This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Density Properties of Sets in Finite-Dimensional, Strictly Convex Banach Spaces

Bobby Wilson Department of Mathematics, University of Washington [email protected]
Abstract.

In this article, we examine the theorem of Mattila establishing rectifiability for Euclidean regular sets in the setting of strictly convex, finite-dimensional Banach spaces.

2020 Mathematics Subject Classification:
28A75, 28A80

1. Introduction

Consider a set EdE\subset\mathbb{R}^{d}. The classical Lebesgue Density Theorem states that for d\mathcal{L}^{d}-almost every xEx\in E, the density

Θ(E,x):=limr0+d[EB(x,r)]d[B(x,r)]\displaystyle\Theta(E,x):=\lim_{r\rightarrow 0^{+}}\frac{\mathcal{L}^{d}[E\cap B(x,r)]}{\mathcal{L}^{d}[B(x,r)]}

exists and is equal to 1. Furthermore, Θ(E,x)=0\Theta(E,x)=0 for almost every xdEx\in\mathbb{R}^{d}\setminus E. Considering the notion of Hausdorff measure, one could ask whether or not an analogous version of the density theorem holds for lower-dimensional sets EE such that 0<α(E)<0<\mathcal{H}^{\alpha}(E)<\infty for 0<αd0<\alpha\leq d. This hypothetical theorem would state that for any real 0<αd0<\alpha\leq d, any EdE\subset\mathbb{R}^{d} satisfying α(E)<\mathcal{H}^{\alpha}(E)<\infty is regular, i.e.

1=Θα(E,x):=limr0+α[EB(x,r)]ωαrα\displaystyle 1=\Theta^{\alpha}(E,x):=\lim_{r\rightarrow 0^{+}}\frac{\mathcal{H}^{\alpha}[E\cap B(x,r)]}{\omega_{\alpha}r^{\alpha}}

for α\mathcal{H}^{\alpha} almost every xEx\in E. However, the local behavior of sets is more complex when the Hausdorff dimension is less than that of the dimension of the ambient space due to the existence of irregular sets (positive α\mathcal{H}^{\alpha}-measure sets for which the density does not exist at almost every point).

In an effort to better characterize this dichotomy, we can identify regularity with rectifiability. However, we must define rectifiability with respect to integral dimensions. Thus the first step in this identification consists of showing that regularity not only implies that the density exists at almost every point but also that this density must be defined with respect to an integral Hausdorff measure, k\mathcal{H}^{k} for k+k\in\mathbb{Z}_{+}. This first step is known as Marstrand’s Theorem [3]; that is, let ss be a positive number and suppose that there exists a Radon measure μ\mu on d\mathbb{R}^{d} such that the density Θs(μ,a)\Theta^{s}(\mu,a) exists and is positive and finite in a set of positive μ\mu measure. Then ss is an integer.

We refer to a Hausdorff kk-dimensional set for which the kk-density exists at k\mathcal{H}^{k}-almost all of its points as kk-regular. Given this definition, it remains to show that kk-regular sets are kk-rectifiable. This was first proved by Marstrand [2] in the case of 2 dimensional sets in 3\mathbb{R}^{3}, and Mattila [4] then extended this to general dimensions. Preiss [6] then proved the generalized theorem for measures on d\mathbb{R}^{d} using the notion of tangent measures.

In this article, we examine a generalization of the theorem of Marstrand and Mattila to what are called strictly convex finite-dimensional Banach spaces:

Theorem 1.1.

Let (X,)(X,\|\cdot\|) be a finite-dimensional Banach space with a strictly convex norm and EXE\subset X be a m\mathcal{H}^{m}-measurable set with m(E)<\mathcal{H}^{m}(E)<\infty. EE is mm-rectifiable if and only if Θm(E,x)=1\Theta^{m}(E,x)=1 for m\mathcal{H}^{m}-almost every xEx\in E.

One difficulty in generalizing Mattila’s argument is that the geometric observation (Lemma 3.1) crucial to both the argument of Mattila and the original proof of Marstrand [2] relies on an intuitive understanding of Euclidean geometry. The following argument demonstrates that this phenomenon follows simply from the uniform convexity of the Euclidean norm. This allows one to establish a symmetry condition (Lemma 3.5) for regular sets, which then leads to a combinatorial condition on a sufficiently large subset. Of course, since all norms on finite-dimensional linear spaces are equivalent, the combinatorial condition is not affected by the norm structure on a given linear space. This fact allows us to finish the argument simply by appealing directly to the strategy of Mattila and Marstrand.

In the next section, we offer some preliminary definitions and results. We follow this with a generalization of the important components of Mattila’s theorem for Banach spaces with strictly convex norms. Finally, we discuss two projection lemmas that complete the proof of Theorem 1.1 in the conclusion.

Acknowledgement

The author is supported by NSF grant DMS 1856124, and NSF CAREER Fellowship, DMS 2142064. This material is based upon work supported by the National Science Foundation under Grant No. DMS-1928930 while the author was in residence at the Simons Laufer Mathematical Sciences Institute (formerly MSRI) in Berkeley, California, during the summer of 2023. The author would like to thank Tatiana Toro and Max Goering for their gracious support throughout the development and writing of this project.

2. Preliminaries

We use a basis representation to reduce any Banach space (X,)(X,\|\cdot\|), to d.\mathbb{R}^{d}. First, we establish some geometric concepts in (d,)(\mathbb{R}^{d},\|\cdot\|):

Definition 2.1.

The Grassmannian manifold, G(d,m)G(d,m), is the set of all mm-dimensional linear subspaces of d\mathbb{R}^{d}.

Definition 2.2.

We denote A(d,m)A(d,m) as the space of all mm-dimensional affine subspaces of d\mathbb{R}^{d}. For every WA(d,m)W\in A(d,m) there exists ydy\in\mathbb{R}^{d} and VG(d,m)V\in G(d,m) such that W=V+yW=V+y. Furthermore, we denote A(a,d,m)A(a,d,m) as the collection of all VA(d,m)V\in A(d,m) such that aVa\in V.

We now define the notion of a strictly convex Banach Space.

Definition 2.3.

Let (d,)(\mathbb{R}^{d},\|\cdot\|) be a Banach space. We say that XX is strictly convex, or that its norm is strictly convex, if

x+y<x+y\displaystyle\|x+y\|<\|x\|+\|y\|

for any nonzero x,yXx,y\in X satisfying xtyx\neq ty for all tt\in\mathbb{R}.

We note that in the finite-dimensional case, strictly convex and uniformly convex are equivalent.

Definition 2.4.

Let (d,)(\mathbb{R}^{d},\|\cdot\|) be a Banach space. We say that XX is uniformly convex, or that its norm is uniformly convex, if for every ε>0\varepsilon>0 there exists a δ>0\delta>0 such that if xy>ε\|x-y\|>\varepsilon then

12x+12y1δ\displaystyle\|\tfrac{1}{2}x+\tfrac{1}{2}y\|\leq 1-\delta

for x1\|x\|\leq 1 and y1\|y\|\leq 1.

