This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Density spikes near black holes in self-interacting dark matter halos and indirect detection constraints

Gerardo Alvarez [email protected] Department of Physics and Astronomy, University of California, Riverside, California 92521, USA    Hai-Bo Yu [email protected] Department of Physics and Astronomy, University of California, Riverside, California 92521, USA
Abstract

Self-interacting dark matter (SIDM) naturally gives rise to a cored isothermal density profile, which is favored in observations of many dwarf galaxies. The dark matter distribution in the presence of a central black hole in an isothermal halo develops a density spike with a power law of r7/4r^{-7/4}, which is shallower than r7/3r^{-7/3} as expected for collisionless dark matter (CDM). Thus, indirect detection constraints on dark matter annihilations from the density spike could be relaxed in SIDM. Taking the most dense satellite galaxy of the Milky Way Draco as an example, we derive upper limits on the annihilation cross section and the black hole mass for both SIDM and CDM halos. For the former case, Draco could host an intermediate mass black hole even if dark matter is composed of thermal relics. We further explore the constraints from the Milky Way and M87, which host supermassive black holes, and show the upper limits on the annihilation cross section are significantly weakened in SIDM. Our results also indicate that the Event Horizon Telescope could provide a unique test of SIDM spikes.

pacs:
95.35.+d

I Introduction

It is well established that dark matter makes up about 85%85\% of the mass in the Universe Ade et al. (2016). Indirect searches of high-energy standard model particles originating from dark matter annihilations or decays provide an important way of understanding its nature. Of central importance to the indirect detection search is the distribution of dark matter within galactic halos. In the prevailing scenario of dark matter, it is composed of collisionless thermal relics. Numerical simulations show that collisionless dark matter (CDM) typically produces a Navarro-Frenk-White (NFW) density profile in the halo Navarro et al. (1996, 1997), which has a characteristic feature of ρ(r)r1\rho(r)\propto r^{-1} towards the center Dubinski and Carlberg (1991). It has also been established that virtually all large galaxies host central supermassive black holes, see, e.g. Kormendy and Ho (2013). The presence of a central black hole could alter the dark matter density profile in the inner halo, and for the standard NFW profile a density spike, ρ(r)r7/3\rho(r)\propto r^{-7/3}, could form near a black hole that grew adiabatically Gondolo and Silk (1999). The high density of the spike could boost the dark matter annihilation rate. For example, the Milky Way hosts a central supermassive black hole with mass 4×106M\sim 4\times 10^{6}~{}{\rm M_{\odot}} Gillessen et al. (2009); Ghez et al. (2008). Dark matter annihilations could produce very bright sharp signals that may be visible as a point source in the galactic center, see, e.g., Gondolo and Silk (1999); Hooper and Dingus (2004); Aloisio et al. (2004); Fields et al. (2014); Belikov et al. (2016); Sandick et al. (2018); Chiang et al. (2020). Refs. Lacroix et al. (2015, 2017) show that observations from the M87 galaxy have excluded thermal relic dark matter in the presence of a CDM spike near its 6.5×109M6.5\times 10^{9}~{}{\rm M_{\odot}} black hole.

It’s less known observationally whether small dwarf galaxies, like satellite galaxies of the Milky Way, may host central black holes with intermediate masses. Interestingly, one could derive constraints on the central black hole mass in the satellites using dark matter indirect detection observations. For example, for the thermal relic scenario with an ss-wave annihilation cross section, the central black hole mass cannot be higher than 102103M\sim 10^{2}\textup{--}10^{3}~{}{\rm M_{\odot}} in Draco Wanders et al. (2015), the most dense satellite of the Milky Way, otherwise the flux of dark matter annihilation signals would surpass the upper limit from Fermi-LAT gamma-ray observations due to the presence of the density spike induced by the black hole. These limits could be relaxed if the power law of the spike is more mild. This could occur if the black hole grows away from the center of the halo or it does not grow adiabatically from a seed, but being brought in by mergers Ullio et al. (2001). In addition, mergers of black holes in the centers of the progenitor halos could erase the density spike Merritt et al. (2002). Gravitational scatterings between stars and dark matter particles could also kinetically heat up the spike and reduce its density Gnedin and Primack (2004); Merritt (2004).

In this work, we study indirect detection constraints on dark matter spikes in self-interacting dark matter (SIDM), see Tulin and Yu (2018) for a recent review. In this scenario, dark matter has strong self-interactions that can thermalize the inner halo over cosmological timescales Dave et al. (2001); Vogelsberger et al. (2012); Rocha et al. (2013); Peter et al. (2013); Zavala et al. (2013); Vogelsberger et al. (2016); Fischer et al. (2020). Recent studies show that SIDM is favored for explaining diverse dark matter distributions over a wide range of galactic systems Kaplinghat et al. (2016); Kamada et al. (2017); Creasey et al. (2017); Ren et al. (2019); Kaplinghat et al. (2019); Sameie et al. (2020); Kahlhoefer et al. (2019); Yang et al. (2020); Sagunski et al. (2020); Andrade et al. (2020), implying that the inner region of dark halos might be indeed thermalized. Ref. Shapiro and Paschalidis (2014) uses a conduction fluid model and derives density profiles of SIDM particles bound to a black hole. For a Coulomb-like self-interaction, a central black hole can induce a density spike of ρ(r)r7/4\rho(r)\propto r^{-7/4}, which is shallower than the CDM one ρ(r)r7/3\rho(r)\propto r^{-7/3}. We apply these results to Draco, the Milky Way and M87, and derive upper limits on the annihilation cross section. We will show in SIDM Draco could contain central black holes with intermediate masses 600M\sim 600~{}{\rm M_{\odot}} as expected in the black hole-host galaxy relation Tremaine et al. (2002), while the halo is still composed of thermal relic dark matter. And the upper limits can be weakened by factors of 107\sim 10^{7} and 10310^{3} for the Milky Way and M87, respectively. We will also show that M87 could be a promising target for probing SIDM spikes with data from the Event Horizon Telescope (EHT).

The rest of the paper is organized as follows. In Sec. II, we review density profiles of SIDM spikes near a black hole. In Sec. III, we derive Fermi-LAT constraints on the annihilation cross section and the black hole mass for Draco. In Sec. IV, we discuss implications for the Milky Way and M87. We conclude in Sec. V.

