This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Depinning in the quenched Kardar-Parisi-Zhang class II: Field theory

Gauthier Mukerjee, Kay Jörg Wiese Laboratoire de Physique de l’École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, 24 rue Lhomond, 75005 Paris, France
Abstract

There are two main universality classes for depinning of elastic interfaces in disordered media: quenched Edwards-Wilkinson (qEW), and quenched Kardar-Parisi-Zhang (qKPZ). The first class is relevant as long as the elastic force between two neighboring sites on the interface is purely harmonic, and invariant under tilting. The second class applies when the elasticity is non-linear, or the surface grows preferentially in its normal direction. It encompasses fluid imbibition, the Tang-Leschorn cellular automaton of 1992 (TL92), depinning with anharmonic elasticity (aDep), and qKPZ. While the field theory is well developed for qEW, there is no consistent theory for qKPZ. The aim of this paper is to construct this field theory within the Functional renormalization group (FRG) framework, based on large-scale numerical simulations in dimensions d=1d=1, 22 and 33, presented in a companion paper. In order to measure the effective force correlator and coupling constants, the driving force is derived from a confining potential with curvature m2m^{2}. We show, that contrary to common belief this is allowed in the presence of a KPZ term. The ensuing field theory becomes massive, and can no longer be Cole-Hopf transformed. In exchange, it possesses an IR attractive stable fixed point at a finite KPZ non-linearity λ\lambda. Since there is neither elasticity nor a KPZ term in dimension d=0d=0, qEW and qKPZ merge there. As a result, the two universality classes are distinguished by terms linear in dd. This allows us to build a consistent field theory in dimension d=1d=1, which loses some of its predictive powers in higher dimensions.

I Introduction

Refer to caption
Figure 1: Universality classes at depinning, for d<dcd<d_{\rm c}. For the yellow shaded cases experiments exist.

Disordered elastic manifolds exhibit universal critical behavior when driven slowly, known as depinning. There are two main universality classes, each associated with a stochastic differential equation of evolution: quenched Edwards-Wilkinson (qEW) Wiese2021 , and quenched Kardar-Parisi-Zhang (qKPZ) TangKardarDhar1995 . The first class is relevant as long as the elasticity of the interface is purely harmonic, and invariant under tilting. This description is valid in a variety of situations such as magnetic domain walls in the presence of disorder a.k.a. the Barkhausen effect Barkhausen1919 ; DurinZapperi2006b ; DurinBohnCorreaSommerDoussalWiese2016 ; terBurgBohnDurinSommerWiese2021 , vortex lattices ScheidlVinokur1998 ; BucheliWagnerGeshkenbeinLarkinBlatter1998 , charge-density waves NarayanDSFisher1992b , and DNA unzipping WieseBercyMelkonyanBizebard2019 . While these systems have short-ranged elasticity, this framework can readily be adapted to describe systems with long-range (LR) elasticity such as contact-line depinning LeDoussalWieseRaphaelGolestanian2004 ; BachasLeDoussalWiese2006 ; LeDoussalWieseMoulinetRolley2009 , earthquakes DSFisher1998 ; FisherDahmenRamanathanBenZion1997 and knitting PoinclouxAdda-BediaLechenault2018b ; PoinclouxAdda-BediaLechenault2018 .

The second class is relevant when the elasticity is non-linear, or the surface grows preferentially in its normal direction. It encompasses fluid imbibition BuldyrevBarabasiCasertaHavlinStanleyVicsek1992 , the Tang-Leschorn cellular automaton of 1992 (TL92) TangLeschhorn1992 or its variants AmaralBarabasiBuldyrevHarringtonHavlinSadr-LahijanyStanley1995 , depinning with anharmonic elasticity (aDep) RossoKrauth2001b , and qKPZ TangKardarDhar1995 . That all these models are in the same universality class is non-trivial, but is now firmly established MukerjeeBonachelaMunozWiese2022 . This so-called qKPZ class has been observed for magnetic domain walls MoonKimYooChoHwangKahngMinShinChoe2013 ; Diaz-PardoMoisanAlbornozLemaitreCurialeJeudy2019 , in growing bacterial colonies HuergoMuzzioPasqualeGonzalezBolzanArvia2014 and chemical reaction fronts AtisDubeySalinTalonLeDoussalWiese2014 .

While the field theory for qEW is well established NarayanDSFisher1992a ; NarayanDSFisher1993a ; LeschhornNattermannStepanowTang1997 ; NattermannStepanowTangLeschhorn1992 ; ChauveLeDoussalWiese2000a ; LeDoussalWieseChauve2002 ; LeDoussalWieseChauve2003 ; Wiese2021 , building a field theory for qKPZ is a challenge. It has previously been attempted in Ref. LeDoussalWiese2002 . In that work, the running coupling constant for the non-linearity goes to infinity. The first question one needed to clarify was whether this is true, or an artifact of the Functional Renormalization Group (FRG) treatment. In Ref. MukerjeeBonachelaMunozWiese2022 we measured in a numerical simulation the effective action of three models: qKPZ, TL92, and aDep. For d=1d=1 we found that all three possess an effective long-distance behavior fully described by the terms in the qKPZ equation,

ηtu(x,t)\displaystyle\eta\partial_{t}u(x,t) =\displaystyle= c2u(x,t)+λ[u(x,t)]2+m2[wu(x,t)]\displaystyle c\nabla^{2}u(x,t)+\lambda\left[\nabla u(x,t)\right]^{2}+m^{2}\big{[}w{-}u(x,t)\big{]} (1)
+F(x,u(x,t)).\displaystyle+F\big{(}x,u(x,t)\big{)}.

The disorder forces F(x,u)F(x,u) are quenched Gaussian random variables with variance

F(x,u)F(x,u)¯=δd(xx)Δ0(uu).\overline{F(x,u)F(x^{\prime},u^{\prime})}=\delta^{d}(x-x^{\prime})\Delta_{0}(u-u^{\prime}). (2)

Δ0(u)\Delta_{0}(u) is the microscopic disorder-force correlator, assumed to decay rapidly for short-range (SR) disorder. In higher dimensions the same conclusions were reached, although with larger uncertainties.

Motivated by these findings, we reconsider the field theory corresponding to Eq. (1). There are two key observations. First of all, for d0d\to 0, three universality classes merge: qKPZ, qEW with short-ranged, and qEW with LR interactions. This is visualized on Fig. 1. The second key observation is that the way we drive the system is important. In fact, we drive with a force that derives from a confining potential, the term m2[wu(x,t)]m^{2}[w-u(x,t)] in Eq. (1). That allows us to measure the effective force correlator Δ(w)\Delta(w) defined via

Δ(ww)\displaystyle\Delta(w-w^{\prime}) :=\displaystyle:= m4Ld(uww)(uww)¯c,\displaystyle m^{4}L^{d}\,\overline{(u_{w}-w)(u_{w^{\prime}}-w^{\prime})}^{\rm c}, (3)
uw\displaystyle u_{w} :=\displaystyle:= 1Ldxuw(x),\displaystyle\frac{1}{L^{d}}\int_{x}u_{w}(x), (4)
uw(x)\displaystyle u_{w}(x) :=\displaystyle:= limtu(x,t) given w fixed.\displaystyle\lim_{t\to\infty}u(x,t)\mbox{~{}given~{}}w\mbox{~{}fixed.} (5)

In this protocol, ww is increased in steps. One then waits until the interface stops, which defines uw(x)u_{w}(x). Its center-of-mass position is uwu_{w}, and its fluctuations define Δ(w)\Delta(w).

Refer to caption

Figure 2: Scaling collapse of the two point function (10) obtained by rescaling xx and y=[u(x)u(0)]2y=\langle[u(x)-u(0)]^{2}\rangle such that x=xξm=xmζmζx^{\prime}=\frac{x}{\xi_{m}}=xm^{\frac{\zeta_{m}}{\zeta}} and y=ym2ζmy^{\prime}=ym^{2\zeta_{m}}, in logarithmic scale, for TL92 in d=1d=1.

This driving force appears in the effective action Eq. (II.1) as a mass term, as compared to LeDoussalWiese2002 , which considered a massless theory. Their motivation was that a massive term breaks Galilean invariance, and this is something “you do not want for the KPZ equation”. We believe that this is not a problem here, for two reasons: First of all, Galilean invariance is already broken by the quenched disorder F(x,u)F(x,u), even after disorder averaging. Second, even if the driving breaks Galilean invariance, this should only affect large-scale properties, but not small-scale ones (small with respect to the correlation length), and especially not critical properties.

There is a prize to pay for introducing a massive term: one loses the Cole-Hopf transformation, a transformation that allows to map the KPZ equation to a simpler stochastic heat equation with multiplicative noise (see section III.6). This the authors of Ref. LeDoussalWiese2002 were not ready to give up, as it complicates perturbation theory. As we will see below, it breaks the non-renormalization of λ/c\lambda/c, allowing us to find a fixed point for the latter. As both the massive and the massless scheme give, at least in 1-loop order, the same results close to the upper critical dimension dc=4d_{\rm c}=4, what we will present below is not a systematic ε\varepsilon-expansion. Rather, if we suppose we know the FRG fixed point for qEW, then our scheme allows us to control qKPZ perturbatively in dd, in an expansion around the qEW fixed point. While the latter is known analytically in d=0d=0 LeDoussalWiese2008a , what we use here is the 1-loop fixed point, obtained via the ε=4d\varepsilon=4-d expansion. The latter is actually quite good even down to d=1d=1: It predicts a roughness exponent of ζ=1\zeta=1, as compared to the best numerical value of ζ=5/4\zeta=5/4 GrassbergerDharMohanty2016 ; ShapiraWieseUnpublished . The FRG correlator is, even quantitatively, rather well approximated by its 1-loop value terBurgBohnDurinSommerWiese2021 ; Wiese2021 . We restrict ourselves here to 1-loop order, which has the benefit of greater transparency. Preliminary calculations show that extension to 2-loop order is straightforward though cumbersome. The method we present below allows us to compute analytically the different critical exponents as well as the full force correlator, and present quantitative agreement with the numerical simulations.

This paper is organized as follows: In the next section II we first define the field theory and review perturbation theory (section II.1). We then summarize scaling arguments described in detail in the companion paper MukerjeeBonachelaMunozWiese2022 (section II.2). The effective force correlator is defined in section II.3, and the relation to directed percolation in section II.4, followed by a discussion of the effective action measured in simulations, section II.5. Section III is dedicated to the field theory. We start with a reminder on the generation of the KPZ term from an anharmonic elasticity (section III.1). All 1-loop contributions are given in section III.2, with details relegated to appendix A. Section III.3 establishes the flow equations. Necessary conditions for their solution are derived in section III.4, followed by an analytical solution in section III.5, first giving the scheme (section III.5.1), and then explicit values in d=1d=1 to d=3d=3 (sections III.5.2 to III.5.4). Tables summarize our findings in section III.5.6. We comment on the Cole-Hopf transformation (section III.6), and present in layman terms physical insights from our work section IV, before concluding in section V.

II Model and Phenomenology

II.1 Model, action and perturbation theory

The Martin-Siggia-Rose MSR action corresponding to Eq. (1) reads

𝒮[u,u~]\displaystyle{\cal S}[u,\tilde{u}] =\displaystyle= x,tu~(x,t){ηtu(x,t)c2u(x,t)\displaystyle\int_{x,t}\tilde{u}(x,t)\Big{\{}\eta\partial_{t}u(x,t)-c\nabla^{2}u(x,t)
λ[u(x,t)]2+m2[u(x,t)w]}\displaystyle-\lambda\left[\nabla u(x,t)\right]^{2}+m^{2}\big{[}u(x,t){-}w\big{]}\Big{\}}
12x,t,tu~(x,t)Δ0(u(x,t)u(x,t))u~(x,t).\displaystyle-\frac{1}{2}\int_{x,t,t^{\prime}}\tilde{u}(x,t)\Delta_{0}\big{(}u(x,t)-u(x,t^{\prime})\big{)}\tilde{u}(x,t^{\prime}).

The field u~(x,t)\tilde{u}(x,t) is an auxiliary field introduced to enforce Eq. (1) and called the response field. The last term is obtained by averaging ex,tu~(x,t)F(x,(u(x,t))\mathrm{e}^{\int_{x,t}\tilde{u}(x,t)F(x,(u(x,t))} over F(x,u)F(x,u), using its variance (2). Perturbation theory is constructed by expanding around the free theory obtained by setting λ0\lambda\to 0 and Δ0(u)0\Delta_{0}(u)\to 0 in Eq. (II.1). The free response function is the response of the field u(x+x,t+t)u(x+x^{\prime},t+t^{\prime}) to an additional force acting at xx^{\prime}, tt^{\prime},

R(x,t)\displaystyle R(x,t) :=\displaystyle:= δu(x+x,t+t)δf(x,t)\displaystyle\left<\frac{\delta u(x+x^{\prime},t+t^{\prime})}{\delta f(x^{\prime},t^{\prime})}\right> (7)
=\displaystyle= δu(x+x,t+t)u~(x,t).\displaystyle\left<{\delta u(x+x^{\prime},t+t^{\prime})}{\tilde{u}(x^{\prime},t^{\prime})}\right>.

In Fourier space it reads

R(k,t)\displaystyle R(k,t) =\displaystyle= u~(k,t)u(k,t)\displaystyle\left<\tilde{u}(k,t)u(-k,t^{\prime})\right> (8)
=\displaystyle= θ(t>t)1ηe(ck2+m2)(tt)/η\displaystyle\theta(t^{\prime}>t)\frac{1}{\eta}\mathrm{e}^{-(ck^{2}+m^{2})(t^{\prime}-t)/\eta}
=\displaystyle= .\displaystyle{\parbox{34.14322pt}{{ \leavevmode\hbox to32.45pt{\vbox to4pt{\pgfpicture\makeatletter\hbox{\hskip 2.0pt\lower-2.0pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}}{}{{{}}{}{}{}{}{}{}{}{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{2.0pt}{0.0pt}\pgfsys@curveto{2.0pt}{1.10458pt}{1.10458pt}{2.0pt}{0.0pt}{2.0pt}\pgfsys@curveto{-1.10458pt}{2.0pt}{-2.0pt}{1.10458pt}{-2.0pt}{0.0pt}\pgfsys@curveto{-2.0pt}{-1.10458pt}{-1.10458pt}{-2.0pt}{0.0pt}{-2.0pt}\pgfsys@curveto{1.10458pt}{-2.0pt}{2.0pt}{-1.10458pt}{2.0pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fill\pgfsys@invoke{ } {{}}{}{{}}{}{{{}}{}{}{}{}{}{}{}{}}\pgfsys@moveto{28.45276pt}{0.0pt}\pgfsys@moveto{30.45276pt}{0.0pt}\pgfsys@curveto{30.45276pt}{1.10458pt}{29.55734pt}{2.0pt}{28.45276pt}{2.0pt}\pgfsys@curveto{27.34818pt}{2.0pt}{26.45276pt}{1.10458pt}{26.45276pt}{0.0pt}\pgfsys@curveto{26.45276pt}{-1.10458pt}{27.34818pt}{-2.0pt}{28.45276pt}{-2.0pt}\pgfsys@curveto{29.55734pt}{-2.0pt}{30.45276pt}{-1.10458pt}{30.45276pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{28.45276pt}{0.0pt}\pgfsys@fill\pgfsys@invoke{ } {{}}{}{{}}{}{{}} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{28.45276pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{{ {\pgfsys@beginscope{} {} {} {} \pgfsys@moveto{1.99997pt}{0.0pt}\pgfsys@lineto{-1.19998pt}{1.59998pt}\pgfsys@lineto{0.0pt}{0.0pt}\pgfsys@lineto{-1.19998pt}{-1.59998pt}\pgfsys@fill\pgfsys@endscope}} }{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.4943pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}}}.\qquad

Graphically this is represented by an arrow from u~\tilde{u} to uu. The (microscopic) disorder is represented by two dots connected by a dashed line, whereas the KPZ vertex is a dot with two incoming lines with bars for the derivatives, and one outgoing one. Examples for diagrams correcting the disorder are given on Fig. 3. For an introduction into functional perturbation theory we refer to section 3 of Wiese2021 . Note that the disorder is corrected by the KPZ force, and what we loosely call the renormalized disorder is more precisely the renormalized force correlator, which contains contributions from the KPZ term (see Section II.3 for a detailed discussion). Non-trivial correlations necessitate at least one “disorder” vertex Δ0(u)\Delta_{0}(u). As an example, the leading order to the equal-time 2-point function is

u(k,0)u(k,0)\displaystyle\left<u(k,0)u(-k,0)\right> =\displaystyle= (9)
=\displaystyle= [tR(k,t)]2Δ0(0)\displaystyle\left[\int_{t}R(k,t)\right]^{2}\Delta_{0}(0)
=\displaystyle= Δ0(0)(ck2+m2)2.\displaystyle\frac{\Delta_{0}(0)}{(ck^{2}+m^{2})^{2}}.

