This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Density of periodic measures and large deviation principle for generalized (α,β\alpha,\beta)- transformations

Mao Shinoda Department of Mathematics
Ochanomizu University
2-1-1, Otsuka, Bunkyo-ku,Tokyo 112-8610, JAPAN
[email protected]
 and  Kenichiro Yamamoto Department of General Education
Nagaoka University of Technology
Nagaoka 940-2188, JAPAN
[email protected]
Abstract.

We introduce generalized (α,β)(\alpha,\beta)-transformations, which include all (α,β)(\alpha,\beta) and generalized β\beta-transformations, and prove that all transitive generalized (α,β)(\alpha,\beta)-transformations satisfy the level-2 large deviation principle with a unique measure of maximal entropy. A crucial step in our proof is to establish density of periodic measures in the set of ergodic measures.

2020 Mathematics Subject Classification:
Primary 37A50, 37E05, 37B10; Secondary 60F10

1. Introduction

In this paper, we consider piecewise monotonic maps on the unit interval [0,1][0,1]. We say that T:[0,1][0,1]T\colon[0,1]\to[0,1] is a piecewise monotonic map if there exist integer k>1k>1 and 0=c0<c1<<ck=10=c_{0}<c_{1}<\cdots<c_{k}=1, which we call the critical points, such that T|(ci1,ci)T|_{(c_{i-1},c_{i})} is strictly monotonic and continuous for each 1ik1\leq i\leq k. Throughout this paper, we further assume the following conditions for a piecewise monotonic map TT.

  • The topological entropy htop(T)h_{\rm top}(T) of TT is positive (see [1, Ch. 9] for the definition of topological entropy for piecewise monotonic maps).

  • TT is transitive, i.e., there exists a point x[0,1]x\in[0,1] whose forward orbit {Tn(x):n0}\{T^{n}(x):n\geq 0\} is dense in [0,1][0,1].

Under these conditions, it is proved in [10, Theorem 4] that there exists a unique measure of maximal entropy for TT, that is, a TT-invariant measure whose metric entropy coincides with htop(T)h_{\rm top}(T). The aim of this paper is to investigate whether the large deviation principle holds for a piecewise monotonic map with the unique measure of maximal entropy as a reference.

Let ([0,1])\mathcal{M}([0,1]) be the set of all Borel probability measures on [0,1][0,1] endowed with the weak-topology. We say that ([0,1],T)([0,1],T) satisfies the (level-2) large deviation principle with the unique measure of maximal entropy mm as a reference if there exists a lower semi-continuous function 𝒥:([0,1])[0,]\mathcal{J}\colon\mathcal{M}([0,1])\to[0,\infty], called a rate function, such that

lim supn1nlogm({x[0,1]:1nj=0n1δTj(x)𝒦})inf𝒦𝒥\limsup_{n\rightarrow\infty}\frac{1}{n}\log m\left(\left\{x\in[0,1]:\frac{1}{n}\sum_{j=0}^{n-1}\delta_{T^{j}(x)}\in\mathcal{K}\right\}\right)\leq-\inf_{\mathcal{K}}\mathcal{J}

holds for any closed set 𝒦([0,1])\mathcal{K}\subset\mathcal{M}([0,1]) and

lim infn1nlogm({x[0,1]:1nj=0n1δTj(x)𝒰})inf𝒰𝒥\liminf_{n\rightarrow\infty}\frac{1}{n}\log m\left(\left\{x\in[0,1]:\frac{1}{n}\sum_{j=0}^{n-1}\delta_{T^{j}(x)}\in\mathcal{U}\right\}\right)\geq-\inf_{\mathcal{U}}\mathcal{J}

holds for any open set 𝒰([0,1])\mathcal{U}\subset\mathcal{M}([0,1]). Here δy\delta_{y} signifies the Dirac mass at a point y[0,1]y\in[0,1]. We refer to [6] for a general theory of large deviations and its background in statistical mechanics.

In this literature, the case that TT has a constant slope is important because this condition implies that the unique measure of maximal entropy is absolutely continuous to the Lebesgue measure. Hence we focus our attention to piecewise monotonic maps with a constant slope β>1\beta>1. A familiar example included in this family is a β\beta-transformation.

  • β\beta-transformations.
    The β\beta-transformation Tβ:[0,1][0,1]T_{\beta}\colon[0,1]\to[0,1] with β>1\beta>1 was introduced by Rényi [21] and defined by

    Tβ(x)={βx(mod 1)(x1),limy10(βy(mod 1))(x=1).T_{\beta}(x)=\left\{\begin{array}[]{ll}\beta x\ (\text{mod}\ 1)&(x\not=1),\\ \displaystyle\lim_{y\rightarrow 1-0}(\beta y\ (\text{mod}\ 1))&(x=1).\end{array}\right.

This family has recently attracted attention in the setting beyond specification, since TβT_{\beta} does not satisfy the specification property for Lebesgue almost parameter β>1\beta>1 ([2, 22]). Inspired by β\beta-transformations, many authors have considered various generalizations of TβT_{\beta}: (α,β)(\alpha,\beta)-transformations ([4, 5, 7, 9, 20]), (β)(-\beta)-transformations ([15, 16, 17, 23]), generalized β\beta-transformations ([7, 8, 24, 26]).

  • (α,β)(\alpha,\beta)-transformations.
    The (α,β)(\alpha,\beta)-transformation Tα,β:[0,1][0,1]T_{\alpha,\beta}\colon[0,1]\to[0,1] with β>1\beta>1 and 0α<10\leq\alpha<1 was introduced by Parry ([18]) and defined by

    Tα,β(x)={βx+α(mod 1)(x1),limy10(βy+α(mod 1))(x=1).T_{\alpha,\beta}(x)=\left\{\begin{array}[]{ll}\beta x+\alpha\ (\text{mod}\ 1)&(x\not=1),\\ \displaystyle\lim_{y\rightarrow 1-0}(\beta y+\alpha\ (\text{mod}\ 1))&(x=1).\end{array}\right.
  • Generalized β\beta-transformations.
    Let β>1\beta>1 and kk be a smallest integer not less than β\beta, fix E=(E1,,Ek){+1,1}kE=(E_{1},\ldots,E_{k})\in\{+1,-1\}^{k}, and consider kk intervals

    I1:=[0,1/β),I2:=[1/β,2/β),,Ik:=[k1/β,1].I_{1}:=[0,1/\beta),\ I_{2}:=[1/\beta,2/\beta),\ldots,I_{k}:=[k-1/\beta,1].

    The generalized β\beta-transformation Tβ,E:[0,1][0,1]T_{\beta,E}\colon[0,1]\to[0,1] was introduced by Góra ([8]) and defined by

    Tβ,E(x)={βxi+1(xIi,E(i)=+1),βx+i(xIi,E(i)=1).T_{\beta,E}(x)=\left\{\begin{array}[]{ll}\beta x-i+1&(x\in I_{i},\ E(i)=+1),\\ -\beta x+i&(x\in I_{i},\ E(i)=-1).\end{array}\right.

    If E=(1,,1)E=(-1,\ldots,-1), then we call Tβ,ET_{\beta,E} a (β)(-\beta)-transformation.

Pfister and Sullivan ([19]) established the large deviation principle for β\beta-transformations for any β>1\beta>1, which is the first work on the large deviation principle in this family without the specification property. In [5], Chung and the second author proved that the large deviation principle holds for (α,β)(\alpha,\beta) and generalized β\beta-transformations in the following parameters:

  • (α,β)(\alpha,\beta)-transformations for 0α<10\leq\alpha<1 and β>2\beta>2.

  • Generalized β\beta-transformations for 1+52<β<2\frac{1+\sqrt{5}}{2}<\beta<2 and E=(1,1)E=(-1,-1).

Then it is natural to ask whether does the large deviation principle hold for the other parameters. In this paper not only we get an affirmative answer to the all parameters, but also we show that it holds for more general class of piecewise monotonic maps with constant slope, which we call generalized (α,β)(\alpha,\beta)-transformations.

  • Generalized (α,β)(\alpha,\beta)-transformations. Let 0α<10\leq\alpha<1, β>1\beta>1, kk be a smallest integer not less than α+β\alpha+\beta, fix E=(E1,,Ek){+1,1}kE=(E_{1},\ldots,E_{k})\in\{+1,-1\}^{k}, and consider kk intervals

    I1:=[0,1αβ),I2:=[1αβ,2αβ),,Ik:=[k1αβ,1].\ \ \ \ \ \ \ \ I_{1}:=\left[0,\frac{1-\alpha}{\beta}\right),\ I_{2}:=\left[\frac{1-\alpha}{\beta},\frac{2-\alpha}{\beta}\right),\ldots,I_{k}:=\left[\frac{k-1-\alpha}{\beta},1\right].

    We define the generalized (α,β)(\alpha,\beta)-transformation Tα,β,E:[0,1][0,1]T_{\alpha,\beta,E}\colon[0,1]\to[0,1] by

    Tα,β,E(x)={α+βxi+1(xIi,E(i)=+1),αβx+i(xIi,E(i)=1).T_{\alpha,\beta,E}(x)=\left\{\begin{array}[]{ll}\alpha+\beta x-i+1&(x\in I_{i},\ E(i)=+1),\\ -\alpha-\beta x+i&(x\in I_{i},\ E(i)=-1).\end{array}\right.