The fulcrum of the argument for the main theorem is a combinatorial characterization of approximations of the sets in question. In order to properly use this argument, we will need to define the notion of a specific type of linear combinations of sets:

Definition 2.5 (Sum and Difference Sets).

Let EdE\subset\mathbb{R}^{d} be a Borel set and let MM be an integer. We define E(1)E^{(1)} by

E(1):={zd:z=x+(xy) where x,yE}\displaystyle E^{(1)}:=\left\{z\in\mathbb{R}^{d}~{}:~{}z=x+(x-y)\mbox{ where }x,y\in E\right\}

For M2M\geq 2, define E(M)E^{(M)} inductively by

E(M):=(E(M1))(1).\displaystyle E^{(M)}:=(E^{(M-1)})^{(1)}.

For any set EdE\subset\mathbb{R}^{d} and ydy\in\mathbb{R}^{d}, we define the distance between yy and EE by

dist(E,y)=dist(y,E):=inf{xy:xE}\displaystyle\mbox{dist}(E,y)=\mbox{dist}(y,E):=\inf\{\|x-y\|~{}:~{}x\in E\}

and we define the diameter of a set, EE, by

|E|:=sup{xy:x,yE}\displaystyle|E|:=\sup\{\|x-y\|~{}:~{}x,y\in E\}

For a set EdE\subset\mathbb{R}^{d} and a number r>0r>0, we let

N(E,r):={yd:dist(y,E)<r}.\displaystyle N(E,r):=\{y\in\mathbb{R}^{d}~{}:~{}\mbox{dist}(y,E)<r\}.

From this notion of diameter we define Hausdorff measure. For δ>0\delta>0, α0\alpha\geq 0,

δα(E):=inf{i|Ui|m:{Ui}i=1 is an open cover of E and |Ui|δ}\displaystyle\mathcal{H}^{\alpha}_{\delta}(E):=\inf\left\{\sum_{i}|U_{i}|^{m}~{}:~{}\{U_{i}\}_{i=1}^{\infty}\mbox{ is an open cover of }E\mbox{ and }|U_{i}|\leq\delta\right\}

and then

α(E):=supδ>0δα(E).\displaystyle\mathcal{H}^{\alpha}(E):=\sup_{\delta>0}\mathcal{H}^{\alpha}_{\delta}(E).

We say that α\alpha is the dimension of a set EE if α=sup{β:β(E)=}=inf{β:β(E)=0}\alpha=\sup\{\beta~{}:~{}\mathcal{H}^{\beta}(E)=\infty\}=\inf\{\beta~{}:~{}\mathcal{H}^{\beta}(E)=0\}. We will commonly refer to Hausdorff α\alpha-dimensional measurable sets as simply α\alpha-sets.

Next, we define weak linear approximability.

Definition 2.6.

Let EdE\subset\mathbb{R}^{d} be a Hausdorff mm-dimensional set. We say that EE is weakly mm-linearly approximable if for m\mathcal{H}^{m}-almost all aEa\in E the following holds: if η>0\eta>0, there exist R0>0R_{0}>0 and λ>0\lambda>0 such that for any 0<r<r00<r<r_{0}, there is WA(a,d,m)W\in A(a,d,m) such that

  • If aEa\in E and 0<r<R0<r<R, then there exists VA(a,d,m)V\in A(a,d,m) such that

    m(E(B(x,ηr))λrm,\displaystyle\mathcal{H}^{m}(E\cap(B(x,\eta r))\geq\lambda r^{m},

    for xWB(a,r)x\in W\cap B(a,r)

  • (EB(a,r)N(W,ηr))<ηrm.\displaystyle\mathcal{H}(E\cap B(a,r)\setminus N(W,\eta r))<\eta r^{m}.

The next few theorems are essential structural results that follow directly from their Euclidean analogues. In fact these results don’t follow from the Euclidean arguments as much as they follow from more basic properties of the underlying metric spaces. All three appear in [4] and [1] (Sections 2.10.17-2.10.19).

Theorem 2.7.

Let (d,)(\mathbb{R}^{d},\|\cdot\|) be a real, finite-dimensional Banach space. If EdE\subset\mathbb{R}^{d} and m(E)<\mathcal{H}^{m}(E)<\infty, then

limδ0+[supm(ES)|S|m:xS,|S|<δ}]=1\displaystyle\lim_{\delta\rightarrow 0^{+}}\left[\sup\frac{\mathcal{H}^{m}(E\cap S)}{|S|^{m}}~{}:~{}x\in S,|S|<\delta\}\right]=1

for m\mathcal{H}^{m} a.e. xEx\in E.

Theorem 2.8.

Let (d,)(\mathbb{R}^{d},\|\cdot\|) be a real, finite-dimensional Banach space. If EdE\subset\mathbb{R}^{d} and m(E)<\mathcal{H}^{m}(E)<\infty, then Θm(E,x)1\Theta^{*m}(E,x)\leq 1 for m\mathcal{H}^{m} a.e. xdx\in\mathbb{R}^{d}. If, in addition, EE is m\mathcal{H}^{m}-measurable, then Θm(E,x)=0\Theta^{m}(E,x)=0 for m\mathcal{H}^{m} a.e. xdEx\in\mathbb{R}^{d}\setminus E.

The next statement is a corollary of the former.

Theorem 2.9.

Let (d,)(\mathbb{R}^{d},\|\cdot\|) be a real, finite-dimensional Banach space. If EFdE\subset F\subset\mathbb{R}^{d}, FF is mm-regular and EE is an mm-set, then EE is mm-regular.

Here regular refers to the existence of densities almost everywhere.

3. Main Arguments

3.1. Tangents to unit balls and Geometry

Lemma 3.1.

For every ε>0\varepsilon>0, there exists δ=δ(ε)>0\delta=\delta(\varepsilon)>0 such that the following holds: if z,xdz,x\in\mathbb{R}^{d}, r>0r>0, η(0,12)\eta\in(0,\tfrac{1}{2}), xz=(1+η)r\|x-z\|=(1+\eta)r, and

y=zr(xz)xzB(z,r),\displaystyle y=z-r\frac{(x-z)}{\|x-z\|}\in\partial B(z,r),

then

|B(z,r)B(x,ηr)}||(B(z,r)B(x,ηr))B(y,εr)|>δr.\displaystyle\left|B(z,r)\cup B(x,\eta r)\}\right|-\left|(B(z,r)\cup B(x,\eta r))\setminus B(y,\varepsilon r)\right|>\delta r.
Proof.

Let δ>0\delta>0 and without loss of generality, let z=0z=0. It suffices to obtain a suitable upper bound on the following set of values:

{pq:pB(0,r)B(y0,εr),qB(x0,ηr)}.\displaystyle\left\{\|p-q\|~{}:~{}p\in B(0,r)\setminus B(y_{0},\varepsilon r),q\in B(x_{0},\eta r)\right\}.

