This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Degree of Ball Maps with Maximum Geometric Rank

Abdullah Al Helal Department of Mathematics, Oklahoma State University, Stillwater, OK 74078-5061 [email protected]
Abstract.

This work focuses on the degree bound of maps between balls with maximum geometric rank and minimum target dimension where this geometric rank occurs. Specifically, we show that rational proper maps between 𝔹n\mathbb{B}_{n} and 𝔹N\mathbb{B}_{N} with n2n\geq 2, N=n(n+1)2N=\frac{n(n+1)}{2}, and geometric rank n1n-1 cannot have a degree of more than n+1n+1.

Key words and phrases:
rational maps, proper holomorphic mappings
2020 Mathematics Subject Classification:
32H35, 32A08, 32H02

1. Introduction

Rational proper maps between balls has intrigued mathematicians for a long time since Fatou [fatou-1923-fonctions] proved that proper holomorphic ball maps in one dimension are rational. Understanding and classifying these maps is still an active field of research a century later. Alexander [alexander-1977-proper] found that for n>1n>1, any proper holomorphic self map on the unit ball 𝔹n\mathbb{B}_{n} in a complex Euclidean space n\mathbb{C}^{n} is necessarily an automorphism, hence rational of degree 11 due to a classic result. This essentially completed our understanding of such maps between balls of the same dimension and inspired many researchers to search for such maps between balls of different dimensions for the next fifty years. It is a deep theorem of Forstnerič [forstneric-1989-extending] that any proper holomorphic map between 𝔹n\mathbb{B}_{n} and 𝔹N\mathbb{B}_{N} that extends smoothly enough up to the boundary is rational. Thus a general goal is to classify rational proper maps between balls up to spherical equivalence, that is, up to automorphisms. An important subclass is to classify the polynomial ones. D’Angelo [dangelo-1988-polynomial] has classified all such maps. The general problem of classifying rational ones is still an open problem. In this work, we will always assume n2n\geq 2.

Webster [webster-1979-mapping] was the first to successfully attempt the positive codimensional case showing that for n>2n>2 and N=n+1N=n+1, any such map is spherically equivalent to the linear embedding map z(z,0)z\mapsto(z,0), which means that such maps are of degree 11. Faran [faran-1982-maps] complemented this result by showing that there are four spherical equivalence classes for n=2n=2 and N=n+1N=n+1 with maximum degree 33, but it was not clear why this case shows more equivalence classes than the n>2n>2 case. Cima and Suffridge [cima-1983-reflection] conjectured and later Faran [faran-1986-linearity] proved that for N2n2N\leq 2n-2, any such map is spherically equivalent to the linear embedding map, implying only degree-11 maps, and indicating a gap in the possible minimum target dimension NN.

Huang [huang-1999-linearity] proved the same result under weaker regularity hypothesis using the Cartan-Chern-Moser theory [chern-1974-real], which led to a series of results [huang-2001-mapping, huang-2003-semirigidity, hamada-2005-rational, huang-2006-new, huang-2014-third] in the same direction in the following decade. Huang and Ji [huang-2001-mapping] showed that there can be two equivalence classes for n3n\geq 3 and N=2n1N=2n-1 with maximum degree 22. Among other results, Hamada [hamada-2005-rational] found all maps for n4n\geq 4 and N=2nN=2n to have a maximum degree of 22. The work of [huang-2006-new] and [andrews-2016-mapping] classified the case 4nN3n44\leq n\leq N\leq 3n-4 and the case 4nN=3n34\leq n\leq N=3n-3 respectively, both showing a maximum degree of 22. Lebl [lebl-2011-normal] classified all degree-22 such maps into uncountably many spherical equivalence classes represented by monomial maps. More discussion on this subject can be found in the articles [forstneric-1993-proper, huang-2003-semirigidity, lebl-2024-exhaustion] and the book [dangelo-1993-several] and references therein.

One way of measuring the complexity of a rational proper map is its degree. The celebrated result of Forstnerič [forstneric-1989-extending] also shows that any rational proper map between 𝔹n\mathbb{B}_{n} and 𝔹N\mathbb{B}_{N} has a degree bounded by a constant N2(Nn+1)N^{2}(N-n+1) depending only on the dimensions of the unit balls, but the bound was not sharp. D’Angelo [dangelo-2003-sharp] made a conjecture about the degree bound: that any rational proper map between balls F:𝔹n𝔹NF\colon\mathbb{B}_{n}\to\mathbb{B}_{N} has

degF{2N3n=2N1n1n>2,\deg F\leq\begin{cases}2N-3&n=2\\ \frac{N-1}{n-1}&n>2\end{cases},

where both bounds are known to be sharp if true. The conjecture has been proved for all such monomial maps by D’Angelo, Kos and, Riehl [dangelo-2003-sharp] for n=2n=2 and by Lebl and Peters [lebl-2011-polynomials, lebl-2012-polynomials] for any n3n\geq 3. Meylan [meylan-2006-degree] showed that degFN(N1)2\deg F\leq\frac{N(N-1)}{2} for n=2n=2, and D’Angelo and Lebl [dangelo-2009-complexity] later proved that for any n2n\geq 2, degFN(N1)2(2n3)\deg F\leq\frac{N(N-1)}{2(2n-3)}.

The proof of the n3n\geq 3 and N=2n1N=2n-1 case [huang-2001-mapping] uses the rank of a certain matrix called geometric rank κ0[0,n1]\kappa_{0}\in[0,n-1] of the map, which is used to measure the degeneracy of the second fundamental form of the map. See Sections 2 and 2.1 for the definition. Huang [huang-2003-semirigidity] proved a deep result showing that maps with κ0<n1\kappa_{0}<n-1 satisfy a semi-linearity property, which maps with κ0=n1\kappa_{0}=n-1 may not, making the latter maps more complicated than the former. He also showed in the same work that Nn+κ0(2nκ01)2N\geq n+\frac{\kappa_{0}(2n-\kappa_{0}-1)}{2}, which implies that the minimum target dimension depends on the geometric rank. This splits the study of these maps into four problems:

  1. (A)

    Study rational proper maps F:𝔹n𝔹NF\colon\mathbb{B}_{n}\to\mathbb{B}_{N} with κ0<n1\kappa_{0}<n-1 and N=n+κ0(2nκ01)2N=n+\frac{\kappa_{0}(2n-\kappa_{0}-1)}{2};

  2. (B)

    Study rational proper maps F:𝔹n𝔹NF\colon\mathbb{B}_{n}\to\mathbb{B}_{N} with κ0<n1\kappa_{0}<n-1 and N>n+κ0(2nκ01)2N>n+\frac{\kappa_{0}(2n-\kappa_{0}-1)}{2};

  3. (C)

    Study rational proper maps F:𝔹n𝔹NF\colon\mathbb{B}_{n}\to\mathbb{B}_{N} with κ0=n1\kappa_{0}=n-1 and N=n(n+1)2N=\frac{n(n+1)}{2};

  4. (D)

    Study rational proper maps F:𝔹n𝔹NF\colon\mathbb{B}_{n}\to\mathbb{B}_{N} with κ0=n1\kappa_{0}=n-1 and N>n(n+1)2N>\frac{n(n+1)}{2}.

This, for example, explains why the n=2n=2 and n>2n>2 cases differ for N=n+1N=n+1.

The work of [huang-1999-linearity, huang-2001-mapping, ji-2004-maps, hamada-2005-rational, huang-2006-new, ji-2018-upper] deal with κ0<n1\kappa_{0}<n-1 in many different settings. Huang, Ji, and Xu [huang-2006-new] confirmed D’Angelo conjecture for n3n\geq 3 and geometric rank κ0=1\kappa_{0}=1. The case of maximum geometric rank κ0=n1\kappa_{0}=n-1 has mostly been unresolved. For Problem (C), the n=2n=2 case has been solved by Faran [faran-1982-maps], where the sharp degree bound turned out to be 33. The n=3n=3 case is still unresolved, but Huang, Ji, and Xu [huang-2005-several] found a degree bound of 44. The current work focuses on the degree bound of Problem (C). Our main result is as follows.

Theorem 1.1.

Let F:𝔹n𝔹NF\colon\mathbb{B}_{n}\to\mathbb{B}_{N} be a proper holomorphic map that is C3C^{3}-smooth up to the boundary with geometric rank κ0\kappa_{0}, n2n\geq 2, and N=n+κ0(2nκ01)2N=n+\frac{\kappa_{0}(2n-\kappa_{0}-1)}{2}. Then FF is rational with degFκ0+2\deg F\leq\kappa_{0}+2.

Two immediate corollaries are the following degree bounds for rational proper maps:

Corollary 1.2.