Generalized (α,β)(\alpha,\beta)-transformations are clearly a generalization of both (α,β)(\alpha,\beta)-transformations and generalized β\beta-transformations. The graphs of TβT_{\beta}, Tα,βT_{\alpha,\beta}, Tβ,ET_{\beta,E} and Tα,β,ET_{\alpha,\beta,E} are plotted in Figure 1.

Now we state our first main result of this paper.

Refer to caption
Figure 1. Graphs of TβT_{\beta}, Tα,βT_{\alpha,\beta}, Tβ,ET_{\beta,E} and Tα,β,ET_{\alpha,\beta,E}.
Theorem A.

Let T:[0,1][0,1]T\colon[0,1]\to[0,1] be a transitive generalized (α,β)(\alpha,\beta)-
transformation. Then ([0,1],T)([0,1],T) satisfies the level-2 large deviation principle with the unique measure of maximal entropy.

A crucial step to prove Theorem A is to show density of periodic measures. For a metrizable space XX and a Borel measurable map f:XXf\colon X\to X, denote by (X)\mathcal{M}(X) the set of all Borel probability measures on XX endowed with the weak-topology, by f(X)(X)\mathcal{M}_{f}(X)\subset\mathcal{M}(X) the set of ff-invariant ones, and by fe(X)f(X)\mathcal{M}^{e}_{f}(X)\subset\mathcal{M}_{f}(X) the set of ergodic ones. We say that μ(X)\mu\in\mathcal{M}(X) is a periodic measure if there exist xXx\in X and n>0n>0 such that fn(x)=xf^{n}(x)=x and μ=δnf(x):=1/nj=0n1δfj(x)\mu=\delta_{n}^{f}(x):=1/n\sum_{j=0}^{n-1}\delta_{f^{j}(x)} hold. Then, it is clear that μfe(X)\mu\in\mathcal{M}_{f}^{e}(X). We denote by fp(X)fe(X)\mathcal{M}_{f}^{p}(X)\subset\mathcal{M}_{f}^{e}(X) the set of all periodic measures on XX. It is established by Chung and the second author that the level-2 large deviation principle for a piecewise monotonic map is followed by density of periodic measures in the set of ergodic measures with the irreducibility of its Markov diagram (see [5, Theorem A]). Although the irreducibility is slightly stronger than the transitivity, we show in this paper that this result remains true if the irreducibility of a Markov diagram is replaced by the transitivity of a map.

Proposition A. Let T:[0,1][0,1]T\colon[0,1]\to[0,1] be a transitive piecewise monotonic map with htop(T)>0h_{{\rm top}}(T)>0. Suppose that Tp([0,1])\mathcal{M}^{p}_{T}([0,1]) is dense in Te([0,1])\mathcal{M}_{T}^{e}([0,1]). Then ([0,1],T)([0,1],T) satisfies the level-2 large deviation principle with the unique measure of maximal entropy.

Hence Theorem A follows from Proposition A and the following theorem, which is the second main result of this paper:

Theorem B.

Let T:[0,1][0,1]T\colon[0,1]\to[0,1] be a transitive generalized (α,β)(\alpha,\beta)-
transformation. Then Tp([0,1])\mathcal{M}_{T}^{p}([0,1]) is dense in Te([0,1])\mathcal{M}_{T}^{e}([0,1]).

Our proof of Theorem B is based on the work by Hofbauer and Raith ([13]) where density of periodic measures was proved for a piecewise monotonic map consisting of two monotonic pieces. Since the family of generalized (α,β)(\alpha,\beta)-transformations includes maps with more than three monotonic pieces, we need to improve their method. One key difference between [13] and ours is Proposition 3.3, which is one of the novelty of this paper (see also Remark 3.1).

The remainder of this paper is organized as follows. In §2, we establish our definitions and prepare several facts. Subsequently, we present proofs of Proposition A and Theorem B in §3.

2. Preliminaries

2.1. Symbolic dynamics

Let 0\mathbb{N}_{0} be the set of non-negative integers. For a finite or countable set AA, we denote by A0A^{\mathbb{N}_{0}} the one-sided infinite product of AA equipped with the product topology of the discrete topology of AA. To simplify the notation, given integers iji\leq j and xi,xi+1,,xjAx_{i},x_{i+1},\ldots,x_{j}\in A, we set x[i,j]:=xixi+1xjx_{[i,j]}:=x_{i}x_{i+1}\cdots x_{j}. We also write x[i,j):=x[i,j1]x_{[i,j)}:=x_{[i,j-1]} and similarly for x(i,j]x_{(i,j]} and x(i,j)x_{(i,j)}. A sequence x¯A0\underline{x}\in A^{\mathbb{N}_{0}} will be defined by all of its coordinates xnAx_{n}\in A with n0n\geq 0. Let σ\sigma be the shift map on A0A^{\mathbb{N}_{0}} (i.e., (σ(x¯))n=xn+1(\sigma(\underline{x}))_{n}=x_{n+1} for each n0n\geq 0 and x¯A0\underline{x}\in A^{\mathbb{N}_{0}}). When a subset Σ+\Sigma^{+} of A0A^{\mathbb{N}_{0}} is σ\sigma-invariant and closed, we call it a subshift and call AA the alphabet of Σ+\Sigma^{+}. For a matrix M=(Mij)(i,j)A2M=(M_{ij})_{(i,j)\in A^{2}}, each entry of which is 0 or 11, we define a subshift ΣM+A0\Sigma^{+}_{M}\subset A^{\mathbb{N}_{0}} by

ΣM+={x¯A0:Mxnxn+1=1 for all n0}\Sigma^{+}_{M}=\{\underline{x}\in A^{\mathbb{N}_{0}}:\text{$M_{x_{n}x_{n+1}}=1$ for all $n\geq 0$}\}

and call ΣM+\Sigma^{+}_{M} a Markov shift with an adjacency matrix MM.

For a subshift Σ+\Sigma^{+} on an alphabet AA, we set (Σ+):={x[0,n]:x¯Σ+,n0}\mathcal{L}(\Sigma^{+}):=\{x_{[0,n]}:\underline{x}\in\Sigma^{+},\ n\geq 0\} and [u]:={x¯Σ+:u=x[0,|u|)}[u]:=\left\{\underline{x}\in\Sigma^{+}:u=x_{[0,|u|)}\right\} for each u(Σ+)u\in\mathcal{L}(\Sigma^{+}), where |u||u| denotes the length of uu. A word v(Σ+)v\in\mathcal{L}(\Sigma^{+}) is called a subword of u=u0un(Σ+)u=u_{0}\cdots u_{n}\in\mathcal{L}(\Sigma^{+}) if v=u[i,j]v=u_{[i,j]} for some 0ijn0\leq i\leq j\leq n. For u,v(Σ+)u,v\in\mathcal{L}(\Sigma^{+}), we use juxtaposition uvuv to denote the word obtained by the concatenation and uu^{\infty} means a one-sided infinite sequence uuuA0uuu\cdots\in A^{\mathbb{N}_{0}}. Moreover, we set 𝒮(u):={iA:ui(Σ+)}\mathcal{S}(u):=\{i\in A:ui\in\mathcal{L}(\Sigma^{+})\} for u(Σ+)u\in\mathcal{L}(\Sigma^{+}). Finally, we say that Σ+\Sigma^{+} is transitive if for any u,v(Σ+)u,v\in\mathcal{L}(\Sigma^{+}), we can find w(Σ+)w\in\mathcal{L}(\Sigma^{+}) such that uwv(Σ+)uwv\in\mathcal{L}(\Sigma^{+}) holds. For the rest of this paper, we denote by hσ(μ)h_{\sigma}(\mu) the metric entropy of μσ(Σ+)\mu\in\mathcal{M}_{\sigma}(\Sigma^{+}).

2.2. Markov diagram

Let X=[0,1]X=[0,1] and T:XXT\colon X\to X be a piecewise monotonic map with critical points 0=c0<c1<<ck=10=c_{0}<c_{1}<\cdots<c_{k}=1. Let XT:=n=0Tn(j=1k(cj1,cj))X_{T}:=\bigcap_{n=0}^{\infty}T^{-n}(\bigcup_{j=1}^{k}(c_{j-1},c_{j})), and define the coding map :XT{1,,k}0\mathcal{I}\colon X_{T}\to\{1,\ldots,k\}^{\mathbb{N}_{0}} by

((x))n=j if and only if Tn(x)(cj1,cj),(\mathcal{I}(x))_{n}=j\text{ if and only if }T^{n}(x)\in(c_{j-1},c_{j}),

which is injective since TT is transitive (see [27, Proposition 6.1]). We denote the closure of (XT)\mathcal{I}(X_{T}) in {1,,k}\{1,\ldots,k\}^{\mathbb{N}} by ΣT+\Sigma_{T}^{+}. Then, ΣT+\Sigma_{T}^{+} is a subshift, and (ΣT+,σ)(\Sigma_{T}^{+},\sigma) is called the coding space of (X,T)(X,T). We use the following notations:

  • a¯(i):=limxci+0(x)\displaystyle\underline{a}^{(i)}:=\lim_{x\rightarrow c_{i}+0}\mathcal{I}(x), b¯(i):=limxci0(x)\displaystyle\underline{b}^{(i)}:=\lim_{x\rightarrow c_{i}-0}\mathcal{I}(x) for 1ik11\leq i\leq k-1.