For any pB(0,r)B(y,εr)p\in B(0,r)\setminus B(y,\varepsilon r), pyεr\|p-y\|\geq\varepsilon r, pr\|p\|\leq r and yr\|y\|\leq r. Uniform convexity implies that there exists δ\delta such that

p+y<2r(1δ).\displaystyle\|p+y\|<2r(1-\delta).

The definition of yy implies that x+y=ηr\|x+y\|=\eta r. Then for any pB(0,r)B(y0,εr)p\in B(0,r)\setminus B(y_{0},\varepsilon r) and qB(x0,ηr)q\in B(x_{0},\eta r),

pqp+y+(y+x)+xq<2r(1δ)+2ηr\displaystyle\|p-q\|\leq\|p+y\|+\|-(y+x)\|+\|x-q\|<2r(1-\delta)+2\eta r

We know that |B(z,r)B(x,ηr)}|2r+2ηr\left|B(z,r)\cup B(x,\eta r)\}\right|\geq 2r+2\eta r. Therefore,

|B(z,r)B(x,ηr)}||(B(z,r)B(x,ηr))B(y,εr)|\displaystyle\left|B(z,r)\cup B(x,\eta r)\}\right|-\left|(B(z,r)\cup B(x,\eta r))\setminus B(y,\varepsilon r)\right| 2r+2ηr(2r(1δ)+2ηr)\displaystyle\geq 2r+2\eta r-(2r(1-\delta)+2\eta r)
=2δr.\displaystyle=2\delta r.

It’s important to emphasize that δ\delta in the previous statement does not depend on η\eta.

3.2. Approximation

Now we arrive at the primary statement:

Proposition 3.2.

Let (d,)(\mathbb{R}^{d},\|\cdot\|) be a real, finite-dimensional strictly convex Banach space. Let EdE\subset\mathbb{R}^{d} be a m\mathcal{H}^{m}-measurable set with m(E)<\mathcal{H}^{m}(E)<\infty. EE is mm-rectifiable if and only if Θm(E,x)=1\Theta^{m}(E,x)=1 for m\mathcal{H}^{m} almost every xEx\in E.

We begin with a definition.

Definition 3.3.

Let EE be a mm-set in a finite-dimensional Banach space (d,)(\mathbb{R}^{d},\|\cdot\|). We say that a subset E1EE_{1}\subset E is (δ,R)(\delta,R)-almost uniform with respect to EE if

  1. (1)

    m(ES)(1+δ)|S|m\mathcal{H}^{m}(E\cap S)\leq(1+\delta)|S|^{m} if E1SE_{1}\cap S\neq\emptyset and |S|<2R|S|<2R,

  2. (2)

    m[EB(a,r)]>(1δ)(2r)m\mathcal{H}^{m}[E\cap B(a,r)]>(1-\delta)(2r)^{m} if aE1a\in E_{1} and 0<r<R0<r<R.

With respect to this definition we have the analogous uniformization lemma:

Lemma 3.4.

Let (d,)(\mathbb{R}^{d},\|\cdot\|) be a real, finite-dimensional Banach space. Suppose that EE is an mm-regular subset of d\mathbb{R}^{d}, ϵ>0\epsilon>0, and δ>0\delta>0. Then there are a positive number RR and an mm-set E1EE_{1}\subset E such that m(EE1)<ϵ\mathcal{H}^{m}(E\setminus E_{1})<\epsilon and E1E_{1} is (δ,R)(\delta,R)-almost uniform with respect to EE.

The first major hurdle is the following lemma. In order to show that regular sets are linearly approximable, we show that regular sets are almost radial symmetric at every point. Specifically, we must consider the following statement.

Lemma 3.5.

Let (d,)(\mathbb{R}^{d},\|\cdot\|) be a real, strictly convex, finite-dimensional Banach space, let E1EdE_{1}\subset E\subset\mathbb{R}^{d}, 0<ε<10<\varepsilon<1, and R>0R>0. There exists δ=δ(ε,m)(0,13)\delta=\delta(\varepsilon,m)\in(0,\frac{1}{3}) (depending only on ε\varepsilon) such that if E1E_{1} is (δ,R)(\delta,R)-almost uniform with respect to EE, a,bE1a,b\in E_{1}, and ab<R\|a-b\|<R, then 2abN(E,εab)2a-b\in N(E,\varepsilon\|a-b\|).

The proof here will follow very closely to the original proof of Mattila.

Proof.

Let ε>0\varepsilon>0, and let δ0=δ0(ε)>0\delta_{0}=\delta_{0}(\varepsilon)>0 be the number given by Lemma 3.1. Let 0<δ<δ00<\delta<\delta_{0} and suppose E1EE_{1}\subset E is (δ,R)(\delta,R)-almost uniform. Finally, let η(0,110)\eta\in(0,\frac{1}{10}).

Let a,bE1a,b\in E_{1} be such that 0<ab=ρ<R0<\|a-b\|=\rho<R and define 3 balls in d\mathbb{R}^{d}. The first will be a ball, AA, centered at aa with radius close to but less than the distance between aa and bb. The second, BB, will be a small ball centered at bb defined so that it doesn’t intersect AA. The final ball, CC, will be centered at a point cc lying on both the line containing aa and bb and the boundary of AA. They are defined explicitly as such

A=B(a,(12η)ρ)B=B(b,ηρ)C=B(c,ε(12η)ρ)\displaystyle A=B(a,(1-2\eta)\rho)\hskip 14.22636ptB=B(b,\eta\rho)\hskip 14.22636ptC=B\left(c,\varepsilon(1-2\eta)\rho\right)

Our goal is to show that 1(ACE)>0\mathcal{H}^{1}(A\cap C\cap E)>0 which would, in turn, imply that there exists zEz\in E such that the distance between zz and b=2abb^{\prime}=2a-b is less than ρε\rho\varepsilon. To this end, we apply Lemma 3.1 and we get

|[AB]C|+12δ0ρ<|AB|\displaystyle|[A\cup B]\setminus C|+\tfrac{1}{2}\delta_{0}\rho<|A\cup B|

Then for some c1>0c_{1}>0,

(1) |[AB]C|m+c1δ0ρm<|AB|m.\displaystyle|[A\cup B]\setminus C|^{m}+c_{1}\delta_{0}\rho^{m}<|A\cup B|^{m}.

The left side of (1) is bounded below using the hypothesis in the following way

11+δm([AB]CE)+c1δ0ρm|[AB]C|m+c1δ0ρm.\displaystyle\frac{1}{1+\delta}\mathcal{H}^{m}([A\cup B]\setminus C\cap E)+c_{1}\delta_{0}\rho^{m}\leq|[A\cup B]\setminus C|^{m}+c_{1}\delta_{0}\rho^{m}.

In order to bound the right side of (1), note that since AB=A\cap B=\emptyset, by polynomial expansion, there exists c2>0c_{2}>0 such that

|AB|m=[|A|+|B|]m|A|m+|B|m+c2δρm.\displaystyle|A\cup B|^{m}=[|A|+|B|]^{m}\leq|A|^{m}+|B|^{m}+c_{2}\delta\rho^{m}.