Let F:𝔹n𝔹NF\colon\mathbb{B}_{n}\to\mathbb{B}_{N} be a rational proper map with geometric rank κ0\kappa_{0}, n2n\geq 2, and N=n+κ0(2nκ01)2N=n+\frac{\kappa_{0}(2n-\kappa_{0}-1)}{2}. Then degFκ0+2\deg F\leq\kappa_{0}+2.

Corollary 1.3.

Let n2n\geq 2, N=n(n+1)2N=\frac{n(n+1)}{2}, and F:𝔹n𝔹NF\colon\mathbb{B}_{n}\to\mathbb{B}_{N} be a rational proper map with geometric rank n1n-1. Then degFn+1\deg F\leq n+1.

The κ0<n1\kappa_{0}<n-1 case has been proved by Ji and Xu [ji-2004-maps].

The organization of this paper is as follows. In Section 2, we set up the preliminaries required for our main proof. In Section 3, we prove our main result, except for two claims, which will be proved in Section 4.

2. Normal Forms, Geometric Rank, and Degree Bound

Our result is based on the normal form and the degree result in Corollary 2.4 which this section will lead to.

2.1. Associated Maps

We will use a series of associated maps and state a series of normalization for a rational proper map. Write n={(z,w)n1×Imw>z2}\mathbb{H}_{n}=\{\,(z,w)\in\mathbb{C}^{n-1}\times\mathbb{C}\mid\operatorname{Im}w>\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}\,\} for the Siegel upper half-space and n={(z,w)n1×Imw=z2}\partial\mathbb{H}_{n}=\{\,(z,w)\in\mathbb{C}^{n-1}\times\mathbb{C}\mid\operatorname{Im}w=\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}\,\} for its boundary, the Heisenberg group. We parametrize n\partial\mathbb{H}_{n} by (z,z¯,u)(z,\bar{z},u) through the map (z,z¯,u)(z,u+iz2)(z,\bar{z},u)\mapsto(z,u+i\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}), and for a non-negative integer mm and a function h(z,z¯,u)h(z,\bar{z},u) defined on a small ball UU around 0 in n\partial\mathbb{H}_{n}, we write h=owt(m)h=\operatorname{o_{wt}}(m) if h(tz,tz¯,t2u)|t|m0\frac{h(tz,t\bar{z},t^{2}u)}{\mathopen{}\mathclose{{}\left\lvert t}\right\rvert^{m}}\to 0 uniformly for (z,u)(z,u) on every compact subset of UU as the real number t0t\to 0.

Let F=(f~,g~):nNF=(\tilde{f},\tilde{g})\colon\partial\mathbb{H}_{n}\to\partial\mathbb{H}_{N} be a rational CR map. Take any p=(z0,w0)np=(z_{0},w_{0})\in\partial\mathbb{H}_{n}, consider σpAut(n)\sigma_{p}\in\operatorname{Aut}(\mathbb{H}_{n}) and τpFAut(N)\tau_{p}^{F}\in\operatorname{Aut}(\mathbb{H}_{N}) given by

σp(z,w)=(z+z0,w+w0+2izz0¯),\displaystyle\sigma_{p}(z,w)=(z+z_{0},w+w_{0}+2iz\cdot\overline{z_{0}}),
τpF(z,w)=(zf~(z0,w0),wg~(z0,w0)2izf~(z0,w0)¯),\displaystyle\tau_{p}^{F}(z^{*},w^{*})=(z^{*}-\tilde{f}(z_{0},w_{0}),w^{*}-\tilde{g}(z_{0},w_{0})-2iz^{*}\cdot\overline{\tilde{f}(z_{0},w_{0})}),

where \cdot is the standard bilinear product. Then Fp:=τpFFσp:nNF_{p}:=\tau_{p}^{F}\circ F\circ\sigma_{p}\colon\partial\mathbb{H}_{n}\to\partial\mathbb{H}_{N} is a rational CR map with Fp(0)=0F_{p}(0)=0. It follows from Huang’s pioneer paper [huang-1999-linearity]*Section 4 that there are automorphisms Hp,GpAut(N)H_{p},G_{p}\in\operatorname{Aut}(\mathbb{H}_{N}) and Fp:=HpFpF_{p}^{*}:=H_{p}\circ F_{p} such that the rational CR map Fp=(fp,ϕp,gp):=GpFp:nNF_{p}^{**}=(f_{p}^{**},\phi_{p}^{**},g_{p}^{**}):=G_{p}\circ F_{p}^{*}\colon\partial\mathbb{H}_{n}\to\partial\mathbb{H}_{N} satisfies the following normalization condition:

fp=z+i2ap{1}(z)w+owt(3),\displaystyle f_{p}^{**}=z+\frac{i}{2}a_{p}^{\{1\}}(z)w+\operatorname{o_{wt}}(3),
ϕp=ϕp{2}(z)+owt(2),\displaystyle\phi_{p}^{**}=\phi_{p}^{\{2\}}(z)+\operatorname{o_{wt}}(2),
gp=w+owt(4),\displaystyle g_{p}^{**}=w+\operatorname{o_{wt}}(4),

with z¯ap{1}(z)¯z2=ϕp{2}(z)2\overline{z}\cdot\overline{a_{p}^{\{1\}}(z)}\mathopen{}\mathclose{{}\left\lVert z}\right\rVert^{2}=\mathopen{}\mathclose{{}\left\lVert\phi_{p}^{\{2\}}(z)}\right\rVert^{2}, where we denote by h{j}(z)h^{\{j\}}(z) a homogeneous polynomial degree jj in zz, that is, h{j}(cz)=cjh{j}(z)h^{\{j\}}(cz)=c^{j}h^{\{j\}}(z) for any cc\in\mathbb{C}.

2.2. The Geometric Rank

The normalization lets us write ap{1}(z)=z𝒜pa_{p}^{\{1\}}(z)=z\mathcal{A}_{p}, where

(1) 𝒜p=2i(2(fp)zjw)1j,n1\mathcal{A}_{p}=-2i\mathopen{}\mathclose{{}\left(\frac{\partial^{2}(f_{p})^{**}_{\ell}}{\partial z_{j}\partial w}}\right)_{1\leq j,\ell\leq n-1}

is an (n1)×(n1)(n-1)\times(n-1) Hermitian positive semidefinite matrix. Write ρn:n𝔹n\rho_{n}\colon\mathbb{H}_{n}\to\mathbb{B}_{n} for the Cayley transformation, which extends to ρn:n𝔹n\rho_{n}\colon\partial\mathbb{H}_{n}\to\partial\mathbb{B}_{n}.

Definition 2.1 (Geometric Rank).

We define the geometric rank RkF(p)\operatorname{Rk}_{F}(p) of a rational CR map F:nNF\colon\partial\mathbb{H}_{n}\to\partial\mathbb{H}_{N} at pnp\in\partial\mathbb{H}_{n} to be the rank of the 𝒜p\mathcal{A}_{p} from Equation 1, and the geometric rank of FF to be

κ0=maxpnRkF(p).\kappa_{0}=\max_{p\in\partial\mathbb{H}_{n}}\operatorname{Rk}_{F}(p).

The geometric rank of a rational proper map F:𝔹n𝔹NF\colon\mathbb{B}_{n}\to\mathbb{B}_{N} is defined to be the geometric rank of ρN1Fρn\rho_{N}^{-1}\circ F\circ\rho_{n}.

Note that 0κ0n10\leq\kappa_{0}\leq n-1. Huang [huang-2003-semirigidity]*Lemma 2.2 (B) showed that κ0\kappa_{0} is independent of HpH_{p} or GpG_{p} and in fact depends only on the spherical equivalence class of FF. The geometric rank is used to measure the degeneracy of the second fundamental form of the map. The minimum geometric rank κ0=0\kappa_{0}=0 is associated with linear fractional maps [huang-1999-linearity].

