕaϕ)vγ(p)aϕγϕvγ(p)acαβγcαβ+acαβDt(p)cαβ]\displaystyle\int\mathrm{d}\mathbf{r}\Bigg{[}{v}^{(p)}_{\gamma}\nabla_{\gamma}\big{(}\phi\frac{\partial a}{\partial\phi}\big{)}-{v}^{(p)}_{\gamma}\frac{\partial a}{\partial\phi}\nabla_{\gamma}\phi-{v}^{(p)}_{\gamma}\frac{\partial a}{\partial c_{\alpha\beta}}\nabla_{\gamma}c_{\alpha\beta}+\frac{\partial a}{\partial c_{\alpha\beta}}D_{t}^{(p)}c_{\alpha\beta}\Bigg{]}
=\displaystyle= d𝐫[vγ(p)γ(ϕaϕ)vγ(p)γa+acαβDt(p)cαβ]\displaystyle\int\mathrm{d}\mathbf{r}\Bigg{[}{v}^{(p)}_{\gamma}\nabla_{\gamma}\big{(}\phi\frac{\partial a}{\partial\phi}\big{)}-{v}^{(p)}_{\gamma}\nabla_{\gamma}a+\frac{\partial a}{\partial c_{\alpha\beta}}D_{t}^{(p)}c_{\alpha\beta}\Bigg{]}
=\displaystyle= d𝐫[vγ(p)γ(ϕaϕa)+acαβDt(p)cαβ]\displaystyle\int\mathrm{d}\mathbf{r}\Bigg{[}{v}^{(p)}_{\gamma}\nabla_{\gamma}\big{(}\phi\frac{\partial a}{\partial\phi}-a\big{)}+\frac{\partial a}{\partial c_{\alpha\beta}}D_{t}^{(p)}c_{\alpha\beta}\Bigg{]}
=\displaystyle= d𝐫[vγ(p)γΠ+acαβDt(p)cαβ].\displaystyle\int\mathrm{d}\mathbf{r}\Bigg{[}{v}^{(p)}_{\gamma}\nabla_{\gamma}\Pi+\frac{\partial a}{\partial c_{\alpha\beta}}D_{t}^{(p)}c_{\alpha\beta}\Bigg{]}\,.

where Π\Pi stands for the osmotic pressure and is defined by

Πϕaϕa.\Pi\equiv\phi\frac{\partial a}{\partial\phi}-a. (11)

Notice that the elastic energy term g(𝒄)g(\bm{\mathsfit{c}}) has no contribution to the osmotic pressure

Π=ϕ(f+ϕg)ϕ(f+ϕg)=ϕfϕf.\Pi=\phi\frac{\partial(f+\phi g)}{\partial\phi}-(f+\phi g)=\phi\frac{\partial f}{\partial\phi}-f. (12)

2.3 Dissipation function

The dissipation function also includes several terms. The first one accounts the relative motion of the center-of-mass of the polymer with respect to the medium velocity

Φpv=12d𝐫ξ(𝐯(p)𝐯)2,\Phi_{pv}=\frac{1}{2}\int\mathrm{d}\mathbf{r}\,\xi(\mathbf{v}^{(p)}-\mathbf{v})^{2}, (13)

where the friction coefficient ξ=ξ(ϕ)\xi=\xi(\phi) is in general concentration-dependent. Notice that by use of Eq. (5), the integrand of Eq. (13) is written as ξ(1ϕ)2(𝐯(p)𝐯(s))2\xi(1-\phi)^{2}(\mathbf{v}^{(p)}-\mathbf{v}^{(s)})^{2}. Therefor Φpv\Phi_{pv} can be understood as the dissipation due to the relative motion between polymer and solvent.

The second term represents the coupling between Dt(p)𝒄D_{t}^{(p)}\bm{\mathsfit{c}} and 𝐯\bm{\nabla}\mathbf{v}. We write it in a very general form

Φcv=12d𝐫{ξαβμν(cc)(Dt(p)cαβ)(Dt(p)cμν)+2ξαβμν(cv)(Dt(p)cαβ)(μvν)+ξαβμν(vv)(βvα)(μvν)}\Phi_{cv}=\frac{1}{2}\int\mathrm{d}\mathbf{r}\left\{\xi^{(cc)}_{\alpha\beta\mu\nu}(D_{t}^{(p)}c_{\alpha\beta})(D_{t}^{(p)}c_{\mu\nu})+2\xi^{(cv)}_{\alpha\beta\mu\nu}(D_{t}^{(p)}c_{\alpha\beta})(\nabla_{\mu}v_{\nu})+\xi^{(vv)}_{\alpha\beta\mu\nu}(\nabla_{\beta}v_{\alpha})(\nabla_{\mu}v_{\nu})\right\} (14)

The first term is the inter-coupling of Dt(p)𝒄D_{t}^{(p)}\bm{\mathsfit{c}}, the second term is the cross-coupling between Dt(p)𝒄D_{t}^{(p)}\bm{\mathsfit{c}} and 𝐯\bm{\nabla}\mathbf{v}, and the last term is related to the solvent viscosity. Since Dt(p)𝒄D_{t}^{(p)}\bm{\mathsfit{c}} and 𝐯\bm{\nabla}\mathbf{v} are tensors of rank 2, the frictional coefficients ζ\zeta are tensors of rank 4. These coefficients must be positive-definite to ensure that the dissipation function is non-negative.