Again using the hypothesis regarding EE:

Refer to caption
Figure 1. Balls shown with an example of a Non-Euclidean norm. We would like to show that the shaded region is nonempty.
|A|m+|B|m+c2ηρm<11δm([AB]E)+c2ηρm.\displaystyle|A|^{m}+|B|^{m}+c_{2}\eta\rho^{m}<\frac{1}{1-\delta}\mathcal{H}^{m}([A\cup B]\cap E)+c_{2}\eta\rho^{m}.

and thus

(2) 11+δm([AB]CE)+c1δ0ρm<11δm([AB]E)+c2ηρm.\displaystyle\frac{1}{1+\delta}\mathcal{H}^{m}([A\cup B]\setminus C\cap E)+c_{1}\delta_{0}\rho^{m}<\frac{1}{1-\delta}\mathcal{H}^{m}([A\cup B]\cap E)+c_{2}\eta\rho^{m}.

By definition of the parameters (AB)C=AC(A\cup B)\cap C=A\cap C. Using m([AB]E)m((AB)CE)=m([AB]CE)\mathcal{H}^{m}([A\cup B]\cap E)-\mathcal{H}^{m}((A\cup B)\cap C\cap E)=\mathcal{H}^{m}([A\cup B]\setminus C\cap E), the fact that 1/(1+δ)<11/(1+\delta)<1, and rearrangement it follows from equation (2) that

c1δ0ρm+[11+δ11δ]m([AB]E)c2ηρm<m(ACE)\displaystyle c_{1}\delta_{0}\rho^{m}+\left[\frac{1}{1+\delta}-\frac{1}{1-\delta}\right]\mathcal{H}^{m}([A\cup B]\cap E)-c_{2}\eta\rho^{m}<\mathcal{H}^{m}(A\cap C\cap E)
\displaystyle\Leftrightarrow\, c1δ0ρm[2δ1δ2]m([AB]E)c2ηρm<m(ACE)\displaystyle c_{1}\delta_{0}\rho^{m}-\left[\frac{2\delta}{1-\delta^{2}}\right]\mathcal{H}^{m}([A\cup B]\cap E)-c_{2}\eta\rho^{m}<\mathcal{H}^{m}(A\cap C\cap E)

for small enough δ>0\delta>0 and η>0\eta>0, the left side is positive. ∎

We can iterate this lemma in the same fashion as Marstrand ([2] Lemma 2) to obtain the following statement.

Lemma 3.6.

Suppose that EE is an mm-regular subset of d\mathbb{R}^{d}, η>0\eta>0, ε(0,1)\varepsilon\in(0,1) and MM is a positive integer. Then there are a positive number dMd_{M} and an mm-set EMEE_{M}\subset E such that m(EEM)<η\mathcal{H}^{m}(E\setminus E_{M})<\eta and A(M)N(E,ε|A|)A^{(M)}\subset N(E,\varepsilon|A|) whenever AEMA\subset E_{M} and |A|<dM|A|<d_{M}.

Proof.

We prove by induction. The base case is Lemma 3.5 with 12ε\frac{1}{2}\varepsilon replacing ε\varepsilon. The induction step begins with the supposition that the statement holds for M=nM=n. Then given η0>0\eta_{0}>0, ε0=1100ε>0\varepsilon_{0}=\frac{1}{100}\varepsilon>0, there exists EnEE_{n}\subset E and dn>0d_{n}>0 such that m(EEn)<η\mathcal{H}^{m}(E\setminus E_{n})<\eta and A(M)N(E,ε0|A|)A^{(M)}\subset N(E,\varepsilon_{0}|A|) whenever AEnA\subset E_{n} and |A|<dn|A|<d_{n}.

We use Lemma 3.4 to find En+1EnE_{n+1}\subset E_{n} and Rn>0R_{n}>0 such that m(EnEn+1)<12η0\mathcal{H}^{m}(E_{n}\setminus E_{n+1})<\tfrac{1}{2}\eta_{0} and En+1E_{n+1} is (δ,Rn)(\delta,R_{n})-almost uniform with respect to EE with δ\delta small enough to apply Lemma 3.5 with ε0\varepsilon_{0}. Now Lemma 3.5 implies that if we consider AEn+1A\subset E_{n+1} and |A|<110min(Rn,dn)|A|<\frac{1}{10}\min(R_{n},d_{n}), then A(1)N(En,ε0|A|)A^{(1)}\subset N(E_{n},\varepsilon_{0}|A|). The symmetry of the metric implies that if F:=EnN(A(1),ε0|A|)F:=E_{n}\cap N(A^{(1)},\varepsilon_{0}|A|), then

A(1)N(F,ε0|A|)\displaystyle A^{(1)}\subset N(F,\varepsilon_{0}|A|)

and

|F||A(1)|+2ε0|A|<dn\displaystyle|F|\leq|A^{(1)}|+2\varepsilon_{0}|A|<d_{n}

The induction hypothesis now implies that

A(n+1)N(F(n),ε0|A|)N(E,ε0|F|+ε0|A|)N(E,ε|A|)\displaystyle A^{(n+1)}\subset N(F^{(n)},\varepsilon_{0}|A|)\subset N(E,\varepsilon_{0}|F|+\varepsilon_{0}|A|)\subset N(E,\varepsilon|A|)

Choosing dn+1:=110min(Rn,dn)d_{n+1}:=\frac{1}{10}\min(R_{n},d_{n}) completes the argument.

3.3. Passing to the Euclidean Case

Next is the net approximation lemma. We can now begin to exploit the equivalence of norms in finite-dimensional Banach spaces to reduce the argument of Mattila. We should establish some notion of equivalence for our given norm: If 2\|\cdot\|_{2} represents the Euclidean norm in d\mathbb{R}^{d}, then there exists L>1L>1 such that

L1xx2Lx\displaystyle L^{-1}\|x\|\leq\|x\|_{2}\leq L\|x\|

for all xd.x\in\mathbb{R}^{d}. If we define

|E|2\displaystyle|E|_{2} :=sup{xy2:x,yE},\displaystyle:=\sup\left\{\|x-y\|_{2}~{}:~{}x,y\in E\right\},
B2(x,r)\displaystyle B_{2}(x,r) :={yd:xy2<r and\displaystyle:=\{y\in\mathbb{R}^{d}~{}:~{}\|x-y\|_{2}<r\mbox{ and }
N2(E,r)\displaystyle N_{2}(E,r) :={xd:infyExy2<r}\displaystyle:=\left\{x\in\mathbb{R}^{d}~{}:~{}\inf_{y\in E}\|x-y\|_{2}<r\right\}

for xdx\in\mathbb{R}^{d}, r>0r>0. We will use the notion of projections throughout the remainder of the article. Since we are considering multiple notions of distance, there are inherently multiple notions of projections that one can consider. However, we will only need to consider orthogonal projections. From here on out, PV(E)P_{V}(E) will denote the orthogonal projection of the set, EE, onto the plane VV. Finally, we define

Hδα(E):=inf{i|Ui|2m:{Ui}i=1 is an open cover of E and |Ui|2δ}\displaystyle H^{\alpha}_{\delta}(E):=\inf\left\{\sum_{i}|U_{i}|_{2}^{m}~{}:~{}\{U_{i}\}_{i=1}^{\infty}\mbox{ is an open cover of }E\mbox{ and }|U_{i}|_{2}\leq\delta\right\}

and Hα(E):=supδ>0Hδα(E).H^{\alpha}(E):=\sup_{\delta>0}H^{\alpha}_{\delta}(E). Then |E|2L|E||E|_{2}\sim_{L}|E| and N(E,L1r)N2(E,r)N(E,Lr)N(E,L^{-1}r)\subset N_{2}(E,r)\subset N(E,Lr). This implies that we have the following corollary to Lemma 3.6:

Corollary 3.7.