To put the map FF into one more normal form, we write 𝒮0={(j,k)1jκ0,1kn1,jk}\mathcal{S}_{0}=\{\,(j,k)\mid 1\leq j\leq\kappa_{0},1\leq k\leq n-1,j\leq k\,\}, 𝒮1={(j,k)j=κ0+1,k{κ0+1,,NnP(n,κ0)}}\mathcal{S}_{1}=\{\,(j,k)\mid j=\kappa_{0}+1,k\in\{\,\kappa_{0}+1,\dots,N-n-P(n,\kappa_{0})\,\}\,\}, 𝒮=𝒮0𝒮1\mathcal{S}=\mathcal{S}_{0}\cup\mathcal{S}_{1}, and P(n,κ0)=κ0(2nκ01)2P(n,\kappa_{0})=\frac{\kappa_{0}(2n-\kappa_{0}-1)}{2}, number of elements in 𝒮0\mathcal{S}_{0}. We can use Lemma 3.2 and its proof from Huang [huang-2003-semirigidity] to show that if RkF(0)=κ0\operatorname{Rk}_{F}(0)=\kappa_{0}, then Nn+P(n,κ0)N\geq n+P(n,\kappa_{0}) and there is an automorphism γpAut(N)\gamma_{p}\in\operatorname{Aut}(\mathbb{H}_{N}) such that the rational CR map Fp=(f,ϕ,g):=γpFp:nNF_{p}^{***}=(f,\phi,g):=\gamma_{p}\circ F_{p}^{**}\colon\partial\mathbb{H}_{n}\to\partial\mathbb{H}_{N} satisfies the following normalization condition:

fj=zj+iμj2zjw+owt(3),2fjw2(0)=0,μj>0,j=1,,κ0,\displaystyle f_{j}=z_{j}+\frac{i\mu_{j}}{2}z_{j}w+\operatorname{o_{wt}}(3),\quad\frac{\partial^{2}f_{j}}{\partial w^{2}}(0)=0,\quad\mu_{j}>0,\quad j=1,\dots,\kappa_{0},
fj=zj+owt(3),j=κ0+1,,n1,\displaystyle f_{j}=z_{j}+\operatorname{o_{wt}}(3),\quad j=\kappa_{0}+1,\dots,n-1,
g=w+owt(4),\displaystyle g=w+\operatorname{o_{wt}}(4),
ϕjk=μjkzjzk+owt(2),\displaystyle\phi_{jk}=\mu_{jk}z_{j}z_{k}+\operatorname{o_{wt}}(2),
where (j,k)𝒮 with μjk>0 for (j,k)𝒮0 and μjk=0 otherwise.\displaystyle\text{where }(j,k)\in\mathcal{S}\text{ with }\mu_{jk}>0\text{ for }(j,k)\in\mathcal{S}_{0}\text{ and }\mu_{jk}=0\text{ otherwise}.

Moreover, μjk=μj+μk\mu_{jk}=\sqrt{\mu_{j}+\mu_{k}} for j,kκ0,jkj,k\leq\kappa_{0},j\neq k, and μjk=μj\mu_{jk}=\sqrt{\mu_{j}} for jκ0<k or j=kκ0j\leq\kappa_{0}<k\text{ or }j=k\leq\kappa_{0}.

2.3. A Degree Result

Now let us focus on how to get a degree estimate from the normal forms.

Definition 2.2 (Degree of a Rational Map).

Let F=PQ=(P1,,PN)QF=\frac{P}{Q}=\frac{(P_{1},\dots,P_{N})}{Q} be a rational map from n\mathbb{C}^{n} into N\mathbb{C}^{N} in reduced terms. We define the degree of FF to be

degF=max(degP1,,degPN,degQ).\deg F=\max(\deg P_{1},\dots,\deg P_{N},\deg Q).

Denote the Segre variety by Q(ζ,η)={(z,w)wη¯2i=zζ¯}Q_{(\zeta,\eta)}=\{\,(z,w)\mid\frac{w-\bar{\eta}}{2i}=z\cdot\overline{\zeta}\,\}. A useful result that we will use to find a degree estimate is due to Huang and Ji [huang-2001-mapping]*Lemma 5.4:

Proposition 2.3.

Let FF be a rational map from n\mathbb{C}^{n} into N\mathbb{C}^{N} in reduced terms and KK a positive integer such that for all pnp\in\partial\mathbb{H}_{n} close to the origin, degF|QpK\deg F|_{Q_{p}}\leq K. Then degFK\deg F\leq K.

Writing βp:=γpGpHpτpF\beta_{p}:=\gamma_{p}\circ G_{p}\circ H_{p}\circ\tau_{p}^{F} gives us Fp=βpFσpF_{p}^{***}=\beta_{p}\circ F\circ\sigma_{p}. Notice that

σp(Q0)=Qp.\sigma_{p}(Q_{0})=Q_{p}.

Since all automorphisms of Aut(N)\operatorname{Aut}(\mathbb{H}_{N}) are of degree 11, so is βp\beta_{p}. We see that

degFp|Q0=degβpFσp|Q0=degFσp|Q0=degF|Qp,\deg F_{p}^{***}|_{Q_{0}}=\deg\beta_{p}\circ F\circ\sigma_{p}|_{Q_{0}}=\deg F\circ\sigma_{p}|_{Q_{0}}=\deg F|_{Q_{p}},

which tells us that the condition degF|QpK\deg F|_{Q_{p}}\leq K from Proposition 2.3 is equivalent to degFp|Q0K\deg F_{p}^{***}|_{Q_{0}}\leq K.

We summarize these results in the following. Write ϕjk()\phi_{jk}^{(\ell)} and ϕjk(0)\phi_{jk}^{(0)} for the coefficient of zwz^{\ell}w and w2w^{2} respectively in the Taylor series of ϕjk\phi_{jk}. We get the following normal form up to 2nd order and degree result that will be useful to find degrees.

Corollary 2.4.

Let F:nNF\colon\partial\mathbb{H}_{n}\to\partial\mathbb{H}_{N} be a rational CR map of geometric rank κ0\kappa_{0}. Then

  1. (i)

    Nn+P(n,κ0)N\geq n+P(n,\kappa_{0}).

  2. (ii)

    For every pnp\in\partial\mathbb{H}_{n}, FF is spherically equivalent to a rational CR map Fp=(f,ϕ,g)F_{p}^{***}=(f,\phi,g) preserving the origin and satisfying the following normalization condition:

    fj=zj+λjzjw+o(2),\displaystyle f_{j}=z_{j}+\lambda_{j}z_{j}w+o(2),
    ϕjk=μjkzjzk+=1n1ϕjk()zw+ϕjk(0)w2+o(2),\displaystyle\phi_{jk}=\mu_{jk}z_{j}z_{k}+\sum_{\ell=1}^{n-1}\phi_{jk}^{(\ell)}z_{\ell}w+\phi_{jk}^{(0)}w^{2}+o(2),
    g=w+o(2),\displaystyle g=w+o(2),

    where λj=0 for j>κ0,λj0 otherwise\lambda_{j}=0\text{ for }j>\kappa_{0},\lambda_{j}\neq 0\text{ otherwise}, and μjk=0 for kj=κ0+1,μjk>0 otherwise\mu_{jk}=0\text{ for }k\geq j=\kappa_{0}+1,\mu_{jk}>0\text{ otherwise}.

  3. (iii)

    Moreover, let KK be a positive integer such that for all pnp\in\partial\mathbb{H}_{n} close to the origin, degFp|Q0K\deg F_{p}^{***}|_{Q_{0}}\leq K. Then degFK\deg F\leq K.

3. Proof of the Main Result

3.1. Partial Normalization

Let F:𝔹n𝔹NF\colon\mathbb{B}_{n}\to\mathbb{B}_{N} be a proper holomorphic map that is C3C^{3}-smooth up to the boundary with geometric rank κ0\kappa_{0}, n2n\geq 2, and N=n+κ0(2nκ01)2N=n+\frac{\kappa_{0}(2n-\kappa_{0}-1)}{2}. Since 0κ0n10\leq\kappa_{0}\leq n-1, we get Nn(n+1)2N\leq\frac{n(n+1)}{2} and hence FF is a rational map by [huang-2005-several]*Corollary 1.4. Let dd be the degree of the map FF. As the κ0<n1\kappa_{0}<n-1 case has been proved in [ji-2004-maps], we will assume κ0=n1\kappa_{0}=n-1.

The map FF is a rational proper map between balls and so extends holomorphically across the boundary 𝔹n\partial\mathbb{B}_{n} due to a well-known result by Cima and Suffridge [cima-1990-boundary], and takes 𝔹n\partial\mathbb{B}_{n} to 𝔹N\partial\mathbb{B}_{N}. Then the extension ρN1Fρn:nN\rho_{N}^{-1}\circ F\circ\rho_{n}\colon\partial\mathbb{H}_{n}\to\partial\mathbb{H}_{N}, which we will also call FF, is a rational CR map of degree dd, as ρn\rho_{n} and ρN1\rho_{N}^{-1} are rational maps of degree 11. Take any pnp\in\partial\mathbb{H}_{n} near the origin. Using Corollary 2.4 (ii) with κ0=n1\kappa_{0}=n-1, we get that FF is spherically equivalent to the origin preserving map

Fp=(f~,g)=(f,ϕ,g)=(f1,,fn1,ϕ1,,ϕNn,g)F^{***}_{p}=(\tilde{f},g)=(f,\phi,g)=(f_{1},\dots,f_{n-1},\phi_{1},\dots,\phi_{N-n},g)

with

fj=zj+λjzjw+o(2),\displaystyle f_{j}=z_{j}+\lambda_{j}z_{j}w+o(2),
ϕjk=μjkzjzk+=1n1ϕjk()zw+ϕjk(0)w2+o(2),\displaystyle\phi_{jk}=\mu_{jk}z_{j}z_{k}+\sum_{\ell=1}^{n-1}\phi_{jk}^{(\ell)}z_{\ell}w+\phi_{jk}^{(0)}w^{2}+o(2),
g=w+o(2),\displaystyle g=w+o(2),

where λj0\lambda_{j}\neq 0 for j=1,,n1j=1,\dots,n-1, μjk>0\mu_{jk}>0 for (j,k)𝒮=𝒮0(j,k)\in\mathcal{S}=\mathcal{S}_{0}, and 𝒮1=\mathcal{S}_{1}=\varnothing.

