This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Degree Differences in the Eta Correspondences

Shu-Yen Pan Department of Mathematics, National Tsing Hua University, Hsinchu 300, Taiwan [email protected]
Abstract.

A sub-relation of the Θ\Theta-correspondence called the η\eta-correspondence is defined by Gurevich-Howe for a finite reductive dual pair in stable range. In this paper we propose an extension of the correspondence to general finite reductive dual pairs. Then we determine the domain the correspondence and prove a formula on the difference of degrees in qq of two irreducible characters paired by the correspondence.

Key words and phrases:
rank, unipotent character, reductive dual pair
2010 Mathematics Subject Classification:
Primary: 20C33; Secondary: 22E50

1. Introduction

1.1.

Let (G,G)(\text{\bf G},\text{\bf G}^{\prime}) be a reductive dual pair over a finite field 𝐅q{\mathbf{F}}_{q} of qq elements where qq is a power of an odd prime. By restricting the character of the Weil representation to the dual pair, we obtain a decomposition

ωG,G=ρ(G),ρ(G)mρ,ρρρ\omega_{\text{\bf G},\text{\bf G}^{\prime}}=\sum_{\rho\in{\mathcal{E}}(G),\ \rho^{\prime}\in{\mathcal{E}}(G^{\prime})}m_{\rho,\rho^{\prime}}\rho\otimes\rho^{\prime}

where (G){\mathcal{E}}(G) denotes the set of irreducible character of the finite group GG of rational points of G. The subset

ΘG,G={(ρ,ρ)mρ,ρ0}(G)×(G)\Theta_{\text{\bf G},\text{\bf G}^{\prime}}=\{\,(\rho,\rho^{\prime})\mid m_{\rho,\rho^{\prime}}\neq 0\,\}\subset{\mathcal{E}}(G)\times{\mathcal{E}}(G^{\prime})

gives a relation between (G){\mathcal{E}}(G) and (G){\mathcal{E}}(G^{\prime}), and is called the Θ\Theta-correspondence for the dual pair (G,G)(\text{\bf G},\text{\bf G}^{\prime}). We say that ρ(G)\rho^{\prime}\in{\mathcal{E}}(G^{\prime}) occurs in the Θ\Theta-correspondence for (G,G)(\text{\bf G},\text{\bf G}^{\prime}) if the set

Θ(ρ)={ρ(G)mρ,ρ0}\Theta(\rho^{\prime})=\{\,\rho\in{\mathcal{E}}(G)\mid m_{\rho,\rho^{\prime}}\neq 0\,\}

is not empty.

For a non-negative integer kk, let Gk\text{\bf G}_{k} denote one of the following types of classical groups: a general linear group GLk{\rm GL}_{k}, a unitary group Uk{\rm U}_{k}, a symplectic group Spk{\rm Sp}_{k} (only when kk is even), or an orthogonal group Okϵ{\rm O}^{\epsilon}_{k} where ϵ=+\epsilon=+ or -. For ρ(G)\rho^{\prime}\in{\mathcal{E}}(G^{\prime}), the Θ\Theta-rank of ρ\rho^{\prime}, denoted by Θ-rk(ρ)\Theta\text{\rm-rk}(\rho^{\prime}), is defined to be the smallest number kk such that ρχ\rho^{\prime}\chi^{\prime} occurs in the Θ\Theta-correspondence for some dual pair (Gk,G)(\text{\bf G}_{k},\text{\bf G}^{\prime}) and for some linear character χ\chi^{\prime} of GG^{\prime} (cf. (3.11), (3.12) and (4.9)).

For a dual pair (Gk,Gn)(\text{\bf G}_{k},\text{\bf G}^{\prime}_{n}) is stable range, Gurevich and Howe prove in [GH17] and [GH20] that for ρ(Gk)\rho\in{\mathcal{E}}(G_{k}) there is a unique ρΘ(ρ)\rho^{\prime}\in\Theta(\rho) such that Θ-rk(ρ)=k\Theta\text{\rm-rk}(\rho^{\prime})=k. The character ρ\rho^{\prime} is denoted by η(ρ)\eta(\rho), and the mapping ρη(ρ)\rho\mapsto\eta(\rho) from (Gk)(Gn){\mathcal{E}}(G_{k})\rightarrow{\mathcal{E}}(G^{\prime}_{n}) is injective and is called the η\eta-correspondence for the dual pair (Gk,Gn)(\text{\bf G}_{k},\text{\bf G}^{\prime}_{n}) in stable range.