II SIDM density spikes near a black hole

We assume dark matter particles in the inner halo follow an isotropic, quasi-equilibrium distribution due to dark matter interactions. A Schwarzschild black hole is located at the center of the halo with a mass of MM_{\bullet}, which is much smaller than the total halo mass, but larger than the mass of bound SIDM particles in the spike. Ref. Shapiro and Paschalidis (2014) uses a conduction fluid model and derives density profiles of SIDM particles bound to the black hole, which depend on the form of the self-scattering cross section σ\sigma. Consider the parameterization σ=σ0(v/v0)a\sigma=\sigma_{0}(v/v_{0})^{-a}, where σ0\sigma_{0} is the normalization factor, aa characterizes the velocity dependence, vv is 1D velocity dispersion of the particles in the spike and v0v_{0} is that of outside, the density follows a power law of

ρr(3+a)/4\rho\propto r^{-(3+a)/4} (1)

for rrbh=GM/v02r\lesssim r_{\rm bh}=GM_{\bullet}/v^{2}_{0}, and the corresponding velocity dispersion scales as vr1/2v\propto r^{-1/2} Shapiro and Paschalidis (2014). With the power law solution, it’s easy to see that the energy flux transported out of the spike due to the self-interactions LL is independent of radius, as LNE/trL\sim NE/t_{r}, where Nρr3N\sim\rho r^{3} is the number of bound particles per shell, Ev2E\sim v^{2} energy per particle and tr=1/(σρv)t_{r}=1/(\sigma\rho v) relaxation time. This is the condition to have a steady state near a black hole Shapiro and Lightman (1976).

We see that the spike density profile becomes steeper as aa increases. Since the cross section is more suppressed in the spike for higher aa, the transport rate becomes smaller accordingly, resulting in a higher density. The velocity dependence of σ\sigma is related to particle physics realizations of SIDM. For example, a scalar dark matter candidate could have a self-coupling that leads to a constant cross section and a=0a=0 over all scales. More generally, there exists a scalar or vector force mediator with a mass of mϕm_{\phi}. When mχv0>mϕm_{\chi}v_{0}>m_{\phi}, the self-scattering is Coulomb-like, i.e., σv04\sigma\propto v^{-4}_{0} and a=4a=4. In the opposite limit, it’s point-like and a=0a=0. And in the resonant regime for attractive interactions, σv02\sigma\propto v^{-2}_{0} and a=2a=2. For a given set of mass parameters, aa may vary as well. Consider the best-fit model in Kaplinghat et al. (2016); Huo et al. (2018), where mχ103mϕm_{\chi}\sim 10^{3}m_{\phi}. For clusters, v0103km/sv_{0}\sim 10^{3}~{}{\rm km/s}, the model predicts a=4a=4 in both spike and its surrounding regions. For a dwarf halo with v0100km/sv_{0}\sim 100~{}{\rm km/s}, the self-scattering is point-like in the bulk of the halo, but becomes Coulomb-like towards the inner spike as vv increases as r1/2r^{-1/2}. In addition, black hole and halo masses are correlated. Thus observations of SMBHs over different mass scales may provide a unique probe of SIDM models.

As discussed above, the steepest spike density profile predicted in SIDM is ρr7/4\rho\propto r^{-7/4} for a=4a=4, which is slightly shallower than the one predicted in CDM if the hole grows adiabatically, i.e., ρr7/3\rho\propto r^{-7/3}. We will show that the small difference in the logarithmic density slope could lead to significantly different constraints from indirect detection as the signal strength is ρ2(r)\propto\rho^{2}(r). We note that CDM could have a spike profile of ρr3/2\rho\propto r^{-3/2} Gondolo and Silk (1999). Frequent gravitational scatterings between stars near the black hole and CDM particles could drive the latter to follow an isothermal distribution Gnedin and Primack (2004); Merritt (2004). This effect could be important for the Milky Way, but it’s negligible for Draco and M87, as we will discuss later.

To study implications of the density spikes on indirect detection constraints, we need to further specify inner boundary conditions. For SIDM, we extend the spike profile in Eq. 1 to r=2rr=2r_{\bullet} Ferrer et al. (2017); Shapiro and Paschalidis (2014), where r=2GM/c2r_{\bullet}=2GM_{\bullet}/c^{2} is the Schwarzschild radius, and set ρ(r)=0\rho(r)=0 for r2rr\leq 2r_{\bullet}. For CDM, we consider annihilation radius rannr_{\rm ann} that is calculated iteratively as ρ(rann)=mχ/σannvreltage\rho(r_{\rm{ann}})=m_{\chi}/\left<\sigma_{\rm{ann}}v_{\rm rel}\right>t_{\rm age} Vasiliev (2007); Shapiro and Shelton (2016), where σannvrel\left<\sigma_{\rm{ann}}v_{\rm rel}\ \right> is the thermally averaged annihilation cross section and tage=10Gyrt_{\rm age}=10~{}{\rm Gyr} is the age of the system. The CDM spike density saturates to ρ(rann)\rho(r_{\rm ann}) at the annihilation radius, and we further set ρ(r)=0\rho(r)=0 for r2rr\leq 2r_{\bullet} Ferrer et al. (2017). Note in SIDM, dark matter self-interactions could wash out the annihilation plateau Shapiro and Shelton (2016).

III Applications to Draco

Refer to caption
Refer to caption
Figure 1: Left: dark matter halo density profiles for SIDM (red) and CDM (black) halo models for the Milky Way satellite galaxy Draco without (solid) and with (dashed) a central black hole. For the latter case, the black hole mass is assumed to be 105M10^{5}~{}{\rm M_{\odot}} and the density spike follows a power law of r7/4r^{-7/4} and r7/3r^{-7/3} for the SIDM and CDM halos, respectively. A steep cutoff at around 10kpc10~{}{\rm kpc} is due to tidal stripping. Right: upper limits on the annihilation cross section vs. the central black hole mass for the SIDM (red) and CDM (black) halos with density spikes, based on Fermi-LAT gamma-ray observations of Draco. The dark matter mass is 10GeV10~{}{\rm GeV} (dashed) and 1TeV1~{}{\rm TeV} (solid). The horizontal line denotes the canonical thermal annihilation cross section σannvrel=3×1026cm3/s\left<\sigma_{\rm ann}v_{\rm rel}\right>=3\times 10^{-26}~{}{\rm cm^{3}/s} (dotted gray).

The presence of dark matter spikes could significantly boost indirect detection signals. In turn, if we assume dark matter is made of thermal relics, we can derive constraints on the mass of central black holes of galaxies using results from dark matter indirect searches. Ref. Wanders et al. (2015) considers Draco, the most dense satellite of the Milky Way, and shows its black hole mass cannot be larger than 102103M10^{2}\textup{--}10^{3}~{}{\rm M_{\odot}} for the dark matter mass in the range 100GeV1TeV100~{}{\rm GeV}\textup{--}1~{}{\rm TeV}, based on the Fermi-LAT gamma-ray data.