To prove that d=degFn+1d=\deg F\leq n+1, it is sufficient to prove that for all pnp\in\partial\mathbb{H}_{n}, degFp|Q0n+1\deg F^{**}_{p}|_{Q_{0}}\leq n+1 because of Corollary 2.4 (iii). Here Q0={w=0}Q_{0}=\{\,w=0\,\}.

Consider the CR vector fields

Lk=\diffpzk+2iz¯k\diffpwL_{k}=\diffp{}{{z_{k}}}+2i\bar{z}_{k}\diffp{}{w}

for k=1,,n1k=1,\dots,n-1 and complexify these to get

k=\diffpzk+2iζ¯k\diffpw.\mathcal{L}_{k}=\diffp{}{{z_{k}}}+2i\bar{\zeta}_{k}\diffp{}{w}.

Write ϵk=2iζ¯k\epsilon_{k}=2i\bar{\zeta}_{k} and compute

k=\diffpzk+ϵk\diffpw,\displaystyle\mathcal{L}_{k}=\diffp{}{{z_{k}}}+\epsilon_{k}\diffp{}{w},
jk=\diffpzjzk+2ϵj\diffpzkw+2ϵk\diffpzjw+ϵjϵk\diffpw2\displaystyle\mathcal{L}_{j}\mathcal{L}_{k}=\diffp{}{{z_{j}}{z_{k}}}+2\epsilon_{j}\diffp{}{{z_{k}}{w}}+2\epsilon_{k}\diffp{}{{z_{j}}{w}}+\epsilon_{j}\epsilon_{k}\diffp{}{{w^{2}}}

for j,k=1,,n1j,k=1,\dots,n-1. On n\partial\mathbb{H}_{n}, we get the basic equation Img=f~2\operatorname{Im}g=\mathopen{}\mathclose{{}\left\lVert\tilde{f}}\right\rVert^{2}, that is,

Img(z,w)=g(z,w)g(z,w)¯2i=f~(z,w)f~(z,w)¯.\operatorname{Im}g(z,w)=\frac{g(z,w)-\overline{g(z,w)}}{2i}=\tilde{f}(z,w)\cdot\overline{\tilde{f}(z,w)}.

Complexification gives us

(2) g(z,w)g(ζ,η)¯2i=f~(z,w)f~(ζ,η)¯\frac{g(z,w)-\overline{g(\zeta,\eta)}}{2i}=\tilde{f}(z,w)\cdot\overline{\tilde{f}(\zeta,\eta)}

along any Segre variety Q(ζ,η)Q_{(\zeta,\eta)}.

Notation 1.

For any positive integer mm, denote by [m][m] by the set { 1,,m}\{\,1,\dots,m\,\}.

3.2. A Degree Estimate

We will describe the normalized map FpF_{p}^{***} along a Segre variety and get a degree estimate from there. Set n=n1n^{\prime}=n-1 and N=NnN^{\prime}=N-n. We apply k\mathcal{L}_{k} for k[n]k\in[n^{\prime}] and jk\mathcal{L}_{j}\mathcal{L}_{k} for (j,k)𝒮0(j,k)\in\mathcal{S}_{0} on Equation 2 to get

12ikg(z,w)=kf~(z,w)f~(ζ,η)¯,\displaystyle\frac{1}{2i}\mathcal{L}_{k}g(z,w)=\mathcal{L}_{k}\tilde{f}(z,w)\cdot\overline{\tilde{f}(\zeta,\eta)},
12ijkg(z,w)=jkf~(z,w)f~(ζ,η)¯.\displaystyle\frac{1}{2i}\mathcal{L}_{j}\mathcal{L}_{k}g(z,w)=\mathcal{L}_{j}\mathcal{L}_{k}\tilde{f}(z,w)\cdot\overline{\tilde{f}(\zeta,\eta)}.

Letting (z,w)=0(z,w)=0 and η=0\eta=0 gives us

12i(0g(ζ,0)¯)=0f~(ζ,0)¯,\frac{1}{2i}(0-\overline{g(\zeta,0)})=0\cdot\overline{\tilde{f}(\zeta,0)},

that is, g(ζ,0)¯=0\overline{g(\zeta,0)}=0, and

12i[1gng11gnng]|(0,0)=[1f~nf~11f~nnf~]|(0,0)f~(ζ,0)¯=[1f1ϕnfnϕ11f11ϕnnfnnϕ]|(0,0)f~(ζ,0)¯.\displaystyle\frac{1}{2i}{\mathopen{}\mathclose{{}\left.\kern-1.2pt\begin{bmatrix}\mathcal{L}_{1}g\\ \vdots\\ \mathcal{L}_{n^{\prime}}g\\ \mathcal{L}_{1}\mathcal{L}_{1}g\\ \vdots\\ \mathcal{L}_{n^{\prime}}\mathcal{L}_{n^{\prime}}g\end{bmatrix}\vphantom{\big{|}}}\right|_{(0,0)}}={\mathopen{}\mathclose{{}\left.\kern-1.2pt\begin{bmatrix}\mathcal{L}_{1}\tilde{f}\\ \vdots\\ \mathcal{L}_{n^{\prime}}\tilde{f}\\ \mathcal{L}_{1}\mathcal{L}_{1}\tilde{f}\\ \vdots\\ \mathcal{L}_{n^{\prime}}\mathcal{L}_{n^{\prime}}\tilde{f}\end{bmatrix}\vphantom{\big{|}}}\right|_{(0,0)}}{\overline{\tilde{f}(\zeta,0)}}^{\intercal}={\mathopen{}\mathclose{{}\left.\kern-1.2pt\begin{bmatrix}\mathcal{L}_{1}f&\mathcal{L}_{1}\phi\\ \vdots&\vdots\\ \mathcal{L}_{n^{\prime}}f&\mathcal{L}_{n^{\prime}}\phi\\ \mathcal{L}_{1}\mathcal{L}_{1}f&\mathcal{L}_{1}\mathcal{L}_{1}\phi\\ \vdots&\vdots\\ \mathcal{L}_{n^{\prime}}\mathcal{L}_{n^{\prime}}f&\mathcal{L}_{n^{\prime}}\mathcal{L}_{n^{\prime}}\phi\end{bmatrix}\vphantom{\big{|}}}\right|_{(0,0)}}{\overline{\tilde{f}(\zeta,0)}}^{\intercal}.

Define

λjk={2μjkj=kμjkjk\lambda_{jk}=\begin{cases}2\mu_{jk}&j=k\\ \mu_{jk}&j\neq k\end{cases}

for (j,k)𝒮0(j,k)\in\mathcal{S}_{0}. We will label the components of ϕ\phi both by single indices [Nn]\ell\in[N-n] and double indices (j,k)𝒮0(j,k)\in\mathcal{S}_{0}, and write ι(j,k)=\iota(j,k)=\ell and ι1()=(j,k)\iota^{-1}(\ell)=(j,k).