The arrows represent the response function RR, the dotted line the effective force correlator Δ0(u)\Delta_{0}(u). We assume an upper critical dimension of dc=4d_{\rm c}=4 as in qEW. Simulations show that in d=3d=3 the interface is still rough MukerjeeBonachelaMunozWiese2022 , so the upper critical dimension is above 33. Noting that physical realizations can only be constructed in integer dimensions, the remaining open question is whether the 4-dimensional system is at its upper critical dimension, or potentially above, see section III.5.4. Note that an interface in anharmonic depinning is less rough than in qEW; this excludes an upper critical dimension larger than four.

II.2 Scaling and anomalous exponents

Scaling arguments were given in the companion paper MukerjeeBonachelaMunozWiese2022 . We recall the main results here. The static 2-point function is defined as

12[u(x)u(y)]2¯{A|xy|2ζ,|xy|ξm,Bm2ζm,|xy|ξm.\frac{1}{2}\overline{\langle[u(x)-u(y)]^{2}}\simeq\left\{\begin{array}[]{c}A|x-y|^{2\zeta},~{}|x-y|\ll\xi_{m},\\ Bm^{-2\zeta_{m}},~{}~{}~{}~{}|x-y|\gg\xi_{m}.\end{array}\right. (10)

The average is taken over different disorder configurations (there are no thermal fluctuaions). ζ\zeta is the standard roughness exponent. In contrast to qEW, there is a new exponent ζm>ζ\zeta_{m}>\zeta. The reason is that the elasticity cc renormalizes and thus its anomalous dimension gives rise to another exponent. The quantity ξm\xi_{m} in Eq. (10) is the correlation length created by the confining potential. Every length parallel to the interface scales as xx or ξm\xi_{m}, whereas in the perpendicular direction it scales as uxζξmζu\sim x^{\zeta}\sim\xi_{m}^{\zeta}. To estimate ξm\xi_{m}, we take x=ξmx=\xi_{m} in Eq. (10), obtaining ξm2ζm2ζm\xi_{m}^{2\zeta}\sim m^{-2\zeta_{m}}. As a consequence

ξmmζmζ.\xi_{m}\sim m^{-\frac{\zeta_{m}}{\zeta}}. (11)

Note that ξm≁1m\xi_{m}\not\sim\frac{1}{m} as for qEW. Fig. 2 shows a scaling collapse of the 2-point function with these scalings.

Define ψλ\psi_{\lambda}, ψc\psi_{c} and ψη\psi_{\eta} to be the anomalous dimensions of λ\lambda, cc and η\eta in units of m1m^{-1},

ψc\displaystyle\psi_{\rm c} :=\displaystyle:= mmln(c),\displaystyle-m\partial_{m}\ln(c), (12)
ψλ\displaystyle\psi_{\lambda} :=\displaystyle:= mmln(λ),\displaystyle-m\partial_{m}\ln(\lambda), (13)
ψη\displaystyle\psi_{\eta} :=\displaystyle:= mmln(η).\displaystyle-m\partial_{m}\ln(\eta). (14)

In order to relate them to the standard scaling exponents ζ\zeta, ζm\zeta_{m} and zz, we first need to define zz. It is given by the temporal spread of the perturbation in the surface in the 2-point function as

12[u(x,t)u(x,t)]2¯|tt|2ζ/z.\frac{1}{2}\overline{[u(x,t)-u(x,t^{\prime})]^{2}}\sim|t-t^{\prime}|^{2\zeta/z}. (15)

With these definitions at the fixed point we can derive

ζmζ\displaystyle\frac{\zeta_{m}}{\zeta} =1+ψc2,\displaystyle=1+\frac{\psi_{\rm c}}{2}, (16)
ζm\displaystyle\zeta_{m} =ψcψλ,\displaystyle=\psi_{\rm c}-\psi_{\lambda}, (17)
z\displaystyle z =ζζm(2+ψη).\displaystyle=\frac{\zeta}{\zeta_{m}}(2+\psi_{\eta}). (18)

The first relation is obtained from x1qm/cm1+ψc/2x^{-1}\sim q\sim m/\sqrt{c}\sim m^{1+\psi_{\rm c}/2}, implying x2ζm(2+ψc)ζm2ζmx^{2\zeta}\sim m^{-(2+\psi_{\rm c})\zeta}\equiv m^{-2\zeta_{m}}. The second follows from λuc\lambda u\sim c. The last one is obtained from η/tm2\eta/t\sim m^{2}, implying tm2ψηx(2+ψη)ζ/ζmt\sim m^{-2-\psi_{\eta}}\sim x^{(2+\psi_{\eta})\zeta/\zeta_{m}}.