Since the SIDM halo model predicts a shallower density spike than the CDM one, we expect that the upper limits on MM_{\bullet} for Draco could be relaxed accordingly. To see the difference, we first consider dark matter density profiles for Draco without a black hole. Ref. Kaplinghat et al. (2019) fits the line-of-sight stellar velocity dispersion of Draco with an NFW profile and finds the best-fit values of the scale density and radius are ρs1.68×107M/kpc3\rho_{s}\approx 1.68\times 10^{7}~{}{\rm M_{\odot}/kpc^{3}} and rs1.94kpcr_{s}\approx 1.94~{}{\rm kpc}, respectively. In addition, it also considers a cored isothermal density profile following the solution to the Jeans equation v022lnρ=4πGρv^{2}_{0}\nabla^{2}\ln\rho=-4\pi G\rho with the boundary conditions ρ(0)=ρ0\rho(0)=\rho_{0} and ρ(0)=0\rho^{\prime}(0)=0, and finds the best fit values ρ02.55×108M/kpc3\rho_{0}\approx 2.55\times 10^{8}~{}{\rm M_{\odot}/kpc^{3}} and v013.88km/sv_{0}\approx 13.88~{}{\rm km/s}. This isothermal profile was first proposed to model dark matter distributions in an inner SIDM halo Kaplinghat et al. (2016, 2014) and it agrees with N-body simulations remarkably well Robertson et al. (2018); Ren et al. (2019); Robertson et al. (2020). The left panel of Fig. 1 (solid) shows the dark matter density profiles for Draco inferred from fitting to stellar kinematics as in Kaplinghat et al. (2019), where we have extrapolated them for r10kpcr\gtrsim 10~{}{\rm kpc} using a power law of r5r^{-5} to account for tidal stripping.

We use ρspike(r)=ρ(rspike)(rspike/r)γ\rho_{\rm{spike}}(r)=\rho(r_{\rm spike})\left(r_{\rm{spike}}/r\right)^{\gamma} to model the spike density profile, where rspiker_{\rm spike} is the spike radius, and γ=7/4\gamma=7/4 and 7/37/3 for SIDM and CDM halos, respectively. For SIDM, we set the spike radius to be the radius of influence calculated as rbh=GM/v02r_{\rm bh}=GM_{\bullet}/v_{0}^{2}, where v0v_{0} is the 1D velocity dispersion outside of the spike. It’s important to note that v0v_{0} is a constant over the radius for an SIDM halo and the calculation of rbhr_{\rm bh} is self-consistent. Taking M=105MM_{\bullet}=10^{5}~{}{\rm M_{\odot}} as an example and v014km/sv_{0}\approx 14~{}{\rm km/s} for Draco Kaplinghat et al. (2019), we find rspike2.2pcr_{\rm spike}\approx 2.2~{}{\rm pc} and ρ(rspike)2.4×108M/kpc3\rho(r_{\rm spike})\approx 2.4\times 10^{8}~{}{\rm M_{\odot}/kpc^{3}} as shown in the left panel of Fig. 1 (dashed red). For CDM, v0v_{0} is not a constant and it depends on radius. In this case, we follow Merritt (2004) and adopt a practical definition of rbhr_{\rm bh} through the condition

4π0rbh𝑑rr2ρ(r)=2M,4\pi\int_{0}^{r_{\rm bh}}drr^{2}\rho(r)=2{M_{\bullet}}, (2)

and the CDM spike radius is given by rspike0.2rbhr_{\rm{spike}}\approx 0.2r_{\rm{bh}} Merritt (2003). For M=105MM_{\bullet}=10^{5}~{}{\rm M_{\odot}}, we have rbh33pcr_{\rm bh}\approx 33~{}{\rm pc}, hence rspike6.6pcr_{\rm spike}\approx 6.6~{}{\rm pc} and ρ(rspike)4.6×109M/kpc3\rho(r_{\rm spike})\approx 4.6\times 10^{9}~{}{\rm M_{\odot}/kpc^{3}}; see the left panel of Fig. 1 (dashed black). Note the annihilation radius is much smaller than the spike radius and we do not show it in the figure. For instance, consider σannvrel=3×1026cm3/s\left<\sigma_{\rm ann}v_{\rm rel}\right>=3\times 10^{-26}~{}{\rm cm^{3}/s} and mχ=100GeVm_{\chi}=100~{}{\rm GeV}, we find rann104pcr_{\rm ann}\approx 10^{-4}~{}{\rm pc} for the CDM halo.

We consider dark matter annihilations to bb¯{b\bar{b}} states, which further produce gamma-ray signals. The differential flux from the contribution of the smooth halo component can be calculated as

dΦhalodE=12σannvrel4πmχ2dNdEJ¯\frac{d\Phi_{\rm{halo}}}{dE}=\frac{1}{2}\frac{\left<\sigma_{\rm{ann}}v_{\rm rel}\right>}{4\pi m_{\chi}^{2}}\frac{dN}{dE}\bar{J} (3)

where dN/dEdN/dE is the photon spectrum and J¯\bar{J} is the angular integrated JJ factor given by

J¯=2π0θmax𝑑θsinθJ(θ)=2π0θmax𝑑θsinθl.o.s𝑑sρ2[r(θ,s)].\bar{J}=2\pi\int^{\theta_{\rm{max}}}_{0}d\theta\sin\theta J(\theta)=2\pi\int^{\theta_{\rm{max}}}_{0}d\theta\sin\theta\int_{l.o.s}ds\rho^{2}[r(\theta,\rm{s})]. (4)

To perform the integral along the line of sight direction, we write r(s,θ)=D2+s22sDcos(θ)r(s,\theta)=\sqrt{D^{2}+s^{2}-2sD\cos(\theta)}, where D76kpcD\approx 76~{}{\rm kpc} is the distance from Earth to Draco, and we set θmax=0.5o\theta_{\rm max}=0.5^{\rm o}, corresponding to a solid angle of 2.4×104sr2.4\times 10^{-4}~{}{\rm sr}. For the SIDM and CDM halos of Draco shown in the left panel Fig. 1 (solid), we find J¯5.0×1018GeV2/cm5\bar{J}\approx 5.0\times 10^{18}~{}{\rm GeV^{2}/cm^{5}} and 4.8×1018GeV2/cm54.8\times 10^{18}~{}{\rm GeV^{2}/cm^{5}}, respectively. We see that although the two halo models have very different inner density profiles, their J¯\bar{J} factors are similar.