At (0,0)(0,0), we compute

kg=ϵk,\displaystyle\mathcal{L}_{k}g=\epsilon_{k},
jkg=0,\displaystyle\mathcal{L}_{j}\mathcal{L}_{k}g=0,
kf=δk:=(0,,0,1,0,,0)n,\displaystyle\mathcal{L}_{k}f=\delta_{k}:=(0,\dots,0,1,0,\dots,0)\in\mathbb{C}^{n^{\prime}},
jkf=0+λjϵkδj+λkϵjδk+ϵjϵk×0=λjϵkδj+λkϵjδkn,\displaystyle\mathcal{L}_{j}\mathcal{L}_{k}f=0+\lambda_{j}\epsilon_{k}\delta_{j}+\lambda_{k}\epsilon_{j}\delta_{k}+\epsilon_{j}\epsilon_{k}\times 0=\lambda_{j}\epsilon_{k}\delta_{j}+\lambda_{k}\epsilon_{j}\delta_{k}\in\mathbb{C}^{n^{\prime}},
kϕ=0N,\displaystyle\mathcal{L}_{k}\phi=0\in\mathbb{C}^{N^{\prime}},
jkϕ=λjkδι(j,k)+ϵj(ϕι1(1)(k),,ϕι1(N)(k))+ϵk(ϕι1(1)(j),,ϕι1(N)(j))\displaystyle\mathcal{L}_{j}\mathcal{L}_{k}\phi=\lambda_{jk}\delta_{\iota(j,k)}+\epsilon_{j}(\phi_{\iota^{-1}(1)}^{(k)},\dots,\phi_{\iota^{-1}(N^{\prime})}^{(k)})+\epsilon_{k}(\phi_{\iota^{-1}(1)}^{(j)},\dots,\phi_{\iota^{-1}(N^{\prime})}^{(j)})
+ϵjϵk(2ϕι1(1)(0),,2ϕι1(N)(0))\displaystyle+\epsilon_{j}\epsilon_{k}(2\phi_{\iota^{-1}(1)}^{(0)},\dots,2\phi_{\iota^{-1}(N^{\prime})}^{(0)})

for k[n]k\in[n^{\prime}] and (j,k)𝒮0(j,k)\in\mathcal{S}_{0}.

Set ϕ(k)=(ϕι1(1)(k),,ϕι1(N)(k))\phi^{(k)}=(\phi_{\iota^{-1}(1)}^{(k)},\dots,\phi_{\iota^{-1}(N^{\prime})}^{(k)}) and ϕ(0)=(ϕι1(1)(0),,ϕι1(N)(0))\phi^{(0)}=(\phi_{\iota^{-1}(1)}^{(0)},\dots,\phi_{\iota^{-1}(N^{\prime})}^{(0)}), so that at (0,0)(0,0),

jkϕ=λjkδι(j,k)+ϵjϕ(k)+ϵkϕ(j)+2ϵjϵkϕ(0).\mathcal{L}_{j}\mathcal{L}_{k}\phi=\lambda_{jk}\delta_{\iota(j,k)}+\epsilon_{j}\phi^{(k)}+\epsilon_{k}\phi^{(j)}+2\epsilon_{j}\epsilon_{k}\phi^{(0)}.

Notice that at (0,0)(0,0),

(kf)j=I=In,(kϕ)j=0=0n×N,(\mathcal{L}_{k}f)_{j}=I=I_{n^{\prime}},\quad(\mathcal{L}_{k}\phi)_{j}=0=0_{n^{\prime}\times N^{\prime}},

and write

C=[1f~nf~11f~nnf~]|(0,0),A=[11fnnf]|(0,0),C={\mathopen{}\mathclose{{}\left.\kern-1.2pt\begin{bmatrix}\mathcal{L}_{1}\tilde{f}\\ \vdots\\ \mathcal{L}_{n^{\prime}}\tilde{f}\\ \mathcal{L}_{1}\mathcal{L}_{1}\tilde{f}\\ \vdots\\ \mathcal{L}_{n^{\prime}}\mathcal{L}_{n^{\prime}}\tilde{f}\end{bmatrix}\vphantom{\big{|}}}\right|_{(0,0)}},\quad A={\mathopen{}\mathclose{{}\left.\kern-1.2pt\begin{bmatrix}\mathcal{L}_{1}\mathcal{L}_{1}f\\ \vdots\\ \mathcal{L}_{n^{\prime}}\mathcal{L}_{n^{\prime}}f\end{bmatrix}\vphantom{\big{|}}}\right|_{(0,0)}},
B=[11ϕnnϕ]|(0,0)=(jkϕ|(0,0))ι(j,k), and D=12i[1gng11gnng]|(0,0)=12i[ϵ0].B={\mathopen{}\mathclose{{}\left.\kern-1.2pt\begin{bmatrix}\mathcal{L}_{1}\mathcal{L}_{1}\phi\\ \vdots\\ \mathcal{L}_{n^{\prime}}\mathcal{L}_{n^{\prime}}\phi\end{bmatrix}\vphantom{\big{|}}}\right|_{(0,0)}}=({\mathopen{}\mathclose{{}\left.\kern-1.2pt\mathcal{L}_{j}\mathcal{L}_{k}\phi\vphantom{\big{|}}}\right|_{(0,0)}})_{\iota(j,k)},\text{ and }D=\frac{1}{2i}{\mathopen{}\mathclose{{}\left.\kern-1.2pt\begin{bmatrix}\mathcal{L}_{1}g\\ \vdots\\ \mathcal{L}_{n^{\prime}}g\\ \mathcal{L}_{1}\mathcal{L}_{1}g\\ \vdots\\ \mathcal{L}_{n^{\prime}}\mathcal{L}_{n^{\prime}}g\end{bmatrix}\vphantom{\big{|}}}\right|_{(0,0)}}=\frac{1}{2i}\begin{bmatrix}\epsilon\\ 0\end{bmatrix}.

We see that at (0,0)(0,0), detB=k=1nλι1(k)=2nk=1nμι1(k)>0\det B=\prod_{k=1}^{n^{\prime}}\lambda_{\iota^{-1}(k)}=2^{n^{\prime}}\prod_{k=1}^{n^{\prime}}\mu_{\iota^{-1}(k)}>0, so that near the origin, detB>0\det B>0 and BB is invertible. Hence

C=[I0AB],detC=detB0,C1=[I0B1AB1],C=\begin{bmatrix}I&0\\ A&B\end{bmatrix},\quad\det C=\det B\neq 0,\quad C^{-1}=\begin{bmatrix}I&0\\ -B^{-1}A&B^{-1}\end{bmatrix},

and

f~(ζ,0)¯=C1D=12i[ϵB1Aϵ]=12i[(detB)ϵ(adjB)Aϵ]detB,{\overline{\tilde{f}(\zeta,0)}}^{\intercal}=C^{-1}D=\frac{1}{2i}\begin{bmatrix}\epsilon\\ -B^{-1}A\epsilon\end{bmatrix}=\frac{1}{2i}\frac{\begin{bmatrix}(\det B)\epsilon\\ -(\operatorname{adj}B)A\epsilon\end{bmatrix}}{\det B},

which describes f~\tilde{f} along the Segre variety Q0Q_{0} in terms of the matrices AA and BB. We see that detB\det B, adjB\operatorname{adj}B, and AA are all polynomial maps in ϵ\epsilon with

degdetBk=1N2=2N,degadjBk=1N12=2N1,degA=1,\deg\det B\leq\prod_{k=1}^{N^{\prime}}2=2^{N^{\prime}},\quad\deg\operatorname{adj}B\leq\prod_{k=1}^{N^{\prime}-1}2=2^{N^{\prime}-1},\quad\deg A=1,

and

deg(adjB)A2N1+1\deg(\operatorname{adj}B)A\leq 2^{N^{\prime}-1}+1

as polynomial maps in ϵ\epsilon, so in ζ¯\bar{\zeta}.

We will in fact show in the next section that

  1. (i)

    degdetBn\deg\det B\leq n and

  2. (ii)

    deg(adjB)An\deg(\operatorname{adj}B)A\leq n,

so that deg[(detB)ϵ(adjB)Aϵ]n+1\deg\begin{bmatrix}(\det B)\epsilon\\ -(\operatorname{adj}B)A\epsilon\end{bmatrix}\leq n+1, giving us degf~(ζ,0)¯n+1\deg\overline{\tilde{f}(\zeta,0)}\leq n+1. Combining this with g(ζ,0)¯=0\overline{g(\zeta,0)}=0, we will have shown that degFp(ζ,0)¯n+1\deg\overline{F^{***}_{p}(\zeta,0)}\leq n+1, that is, degFp|Q0n+1\deg F^{***}_{p}|_{Q_{0}}\leq n+1, proving our desired result.

4. A Linear Algebraic Proof of the Claims

The proofs of both the claims are completely linear algebraic in nature.

Notation 2.

We will decompose a matrix of polynomials MM of degree dd into the unique homogeneous expansion

M=j=0dM{j},M=\sum_{j=0}^{d}M^{\{j\}},

where M{j}M^{\{j\}} is homogeneous of degree jj, that is, M{j}(cz)=cjM{j}(z)M^{\{j\}}(cz)=c^{j}M^{\{j\}}(z) for any cc\in\mathbb{C}.

Notation 3.

For any matrix MM, we denote by

  • MjkM_{jk} the (j,k)(j,k)-th element

  • MkM_{k} the column kk

  • M[j]M[j] the matrix MM with row jj removed

  • M[j,k]M[j,k] the matrix MM with row jj and column kk removed.