  • adj(a¯(i)):=b¯(i){\rm adj}(\underline{a}^{(i)}):=\underline{b}^{(i)}, adj(b¯(i)):=a¯(i){\rm adj}(\underline{b}^{(i)}):=\underline{a}^{(i)} for 1ik11\leq i\leq k-1.

  • a¯:=limx+0(x)\displaystyle\underline{a}:=\lim_{x\rightarrow+0}\mathcal{I}(x), b¯:=limx10(x)\displaystyle\underline{b}:=\lim_{x\rightarrow 1-0}\mathcal{I}(x).

We also set 𝒞:={a¯(i),b¯(i):1ik1}\mathcal{CR}:=\{\underline{a}^{(i)},\underline{b}^{(i)}:1\leq i\leq k-1\} and call it a critical set.

In what follows, we define the Markov diagram, introduced by Hofbauer ([10]), which is a countable oriented graph with subsets of ΣT+\Sigma_{T}^{+} as vertices. Let CΣT+C\subset\Sigma_{T}^{+} be a closed subset with C[j]C\subset[j] for some 1jk1\leq j\leq k. We say that a non-empty closed subset DΣT+D\subset\Sigma_{T}^{+} is a successor of CC if D=[l]σ(C)D=[l]\cap\sigma(C) for some 1lk1\leq l\leq k. The expression CDC\rightarrow D denotes that DD is a successor of CC. Now, we define a set 𝒟T\mathcal{D}_{T} of vertices by induction. First, we set 𝒟0:={[1],,[k]}\mathcal{D}_{0}:=\{[1],\ldots,[k]\}. If 𝒟n\mathcal{D}_{n} is defined for n0n\geq 0, then we set

𝒟n+1:=𝒟n{D:D is a successor for some C𝒟n}.\mathcal{D}_{n+1}:=\mathcal{D}_{n}\cup\{D:{\color[rgb]{0,0,0}D\text{ is a successor for some }C\in\mathcal{D}_{n}}\}.

We note that 𝒟n\mathcal{D}_{n} is a finite set for each n0n\geq 0 since the number of successors of any closed subset of ΣT+\Sigma_{T}^{+} is at most kk by definition. Finally, we set

𝒟T:=n0𝒟n.\mathcal{D}_{T}:=\bigcup_{n\geq 0}\mathcal{D}_{n}.

The oriented graph (𝒟T,)(\mathcal{D}_{T},\rightarrow) is called the Markov diagram of TT. For notational simplicity, we use the expression 𝒟\mathcal{D} instead of 𝒟T\mathcal{D}_{T} if no confusion arises.

For x¯ΣT+\underline{x}\in\Sigma_{T}^{+} and n0n\geq 0, we set Dnx¯:=σn(x[0,n])D_{n}^{\underline{x}}:=\sigma^{n}(x_{[0,n]}). We define a sequence {Rmx¯}m0\{R_{m}^{\underline{x}}\}_{m\geq 0} of integers inductively as follows. First, we set R0x¯:=0R_{0}^{\underline{x}}:=0. If Rmx¯R_{m}^{\underline{x}} is defined for m0m\geq 0, then let

Rm+1x¯:=min{n>Rm:#(𝒮(x[0,n1)))2}.R_{m+1}^{\underline{x}}:=\min\{n>R_{m}:\#(\mathcal{S}(x_{[0,n-1)}))\geq 2\}.

We also set rmx¯:=Rmx¯Rm1x¯r_{m}^{\underline{x}}:=R_{m}^{\underline{x}}-R_{m-1}^{\underline{x}}. Now, we summarize properties of Hofbauer’s Markov Diagram, which are appeared in [12] (see also [13, Page 224]).

Proposition 2.1.

Let (𝒟,)(\mathcal{D},\rightarrow) be the Markov diagram of TT.
(1) 𝒟={Dnx¯:x¯𝒞{a¯,b¯},n0}\mathcal{D}=\{D_{n}^{\underline{x}}:\underline{x}\in\mathcal{CR}\cup\{\underline{a},\underline{b}\},\ n\geq 0\}.
(2) (𝒟,)(\mathcal{D},\rightarrow) has the following arrows:

  • For any x¯𝒞{a¯,b¯}\underline{x}\in\mathcal{CR}\cup\{\underline{a},\underline{b}\} and any n0n\geq 0, Dnx¯Dn+1x¯D_{n}^{\underline{x}}\rightarrow D_{n+1}^{\underline{x}}.

  • For any x¯𝒞{a¯,b¯}\underline{x}\in\mathcal{CR}\cup\{\underline{a},\underline{b}\} and any m1m\geq 1, DRmx¯1x¯Drmx¯fm(x¯)D_{R_{m}^{\underline{x}}-1}^{\underline{x}}\rightarrow D_{r_{m}^{\underline{x}}}^{f_{m}(\underline{x})}. Here fm(x¯)f_{m}(\underline{x}) is a unique point in 𝒞\mathcal{CR} so that fm(x¯)σRm1x¯(x¯)f_{m}(\underline{x})\not=\sigma^{R_{m-1}^{\underline{x}}}(\underline{x}) and fm(x¯)DRm1x¯f_{m}(\underline{x})\in D_{R_{m-1}}^{\underline{x}} hold.

(3) Let x¯𝒞{a¯,b¯}\underline{x}\in\mathcal{CR}\cup\{\underline{a},\underline{b}\}.

  • For any 0nrmx¯10\leq n\leq r_{m}^{\underline{x}}-1, we have Dn+Rm1x¯Dnfm(x¯)D^{\underline{x}}_{n+R_{m-1}}\subset D_{n}^{f_{m}(\underline{x})}. In particular, x[Rm1x¯,Rmx¯)=fm(x¯)[0,rmx¯)x_{[R_{m-1}^{\underline{x}},R_{m}^{\underline{x}})}=f_{m}(\underline{x})_{[0,r_{m}^{\underline{x}})} holds.

  • There exists an integer qq such that rmx¯=Rqfm(x¯)r_{m}^{\underline{x}}=R_{q}^{f_{m}(\underline{x})}.

(4) If C𝒟C\in\mathcal{D} and #𝒮(C)>2\#\mathcal{S}(C)>2, then 𝒮(C)𝒟0\mathcal{S}(C)\cap\mathcal{D}_{0}\not=\emptyset.

For a subset 𝒞𝒟\mathcal{C}\subset\mathcal{D}, we define a matrix M(𝒞)=(M(𝒞)C,D)(C,D)𝒞2M(\mathcal{C})=(M(\mathcal{C})_{C,D})_{(C,D)\in\mathcal{C}^{2}} by

M(𝒞)C,D={1(CD),0(otherwise).M(\mathcal{C})_{C,D}=\left\{\begin{array}[]{ll}1&(\text{$C\rightarrow D$}),\\ 0&(\text{otherwise}).\end{array}\right.

Then, ΣM(𝒞)+={C¯𝒞0:CnCn+1,n0}\Sigma^{+}_{M(\mathcal{C})}=\{\underline{C}\in\mathcal{C}^{\mathbb{N}_{0}}:C_{n}\rightarrow C_{n+1},n\geq 0\} is a one-sided Markov shift with a countable alphabet 𝒞\mathcal{C} and an adjacency matrix M(𝒞)M(\mathcal{C}). For notational simplicity, we denote Σ𝒞+\Sigma_{\mathcal{C}}^{+} instead of ΣM(𝒞)+\Sigma^{+}_{M(\mathcal{C})}.We say that 𝒞\mathcal{C} is irreducible if for any C,D𝒞C,D\in\mathcal{C}, there are finite vertices C0,,Cn𝒞C_{0},\ldots,C_{n}\in\mathcal{C} such that CiCi+1C_{i}\rightarrow C_{i+1} for 0in10\leq i\leq n-1 (i.e., C[0,n](Σ𝒞+)C_{[0,n]}\in\mathcal{L}(\Sigma^{+}_{\mathcal{C}})), C0=CC_{0}=C and Cn=DC_{n}=D, and if every subset of 𝒟\mathcal{D}, which contains 𝒞\mathcal{C} does not have this property. It is clear that Σ𝒞+\Sigma^{+}_{\mathcal{C}} is transitive if and only if 𝒞\mathcal{C} is irreducible. We define a map Ψ:Σ𝒟+{1,,k}0\Psi\colon\Sigma_{\mathcal{D}}^{+}\to\{1,\ldots,k\}^{\mathbb{N}_{0}} by

Ψ((Cn)n0):=(xn)n0 for (Cn)n0Σ𝒟+,\Psi((C_{n})_{n\in\mathbb{N}_{0}}):=(x_{n})_{n\in\mathbb{N}_{0}}\text{ for }(C_{n})_{n\in\mathbb{N}_{0}}\in\Sigma^{+}_{\mathcal{D}},

where 1xnk1\leq x_{n}\leq k is a unique integer such that Cn[xn]C_{n}\subset[x_{n}] holds for each n0n\in\mathbb{N}_{0}. Then it is not difficult to see that Ψ\Psi is continuous, countable to one and Ψ(Σ𝒟+)=ΣT+\Psi(\Sigma_{\mathcal{D}}^{+})=\Sigma_{T}^{+}. We say that μσe(ΣT+)\mu\in\mathcal{M}^{e}_{\sigma}(\Sigma_{T}^{+}) is liftable if there is μ¯σe(Σ𝒟+)\overline{\mu}\in\mathcal{M}^{e}_{\sigma}(\Sigma_{\mathcal{D}}^{+}) such that μ=μ¯Ψ1\mu=\overline{\mu}\circ\Psi^{-1} holds. It is known that not every μσe(ΣT+)\mu\in\mathcal{M}^{e}_{\sigma}(\Sigma_{T}^{+}) is liftable in general although Ψ\Psi is surjective (see [14]). In [10], Hofbauer provided a sufficient condition for the liftability.