δ1Δ(w)\displaystyle\delta_{1}\Delta(w) =\displaystyle= +\displaystyle{\parbox{59.75095pt}{{ \leavevmode\hbox to59.11pt{\vbox to18.23pt{\pgfpicture\makeatletter\hbox{\hskip 2.0pt\lower-2.0pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}}{}{{{}}{}{}{}{}{}{}{}{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{2.0pt}{0.0pt}\pgfsys@curveto{2.0pt}{1.10458pt}{1.10458pt}{2.0pt}{0.0pt}{2.0pt}\pgfsys@curveto{-1.10458pt}{2.0pt}{-2.0pt}{1.10458pt}{-2.0pt}{0.0pt}\pgfsys@curveto{-2.0pt}{-1.10458pt}{-1.10458pt}{-2.0pt}{0.0pt}{-2.0pt}\pgfsys@curveto{1.10458pt}{-2.0pt}{2.0pt}{-1.10458pt}{2.0pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fill\pgfsys@invoke{ } {{}}{}{{}}{}{{{}}{}{}{}{}{}{}{}{}}\pgfsys@moveto{0.0pt}{14.22638pt}\pgfsys@moveto{2.0pt}{14.22638pt}\pgfsys@curveto{2.0pt}{15.33096pt}{1.10458pt}{16.22638pt}{0.0pt}{16.22638pt}\pgfsys@curveto{-1.10458pt}{16.22638pt}{-2.0pt}{15.33096pt}{-2.0pt}{14.22638pt}\pgfsys@curveto{-2.0pt}{13.1218pt}{-1.10458pt}{12.22638pt}{0.0pt}{12.22638pt}\pgfsys@curveto{1.10458pt}{12.22638pt}{2.0pt}{13.1218pt}{2.0pt}{14.22638pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{14.22638pt}\pgfsys@fill\pgfsys@invoke{ } {{}}{}{{}}{}{{{}}{}{}{}{}{}{}{}{}}\pgfsys@moveto{42.67914pt}{0.0pt}\pgfsys@moveto{44.67914pt}{0.0pt}\pgfsys@curveto{44.67914pt}{1.10458pt}{43.78372pt}{2.0pt}{42.67914pt}{2.0pt}\pgfsys@curveto{41.57455pt}{2.0pt}{40.67914pt}{1.10458pt}{40.67914pt}{0.0pt}\pgfsys@curveto{40.67914pt}{-1.10458pt}{41.57455pt}{-2.0pt}{42.67914pt}{-2.0pt}\pgfsys@curveto{43.78372pt}{-2.0pt}{44.67914pt}{-1.10458pt}{44.67914pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{42.67914pt}{0.0pt}\pgfsys@fill\pgfsys@invoke{ } {{}}{}{{}}{}{{{}}{}{}{}{}{}{}{}{}}\pgfsys@moveto{42.67914pt}{14.22638pt}\pgfsys@moveto{44.67914pt}{14.22638pt}\pgfsys@curveto{44.67914pt}{15.33096pt}{43.78372pt}{16.22638pt}{42.67914pt}{16.22638pt}\pgfsys@curveto{41.57455pt}{16.22638pt}{40.67914pt}{15.33096pt}{40.67914pt}{14.22638pt}\pgfsys@curveto{40.67914pt}{13.1218pt}{41.57455pt}{12.22638pt}{42.67914pt}{12.22638pt}\pgfsys@curveto{43.78372pt}{12.22638pt}{44.67914pt}{13.1218pt}{44.67914pt}{14.22638pt}\pgfsys@closepath\pgfsys@moveto{42.67914pt}{14.22638pt}\pgfsys@fill\pgfsys@invoke{ } {{}}{}{{}}{}{{}} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{42.67914pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{25.74146pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} {{}}{}{{}}{}{{}} {}{}{}\pgfsys@moveto{0.0pt}{14.22638pt}\pgfsys@lineto{42.67914pt}{14.22638pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{25.74146pt}{14.22638pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} {{}}{}{{}}{}{{}} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setdash{3.0pt,3.0pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{14.22638pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}{}{{}}{}{{}} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setdash{3.0pt,3.0pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{42.67914pt}{0.0pt}\pgfsys@lineto{42.67914pt}{14.22638pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}{}{{}}{} {}{}{}\pgfsys@moveto{42.67914pt}{0.0pt}\pgfsys@lineto{56.90552pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{54.90553pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} {{}}{}{{}}{} {}{}{}\pgfsys@moveto{42.67914pt}{14.22638pt}\pgfsys@lineto{56.90552pt}{14.22638pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{54.90553pt}{14.22638pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}}}+{\parbox{71.13188pt}{{ \leavevmode\hbox to71.53pt{\vbox to18.23pt{\pgfpicture\makeatletter\hbox{\hskip 14.42638pt\lower-2.0pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}}{}{{{}}{}{}{}{}{}{}{}{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{2.0pt}{0.0pt}\pgfsys@curveto{2.0pt}{1.10458pt}{1.10458pt}{2.0pt}{0.0pt}{2.0pt}\pgfsys@curveto{-1.10458pt}{2.0pt}{-2.0pt}{1.10458pt}{-2.0pt}{0.0pt}\pgfsys@curveto{-2.0pt}{-1.10458pt}{-1.10458pt}{-2.0pt}{0.0pt}{-2.0pt}\pgfsys@curveto{1.10458pt}{-2.0pt}{2.0pt}{-1.10458pt}{2.0pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fill\pgfsys@invoke{ } {{}}{}{{}}{}{{{}}{}{}{}{}{}{}{}{}}\pgfsys@moveto{0.0pt}{14.22638pt}\pgfsys@moveto{2.0pt}{14.22638pt}\pgfsys@curveto{2.0pt}{15.33096pt}{1.10458pt}{16.22638pt}{0.0pt}{16.22638pt}\pgfsys@curveto{-1.10458pt}{16.22638pt}{-2.0pt}{15.33096pt}{-2.0pt}{14.22638pt}\pgfsys@curveto{-2.0pt}{13.1218pt}{-1.10458pt}{12.22638pt}{0.0pt}{12.22638pt}\pgfsys@curveto{1.10458pt}{12.22638pt}{2.0pt}{13.1218pt}{2.0pt}{14.22638pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{14.22638pt}\pgfsys@fill\pgfsys@invoke{ } {{}}{}{{}}{}{{{}}{}{}{}{}{}{}{}{}}\pgfsys@moveto{42.67914pt}{0.0pt}\pgfsys@moveto{44.67914pt}{0.0pt}\pgfsys@curveto{44.67914pt}{1.10458pt}{43.78372pt}{2.0pt}{42.67914pt}{2.0pt}\pgfsys@curveto{41.57455pt}{2.0pt}{40.67914pt}{1.10458pt}{40.67914pt}{0.0pt}\pgfsys@curveto{40.67914pt}{-1.10458pt}{41.57455pt}{-2.0pt}{42.67914pt}{-2.0pt}\pgfsys@curveto{43.78372pt}{-2.0pt}{44.67914pt}{-1.10458pt}{44.67914pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{42.67914pt}{0.0pt}\pgfsys@fill\pgfsys@invoke{ } {{}}{}{{}}{}{{{}}{}{}{}{}{}{}{}{}}\pgfsys@moveto{42.67914pt}{14.22638pt}\pgfsys@moveto{44.67914pt}{14.22638pt}\pgfsys@curveto{44.67914pt}{15.33096pt}{43.78372pt}{16.22638pt}{42.67914pt}{16.22638pt}\pgfsys@curveto{41.57455pt}{16.22638pt}{40.67914pt}{15.33096pt}{40.67914pt}{14.22638pt}\pgfsys@curveto{40.67914pt}{13.1218pt}{41.57455pt}{12.22638pt}{42.67914pt}{12.22638pt}\pgfsys@curveto{43.78372pt}{12.22638pt}{44.67914pt}{13.1218pt}{44.67914pt}{14.22638pt}\pgfsys@closepath\pgfsys@moveto{42.67914pt}{14.22638pt}\pgfsys@fill\pgfsys@invoke{ } {{}}{}{{}}{}{{}} {}{}{}\pgfsys@moveto{42.67914pt}{0.0pt}\pgfsys@lineto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-1.0}{0.0}{0.0}{-1.0}{16.93768pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} {{}}{}{{}}{}{{}} {}{}{}\pgfsys@moveto{0.0pt}{14.22638pt}\pgfsys@lineto{42.67914pt}{14.22638pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{25.74146pt}{14.22638pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} {{}}{}{{}}{}{{}} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setdash{3.0pt,3.0pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{14.22638pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}{}{{}}{}{{}} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setdash{3.0pt,3.0pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{42.67914pt}{0.0pt}\pgfsys@lineto{42.67914pt}{14.22638pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}{}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{-14.22638pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-1.0}{0.0}{0.0}{-1.0}{-12.2264pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} {{}}{}{{}}{} {}{}{}\pgfsys@moveto{42.67914pt}{14.22638pt}\pgfsys@lineto{56.90552pt}{14.22638pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{54.90553pt}{14.22638pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}}}
+\displaystyle+ +,\displaystyle{\parbox{59.75095pt}{{ \leavevmode\hbox to59.11pt{\vbox to18.23pt{\pgfpicture\makeatletter\hbox{\hskip 2.0pt\lower-2.0pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}}{}{{{}}{}{}{}{}{}{}{}{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{2.0pt}{0.0pt}\pgfsys@curveto{2.0pt}{1.10458pt}{1.10458pt}{2.0pt}{0.0pt}{2.0pt}\pgfsys@curveto{-1.10458pt}{2.0pt}{-2.0pt}{1.10458pt}{-2.0pt}{0.0pt}\pgfsys@curveto{-2.0pt}{-1.10458pt}{-1.10458pt}{-2.0pt}{0.0pt}{-2.0pt}\pgfsys@curveto{1.10458pt}{-2.0pt}{2.0pt}{-1.10458pt}{2.0pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fill\pgfsys@invoke{ } {{}}{}{{}}{}{{{}}{}{}{}{}{}{}{}{}}\pgfsys@moveto{0.0pt}{14.22638pt}\pgfsys@moveto{2.0pt}{14.22638pt}\pgfsys@curveto{2.0pt}{15.33096pt}{1.10458pt}{16.22638pt}{0.0pt}{16.22638pt}\pgfsys@curveto{-1.10458pt}{16.22638pt}{-2.0pt}{15.33096pt}{-2.0pt}{14.22638pt}\pgfsys@curveto{-2.0pt}{13.1218pt}{-1.10458pt}{12.22638pt}{0.0pt}{12.22638pt}\pgfsys@curveto{1.10458pt}{12.22638pt}{2.0pt}{13.1218pt}{2.0pt}{14.22638pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{14.22638pt}\pgfsys@fill\pgfsys@invoke{ } {{}}{}{{}}{}{{{}}{}{}{}{}{}{}{}{}}\pgfsys@moveto{42.67914pt}{0.0pt}\pgfsys@moveto{44.67914pt}{0.0pt}\pgfsys@curveto{44.67914pt}{1.10458pt}{43.78372pt}{2.0pt}{42.67914pt}{2.0pt}\pgfsys@curveto{41.57455pt}{2.0pt}{40.67914pt}{1.10458pt}{40.67914pt}{0.0pt}\pgfsys@curveto{40.67914pt}{-1.10458pt}{41.57455pt}{-2.0pt}{42.67914pt}{-2.0pt}\pgfsys@curveto{43.78372pt}{-2.0pt}{44.67914pt}{-1.10458pt}{44.67914pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{42.67914pt}{0.0pt}\pgfsys@fill\pgfsys@invoke{ } {{}}{}{{}}{}{{{}}{}{}{}{}{}{}{}{}}\pgfsys@moveto{42.67914pt}{14.22638pt}\pgfsys@moveto{44.67914pt}{14.22638pt}\pgfsys@curveto{44.67914pt}{15.33096pt}{43.78372pt}{16.22638pt}{42.67914pt}{16.22638pt}\pgfsys@curveto{41.57455pt}{16.22638pt}{40.67914pt}{15.33096pt}{40.67914pt}{14.22638pt}\pgfsys@curveto{40.67914pt}{13.1218pt}{41.57455pt}{12.22638pt}{42.67914pt}{12.22638pt}\pgfsys@curveto{43.78372pt}{12.22638pt}{44.67914pt}{13.1218pt}{44.67914pt}{14.22638pt}\pgfsys@closepath\pgfsys@moveto{42.67914pt}{14.22638pt}\pgfsys@fill\pgfsys@invoke{ } {{}}{}{{}}{}{{}} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{42.67914pt}{14.22638pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.94868}{0.31622}{-0.31622}{0.94868}{25.84451pt}{8.6147pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{{}}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{{}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} {{}}{}{{}}{}{{}} {}{}{}\pgfsys@moveto{0.0pt}{14.22638pt}\pgfsys@lineto{42.67914pt}{14.22638pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{25.74146pt}{14.22638pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} {{}}{}{{}}{}{{}} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setdash{3.0pt,3.0pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{14.22638pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}{}{{}}{}{{}} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setdash{3.0pt,3.0pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{42.67914pt}{0.0pt}\pgfsys@lineto{42.67914pt}{14.22638pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}{}{{}}{} {}{}{}\pgfsys@moveto{42.67914pt}{0.0pt}\pgfsys@lineto{56.90552pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{54.90553pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} {{}}{}{{}}{} {}{}{}\pgfsys@moveto{42.67914pt}{14.22638pt}\pgfsys@lineto{56.90552pt}{14.22638pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{54.90553pt}{14.22638pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}}}+{\parbox{71.13188pt}{{ \leavevmode\hbox to71.53pt{\vbox to18.23pt{\pgfpicture\makeatletter\hbox{\hskip 14.42638pt\lower-2.0pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}}{}{{{}}{}{}{}{}{}{}{}{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{2.0pt}{0.0pt}\pgfsys@curveto{2.0pt}{1.10458pt}{1.10458pt}{2.0pt}{0.0pt}{2.0pt}\pgfsys@curveto{-1.10458pt}{2.0pt}{-2.0pt}{1.10458pt}{-2.0pt}{0.0pt}\pgfsys@curveto{-2.0pt}{-1.10458pt}{-1.10458pt}{-2.0pt}{0.0pt}{-2.0pt}\pgfsys@curveto{1.10458pt}{-2.0pt}{2.0pt}{-1.10458pt}{2.0pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fill\pgfsys@invoke{ } {{}}{}{{}}{}{{{}}{}{}{}{}{}{}{}{}}\pgfsys@moveto{0.0pt}{14.22638pt}\pgfsys@moveto{2.0pt}{14.22638pt}\pgfsys@curveto{2.0pt}{15.33096pt}{1.10458pt}{16.22638pt}{0.0pt}{16.22638pt}\pgfsys@curveto{-1.10458pt}{16.22638pt}{-2.0pt}{15.33096pt}{-2.0pt}{14.22638pt}\pgfsys@curveto{-2.0pt}{13.1218pt}{-1.10458pt}{12.22638pt}{0.0pt}{12.22638pt}\pgfsys@curveto{1.10458pt}{12.22638pt}{2.0pt}{13.1218pt}{2.0pt}{14.22638pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{14.22638pt}\pgfsys@fill\pgfsys@invoke{ } {{}}{}{{}}{}{{{}}{}{}{}{}{}{}{}{}}\pgfsys@moveto{42.67914pt}{0.0pt}\pgfsys@moveto{44.67914pt}{0.0pt}\pgfsys@curveto{44.67914pt}{1.10458pt}{43.78372pt}{2.0pt}{42.67914pt}{2.0pt}\pgfsys@curveto{41.57455pt}{2.0pt}{40.67914pt}{1.10458pt}{40.67914pt}{0.0pt}\pgfsys@curveto{40.67914pt}{-1.10458pt}{41.57455pt}{-2.0pt}{42.67914pt}{-2.0pt}\pgfsys@curveto{43.78372pt}{-2.0pt}{44.67914pt}{-1.10458pt}{44.67914pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{42.67914pt}{0.0pt}\pgfsys@fill\pgfsys@invoke{ } {{}}{}{{}}{}{{{}}{}{}{}{}{}{}{}{}}\pgfsys@moveto{42.67914pt}{14.22638pt}\pgfsys@moveto{44.67914pt}{14.22638pt}\pgfsys@curveto{44.67914pt}{15.33096pt}{43.78372pt}{16.22638pt}{42.67914pt}{16.22638pt}\pgfsys@curveto{41.57455pt}{16.22638pt}{40.67914pt}{15.33096pt}{40.67914pt}{14.22638pt}\pgfsys@curveto{40.67914pt}{13.1218pt}{41.57455pt}{12.22638pt}{42.67914pt}{12.22638pt}\pgfsys@curveto{43.78372pt}{12.22638pt}{44.67914pt}{13.1218pt}{44.67914pt}{14.22638pt}\pgfsys@closepath\pgfsys@moveto{42.67914pt}{14.22638pt}\pgfsys@fill\pgfsys@invoke{ } {{}}{}{{}}{}{{}} {}{}{}\pgfsys@moveto{42.67914pt}{14.22638pt}\pgfsys@lineto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-0.94868}{-0.31622}{0.31622}{-0.94868}{16.83463pt}{5.61168pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{{}}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{{}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} {{}}{}{{}}{}{{}} {}{}{}\pgfsys@moveto{0.0pt}{14.22638pt}\pgfsys@lineto{42.67914pt}{14.22638pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{25.74146pt}{14.22638pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} {{}}{}{{}}{}{{}} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setdash{3.0pt,3.0pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{14.22638pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}{}{{}}{}{{}} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setdash{3.0pt,3.0pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{42.67914pt}{0.0pt}\pgfsys@lineto{42.67914pt}{14.22638pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}{}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{-14.22638pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-1.0}{0.0}{0.0}{-1.0}{-12.2264pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} {{}}{}{{}}{} {}{}{}\pgfsys@moveto{42.67914pt}{0.0pt}\pgfsys@lineto{56.90552pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{54.90553pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}}},
δ2Δ(w)\displaystyle\delta_{2}\Delta(w) =\displaystyle= ,\displaystyle{\parbox{91.04872pt}{{ \leavevmode\hbox to89.36pt{\vbox to43.08pt{\pgfpicture\makeatletter\hbox{\hskip 2.0pt\lower-14.42638pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}}{}{{{}}{}{}{}{}{}{}{}{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{2.0pt}{0.0pt}\pgfsys@curveto{2.0pt}{1.10458pt}{1.10458pt}{2.0pt}{0.0pt}{2.0pt}\pgfsys@curveto{-1.10458pt}{2.0pt}{-2.0pt}{1.10458pt}{-2.0pt}{0.0pt}\pgfsys@curveto{-2.0pt}{-1.10458pt}{-1.10458pt}{-2.0pt}{0.0pt}{-2.0pt}\pgfsys@curveto{1.10458pt}{-2.0pt}{2.0pt}{-1.10458pt}{2.0pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fill\pgfsys@invoke{ } {{}}{}{{}}{}{{{}}{}{}{}{}{}{}{}{}}\pgfsys@moveto{0.0pt}{14.22638pt}\pgfsys@moveto{2.0pt}{14.22638pt}\pgfsys@curveto{2.0pt}{15.33096pt}{1.10458pt}{16.22638pt}{0.0pt}{16.22638pt}\pgfsys@curveto{-1.10458pt}{16.22638pt}{-2.0pt}{15.33096pt}{-2.0pt}{14.22638pt}\pgfsys@curveto{-2.0pt}{13.1218pt}{-1.10458pt}{12.22638pt}{0.0pt}{12.22638pt}\pgfsys@curveto{1.10458pt}{12.22638pt}{2.0pt}{13.1218pt}{2.0pt}{14.22638pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{14.22638pt}\pgfsys@fill\pgfsys@invoke{ } {{}}{}{{}}{}{{{}}{}{}{}{}{}{}{}{}}\pgfsys@moveto{42.67914pt}{0.0pt}\pgfsys@moveto{44.67914pt}{0.0pt}\pgfsys@curveto{44.67914pt}{1.10458pt}{43.78372pt}{2.0pt}{42.67914pt}{2.0pt}\pgfsys@curveto{41.57455pt}{2.0pt}{40.67914pt}{1.10458pt}{40.67914pt}{0.0pt}\pgfsys@curveto{40.67914pt}{-1.10458pt}{41.57455pt}{-2.0pt}{42.67914pt}{-2.0pt}\pgfsys@curveto{43.78372pt}{-2.0pt}{44.67914pt}{-1.10458pt}{44.67914pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{42.67914pt}{0.0pt}\pgfsys@fill\pgfsys@invoke{ } {{}}{}{{}}{}{{{}}{}{}{}{}{}{}{}{}}\pgfsys@moveto{42.67914pt}{14.22638pt}\pgfsys@moveto{44.67914pt}{14.22638pt}\pgfsys@curveto{44.67914pt}{15.33096pt}{43.78372pt}{16.22638pt}{42.67914pt}{16.22638pt}\pgfsys@curveto{41.57455pt}{16.22638pt}{40.67914pt}{15.33096pt}{40.67914pt}{14.22638pt}\pgfsys@curveto{40.67914pt}{13.1218pt}{41.57455pt}{12.22638pt}{42.67914pt}{12.22638pt}\pgfsys@curveto{43.78372pt}{12.22638pt}{44.67914pt}{13.1218pt}{44.67914pt}{14.22638pt}\pgfsys@closepath\pgfsys@moveto{42.67914pt}{14.22638pt}\pgfsys@fill\pgfsys@invoke{ } {{}}{}{{}}{}{{{}}{}{}{}{}{}{}{}{}}\pgfsys@moveto{85.35828pt}{14.22638pt}\pgfsys@moveto{87.35828pt}{14.22638pt}\pgfsys@curveto{87.35828pt}{15.33096pt}{86.46286pt}{16.22638pt}{85.35828pt}{16.22638pt}\pgfsys@curveto{84.2537pt}{16.22638pt}{83.35828pt}{15.33096pt}{83.35828pt}{14.22638pt}\pgfsys@curveto{83.35828pt}{13.1218pt}{84.2537pt}{12.22638pt}{85.35828pt}{12.22638pt}\pgfsys@curveto{86.46286pt}{12.22638pt}{87.35828pt}{13.1218pt}{87.35828pt}{14.22638pt}\pgfsys@closepath\pgfsys@moveto{85.35828pt}{14.22638pt}\pgfsys@fill\pgfsys@invoke{ } {{}}{}{{}}{}{{{}}{}{}{}{}{}{}{}{}}\pgfsys@moveto{85.35828pt}{0.0pt}\pgfsys@moveto{87.35828pt}{0.0pt}\pgfsys@curveto{87.35828pt}{1.10458pt}{86.46286pt}{2.0pt}{85.35828pt}{2.0pt}\pgfsys@curveto{84.2537pt}{2.0pt}{83.35828pt}{1.10458pt}{83.35828pt}{0.0pt}\pgfsys@curveto{83.35828pt}{-1.10458pt}{84.2537pt}{-2.0pt}{85.35828pt}{-2.0pt}\pgfsys@curveto{86.46286pt}{-2.0pt}{87.35828pt}{-1.10458pt}{87.35828pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{85.35828pt}{0.0pt}\pgfsys@fill\pgfsys@invoke{ } {{}}{}{{}}{}{{}} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{42.67914pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{25.74146pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} {{}}{}{{}}{}{{}} {}{}{}\pgfsys@moveto{0.0pt}{14.22638pt}\pgfsys@lineto{42.67914pt}{14.22638pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{25.74146pt}{14.22638pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} {{}}{}{{}}{}{{}} {}{}{}\pgfsys@moveto{85.35828pt}{14.22638pt}\pgfsys@lineto{42.67914pt}{14.22638pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-1.0}{0.0}{0.0}{-1.0}{59.61682pt}{14.22638pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} {{}}{}{{}}{}{{}} {}{}{}\pgfsys@moveto{85.35828pt}{0.0pt}\pgfsys@lineto{42.67914pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-1.0}{0.0}{0.0}{-1.0}{59.61682pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} {{}}{}{{}}{}{{}} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setdash{3.0pt,3.0pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{14.22638pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}{}{{}}{}{{}} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setdash{3.0pt,3.0pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{85.35828pt}{14.22638pt}\pgfsys@lineto{85.35828pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}{}{{}}{} {}{}{}\pgfsys@moveto{42.67914pt}{0.0pt}\pgfsys@lineto{42.67914pt}{-14.22638pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{42.67914pt}{-12.2264pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{{}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} {{}}{}{{}}{} {}{}{}\pgfsys@moveto{42.67914pt}{14.22638pt}\pgfsys@lineto{42.67914pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{1.0}{-1.0}{0.0}{42.67914pt}{26.45277pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{{}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{38.41139pt}{-4.26773pt}\pgfsys@lineto{38.41139pt}{4.26773pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{38.41139pt}{9.95863pt}\pgfsys@lineto{38.41139pt}{18.49411pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{46.94687pt}{-4.26773pt}\pgfsys@lineto{46.94687pt}{4.26773pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{46.94687pt}{9.95863pt}\pgfsys@lineto{46.94687pt}{18.49411pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}}},
δ3Δ(w)\displaystyle\delta_{3}\Delta(w) =\displaystyle=
+\displaystyle+ =0.\displaystyle{\parbox{105.2751pt}{{ \leavevmode\hbox to101.78pt{\vbox to30.65pt{\pgfpicture\makeatletter\hbox{\hskip 2.0pt\lower-2.0pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}}{}{{{}}{}{}{}{}{}{}{}{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{2.0pt}{0.0pt}\pgfsys@curveto{2.0pt}{1.10458pt}{1.10458pt}{2.0pt}{0.0pt}{2.0pt}\pgfsys@curveto{-1.10458pt}{2.0pt}{-2.0pt}{1.10458pt}{-2.0pt}{0.0pt}\pgfsys@curveto{-2.0pt}{-1.10458pt}{-1.10458pt}{-2.0pt}{0.0pt}{-2.0pt}\pgfsys@curveto{1.10458pt}{-2.0pt}{2.0pt}{-1.10458pt}{2.0pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fill\pgfsys@invoke{ } {{}}{}{{}}{}{{{}}{}{}{}{}{}{}{}{}}\pgfsys@moveto{0.0pt}{14.22638pt}\pgfsys@moveto{2.0pt}{14.22638pt}\pgfsys@curveto{2.0pt}{15.33096pt}{1.10458pt}{16.22638pt}{0.0pt}{16.22638pt}\pgfsys@curveto{-1.10458pt}{16.22638pt}{-2.0pt}{15.33096pt}{-2.0pt}{14.22638pt}\pgfsys@curveto{-2.0pt}{13.1218pt}{-1.10458pt}{12.22638pt}{0.0pt}{12.22638pt}\pgfsys@curveto{1.10458pt}{12.22638pt}{2.0pt}{13.1218pt}{2.0pt}{14.22638pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{14.22638pt}\pgfsys@fill\pgfsys@invoke{ } {{}}{}{{}}{}{{{}}{}{}{}{}{}{}{}{}}\pgfsys@moveto{42.67914pt}{14.22638pt}\pgfsys@moveto{44.67914pt}{14.22638pt}\pgfsys@curveto{44.67914pt}{15.33096pt}{43.78372pt}{16.22638pt}{42.67914pt}{16.22638pt}\pgfsys@curveto{41.57455pt}{16.22638pt}{40.67914pt}{15.33096pt}{40.67914pt}{14.22638pt}\pgfsys@curveto{40.67914pt}{13.1218pt}{41.57455pt}{12.22638pt}{42.67914pt}{12.22638pt}\pgfsys@curveto{43.78372pt}{12.22638pt}{44.67914pt}{13.1218pt}{44.67914pt}{14.22638pt}\pgfsys@closepath\pgfsys@moveto{42.67914pt}{14.22638pt}\pgfsys@fill\pgfsys@invoke{ } {{}}{}{{}}{}{{{}}{}{}{}{}{}{}{}{}}\pgfsys@moveto{85.35828pt}{14.22638pt}\pgfsys@moveto{87.35828pt}{14.22638pt}\pgfsys@curveto{87.35828pt}{15.33096pt}{86.46286pt}{16.22638pt}{85.35828pt}{16.22638pt}\pgfsys@curveto{84.2537pt}{16.22638pt}{83.35828pt}{15.33096pt}{83.35828pt}{14.22638pt}\pgfsys@curveto{83.35828pt}{13.1218pt}{84.2537pt}{12.22638pt}{85.35828pt}{12.22638pt}\pgfsys@curveto{86.46286pt}{12.22638pt}{87.35828pt}{13.1218pt}{87.35828pt}{14.22638pt}\pgfsys@closepath\pgfsys@moveto{85.35828pt}{14.22638pt}\pgfsys@fill\pgfsys@invoke{ } {{}}{}{{}}{}{{{}}{}{}{}{}{}{}{}{}}\pgfsys@moveto{85.35828pt}{0.0pt}\pgfsys@moveto{87.35828pt}{0.0pt}\pgfsys@curveto{87.35828pt}{1.10458pt}{86.46286pt}{2.0pt}{85.35828pt}{2.0pt}\pgfsys@curveto{84.2537pt}{2.0pt}{83.35828pt}{1.10458pt}{83.35828pt}{0.0pt}\pgfsys@curveto{83.35828pt}{-1.10458pt}{84.2537pt}{-2.0pt}{85.35828pt}{-2.0pt}\pgfsys@curveto{86.46286pt}{-2.0pt}{87.35828pt}{-1.10458pt}{87.35828pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{85.35828pt}{0.0pt}\pgfsys@fill\pgfsys@invoke{ } {{}}{}{{}}{}{{}} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{85.35828pt}{14.22638pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.98639}{0.1644}{-0.1644}{0.98639}{53.50984pt}{8.91829pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{{}}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{{}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} {{}}{}{{}}{}{{}} {}{}{}\pgfsys@moveto{0.0pt}{14.22638pt}\pgfsys@lineto{42.67914pt}{14.22638pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{25.74146pt}{14.22638pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} {{}}{}{{}}{}{{}} {}{}{}\pgfsys@moveto{85.35828pt}{14.22638pt}\pgfsys@lineto{42.67914pt}{14.22638pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-1.0}{0.0}{0.0}{-1.0}{59.61682pt}{14.22638pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}} {{}} }{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} {{}}{}{{}}{}{{}} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setdash{3.0pt,3.0pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{14.22638pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}{}{{}}{}{{}} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setdash{3.0pt,3.0pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{85.35828pt}{14.22638pt}\pgfsys@lineto{85.35828pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}{}{{}}{} {}{}{}\pgfsys@moveto{42.67914pt}{14.22638pt}\pgfsys@lineto{42.67914pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{1.0}{-1.0}{0.0}{42.67914pt}{26.45277pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{{}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} {{}}{}{{}}{} {}{}{}\pgfsys@moveto{85.35828pt}{0.0pt}\pgfsys@lineto{99.58466pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}}{{{{}{}{{}} }}{{}}\pgfsys@beginscope\pgfsys@invoke{ } {\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}} {{}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{97.58467pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {{}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{38.41139pt}{9.95863pt}\pgfsys@lineto{38.41139pt}{18.49411pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{46.94687pt}{9.95863pt}\pgfsys@lineto{46.94687pt}{18.49411pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}}}=0.
Figure 3: The three 1-loop corrections to Δ(w)\Delta(w) (without combinatorial factors). The dashed line is Δ(w)\Delta(w), the bars are the spatial derivatives of the KPZ term; notations as in LeDoussalWieseChauve2003 . The first one δ1Δ(w)\delta_{1}\Delta(w) contains the qEW terms. The second contribution δ2Δ(w)λ2Δ(w)2\delta_{2}\Delta(w)\sim\lambda^{2}\Delta(w)^{2} is new. The next two terms δ3Δ(w)λΔ(w)Δ(w)\delta_{3}\Delta(w)\sim\lambda\Delta(w)\Delta^{\prime}(w) cancel each other; they also vanish separately since they are odd in ww, whereas Δ(w)\Delta(w) is even.