4.1. Matrix Structures

We will look at the columns of linear and quadratic terms of matrix BB and those of matrix AA. We define the matrix EN×nE\in\mathbb{C}^{N^{\prime}\times n^{\prime}} and the column vector eNe\in\mathbb{C}^{N^{\prime}} by defining EjkE_{jk} and eje_{j} in the following way: Write (p,q)=ι1(j)(p,q)=\iota^{-1}(j), let δ\delta be the Kronecker delta function, and define

Ejk:=δqkϵp+δpkϵq,ej:=2ϵpϵq.E_{jk}:=\delta_{q}^{k}\epsilon_{p}+\delta_{p}^{k}\epsilon_{q},\quad e_{j}:=2\epsilon_{p}\epsilon_{q}.

We write EkE_{k} for columns of EE to get that

k=1nϵkEk=e.\sum_{k=1}^{n^{\prime}}\epsilon_{k}E_{k}=e.

Using 2, write B=k=02B{k}B=\sum_{k=0}^{2}B^{\{k\}}. We see that the quadratic terms of BB form the matrix

B{2}\displaystyle B^{\{2\}} =(jkϕ|(0,0))ι(j,k){2}\displaystyle=\mathopen{}\mathclose{{}\left({\mathopen{}\mathclose{{}\left.\kern-1.2pt\mathcal{L}_{j}\mathcal{L}_{k}\phi\vphantom{\big{|}}}\right|_{(0,0)}}}\right)_{\iota(j,k)}^{\{2\}}
=(2ϵjϵkϕ(0))ι(j,k)\displaystyle=(2\epsilon_{j}\epsilon_{k}\phi^{(0)})_{\iota(j,k)}
=2eϕ(0),\displaystyle=2e{\phi^{(0)}}^{\intercal},

so that all its columns are multiples of the column matrix ee, making B{2}B^{\{2\}} a determinant-0 rank-11 matrix. Moreover, as

e=k=1nϵkEk,e=\sum_{k=1}^{n^{\prime}}\epsilon_{k}E_{k},

all columns of B{2}B^{\{2\}} are linear combinations of EkE_{k}s.

The linear terms of BB form the matrix

B{1}\displaystyle B^{\{1\}} =(jkϕ|(0,0))ι(j,k){1}\displaystyle=\mathopen{}\mathclose{{}\left({\mathopen{}\mathclose{{}\left.\kern-1.2pt\mathcal{L}_{j}\mathcal{L}_{k}\phi\vphantom{\big{|}}}\right|_{(0,0)}}}\right)_{\iota(j,k)}^{\{1\}}
=(ϵjϕ(k)+ϵkϕ(j))ι(j,k)\displaystyle=(\epsilon_{j}\phi^{(k)}+\epsilon_{k}\phi^{(j)})_{\iota(j,k)}
=E1ϕ(1)++Enϕ(n)\displaystyle=E_{1}{\phi^{(1)}}^{\intercal}+\dots+E_{n^{\prime}}{\phi^{(n^{\prime})}}^{\intercal}
=k=1nEkϕ(k),\displaystyle=\sum_{k=1}^{n^{\prime}}E_{k}{\phi^{(k)}}^{\intercal},

so that all its columns are linear combinations of EkE_{k}s, making B{1}B^{\{1\}} a determinant-0 rank-nn^{\prime} matrix. As a consequence, columns of B{k}B^{\{k\}}s are linear combinations of EjE_{j}s for k1k\geq 1.

Finally

A\displaystyle A =(jkf|(0,0)ι(j,k)\displaystyle=({\mathopen{}\mathclose{{}\left.\kern-1.2pt\mathcal{L}_{j}\mathcal{L}_{k}f\vphantom{\big{|}}}\right|_{(0,0)}}_{\iota(j,k)}
=(λjϵkδj+λkϵjδk)ι(j,k)\displaystyle=(\lambda_{j}\epsilon_{k}\delta_{j}+\lambda_{k}\epsilon_{j}\delta_{k})_{\iota(j,k)}
=[λ1E1λnEn],\displaystyle=\begin{bmatrix}\lambda_{1}E_{1}&\dots&\lambda_{n^{\prime}}E_{n^{\prime}}\end{bmatrix},

so that each of its columns AkA_{k} is a nonzero multiple of EkE_{k}.

4.2. Determinants and Adjugates

We will need the following two lemmas.

Determinants are multilinear in columns: Let ML×LM\in\mathbb{C}^{L\times L} be a square matrix. Write MM_{\ell} for columns of MM and decompose a given column Mj=k=1KMjkM_{j}=\sum_{k=1}^{K}M_{j}^{k} into finitely many terms. Then

(3) detM=det[M1Mj1k=1KMjkMj+1ML]=k=1Kdet[M1Mj1MjkMj+1ML].\displaystyle\begin{split}\det M&=\det\begin{bmatrix}\displaystyle M_{1}&\dots&M_{j-1}&\sum_{k=1}^{K}M_{j}^{k}&M_{j+1}&\dots&M_{L}\end{bmatrix}\\ &=\sum_{k=1}^{K}\det\begin{bmatrix}M_{1}&\dots&M_{j-1}&M_{j}^{k}&M_{j+1}&\dots&M_{L}\end{bmatrix}.\end{split}

Adjugate matrices are not multilinear, but we get the following formula:

Lemma 4.1.

Let ML×LM\in\mathbb{C}^{L\times L} be a square matrix. Write MM_{\ell} for columns of MM and decompose a given column Mj=k=1KMjkM_{j}=\sum_{k=1}^{K}M_{j}^{k} into finitely many terms. Then

adjM\displaystyle\operatorname{adj}M =adj[M1Mj1k=1KMjkMj+1ML]\displaystyle=\operatorname{adj}\begin{bmatrix}\displaystyle M_{1}&\dots&M_{j-1}&\sum_{k=1}^{K}M_{j}^{k}&M_{j+1}&\dots&M_{L}\end{bmatrix}
=k=1Kadj[M1Mj1MjkMj+1ML]\displaystyle=\sum_{k=1}^{K}\operatorname{adj}\begin{bmatrix}M_{1}&\dots&M_{j-1}&M_{j}^{k}&M_{j+1}&\dots&M_{L}\end{bmatrix}
(K1)adj[M1Mj10Mj+1ML].\displaystyle-(K-1)\operatorname{adj}\begin{bmatrix}M_{1}&\dots&M_{j-1}&0&M_{j+1}&\dots&M_{L}\end{bmatrix}.
Proof.

The key to the proof is that all the three matrices under the adj\operatorname{adj} operator on the middle and right sides of the formula stay the same if we remove their jj-th columns. Using 3, we get that the (,m)(\ell,m)-th element of adjM\operatorname{adj}M is

(1)+mdetM[m,]\displaystyle(-1)^{\ell+m}\det M[m,\ell]
=(1)+mdet[M1Mj1k=1KMjkMj+1ML][m,]\displaystyle=(-1)^{\ell+m}\det\begin{bmatrix}\displaystyle M_{1}&\dots&M_{j-1}&\sum_{k=1}^{K}M_{j}^{k}&M_{j+1}&\dots&M_{L}\end{bmatrix}[m,\ell]
={(1)j+mdet[M1Mj1k=1KMjkMj+1ML][m,j],if =j(1)+mdet[M1Mj1k=1KMjkMj+1ML][m,],if j\displaystyle=\begin{cases}(-1)^{j+m}\det\begin{bmatrix}\displaystyle M_{1}&\dots&M_{j-1}&\sum_{k=1}^{K}M_{j}^{k}&M_{j+1}&\dots&M_{L}\end{bmatrix}[m,j],&\text{if }\ell=j\\ (-1)^{\ell+m}\det\begin{bmatrix}\displaystyle M_{1}&\dots&M_{j-1}&\sum_{k=1}^{K}M_{j}^{k}&M_{j+1}&\dots&M_{L}\end{bmatrix}[m,\ell],&\text{if }\ell\neq j\end{cases}
={(1)j+mdet[M1Mj10Mj+1ML][m,j],if =j(1)+mk=1Kdet[M1Mj1MjkMj+1ML][m,],if j,\displaystyle=\begin{cases}(-1)^{j+m}\det\begin{bmatrix}\displaystyle M_{1}&\dots&M_{j-1}&0&M_{j+1}&\dots&M_{L}\end{bmatrix}[m,j],&\text{if }\ell=j\\ (-1)^{\ell+m}\sum_{k=1}^{K}\det\begin{bmatrix}\displaystyle M_{1}&\dots&M_{j-1}&M_{j}^{k}&M_{j+1}&\dots&M_{L}\end{bmatrix}[m,\ell],&\text{if }\ell\neq j\end{cases},