Suppose that EE is an mm-regular subset of d\mathbb{R}^{d}, η>0\eta>0, ε(0,1)\varepsilon\in(0,1) and MM is a positive integer. Then there are a positive number dMd_{M} and an mm-set EMEE_{M}\subset E such that Hm(EEM)<ηH^{m}(E\setminus E_{M})<\eta and A(M)N2(E,ε|A|2)A^{(M)}\subset N_{2}(E,\varepsilon|A|_{2}) whenever AEMA\subset E_{M} and |A|2<dM|A|_{2}<d_{M}.

The conclusion of this corollary is equivalent to Lemma 4.2 in [4]. Therefore, one can similarly deduce Lemma 4.8 from [4]:

Lemma 3.8 (Equivalent to Lemma 4.8 from [4]).

If EE is an mm-regular subset of (d,)(\mathbb{R}^{d},\|\cdot\|), η>0\eta>0 and 0<μ<L20<\mu<L^{-2}, then there is a positive number RR and an mm-set EEE^{*}\subset E such that Hm(EE)<ηH^{m}(E\setminus E^{*})<\eta and if aEa\in E^{*} and 0<r<R0<r<R, then

  • there exists VA(a,d,m)V\in A(a,d,m) such that E[B2(a,r)N2(V,μr)]=E^{*}\cap[B_{2}(a,r)\setminus N_{2}(V,\mu r)]=\emptyset and

  • VB2(a,r)N2(E,μr)V\cap B_{2}(a,r)\subset N_{2}(E,\mu r).

The details of the pathway from Corollary 3.7 to Lemma 3.8 follow very closely to Mattila [4]. However, there are some very important technical obstacles to overcome. Therefore, the next subsection is an attempt to address the technical differences without completely duplicating the work that appears in [4]. It’s important to note before proceeding that the notions of rectifiability, pure unrectifiability, and weak mm-linear approximability are all equivalent up to changing the norm.

3.4. From Corollary 3.7 to Lemma 3.8

Lemma 3.9 (Lemma 4.4 from [4]).

Suppose that kk\in\mathbb{Z} and λ,p+\lambda,p\in\mathbb{R}_{+} such that 1kd1\leq k\leq d, 0<λ<10<\lambda<1 and p>1p>1. Then there exists a positive integer M=M(k,λ,p)M=M(k,\lambda,p) with the property:

If r>0r>0, A={a0,,ak}dA=\{a_{0},...,a_{k}\}\subset\mathbb{R}^{d}, aia02r\|a_{i}-a_{0}\|_{2}\leq r and the Euclidean distance between aia_{i} and span{a0,,ai1}\mbox{span}\{a_{0},...,a_{i-1}\} is greater than λr\lambda r for i=1,,ki=1,...,k, then (span A)B2(a0,pr)N2(A(M),kr).(\mbox{span }A)\cap B_{2}(a_{0},pr)\subset N_{2}(A^{(M)},kr).

From here we can show that we can approximate a regular set EE by a weakly linearly approximable set. The first step is the following lemma

Lemma 3.10 (Lemma 4.5 from [4]).

There is a constant K>1K>1 depending only on dd and mm such that for any mm-regular set EdE\subset\mathbb{R}^{d} and for η>0\eta>0 there is a positive number r0r_{0} and an mm-set E0EE_{0}\subset E with the properties:

  1. (1)

    Hm(EE0)<ηH^{m}(E\setminus E_{0})<\eta.

  2. (2)

    If 0<r<r00<r<r_{0}, aE0a\in E_{0} and TA(a,d,m+1)T\in A(a,d,m+1), then TB2(a,Kr)N2(E0,r)T\cap B_{2}(a,Kr)\not\subset N_{2}(E_{0},r).

The proof depends on the fact that E(M)E^{(M)} stays close to EE and the Hausdorff dimension of EE is not enough to cover B2(a,Kr)TB_{2}(a,Kr)\cap T. The following lemma crystallizes this idea

Lemma 3.11.

Let d>md>m. Given a regular mm-set EE, we can find a positive number r0r_{0} and a mm-set E0EdE_{0}\subset E\subset\mathbb{R}^{d} with the property:

For no positive number r<r0r<r_{0} does the set N2(E0,r)N_{2}(E_{0},r) contain a (Euclidean) sphere of radius KrKr, where K=103K=10^{3}.

Now Lemmas 3.6, 3.9, and 3.10 imply

Lemma 3.12 (Lemma 4.6 from [4]).

If EE is an mm-regular subset of d\mathbb{R}^{d}, η>0\eta>0 and 0<λ<10<\lambda<1, then there are a positive number dd^{*} and an mm-set EEE^{*}\subset E with the properties:

  1. (1)

    Hm(EE)<η.H^{m}(E\setminus E^{*})<\eta.

  2. (2)

    If aEa\in E^{*} and 0<r<d0<r<d^{*}, then there exists VA(a,d,m)V\in A(a,d,m) such that E[B2(a,r)N2(V,λr)]=E^{*}\cap[B_{2}(a,r)\setminus N_{2}(V,\lambda r)]=\emptyset

Finally, we have the last two pieces necessary to prove Lemma 3.8, which importantly do not require a density assumption:

We have the following corollary to the isodiametric inequality (see, for example, [7]):

Lemma 3.13.

For any plane, VA(0,d,m)V\in A(0,d,m), m(VB(0,r))=(2r)m.\mathcal{H}^{m}(V\cap B(0,r))=(2r)^{m}.

Lemma 3.14 (Lemma 4.7 from [4]).

Let EdE\subset\mathbb{R}^{d} be an mm-set and 0<ϵ<10<\epsilon<1. Then there are a positive number, RR, and an mm-set E0EE_{0}\subset E such that if ada\in\mathbb{R}^{d}, VA(a,d,m)V\in A(a,d,m), BVB\subset V and 0<L2h<l<R0<L^{2}h<l<R, then

m(E0PV1(B)N(V,h))m(E0N(B,L2h))(1+ϵ)(1+L2h/l)mm(N(B,l)V).\displaystyle\mathcal{H}^{m}(E_{0}\cap P^{-1}_{V}(B)\cap N(V,h))\leq\mathcal{H}^{m}(E_{0}\cap N(B,L^{2}h))\leq(1+\epsilon)(1+L^{2}h/l)^{m}\mathcal{H}^{m}(N(B,l)\cap V).