Lemma 2.2.

([10, Lemma 3]) If μσe(ΣT+)\mu\in\mathcal{M}_{\sigma}^{e}(\Sigma_{T}^{+}) has positive metric entropy, then μ\mu is liftable.

We recall two important facts for transitive piecewise monotonic maps.

Lemma 2.3.

([12, Theorem 11],[13, Page 224]) There exists an irreducible subset 𝒞𝒟\mathcal{C}\subset\mathcal{D} satisfying the following properties:

  • Ψ(Σ𝒞+)=ΣT+\Psi(\Sigma_{\mathcal{C}}^{+})=\Sigma_{T}^{+}.

  • C𝒞C\in\mathcal{C} and CDC\rightarrow D implies D𝒞D\in\mathcal{C}.

  • There exists an integer n0n_{0} such that Dn0x¯𝒞D_{n_{0}}^{\underline{x}}\in\mathcal{C} holds for any x¯𝒞{a¯,b¯}\underline{x}\in\mathcal{CR}\cup\{\underline{a},\underline{b}\}.

Theorem 2.4.

([13, Theorem 1]) Suppose that there are integers N0N_{0} and N1N_{1} such that for any x¯𝒞\underline{x}\in\mathcal{CR}, and any jj\in\mathbb{N} with Rjx¯>N0R_{j}^{\underline{x}}>N_{0}, there exist an integer 1m<j1\leq m<j, a periodic point p¯\underline{p} with period ll and u(ΣT+)u\in\mathcal{L}(\Sigma_{T}^{+}) with |u|Rjx¯Rmx¯N1|u|\geq R_{j}^{\underline{x}}-R_{m}^{\underline{x}}-N_{1} such that uu is a subword of both x[Rmx¯,Rjx¯)x_{[R_{m}^{\underline{x}},R_{j}^{\underline{x}})} and p[0,l)p_{[0,l)}. Then Tp([0,1])\mathcal{M}_{T}^{p}([0,1]) is dense in Te([0,1])\mathcal{M}_{T}^{e}([0,1]).

Hereafter, let T:[0,1][0,1]T\colon[0,1]\to[0,1] be a generalized (α,β)(\alpha,\beta)-transformation and kk be a smallest integer not less than α+β\alpha+\beta. To simplifies the notation, we set An:=σn([a[0,n]])A_{n}:=\sigma^{n}([a_{[0,n]}]) and Bn:=σn([b[0,n]])B_{n}:=\sigma^{n}([b_{[0,n]}]) for each n0n\geq 0 and set Rm:=Rma¯R_{m}:=R_{m}^{\underline{a}}, Sm:=Rmb¯S_{m}:=R_{m}^{\underline{b}}, rm+1:=rm+1a¯=Rm+1Rmr_{m+1}:=r_{m+1}^{\underline{a}}=R_{m+1}-R_{m} and sm+1:=rm+1b¯=Sm+1Sms_{m+1}:=r_{m+1}^{\underline{b}}=S_{m+1}-S_{m} for each m0m\geq 0. We also denote

𝒜1:={m:σ(fm(a¯))=a¯}\mathcal{A}_{1}:=\{m\in\mathbb{N}:\sigma(f_{m}(\underline{a}))=\underline{a}\},     𝒜2:={m:σ(fm(a¯))=b¯}\mathcal{A}_{2}:=\{m\in\mathbb{N}:\sigma(f_{m}(\underline{a}))=\underline{b}\},
1:={m:σ(fm(b¯))=a¯}\mathcal{B}_{1}:=\{m\in\mathbb{N}:\sigma(f_{m}(\underline{b}))=\underline{a}\} and 2:={m:σ(fm(b¯))=b¯}\mathcal{B}_{2}:=\{m\in\mathbb{N}:\sigma(f_{m}(\underline{b}))=\underline{b}\}.

Note that σ[i]=ΣT+\sigma[i]=\Sigma_{T}^{+} for each 2ik12\leq i\leq k-1 and σ(x¯){a¯,b¯}\sigma(\underline{x})\in\{\underline{a},\underline{b}\} for any x¯𝒞\underline{x}\in\mathcal{CR}. These together with Proposition 2.1 and Theorem 2.4 imply the following:

Proposition 2.5.

Let (𝒟,)(\mathcal{D},\rightarrow) be the Markov diagram of TT.
(1) 𝒟={An,Bn:n0}{[2],,[k1]}\mathcal{D}=\{A_{n},B_{n}:n\geq 0\}\cup\{[2],\ldots,[k-1]\}.
(2) (i) For any n0n\geq 0, AnAn+1A_{n}\rightarrow A_{n+1} and BnBn+1B_{n}\rightarrow B_{n+1}.
(ii) For m1m\geq 1,

  • ARm1Arm1A_{R_{m}-1}\rightarrow A_{r_{m}-1} and a(Rm1,Rm)=a[0,rm1)a_{(R_{m-1},R_{m})}=a_{[0,r_{m}-1)} if m𝒜1m\in\mathcal{A}_{1},

  • ARm1Brm1A_{R_{m}-1}\rightarrow B_{r_{m}-1} and a(Rm1,Rm)=b[0,rm1)a_{(R_{m-1},R_{m})}=b_{[0,r_{m}-1)} if m𝒜2m\in\mathcal{A}_{2}.

(iii) For m1m\geq 1,

  • BSm1Asm1B_{S_{m}-1}\rightarrow A_{s_{m}-1} and b(Sm1,Sm)=a[0,rm1)b_{(S_{m-1},S_{m})}=a_{[0,r_{m}-1)} if m1m\in\mathcal{B}_{1},

  • BSm1Bsm1B_{S_{m}-1}\rightarrow B_{s_{m}-1} and b(Sm1,Sm)=b[0,sm1)b_{(S_{m-1},S_{m})}=b_{[0,s_{m}-1)} if m2m\in\mathcal{B}_{2}.

(3) There exist two maps P:𝒜20P\colon\mathcal{A}_{2}\to\mathbb{N}_{0} and Q:10Q\colon\mathcal{B}_{1}\to\mathbb{N}_{0} such that for any m1m\geq 1, rm1=Sp(m)r_{m}-1=S_{p(m)}. and sm1=RQ(m)s_{m}-1=R_{Q(m)}.

Theorem 2.6.

Suppose that there are integers N0N_{0} and N1N_{1} satisfying the following conditions:

  • For any jj\in\mathbb{N} with Rj>N0R_{j}>N_{0}, there is an integer 1m<j1\leq m<j, a periodic point p¯\underline{p} with period ll and u(ΣT+)u\in\mathcal{L}(\Sigma_{T}^{+}) with |u|RjRmN1|u|\geq R_{j}-R_{m}-N_{1} such that uu is a subword of both a[Rm,Rj)a_{[R_{m},R_{j})} and p[0,l)p_{[0,l)}.

  • For any jj\in\mathbb{N} with Sj>N0S_{j}>N_{0}, there is an integer 1m<j1\leq m<j, a periodic point p¯\underline{p} with period ll and u(ΣT+)u\in\mathcal{L}(\Sigma_{T}^{+}) with |u|SjSmN1|u|\geq S_{j}-S_{m}-N_{1} such that uu is a subword of both b[Rm,Rj)b_{[R_{m},R_{j})} and p[0,l)p_{[0,l)}.

Then Tp([0,1])\mathcal{M}^{p}_{T}([0,1]) is dense in Te([0,1])\mathcal{M}_{T}^{e}([0,1]).

3. Proofs

3.1. Proof of Proposition A

In this subsection, we give a proof of Proposition A with the assumption that TT is transitive. As we mentioned in §1, this theorem appears as [5, Theorem A] with the stronger assumption that 𝒟\mathcal{D} is irreducible. In [5], the hypothesis of the irrecducibility for 𝒟\mathcal{D} is used only in [5, Proposition 3.1]. The other part of the proof of [5, Theorem A] can be shown similarly by using the transitivity of TT instead of the irreducibility. Hence to prove Proposition A, it is sufficient to show the following proposition, which is analogous to [5, Proposition 3.1].

Proposition 3.1.