where the last case of the last expression uses Equation 3. On the other hand, the (,m)(\ell,m)-th element of the sum of the adjugate matrices in the formula is

k=1K(1)+mdet[M1Mj1MjkMj+1ML][m,]\displaystyle\sum_{k=1}^{K}(-1)^{\ell+m}\det\begin{bmatrix}M_{1}&\dots&M_{j-1}&M_{j}^{k}&M_{j+1}&\dots&M_{L}\end{bmatrix}[m,\ell]
=k=1K{(1)j+mdet[M1Mj1MjkMj+1ML][m,j],if =j(1)+mdet[M1Mj1MjkMj+1ML][m,],if j\displaystyle=\sum_{k=1}^{K}\begin{cases}(-1)^{j+m}\det\begin{bmatrix}\displaystyle M_{1}&\dots&M_{j-1}&M_{j}^{k}&M_{j+1}&\dots&M_{L}\end{bmatrix}[m,j],&\text{if }\ell=j\\ (-1)^{\ell+m}\det\begin{bmatrix}\displaystyle M_{1}&\dots&M_{j-1}&M_{j}^{k}&M_{j+1}&\dots&M_{L}\end{bmatrix}[m,\ell],&\text{if }\ell\neq j\end{cases}
={k=1K(1)j+mdet[M1Mj10Mj+1ML][m,j],if =jk=1K(1)+mdet[M1Mj1MjkMj+1ML][m,],if j.\displaystyle=\begin{cases}\sum_{k=1}^{K}(-1)^{j+m}\det\begin{bmatrix}\displaystyle M_{1}&\dots&M_{j-1}&0&M_{j+1}&\dots&M_{L}\end{bmatrix}[m,j],&\text{if }\ell=j\\ \sum_{k=1}^{K}(-1)^{\ell+m}\det\begin{bmatrix}\displaystyle M_{1}&\dots&M_{j-1}&M_{j}^{k}&M_{j+1}&\dots&M_{L}\end{bmatrix}[m,\ell],&\text{if }\ell\neq j\end{cases}.

This means that the (,m)(\ell,m)-th element of

k=1Kadj[M1Mj1MjkMj+1ML]adjM\sum_{k=1}^{K}\operatorname{adj}\begin{bmatrix}M_{1}&\dots&M_{j-1}&M_{j}^{k}&M_{j+1}&\dots&M_{L}\end{bmatrix}-\operatorname{adj}M

equals

{(K1)(1)j+mdet[M1Mj10Mj+1ML][m,j],if =j0,if j\displaystyle\begin{cases}(K-1)(-1)^{j+m}\det\begin{bmatrix}\displaystyle M_{1}&\dots&M_{j-1}&0&M_{j+1}&\dots&M_{L}\end{bmatrix}[m,j],&\text{if }\ell=j\\ 0,&\text{if }\ell\neq j\end{cases}
=(K1){(1)j+mdet[M1Mj10Mj+1ML][m,j],if =j(1)+mdet[M1Mj10Mj+1ML][m,],if j,\displaystyle=(K-1)\begin{cases}(-1)^{j+m}\det\begin{bmatrix}\displaystyle M_{1}&\dots&M_{j-1}&0&M_{j+1}&\dots&M_{L}\end{bmatrix}[m,j],&\text{if }\ell=j\\ (-1)^{\ell+m}\det\begin{bmatrix}\displaystyle M_{1}&\dots&M_{j-1}&0&M_{j+1}&\dots&M_{L}\end{bmatrix}[m,\ell],&\text{if }\ell\neq j\end{cases},

which is the (,m)(\ell,m)-the element of (K1)adj[M1Mj10Mj+1ML](K-1)\operatorname{adj}\begin{bmatrix}\displaystyle M_{1}&\dots&M_{j-1}&0&M_{j+1}&\dots&M_{L}\end{bmatrix}. ∎

Lemma 4.2.

Suppose that ML×LM\in\mathbb{C}^{L\times L} is a nonzero square matrix, and there are an integer KK with 0<K<L0<K<L, linearly independent column vectors U1,,UKLU_{1},\dots,U_{K}\in\mathbb{C}^{L} forming the matrix UU, linearly independent column vectors V1,,VKKV_{1},\dots,V_{K}\in\mathbb{C}^{K} forming the matrix VV, and column vectors T1,,TLKLT_{1},\dots,T_{L-K}\in\mathbb{C}^{L} forming the matrix TT such that M=[k=1KUkVkT1TLK]=[UVT]M=\begin{bmatrix}\sum_{k=1}^{K}U_{k}{V_{k}}^{\intercal}&T_{1}&\dots&T_{L-K}\end{bmatrix}=\begin{bmatrix}U{V}^{\intercal}&T\end{bmatrix}. Then

  1. (i)

    For all K<jLK<j\leq L, row jj of (adjM)U(\operatorname{adj}M)U is the zero vector, or equivalently, for all 1kK<jL1\leq k\leq K<j\leq L, the jj-th element of (adjM)Uk(\operatorname{adj}M)U_{k} is zero.

  2. (ii)

    If also rank of MM is L1L-1, then (adjM)U=0(\operatorname{adj}M)U=0, or equivalently, (adjM)Uk=0(\operatorname{adj}M)U_{k}=0 for all k[K]k\in[K].

Proof.

As the columns of the square matrix VV are linearly independent, the reduced row echelon form of VV is the identity matrix I=IKI=I_{K}, that is, there is an invertible matrix WK×KW\in\mathbb{C}^{K\times K} with WV=I{W}^{\intercal}V=I. This gives us

UVW=UI=U.U{V}^{\intercal}W=UI=U.
  1. (i)

    Write M[,j]M[\ell,j] to mean the matrix MM with row \ell and column jj removed using 3. Now for all 1kK<jL1\leq k\leq K<j\leq L,

    row j of (adjM)Mk\displaystyle\text{row $j$ of }(\operatorname{adj}M)M_{k} =(row j of adjM)Mk\displaystyle=(\text{row $j$ of }\operatorname{adj}M)M_{k}
    ==1L(1)j+det[M[1,j]M[L,j]]Mk\displaystyle=\sum_{\ell=1}^{L}(-1)^{j+\ell}\det\begin{bmatrix}M[1,j]&\dots&M[L,j]\end{bmatrix}M_{k}
    =det[M1MkMj1MkMj+1ML]\displaystyle=\det\begin{bmatrix}M_{1}&\dots&M_{k}&\dots&M_{j-1}&M_{k}&M_{j+1}&\dots&M_{L}\end{bmatrix}
    =0.\displaystyle=0.

    Since

    row j of (adjM)UV\displaystyle\text{row $j$ of }(\operatorname{adj}M)U{V}^{\intercal} =row j of (adjM)[M1MK]\displaystyle=\text{row $j$ of }(\operatorname{adj}M)\begin{bmatrix}M_{1}&\dots&M_{K}\end{bmatrix}
    =row j of [(adjM)M1(adjM)MK]\displaystyle=\text{row $j$ of }\begin{bmatrix}(\operatorname{adj}M)M_{1}&\dots&(\operatorname{adj}M)M_{K}\end{bmatrix}
    =0,\displaystyle=0,

    we get

    0=row j of (adjM)UVW=row j of (adjM)U.0=\text{row $j$ of }(\operatorname{adj}M)U{V}^{\intercal}W=\text{row $j$ of }(\operatorname{adj}M)U.

    Hence row jj of (adjM)U=0(\operatorname{adj}M)U=0.

  2. (ii)

    As rankM=L1\operatorname{rank}M=L-1, we get that rankadjM=1\operatorname{rank}\operatorname{adj}M=1, and there are xkerMx\in\ker M and ykerMy\in\ker{M}^{\intercal} such that adjM=xy\operatorname{adj}M=x{y}^{\intercal}.

    Since yM=0{y}^{\intercal}M=0, we get

    0\displaystyle 0 =xyMW\displaystyle=x{y}^{\intercal}MW
    =(adjM)[UVWTW]\displaystyle=(\operatorname{adj}M)\begin{bmatrix}U{V}^{\intercal}W&TW\end{bmatrix}
    =[(adjM)U(adjM)TW].\displaystyle=\begin{bmatrix}(\operatorname{adj}M)U&(\operatorname{adj}M)TW\end{bmatrix}.

    Hence (adjM)U=0(\operatorname{adj}M)U=0. ∎

4.3. Claims

Now we are ready to prove both our claims.

Proposition 4.3.

If BB and nn are as before, then degdetBn\deg\det B\leq n.

Proof.