For the contribution from the density spike, we have

dΦspikedE=12σannvrelmχ2D2dNdEQ,\frac{d\Phi_{\rm{spike}}}{dE}=\frac{1}{2}\frac{\left<\sigma_{\rm{ann}}v_{\rm rel}\right>}{m_{\chi}^{2}D^{2}}\frac{dN}{dE}Q, (5)

where the QQ factor is calculated as

Q=rminrspike𝑑rr2ρspike2(r)={2ρ2(rspike)rspike3(rspike2r)1/2,SIDM35ρ2(rspike)rann3(rspikerann)14/3,CDMQ=\int_{r_{\rm min}}^{{r_{\rm spike}}}drr^{2}\rho_{\rm{spike}}^{2}(r)=\begin{cases}2\rho^{2}(r_{\rm spike})r^{3}_{\rm spike}\left(\frac{r_{\rm spike}}{2r_{\bullet}}\right)^{1/2},\,{\rm SIDM}\\ \frac{3}{5}\rho^{2}(r_{\rm spike})r^{3}_{\rm ann}\left(\frac{r_{\rm spike}}{r_{\rm ann}}\right)^{14/3},\,{\rm CDM}\end{cases} (6)

where rminr_{\rm min} is 2r=4GM/c22r_{\bullet}=4{G}M_{\bullet}/c^{2} for SIDM and the annihilation radius rannr_{\rm ann} for CDM. The annihilation radius can be calculated as rann=[σannvreltageρ(rspike)/mχ]3/7rspiker_{\rm ann}=[\left<\sigma_{\rm ann}v_{\rm rel}\right>t_{\rm age}\rho(r_{\rm spike})/m_{\chi}]^{3/7}r_{\rm spike}. For simplicity, we neglect contributions from the annihilation plateau, which could underestimate the CDM limits on σannvrel\left<\sigma_{\rm{ann}}v_{\rm rel}\right> by 30%\sim 30\% for Draco. In addition, we have assumed the condition rminrspiker_{\rm min}\ll r_{\rm spike} in Eq. 6, which is valid for the system we consider. For a given dark matter mass, black hole mass and annihilation cross section, we can calculate the expected signal flux by integrating Eqs. 3 and 5 for 100MeVE100GeV100~{}{\rm MeV}\leq E\leq 100~{}{\rm GeV}, the energy range of the Fermi-LAT gamma-ray space telescope. We take the photon spectrum dN/dEdN/dE from Cirelli et al. (2011); Amoroso et al. (2019), and obtain the total flux as Φtotal=Φhalo+Φspike\Phi_{\rm{total}}=\Phi_{\rm{halo}}+\Phi_{\rm{spike}}. For bb¯b\bar{b} final states, the upper limit on the gamma-ray flux is Φupper(625.8)×1011cm2s1\Phi_{\rm upper}\approx(62\textup{--}5.8)\times 10^{-11}~{}{\rm cm^{-2}s^{-1}} for mχ=10GeV1TeVm_{\chi}=10~{}{\rm GeV}\textup{--}1~{}{\rm TeV} Wanders et al. (2015), based on Fermi-LAT data on Draco. We vary the black hole mass and the dark matter mass, and derive upper limits on the annihilation cross section for the SIDM and CDM halo models of Draco.

The right panel of Fig. 1 shows the upper limits on the annihilation cross section vs. the black hole mass for the SIDM (red) and CDM (black) halos, where we consider the dark matter mass mχ=10GeVm_{\chi}=10~{}{\rm GeV} (dashed) and 1TeV1~{}{\rm TeV} (solid). The gray horizontal line denotes the canonical thermal cross section σannvrel=3×1026cm3/s\left<\sigma_{\rm ann}v_{\rm rel}\right>=3\times 10^{-26}~{}{\rm cm^{3}/s}. For the CDM halo, the thermal relic dark matter is excluded for mχ=10GeVm_{\chi}=10~{}{\rm GeV} and 1TeV1~{}{\rm TeV} if M10MM_{\bullet}\gtrsim 10~{}{\rm M_{\odot}} and 103M10^{3}~{}{\rm M_{\odot}}, respectively. For the SIDM halo, the upper limits on the annihilation cross section are essentially independent of the black hole mass, and the constraints are significantly relaxed. Since both halo models have similar J¯\bar{J} factors for the smooth component, the difference in the MM_{\bullet} bounds is caused by their different spike profiles. Observationally, it’s unknown whether Draco has a massive central black hole. If we extrapolate the black hole-host galaxy relation Tremaine et al. (2002) to Draco, it could host a black hole with M600MM_{\bullet}\sim 600~{}{\rm M_{\odot}}. In this case, SIDM could be composed of thermal relics, but CDM could not be for mχ1TeVm_{\chi}\lesssim 1~{}{\rm TeV}. In the limit where the spike is negligible, our analysis shows thermal relic dark matter is allowed for both halo models with mχ10GeVm_{\chi}\sim 10~{}{\rm GeV}. Ref. Wanders et al. (2015) finds a stronger limit of mχ30GeVm_{\chi}\gtrsim 30~{}{\rm GeV} for a CDM halo. This is because it considers a density profile with J¯1.20×1019GeV2/cm5\bar{J}\approx 1.20\times 10^{19}~{}{\rm GeV^{2}/cm^{5}}, which is a factor of 2.52.5 higher than our case.

SIDM predicts a weaker density spike near a central black hole. For the satellite galaxies like Draco, the presence of such a spike does not strengthen constraints on the SIDM annihilation cross section unless the black hole mass is much larger than 107M10^{7}~{}{\rm M_{\odot}}, which is impossible for those systems given their small masses. As estimated in Sameie et al. (2020), the halo mass of Draco is about 2×108M2\times 10^{8}~{}{\rm M_{\odot}} with a 4×109M4\times 10^{9}~{}{\rm M_{\odot}} progenitor falling into the tidal field of the Milky Way. In this work, we focus on dark matter annihilations to bb¯b\bar{b}, as it is one of the most studied channels in dark matter indirect detection, but it’s straightforward to extend to other channels as well. In addition, we could interpret our results in terms of a specific particle physics model of SIDM, combining with other constraints, see. e.g., Tulin et al. (2013); Kaplinghat et al. (2015); Bringmann et al. (2017); Cirelli et al. (2017); Chu et al. (2016); Kamada et al. (2019); Chu et al. (2019); Bernal et al. (2020); Kang and Lee (2020). It is also interesting to note that Draco was considered as a challenging case for SIDM Valli and Yu (2018); Read et al. (2018) as it has the highest dark matter content among the Milky Way satellites, but both dark matter self-interactions and tidal interactions are commonly expected to produce a shallow density core for a satellite galaxy. Recent works show the interplay of the two effects could actually lead to an opposite consequence, resulting in a high central density, due to the onset of SIDM core collapse Nishikawa et al. (2020); Sameie et al. (2020); Kahlhoefer et al. (2019); Correa (2020); Turner et al. (2020). Ref. Sameie et al. (2020) uses N-body simulations and demonstrates that the isothermal density profile of Draco shown in the left panel of Fig. 1 can be produced in SIDM.