2.4 Time evolution equations

From the change rate of the free energy (10) and the dissipation functions (13) and (14), the Rayleighian can be written as

\displaystyle\mathscr{R} =\displaystyle= d𝐫[vα(p)αΠ+acαβDt(p)cαβ]+12d𝐫ξ(vα(p)vα)2\displaystyle\int\mathrm{d}\mathbf{r}\Bigg{[}{v}^{(p)}_{\alpha}\nabla_{\alpha}\Pi+\frac{\partial a}{\partial c_{\alpha\beta}}D_{t}^{(p)}{c}_{\alpha\beta}\Bigg{]}+\frac{1}{2}\int\mathrm{d}\mathbf{r}\xi({v}^{(p)}_{\alpha}-v_{\alpha})^{2} (15)
+12d𝐫{ξαβμν(cc)(Dt(p)cαβ)(Dt(p)cμν)+2ξαβμν(cv)(Dt(p)cαβ)(μvν)+ξαβμν(vv)(βvα)(μvν)}\displaystyle+\frac{1}{2}\int\mathrm{d}\mathbf{r}\left\{\xi^{(cc)}_{\alpha\beta\mu\nu}(D_{t}^{(p)}c_{\alpha\beta})(D_{t}^{(p)}c_{\mu\nu})+2\xi^{(cv)}_{\alpha\beta\mu\nu}(D_{t}^{(p)}c_{\alpha\beta})(\nabla_{\mu}v_{\nu})+\xi^{(vv)}_{\alpha\beta\mu\nu}(\nabla_{\beta}v_{\alpha})(\nabla_{\mu}v_{\nu})\right\}
d𝐫p(αvα),\displaystyle-\int\mathrm{d}\mathbf{r}\,p(\nabla_{\alpha}v_{\alpha}),

where the last term accounts for the incompressibility condition 𝐯=0\bm{\nabla}\cdot\mathbf{v}=0.

By the variational calculation with respect to the three “velocity” variables, we get the following set of equations

δδvα(p)=0\displaystyle\frac{\delta\mathscr{R}}{\delta{v}^{(p)}_{\alpha}}=0 \displaystyle\,\,\Rightarrow\,\, ξ(vα(p)vα)+αΠ=0\displaystyle\xi({v}^{(p)}_{\alpha}-v_{\alpha})+\nabla_{\alpha}\Pi=0 (16)
δδvα=0\displaystyle\frac{\delta\mathscr{R}}{\delta v_{\alpha}}=0 \displaystyle\,\,\Rightarrow\,\, ξ(vα(p)vα)β(ξμναβ(cv)(Dt(p)cμν))β(ξμναβ(vv)(μvν))+αp=0\displaystyle-\xi({v}^{(p)}_{\alpha}-v_{\alpha})-\nabla_{\beta}\Big{(}\xi^{(cv)}_{\mu\nu\alpha\beta}(D_{t}^{(p)}c_{\mu\nu})\Big{)}-\nabla_{\beta}\Big{(}\xi^{(vv)}_{\mu\nu\alpha\beta}(\nabla_{\mu}v_{\nu})\Big{)}+\nabla_{\alpha}p=0 (17)
δδDt(p)cαβ=0\displaystyle\frac{\delta\mathscr{R}}{\delta D_{t}^{(p)}c_{\alpha\beta}}=0 \displaystyle\,\,\Rightarrow\,\, ξαβμν(cc)(Dt(p)cμν)+ξαβμν(cv)(μvν)+acαβ=0\displaystyle\xi^{(cc)}_{\alpha\beta\mu\nu}(D_{t}^{(p)}c_{\mu\nu})+\xi^{(cv)}_{\alpha\beta\mu\nu}(\nabla_{\mu}v_{\nu})+\frac{\partial a}{\partial c_{\alpha\beta}}=0 (18)

Equation (16) and the conservation equation (3) lead to the time-evolution equation for ϕ\phi. Equations (16) and (17) give the following force balance equation

β(ξμναβ(cv)(Dt(p)cμν)ξμναβ(vv)(μvν)+(Π+p)δαβ)=0,\nabla_{\beta}\Big{(}-\xi^{(cv)}_{\mu\nu\alpha\beta}(D_{t}^{(p)}c_{\mu\nu})-\xi^{(vv)}_{\mu\nu\alpha\beta}(\nabla_{\mu}v_{\nu})+(\Pi+p)\delta_{\alpha\beta}\Big{)}=0\,, (19)

from which we can identify the stress tensor as the terms in the big brackets. Equation (18) gives the constitutive equation

Dt(p)cμν=(γvϵ)ξαβγϵ(cv)ξαβμν(cc)1acαβξαβμν(cc)1.D_{t}^{(p)}c_{\mu\nu}=-(\nabla_{\gamma}v_{\epsilon})\xi^{(cv)}_{\alpha\beta\gamma\epsilon}\xi^{(cc)^{-1}}_{\alpha\beta\mu\nu}-\frac{\partial a}{\partial c_{\alpha\beta}}\xi^{(cc)^{-1}}_{\alpha\beta\mu\nu}. (20)

These results are quite general, but their usefulness is limited because many phenomenological parameters are introduced in the model. It is not clear how to assign values to these parameters for a practical polymer model. In the following we shall study two existing theories from the view point of this general formulation.