Let 𝒞𝒟\mathcal{C}\subset\mathcal{D} be as in Lemma 2.3. For any ϵ>0\epsilon>0, any μσ(ΣT+)\mu\in\mathcal{M}_{\sigma}(\Sigma_{T}^{+}), and any neighborhood 𝒰(ΣT+)\mathcal{U}\subset\mathcal{M}(\Sigma_{T}^{+}) of μ\mu, there exist a finite set 𝒞\mathcal{F}\subset\mathcal{C} and ρσe(Ψ(Σ+))\rho\in\mathcal{M}_{\sigma}^{e}(\Psi(\Sigma^{+}_{\mathcal{F}})) such that ρ𝒰\rho\in\mathcal{U} and hσ(ρ)hσ(μ)2ϵ{\color[rgb]{0,0,0}h_{\sigma}(\rho)}\geq{\color[rgb]{0,0,0}h_{\sigma}(\mu)}-2\epsilon.

Proof..

Without loss of generality, we may assume that hσ(μ)ϵ>0h_{\sigma}(\mu)-\epsilon>0, otherwise the conclusion is yield by the assumption that σp(ΣT+)\mathcal{M}_{\sigma}^{p}(\Sigma_{T}^{+}) is dense in σe(ΣT+)\mathcal{M}_{\sigma}^{e}(\Sigma_{T}^{+}). By Ergodic Decomposition Theorem and the affinity of the entropy map, there exists a finite convex combination of ergodic measures ν:=i=1paiνi\nu:=\sum_{i=1}^{p}a_{i}\nu_{i} such that hσ(ν)𝒰h_{\sigma}(\nu)\in\mathcal{U} and hσ(ν)hσ(μ)ϵh_{\sigma}(\nu)\geq h_{\sigma}(\mu)-\epsilon. Again by density of σp(ΣT+)\mathcal{M}^{p}_{\sigma}(\Sigma_{T}^{+}) in σe(ΣT+)\mathcal{M}_{\sigma}^{e}(\Sigma_{T}^{+}), we may assume νiσp(ΣT+)\nu_{i}\in\mathcal{M}_{\sigma}^{p}(\Sigma_{T}^{+}) whenever hσ(νi)=0h_{\sigma}(\nu_{i})=0. Then we need the following lemma.

Lemma 3.2.

For each 1ip1\leq i\leq p, there exists νi¯σe(Σ𝒞+)\overline{\nu_{i}}\in\mathcal{M}_{\sigma}^{e}(\Sigma_{\mathcal{C}}^{+}) such that νi=νi¯Ψ1\nu_{i}=\overline{\nu_{i}}\circ\Psi^{-1} holds. In particular, ν¯:=i=1paiνi¯\overline{\nu}:=\sum_{i=1}^{p}a_{i}\overline{\nu_{i}} satisfies ν¯σ(Σ𝒞+)\overline{\nu}\in\mathcal{M}_{\sigma}(\Sigma_{\mathcal{C}}^{+}) and ν=ν¯Ψ1\nu=\overline{\nu}\circ\Psi^{-1}.

Proof..

We divide the proof into two cases.

(Case 1) hσ(νi)=0h_{\sigma}(\nu_{i})=0. In this case, νi\nu_{i} is a periodic measure. Take a periodic point x¯ΣT+\underline{x}\in\Sigma_{T}^{+} in the support of νi\nu_{i}. Then it follows from [12, Theorem 8] and Ψ(Σ𝒞+)=ΣT+\Psi(\Sigma^{+}_{\mathcal{C}})=\Sigma_{T}^{+} that there are finite vertices C0,,Cn1𝒞C_{0},\ldots,C_{n-1}\in\mathcal{C} such that (C[0,n))Σ𝒞+(C_{[0,n)})^{\infty}\in\Sigma_{\mathcal{C}}^{+} and Ψ((C[0,n)))=x¯\Psi((C_{[0,n)})^{\infty})=\underline{x}. Hence if we set νi¯:=δnσ((C[0,n))),\overline{\nu_{i}}:=\delta_{n}^{\sigma}((C_{[0,n)})^{\infty}), then we have νi¯σe(Σ𝒞+)\overline{\nu_{i}}\in\mathcal{M}_{\sigma}^{e}(\Sigma_{\mathcal{C}}^{+}) and νi=νi¯Ψ1\nu_{i}=\overline{\nu_{i}}\circ\Psi^{-1}.

(Case 2) hσ(νi)>0h_{\sigma}(\nu_{i})>0. Since νiσe(ΣT+)\nu_{i}\in\mathcal{M}_{\sigma}^{e}(\Sigma_{T}^{+}) and hσ(νi)>0h_{\sigma}(\nu_{i})>0, it follows from Lemma 2.2 that there exists νi¯σe(Σ𝒟+)\overline{\nu_{i}}\in\mathcal{M}_{\sigma}^{e}(\Sigma_{\mathcal{D}}^{+}) such that νi¯:=νiΨ1\overline{\nu_{i}}:=\nu_{i}\circ\Psi^{-1} holds. Since νi¯\overline{\nu_{i}} is ergodic, there exists an irreducible subset 𝒞𝒟\mathcal{C}^{\prime}\subset\mathcal{D} such that ν¯i(Σ𝒞+)=1\overline{\nu}_{i}(\Sigma_{\mathcal{C}^{\prime}}^{+})=1. Assume that 𝒞𝒞\mathcal{C}^{\prime}\not=\mathcal{C}. Since Σ𝒞+Ψ1(Ψ(Σ𝒞+))\Sigma^{+}_{\mathcal{C}^{\prime}}\subset\Psi^{-1}(\Psi(\Sigma^{+}_{\mathcal{C}^{\prime}})), we have νi(Ψ(Σ𝒞+))=νi¯Ψ1(Ψ(Σ𝒞+))νi¯(Σ𝒞+)=1\nu_{i}(\Psi(\Sigma^{+}_{\mathcal{C}^{\prime}}))=\overline{\nu_{i}}\circ\Psi^{-1}(\Psi(\Sigma^{+}_{\mathcal{C}^{\prime}}))\geq\overline{\nu_{i}}(\Sigma^{+}_{\mathcal{C}^{\prime}})=1. This implies that νi(Ψ(ΣC+)Ψ(Σ𝒞+))=νi(ΣT+Ψ(Σ𝒞+))=1\nu_{i}(\Psi(\Sigma^{+}_{C})\cap\Psi(\Sigma^{+}_{\mathcal{C}^{\prime}}))=\nu_{i}(\Sigma_{T}^{+}\cap\Psi(\Sigma_{\mathcal{C}^{\prime}}^{+}))=1. On the other hand, by [11, Theorem 1 (ii)], Ψ(ΣC+)Ψ(Σ𝒞+)\Psi(\Sigma^{+}_{C})\cap\Psi(\Sigma^{+}_{\mathcal{C}^{\prime}}) is either empty or finite (see also [12, Page 385]). Hence by the ergodicity of νi\nu_{i}, we have hσ(νi)=0h_{\sigma}(\nu_{i})=0, which is a contradiction. ∎

Note that ν¯\overline{\nu} is an invariant measure on a transitive countable Markov shift Σ𝒞+\Sigma^{+}_{\mathcal{C}}. Hence by the continuity of Ψ\Psi and [25, Main Theorem], we can find a finite set 𝒞\mathcal{F}\subset\mathcal{C} and an ergodic measure ρ¯\overline{\rho} on Σ+\Sigma^{+}_{\mathcal{F}} such that hσ(ρ¯)hσ(ν¯)ϵh_{\sigma}(\overline{\rho})\geq h_{\sigma}(\overline{\nu})-\epsilon and ρ:=ρ¯Ψ1𝒰\rho:=\overline{\rho}\circ\Psi^{-1}\in\mathcal{U}. Since Ψ:Σ𝒞+ΣT+\Psi\colon\Sigma^{+}_{\mathcal{C}}\to\Sigma_{T}^{+} is countable to one, by [3, Proposition 2.8], we have hσ(ν)=hσ(ν¯)h_{\sigma}(\nu)=h_{\sigma}(\overline{\nu}) and hσ(ρ)=hσ(ρ¯)h_{\sigma}(\rho)=h_{\sigma}(\overline{\rho}), which prove the proposition. ∎

3.2. Proof of Theorem B

The aim of this subsection is to give a proof of Theorem B. Let n0n_{0} be as in Lemma 2.3 and m0m_{0} be a smallest integer such that Rm0,Sm0n0R_{m_{0}},S_{m_{0}}\geq n_{0} holds. We set N0:=max{Rm0,Sm0}N_{0}:=\max\{R_{m_{0}},\ S_{m_{0}}\} and let n1n_{1} be a smallest number such that for any C𝒞𝒟n0C\in\mathcal{C}\cap\mathcal{D}_{n_{0}} and D𝒞𝒟N0D\in\mathcal{C}\cap\mathcal{D}_{N_{0}}, there exist finite vertices C0,,CnC_{0},\ldots,C_{n} with nn1n\leq n_{1} such that C[0,n](Σ𝒞+)C_{[0,n]}\in\mathcal{L}(\Sigma_{\mathcal{C}}^{+}), C0=CC_{0}=C and Cn=DC_{n}=D. We note that n1<n_{1}<\infty since 𝒞\mathcal{C} is irreducible. We set N1:=N0+n1N_{1}:=N_{0}+n_{1}. By Theorem 2.6, to prove Theorem B, it is sufficient to show the following:

  1. (I)

    For any jj\in\mathbb{N} with Rj>N0R_{j}>N_{0}, there is an integer 1m<j1\leq m<j, a periodic point p¯\underline{p} with period ll and u(ΣT+)u\in\mathcal{L}(\Sigma_{T}^{+}) with |u|RjRmN1|u|\geq R_{j}-R_{m}-N_{1} such that uu is a subword of both a[Rm,Rj)a_{[R_{m},R_{j})} and p[0,l)p_{[0,l)}.