In [Pan20a] and [Pan20b], a one-to-one sub-correspondence θ¯\underline{\theta} of the Θ\Theta-correspondence between (Gk){\mathcal{E}}(G_{k}) and (Gn){\mathcal{E}}(G^{\prime}_{n}) for a general dual pair (Gk,Gn)(\text{\bf G}_{k},\text{\bf G}^{\prime}_{n}) is defined (cf. (3.6)), and it is shown that η=θ¯\eta=\underline{\theta} if dual pair (Gk,Gn)(\text{\bf G}_{k},\text{\bf G}^{\prime}_{n}) is in stable range. Therefore, for general dual pair (Gk,Gn)(\text{\bf G}_{k},\text{\bf G}^{\prime}_{n}) (i.e., not necessarily in stable range), it might be reasonable to define η(ρ)=θ¯(ρ)\eta(\rho)=\underline{\theta}(\rho) on those ρ(Gk)\rho\in{\mathcal{E}}(G_{k}) such that θ¯(ρ)\underline{\theta}(\rho) is defined and Θ-rk(ρ)=k\Theta\text{\rm-rk}(\rho)=k.

For a non-negative integer \ell, a condition on irreducible characters ρ(G)\rho\in{\mathcal{E}}(G) called \ell-admissible for a dual pair (G,G)(\text{\bf G},\text{\bf G}^{\prime}) is defined in Subsections 3.2, 4.2 and 5.1. Then we have our first main result which gives complete description of the domain of the “η\eta-correspondence” for a general dual pair:

Theorem 1.1.

Suppose that 0kn0\leq k\leq n.

  1. (i)

    If ρ(Gk)\rho\in{\mathcal{E}}(G_{k}) is (nk)(n-k)-admissible for the dual pair (Gk,Gn)(\text{\bf G}_{k},\text{\bf G}^{\prime}_{n}), then θ¯(ρ)\underline{\theta}(\rho) is defined and Θ-rk(θ¯(ρ))=k\Theta\text{\rm-rk}(\underline{\theta}(\rho))=k.

  2. (ii)

    If ρ(Gn)\rho^{\prime}\in{\mathcal{E}}(G^{\prime}_{n}) is of Θ\Theta-rank kk, then ρ=θ¯(ρ)χ\rho^{\prime}=\underline{\theta}(\rho)\chi^{\prime} for

    • some linear character χ\chi^{\prime} of GnG^{\prime}_{n}; and

    • some group Gk\text{\bf G}_{k} and an irreducible character ρ(Gk)\rho\in{\mathcal{E}}(G_{k}) which is (nk)(n-k)-admissible for the dual pair (Gk,Gn)(\text{\bf G}_{k},\text{\bf G}^{\prime}_{n}).

Remark 1.2.
  1. (1)

    A condition on an irreducible character ρ(GLn(q))\rho^{\prime}\in{\mathcal{E}}({\rm GL}_{n}(q)) of Θ\Theta-rank kk is given in [GH20] theorem 9.2.3.

  2. (2)

    A similar condition on an irreducible character ρ(Un(q))\rho^{\prime}\in{\mathcal{E}}({\rm U}_{n}(q)) of Θ\Theta-rank kk can be found in [GLT20] theorem 3.9.

1.2.

For ρ(Gk)\rho\in{\mathcal{E}}(G_{k}), it is known that ρ(1)\rho(1) is a polynomial in qq. Let degq(ρ)\deg_{q}(\rho) denote the degree of this polynomial. It turns out that we have a very elegant formula on the difference between degq(ρ)\deg_{q}(\rho) and degq(θ¯(ρ))\deg_{q}(\underline{\theta}(\rho)) when Θ-rk(θ¯(ρ))=k\Theta\text{\rm-rk}(\underline{\theta}(\rho))=k:

Theorem 1.3.