3 Doi-Onuki derivation

3.1 Polymer solution

Doi and Onuki Doi and Onuki (1992), and Mavrantzas and Beris Mavrantzas and Beris (1992) proposed two-fluid model for polymer solutions. Their theories are not equivalent to each other, but are based on the same idea that the elastic stress created in the polymer will contribute to the motion of the polymer relative to the solvent if the stress is not uniform. Here we will discuss the two-fluid model focusing on the Doi-Onuki theory. They started with a free energy change rate of the form

F˙=F˙mix+F˙el.\dot{F}=\dot{F}_{\rm mix}+\dot{F}_{\rm el}. (21)

The first term F˙mix\dot{F}_{\rm mix} is the change rate of the mixing free energy

Fmix\displaystyle F_{\rm mix} =\displaystyle= d𝐫f(ϕ),\displaystyle\int\mathrm{d}\mathbf{r}f(\phi), (22)
F˙mix\displaystyle\dot{F}_{\rm mix} =\displaystyle= d𝐫fϕϕ˙=d𝐫fϕ(ϕ𝐯(p))=d𝐫𝐯(p)Π\displaystyle\int\mathrm{d}\mathbf{r}\frac{\partial f}{\partial\phi}\dot{\phi}=-\int\mathrm{d}\mathbf{r}\frac{\partial f}{\partial\phi}\bm{\nabla}\cdot(\phi\mathbf{v}^{(p)})=\int\mathrm{d}\mathbf{r}\mathbf{v}^{(p)}\cdot\bm{\nabla}\Pi (23)

with Π\Pi is the osmotic pressure given by Eq. (11). The second term F˙el\dot{F}_{\rm el} is the change rate of the elastic free energy (Eq. (2.26) of Ref. Doi and Onuki (1992)) and defines the stress exerted on the polymer 𝝈(p)\bm{\mathsfit{\sigma}}^{(p)} (called the “network stress” 𝝈(n)\bm{\sigma}^{(n)} in Ref. Doi and Onuki (1992)).

F˙el=d𝐫𝝈(p):(𝐯(p)).\dot{F}_{\rm el}=\int\mathrm{d}\mathbf{r}\bm{\mathsfit{\sigma}}^{(p)}:(\bm{\nabla}\mathbf{v}^{(p)}). (24)

Some comments on this term are in order:

  • This derivation is different to the standard derivation based on Onsager principle. We normally start with a free energy as a function of the state variables and then calculate the change rate by performing the time derivative.

  • Here the polymer stress 𝝈(p)\bm{\mathsfit{\sigma}}^{(p)} is put in by hand, therefore we still need a constitutive equation to relate the stress to the state variables.

  • Here the polymer velocity is used. In Ref. Doi and Onuki (1992), it was noted “since it is the deformation of the polymer which causes the change of the free energy.” It turns out it is very important to specify which velocity is coupled to the polymer stress.

The dissipation function is given by

Φ=12d𝐫ζ(𝐯(p)𝐯(s))2,\Phi=\frac{1}{2}\int\mathrm{d}\mathbf{r}\,\zeta(\mathbf{v}^{(p)}-\mathbf{v}^{(s)})^{2}, (25)

due to the relative motion of the polymer chain to the solvent.

The Rayleighian is

=d𝐫[12ζ(𝐯(p)𝐯(s))2+𝐯(p)Π+𝝈(p):𝐯(p)p(ϕ𝐯(p)+(1ϕ)𝐯(s))]\mathscr{R}=\int\mathrm{d}\mathbf{r}\left[\frac{1}{2}\zeta(\mathbf{v}^{(p)}-\mathbf{v}^{(s)})^{2}+\mathbf{v}^{(p)}\cdot\bm{\nabla}\Pi+\bm{\mathsfit{\sigma}}^{(p)}:\bm{\nabla}\mathbf{v}^{(p)}-p\bm{\nabla}\cdot(\phi\mathbf{v}^{(p)}+(1-\phi)\mathbf{v}^{(s)})\right] (26)

which gives

δδ𝐯(p)=0\displaystyle\frac{\delta\mathscr{R}}{\delta\mathbf{v}^{(p)}}=0 \displaystyle\quad\Rightarrow\quad ζ(𝐯(p)𝐯(s))𝝈(p)+Π+ϕp=0,\displaystyle\zeta(\mathbf{v}^{(p)}-\mathbf{v}^{(s)})-\bm{\nabla}\cdot\bm{\mathsfit{\sigma}}^{(p)}+\bm{\nabla}\Pi+\phi\bm{\nabla}p=0, (27)
δδ𝐯(s)=0\displaystyle\frac{\delta\mathscr{R}}{\delta\mathbf{v}^{(s)}}=0 \displaystyle\quad\Rightarrow\quad ζ(𝐯(s)𝐯(p))+(1ϕ)p=0.\displaystyle\zeta(\mathbf{v}^{(s)}-\mathbf{v}^{(p)})+(1-\phi)\bm{\nabla}p=0. (28)

These are Eqs. (2.28) and (2.29) in Ref. Doi and Onuki (1992). Here we have only two time-evolution equations. To complete the formulation, a constitutive equation needs to be specified. This is slightly different from the previous derivation, where the constitutive equation (20) is derived from the condition δ/δDt(p)cαβ=0\delta\mathscr{R}/\delta D_{t}^{(p)}c_{\alpha\beta}=0.