II.3 The renormalized correlator Δ(w)\Delta(w)

In Eq. (3) we had defined the renormalized (effective) force correlator as

Δ(ww):=m4Ld(uww)(uww)¯c.\Delta(w-w^{\prime}):=m^{4}L^{d}\overline{(u_{w}-w)(u_{w^{\prime}}-w^{\prime})}^{c}. (19)

The definition of uwu_{w} is given in Eq. (4). This is the same definition as the one used for qEW LeDoussalWiese2006a ; MiddletonLeDoussalWiese2006 ; RossoLeDoussalWiese2006a ; BonachelaAlavaMunoz2008 . Integrating the equation of motion (1) over space for a configuration uw(x):=u(x,t)u_{w}(x):=u(x,t) at rest yields

m2(wuw)+1Ldxλ[uw(x)]2+F(x,uw(x))total force=0.m^{2}(w-u_{w})+\frac{1}{L^{d}}\int_{x}\underbrace{\lambda\left[\nabla u_{w}(x)\right]^{2}+F\big{(}x,u_{w}(x)\big{)}}_{\mbox{total force}}=0. (20)

Thus the correlator in Eq. (19) measures fluctuations of the total force. Only for qEW (λ=0\lambda=0) this equals the force exerted by the disorder. To be specific, let us define

Fw\displaystyle F_{w} :=\displaystyle:= 1LdxF(x,uw(x)),\displaystyle\frac{1}{L^{d}}\int_{x}F\big{(}x,u_{w}(x)\big{)}, (21)
Λw\displaystyle\Lambda_{w} :=\displaystyle:= 1Ldxλ[uw(x)]2.\displaystyle\frac{1}{L^{d}}\int_{x}\lambda[\nabla u_{w}(x)]^{2}. (22)

A configuration at rest then has

m2(wuw)+Fw+Λw=0.m^{2}(w-u_{w})+F_{w}+\Lambda_{w}=0. (23)

Our goal is to compare observables with objects in the field theory. What is calculated there is the effective action, or more precisely its 2-time contribution. (In the statics this would be the 2-replica term.) It is the sum of all connected 2-time diagrams, i.e. with two external u~\tilde{u} fields. To 1-loop order, these are shown in Fig. 3. The 2-point function uu¯c\overline{uu}^{c} is obtained to all orders by contracting the 2-time contribution to the effective action with two response functions. While in real space this is a convolution, in momentum and frequency space this is simply a multiplication with the response function R(k,ω)R(k,\omega). According to Eq. (19) it is to be evaluated at momentum k=0k=0 and frequency ω=0\omega=0. Recall that the response function R(x,t)R(x,t) is the response of the observable u(x,t)u(x,t) to a small uniform kick in force ff at (x,t)=(0,0)(x,t)=(0,0). Since the center of mass follows the center of the driving parabola ww,

fc=wuw¯=constwuw¯=1.f_{\rm c}=\overline{w-u_{w}}=\mbox{const}\quad\Rightarrow\quad\partial_{w}\overline{u_{w}}=1. (24)

Thus a uniform kick f=m2δwf=m^{2}\delta w leads to a response for the center of mass according to uwuw+δw=uw+fm2u_{w}\rightarrow u_{w}+\delta w=u_{w}+\frac{f}{m^{2}}. As a result, the integrated response function is given by

tR(k=0,t)1LdxtR(x,t)=1m2.\int_{t}R(k=0,t)\equiv\frac{1}{L^{d}}\int_{x}\int_{t}R(x,t)=\frac{1}{m^{2}}. (25)

This is equivalent to R(k=0,ω=0)=m2R(k=0,\omega=0)=m^{-2}.

We finally need to remember the field-theoretic definition of the effective action Γ\Gamma: It is obtained from the corresponding expectation values by amputation of the response function, which is equivalent to dividing by the response function (in Fourier representation). Due to Eq. (25) this is nothing but multiplication with m2m^{2}, once for each of the two external fields uu. This gives the factor of m4m^{4} in Eq. (19), and Eq. (19) is nothing but the 2-time contribution to the effective action Γ\Gamma, equivalent to the renormalized force correlator Δ(w)\Delta(w). It is the (k=0,ω=0)(k=0,\omega=0) mode of the full effective force correlator in the field theory for depinning.

Having established that Eq. (19) is the proper definition of the renormalized Δ(w)\Delta(w), it is still instructive to study the correlations of all three forces appearing in Eq. (20). To this aim, let us define in addition to Eq. (19)

ΔFF(ww)\displaystyle\Delta_{FF}(w-w^{\prime}) :=\displaystyle:= LdFwFw¯c,\displaystyle L^{d}\overline{F_{w}F_{w^{\prime}}}^{\rm c}, (26)
ΔFΛ(ww)\displaystyle\Delta_{F\Lambda}(w-w^{\prime}) :=\displaystyle:= LdFwΛw¯c,\displaystyle L^{d}\overline{F_{w}\Lambda_{w^{\prime}}}^{\rm c}, (27)
ΔΛΛ(ww)\displaystyle\Delta_{\Lambda\Lambda}(w-w^{\prime}) :=\displaystyle:= LdΛwΛw¯c.\displaystyle L^{d}\overline{\Lambda_{w}\Lambda_{w^{\prime}}}^{\rm c}. (28)

A measurement of these quantities is shown below in Fig. 10.

Let us finally give the scaling dimensions,

Δ(0)m4ξmd[uww]2m4dζmζ2ζm.\Delta(0)\sim m^{4}\xi_{m}^{d}\left[u_{w}-w\right]^{2}\sim m^{4-d\frac{\zeta_{m}}{\zeta}-2\zeta_{m}}. (29)

The scaling of the argument of Δ(w)\Delta(w) is given by

wumζm.w\simeq u\sim m^{-\zeta_{m}}. (30)

These scalings are reflected in the FRG flow equations derived below in Eq. (55).

II.4 Link to directed percolation, exponents given in the literature, and other relations

For TL92 in d=1d=1, the scaling of a blocked interface at depinning is given by directed percolation TangLeschhorn1992 ; AmaralBarabasiBuldyrevHarringtonHavlinSadr-LahijanyStanley1995 ; BarabasiGrinsteinMunoz1996 ; Hinrichsen2000 ; AraujoGrassbergerKahngSchrenkZiff2014 ; Dhar2017 . In table 1 we summarize the exponents obtained this way, which guide us in the construction and tests of the FRG. Details are given in MukerjeeBonachelaMunozWiese2022 .

ν=1.733847(6),ν=1.096854(4),ζ=0.632613(3),ζm=1.046190(4),ζmζ=1.65376(1),τ=1.259246(3),βdep=0.636993(7),ψλ=0.26133(2),ψk=1.30752(2),\displaystyle\normalsize\begin{array}[]{rclrcl}\nu_{\parallel}&=&1.733847(6),&\qquad\nu_{\perp}&=&1.096854(4),\\ \zeta&=&0.632613(3),&\zeta_{m}&=&1.046190(4),\\ \frac{\zeta_{m}}{\zeta}&=&1.65376(1),&\tau&=&1.259246(3),\\ \beta_{\rm dep}&=&0.636993(7),&\psi_{\lambda}&=&0.26133(2),\\ \psi_{k}&=&1.30752(2),&\end{array}

Table 1: Numerical values for all exponents used in this section (d=1d=1), as obtained from Ref. Hinrichsen2000 combined with the scaling relations derived here.