Consider a dual pair (Gk,Gn)(\text{\bf G}_{k},\text{\bf G}^{\prime}_{n}) where knk\leq n. If ρ(Gk)\rho\in{\mathcal{E}}(G_{k}) is (nk)(n-k)-admissible for (Gk,Gn)(\text{\bf G}_{k},\text{\bf G}^{\prime}_{n}), then

degq(θ¯(ρ))=degq(ρ)+{12k(nk+1),if (Gk,Gn)=(Okϵ,Spn);12k(nk1),if (Gk,Gn)=(Spk,Onϵ);k(nk),if (Gk,Gn)=(Uk,Un).\deg_{q}(\underline{\theta}(\rho))=\deg_{q}(\rho)+\begin{cases}\frac{1}{2}k(n-k+1),&\text{if\/ $(\text{\bf G}_{k},\text{\bf G}^{\prime}_{n})=({\rm O}^{\epsilon}_{k},{\rm Sp}_{n})$};\\ \frac{1}{2}k(n-k-1),&\text{if\/ $(\text{\bf G}_{k},\text{\bf G}^{\prime}_{n})=({\rm Sp}_{k},{\rm O}^{\epsilon}_{n})$};\\ k(n-k),&\text{if\/ $(\text{\bf G}_{k},\text{\bf G}^{\prime}_{n})=({\rm U}_{k},{\rm U}_{n})$}.\end{cases}
Remark 1.4.

If (Gk,Gn)=(Okϵ,Spn)(\text{\bf G}_{k},\text{\bf G}^{\prime}_{n})=({\rm O}_{k}^{\epsilon},{\rm Sp}_{n}) and the dual pair is in the stable range, then the η\eta-correspondence and the θ¯\underline{\theta}-correspondence coincide, and every ρ(Gk)\rho\in{\mathcal{E}}(G_{k}) is (nk)(n-k)-admissible (cf. Lemma 5.2 and Lemma 5.12). For this case, the above formula is already known in [GH17], (1.11) and theorem 4.1.1.

An application of the above theorem is to determine the maximum and minimum values of the set

{degq(ρ)ρ(Gn),Θ-rk(ρ)=k}\{\,\deg_{q}(\rho)\mid\rho\in{\mathcal{E}}(G_{n}),\ \Theta\text{\rm-rk}(\rho)=k\,\}

where Gn=Spn\text{\bf G}_{n}={\rm Sp}_{n}, Onϵ{\rm O}_{n}^{\epsilon} or Un{\rm U}_{n}, and knk\leq n. This problem will be investigated in another papers of the author. A lower bound and an upper bound of the above set can be found in [GLT19] and [GLT20].

1.3.

The contents of this article are as follows. In Section 2 we set up basic notations and express the formula of degq(ρ)\deg_{q}(\rho) for any unipotent characters in terms of Lusztig symbols. In Section 3, we investigate the Θ\Theta-correspondence and define \ell-admissibility on unipotent characters for a dual pair of a symplectic group and an even orthogonal group. Moreover, Theorem 1.1 and Theorem 1.3 are proved for this case. In Section 4, we prove our main results for the cases of Θ\Theta-correspondence of unipotent characters for a dual pair of two unitary groups. We prove Theorem 1.1 and Theorem 1.3 completely via the Lusztig correspondence in the final section.

2. Degrees in qq of Unipotent Characters

2.1. Basic notations

Let G be a classical group defined over 𝐅q{\mathbf{F}}_{q}, and let G=G(q)G=\text{\bf G}(q) denote the finite group of rational points.

For a polynomial ff in qq, let degq(f)\deg_{q}(f) denote the degree of the polynomial ff. Let |G|p|G|_{p^{\prime}} denote the part of the order |G||G| prime to pp. Now |G|p|G|_{p^{\prime}} is a polynomial in qq and it is well-known that

degq(|G|p)={14k(k+2),if G=Spk or Ok+1k even;14k2,if G=Okϵk even;12k(k+1),if G=Uk.\deg_{q}(|G|_{p^{\prime}})=\begin{cases}\tfrac{1}{4}k(k+2),&\text{if $\text{\bf G}={\rm Sp}_{k}$ or ${\rm O}_{k+1}$, $k$ even};\\ \tfrac{1}{4}k^{2},&\text{if $\text{\bf G}={\rm O}^{\epsilon}_{k}$, $k$ even};\\ \tfrac{1}{2}k(k+1),&\text{if $\text{\bf G}={\rm U}_{k}$}.\end{cases}