3.2 Polymer blends

For binary mixture of the polymer melt, Doi and Onuki suggested to use the “tube velocity” (or friction-average velocity, also see Tanaka’s works Tanaka (1997, 2000)) in Eq. (24)

𝐯T=1ζL+ζS(ζL𝐯L+ζS𝐯S)\mathbf{v}_{\rm T}=\frac{1}{\zeta_{\rm L}+\zeta_{\rm S}}(\zeta_{\rm L}\mathbf{v}_{\rm L}+\zeta_{\rm S}\mathbf{v}_{\rm S}) (29)

where L and S stand for the long and short polymers.

The Rayleighian is written as

\displaystyle\mathscr{R} =\displaystyle= d𝐫[12ζ(𝐯L𝐯S)2μ(ϕL𝐯L)+𝝈(n):(ζL+ζS)1(ζL𝐯L+ζS𝐯S)\displaystyle\int\mathrm{d}\mathbf{r}\Big{[}\frac{1}{2}\zeta(\mathbf{v}_{\rm L}-\mathbf{v}_{\rm S})^{2}-\mu\bm{\nabla}\cdot(\phi_{\rm L}\mathbf{v}_{\rm L})+\bm{\sigma}^{(n)}:\bm{\nabla}(\zeta_{\rm L}+\zeta_{\rm S})^{-1}(\zeta_{\rm L}\mathbf{v}_{\rm L}+\zeta_{\rm S}\mathbf{v}_{\rm S}) (30)
p(ϕL𝐯L+(1ϕL)𝐯S)]\displaystyle-p\bm{\nabla}\cdot(\phi_{\rm L}\mathbf{v}_{\rm L}+(1-\phi_{\rm L})\mathbf{v}_{\rm S})\Big{]}

which gives

δδ𝐯L=0\displaystyle\frac{\delta\mathscr{R}}{\delta\mathbf{v}_{\rm L}}=0 \displaystyle\quad\Rightarrow\quad ζ(𝐯L𝐯S)ζLζL+ζS𝝈(n)+ϕLμ+ϕLp=0,\displaystyle\zeta(\mathbf{v}_{\rm L}-\mathbf{v}_{\rm S})-\frac{\zeta_{\rm L}}{\zeta_{\rm L}+\zeta_{\rm S}}\bm{\nabla}\cdot\bm{\sigma}^{(n)}+\phi_{\rm L}\bm{\nabla}\mu+\phi_{\rm L}\bm{\nabla}p=0, (31)
δδ𝐯S=0\displaystyle\frac{\delta\mathscr{R}}{\delta\mathbf{v}_{\rm S}}=0 \displaystyle\quad\Rightarrow\quad ζ(𝐯S𝐯L)ζSζL+ζS𝝈(n)+(1ϕL)p=0.\displaystyle\zeta(\mathbf{v}_{\rm S}-\mathbf{v}_{\rm L})-\frac{\zeta_{\rm S}}{\zeta_{\rm L}+\zeta_{\rm S}}\bm{\nabla}\cdot\bm{\sigma}^{(n)}+(1-\phi_{\rm L})\bm{\nabla}p=0. (32)

These are Eqs. (4.3) and (4.4) of Ref. Doi and Onuki (1992).

4 Dumbbell model

A popular model of viscoelastic fluid is Oldroyd-B model, also known as the dumbbell model Bird et al. (1987a, b). It has been shown Beris and Edwards (1994) that this model can be derived from an energetic principle similar to the Onsager principle. In our previous work Zhou and Doi (2018) we derived a Rayleighian which gives the Oldroyd-B model, and showed that such formulation is useful to obtain analytical solutions for certain problems. Here we extend the framework to the two-fluid model, and derive a set of equations which accounts for the coupling of the flow and the diffusion.

A polymer chain is modeled as a dumbbell consisting of two beads connected by an elastic spring that has an end-to-end vector 𝐫=𝐫1𝐫2\mathbf{r}=\mathbf{r}_{1}-\mathbf{r}_{2}. The conformation of the dumbbell is specified by the 𝒄\bm{\mathsfit{c}}-tensor defined by 𝒄=kkBT𝐫𝐫\bm{\mathsfit{c}}=\frac{k}{k_{B}T}\langle\mathbf{r}\mathbf{r}\rangle.

4.1 Free energy

For dilute solutions, the free energy function is given by

a(ϕ,𝒄)\displaystyle a(\phi,\bm{\mathsfit{c}}) =\displaystyle= kBTvϕlnϕ+ϕg(𝒄),\displaystyle\frac{k_{B}T}{v}\phi\ln\phi+\phi g(\bm{\mathsfit{c}}), (33)
g(𝒄)\displaystyle g(\bm{\mathsfit{c}}) =\displaystyle= 12kBTv[Tr(𝒄)lndet(𝒄)],\displaystyle\frac{1}{2}\frac{k_{B}T}{v}\left[\mathrm{Tr}(\bm{\mathsfit{c}})-\ln\det(\bm{\mathsfit{c}})\right], (34)

where vv is the volume of one single dumbbell. The change rate of the free energy is given by Eq. (10)

A˙=d𝐫[vγ(p)γΠ+ϕgcαβDt(p)cαβ].\dot{A}=\int\mathrm{d}\mathbf{r}\Bigg{[}{v}^{(p)}_{\gamma}\nabla_{\gamma}\Pi+\phi\frac{\partial g}{\partial c_{\alpha\beta}}D_{t}^{(p)}c_{\alpha\beta}\Bigg{]}\,. (35)