In dimensions d2d\geq 2 directed percolation paths are 1-dimensional, whereas the interface is dd-dimensional. As a result, the mapping to DP no longer exists, and one has to introduce directed surfaces BarabasiGrinsteinMunoz1996 . The exponents we find in d=2d=2 and d=3d=3 are summarized on table 3 (page 3).

II.5 The effective action in simulations

To guide our field-theoretical work, we first checked in dimension d=1d=1 that the scaling exponents given in table 1 account for the measured values of ψc\psi_{\rm c} and ψλ\psi_{\lambda} given in Eqs. (12)-(13). To this aim, a novel algorithm was designed MukerjeeBonachelaMunozWiese2022 to measure ψc\psi_{\rm c} and ψλ\psi_{\lambda} by imposing a spatial modulation in the background-field configuration ww. The simulations were performed for three different models, all in the qKPZ universality class: the cellular automaton TL92 TangLeschhorn1992 , anharmonic depinning RossoKrauth2001b ; MukerjeeBonachelaMunozWiese2022 , and a direct simulation of Eq. (1) MukerjeeBonachelaMunozWiese2022 . The best results were achieved for anharmonic depinning, thanks to an efficient algorithm for its evolution RossoKrauth2001b .

With the novel algorithm designed in MukerjeeBonachelaMunozWiese2022 , we measured the effective couplings λ\lambda and cc, as a function of mm. In Fig. 4 (left) we show their flow as a function of mm. To be specific, what we measure (left), and what is predicted from DP via table 1 (right) is

ψcd=1\displaystyle\psi_{\rm c}^{d=1} =\displaystyle= 1.31(4),ψcDP=1.30752(2),\displaystyle 1.31(4),\qquad\psi_{\rm c}^{\rm DP}=1.30752(2), (31)
ψλd=1\displaystyle\psi_{\lambda}^{d=1} =\displaystyle= 0.28(3),ψλDP=0.26133(2).\displaystyle 0.28(3),\qquad\psi_{\lambda}^{\rm DP}=0.26133(2). (32)

This confirms our scaling analysis and allows us to measure as shown on Fig. 4 the dimensionless amplitude

𝒜:=Δ(0)|Δ(0+)|λc.\mathcal{A}:=\frac{\Delta(0)}{|\Delta^{\prime}(0^{+})|}\frac{\lambda}{c}. (33)

The ideas behind this definition is that the KPZ term has one field more than the elastic term. Thus the ratio λ/c\lambda/c has the inverse dimension of a field, which is compensated by the first ratio. That 𝒜{\cal A} converges to the same value for two different models gives strong evidence that qKPZ is the effective theory, and that a fixed point of the renormalization-group flow is reached. In d=1d=1, this ratio reads

𝒜d=1=1.10(2).{\cal A}^{d=1}=1.10(2). (34)

The last points to verify is that we can measure the effective-force correlator Δ(w)\Delta(w), that different models in the qKPZ class have the same Δ(w)\Delta(w), and that this function is close to, but distinct from the one for qEW. This is shown in Fig. 12.

​​​​Refer to caption

Figure 4: Left: Effective cc and λ\lambda for anharmonic depinning. Right: Convergence to the fixed point as m0m\rightarrow 0, both for anharmonic depinning and TL92. The dotted lines are guides for the eye.

III Field theory

Now that we verified that all models have a fixed point represented by the qKPZ equation, and that we have the correct scaling dimensions for every variable, we can confidently construct their field theory.

Refer to caption    Refer to caption

Figure 5: The 1-loop corrections to cc.

Refer to caption    Refer to caption    Refer to caption

Figure 6: 1-loop diagrams correcting λ\lambda.

III.1 Reminder: Generation of KPZ term from anharmonic elasticity

Let us remind how anharmonic elastic terms generate a KPZ term at depinning LeDoussalWiese2002 : To this purpose consider a standard elastic energy, supplemented by an additional anharmonic (quartic) term (setting c=1c=1 for simplicity),

el[u]=x12[u(x)]2+c44[(u(x))2]2.{\cal H}_{\mathrm{el}}[u]=\int_{x}\frac{1}{2}\left[\nabla u(x)\right]^{2}+\frac{c_{4}}{4}\left[\left(\nabla u(x)\right)^{2}\right]^{2}. (35)

The corresponding terms in the equation of motion read

tu(x,t)\displaystyle\partial_{t}u(x,t) =\displaystyle= 2u(x,t)+c4{u(x,t)[u(x,t)]2}\displaystyle\nabla^{2}u(x,t)+c_{4}\nabla\left\{\nabla u(x,t)\left[\nabla u(x,t)\right]^{2}\right\} (36)
+\displaystyle+...

Since the r.h.s. of Eq. (36) is a total derivative, it is surprising that a KPZ-term can be generated in the limit of a vanishing driving velocity. This puzzle was solved in Ref. LeDoussalWiese2002 , where the KPZ term arises by contracting the non-linearity with one bare disorder (we drop the index on Δ0\Delta_{0} from now on for simplicity of notation),

δλ\displaystyle\!\!\!\delta\lambda =\displaystyle= [Uncaptioned image] (37)
=\displaystyle= c4p2t>0t>0ke(t+t)(k2+m2)[k2p2+2(kp)2]\displaystyle-\frac{c_{4}}{p^{2}}\int_{t>0}\int_{{t^{\prime}>0}}\int_{k}\mathrm{e}^{-(t+t^{\prime})(k^{2}+m^{2})}\left[k^{2}p^{2}+2(kp)^{2}\right]
×Δ(u(x,t+t)u(x,0)).\displaystyle\qquad\qquad\qquad\quad\times\Delta^{\prime}\big{(}u({x,t+t^{\prime}})-u({x,0})\big{)}.\qquad

As u(x,t+t)u(x,0)0u(x,t+t^{\prime})-u(x,0)\geq 0, the leading term in Eq. (37) can be written as

δλ=c4p2t>0t>0ke(t+t)(k2+m2)[k2p2+2(kp)2]Δ(0+).\displaystyle\delta\lambda=-\frac{c_{4}}{p^{2}}\int\limits_{t>0}\int\limits_{t^{\prime}>0}\int\limits_{k}\mathrm{e}^{-(t+t^{\prime})(k^{2}+m^{2})}[k^{2}p^{2}{+}2(kp)^{2}]\Delta^{\prime}(0^{+}).

Integrating over t,tt,t^{\prime} and using the radial symmetry in kk yields

δλ=c4(1+2d)kΔ(0+)k2(k2+m2)2.\delta\lambda=-c_{4}\left(1+\frac{2}{d}\right)\int_{k}\frac{\Delta^{\prime}(0^{+})k^{2}}{(k^{2}+m^{2})^{2}}. (39)

This shows that in the FRG a KPZ term is generated from the non-linearity. As Δ(0+)>0-\Delta^{\prime}(0^{+})>0, its amplitude is positive. The integral (39) has a strong UV divergence, thus the generation of this term happens at small scales, similar to the generation of the critical force, see appendix A.3.

III.2 1-loop contributions

Here we summarize the 1-loop contributions to cc, λ\lambda, η\eta and Δ\Delta. This is almost the same calculation as in Ref. LeDoussalWiese2002 , with a little twist: Since we work in a massive scheme, many of the cancelations in LeDoussalWiese2002 no longer exist. We remind that this change in scheme was forced upon us by our decision to measure the effective parameters of the theory, necessitating to drive with a confining potential. We believe that this is also much closer to real experiments. It is a scheme widely used for perturbative RG for the Ising model in d=3d=3, pioneered by G. Parisi and used up to 7 loop-order by B. Nickel and collaborators ParisiBook ; Parisi1980 ; BakerNickelGreenMeiron1976 ; NickelMeironBaker1977 ; BakerNickelMeiron1978 . As discussed above, we think of this fixed-dimension renormalization scheme as an expansion around the d=0d=0 qEW fixed point. The diagrams from the perturbation in λ\lambda are given in Figs. 5-7.

Refer to caption

Figure 7: Additional 1-loop correction to η\eta for qKPZ as compared to qEW.

We obtain the same diagrams as in LeDoussalWiese2002 but with coefficients aia_{i} that differ from LeDoussalWiese2002 away from the upper critical dimension. The explicit calculations are given in appendix A. Terms with numerical coefficients only (no aia_{i}) are those appearing already in qEW.

δηη\displaystyle\frac{\delta\eta}{\eta} =\displaystyle= [a0λ^Δ(0+)+Δ′′(0+)]I1,\displaystyle-\left[a_{0}\hat{\lambda}\Delta^{\prime}\left(0^{+}\right)+\Delta^{\prime\prime}\left(0^{+}\right)\right]I_{1}, (40)
δcc\displaystyle\frac{\delta c}{c} =\displaystyle= [a1λ^Δ(0+)+a2λ^2Δ(0)]I1,\displaystyle-\left[a_{1}\hat{\lambda}\Delta^{\prime}\left(0^{+}\right)+a_{2}\hat{\lambda}^{2}\Delta(0)\right]I_{1}, (41)
δλλ\displaystyle\frac{\delta\lambda}{\lambda} =\displaystyle= [a3λ^Δ(0+)+a4λ^2Δ(0)]I1,\displaystyle-\left[a_{3}\hat{\lambda}\Delta^{\prime}\left(0^{+}\right)+a_{4}\hat{\lambda}^{2}\Delta(0)\right]I_{1}, (42)
δΔ(u)\displaystyle\delta\Delta(u) =\displaystyle= {a5λ^2Δ(u)2u212[Δ(u)Δ(0)]2}I1,\displaystyle\left\{a_{5}\hat{\lambda}^{2}\Delta(u)^{2}-\partial_{u}^{2}\frac{1}{2}\left[\Delta(u)-\Delta(0)\right]^{2}\right\}I_{1},\qquad (43)
λ^\displaystyle\!\!\!\hat{\lambda} :=\displaystyle:= λc,\displaystyle\frac{\lambda}{c}, (44)
I1\displaystyle\!\!\!I_{1} =\displaystyle= k1(ck2+m2)2,\displaystyle\int_{k}\frac{1}{(ck^{2}+m^{2})^{2}}, (45)
a0\displaystyle\!\!\!a_{0} =\displaystyle= d4,a1=1,a2=d13,\displaystyle\frac{d}{4},\qquad a_{1}=1,\qquad a_{2}=\frac{d-1}{3}, (46)
a3\displaystyle\!\!\!a_{3} =\displaystyle= 1,a4=d+26,a5=d(d+2)12.\displaystyle 1,\qquad a_{4}=\frac{d+2}{6},\qquad a_{5}=\frac{d(d+2)}{12}.\qquad (47)

The coefficients aia_{i} in the limit of d4d\to 4 used by LeDoussalWiese2002 are obtained by setting d4d\to 4, resulting into ai=1a_{i}=1 for all ii, except a5=2a_{5}=2. While this is the standard procedure followed in a dimensional expansion, it misses that in dimension d=0d=0 the KPZ term does not exist, thus cannot correct the remaining terms: viscosity η\eta, and effective force correlator Δ(u)\Delta(u). The factors of dd in coefficients a0a_{0} and a5a_{5} reflect this physical necessity. No such constraint exists for cc and λ\lambda: since they are absent from the equation of motion (1) in d=0d=0, their coefficients can well be modified.

As λ\lambda and cc appear in the combination of λ^=λ/c\hat{\lambda}=\lambda/c, the important question is whether this ratio is corrected. This is indeed the case as

δλ^λ^=(a2a4)λ^2Δ(0)I1=4d6λ^2Δ(0)I1.\frac{\delta\hat{\lambda}}{\hat{\lambda}}=(a_{2}-a_{4})\hat{\lambda}^{2}\Delta(0)I_{1}=-\frac{4-d}{6}\hat{\lambda}^{2}\Delta(0)I_{1}. (48)

Note that this term is negative, and have a power in λ^\hat{\lambda} superior to one. It will therefore stop the RG flow for λ^\hat{\lambda} at large λ^\hat{\lambda}, allowing us to close our system of equations!

A final important point to mention is that the confining potential m2\sim m^{2} is not renormalized. In qEW this is due to the statistical tilt symmetry (STS) Wiese2021 , which can be checked perturbatively: Since the effective force correlator contains uu only as a difference u(x,t)u(x,t)u(x,t)-u(x,t^{\prime}), no field uu without a time derivative can be generated. The same holds true here: since the additional KPZ vertex has additional spatial derivatives, it cannot generate a field uu without spatial derivatives. This property is very useful, as we can as in qEW use mm as an RG scale, without caveat.

Finally, the critical force is

Fc\displaystyle F_{\rm c} =\displaystyle= Fc(1)+Fc(2)\displaystyle F_{\rm c}^{(1)}+F_{\rm c}^{(2)} (49)
\displaystyle\simeq [Δ(0+)+d2λ^Δ(0)]k1ck2+m2.\displaystyle\left[\Delta^{\prime}(0^{+})+\frac{d}{2}\hat{\lambda}\Delta(0)\right]\int_{k}\frac{1}{ck^{2}+m^{2}}.

The first contribution is negative, identical to qEW. The second is positive, and specific to qKPZ. The non-linearity reduces the force needed to depin the interface. This is derived in appendix A.3.

III.3 Flow equations

Above we calculated the perturbative corrections. We now derive the corresponding RG relations. Since mm is not corrected under renormalization, we use it to parameterize the flow of the remaining quantities. To this aim, first define the dimensionless field as

𝐮:=umζm.\mathbf{u}:=u\,m^{\zeta_{m}}. (50)

We have mmΔ(u)=[δΔ]εI1-m\frac{\partial}{\partial m}\Delta(u)=[\delta\Delta]\varepsilon I_{1}. The integral I1I_{1} defined in Eq. (45) is evaluated in Eq. (103) of appendix A.1,

I1\displaystyle I_{1} :=\displaystyle:= k1(ck2+m2)2=md4cd/22Γ(1+ε2)ε(4π)d/2.\displaystyle\int_{k}\frac{1}{(ck^{2}+m^{2})^{2}}=\frac{m^{d-4}}{c^{d/2}}\frac{2\Gamma(1+\frac{\varepsilon}{2})}{\varepsilon(4\pi)^{d/2}}.~{}~{}~{} (51)

It scales as

I1ξmdm4,\displaystyle I_{1}\sim\xi_{m}^{-d}m^{-4}, (52)

where we remind that

Δ(0)ξmdm4u2.\Delta(0)\sim\xi_{m}^{d}m^{4}u^{2}. (53)

The dimensionless renormalized correlator Δ~(𝐮)\tilde{\Delta}(\mathbf{u}) is then defined in terms of the effective force correlator Δ(u)\Delta(u), such that it absorbs εI1\varepsilon I_{1} as

Δ~(𝐮):=εI1m2ζmΔ(u=𝐮mζm).\tilde{\Delta}(\mathbf{u}):=\varepsilon I_{1}m^{2\zeta_{m}}\Delta\left(u=\mathbf{u}m^{-\zeta_{m}}\right). (54)

The explicit mm-dependent factor in front of Δ\Delta is the scaling dimension given in Eq. (29). This yields the flow equation for the effective dimensionless force correlator,

Δ~(u)=\displaystyle\partial_{\ell}\tilde{\Delta}(u)= (4dζmζ2ζm)Δ~(u)+uζmΔ~(u)\displaystyle\left(4-d\frac{\zeta_{m}}{\zeta}-2\zeta_{m}\right)\tilde{\Delta}(u)+u\zeta_{m}\tilde{\Delta}^{\prime}(u) (55)
+d(d+2)12λ~2Δ~(u)2\displaystyle+\frac{d(d+2)}{12}\tilde{\lambda}^{2}\tilde{\Delta}(u)^{2}
Δ~(u)2Δ~′′(u)[Δ~(u)Δ~(0)].\displaystyle-\tilde{\Delta}^{\prime}(u)^{2}-\tilde{\Delta}^{\prime\prime}(u)\big{[}\tilde{\Delta}(u)-\tilde{\Delta}(0)\big{]}.