  2. (II)

    For any jj\in\mathbb{N} with Sj>N0S_{j}>N_{0}, there is an integer 1m<j1\leq m<j, a periodic point p¯\underline{p} with period ll and u(ΣT+)u\in\mathcal{L}(\Sigma_{T}^{+}) with |u|SjSmN1|u|\geq S_{j}-S_{m}-N_{1} such that uu is a subword of both b[Rm,Rj)b_{[R_{m},R_{j})} and p[0,l)p_{[0,l)}.

We only prove the item (I) because (II) can be shown in a similar manner. Take any jj\in\mathbb{N} with Rj>N0R_{j}>N_{0}. In what follows we will decompose the set \mathbb{N} into six sets. Let 𝒜1\mathcal{A}_{1}, 𝒜2\mathcal{A}_{2}, 1\mathcal{B}_{1} and 2\mathcal{B}_{2} be as in §2.3 and set

𝒜3:={m:𝒮(ARm1)𝒟0}\mathcal{A}_{3}:=\{m\in\mathbb{N}:\mathcal{S}(A_{R_{m}-1})\cap\mathcal{D}_{0}\not=\emptyset\} and
3:={m:𝒮(BSm1)𝒟0}\mathcal{B}_{3}:=\{m\in\mathbb{N}:\mathcal{S}(B_{S_{m}-1})\cap\mathcal{D}_{0}\not=\emptyset\}.

First, it is clear that =𝒜1𝒜2=𝒜1(𝒜2𝒜3)𝒜3\mathbb{N}=\mathcal{A}_{1}\cup\mathcal{A}_{2}=\mathcal{A}_{1}\cup(\mathcal{A}_{2}\setminus\mathcal{A}_{3})\cup\mathcal{A}_{3}. We set

𝒜2(1):={m𝒜2:m+1𝒜1},\mathcal{A}_{2}^{(1)}:=\{m\in\mathcal{A}_{2}:m+1\in\mathcal{A}_{1}\},           𝒜2(2):={m𝒜2:P(m)3},\mathcal{A}_{2}^{(2)}:=\{m\in\mathcal{A}_{2}:P(m)\in\mathcal{B}_{3}\},
𝒜2(3):={m𝒜2:P(m)+12},\mathcal{A}_{2}^{(3)}:=\{m\in\mathcal{A}_{2}:P(m)+1\in\mathcal{B}_{2}\}, and 𝒜4:=𝒜2(𝒜3j=13𝒜2(j))\mathcal{A}_{4}:=\mathcal{A}_{2}\setminus(\mathcal{A}_{3}\cup\bigcup_{j=1}^{3}\mathcal{A}_{2}^{(j)}),

noting that the map PP is defined on 𝒜2\mathcal{A}_{2} by Proposition 2.5 (3).
Then we have 𝒜2𝒜3j=13𝒜2(j)𝒜4\mathcal{A}_{2}\setminus\mathcal{A}_{3}\subset\bigcup_{j=1}^{3}\mathcal{A}_{2}^{(j)}\cup\mathcal{A}_{4}, which implies that

=𝒜1j=13𝒜2(j)𝒜3𝒜4.\mathbb{N}=\mathcal{A}_{1}\cup\bigcup_{j=1}^{3}\mathcal{A}_{2}^{(j)}\cup\mathcal{A}_{3}\cup\mathcal{A}_{4}.

Hence we can divide the proof into six cases:

(Case A) j𝒜1j\in\mathcal{A}_{1}.      (Case B) j𝒜2(1)j\in\mathcal{A}_{2}^{(1)}.      (Case C) j𝒜2(2)j\in\mathcal{A}_{2}^{(2)}.
(Case D) j𝒜2(3)j\in\mathcal{A}_{2}^{(3)}.    (Case E) j𝒜3j\in\mathcal{A}_{3}.        (Case F) j𝒜4.j\in\mathcal{A}_{4}.

We note that the proofs of (Case A) and (Case B) are similar to those of (Case 1) and (Case 2) in [13] respectively.

(Case C) j𝒜2(2)j\in\mathcal{A}_{2}^{(2)}. Take D𝒮(BSP(j)1)𝒟0D\in\mathcal{S}(B_{S_{P(j)}-1})\cap\mathcal{D}_{0}. By the definition of n1n_{1}, we can find an integer nn1n\leq n_{1} and finite vertices C0,,Cn𝒞C_{0},\ldots,C_{n}\in\mathcal{C} such that C[0,n](Σ𝒞+)C_{[0,n]}\in\mathcal{L}(\Sigma^{+}_{\mathcal{C}}), C0=DC_{0}=D and Cn=BSm0C_{n}=B_{S_{m_{0}}}. Now, we set p¯:=Ψ((B[Sm0,SP(j))C[0,n)))\underline{p}:=\Psi((B_{[S_{m_{0}},S_{P(j)})}C_{[0,n)})^{\infty}). Then p¯\underline{p} is a periodic point with period l:=SP(j)Sm0+nl:=S_{P(j)}-S_{m_{0}}+n. Since ARj1BSP(j)A_{R_{j}-1}\rightarrow B_{S_{P(j)}}, we have a(Rj1,Rj)=b[0,SP(j))a_{(R_{j-1},R_{j})}=b_{[0,S_{P(j)})}, which implies (I).

(Case D) j𝒜2(3)j\in\mathcal{A}_{2}^{(3)}. Since P(j)+12P(j)+1\in\mathcal{B}_{2}, we can find uP(j)u\leq P(j) such that BSP(j)+11BuB_{S_{P(j)+1}-1}\rightarrow B_{u}. We set p¯:=Ψ((B(SP(j),SP(j)+1)B[u,SP(j)]))\underline{p}:=\Psi((B_{(S_{P(j)},S_{P(j)+1})}B_{[u,S_{P(j)}]})^{\infty}). Then p¯\underline{p} is a periodic point with period l:=SP(j)+1ul:=S_{P(j)+1}-u. Since ARj1BSP(j)A_{R_{j}-1}\rightarrow B_{S_{P(j)}} and BSP(j)+11BuB_{S_{P(j)+1}-1}\rightarrow B_{u}, we have a(Rj1,Rj)=b[0,SP(j))=b[0,u)b[u,SP(j))=b(SP(j),SP(j)+1)b[u,SP(j)]a_{(R_{j-1},R_{j})}=b_{[0,S_{P(j)})}=b_{[0,u)}b_{[u,S_{P(j)})}=b_{(S_{P(j)},S_{P(j)+1})}b_{[u,S_{P(j)}]}. This implies (I).

(Case E) j𝒜3j\in\mathcal{A}_{3}. Take D𝒮(ARj1)𝒟0D\in\mathcal{S}(A_{R_{j}-1})\cap\mathcal{D}_{0}. By the definition of n1n_{1}, we can find an integer nn1n\leq n_{1} and finite vertices C0,,Cn𝒞C_{0},\ldots,C_{n}\in\mathcal{C} such that C[0,n](Σ𝒞+)C_{[0,n]}\in\mathcal{L}(\Sigma^{+}_{\mathcal{C}}), C0=DC_{0}=D and Cn=ARm0C_{n}=A_{R_{m_{0}}}. Hence if we set p¯:=Ψ((A[Rm0,ARj)C[0,n)))\underline{p}:=\Psi((A_{[R_{m_{0}},A_{R_{j}})}C_{[0,n)})^{\infty}), then (I) holds.

(Case F) j𝒜4j\in\mathcal{A}_{4}. In this case, j,j+1𝒜2j,j+1\in\mathcal{A}_{2}, P(j)+11P(j)+1\in\mathcal{B}_{1}, j𝒜3j\not\in\mathcal{A}_{3} and P(j)3P(j)\not\in\mathcal{B}_{3} hold by the definition of 𝒜4\mathcal{A}_{4}. We prove the following proposition, which plays a fundamental role to prove this case.

Proposition 3.3.

We have

SP(j){rj+i1}i=1orRj{sP(j)+i1}i=1.S_{P(j)}^{\infty}\succ\{r_{j+i}-1\}_{i=1}^{\infty}\quad\mbox{or}\quad R_{j}^{\infty}\succ\{s_{P(j)+i}-1\}_{i=1}^{\infty}.

Here \succ denotes the lexicographical order.

Proof..