The variation of A˙\dot{A} with respect to the velocity variables are

δA˙δ𝐯(p)\displaystyle\frac{\delta\dot{A}}{\delta\mathbf{v}^{(p)}} =\displaystyle= Π,\displaystyle\boldsymbol{\nabla}\Pi\,, (36)
δA˙δ𝐯(s)\displaystyle\frac{\delta\dot{A}}{\delta\mathbf{v}^{(s)}} =\displaystyle= 0,\displaystyle 0\,, (37)
δA˙δDt(p)𝒄\displaystyle\frac{\delta\dot{A}}{\delta D_{t}^{(p)}\bm{\mathsfit{c}}} =\displaystyle= ϕg𝒄=12kBTvϕ(𝑰𝒄1).\displaystyle\phi\frac{\partial g}{\partial\bm{\mathsfit{c}}}=\frac{1}{2}\frac{k_{B}T}{v}\phi(\bm{\mathsfit{I}}-\bm{\mathsfit{c}}^{-1})\,. (38)

4.2 Dissipation function

The dissipation function related to the 𝒄\bm{\mathsfit{c}}-tensor is given in Ref. Zhou and Doi (2018), with 𝒄˙\dot{\bm{\mathsfit{c}}} replaced by Dt(p)𝒄D_{t}^{(p)}\bm{\mathsfit{c}},

Φc=14kBTvd𝐫τϕTr[𝒄1(Dt(p)𝒄t𝜿𝒄𝒄𝜿t)(Dt(p)𝒄𝜿𝒄𝒄𝜿t)],\Phi_{c}=\frac{1}{4}\frac{k_{B}T}{v}\int\mathrm{d}\mathbf{r}\tau\phi{\rm Tr}\left[\bm{\mathsfit{c}}^{-1}\cdot(D_{t}^{(p)}\bm{\mathsfit{c}}^{t}-\bm{\mathsfit{\kappa}}\cdot\bm{\mathsfit{c}}-\bm{\mathsfit{c}}\cdot\bm{\mathsfit{\kappa}}^{t})\cdot(D_{t}^{(p)}\bm{\mathsfit{c}}-\bm{\mathsfit{\kappa}}\cdot\bm{\mathsfit{c}}-\bm{\mathsfit{c}}\cdot\bm{\mathsfit{\kappa}}^{t})\right]\,, (39)

where Tr{\rm Tr} denotes the trace operation.

Here comes the main question: Which velocity should we use in the velocity gradient 𝜿\bm{\mathsfit{\kappa}}? We have a few options here:

  • using the polymer velocity, 𝜿=𝜿(p)=(𝐯(p))t\bm{\mathsfit{\kappa}}=\bm{\mathsfit{\kappa}}^{(p)}=(\bm{\nabla}\mathbf{v}^{(p)})^{t}. This will give the same results of Doi-Onuki.

  • using the solvent velocity, 𝜿=𝜿(s)=(𝐯(s))t\bm{\mathsfit{\kappa}}=\bm{\mathsfit{\kappa}}^{(s)}=(\bm{\nabla}\mathbf{v}^{(s)})^{t}. This will lead to a different dynamics.

  • using a combination of the polymer and solvent velocities, 𝜿=(𝐕)t\bm{\mathsfit{\kappa}}=(\bm{\nabla}\mathbf{V})^{t}, with

    𝐕=α1𝐯(p)+α2𝐯(s),α1+α2=1.\mathbf{V}=\alpha_{1}\mathbf{v}^{(p)}+\alpha_{2}\mathbf{v}^{(s)},\quad\alpha_{1}+\alpha_{2}=1. (40)

    This includes a special case of volume-average velocity 𝐕=𝐯\mathbf{V}=\mathbf{v}, with α1=ϕ\alpha_{1}=\phi and α2=1ϕ\alpha_{2}=1-\phi.

We will continue the derivation using the combination velocity 𝐕\mathbf{V}. In general one should expect αi\alpha_{i} to be a function of the concentration ϕ\phi so it will be position-dependent.

𝜿=(𝐕)t=[(α1𝐯(p)+α2𝐯(s))]t.\bm{\mathsfit{\kappa}}=(\bm{\nabla}\mathbf{V})^{t}={\color[rgb]{0,0,0}\left[\bm{\nabla}(\alpha_{1}\mathbf{v}^{(p)}+\alpha_{2}\mathbf{v}^{(s)})\right]^{t}}. (41)

The total dissipation function is given by

Φ=Φc+12d𝐫ζ(𝐯(p)𝐯(s))2.\Phi=\Phi_{c}+\frac{1}{2}\int\mathrm{d}\mathbf{r}\zeta(\mathbf{v}^{(p)}-\mathbf{v}^{(s)})^{2}. (42)