The proof of the Lemma 3.14 follows in the general case by taking a cylinders adapted to the norm we are considering and using the argument of Marstrand [2] directly. We include the proof here for completeness:

Proof of Lemma 3.14.

Let R>0R>0 and E0EE_{0}\subset E be defined so that m(ES)(1+ϵ)|S|m\mathcal{H}^{m}(E\cap S)\leq(1+\epsilon)|S|^{m} for E0SE_{0}\cap S\neq\emptyset and |S|<2R|S|<2R. We first observe that

E0PV1(B)N(V,h)E0PV1(B)N2(V,Lh)E0N2(B,Lh)E0N(B,L2h)\displaystyle E_{0}\cap P^{-1}_{V}(B)\cap N(V,h)\subset E_{0}\cap P^{-1}_{V}(B)\cap N_{2}(V,Lh)\subset E_{0}\cap N_{2}(B,Lh)\subset E_{0}\cap N(B,L^{2}h)

For r<l<Rr<l<R and xVx\in V, define the cylinder

C(x,r,l):={yd:PV(yx)l,(yx)PV(yx)r}\displaystyle C(x,r,l):=\{y\in\mathbb{R}^{d}~{}:~{}\|P_{V}(y-x)\|\leq l,\,\|(y-x)-P_{V}(y-x)\|\leq r\}

Then |C(x,r,l)|2(r+l)|C(x,r,l)|\leq 2(r+l), and if yC(x,r,l)y\in C(x,r,l), then xC(y,r,l)x\in C(y,r,l). Let χx,r,l(y)\chi_{x,r,l}(y) denote the indicator function for C(x,r,l).C(x,r,l). Then

(2l)mm(E0N(B,r))\displaystyle(2l)^{m}\mathcal{H}^{m}(E_{0}\cap N(B,r)) =E0N(B,r)(2l)mm(dx)=E0N(B,r)m(B(x,l)V)m(dx)\displaystyle=\int_{E_{0}\cap N(B,r)}(2l)^{m}\,\mathcal{H}^{m}(dx)=\int_{E_{0}\cap N(B,r)}\mathcal{H}^{m}(B(x,l)\cap V)\,\mathcal{H}^{m}(dx)
=E0N(B,r)B(x,l)m|V(dy)m(dx)\displaystyle=\int_{E_{0}\cap N(B,r)}\int_{B(x,l)}\,\mathcal{H}^{m}|_{V}(dy)\,\mathcal{H}^{m}(dx)
=E0N(B,r)N(B,l)Vχx,r,l(y)m|V(dy)m(dx)\displaystyle=\int_{E_{0}\cap N(B,r)}\int_{N(B,l)\cap V}\chi_{x,r,l}(y)\,\mathcal{H}^{m}|_{V}(dy)\,\mathcal{H}^{m}(dx)
=N(B,l)VE0N(B,r)χy,r,l(x)m(dx)m|V(dy)\displaystyle=\int_{N(B,l)\cap V}\int_{E_{0}\cap N(B,r)}\chi_{y,r,l}(x)\,\mathcal{H}^{m}(dx)\,\mathcal{H}^{m}|_{V}(dy)
=N(B,l)Vm(E0C(y,r,l))m|V(dy)\displaystyle=\int_{N(B,l)\cap V}\mathcal{H}^{m}(E_{0}\cap C(y,r,l))\,\mathcal{H}^{m}|_{V}(dy)
(1+ϵ)(2(r+l))mm(N(B,l)V).\displaystyle\leq(1+\epsilon)(2(r+l))^{m}\mathcal{H}^{m}(N(B,l)\cap V).

We now prove Lemma 3.8 which follows primarily from Lemmas 3.12 and 3.14:

Proof of Lemma 3.8.

Let δ(0,12)\delta\in(0,\frac{1}{2}). Using Lemma 3.4, Lemma 3.12, and Lemma 3.14, there exists EEE^{*}\subset E such that Hm(EE)<ηH^{m}(E\setminus E^{*})<\eta and R>0R>0 such that

  1. (i)

    If aEa\in E^{*}, VA(a,d,m)V\in A(a,d,m), BVB\subset V and 0<L2h<l<R0<L^{2}h<l<R, then

    m[EPV1BN(V,h)](1+δ)(1+L2h/l)mm(N(B,l)V).\displaystyle\mathcal{H}^{m}[E^{*}\cap P^{-1}_{V}B\cap N(V,h)]\leq(1+\delta)(1+L^{2}h/l)^{m}\mathcal{H}^{m}(N(B,l)\cap V).
  2. (ii)

    If aEa\in E^{*} and 0<r<R0<r<R, then there is VA(a,d,m)V\in A(a,d,m) such that

    E(B2(a,L2r)N2(V,L2δ2μr))=.\displaystyle E^{*}\cap(B_{2}(a,L^{2}r)\setminus N_{2}(V,L^{-2}\delta^{2}\mu r))=\emptyset.
  3. (iii)

    If aEa\in E^{*} and 0<s<LR0<s<LR, then

    m(EB(a,s))(2s)m>1δ\displaystyle\frac{\mathcal{H}^{m}(E^{*}\cap B(a,s))}{(2s)^{m}}>1-\delta

Now part (1) of Lemma 3.8 follows from part (ii) of the preceding list. Part (ii) also implies that

EB(a,Lr)EB2(a,L2r)N2(V,δ2L2μr)N(V,δ2L1μr).\displaystyle E^{*}\cap B(a,Lr)\subset E^{*}\cap B_{2}(a,L^{2}r)\subset N_{2}(V,\delta^{2}L^{-2}\mu r)\subset N(V,\delta^{2}L^{-1}\mu r).

Suppose, by contradiction, that part (2) of Lemma 3.8 does not hold for aEa\in E^{*}, VA(a,d,m)V\in A(a,d,m) and r(0,R)r\in(0,R) satisfying the conditions above. Then, there is a point bVB2(a,r)b\in V\cap B_{2}(a,r) such that B2(b,μr)E=B_{2}(b,\mu r)\cap E=\emptyset. This then implies that bVB(a,Lr)b\in V\cap B(a,Lr) and B(b,L1μr)E=B(b,L^{-1}\mu r)\cap E=\emptyset.