2.2. Symbols and unipotent characters

Let μ=[μ1,,μk]\mu=[\mu_{1},\ldots,\mu_{k}] and μ=[ν1,,νl]\mu=[\nu_{1},\ldots,\nu_{l}] be two partitions. We may assume that k=lk=l by adding some 0’s if necessary. Then we denote

(2.1) μν if ν1μ1ν2μ2νkμk.\mu\preccurlyeq\nu\quad\text{ if \ }\nu_{1}\geq\mu_{1}\geq\nu_{2}\geq\mu_{2}\geq\cdots\geq\nu_{k}\geq\mu_{k}.

An ordered pair [μν]\genfrac{[}{]}{0.0pt}{}{\mu}{\nu} of two partitions is called a bi-partition of nn if

|[μν]|:=|μ|+|ν|=n.\left|\genfrac{[}{]}{0.0pt}{}{\mu}{\nu}\right|:=|\mu|+|\nu|=n.

The set of bi-partitions of nn is denoted by 𝒫2(n){\mathcal{P}}_{2}(n). For a bi-partition [μν]\genfrac{[}{]}{0.0pt}{}{\mu}{\nu}, we define its transpose by [μν]t=[νμ]\genfrac{[}{]}{0.0pt}{}{\mu}{\nu}^{\rm t}=\genfrac{[}{]}{0.0pt}{}{\nu}{\mu}.

A β\beta-set is a finite subset A={a1,a2,,am}A=\{a_{1},a_{2},\ldots,a_{m}\} of non-negative integers written strictly decreasingly, i.e., a1>a2>>ama_{1}>a_{2}>\cdots>a_{m}. A symbol Λ=(AB)\Lambda=\binom{A}{B} is an ordered pair of two β\beta-sets. Let 𝒮{\mathcal{S}} denote the set of symbols (AB)\binom{A}{B} such that 0AB0\not\in A\cap B. For a symbol Λ=(a1,a2,,am1b1,b2,,bm2)\Lambda=\binom{a_{1},a_{2},\ldots,a_{m_{1}}}{b_{1},b_{2},\ldots,b_{m_{2}}}, we define its defect and rank by

(2.2) def(Λ)=m1m2,rk(Λ)=i=1m1ai+j=1m2bj(m1+m212)2.\displaystyle\begin{split}{\rm def}(\Lambda)&=m_{1}-m_{2},\\ {\rm rk}(\Lambda)&=\sum_{i=1}^{m_{1}}a_{i}+\sum_{j=1}^{m_{2}}b_{j}-\left\lfloor\left(\frac{m_{1}+m_{2}-1}{2}\right)^{2}\right\rfloor.\end{split}

We also define the transpose of a symbol by (AB)t=(BA)\binom{A}{B}^{\rm t}=\binom{B}{A}. There is a mapping Υ\Upsilon from the set of symbols to the set of bi-partitions:

(2.3) Υ:(a1,,am1b1,,bm2)[a1(m11),a2(m12),,am111,am1b1(m21),b2(m22),,bm211,bm2].\Upsilon\colon\binom{a_{1},\ldots,a_{m_{1}}}{b_{1},\ldots,b_{m_{2}}}\mapsto\genfrac{[}{]}{0.0pt}{}{a_{1}-(m_{1}-1),a_{2}-(m_{1}-2),\ldots,a_{m_{1}-1}-1,a_{m_{1}}}{b_{1}-(m_{2}-1),b_{2}-(m_{2}-2),\ldots,b_{m_{2}-1}-1,b_{m_{2}}}.