Here we defined the dimensionless combination λ~\tilde{\lambda}

λ~:=λcmζmλ^mζm.\tilde{\lambda}:=\frac{\lambda}{c}m^{-\zeta_{m}}\equiv\hat{\lambda}m^{-\zeta_{m}}. (56)

Its flow equation is obtained from Eq. (48) as

mmλ~=ζmλ~4d6λ~3Δ~(0).-{m}\partial_{m}{\tilde{\lambda}}=\zeta_{m}\tilde{\lambda}-\frac{4-d}{6}\tilde{\lambda}^{3}\tilde{\Delta}(0). (57)

It has one fixed point λ~=0\tilde{\lambda}=0, and a second non-trivial fixed point at

λ~c=6ζm(4d)Δ~(0).\tilde{\lambda}_{\rm c}=\sqrt{\frac{6\zeta_{m}}{(4-d)\tilde{\Delta}(0)}}. (58)

We can see that in d=4d=4 the fixed point disappears as λ~\tilde{\lambda} goes to infinity.

The anomalous dimension ψc\psi_{\rm c} defined in Eq. (12) reads

ψc=λ~Δ~(0+)d13λ~2Δ~(0).\psi_{\rm c}=-\tilde{\lambda}\tilde{\Delta}^{\prime}(0^{+})-\frac{d-1}{3}\tilde{\lambda}^{2}\tilde{\Delta}(0). (59)

Using Eq. (16), we find

ζmζ=1+12[λ~Δ~(0+)d13λ~2Δ~(0)].\frac{\zeta_{m}}{\zeta}=1+\frac{1}{2}\left[-\tilde{\lambda}\tilde{\Delta}^{\prime}\left(0^{+}\right)-\frac{d-1}{3}\tilde{\lambda}^{2}\tilde{\Delta}(0)\right]. (60)

Eq. (55) is still cumbersome to solve. Reinjecting Eq. (60), we obtain at the fixed point

0\displaystyle 0 =\displaystyle= (ε+d2[λ~Δ~(0+)+d13λ~2Δ~(0)]2ζm)Δ~(u)\displaystyle\left(\varepsilon+\frac{d}{2}\left[\tilde{\lambda}\tilde{\Delta}^{\prime}\left(0^{+}\right)+\frac{d-1}{3}\tilde{\lambda}^{2}\tilde{\Delta}(0)\right]-2\zeta_{m}\right)\tilde{\Delta}(u) (61)
+uζmΔ~(u)+d(d+2)12λ~2Δ~(u)2\displaystyle+u\zeta_{m}\tilde{\Delta}^{\prime}(u)+\frac{d(d+2)}{12}\tilde{\lambda}^{2}\tilde{\Delta}(u)^{2}
Δ~(u)2Δ~′′(u)[Δ~(u)Δ~(0)].\displaystyle-\tilde{\Delta}^{\prime}(u)^{2}-\tilde{\Delta}^{\prime\prime}(u)\big{[}\tilde{\Delta}(u)-\tilde{\Delta}(0)\big{]}.

The anomalous contribution ψη\psi_{\eta} reads

ψη=[d4λ~Δ~(0+)+Δ~′′(0+)].\psi_{\eta}=-\left[\frac{d}{4}\tilde{\lambda}\tilde{\Delta}^{\prime}\left(0^{+}\right)+\tilde{\Delta}^{\prime\prime}\left(0^{+}\right)\right]. (62)

Using Eq. (18) this yields

z\displaystyle z =\displaystyle= ζζm[2d4λ~Δ~(0+)Δ~′′(0+)].\displaystyle\frac{\zeta}{\zeta_{m}}\left[2-\frac{d}{4}\tilde{\lambda}\tilde{\Delta}^{\prime}\left(0^{+}\right)-\tilde{\Delta}^{\prime\prime}\left(0^{+}\right)\right]. (63)

We note that for d0d\rightarrow 0 the contribution of λ~\tilde{\lambda} in equation (61) disappears, thus we recover the qEW fixed point. This is not the case in the massless scheme LeDoussalWiese2002 . Increasing dd we expect the qKPZ fixed point to smoothly move away from the qEW one. In Figure 12 we show that in dimension d=1d=1 the shape of the measured Δ(w)\Delta(w) for qEW and qKPZ are close, even though their amplitudes may be rather different. We take this as an encouraging sign to construct the FRG fixed point for qKPZ. This is the task of section III.5. Since our expansion is uncontrolled, we need to obtain additional safeguards in order to see if where our approach hold, and where it is too crude. For that, we derive constraints to be satisfied by the fixed point.

III.4 Necessary conditions for a fixed point, and bounds

III.4.1 Disorder and force correlator relevant

We now assume (as in qEW) that the effective force correlator is relevant, thus 4dζmζ2ζm>04-d\frac{\zeta_{m}}{\zeta}-2\zeta_{m}>0. This is satisfied in d=1d=1, see Table 1. There one finds 4dζmζ2ζm=0.2538594-d\frac{\zeta_{m}}{\zeta}-2\zeta_{m}=0.253859. To compare, in d=0d=0 (qEW) one gets 42ζm=42×204-2\zeta_{m}=4-2\times 2^{-}\approx 0. In d=1d=1 qEW has 412×5/4=0.54-1-2\times 5/4=0.5.

Taking the limit of u0u\to 0 in Eq. (61), we obtain a soft bound at 1-loop order,

|Δ~(0+)|>d(d+2)12λ~Δ~(0).|\tilde{\Delta}^{\prime}(0^{+})|>\sqrt{\frac{d(d+2)}{12}}\tilde{\lambda}\tilde{\Delta}(0). (64)

When violated, the rescaling term becomes negative, and we expect the effective force correlator to disappear at large scales. Using the definition of the universal amplitude 𝒜{\cal A} in Eq. (33), we can rewrite the bound (64) as111Note that the definition (33) for 𝒜{\cal A} remains unchanged upon replacing all quantities by their dimensionless analogue, noted with a tilde.

𝒜<𝒜cΔ=12d(d+2)={2 in d=11.22 in d=20.894 in d=3.\mathcal{A}<{\cal A}_{\rm c}^{\Delta}=\sqrt{\frac{12}{d(d+2)}}=\left\{\begin{array}[]{c}2\mbox{~{}in~{}}d=1\\ 1.22\mbox{~{}in~{}}d=2\\ 0.894\mbox{~{}in~{}}d=3\end{array}\right.~{}. (65)

III.4.2 ζm>ζ\zeta_{m}>\zeta

We expect that the effective cc would grow at large scales, since it describes the long distance behavior of models with stronger than harmonic elasticity. As a result we demande that ψc>0\psi_{c}>0 (which implies ζm>ζ\zeta_{m}>\zeta ). Eq. (60) then yields

λ~×[Δ~(0+)+d13λ~Δ~(0)]<0.\tilde{\lambda}\times\left[\tilde{\Delta}^{\prime}(0^{+})+\frac{d-1}{3}\tilde{\lambda}\tilde{\Delta}(0)\right]<0. (66)

This can be rewritten as

𝒜<𝒜cψc=3d1.{\cal A}<{\cal A}_{\rm c}^{\psi_{c}}=\frac{3}{d-1}. (67)
Refer to caption
Figure 8: In d=1d=1: The 1-loop contributions ζm/ε\zeta_{m}/\varepsilon, amplitude ratio 𝒜{\cal A} and ζm/ζ1\zeta_{m}/\zeta-1 as a function of λ~\tilde{\lambda}. Setting d=1d=1 in the flow equations. The orange shaded range is excluded by demanding that Δ\Delta is relevant, the cyan line is the location of the fixed point for λ~\tilde{\lambda}. The red dashed line is the bound on 𝒜{\cal A} from 𝒜cΔ=𝒜cfc{\cal A}_{\rm c}^{\Delta}={\cal A}_{\rm c}^{f_{\rm c}}. (see section III.4.3)

III.4.3 Positive pinning force

The last condition is that the critical force at depinning needs to be negative (keeping us pinned), equivalent to a negative square bracket in Eq. (49). In terms of 𝒜{\cal A}, this results in

𝒜𝒜cfc=2d.{\cal A}\leq{\cal A}_{\rm c}^{f_{\rm c}}=\frac{2}{d}. (68)

We find that in 1d41\leq d\leq 4 the strongest bound is 𝒜cfc{\cal A}_{\rm c}^{f_{\rm c}} for the critical force, followed by the one for Δ(w)\Delta(w) and ψc\psi_{c},

𝒜<𝒜cfc𝒜cΔ<𝒜cψc.{\cal A}<{\cal A}_{\rm c}^{f_{\rm c}}\leq{\cal A}_{\rm c}^{\Delta}<{\cal A}_{\rm c}^{\psi_{c}}. (69)

It would be interesting to continue this to 2-loop order.

III.5 Solution of the flow equations

III.5.1 Scheme

How do we solve these coupled equations (Eqs. (58)-(63) ) The procedure is adapted from the standard ansatz for qEW LeDoussalWieseChauve2002 , explained in detail in Ref. Wiese2021 :

  1. (i)

    Use the normalization Δ~(0)=ε\tilde{\Delta}(0)=\varepsilon. In practice, this corresponds to setting ε1\varepsilon\to 1 and ζmζm/ε\zeta_{m}\to\zeta_{m}/\varepsilon in Eq. (61), and then solving the flow equations with Δ~(0)1\tilde{\Delta}(0)\to 1 in the code.

  2. (ii)

    Solve the (such rescaled) flow equation (61) for 0λ~20\leq\tilde{\lambda}\leq 2. The correct solution is the one for which Δ~(w)\tilde{\Delta}(w) decays to zero at least exponentially fast: A power-law decay, or an increase with ww, is not permitted by the physical initial condition.

  3. (iii)

    The critical λ~c\tilde{\lambda}_{\rm c} that satisfies Eq. (58) in our scheme is

    λ~c=64dζmε.\tilde{\lambda}_{c}=\sqrt{\frac{{6}}{4-d}}\sqrt{\frac{\zeta_{m}}{\varepsilon}}. (70)

    Given dd, the first square root is a number; the second one is the result from step (ii) above.

It is interesting to see how the different exponents depends on λ~\tilde{\lambda} that is why we solve the flow equations for different λ~\tilde{\lambda} instead of plugging the value given by Eq. (58).

III.5.2 d=1d=1

The procedure and the values obtained for different λ~\tilde{\lambda} are shown for d=1d=1 in Fig. 8. We see that ζm/ε\zeta_{m}/\varepsilon slightly decreases from its qEW value of ζmqEW=1/3\zeta_{m}^{\rm qEW}=1/3. The ratio ζm/ζ\zeta_{m}/\zeta starts at 11 for λ~=0\tilde{\lambda}=0, and then grows. The effective force correlator becomes irrelevant for λ~1.4\tilde{\lambda}\approx 1.4. At the same time the bound (65) for 𝒜{\cal A} (marked here as a red dashed line 𝒜/4=0.5{\cal A}/4=0.5) is violated. The critical λc=0.755203\lambda_{\rm c}=0.755203 respects all bounds in Eq. (69). It gives

ζmd=1\displaystyle\zeta_{m}^{d=1} =\displaystyle= 0.8555,\displaystyle 0.8555, (71)
ζd=1\displaystyle\zeta^{d=1} =\displaystyle= 0.6994,\displaystyle 0.6994, (72)
zd=1\displaystyle z^{d=1} =\displaystyle= 1.2736,\displaystyle 1.2736, (73)
𝒜d=1\displaystyle{\cal A}^{d=1} =\displaystyle= 1.2781.\displaystyle 1.2781. (74)

This can be compared to their values for λ=0\lambda=0 (qEW), ζm=ζ=1\zeta_{m}=\zeta=1, and z=4/3z=4/3, and the numerically obtained values ζm=1.052\zeta_{m}=1.052, ζ=0.636\zeta=0.636, and z=1.1z=1.1. The values (71)-(73) are pretty reasonable for 1-loop estimates: For qEW ζ\zeta in d=1d=1 comes out 20%20\% smaller (1 instead of 1.251.25); the same reduction applies to our prediction for ζm\zeta_{m} in qKPZ. ζ\zeta is about 10%10\% larger than the numerical value. Finally, while zz is too large, using the numerically known value for ζ/ζm\zeta/\zeta_{m} with the same 1-loop estimate would yield z=0.942z=0.942, smaller than the measured value of z=1.1z=1.1. (Note that the prediction of z=1z=1 in AmaralBarabasiBuldyrevHarringtonHavlinSadr-LahijanyStanley1995 is invalidated by numerics MukerjeeBonachelaMunozWiese2022 .)

Refer to caption
Figure 9: Same as Fig. 8 for d=2d=2. The lower red dashed line is the bound on 𝒜{\cal A} from 𝒜cfc{\cal A}_{\rm c}^{f_{\rm c}}, the upper one the bound from 𝒜cΔ{\cal A}_{\rm c}^{\Delta}.

III.5.3 d=2d=2

Relevant quantities as a function of λ\lambda are given on Fig. 9. Evaluation at λ=λc\lambda=\lambda_{\rm c} yields

ζmd=2\displaystyle\zeta_{m}^{d=2} =\displaystyle= 0.6051,\displaystyle 0.6051, (75)
ζd=2\displaystyle\zeta^{d=2} =\displaystyle= 0.4941,\displaystyle 0.4941, (76)
zd=2\displaystyle z^{d=2} =\displaystyle= 1.4112,\displaystyle 1.4112, (77)
𝒜d=2\displaystyle{\cal A}^{d=2} =\displaystyle= 1.2479.\displaystyle 1.2479. (78)

These results violate the bound (68) on 𝒜{\cal A} for fcf_{\rm c}. Supposing that this is an artifact of the 1-loop approximation, the next bound to consider is the bound (65), asking that the effective force correlator is relevant at the transition. This bound is only slightly violated. We therefore hope that the values given in Eqs. (75)-(78) are usable.

Our own numerical simulations MukerjeeBonachelaMunozWiese2022 give ζm=0.70(3)\zeta_{m}=0.70(3), ζ=0.47(3)\zeta=0.47(3) for TL92, and ζm=0.61(2)\zeta_{m}=0.61(2), ζ=0.48(2)\zeta=0.48(2) for anharmonic depinning. We expect the latter to be more reliable as there are less finite-size corrections. The agreement is then excellent.

For comparison we note that 1-loop qEW gives ζm=ζ=2/3\zeta_{m}=\zeta=2/3, and z=1.5556z=1.5556, while numerics gives ζ=ζm=0.753(2)\zeta=\zeta_{m}=0.753(2) and z=1.56(6)z=1.56(6).