Set B=VB(a,Lr)B(b,L1μr/2)B=V\cap B(a,Lr)\setminus B(b,L^{-1}\mu r/2). Then, since δ2<1/2\delta^{2}<1/2, triangle inequality implies that

EN(V,δ2L1μr)B(a,Lr)EN(V,δ2L1μr)PV1(B)\displaystyle E^{*}\cap N(V,\delta^{2}L^{-1}\mu r)\cap B(a,Lr)\subset E^{*}\cap N(V,\delta^{2}L^{-1}\mu r)\cap P^{-1}_{V}(B)

Now since E(B(a,Lr)N(V,δ2L1μr))=E^{*}\cap(B(a,Lr)\setminus N(V,\delta^{2}L^{-1}\mu r))=\emptyset, part (iii) implies

m(EN(V,δ2L1μr)PV1(B))m(EB(a,Lr))>(1δ)(2Lr)m\displaystyle\mathcal{H}^{m}(E^{*}\cap N(V,\delta^{2}L^{-1}\mu r)\cap P^{-1}_{V}(B))\geq\mathcal{H}^{m}(E^{*}\cap B(a,Lr))>(1-\delta)(2Lr)^{m}

From the definition of BB and Lemma 3.13,

m(N(B,δL1μr)V)[(1+δμL2)2Lr]m[(12δ)2L1μr]m\displaystyle\mathcal{H}^{m}(N(B,\delta L^{-1}\mu r)\cap V)\leq[(1+\delta\mu L^{-2})2Lr]^{m}-[(\tfrac{1}{2}-\delta)2L^{-1}\mu r]^{m}

Therefore, part (i) implies

(1δ)(2Lr)m\displaystyle(1-\delta)(2Lr)^{m} <m(EB(a,Lr))\displaystyle<\mathcal{H}^{m}(E^{*}\cap B(a,Lr))
(1+δ)(1+L2δ2L1μr/δL1μr)m([(1+δμL2)2Lr]m[(12δ)2L1μr]m)\displaystyle\leq(1+\delta)(1+L^{2}\delta^{2}L^{-1}\mu r/\delta L^{-1}\mu r)^{m}\left([(1+\delta\mu L^{-2})2Lr]^{m}-[(\tfrac{1}{2}-\delta)2L^{-1}\mu r]^{m}\right)

Now for δ\delta small enough, we attain a contradiction. ∎

4. Projections

First, the crucial lemma on projections of flat, purely unrectifiable sets:

Lemma 4.1 ([5], Lemma 16.1).

If EE is a purely mm-unrectifiable subset of d\mathbb{R}^{d} and EE is weakly mm-linearly approximable, then Hm[PV(E)]=0H^{m}[P_{V}(E)]=0 for every VG(d,m)V\in G(d,m).

Lemma 3.8 now provides a significant subset of EE for which Lemma 4.1 is relevant. In conjunction with the next statement, we have all that is necessary to complete the proof of Theorem 1.1. The proof follows in the same way that Lemma 5.2 in [4]. However, there are a number of careful estimates that one must check because we are not assuming densities exist with respect to the Euclidean norm. Therefore, a contracted argument appears after the statement.

Lemma 4.2.

If EE is an mm-regular subset of d\mathbb{R}^{d}, then

lim infr0+supVA(a,d,m)Hm(PV[EB2(a,r)])(2r)m1\displaystyle\liminf_{r\rightarrow 0^{+}}\sup_{V\in A(a,d,m)}\frac{H^{m}(P_{V}[E\cap B_{2}(a,r)])}{(2r)^{m}}\geq 1

for m\mathcal{H}^{m} a.e. aEa\in E.

Proof.

Suppose, by contradiction that for some η(0,1)\eta\in(0,1)

(3) lim infr0+supVA(a,d,m)Hm(PV[EB2(a,r)])(2r)m<η.\displaystyle\liminf_{r\rightarrow 0^{+}}\sup_{V\in A(a,d,m)}\frac{H^{m}(P_{V}[E\cap B_{2}(a,r)])}{(2r)^{m}}<\eta.

for all aEa\in E. Since \|\cdot\| and 2\|\cdot\|_{2} are equivalent with respect to L>1L>1 and EE is mm-regular, there exists a constant c=c(m,d,L)c=c(m,d,L), a number R0>0R_{0}>0 and EEE^{\prime}\subset E so that for r(0,R0)r\in(0,R_{0}) and aEa\in E^{\prime}

12c<Hm(EB2(a,r))(2r)m<2\displaystyle\frac{1}{2}c<\frac{H^{m}(E\cap B_{2}(a,r))}{(2r)^{m}}<2

Let t:=((η+1)/2)1/mt:=((\eta+1)/2)^{1/m}, ϵ>0\epsilon>0, and μ(0,(1t)/16)\mu\in(0,(1-t)/16). Lemma 3.8, then implies that there exists an mm-regular set EEE^{*}\subset E^{\prime} satisfying the conditions of Lemma 3.8. Moreover, we can conclude that there is a point a0Ea_{0}\in E^{*}, a positive number r0<R0r_{0}<R_{0} and V0A(a0,d,m)V_{0}\in A(a_{0},d,m) such that the folllowing conditions hold

Hm(EB2(a0,r0))(2r0)m<2,Hm((EE)B2(a0,r0))(2r0)m<ϵ\displaystyle\frac{H^{m}(E\cap B_{2}(a_{0},r_{0}))}{(2r_{0})^{m}}<2,\hskip 45.52458pt\frac{H^{m}((E\setminus E^{*})\cap B_{2}(a_{0},r_{0}))}{(2r_{0})^{m}}<\epsilon
Hm(PV[EB2(a0,r0)])(2r0)m<η,E[B2(a0,r0)N2(V,μr0)]=\displaystyle\frac{H^{m}(P_{V}[E^{*}\cap B_{2}(a_{0},r_{0})])}{(2r_{0})^{m}}<\eta,\hskip 28.45274ptE^{*}\cap[B_{2}(a_{0},r_{0})\setminus N_{2}(V,\mu r_{0})]=\emptyset
V0B2(a0,r0)N2(E,μr0)\displaystyle V_{0}\cap B_{2}(a_{0},r_{0})\subset N_{2}(E^{*},\mu r_{0})

Let F:=PV[EB2(a0,r0)]F:=P_{V}[E^{*}\cap B_{2}(a_{0},r_{0})] and G:=(VB2(a0,tr0))F.G:=(V\cap B_{2}(a_{0},tr_{0}))\setminus F. Therefore, FF is closed and Hm(F)(2r0)m<η\frac{H^{m}(F)}{(2r_{0})^{m}}<\eta and

Hm(G)(2r0)mtmη=1η2\displaystyle\frac{H^{m}(G)}{(2r_{0})^{m}}\geq t^{m}-\eta=\frac{1-\eta}{2}

We can now cover GG with with a finite set of balls, {B2(bq,ρq)}q=1l\{B_{2}(b_{q},\rho_{q})\}_{q=1}^{l} such that bqGb_{q}\in G, and

FB2(bq,ρq)\displaystyle F\cap\partial B_{2}(b_{q},\rho_{q}) \displaystyle\neq\emptyset
FB2(bq,ρq)\displaystyle F\cap B_{2}(b_{q},\rho_{q}) =\displaystyle=\emptyset
B2(bq,5ρq)B2(bq,5ρq)\displaystyle B_{2}(b_{q},5\rho_{q})\cap B_{2}(b_{q^{\prime}},5\rho_{q^{\prime}}) =\displaystyle=\emptyset
q=1lρqm\displaystyle\sum_{q=1}^{l}\rho_{q}^{m} >K1r0m\displaystyle>K_{1}r^{m}_{0}

where K1=K1(m,η)K_{1}=K_{1}(m,\eta). Then μr0<(1t)r0\mu r_{0}<(1-t)r_{0}, and V0B2(a0,r0)N2(E,μr0)V_{0}\cap B_{2}(a_{0},r_{0})\subset N_{2}(E^{*},\mu r_{0}) implies that ρqμr0\rho_{q}\leq\mu r_{0}.