It is easy to check that

(2.4) |Υ(Λ)|={rk(Λ)14(def(Λ)1)(def(Λ)+1),if def(Λ) is odd;rk(Λ)14(def(Λ))2,if def(Λ) is even.|\Upsilon(\Lambda)|=\begin{cases}{\rm rk}(\Lambda)-\tfrac{1}{4}({\rm def}(\Lambda)-1)({\rm def}(\Lambda)+1),&\text{if ${\rm def}(\Lambda)$ is odd};\\ {\rm rk}(\Lambda)-\tfrac{1}{4}({\rm def}(\Lambda))^{2},&\text{if ${\rm def}(\Lambda)$ is even}.\end{cases}

For a non-negative even integer kk, we define a set of symbols associated to a symplectic group or an even orthogonal group:

(2.5) 𝒮Ok+={Λ𝒮rk(Λ)=k2,def(Λ)0(mod4)};𝒮Spk={Λ𝒮rk(Λ)=k2,def(Λ)1(mod4)};𝒮Ok={Λ𝒮rk(Λ)=k2,def(Λ)2(mod4)}.\displaystyle\begin{split}{\mathcal{S}}_{{\rm O}^{+}_{k}}&=\{\,\Lambda\in{\mathcal{S}}\mid{\rm rk}(\Lambda)=\tfrac{k}{2},\ {\rm def}(\Lambda)\equiv 0\pmod{4}\,\};\\ {\mathcal{S}}_{{\rm Sp}_{k}}&=\{\,\Lambda\in{\mathcal{S}}\mid{\rm rk}(\Lambda)=\tfrac{k}{2},\ {\rm def}(\Lambda)\equiv 1\pmod{4}\,\};\\ {\mathcal{S}}_{{\rm O}^{-}_{k}}&=\{\,\Lambda\in{\mathcal{S}}\mid{\rm rk}(\Lambda)=\tfrac{k}{2},\ {\rm def}(\Lambda)\equiv 2\pmod{4}\,\}.\end{split}

From [Lus77] it is known that there exists a bijection from 𝒮G{\mathcal{S}}_{\text{\bf G}} to the set (G)1{\mathcal{E}}(G)_{1} of unipotent characters of GG denoted by ΛρΛ\Lambda\mapsto\rho_{\Lambda}.

Remark 2.6.

The set 𝒮Spk{\mathcal{S}}_{{\rm Sp}_{k}} of symbols considered here is slightly different from the original one in [Lus77]. Please see [Pan21b] subsection 3.3 to see the equivalence of the two parametrizations.

Suppose all the entries a1,,am1,b1,,bm2a_{1},\ldots,a_{m_{1}},b_{1},\ldots,b_{m_{2}} in a symbol Λ=(a1,,am1b1,,bm2)\Lambda=\binom{a_{1},\ldots,a_{m_{1}}}{b_{1},\ldots,b_{m_{2}}} are z1,z2,,zmz_{1},z_{2},\ldots,z_{m} with z1z2zmz_{1}\geq z_{2}\geq\cdots\geq z_{m} where m=m1+m2m=m_{1}+m_{2}. The following lemma is [Pan20a] lemma 2.12:

Lemma 2.7.

Let Λ=(a1,,am1b1,,bm2)𝒮G\Lambda=\binom{a_{1},\ldots,a_{m_{1}}}{b_{1},\ldots,b_{m_{2}}}\in{\mathcal{S}}_{\text{\bf G}} where G=Spk\text{\bf G}={\rm Sp}_{k} or Okϵ{\rm O}^{\epsilon}_{k} and kk is even. Then degq(ρΛ)\deg_{q}(\rho_{\Lambda}) is equal to

i=1m(mi)zizi(zi+1)+{14k(k+2)124(m1)(m3)(2m1),if m is odd;14k2124m(m2)(2m5),if m is even.\sum_{i=1}^{m}(m-i)z_{i}-z_{i}(z_{i}+1)+\begin{cases}\frac{1}{4}k(k+2)-\frac{1}{24}(m-1)(m-3)(2m-1),&\text{if $m$ is odd};\\ \frac{1}{4}k^{2}-\frac{1}{24}m(m-2)(2m-5),&\text{if $m$ is even}.\end{cases}

2.3. Unipotent characters of a unitary group

For a symbol Λ=(a1,a2,,am1b1,b2,,bm2)𝒮\Lambda=\binom{a_{1},a_{2},\ldots,a_{m_{1}}}{b_{1},b_{2},\ldots,b_{m_{2}}}\in{\mathcal{S}}, we define

(2.8) rkU(Λ)=i=1m12ai+j=1m22bj+|m1m2|2(m1+m2)(m1+m22)2.{\rm rk}_{\rm U}(\Lambda)=\sum_{i=1}^{m_{1}}2a_{i}+\sum_{j=1}^{m_{2}}2b_{j}+\frac{|m_{1}-m_{2}|}{2}-\frac{(m_{1}+m_{2})(m_{1}+m_{2}-2)}{2}.