For the notational simplicity, set r(m):={rm+i1}i=1r^{(m)}:=\{r_{m+i}-1\}_{i=1}^{\infty} and s(m):={sm+i1}i=1s^{(m)}:=\{s_{m+i}-1\}_{i=1}^{\infty} for m1m\geq 1. Showing by contradiction, we assume

SP(j)r(j)andRjsP(j).S_{P(j)}^{\infty}\preceq r^{(j)}\quad\mbox{and}\quad R_{j}^{\infty}\preceq s^{P(j)}. (3.1)

For qRj+1q\geq R_{j}+1 set q,1:={m:RjRm<q}\mathcal{E}_{q,1}:=\{m:R_{j}\leq R_{m}<q\} and q,2:={m:SP(j)Rm<q}\mathcal{E}_{q,2}:=\{m:S_{P(j)}\leq R_{m}<q\}. Denote also x¯:=fj+1(a¯)\underline{x}:=f_{j+1}(\underline{a}) and y¯:=adj(x¯)=fP(j)+1(b¯)\underline{y}:={\rm adj}(\underline{x})=f_{P(j)+1}(\underline{b}). Note that fm(a¯)=xf_{m}(\underline{a})=x implies m𝒜2m\in\mathcal{A}_{2}. Similarly fm(b¯)=y¯f_{m}(\underline{b})=\underline{y} implies m1m\in\mathcal{B}_{1}. To prove the proposition, it is sufficient to show the following for all qRj+1q\geq R_{j}+1:

  • For any mq,1m\in\mathcal{E}_{q,1}, we have

    m𝒜3,fm+1(a¯)=x¯ and SP(j)r(m).m\not\in\mathcal{A}_{3},\ f_{m+1}(\underline{a})=\underline{x}\text{ and }S_{P(j)}^{\infty}\preceq r^{(m)}. (3.2)
  • For any mq,2m\in\mathcal{E}_{q,2}, we have

    m3,fm+1(b¯)=y¯ and Rjs(m).m\not\in\mathcal{B}_{3},\ f_{m+1}(\underline{b})=\underline{y}\text{ and }R_{j}^{\infty}\preceq s^{(m)}. (3.3)

Indeed, letting 𝒞:={Am:mRj}{Bm:mSP(j)}\mathcal{C}^{\prime}:=\{A_{m}:m\geq R_{j}\}\cup\{B_{m}:m\geq S_{P(j)}\}, we have C𝒞𝒮(C)(𝒞𝒞)=\bigcup_{C\in\mathcal{C}^{\prime}}\mathcal{S}(C)\cap(\mathcal{C}\setminus\mathcal{C}^{\prime})=\emptyset by (3.2) and (3.3). However, this is a contradiction since 𝒞\mathcal{C} is irreducible and An0𝒞𝒞A_{n_{0}}\in\mathcal{C}\setminus\mathcal{C}^{\prime}.

We prove (3.2) and (3.3) by induction with regard to qRj+1q\geq R_{j}+1. Let q=Rj+1q=R_{j}+1. Since Rj+1Rj+1R_{j+1}\geq R_{j}+1, j+1Rj+1,1j+1\notin\mathcal{E}_{R_{j}+1,1}. Similarly, P(j)+1Rj+1,2P(j)+1\notin\mathcal{E}_{R_{j}+1,2} because SP(j)+1>sP(j)+1RjS_{P(j)+1}>s_{P(j)+1}\geq R_{j}. Hence we have Rj+1,1={j}\mathcal{E}_{R_{j}+1,1}=\{j\} and Rj+1,2={P(j)}\mathcal{E}_{R_{j}+1,2}=\{P(j)\}. Hence (3.2) and (3.3) immediately follows by (3.1).

Let q>Rj+1q>R_{j}+1 and assume the inductive hypothesis for q1q-1. Take mq,1q1,1m\in\mathcal{E}_{q,1}\setminus\mathcal{E}_{q-1,1} (if no such mm exists, (3.2) automatically holds for all mq,1m\in\mathcal{E}_{q,1}). We will show that (3.2) holds for mm. Since mq,1m\in\mathcal{E}_{q,1}, we have Rm1<Rm<qR_{m-1}<R_{m}<q and hence m1q1,1m-1\in\mathcal{E}_{q-1,1}. Therefore, by the inductive hypothesis, we have m1𝒜3m-1\notin\mathcal{A}_{3}, fm(a¯)=x¯f_{m}(\underline{a})=\underline{x} and SP(j)r(m1)S_{P(j)}^{\infty}\preceq r^{(m-1)}.

Refer to caption
Figure 2. Sketch of the Markov diagram in Case 1.

(Case 1) SP(j)=rm1S_{P(j)}=r_{m}-1 (for the situation of the Markov diagram, see Figure 2). In this case, we have SP(j)=rm1=SP(m)S_{P(j)}=r_{m}-1=S_{P(m)}. This implies ARm1BSP(j)1A_{R_{m}-1}\subset B_{S_{P(j)-1}} and #𝒮(ARm1)#𝒮(BSP(j)1)=2\#\mathcal{S}(A_{R_{m}-1})\leq\#\mathcal{S}(B_{S_{P(j)-1}})=2. Hence we have m𝒜3m\notin\mathcal{A}_{3}. Moreover, fm+1(a¯)=x¯f_{m+1}(\underline{a})=\underline{x} is followed by 𝒮(ARm1)={ARm,BSP(j)}\mathcal{S}(A_{R_{m}-1})=\{A_{R_{m}},B_{S_{P(j)}}\} and fSP(j)+1(b¯)=y¯f_{S_{P(j)+1}}(\underline{b})=\underline{y}. The last condition SP(j)r(m)S_{P(j)}^{\infty}\preceq r^{(m)} follows from SP(j)=rm1S_{P(j)}=r_{m}-1 and SP(j)r(m1)S_{P(j)}^{\infty}\preceq r^{(m-1)}.

(Case 2) SP(j)<rm1S_{P(j)}<r_{m}-1 (For the situation of the Markov diagram, see Figure 3). In this case, we have SP(j)<rm1=SP(m)<Rm=q1S_{P(j)}<r_{m}-1=S_{P(m)}<R_{m}=q-1, which implies that P(m)1,P(m)q1,2P(m)-1,\ P(m)\in\mathcal{E}_{q-1,2}. Hence by the inductive hypothesis (3.3) for q1q-1, we have P(m)1,P(m)3P(m)-1,P(m)\notin\mathcal{B}_{3}, P(m),P(m)+11P(m),P(m)+1\in\mathcal{B}_{1} and Rjs(P(m)1),s(P(m))R_{j}^{\infty}\preceq s^{(P(m)-1)},\ s^{(P(m))}. Since ARm1BSP(m)A_{R_{m}-1}\rightarrow B_{S_{P(m)}}, we have #𝒮(ARm1)#𝒮(BSP(m)1)=2\#\mathcal{S}(A_{R_{m}-1})\leq\#\mathcal{S}(B_{S_{P(m)-1}})=2, which implies m𝒜3m\notin\mathcal{A}_{3}. Moreover, 𝒮(ARm1)={ARm,BSP(m)}\mathcal{S}(A_{R_{m}-1})=\{A_{R_{m}},B_{S_{P(m)}}\} implies

fm+1(a¯)=adj(fSP(m)+1(b¯))=adj(y¯)=x¯.f_{m+1}(\underline{a})={\rm adj}(f_{S_{P(m)+1}}(\underline{b}))={\rm adj}(\underline{y})=\underline{x}.

Now we consider the last condition SP(j)r(m)S_{P(j)}^{\infty}\preceq r^{(m)}. Since Q(P(m))=sP(m)1RjQ(P(m))=s_{P(m)}-1\geq R_{j} and Q(P(m))<sP(m)<SP(m)<Rm=q1,Q(P(m))<s_{P(m)}<S_{P(m)}<R_{m}=q-1, (3.2) holds for Q(P(m))Q(P(m)). If r(Q(P(m)))=r(m)r^{(Q(P(m)))}=r^{(m)}, (3.2) yields SP(j)r(Q(P(m)))=r(m)S_{P(j)}^{\infty}\preceq r^{(Q(P(m)))}=r^{(m)}. Otherwise let =inf{i1:rQ(P(m))+irm+i}\ell=\inf\{i\geq 1:r_{Q(P(m))+i}\neq r_{m+i}\}. It is easy to see SP(j)r(m)S_{P(j)}^{\infty}\preceq r^{(m)} is yield by the following: For i=0,1,,i=0,1,\ldots,\ell, we have

ARm+iARQ(P(m))+iand#τ(ARm+i1)=#τ(ARQ(P(m))+i1)=2A_{R_{m+i}}\subset A_{R_{Q(P(m))+i}}\ \mbox{and}\ \#\tau(A_{R_{m+i}-1})=\#\tau(A_{R_{Q(P(m))+i}-1})=2 (3.4)

In particular, (3.4) implies rQ(P(m))++1<rm++1r_{Q(P(m))+\ell+1}<r_{m+\ell+1} and r(Q(P(m))+1)r(m)r^{(Q(P(m))+1)}\preceq r^{(m)}. We close our proof of (3.2) by showing (3.4). Since ARm1BSP(m)A_{R_{m}-1}\rightarrow B_{S_{P(m)}} and BSP(m)1ARQ(P(m))B_{S_{P(m)}-1}\rightarrow A_{R_{Q(P(m))}}, we have

ARm1BSP(m)1ARQ(P(m))1.A_{R_{m}-1}\subset B_{S_{P(m)}-1}\subset A_{R_{Q(P(m))}-1}.