IV Implications for the Milky Way and M87

Refer to caption
Refer to caption
Figure 2: Left: upper limits on the annihilation cross section for the Milky Way with a central black hole mass of M=4×106MM_{\bullet}=4\times 10^{6}~{}{\rm M_{\odot}} in the presence of SIDM (solid red) and CDM (solid black) spikes, compared to the case assuming a pure NFW halo (dashed black) from Abazajian et al. (2020). Right: similar to the left panel, but for the M87 galaxy with M=6.5×109MM_{\bullet}=6.5\times 10^{9}~{}{\rm M_{\odot}}. The NFW limits are from Lacroix et al. (2015). For both panels, the horizontal line denotes the canonical thermal annihilation cross section σannvrel=3×1026cm3/s\left<\sigma_{\rm ann}v_{\rm rel}\right>=3\times 10^{-26}~{}{\rm cm^{3}/s} (dotted gray).

We consider the Milky Way, which hosts a central black hole mass with M4×106MM_{\bullet}\sim 4\times 10^{6}~{}{\rm M_{\odot}} Gillessen et al. (2009); Ghez et al. (2008). Such a massive black hole could significantly enhance the spike density and boost indirect detection signals accordingly. Taking Fermi-LAT observations of the Galactic Center in gamma rays, Ref.  Abazajian et al. (2020) derives stringent upper limits on the annihilation cross section for a pure NFW profile and finds σannvrel4×10289×1025cm3/s\left<\sigma_{\rm ann}v_{\rm rel}\right>\lesssim 4\times 10^{-28}\textup{--}9\times 10^{-25}~{}{\rm cm^{3}/s} for mχ10GeV10TeVm_{\chi}\approx 10~{}{\rm GeV}\textup{--}10~{}{\rm TeV} and the bb¯b\bar{b} channel. We recast these limits to constrain σannvrel\left<\sigma_{\rm ann}v_{\rm rel}\right> in the presence of a density spike near the black hole for in both SIDM and CDM. In our study, we demand that the predicted signal flux with a spike should not exceed the one expected from a pure NFW halo as in Abazajian et al. (2020).

We first calculate the normalization factor for the flux. We assume an NFW density profile for the Milky Way halo with rs=26kpcr_{s}=26~{}{\rm kpc} and ρs=4.1×106M/kpc3\rho_{s}=4.1\times 10^{6}~{}{\rm M_{\odot}/kpc^{3}}, consistent with the mean values used in Abazajian et al. (2020). The J¯{\bar{J}} factor takes the form J¯=𝑑𝑑bl.o.s.𝑑sρ2[r(,b,s)]\bar{J}=\int d\ell db\int_{l.o.s.}ds\rho^{2}[r(\ell,b,s)] where bb and \ell are Galactic latitude and longitude, respectively, and r(,b,s)=D2+s22sDcos()cos(b)r(\ell,b,s)=\sqrt{{D}^{2}+s^{2}-2{sD}{\cos}(\ell){\cos}(b)} with D=8.25kpcD=8.25~{}{\rm kpc}. We integrate both bb and \ell from 20o-20^{\rm o} to 20o20^{\rm o}, in accord with the signal region in Abazajian et al. (2020), and find J¯=2.9×1022GeV2/cm5\bar{J}=2.9\times 10^{22}\ {\rm GeV^{2}/cm^{5}}. For a given dark matter mass, we take the corresponding upper limit on σannvrel\left<\sigma_{\rm ann}v_{\rm rel}\right> from Abazajian et al. (2020) and convert it into an upper limit on the differential gamma-ray flux using Eq. 3.

Unlike Draco, the stellar mass dominates the inner regions of the Milky Way and SIDM thermalization with a deep baryonic potential could lead to a high density with a negligible core size Kaplinghat et al. (2014), as dense as an NFW halo; see Sameie et al. (2018) for an example. Thus we can approximate the Milky Way halo in SIDM with the NFW profile for rrspiker\geq r_{\rm spike} and match it with the spike ρ(r)r7/4\rho(r)\propto r^{-7/4} for 2r<r<rspike=rbh=GM/v022r_{\bullet}<r<r_{\rm spike}=r_{\rm bh}=GM/v^{2}_{0}, where we estimate the 1D velocity dispersion as v0=vmax/3v_{0}=v_{\rm max}/\sqrt{3} and vmax=1.64rsGρsv_{\rm max}=1.64r_{s}\sqrt{{G}\rho_{s}} Kaplinghat et al. (2016). The presence of the stellar mass could further increase v0v_{0}, resulting in smaller rbhr_{\rm bh}. Thus our estimation of v0v_{0} could lead to a conservative limit on σannvrel\left<\sigma_{\rm ann}v_{\rm rel}\right>. We then calculate the QQ factor given in Eq. 6 for the SIDM spike. For CDM, we follow the procedure discussed for Draco to calculate the spike density and radius. For 2r<r<rspike2r_{\bullet}<r<r_{\rm spike}, we take the inner profile to be the geometric mean between the annihilation density and the spike density, i.e., ρspike(r)ρ(rann)/[ρ(rspike)+ρ(rann)]\rho_{\rm spike}(r)\rho(r_{\rm ann})/[\rho(r_{\rm spike})+\rho(r_{\rm ann})]; for r2rr\leq 2r_{\bullet}, ρ(r)=0\rho(r)=0 Gondolo and Silk (1999). For the Milky Way, we find rspike=1.7pcr_{\rm spike}=1.7~{}{\rm pc} and 20pc20~{}{\rm pc} for SIDM and CDM spikes, respectively.