The variation with respect to the dynamic variables are

δΦδ𝐯(p)\displaystyle\frac{\delta\Phi}{\delta\mathbf{v}^{(p)}} =\displaystyle= ζ(𝐯(p)𝐯(s))+[α1kBTvτϕ(Dt(p)𝒄(𝐕)t𝒄𝒄(𝐕))],\displaystyle\zeta(\mathbf{v}^{(p)}-\mathbf{v}^{(s)})+\bm{\nabla}\cdot\left[{\color[rgb]{0,0,0}\alpha_{1}}\frac{k_{B}T}{v}\tau\phi\big{(}D_{t}^{(p)}\bm{\mathsfit{c}}-(\bm{\nabla}\mathbf{V})^{t}\cdot\bm{\mathsfit{c}}-\bm{\mathsfit{c}}\cdot(\bm{\nabla}\mathbf{V})\big{)}\right]\,, (43)
δΦδ𝐯(s)\displaystyle\frac{\delta\Phi}{\delta\mathbf{v}^{(s)}} =\displaystyle= ζ(𝐯(s)𝐯(p))+[α2kBTvτϕ(Dt(p)𝒄(𝐕)t𝒄𝒄(𝐕))],\displaystyle\zeta(\mathbf{v}^{(s)}-\mathbf{v}^{(p)})+\bm{\nabla}\cdot\left[{\color[rgb]{0,0,0}\alpha_{2}}\frac{k_{B}T}{v}\tau\phi\big{(}D_{t}^{(p)}\bm{\mathsfit{c}}-(\bm{\nabla}\mathbf{V})^{t}\cdot\bm{\mathsfit{c}}-\bm{\mathsfit{c}}\cdot(\bm{\nabla}\mathbf{V})\big{)}\right]\,, (44)
δΦδDt(p)𝒄\displaystyle\frac{\delta\Phi}{\delta D_{t}^{(p)}\bm{\mathsfit{c}}} =\displaystyle= 12kBTvτϕ(Dt(p)𝒄(𝐕)t𝒄𝒄(𝐕))𝒄1.\displaystyle\frac{1}{2}\frac{k_{B}T}{v}\tau\phi\big{(}D_{t}^{(p)}\bm{\mathsfit{c}}-(\bm{\nabla}\mathbf{V})^{t}\cdot\bm{\mathsfit{c}}-\bm{\mathsfit{c}}\cdot(\bm{\nabla}\mathbf{V})\big{)}\cdot\bm{\mathsfit{c}}^{-1}\,. (45)

4.3 Time evolution equations

The Rayleighian is written as

=A˙+Φd𝐫p(ϕ𝐯(p)+(1ϕ)𝐯(s)).\mathscr{R}=\dot{A}+\Phi-\int\mathrm{d}\mathbf{r}p\boldsymbol{\nabla}\cdot(\phi\mathbf{v}^{(p)}+(1-\phi)\mathbf{v}^{(s)}). (46)

The variation of the Rayleighian with respect to Dt(p)𝒄D_{t}^{(p)}\bm{\mathsfit{c}} gives

Dt(p)𝒄(𝐕)t𝒄𝒄(𝐕)=1τ(𝒄𝑰).D_{t}^{(p)}\bm{\mathsfit{c}}-(\bm{\nabla}\mathbf{V})^{t}\cdot\bm{\mathsfit{c}}-\bm{\mathsfit{c}}\cdot(\bm{\nabla}\mathbf{V})=-\frac{1}{\tau}(\bm{\mathsfit{c}}-\bm{\mathsfit{I}}). (47)

This is the constitutive equation of the Oldroyd-B fluid model, with a small modification that the velocity gradient is given by 𝐕\mathbf{V}.

The variation with respect to 𝐯(p)\mathbf{v}^{(p)} gives

ζ(𝐯(p)𝐯(s))+[α1kBTvτϕ(Dt(p)𝒄(𝐕)t𝒄𝒄(𝐕))]+Π+ϕp=0.\zeta(\mathbf{v}^{(p)}-\mathbf{v}^{(s)})+\bm{\nabla}\cdot\left[{\color[rgb]{0,0,0}\alpha_{1}}\frac{k_{B}T}{v}\tau\phi\big{(}D_{t}^{(p)}\bm{\mathsfit{c}}-(\bm{\nabla}\mathbf{V})^{t}\cdot\bm{\mathsfit{c}}-\bm{\mathsfit{c}}\cdot(\bm{\nabla}\mathbf{V})\big{)}\right]+\bm{\nabla}\Pi+\phi\bm{\nabla}p=0. (48)

The variation with respect to 𝐯(s)\mathbf{v}^{(s)} gives

ζ(𝐯(s)𝐯(p))+[α2kBTvτϕ(Dt(p)𝒄(𝐕)t𝒄𝒄(𝐕))]+(1ϕ)p=0.\zeta(\mathbf{v}^{(s)}-\mathbf{v}^{(p)})+\bm{\nabla}\cdot\left[{\color[rgb]{0,0,0}\alpha_{2}}\frac{k_{B}T}{v}\tau\phi\big{(}D_{t}^{(p)}\bm{\mathsfit{c}}-(\bm{\nabla}\mathbf{V})^{t}\cdot\bm{\mathsfit{c}}-\bm{\mathsfit{c}}\cdot(\bm{\nabla}\mathbf{V})\big{)}\right]+(1-\phi)\bm{\nabla}p=0. (49)

Equations (48) and (49) give

[𝝈(p)(Π+p)𝑰]=0,\bm{\nabla}\cdot\left[\bm{\mathsfit{\sigma}}^{(p)}-(\Pi+p)\bm{\mathsfit{I}}\right]=0\,, (50)

where 𝝈(p)\bm{\mathsfit{\sigma}}^{(p)} is defined by

𝝈(p)=kBTvτϕ(Dt(p)𝒄(𝐕)t𝒄𝒄(𝐕))=kBTvϕ(𝒄𝑰).\bm{\mathsfit{\sigma}}^{(p)}=-\frac{k_{B}T}{v}\tau\phi\big{(}D_{t}^{(p)}\bm{\mathsfit{c}}-(\bm{\nabla}\mathbf{V})^{t}\cdot\bm{\mathsfit{c}}-\bm{\mathsfit{c}}\cdot(\bm{\nabla}\mathbf{V})\big{)}=\frac{k_{B}T}{v}\phi(\bm{\mathsfit{c}}-\bm{\mathsfit{I}}). (51)