III.5.4 d=3d=3

Relevant quantities as a function of λ\lambda are given on Fig. 11. At the non-trivial fixed point (70) for λ\lambda, we find

ζmd=3\displaystyle\zeta_{m}^{d=3} =?\displaystyle\stackrel{{\scriptstyle?}}{{=}} 0.9799,\displaystyle 0.9799, (79)
ζd=3\displaystyle\zeta^{d=3} =?\displaystyle\stackrel{{\scriptstyle?}}{{=}} 0.6048,\displaystyle 0.6048, (80)
zd=3\displaystyle z^{d=3} =?\displaystyle\stackrel{{\scriptstyle?}}{{=}} 0.9777,\displaystyle 0.9777, (81)
𝒜d=3\displaystyle{\cal A}^{d=3} =?\displaystyle\stackrel{{\scriptstyle?}}{{=}} 1.1394.\displaystyle 1.1394. (82)

These values violate all bounds, and thus need to be rejected. There are four possible conclusions:

  • (i)

    since the effective force correlator is irrelevant at this fixed point, there is no qKPZ class.

  • (ii)

    this fixed point is irrelevant, but there is a another fixed point not contained in our approach.

  • (iii)

    our approach is too crude.

  • (iv)

    our approach is crude as the fixed-point value for λ\lambda is too large, but providing a better value for λc\lambda_{\rm c} it remains predictive.

If we believe Ref. RossoHartmannKrauth2002 , there is a distinguished fixed point for both classes, eliminating (i) while allowing for (ii). While the following option (iii) is suggestive, we can still try (iv): we use λ\lambda such that the effective depinning force at the fixed point is zero. Since the KPZ term grows under renormalization, it will finally render all pinned configurations unstable. This in turn reduces the generation of the KPZ term, making it less relevant. Our conjecture, which needs to be validated in numerical simulations, is that the system gets stuck at this precise point. Under this assumption we obtain

ζmd=3\displaystyle\zeta_{m}^{d=3} =\displaystyle= 0.2998,\displaystyle 0.2998, (83)
ζd=3\displaystyle\zeta^{d=3} =\displaystyle= 0.2751,\displaystyle 0.2751, (84)
zd=3\displaystyle z^{d=3} =\displaystyle= 1.7620,\displaystyle 1.7620, (85)
𝒜d=3\displaystyle{\cal A}^{d=3} =\displaystyle= 0.6667.\displaystyle 0.6667. (86)

These values are pretty much in line with the simulations for anharmonic depinning in d=3d=3: ζm=0.34(3)\zeta_{m}=0.34(3), ζ=0.27(3)\zeta=0.27(3). We do not know the values of zz and 𝒜{\cal A}.

We remark that the behavior in d=3d=3 calls for more investigation: for example, dcqKPZd_{\rm c}^{\rm qKPZ} may be between 33 and 44.

III.5.5 Force amplitude ratio

Let us now address the relative fluctuations of forces defined in Eqs. (26) to (28). At leading order in perturbation theory we can estimate from Fig. 3 (where the δiΔ(w)\delta_{i}\Delta(w) are defined) that

ΔFF(w)Δ(w)\displaystyle\frac{\Delta_{FF}(w)}{\Delta(w)} \displaystyle\approx δ1Δ(w)δ1Δ(w)+δ2Δ(w)+δ3Δ(w),\displaystyle\frac{\delta_{1}\Delta(w)}{\delta_{1}\Delta(w)+\delta_{2}\Delta(w)+\delta_{3}\Delta(w)}, (87)
ΔΛΛ(w)Δ(w)\displaystyle\frac{\Delta_{\Lambda\Lambda}(w)}{\Delta(w)} \displaystyle\approx δ2Δ(w)δ1Δ(w)+δ2Δ(w)+δ3Δ(w),\displaystyle\frac{\delta_{2}\Delta(w)}{\delta_{1}\Delta(w)+\delta_{2}\Delta(w)+\delta_{3}\Delta(w)}, (88)
ΔΛF(w)Δ(w)\displaystyle\frac{\Delta_{\Lambda F}(w)}{\Delta(w)} \displaystyle\approx δ3Δ(w)δ1Δ(w)+δ2Δ(w)+δ3Δ(w).\displaystyle\frac{\delta_{3}\Delta(w)}{\delta_{1}\Delta(w)+\delta_{2}\Delta(w)+\delta_{3}\Delta(w)}.\qquad (89)

These equations simplify upon using that δ3Δ(w)=0\delta_{3}\Delta(w)=0. Given the similar functional forms shown in Fig. 10, let us focus on the relative amplitudes. With the universal amplitude 𝒜{\cal A} defined in Eq. (33), we get

ΔFF(0)Δ(0)\displaystyle\frac{\Delta_{FF}(0)}{\Delta(0)} \displaystyle\approx 11d(d+2)12𝒜2,\displaystyle\frac{1}{1-\frac{d(d+2)}{12}{\cal A}^{2}}, (90)
ΔΛΛ(0)Δ(0)\displaystyle\frac{\Delta_{\Lambda\Lambda}(0)}{\Delta(0)} \displaystyle\approx d(d+2)12𝒜21d(d+2)12𝒜2,\displaystyle\frac{\frac{d(d+2)}{12}{\cal A}^{2}}{1-\frac{d(d+2)}{12}{\cal A}^{2}}, (91)
ΔΛF(0)Δ(0)\displaystyle\frac{\Delta_{\Lambda F}(0)}{\Delta(0)} \displaystyle\approx 0.\displaystyle 0. (92)
Refer to caption
Figure 10: Correlators of the disorder force, the interface center of mass, and the KPZ force, as well as the cross correlator of the KPZ force and the disorder force. The interface center of mass correlator is a mix of the disorder force and the KPZ force.

In our simulations in d=1d=1 we find

ΔFF(0)Δ(0)\displaystyle\frac{\Delta_{FF}(0)}{\Delta(0)} =\displaystyle= 1.40(3),\displaystyle 1.40(3), (93)
ΔΛΛ(0)Δ(0)\displaystyle\frac{\Delta_{\Lambda\Lambda}(0)}{\Delta(0)} =\displaystyle= 0.36(3),\displaystyle 0.36(3), (94)
ΔΛF(0)Δ(0)\displaystyle\frac{\Delta_{\Lambda F}(0)}{\Delta(0)} =\displaystyle= 0.18(3).\displaystyle-0.18(3). (95)

The theory in d=1d=1 has

d(d+2)12𝒜2=0.408,\frac{d(d+2)}{12}{\cal A}^{2}=0.408, (96)

which gives 1.691.69, 0.240.24 and 0 for the three ratios in Eqs. (93) to (95). Using the measured amplitude 𝒜=1.1{\cal A}=1.1 these ratios become 1.431.43, 0.210.21 and 0 which is closer to the measured amplitudes. All these values seem pretty reasonable given the order of approximation.

III.5.6 Other quantities and summary

Other properties of Δ~(w)\tilde{\Delta}(w) derived from the FRG solution are presented in table 2. An interesting property is the curvature κ\kappa, defined as

f(w)\displaystyle f(w) :=\displaystyle:= ln(Δ(w)/Δ(0)),\displaystyle\ln\big{(}\Delta(w)/\Delta(0)\big{)},
κ\displaystyle\kappa :=\displaystyle:= 12f′′(0+)f(0+)2=12[1Δ(0)Δ′′(0+)Δ(0+)2].\displaystyle\frac{1}{2}\frac{f^{\prime\prime}(0^{+})}{f^{\prime}(0^{+})^{2}}=\frac{1}{2}\left[1-\frac{\Delta(0)\Delta^{\prime\prime}(0^{+})}{\Delta^{\prime}(0^{+})^{2}}\right]. (97)

It is constructed such that an exponential decaying Δ(w)\Delta(w), which gives a straight line for f(w)f(w), has a vanishing curvature. The definition was motivated by the observation in LeDoussalWiese2002  that the FRG flow in the massless scheme possesses an exponentially decaying subspace, protected to all orders in perturbation theory. Our simulations in MukerjeeBonachelaMunozWiese2022  showed no evidence for this subspace. Still, κ\kappa is a scale-free parameter which allows one to distinguish different shapes.

Refer to caption
Figure 11: Same as Fig. 8 for d=3d=3. The lower red dashed line is the bound on 𝒜{\cal A} from 𝒜cfc{\cal A}_{\rm c}^{f_{\rm c}}, the upper one the bound from 𝒜cΔ{\cal A}_{\rm c}^{\Delta}.
quantity dd qKPZ FT qKPZ sim qEW FT
κ\kappa 11 0.12910.1291 0.12(1)0.12(1) 0.16670.1667
22 0.07380.0738 0.07(1)0.07(1) 0.16670.1667
33 0.077040.07704^{*} 0.08(3)0.08(3) 0.16670.1667
Table 2: Correlator quantities coming from the analytical solution of the flow equations, setting Δ~(0)=ε\tilde{\Delta}(0)=\varepsilon. For qKPZ in d=3d=3 we fix λ~\tilde{\lambda} by supposing that the effective force correlator is marginal; the resulting values are indicated by an asterisk.

Our results for the exponents are summarized in table 3, and in Figs. 12 and 13 for the full function Δ~(w)\tilde{\Delta}(w), rescaled such that Δ~(0)=Δ~(0+)=1\tilde{\Delta}(0)=-\tilde{\Delta}^{\prime}(0^{+})=1. They show excellent agreement between theory and simulation.

Refer to caption

Figure 12: (colors online) (Left) Correlators in d=1d=1 from simulations of harmonic depinning (qEW) and anharmonic depinning (in the qKPZ universality class), compared to the analytic solution of the flow equations. Δ(w)\Delta(w) for anharmonic depinning decays slightly faster than the one for harmonic depinning. The correlators are rescaled such that Δ(0)=|Δ(0+)|=1\Delta(0)=|\Delta^{\prime}(0^{+})|=1. (Right) Difference of the rescaled correlators measured or analytical. The qKPZ FRG 1-loop solution is around three times closer to the numerical simulation than the same curves for qEW.
Refer to caption
Figure 13: (Left) Correlators in d=2d=2 from simulations of harmonic depinning (qEW) and anharmonic depinning (qKPZ class), compared to the solution of the FRG flow equations. The FRG solution is much closer to anharmonic depinning than to qEW. The correlators are rescaled such that Δ(0)=|Δ(0+)|=1\Delta(0)=|\Delta^{\prime}(0^{+})|=1. (Right) Difference of the rescaled correlators measured and analytical. The agreement between simulations and theory is of the same order of magnitude for the two universality class, even if the qKPZ theory is much more sophisticated.
Exponent dim field theory simulations
ζ\zeta 11 0.69940.6994 0.636(8)0.636(8)
22 0.49410.4941 0.48(2)0.48(2)
33 0.27510.2751^{*} 0.27(3)0.27(3)
ζm\zeta_{m} 11 0.85550.8555 1.052(5)1.052(5)
22 0.60510.6051 0.61(2)0.61(2)
33 0.29980.2998^{*} 0.34(3)0.34(3)
zz 11 1.27361.2736 1.10(2)1.10(2)
22 1.41121.4112
33 1.7621.762^{*}
𝒜\mathcal{A} 1 1.2781 1.1(1)1.1(1)
22 1.24791.2479
33 0.66670.6667^{*}
Table 3: Critical exponents of the qKPZ class, from simulations of anharmonic depinning (except for zz coming from TL92) and the analytical resolution of the fixed-point equations. In d=3d=3 we fix λ~\tilde{\lambda} by supposing that the depinning force remains positive, indicated by an asterisk. Note that our simulations agree with RossoHartmannKrauth2002 , and with the static exponents of AmaralBarabasiBuldyrevHarringtonHavlinSadr-LahijanyStanley1995 for d2d\leq 2, see MukerjeeBonachelaMunozWiese2022 for a detailed discussion.

III.6 Cole-Hopf transformation

The Cole-Hopf transformation is defined by

Z(x,t)=eλ^u(x,t)u(x,t)=lnZ(x,t)λ^.Z(x,t)=\mathrm{e}^{\hat{\lambda}u(x,t)}\quad\Leftrightarrow\quad u(x,t)=\frac{\ln Z(x,t)}{\hat{\lambda}}. (98)

It is build to remove the non-linear term proportional to λ\lambda from the KPZ equation (1), and reproduced here,

ηtu(x,t)\displaystyle\eta\partial_{t}u(x,t) =\displaystyle= c2u(x,t)+λ[u(x,t)]2+m2[wu(x,t)]\displaystyle c\nabla^{2}u(x,t)+\lambda\left[\nabla u(x,t)\right]^{2}+m^{2}\big{[}w{-}u(x,t)\big{]} (99)
+F(x,u(x,t)).\displaystyle+F\big{(}x,u(x,t)\big{)}.

The transformed equation reads

ηtZ(x,t)\displaystyle\eta\partial_{t}Z(x,t) =\displaystyle= c2Z(x,t)+λ^Z(x,t)F(x,lnZ(x,t)λ^)\displaystyle c\nabla^{2}Z(x,t)+\hat{\lambda}Z(x,t)F\left(x,\frac{\ln Z(x,t)}{\hat{\lambda}}\right) (100)
+m2Z(x,t)[λ^wlnZ(x,t)].\displaystyle+m^{2}Z(x,t)\left[\hat{\lambda}w-{\ln Z(x,t)}\right].\qquad

Some remarks are in order:

  • (i)

    while the term m2\sim m^{2} in Eq. (99) provides a mass to the free propagator, i.e. a decay for large distances xx proportional to em|x|\mathrm{e}^{-m|x|}, it becomes a non-linear term ZlnZ\sim Z\ln Z in the transformed equation (100). For this reason that one usually sets m0m\to 0.

  • (ii)

    The force f=m2wf=m^{2}w in Eq. (99), which could be introduced independently of the term linear in u(x,t)u(x,t), becomes a mass for the Cole-Hopf transformed theory (100), of the form fλ^Z(x,t)f\hat{\lambda}Z(x,t). As a result, the free propagator for ZZ decays with a factor of e|x|fλ^\mathrm{e}^{-|x|\sqrt{f\hat{\lambda}}}.

This indicates that the Cole-Hopf transformation heavily shakes up infrared and ultraviolet properties of the theory. It may therefore not be surprising that in LeDoussalWiese2002  no fixed point was found, whereas here, with properly defined physical fields, there is an FRG fixed point. A better understanding of the Cole-Hopf transformation and its consequences are desirable. We cannot exclude that it has some bearing on the perturbative treatment FreyTaeuber1994 ; Laessig1995 ; Wiese1997c ; Wiese1998a of the KPZ equation itself, or on the mapping between the KPZ equation and the corresponding directed polymer problem LeDoussalWiese2005a ; Wiese2021 , with all that this entails.

IV Physical insights

Let us summarize the main physical insights from our work:

  1. 1.

    Most importantly, the qKPZ class covers a wide range of microscopic models, and is universal. Strong evidence for this comes from the ability of the theory to predict not only the critical exponents, but also the effective KPZ amplitude 𝒜{\cal A}, and the force-correlator Δ(w)\Delta(w).

  2. 2.

    The introduction of the non-linearity facilitates depinning as compared to qEW, Eq. (49). This favors “flatter” interfaces, i.e. those for which the integrated KPZ term is smaller, reducing the roughness exponent ζ\zeta.

  3. 3.