The left panel of Fig.  2 shows the upper limits on the annihilation cross section from the Milky Way after taking into account SIDM (solid red) and CDM (solid black) spikes, compared to the ones assuming a pure NFW halo (dashed black) from Abazajian et al. (2020). For SIDM, the presence of the SMBH has a mild effect and only increases the upper limits on σannvrel\left<\sigma_{\rm ann}v_{\rm rel}\right> by order unity. In the presence of a CDM spike, the limits are a factor of 4×1084\times 10^{8} stronger, compared to the pure NFW case. Thus the thermal relic scenario is ruled out for the entire mass range in CDM, while it’s allowed for mχ2TeVm_{\chi}\gtrsim 2~{}{\rm TeV} in SIDM. For a CDM spike of ρ(r)r3/2\rho(r)\propto r^{-3/2}, caused by dynamical heating by stars, we find the limits are similar to the SIDM ones.

Lastly, we consider the supergiant elliptical galaxy M87, which hosts a central black hole mass with M6.5×109MM_{\bullet}\approx 6.5\times 10^{9}~{}{\rm M_{\odot}} Gebhardt and Thomas (2009); Akiyama et al. (2019). Ref. Lacroix et al. (2015) assumes a spike with ρ(r)r7/3\rho(r)\propto r^{-7/3} for M87, and derives upper limits on the annihilation cross section to bb¯b\bar{b} as σannvrel6×10301026cm3/s\left<\sigma_{\rm ann}v_{\rm rel}\right>\lesssim 6\times 10^{-30}\textup{--}10^{-26}~{}{\rm cm^{3}/s} for the dark matter mass in a range of mχ10GeV100TeVm_{\chi}\approx 10~{}{\rm GeV}\textup{--}100~{}{\rm TeV}, a factor of 10610^{6} stronger compared to a pure NFW halo. Thus, for CDM, thermal relic dark matter has been excluded for the entire mass range for M87. Compared to the Milky Way, M87 is dynamically young and the CDM spike is expected to survey as gravitational heating is insufficient Lacroix et al. (2015).

We recast the limits to the case with an SIDM spike, using the approach for the Milky Way discussed previously. For the M87 halo, we take the NFW parameters rs=20kpcr_{s}=20~{}{\rm kpc} and ρs=6.6×106M/kpc3\rho_{s}=6.6\times 10^{6}~{}{\rm M_{\odot}/kpc^{3}} following Lacroix et al. (2015). The right panel of Fig.  2 shows the upper limits on the annihilation cross section from M87 after taking into account SIDM (solid red) and CDM (solid black) spikes. Our CDM limits are stronger than those in Lacroix et al. (2015) by a factor of 2.62.6, as we take the inner boundary to be 2r2r_{\bullet} Ferrer et al. (2017), smaller than theirs 4r4r_{\bullet}. For SIDM, the presence of the SMBH increases the upper limits on σannvrel\left<\sigma_{\rm ann}v_{\rm rel}\right> by a factor of 4040, compared to the case with a pure NFW halo (dashed black). For a CDM spike, the limits are a factor of 4×1054\times 10^{5} stronger. Thermal relic scenario is excluded in CDM, while it’s allowed for mχ20GeVm_{\chi}\gtrsim 20~{}{\rm GeV} in SIDM. This lower bound is weaker than the Milky Way one, mχ2TeVm_{\chi}\gtrsim 2~{}{\rm TeV}.

Another exciting aspect about the M87 target is that the EHT could resolve the dark matter density profile near the hole, due to its unprecedented angular resolution. Ref. Lacroix et al. (2017) shows the EHT is sensitive to synchrotron emission induced by dark matter annihilations and the radiation from the annihilations could further enhance the photon ring around the shadow of the black hole. For a CDM spike with the bb¯b\bar{b} channel, it shows σannvrel3×1031\left<\sigma_{\rm ann}v_{\rm rel}\right>\lesssim 3\times 10^{-31} for mχ10GeVm_{\chi}\approx 10~{}{\rm GeV}, based on previous data releases from the EHT collaboration Doeleman et al. (2012); Akiyama et al. (2015). We estimate the EHT sensitivity as σannvrel1027cm2/s\left<\sigma_{\rm ann}v_{\rm rel}\right>\lesssim 10^{-27}~{}{\rm cm^{2}/s} with mχ10GeVm_{\chi}\approx 10~{}{\rm GeV} for an SIDM spike, which is comparable to the upper limit from the Milky Way; see the left panel of Fig. 2. Thus the EHT provides an interesting test of thermal SIDM models. Recently, the EHT collaboration observed the black hole shadow of M87 for the first time Akiyama et al. (2019). It would be of interest to take their new results and further test the nature of dark matter, which we leave for future work.

V Conclusions

Dark matter density spikes may form in the presence of a central black hole in galaxies. We have studied indirect detection constraints on dark matter annihilations after taking into account spikes predicted in SIDM and CDM models. For Draco, the upper limits on the cross section are not sensitive to the presence of an SIDM density spike (ρr7/4\rho\propto r^{-7/4}), if the black hole mass is reasonable for the system we consider. In contrast, the possibility of an existing intermediate black hole in Draco has been excluded for thermal relic CDM, as it predicts a steeper spike profile (ρr7/3\rho\propto r^{-7/3}). We further studied constraints from the Milky Way and M87, which host central supermassive black holes, and found that the upper limits on the annihilation cross section can be significantly weakened in SIDM. Observations from both galaxies exclude a thermal relic scenario for CDM for ss-wave annihilations, but it’s still allowed for SIDM. In addition, EHT observations of the M87 black hole can further probe the presence of an SIDM spike. In the future, we could study the distribution of SIDM particles near a black hole in the strong gravitational limit, which might be important for understanding growth of supermassive black holes in the early Universe, see., e.g., Balberg and Shapiro (2002); Feng et al. (2020); Choquette et al. (2019).

Acknowledgements.
We thank Ryan Keeley for useful discussion, Omid Sameie and Mauro Valli for providing data on Draco density profiles. We are grateful to the referee for critical comments on the first version of the manuscript. HBY was supported by the U.S. Department of Energy under Grant No. de-sc0008541, NASA 80NSSC20K0566, and the John Templeton Foundation #61884.