Equation (50) indicates that the tensor 𝝈(p)(Π+p)𝑰\bm{\mathsfit{\sigma}}^{(p)}-(\Pi+p)\bm{\mathsfit{I}} is the total stress tensor and 𝝈(p)\bm{\mathsfit{\sigma}}^{(p)} is the polymer contribution to the stress tensor. This definition does not depend on the choice of αi\alpha_{i}. For homogeneous solution, the polymer number density is given by np=ϕ/vn_{p}=\phi/v, then Eq. (51) becomes the standard form 𝝈(p)=npkBT(𝒄𝑰)=G(𝒄𝑰)\bm{\mathsfit{\sigma}}^{(p)}=n_{p}k_{B}T(\bm{\mathsfit{c}}-\bm{\mathsfit{I}})=G(\bm{\mathsfit{c}}-\bm{\mathsfit{I}}) with the shear modulus G=npkBTG=n_{p}k_{B}T.

Using the expression (51), Eqs. (48) and (49) can then be written as

ζ(𝐯(p)𝐯(s))(α1𝝈(p))+Π+ϕp=0,\displaystyle\zeta(\mathbf{v}^{(p)}-\mathbf{v}^{(s)})-\bm{\nabla}\cdot({\color[rgb]{0,0,0}\alpha_{1}}\bm{\mathsfit{\sigma}}^{(p)})+\bm{\nabla}\Pi+\phi\bm{\nabla}p=0\,, (52)
ζ(𝐯(s)𝐯(p))(α2𝝈(p))+(1ϕ)p=0.\displaystyle\zeta(\mathbf{v}^{(s)}-\mathbf{v}^{(p)})-\bm{\nabla}\cdot({\color[rgb]{0,0,0}\alpha_{2}}\bm{\mathsfit{\sigma}}^{(p)})+(1-\phi)\bm{\nabla}p=0\,. (53)

With the setting α1=1\alpha_{1}=1 and α2=0\alpha_{2}=0, we recover the Doi-Onuki results for the polymer solutions (27) and (28). With the setting α1=ζL/(ζL+ζS)\alpha_{1}=\zeta_{\rm L}/(\zeta_{\rm L}+\zeta_{\rm S}) and α2=ζS/(ζL+ζS)\alpha_{2}=\zeta_{\rm S}/(\zeta_{\rm L}+\zeta_{\rm S}), we recover the Doi-Onuki results for the polymer blends (31) and (32).

Combining the above two equations, we can obtain

ζ(𝐯(p)𝐯(s))=(1ϕ)Π+(α1ϕ)𝝈(p)+(α1)𝝈(p),\zeta(\mathbf{v}^{(p)}-\mathbf{v}^{(s)})=-(1-\phi)\bm{\nabla}\Pi+{\color[rgb]{0,0,0}(\alpha_{1}-\phi)\bm{\nabla}\cdot\bm{\mathsfit{\sigma}}^{(p)}+(\bm{\nabla}\alpha_{1})\cdot\bm{\mathsfit{\sigma}}^{(p)}}, (54)

where the last term only appears if α1\alpha_{1} is position-dependent.

The above equation shows that the relative motion of the polymers with respect to the solvent has two origins: One is the gradient of the osmotic pressure Π\bm{\nabla}\Pi, which corresponds to the usual diffusion due to the concentration gradient. The other one is the gradient of the polymer contribution to the stress tensor 𝝈(p)\bm{\nabla}\cdot\bm{\mathsfit{\sigma}}^{(p)}. This is the essence of the two-fluid model: the polymer contribution to the stress tensor should induce the polymer diffusion, i.e., the stress and the diffusion are coupled. Using the conservation equation, we can see that the time-derivative of the volume fraction has contributions from 2Π\nabla^{2}\Pi and :𝝈(p)\bm{\nabla}\bm{\nabla}:\bm{\mathsfit{\sigma}}^{(p)}. These two terms are consistent with previous two-fluid models Beris and Mavrantzas (1994). Existing models have used αi\alpha_{i} that are independent of the position, therefore the last term in Eq. (54) vanishes.

The magnitude of the stress contribution to the diffusion depends on the choice of αi\alpha_{i}. For α1=1\alpha_{1}=1 and α2=0\alpha_{2}=0, the stress contribution is on the order of O(1ϕ){O}(1-\phi), the same order of the contribution from the osmotic pressure. This is the original Doi-Onuki result Doi and Onuki (1992). For α1=0\alpha_{1}=0 and α2=1\alpha_{2}=1, the stress contribution is reduced to order O(ϕ){O}(\phi), which is small in comparison to the osmotic pressure term. For α1=ϕ\alpha_{1}=\phi and α2=1ϕ\alpha_{2}=1-\phi, the stress contribution vanishes.

For homogeneous solutions, the polymer concentration is uniform in space, therefore the polymer velocity 𝐯(p)\mathbf{v}^{(p)} and the solvent velocity 𝐯(s)\mathbf{v}^{(s)} are the same, 𝐯(p)=𝐯(s)\mathbf{v}^{(p)}=\mathbf{v}^{(s)}. Different choices in the velocity gradient 𝜿\boldsymbol{\kappa} lead to the same time-evolution equations.