    The renormalized force correlator in dimension d=1d=1 is close in shape to the correlator of qEW. This means that all properties linked to the shape of the correlator are close: for example, the avalanches-size correlations ThieryLeDoussalWiese2016 , or the correlation length ξ\xi_{\bot}. The scaling dimension of ξ\xi_{\bot} is close to its qEW counterpart, ζmqKPZζqEW\zeta_{m}^{\text{qKPZ}}\approx\zeta^{\text{qEW}}, whereas the roughness exponents ζ\zeta are rather different.

  4. 4.

    To properly renormalize the qKPZ class, one needs a confining potential. The confining potential forbids large fluctuations of the interface, which on the technical level provides a clear distinction between short-distance and long-distance divergences.

V Conclusion

We revisited the qKPZ universality class. Using a careful comparison to numerical simulations in dimensions d=1d=1, d=2d=2, and d=3d=3, we constructed a consistent theory. The crucial ingredient is a flow-equation for the KPZ non-linearity, which is controlled by dimension dd. Behind this feature lies the observation that all field theories for qEW with SR or LR elasticity, as well as qKPZ merge into a single theory in dimension d=0d=0. Our theory has predictive powers as long as we have a sufficient knowledge of the qEW fixed point in small dimensions, and we are not too far away from d=0d=0. We derived several bounds, respected in low dimensions, but violated in dimension d=3d=3; there we currently can only close our scheme with an adhoc assumption.

We hope that our method of first measuring the effective theory in a simulation, before attempting to build a field theory, can serve in other contexts as well. Applying our approach to other growth experiments for which no theory is available seems promising DiasYunkerYodhAraujoTelo-da-Gama2018 . We hope it will also shed light on the problems in the standard (thermal) KPZ equation in higher dimensions.

Acknowledgements.
We thank Juan A. Bonachela and Miguel A. Muñoz for stimulating discussions and collaboration on the numerical part of this project, published in MukerjeeBonachelaMunozWiese2022 .

Appendix A Field-theory details

As explained in the main text, our field theory is massive, with a time integrated response function given by Ck=1/(ck2+m2)C_{k}=1/(ck^{2}+m^{2}). All diagrams are calculated with CkC_{k}. In appendix A.1 we first give all momentum integrals appearing in the main text or used later. In the following appendix A.2, we recalculate all diagrams in the massive scheme.

A.1 Useful momentum integrals

To calculate all integrals, we use the Feynman representation of the time integrated response,

Ck=1ck2+m2=s>0es(cq2+m2).C_{k}=\frac{1}{ck^{2}+m^{2}}=\int_{s>0}\mathrm{e}^{-s(cq^{2}+m^{2})}. (101)

This lets appear a normalization factor

kesk2=1(4πs)d/2.\int_{k}\mathrm{e}^{-sk^{2}}=\frac{1}{(4\pi s)^{d/2}}. (102)

The elasticity cc and the mass mm both appear in the momentum integrals, and can be taken out by a rescaling of kk. As an example consider

I1\displaystyle\!\!\!\!\!I_{1} :=\displaystyle:= k1(ck2+m2)2=1cd/2k1(k2+m2)2\displaystyle\int_{k}\frac{1}{(ck^{2}+m^{2})^{2}}=\frac{1}{c^{d/2}}\int_{k}\frac{1}{(k^{2}+m^{2})^{2}} (103)
=\displaystyle= md4cd/2k1(k2+1)2=md4cd/2ks>0ses(k2+1)\displaystyle\frac{m^{d-4}}{c^{d/2}}\int_{k}\frac{1}{(k^{2}+1)^{2}}=\frac{m^{d-4}}{c^{d/2}}\int_{k}\int_{s>0}s\,\mathrm{e}^{-s(k^{2}+1)}
=\displaystyle= md4cd/21(4π)d/2s>0s1d/2=md4cd/22Γ(1+ε2)ε(4π)d/2.\displaystyle\frac{m^{d-4}}{c^{d/2}}\frac{1}{(4\pi)^{d/2}}\int_{s>0}s^{1-d/2}=\frac{m^{d-4}}{c^{d/2}}\frac{2\Gamma(1{+}\frac{\varepsilon}{2})}{\varepsilon(4\pi)^{d/2}}.~{}~{}~{}~{}~{}

In the first step, we rescaled kkck\to k\sqrt{c}. In the second step kkmk\to\frac{k}{m}. These steps assume that there are no explicit cutoffs on kk, and that the only cutoff is set by mm, and dimensional regularization is used. We then used the auxiliary integral (101), and the momentum integral (102). Below we give a complete list of all encountered integrals, after rescaling to eliminate the cc and mm dependence.

k1k2+1\displaystyle\int_{k}\frac{1}{k^{2}+1} =\displaystyle= Γ(1d2)(4π)d/2,\displaystyle\frac{\Gamma\left(1-\frac{d}{2}\right)}{(4\pi)^{d/2}}, (104)
kk2(k2+1)2\displaystyle\int_{k}\frac{k^{2}}{(k^{2}+1)^{2}} =\displaystyle= d2k1k2+1,\displaystyle\frac{d}{2}\int_{k}\frac{1}{k^{2}+1}, (105)
k1(k2+1)2\displaystyle\int_{k}\frac{1}{(k^{2}+1)^{2}} =\displaystyle= Γ(2d2)(4π)d/22Γ(1+ε2)ε(4π)d/2,\displaystyle\frac{\Gamma\left(2-\frac{d}{2}\right)}{(4\pi)^{d/2}}\equiv\frac{2\Gamma(1+\frac{\varepsilon}{2})}{\varepsilon(4\pi)^{d/2}}, (106)
kk12(k2+1)3\displaystyle\int_{k}\frac{k_{1}^{2}}{(k^{2}+1)^{3}} \displaystyle\equiv 14k1(k2+1)2,\displaystyle\frac{1}{4}\int_{k}\frac{1}{(k^{2}+1)^{2}}, (107)
kk2(k2+1)3\displaystyle\int_{k}\frac{k^{2}}{(k^{2}+1)^{3}} \displaystyle\equiv d4k1(k2+1)2,\displaystyle\frac{d}{4}\int_{k}\frac{1}{(k^{2}+1)^{2}}, (108)
kk4(k2+1)4\displaystyle\int_{k}\frac{k^{4}}{(k^{2}+1)^{4}} \displaystyle\equiv d(d+2)24k1(k2+1)2.\displaystyle\frac{d(d+2)}{24}\int_{k}\frac{1}{(k^{2}+1)^{2}}. (109)

Integral (106) is the key-integral used to define the renormalized force correlator Δ~(u)\tilde{\Delta}(u), see Eqs. (54)-(51). It is therefore useful to express as far as possible all integrals w.r.t. to integral (106), or including the dimensions w.r.t integral (103).

A.2 Diagrams

A.2.1 The coefficient a0a_{0}

According to LeDoussalWiese2002 , Eq. (A3)

[Uncaptioned image] =\displaystyle= λΔ(0+)u~u˙kck2(ck2+m2)3,\displaystyle\lambda\Delta^{\prime}(0^{+})\tilde{u}\dot{u}\int_{k}\frac{ck^{2}}{(ck^{2}+m^{2})^{3}},\qquad\qquad (110)
kck2(ck2+m2)3\displaystyle\int_{k}\frac{ck^{2}}{(ck^{2}+m^{2})^{3}} =\displaystyle= cd2kk2(k2+m2)3\displaystyle c^{-\frac{d}{2}}\int_{k}\frac{k^{2}}{(k^{2}+m^{2})^{3}} (111)
=\displaystyle= cd2md4kk2(k2+1)3.\displaystyle c^{-\frac{d}{2}}m^{d-4}\int_{k}\frac{k^{2}}{(k^{2}+1)^{3}}.

The relevant integral is Eq. (108), thus in Eq. (40)

a0=d4.a_{0}=\frac{d}{4}. (112)

Note that it does not modify η\eta in dimension d=0d=0.

A.2.2 The coefficient a1a_{1}

The first correction (in momentum space) to u~2u\tilde{u}\nabla^{2}u is

[Uncaptioned image] =\displaystyle= 2Δ(0+)λkkp(c(k+p)2+m2)(ck2+m2)\displaystyle-2\Delta^{\prime}(0^{+})\lambda\int_{k}\frac{kp}{(c(k+p)^{2}+m^{2})(ck^{2}+m^{2})} (113)
=\displaystyle= 4Δ(0+)λkc(kp)2(ck2+m2)3+𝒪(p3)\displaystyle 4\Delta^{\prime}(0^{+})\lambda\int_{k}\frac{c(kp)^{2}}{(ck^{2}+m^{2})^{3}}+{\cal O}(p^{3})
=\displaystyle= Δ(0+)λ^(cp2)I1.\displaystyle\Delta^{\prime}(0^{+}){\hat{\lambda}}(cp^{2})I_{1}.

Note that p2u2u-p^{2}u\leftrightarrow\nabla^{2}u. This yields in Eq. (41)

a1=1.a_{1}=1. (114)

A.2.3 The coefficient a2a_{2}

The second correction (in momentum space) to u~2u\tilde{u}\nabla^{2}u is

[Uncaptioned image]=4Δ(0)λ2k(kp)[k(k+p)](c(k+p)2+m2)(ck2+m2)2\displaystyle\!\!\!\parbox{36.51959pt}{\hskip 3.44444pt\includegraphics[scale={0.35}]{./KPZ5}\hskip 3.44444pt}=-4\Delta(0)\lambda^{2}\int_{k}\frac{(kp)[k(k+p)]}{(c(k+p)^{2}+m^{2})(ck^{2}+m^{2})^{2}}
=4Δ(0)λ2cd/2+1k2k2(kp)2(k2+m2)4(kp)2(k2+m2)3+𝒪(p3)\displaystyle=\frac{4\Delta(0)\lambda^{2}}{c^{d/2+1}}\int_{k}\frac{2k^{2}(kp)^{2}}{(k^{2}+m^{2})^{4}}-\frac{(kp)^{2}}{(k^{2}+m^{2})^{3}}+{\cal O}(p^{3})
=4Δ(0)λ^2(cp2)I1d13.\displaystyle=4\Delta(0)\hat{\lambda}^{2}(cp^{2})I_{1}\frac{d-1}{3}. (115)

This implies in Eq. (41)

a2=d13.a_{2}=\frac{d-1}{3}. (116)

A.2.4 The coefficient a3a_{3}

Denoting by p1p_{1} and p2p_{2} the momenta entering into the two external fields to the right, we have up to higher-order corrections in the pip_{i}

[Uncaptioned image] =\displaystyle= k4λ2Δ(0+)(kp1)α(kp2)β(ck2+m2)3u~p1p2up1up2\displaystyle\int_{k}4\lambda^{2}\Delta^{\prime}(0^{+})\frac{(kp_{1})^{\alpha}(kp_{2})^{\beta}}{\left(ck^{2}+m^{2}\right)^{3}}\tilde{u}_{-p_{1}-p_{2}}u_{p_{1}}u_{p_{2}} (117)
=\displaystyle= k4λ2Δ(0+)k2d(p1p2)(ck2+m2)3u~p1p2up1up2\displaystyle\int_{k}4\lambda^{2}\Delta^{\prime}(0^{+})\frac{\frac{k^{2}}{d}(p_{1}\cdot p_{2})}{\left(ck^{2}+m^{2}\right)^{3}}\tilde{u}_{-p_{1}-p_{2}}u_{p_{1}}u_{p_{2}}
=\displaystyle= k4λ2Δ(0+)k2d(ck2+m2)3u~(u)2\displaystyle-\int_{k}4\lambda^{2}\Delta^{\prime}(0^{+})\frac{\frac{k^{2}}{d}}{\left(ck^{2}+m^{2}\right)^{3}}\tilde{u}(\nabla u)^{2}
=\displaystyle= 4Δ(0+)λ2dkk2(ck2+m2)3u~(u)2\displaystyle-4\Delta^{\prime}(0^{+})\frac{\lambda^{2}}{d}\int_{k}\frac{k^{2}}{(ck^{2}+m^{2})^{3}}\tilde{u}(\nabla u)^{2}
=\displaystyle= Δ(0+)λλ^I1u~(u)2.\displaystyle-\Delta^{\prime}(0^{+})\lambda\hat{\lambda}I_{1}\tilde{u}(\nabla u)^{2}.

We used Eq. (109). This yields in Eq. (42)

a3=1.a_{3}=1. (118)

A.2.5 The coefficient a4a_{4}

[Uncaptioned image] =\displaystyle= 8Δ(0)dλ3kk4(ck2+m2)4u~(u)2,\displaystyle-8\frac{\Delta(0)}{d}\lambda^{3}\int_{k}\frac{k^{4}}{{(ck^{2}+m^{2})}^{4}}\tilde{u}(\nabla u)^{2},\qquad (119)
[Uncaptioned image] =\displaystyle= 4Δ(0)dλ3kk4(ck2+m2)4u~(u)2.\displaystyle 4\frac{\Delta(0)}{d}\lambda^{3}\int_{k}\frac{k^{4}}{(ck^{2}+m^{2})^{4}}\tilde{u}(\nabla u)^{2}. (120)

Together their amplitude (without the factor of Δ(0)\Delta(0) and u~(u)2\tilde{u}(\nabla u)^{2}) is

4λ3dcd/2+2k4(k2+m2)4=λλ^2d+26I1.-\frac{4\lambda^{3}}{dc^{d/2+2}}\int\frac{k^{4}}{(k^{2}+m^{2})^{4}}=-\lambda\hat{\lambda}^{2}\frac{d+2}{6}I_{1}. (121)

Therefore in Eq. (42),

a4=d+26.a_{4}=\frac{d+2}{6}. (122)

A.2.6 The coefficient a5a_{5}

It is given by twice the integral (109), thus for Eq. (43)

a5=d(d+2)12.a_{5}=\frac{d(d+2)}{12}. (123)

A.3 Depinning force

The perturbative calculation gives in absence of KPZ terms

Fc(1)=Δ(0+)k1ck2+m2.F_{\rm c}^{(1)}=-\Delta^{\prime}(0^{+})\int_{k}\frac{1}{ck^{2}+m^{2}}. (124)

The new contribution induced by the KPZ term is

Fc(2)=[Uncaptioned image]=λΔ(0)kk2(ck2+m2)2.F_{\rm c}^{(2)}={\color[rgb]{1,1,1}\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@color@gray@fill{1}\framebox{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}\parbox{19.17479pt}{\hskip 3.44444pt\includegraphics[scale={0.35}]{./KPZ1}\hskip 3.44444pt}}}={\lambda}\Delta(0)\int_{k}\frac{k^{2}}{(ck^{2}+m^{2})^{2}}. (125)

(There is a combinatorial factor of 1/21/2 from Δ(utut)\Delta(u_{t}-u_{t}), followed by a 22 for the number of possible contractions.) The total is

Fc\displaystyle F_{\rm c} =\displaystyle= Fc(1)+Fc(2)\displaystyle F_{\rm c}^{(1)}+F_{\rm c}^{(2)} (126)
\displaystyle\simeq [Δ(0+)+d2λcΔ(0)]k1ck2+m2.\displaystyle\left[\Delta^{\prime}(0^{+})+\frac{d}{2}\frac{\lambda}{c}\Delta(0)\right]\int_{k}\frac{1}{ck^{2}+m^{2}}.

References