Moreover, fm+1(a)=fQ(P(m))+1=x¯f_{m+1}(a)=f_{Q(P(m))+1}=\underline{x} implies ARm,ARQ(P(m))[x0]A_{R_{m}},A_{R_{Q(P(m))}}\subset[x_{0}] and ARmARQ(P(m))A_{R_{m}}\subset A_{R_{Q(P(m))}}. Since (3.2) holds for Q(P(m))Q(P(m)), we have #𝒮(ARm1)=#𝒮(ARQ(P(m))1)=2\#\mathcal{S}(A_{R_{m}-1})=\#\mathcal{S}(A_{R_{Q(P(m))}-1})=2.

Refer to caption
Figure 3. Sketch of the Markov diagram in Case 2.

Let 0<i0<i\leq\ell and assume (3.4) holds for all 0i<i0\leq i^{\prime}<i. Since ARm+i1ARQ(P(m))+i1A_{R_{m}+i-1}\subset A_{R_{Q(P(m))}+i-1} and rQ(P(m))+i1=rm+i1r_{Q(P(m))+i-1}=r_{m+i-1}, we have ARm+i1ARQ(P(m))+i1A_{R_{m+i}-1}\subset A_{R_{Q(P(m))+i}-1}. Since ARQ(P(m))<SP((m)<RmA_{R_{Q(P(m))}}<S_{P((m)}<R_{m} yields

RQ(P(m))+i\displaystyle R_{Q(P(m))+i} =RQ(P(m))+i=1irQ(P(m))+i\displaystyle=R_{Q(P(m))}+\sum_{i^{\prime}=1}^{i}r_{Q(P(m))+i^{\prime}}
=RQ(P(m))+i=1irm+i\displaystyle=R_{Q(P(m))}+\sum_{i^{\prime}=1}^{i}r_{m+i^{\prime}}
<Rm+Rm+iRm=Rm+i,\displaystyle<R_{m}+R_{m+i}-R_{m}=R_{m+i},

we have #𝒮(ARm+i1)=#𝒮(ARQ(P(m))+i1)=2\#\mathcal{S}(A_{R_{m+i}-1})=\#\mathcal{S}(A_{R_{Q(P(m))+i}-1})=2. Combining the definition of \ell and the (3.4) for \ell, we have rQ(P(m))++1<rm++1r_{Q(P(m))+\ell+1}<r_{m+\ell+1}.

We can prove (3.3) for all lq,2l\in\mathcal{E}_{q,2} in a similar manner, which proves the proposition. ∎

We continue to the proof of Theorem B. By Proposition 3.3, we can divide (Case F) into the following three cases:

(Case F1) Rj{sP(j)+i1}i=1R_{j}^{\infty}\succ\{s_{P(j)+i}-1\}_{i=1}^{\infty}.
(Case F2) SP(j){rj+i1}i=1S_{P(j)}^{\infty}\succ\{r_{j+i}-1\}_{i=1}^{\infty} and P(j)11P(j)-1\in\mathcal{B}_{1}.
(Case F3) SP(j){rj+i1}i=1S_{P(j)}^{\infty}\succ\{r_{j+i}-1\}_{i=1}^{\infty} and P(j)12P(j)-1\in\mathcal{B}_{2}.

The proofs of (Case F1), (Case F2) and (Case F3) are similar to those of (Case 3), (Case 4) and (Case 5) in [13], respectively. Theorem B is proved.

Remark 3.1.

In our proof of Theorem B, we improve the method in Hofbauer and Raith’s work [13] to apply generalized (α,β)(\alpha,\beta)-transformations. For a piecewise monotonic map with two monotonic pieces, its critical set 𝒞\mathcal{CR} consists of two points which are clearly adjacent. Moreover, its Markov diagram has no vertices at which more than three edges start and a word represented by a path without branching vertices coincides with the word of either of the points in 𝒞\mathcal{CR}. On the other hand, for a generalized (α,β)(\alpha,\beta)-transformation, there may exist a vertex at which more than three edges start in its Markov diagram. Moreover it is difficult to check which critical point represent a word defined on a path without branching vertices. Therefore, in the proof of Proposition 3.3 we need to be careful to check that every vertex has two or less edges and a pair of adjacent critical points, x¯=fj(a¯)\underline{x}=f_{j}(\underline{a}) and y¯=adj(x¯)=fP(j+1)(b¯)\underline{y}={\rm adj}(\underline{x})=f_{P(j+1)}(\underline{b}), appears in each inductive step.

Acknowledgement.  The authors would like to thank Hajime Kaneko for suggesting this problem. The first author was partially supported by JSPS KAKENHI Grant Number 21K13816 and the second author was partially supported by JSPS KAKENHI Grant Number 21K03321.

References

  • [1] Brucks, Karen M.; Bruin, Henk, Topics from one-dimensional dynamics, London Mathematical Society Student Texts, 62, Cambridge University Press, Cambridge, 2004, xiv+297 pp.
  • [2] Buzzi, Jérôme, Specification on the interval, Trans. Amer. Math. Soc. 349 (1997), no. 7, 2737–2754.
  • [3] Buzzi, Jérôme, Markov extensions for multi-dimensional dynamical systems, Israel J. Math. 112 (1999), 357–380.
  • [4] Carapezza, Leonard; López, Marco; Robertson, Donald, Unique equilibrium states for some intermediate beta transformations, Stoch. Dyn. 21 (2021), no. 6, Paper No. 2150035, 25 pp.
  • [5] Chung, Yong, Moo; Yamamoto, Kenichiro, Large deviation principle for piecewise monotonic maps with density of periodic measures, Ergodic Theory Dynam. Systems, to appear.
  • [6] Ellis, Richard S, Entropy, large deviations, and statistical mechanics, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 271, Springer-Verlag, New York, 1985.
  • [7] Faller, B.; Pfister, C.-E., A point is normal for almost all maps βx+α\beta x+\alpha mod 11 or generalized β\beta-transformations. (English summary), Ergodic Theory Dynam. Systems 29 (2009), no. 5, 1529–1547.
  • [8] Góra, Paweł, Invariant densities for generalized β\beta-maps, Ergodic Theory Dynam. Systems, 27 (5) (2007),1583–1598,
  • [9] Hofbauer, Franz, Maximal measures for simple piecewise monotonic transformations, Z. Wahrsch. Verw. Gebiete 52 (1980), no. 3, 289–300.
  • [10] Hofbauer, Franz, Intrinsic ergodicity of piecewise monotonic transformations with positive entropy II, Israel J. Math. 38 (1-2) (1981), 107–115.
  • [11] Hofbauer, Franz, The structure of piecewise monotonic transformations, Ergodic Therory Dynam. Systems, 1 (2) (1981), 159–178.
  • [12] Hofbauer, Franz, Piecewise invertible dynamical systems, Probab. Theory Relat. Fields 72 (1986), no. 3, 359–386.
  • [13] Hofbauer, Franz; Raith, Peter, Density of periodic orbit measures for transformations on the interval with two monotonic pieces, Dedicated to the memory of Wiesław Szlenk. Fund. Math. 157 (1998), no. 2-3, 221–234.
  • [14] Keller, Gerhard, Lifting measures to Markov extensions, Monatsh. Math. 108 (1989), no. 2-3, 183–200.
  • [15] Ito, Shunji; Sadahiro, Taizo, Beta-expansions with negative bases, Integers 9 (2009), A22, 239–259.
  • [16] Liao Lingmin; Steiner Wolfgang, Dynamical properties of the negative beta transformation, Ergod. Theory Dyn. Syst 32 (5) (2012), 1673–1690.
  • [17] Nguema Ndong, Florent Zeta function and negative beta-shifts, Monatsh. Math. 188 (2019), no. 4, 717–751.
  • [18] Parry, William, Representations for real numbers, Acta Math. Acad. Sci. Hungar. 15 (1964), 95–105.
  • [19] Pfister, Charles-Edouard; Sullivan, Wayne G, Large deviations estimates for dynamical systems without the specification property, Applications to the β\beta-shifts. Nonlinearity 18 (2005), no. 1, 237–261.
  • [20] Raith, Peter; Stachelberger, Angela, Topological transitivity for a class of monotonic mod one transformations, (English summary), Aequationes Math. 82 (2011), no. 1-2, 91–109.
  • [21] Rényi, Alfréd, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar. 8 (1957), 477–493.
  • [22] Schmeling, Jörg. Symbolic dynamics for β\beta-shifts and self-normal numbers. Ergodic Theory Dynam. Systems 17 (1997), no. 3, 675–694.
  • [23] Shinoda, Mao; Yamamoto, Kenichiro, Intrinsic ergodicity for factors of (β)(-\beta)-shifts, Nonlinearity 33 (2020), no. 1, 598–609.
  • [24] Suzuki, Shintaro. Artin-Mazur zeta functions of generalized beta-transformations. Kyushu J. Math. 71 (2017), no. 1, 85–103.
  • [25] Takahasi, Hiroki, Entropy approachability for transitive Markov shifts over infinite alphabet, Proc. Amer. Math. Soc. 148 (2020), no. 9, 3847–3857.
  • [26] Thompson, Daniel J. Generalized β\beta-transformations and the entropy of unimodal maps. Comment. Math. Helv. 92 (2017), no. 4, 777–800.
  • [27] Yamamoto, Kenichiro, On the density of periodic measures for piecewise monotonic maps and their coding spaces, Tsukuba J. Math. 44, (2020), no. 2, 309–324.