5 Conclusion

We have used Onsager variational principle to derive the time-evolution equations for polymer solutions, taking into consideration of the coupling between the stress and the composition. The strength of the current framework is that we start with a microscopic model for the polymer chains, then the constitutive equation is a natural outcome from the variational calculation. The exact form of the time-evolution equations will depend on the choice of dissipation function [see Eq. (40)], which then determines the strength of the stress-diffusion coupling. The choice of α1\alpha_{1} and α2\alpha_{2} in Eq. (40) should be based on the system considered. However, the derived stress tensor (51) is independent of this choice and is determined by the specific polymer model.

Acknowledgements.
This work was supported by National Key R&D Program of China (No. 2022YFE0103800) and the National Natural Science Foundation of China (No. 21774004). The KingFa Company is also acknowledged for funding.

References

  • Bird et al. (1987a) R. Byron Bird, Robert C. Armstrong,  and Ole Hassager, Dynamics of Polymeric Liquids Volume 1: Fluid Mechanics, 2nd ed. (John Wiley & Son, 1987).
  • Bird et al. (1987b) R. Byron Bird, Charles F. Curtiss, Robert C. Armstrong,  and Ole Hassager, Dynamics of Polymeric Liquids Volume 2: Kinetic Theory, 2nd ed. (John Wiley & Son, 1987).
  • Beris and Edwards (1994) Antony N. Beris and Brian J. Edwards, Thermodynamics of Flowing Systems (Oxford University Press, Oxford, 1994).
  • Öttinger (2005) Hans Christian Öttinger, Beyond Equilibrium Thermodynamics (John Wiley & Son, New Jersey, 2005).
  • Wu et al. (1991) X.-L. Wu, D. J. Pine,  and P. K. Dixon, “Enhanced concentration fluctuations in polymer solutions under shear flow,” Phys. Rev. Lett. 66, 2408–2411 (1991).
  • van Egmond et al. (1992) Jan W. van Egmond, Douglas E. Werner,  and Gerald G. Fuller, “Time-dependent small-angle light scattering of shear-induced concentration fluctuations in polymer solutions,” J. Chem. Phys. 96, 7742–7757 (1992).
  • van Egmond and Fuller (1993) Jan W. van Egmond and Gerald G. Fuller, “Concentration fluctuation enhancement in polymer solutions by extensional flow,” Macromolecules 26, 7182–7188 (1993).
  • Milner (1991) S. T. Milner, “Hydrodynamics of semidilute polymer solutions,” Phys. Rev. Lett. 66, 1477–1480 (1991).
  • Doi (1990) Masao Doi, “Effect of viscoelasticity on polymer diffusion,” in Dynamics and Patterns in Complex Fluids, edited by A. Onuki and K. Kawasaki (Springer, 1990) pp. 100–112.
  • Doi and Onuki (1992) Masao Doi and Akira Onuki, “Dynamic coupling between stress and composition in polymer solutions and blends,” J. Phys. II 2, 1631–1656 (1992).
  • Bhave et al. (1991) Aparna V. Bhave, Robert C. Armstrong,  and Robert A. Brown, “Kinetic theory and rheology of dilute, nonhomogeneous polymer solutions,” J. Chem. Phys. 95, 2988–3000 (1991).
  • Mavrantzas and Beris (1992) Vlasis G. Mavrantzas and Antony N. Beris, “Modeling of the rheology and flow-induced concentration changes in polymer solutions,” Phys. Rev. Lett. 69, 273–276 (1992).
  • Öttinger (1992) Hans Christian Öttinger, “Incorporation of polymer diffusivity and migration into constitutive equations,” Rheol. Acta 31, 14–21 (1992).
  • Beris and Mavrantzas (1994) Antony N. Beris and Vlasis G. Mavrantzas, “On the compatibility between various macroscopic formalisms for the concentration and flow of dilute polymer solutions,” J. Rheol. 38, 1235–1250 (1994).
  • Doi (2013) Masao Doi, Soft Matter Physics (Oxford University Press, 2013).
  • Onsager (1931a) Lars Onsager, “Reciprocal relations in irreversible processes. I.” Phys. Rev. 37, 405–426 (1931a).
  • Onsager (1931b) Lars Onsager, “Reciprocal relations in irreversible processes. II.” Phys. Rev. 38, 2265–2279 (1931b).
  • Doi (2012) Masao Doi, “Onsager’s variational principle in soft matter dynamics,” in Non-Equilibrium Soft Matter Physics, edited by S. Komura and T. Ohta (World Scientific, 2012) pp. 1–35.
  • Doi (2021) Masao Doi, “The onsager principle in polymer dynamics,” Prog. Polym. Sci. 112, 101339 (2021).
  • Zhou and Doi (2018) Jiajia Zhou and Masao Doi, “Dynamics of viscoelastic filaments based on Onsager principle,” Phys. Rev. Fluids 3, 084004 (2018).
  • Tanaka (1997) Hajime Tanaka, “Viscoelastic model of phase separation,” Phys. Rev. E 56, 4451 (1997).
  • Tanaka (2000) Hajime Tanaka, “Viscoelastic phase separation,” J. Phys.: Condens. Matter 12, R207–R264 (2000).