Now consider the sets

Cq:=PV1(B2(bq,ρq/2))N2(V,(1t)r0/2)\displaystyle C_{q}:=P^{-1}_{V}(B_{2}(b_{q},\rho_{q}/2))\cap N_{2}(V,(1-t)r_{0}/2)

and label them so that for q=1,.,kq=1,....,k, CqE=C_{q}\cap E^{\prime}=\emptyset and for q=k+1,,lq=k+1,...,l, there exists cqCqEc_{q}\in C_{q}\cap E^{\prime}. If q{k+1,,l}q\in\{k+1,...,l\} and xEB2(cq,ρq/4)x\in E\cap B_{2}(c_{q},\rho_{q}/4), then xB2(a0,r0)x\in B_{2}(a_{0},r_{0}), PV(x)B2(bq,ρq)P_{V}(x)\in B_{2}(b_{q},\rho_{q}) and thus PV(x)FP_{V}(x)\not\in F and xEx\not\in E^{*}. Thus,

q=k+1lEB2(cq,ρq/4)(EE)B2(a0,r0)\displaystyle\bigcup_{q=k+1}^{l}E\cap B_{2}(c_{q},\rho_{q}/4)\subset(E\setminus E^{*})\cap B_{2}(a_{0},r_{0})

Now, since the B2(cq,ρq/2)B_{2}(c_{q},\rho_{q}/2) are disjoint

124mq=k+1lρqm<ϵr0m.\displaystyle\tfrac{1}{2}4^{-m}\sum_{q=k+1}^{l}\rho^{m}_{q}<\epsilon r^{m}_{0}.

Then taking ϵ<144m\epsilon<\tfrac{1}{4}4^{-m}, we get

q=1kρqm>K12r0m.\displaystyle\sum_{q=1}^{k}\rho^{m}_{q}>\tfrac{K_{1}}{2}r^{m}_{0}.

For q{1,,k}q\in\{1,...,k\}, choose points eqPV1(B2(bq,ρq))N2(V,μr0)Ee_{q}\in P_{V}^{-1}(\partial B_{2}(b_{q},\rho_{q}))\cap N_{2}(V,\mu r_{0})\cap E^{*} and VqA(eq,d,m)V_{q}\in A(e_{q},d,m) such that

(4) Aq:=B2(eq,μ1(1t)ρq/8)VqN2(E,(1t)ρq/8)\displaystyle A_{q}:=B_{2}(e_{q},\mu^{-1}(1-t)\rho_{q}/8)\cap V_{q}\subset N_{2}(E^{\prime},(1-t)\rho_{q}/8)

Next, μ1ρqr0\mu^{-1}\rho_{q}\leq r_{0} and (1t)/8(1-t)/8 is small enough so that bqPV(Aq)b_{q}\not\in P_{V}(A_{q}). Moreover, (4) implies that there exist K2=K2(t)K_{2}=K_{2}(t) and a line segment in AqA_{q} that can be covered by a pairwise disjoint family of balls of radius ρq\rho_{q}, centered at points in EE^{\prime}, {B2(xjq,ρq)}j=1s\{B_{2}(x^{q}_{j},\rho_{q})\}_{j=1}^{s}, such that B2(xjq,ρq)B2(a0,r0)B_{2}(x^{q}_{j},\rho_{q})\subset B_{2}(a_{0},r_{0}) and sK2μ1s\geq K_{2}\mu^{-1}. Since B2(xjq,ρq)B2(a0,r0)B_{2}(x^{q}_{j},\rho_{q})\subset B_{2}(a_{0},r_{0}), we have

Hm(EB2(a0,r0))q=1kj=1sHm(EB2(xjq,ρq))c0μ1r0m\displaystyle H^{m}(E\cap B_{2}(a_{0},r_{0}))\geq\sum_{q=1}^{k}\sum_{j=1}^{s}H^{m}(E\cap B_{2}(x^{q}_{j},\rho_{q}))\geq c_{0}\mu^{-1}r^{m}_{0}

for some c0>0c_{0}>0. Therefore,

c0μ1Hm(EB2(a0,r0))(2r0)m<2\displaystyle c_{0}\mu^{-1}\leq\frac{H^{m}(E\cap B_{2}(a_{0},r_{0}))}{(2r_{0})^{m}}<2

which provides a contradiction for μ\mu small enough. ∎

5. Conclusion

We can finally close the argument for Theorem 1.1. The primary results from the preceding work necessary will be Lemma 3.8, and Theorems 4.1 and 4.2.

Proof of Theorem 1.1.

Let (d,)(\mathbb{R}^{d},\|\cdot\|) be a dd-dimensional Banach space. We begin with the forward direction. This follows from standard density arguments in combination with the fact that rectifiable sets are linearly approximable.

For the reverse direction, we will combine Lemma 4.1 and Lemma 3.8 to contradict Lemma 4.2. Let 0<η0<\eta, 0<λ<10<\lambda<1 and EdE\subset\mathbb{R}^{d} be an mm-regular, purely unrectifiable set. Furthermore, let EE^{*} and RR be given by Lemma 3.8. Then the conclusions of Lemma 3.8 imply that EE^{*} is weakly mm-linearly approximable with respect to the Euclidean norm. Also, since EE is purely unrectifiable, EE^{*} is also purely unrectifiable. Using the conclusion of Lemma 4.1 we see that m[PV(E)]=0\mathcal{H}^{m}[P_{V}(E^{*})]=0 for every VG(d,m)V\in G(d,m). However, since EE^{*} is mm-regular, Lemma 4.2 contradicts the previous assertion. ∎

References

  • [1] Herbert Federer. Geometric measure theory. Springer, 2014.
  • [2] John M. Marstrand. Hausdorff two-dimensional measure in 3-space. Proceedings of the London Mathematical Society, 3(1):91–108, 1961.
  • [3] John M. Marstrand. The (φ\varphi, s) regular subsets of n-space. Transactions of the American Mathematical Society, 113(3):369–392, 1964.
  • [4] Pertti Mattila. Hausdorff mm regular and rectifiable sets in nn-space. Transactions of the American Mathematical Society, 205:263–274, 1975.
  • [5] Pertti Mattila. Geometry of sets and measures in Euclidean spaces: fractals and rectifiability. Number 44. Cambridge university press, 1999.
  • [6] David Preiss. Geometry of measures in n\mathbb{R}^{n}: distribution, rectifiability, and densities. Annals of Mathematics, pages 537–643, 1987.
  • [7] Séverine Rigot. Isodiametric inequality in carnot groups. In Annales Academiae Scientiarum Fennicae. Mathematica, volume 36, pages 245–260, 2011.