References

  • Ade et al. (2016) P. Ade et al. (Planck), Astron. Astrophys. 594, A13 (2016), eprint 1502.01589.
  • Navarro et al. (1996) J. F. Navarro, C. S. Frenk, and S. D. White, Astrophys. J. 462, 563 (1996), eprint astro-ph/9508025.
  • Navarro et al. (1997) J. F. Navarro, C. S. Frenk, and S. D. White, Astrophys. J. 490, 493 (1997), eprint astro-ph/9611107.
  • Dubinski and Carlberg (1991) J. Dubinski and R. Carlberg, Astrophys. J. 378, 496 (1991).
  • Kormendy and Ho (2013) J. Kormendy and L. C. Ho, Ann. Rev. Astron. Astrophys. 51, 511 (2013), eprint 1304.7762.
  • Gondolo and Silk (1999) P. Gondolo and J. Silk, Phys. Rev. Lett. 83, 1719 (1999), eprint astro-ph/9906391.
  • Gillessen et al. (2009) S. Gillessen, F. Eisenhauer, S. Trippe, T. Alexander, R. Genzel, F. Martins, and T. Ott, Astrophys. J. 692, 1075 (2009), eprint 0810.4674.
  • Ghez et al. (2008) A. Ghez et al., Astrophys. J. 689, 1044 (2008), eprint 0808.2870.
  • Hooper and Dingus (2004) D. Hooper and B. L. Dingus, Phys. Rev. D 70, 113007 (2004), eprint astro-ph/0210617.
  • Aloisio et al. (2004) R. Aloisio, P. Blasi, and A. V. Olinto, JCAP 0405, 007 (2004), eprint astro-ph/0402588.
  • Fields et al. (2014) B. D. Fields, S. L. Shapiro, and J. Shelton, Phys. Rev. Lett. 113, 151302 (2014), eprint 1406.4856.
  • Belikov et al. (2016) A. V. Belikov, E. Moulin, and J. Silk, Phys. Rev. D 94, 103005 (2016), eprint 1610.10003.
  • Sandick et al. (2018) P. Sandick, K. Sinha, and T. Yamamoto, Phys. Rev. D98, 035004 (2018), eprint 1701.00067.
  • Chiang et al. (2020) B. T. Chiang, S. L. Shapiro, and J. Shelton, Phys. Rev. D102, 023030 (2020), eprint 1912.09446.
  • Lacroix et al. (2015) T. Lacroix, C. Bœhm, and J. Silk, Phys. Rev. D 92, 043510 (2015), eprint 1505.00785.
  • Lacroix et al. (2017) T. Lacroix, M. Karami, A. E. Broderick, J. Silk, and C. Boehm, Phys. Rev. D 96, 063008 (2017), eprint 1611.01961.
  • Wanders et al. (2015) M. Wanders, G. Bertone, M. Volonteri, and C. Weniger, JCAP 04, 004 (2015), eprint 1409.5797.
  • Ullio et al. (2001) P. Ullio, H. Zhao, and M. Kamionkowski, Phys. Rev. D 64, 043504 (2001), eprint astro-ph/0101481.
  • Merritt et al. (2002) D. Merritt, M. Milosavljevic, L. Verde, and R. Jimenez, Phys. Rev. Lett. 88, 191301 (2002), eprint astro-ph/0201376.
  • Gnedin and Primack (2004) O. Y. Gnedin and J. R. Primack, Phys. Rev. Lett. 93, 061302 (2004), eprint astro-ph/0308385.
  • Merritt (2004) D. Merritt, Phys. Rev. Lett. 92, 201304 (2004), eprint astro-ph/0311594.
  • Tulin and Yu (2018) S. Tulin and H.-B. Yu, Phys. Rept. 730, 1 (2018), eprint 1705.02358.
  • Dave et al. (2001) R. Dave, D. N. Spergel, P. J. Steinhardt, and B. D. Wandelt, Astrophys. J. 547, 574 (2001), eprint astro-ph/0006218.
  • Vogelsberger et al. (2012) M. Vogelsberger, J. Zavala, and A. Loeb, Mon. Not. Roy. Astron. Soc. 423, 3740 (2012), eprint 1201.5892.
  • Rocha et al. (2013) M. Rocha, A. H. G. Peter, J. S. Bullock, M. Kaplinghat, S. Garrison-Kimmel, J. Onorbe, and L. A. Moustakas, Mon. Not. Roy. Astron. Soc. 430, 81 (2013), eprint 1208.3025.
  • Peter et al. (2013) A. H. G. Peter, M. Rocha, J. S. Bullock, and M. Kaplinghat, Mon. Not. Roy. Astron. Soc. 430, 105 (2013), eprint 1208.3026.
  • Zavala et al. (2013) J. Zavala, M. Vogelsberger, and M. G. Walker, Mon. Not. Roy. Astron. Soc. 431, L20 (2013), eprint 1211.6426.
  • Vogelsberger et al. (2016) M. Vogelsberger, J. Zavala, F.-Y. Cyr-Racine, C. Pfrommer, T. Bringmann, and K. Sigurdson, Mon. Not. Roy. Astron. Soc. 460, 1399 (2016), eprint 1512.05349.
  • Fischer et al. (2020) M. S. Fischer, M. Brüggen, K. Schmidt-Hoberg, K. Dolag, F. Kahlhoefer, A. Ragagnin, and A. Robertson (2020), eprint 2012.10277.
  • Kaplinghat et al. (2016) M. Kaplinghat, S. Tulin, and H.-B. Yu, Phys. Rev. Lett. 116, 041302 (2016), eprint 1508.03339.
  • Kamada et al. (2017) A. Kamada, M. Kaplinghat, A. B. Pace, and H.-B. Yu, Phys. Rev. Lett. 119, 111102 (2017), eprint 1611.02716.
  • Creasey et al. (2017) P. Creasey, O. Sameie, L. V. Sales, H.-B. Yu, M. Vogelsberger, and J. Zavala, Mon. Not. Roy. Astron. Soc. 468, 2283 (2017), eprint 1612.03903.
  • Ren et al. (2019) T. Ren, A. Kwa, M. Kaplinghat, and H.-B. Yu, Phys. Rev. X9, 031020 (2019), eprint 1808.05695.
  • Kaplinghat et al. (2019) M. Kaplinghat, M. Valli, and H.-B. Yu, Mon. Not. Roy. Astron. Soc. 490, 231 (2019), eprint 1904.04939.
  • Sameie et al. (2020) O. Sameie, H.-B. Yu, L. V. Sales, M. Vogelsberger, and J. Zavala, Phys. Rev. Lett. 124, 141102 (2020), eprint 1904.07872.
  • Kahlhoefer et al. (2019) F. Kahlhoefer, M. Kaplinghat, T. R. Slatyer, and C.-L. Wu, JCAP 1912, 010 (2019), eprint 1904.10539.