Repetitive use of Equation 3 on all columns of BB gives us

detB=0k=0Nik2Ndet[B1{i1}BN{iN}]=IdetBI,\det B=\sum_{0\leq\sum_{k=0}^{N^{\prime}}i_{k}\leq 2N^{\prime}}\det\begin{bmatrix}B_{1}^{\{i_{1}\}}&\dots&B_{N^{\prime}}^{\{i_{N^{\prime}}\}}\end{bmatrix}=\sum_{I}\det B_{I},

where I:=(i1,,iN)I:=(i_{1},\dots,i_{N^{\prime}}) and BI:=[B1{i1}BN{iN}]B_{I}:=\begin{bmatrix}B_{1}^{\{i_{1}\}}&\dots&B_{N^{\prime}}^{\{i_{N^{\prime}}\}}\end{bmatrix}. This tells us that

degdetBIkik\deg\det B_{I}\leq\sum_{k}i_{k}

for all II and

degdetBmaxIdegdetBI.\deg\det B\leq\max_{I}\deg\det B_{I}.

Notice that each column of each matrix BIB_{I} is homogeneous. The idea is that if there are enough constant columns, the degree of the determinant is low enough, and if there are too many nonconstant columns, these must be linearly dependent.

Take any II, put M=BIM=B_{I}, write n1=#{kik1}n_{\geq 1}=\#\{\,k\mid i_{k}\geq 1\,\} for number of columns of MM with degree at least 11, and nj=#{kik=j}n_{j}=\#\{\,k\mid i_{k}=j\,\} for number of columns of MM with degree jj. This gives us kik=0n0+1n1+2n2=n1+n2\sum_{k}i_{k}=0\cdot n_{0}+1\cdot n_{1}+2\cdot n_{2}=n_{\geq 1}+n_{2}.

As columns of B{k}B^{\{k\}}s are linear combinations of n=n1n^{\prime}=n-1 columns EjE_{j}s for k1k\geq 1, so are M{k}M^{\{k\}}s.

Case 1

First assume that n1nn_{\geq 1}\geq n. Then there are at least nn columns MkM_{k} which are linear combinations of n1n-1 columns EjE_{j}s, so that detM=0\det M=0.

Case 2

Now assume that n22n_{2}\geq 2. Then there are at least two columns MkM_{k} which are multiples of ee, so that detM=0\det M=0.

Case 3

Finally assume that n1n1n_{\geq 1}\leq n-1 and n21n_{2}\leq 1. Then

degdetMn1+n2(n1)+1=n.\deg\det M\leq n_{\geq 1}+n_{2}\leq(n-1)+1=n.

Hence degdetBIn\deg\det B_{I}\leq n for all II and so degdetBn\deg\det B\leq n. ∎

Proposition 4.4.

If BB, AA, and nn are as before, then deg(adjB)An\deg(\operatorname{adj}B)A\leq n.

Proof.

Repetitive use of Lemma 4.1 on all columns of BB gives us

adjB=i1,,iNconstant adj[B1{i1}BN{iN}]=Iconstant adjBI,\operatorname{adj}B=\sum_{i_{1},\dots,i_{N^{\prime}}}\text{constant }\cdot\operatorname{adj}\begin{bmatrix}B_{1}^{\{i_{1}\}}&\dots&B_{N^{\prime}}^{\{i_{N^{\prime}}\}}\end{bmatrix}=\sum_{I}\text{constant }\cdot\operatorname{adj}B_{I},

where I:=(i1,,iN)I:=(i_{1},\dots,i_{N^{\prime}}), BI:=[B1{i1}BN{iN}],B_{I}:=\begin{bmatrix}B_{1}^{\{i_{1}\}}&\dots&B_{N^{\prime}}^{\{i_{N^{\prime}}\}}\end{bmatrix}, and we also allow iki_{k} to be -\infty to mean that Bk{}B_{k}^{\{-\infty\}} is the zero column vector from Lemma 4.1. This tells us that

degadjBImaxij0(kikij)=kikminij0ij\deg\operatorname{adj}B_{I}\leq\max_{i_{j}\geq 0}\Big{(}\sum_{k}i_{k}-i_{j}\Big{)}=\sum_{k}i_{k}-\min_{i_{j}\geq 0}i_{j}

for all II and

degadjBmaxIadjdetBI.\deg\operatorname{adj}B\leq\max_{I}\operatorname{adj}\det B_{I}.

Once again, each column of each matrix BIB_{I} is homogeneous. The idea is that if there are enough constant columns, the degree of the determinant is low enough, and if there are too many nonconstant columns, these must be linearly dependent. The proof is more technical than the previous one.

Take any II and put M=BIM=B_{I}. Using 3, the elements of adjM\operatorname{adj}M are given by

(adjM)kj=(1)k+jdetM[j,k],M[j,k]=[M1[j]Mk[j]^MN[j]].(\operatorname{adj}M)_{kj}=(-1)^{k+j}\det M[j,k],\quad M[j,k]=\begin{bmatrix}M_{1}[j]&\dots&\widehat{M_{k}[j]}&\dots&M_{N^{\prime}}[j]\end{bmatrix}.

Then

degdetM[j,k]0iik\deg\det M[j,k]\leq\sum_{\ell\geq 0}i_{\ell}-i_{k}

for all j,kj,k,

degadjBImaxj,kdegdetM[j,k]=maxkdeg row k of adjM,\deg\operatorname{adj}B_{I}\leq\max_{j,k}\deg\det M[j,k]=\max_{k}\deg\text{ row $k$ of }\operatorname{adj}M,

and

deg(adjBI)Amaxkdeg(row k of (adjM)A)\deg(\operatorname{adj}B_{I})A\leq\max_{k}\deg(\text{row $k$ of }(\operatorname{adj}M)A)

for all II.

Write n1=#{kik1}n_{\geq 1}=\#\{\,k\mid i_{k}\geq 1\,\} for number of columns of MM with degree at least 11, and for j0j\geq 0, nj=#{kik=j}n_{j}=\#\{\,k\mid i_{k}=j\,\} for number of columns of MM with degree jj. This gives us k0ik=0n0+1n1+2n2=n1+n2\sum_{k\geq 0}i_{k}=0\cdot n_{0}+1\cdot n_{1}+2\cdot n_{2}=n_{\geq 1}+n_{2}.

As columns of B{k}B^{\{k\}}s are linear combinations of n=n1n^{\prime}=n-1 columns EjE_{j}s for k1k\geq 1, so are M{k}M^{\{k\}}s. So columns of M{k}[]M^{\{k\}}[\ell]s are linear combinations of n1n-1 columns Ej[]E_{j}[\ell]s for k1k\geq 1.

Case 1

First assume that n1nn_{\geq 1}\geq n. Then there are at least nn columns MkM_{k} which are linear combinations of n1n-1 columns EjE_{j}s, so that nullity of MM is at least n(n1)=1n-(n-1)=1. Therefore, rankMN1\operatorname{rank}M\leq N^{\prime}-1. If rankM=N1\operatorname{rank}M=N^{\prime}-1, we get (adjM)Ek=0(\operatorname{adj}M)E_{k}=0 for all k[n]k\in[n^{\prime}] by Lemma 4.2 (ii), so that (adjM)A=0(\operatorname{adj}M)A=0. If rankMN2\operatorname{rank}M\leq N^{\prime}-2, we get adjM=0\operatorname{adj}M=0.

Case 2

Finally assume that n1n1n_{\geq 1}\leq n-1. Fix k[N]k\in[N^{\prime}]. For ik0i_{k}\leq 0, row kk of (adjM)Ej=0(\operatorname{adj}M)E_{j}=0 for all j[n]j\in[n^{\prime}] by Lemma 4.2 (i), so that row kk of (adjM)A=0(\operatorname{adj}M)A=0. Now let ik1i_{k}\geq 1. We consider two subcases.

If n2ik0n_{2}-i_{k}\leq 0, then

degdetM[j,k]0iik=n1+n2ik(n1)0=n1\deg\det M[j,k]\leq\sum_{\ell\geq 0}i_{\ell}-i_{k}=n_{\geq 1}+n_{2}-i_{k}\leq(n-1)-0=n-1

for all jj, so that

deg(row k of (adjM)A)(n1)+1=n.\deg(\text{row $k$ of }(\operatorname{adj}M)A)\leq(n-1)+1=n.

Otherwise n2ik1n_{2}-i_{k}\geq 1, so that for all jj, there are at least two columns of M[j,k]M[j,k] which are multiples of e[k]e[k], so that detM[j,k]=0\det M[j,k]=0 and row kk of (adjM)A=0(\operatorname{adj}M)A=0.

Hence deg(adjBI)An\deg(\operatorname{adj}B_{I})A\leq n for all II and so deg(adjB)An\deg(\operatorname{adj}B)A\leq n. ∎

This completes the proof of the main result Theorem 1.1.

References