  • Yang et al. (2020) D. Yang, H.-B. Yu, and H. An, Phys. Rev. Lett. 125, 111105 (2020), eprint 2002.02102.
  • Sagunski et al. (2020) L. Sagunski, S. Gad-Nasr, B. Colquhoun, A. Robertson, and S. Tulin (2020), eprint 2006.12515.
  • Andrade et al. (2020) K. E. Andrade, J. Fuson, S. Gad-Nasr, D. Kong, Q. Minor, M. G. Roberts, and M. Kaplinghat (2020), eprint 2012.06611.
  • Shapiro and Paschalidis (2014) S. L. Shapiro and V. Paschalidis, Phys. Rev. D 89, 023506 (2014), eprint 1402.0005.
  • Tremaine et al. (2002) S. Tremaine et al., Astrophys. J. 574, 740 (2002), eprint astro-ph/0203468.
  • Shapiro and Lightman (1976) S. L. Shapiro and A. P. Lightman, Nature. 262, 743 (1976).
  • Huo et al. (2018) R. Huo, M. Kaplinghat, Z. Pan, and H.-B. Yu, Phys. Lett. B 783, 76 (2018), eprint 1709.09717.
  • Ferrer et al. (2017) F. Ferrer, A. M. da Rosa, and C. M. Will, Phys. Rev. D 96, 083014 (2017), eprint 1707.06302.
  • Vasiliev (2007) E. Vasiliev, Phys. Rev. D 76, 103532 (2007), eprint 0707.3334.
  • Shapiro and Shelton (2016) S. L. Shapiro and J. Shelton, Phys. Rev. D 93, 123510 (2016), eprint 1606.01248.
  • Kaplinghat et al. (2014) M. Kaplinghat, R. E. Keeley, T. Linden, and H.-B. Yu, Phys. Rev. Lett. 113, 021302 (2014), eprint 1311.6524.
  • Robertson et al. (2018) A. Robertson et al., Mon. Not. Roy. Astron. Soc. 476, L20 (2018), eprint 1711.09096.
  • Robertson et al. (2020) A. Robertson, R. Massey, V. Eke, J. Schaye, and T. Theuns (2020), eprint 2009.07844.
  • Merritt (2003) D. Merritt, in Carnegie Observatories Centennial Symposium. 1. Coevolution of Black Holes and Galaxies (2003), eprint astro-ph/0301257.
  • Cirelli et al. (2011) M. Cirelli, G. Corcella, A. Hektor, G. Hutsi, M. Kadastik, P. Panci, M. Raidal, F. Sala, and A. Strumia, JCAP 03, 051 (2011), [Erratum: JCAP 10, E01 (2012)], eprint 1012.4515.
  • Amoroso et al. (2019) S. Amoroso, S. Caron, A. Jueid, R. Ruiz de Austri, and P. Skands, JCAP 05, 007 (2019), eprint 1812.07424.
  • Tulin et al. (2013) S. Tulin, H.-B. Yu, and K. M. Zurek, Phys. Rev. D 87, 115007 (2013), eprint 1302.3898.
  • Kaplinghat et al. (2015) M. Kaplinghat, T. Linden, and H.-B. Yu, Phys. Rev. Lett. 114, 211303 (2015), eprint 1501.03507.
  • Bringmann et al. (2017) T. Bringmann, F. Kahlhoefer, K. Schmidt-Hoberg, and P. Walia, Phys. Rev. Lett. 118, 141802 (2017), eprint 1612.00845.
  • Cirelli et al. (2017) M. Cirelli, P. Panci, K. Petraki, F. Sala, and M. Taoso, JCAP 05, 036 (2017), eprint 1612.07295.
  • Chu et al. (2016) X. Chu, C. Garcia-Cely, and T. Hambye, JHEP 11, 048 (2016), eprint 1609.00399.
  • Kamada et al. (2019) A. Kamada, M. Yamada, and T. T. Yanagida, JHEP 03, 021 (2019), eprint 1811.02567.
  • Chu et al. (2019) X. Chu, C. Garcia-Cely, and H. Murayama, Phys. Rev. Lett. 122, 071103 (2019), eprint 1810.04709.
  • Bernal et al. (2020) N. Bernal, X. Chu, S. Kulkarni, and J. Pradler, Phys. Rev. D 101, 055044 (2020), eprint 1912.06681.
  • Kang and Lee (2020) Y.-J. Kang and H. M. Lee (2020), eprint 2002.12779.
  • Valli and Yu (2018) M. Valli and H.-B. Yu, Nat. Astron. 2, 907 (2018), eprint 1711.03502.
  • Read et al. (2018) J. I. Read, M. G. Walker, and P. Steger, Mon. Not. Roy. Astron. Soc. 481, 860 (2018), eprint 1805.06934.
  • Nishikawa et al. (2020) H. Nishikawa, K. K. Boddy, and M. Kaplinghat, Phys. Rev. D 101, 063009 (2020), eprint 1901.00499.
  • Correa (2020) C. A. Correa (2020), eprint 2007.02958.
  • Turner et al. (2020) H. C. Turner, M. R. Lovell, J. Zavala, and M. Vogelsberger (2020), eprint 2010.02924.
  • Abazajian et al. (2020) K. N. Abazajian, S. Horiuchi, M. Kaplinghat, R. E. Keeley, and O. Macias, Phys. Rev. D 102, 043012 (2020), eprint 2003.10416.
  • Sameie et al. (2018) O. Sameie, P. Creasey, H.-B. Yu, L. V. Sales, M. Vogelsberger, and J. Zavala, Mon. Not. Roy. Astron. Soc. 479, 359 (2018), eprint 1801.09682.
  • Gebhardt and Thomas (2009) K. Gebhardt and J. Thomas, Astrophys. J. 700, 1690 (2009), eprint 0906.1492.
  • Akiyama et al. (2019) K. Akiyama et al. (Event Horizon Telescope), Astrophys. J. Lett. 875, L6 (2019), eprint 1906.11243.
  • Doeleman et al. (2012) S. S. Doeleman et al., Science 338, 355 (2012), eprint 1210.6132.
  • Akiyama et al. (2015) K. Akiyama et al., Astrophys. J. 807, 150 (2015), eprint 1505.03545.
  • Balberg and Shapiro (2002) S. Balberg and S. L. Shapiro, Phys. Rev. Lett. 88, 101301 (2002), eprint astro-ph/0111176.
  • Feng et al. (2020) W.-X. Feng, H.-B. Yu, and Y.-M. Zhong (2020), eprint 2010.15132.
  • Choquette et al. (2019) J. Choquette, J. M. Cline, and J. M. Cornell, JCAP 07, 036 (2019), eprint 1812.05088.