For a non-negative integer kk, we let 𝒮Uk{\mathcal{S}}_{{\rm U}_{k}} be the set of symbols Λ𝒮\Lambda\in{\mathcal{S}} such that

  • def(Λ){\rm def}(\Lambda) is either even and non-negative, or odd and negative;

  • rkU(Λ)=k{\rm rk}_{\rm U}(\Lambda)=k.

Again, there is a parametrization from 𝒮Uk{\mathcal{S}}_{{\rm U}_{k}} to (Uk(q))1{\mathcal{E}}({\rm U}_{k}(q))_{1} denoted by ΛρΛ\Lambda\mapsto\rho_{\Lambda} (cf[FS90] or [Pan20b]).

For a symbol Λ=(a1,a2,,am1b1,b2,,bm2)\Lambda=\binom{a_{1},a_{2},\ldots,a_{m_{1}}}{b_{1},b_{2},\ldots,b_{m_{2}}}, we define two β\beta-sets:

(2.9) X0=XΛ0={{2b1,2b2,,2bm2},if def(Λ) is even;{2a1,2a2,,2am1},if def(Λ) is odd,X1=XΛ1={{2a1+1,2a2+1,,2am1+1},if def(Λ) is even;{2b1+1,2b2+1,,2bm2+1},if def(Λ) is odd.\displaystyle\begin{split}X^{0}=X^{0}_{\Lambda}&=\begin{cases}\{2b_{1},2b_{2},\ldots,2b_{m_{2}}\},&\text{if ${\rm def}(\Lambda)$ is even};\\ \{2a_{1},2a_{2},\ldots,2a_{m_{1}}\},&\text{if ${\rm def}(\Lambda)$ is odd},\end{cases}\\ X^{1}=X^{1}_{\Lambda}&=\begin{cases}\{2a_{1}+1,2a_{2}+1,\ldots,2a_{m_{1}}+1\},&\text{if ${\rm def}(\Lambda)$ is even};\\ \{2b_{1}+1,2b_{2}+1,\ldots,2b_{m_{2}}+1\},&\text{if ${\rm def}(\Lambda)$ is odd}.\end{cases}\end{split}

For a β\beta-set AA or two β\beta-sets A,BA,B, we define the following polynomials in qq:

(2.10) Δ(A)=a,aA,a>a(qaqa),Θ(A)=aAh=1a(qh(1)h),Ξ(A,B)=aA,bB(qa+qb).\displaystyle\begin{split}\Delta(A)&=\prod_{a,a^{\prime}\in A,\ a>a^{\prime}}(q^{a}-q^{a^{\prime}}),\\ \Theta(A)&=\prod_{a\in A}\prod_{h=1}^{a}(q^{h}-(-1)^{h}),\\ \Xi(A,B)&=\prod_{a\in A,\ b\in B}(q^{a}+q^{b}).\end{split}

For Λ=(a1,a2,,am1b1,b2,,bm2)𝒮Uk\Lambda=\binom{a_{1},a_{2},\ldots,a_{m_{1}}}{b_{1},b_{2},\ldots,b_{m_{2}}}\in{\mathcal{S}}_{{\rm U}_{k}}, it is well known that (cf. for example, [Pan20b] proposition 2.15):

(2.11) ρΛ(1)=Δ(X0)Δ(X1)Ξ(X0,X1)|Uk(q)|pΘ(X0)Θ(X1)q(m1+m212)+(m1+m222)++(22)\rho_{\Lambda}(1)=\frac{\Delta(X^{0})\Delta(X^{1})\Xi(X^{0},X^{1})|{\rm U}_{k}(q)|_{p^{\prime}}}{\Theta(X^{0})\Theta(X^{1})q^{\binom{m_{1}+m_{2}-1}{2}+\binom{m_{1}+m_{2}-2}{2}+\cdots+\binom{2}{2}}}

where (ab)\binom{a}{b} denotes the binomial coefficients.

Lemma 2.12.

For Λ𝒮Uk\Lambda\in{\mathcal{S}}_{{\rm U}_{k}}, write XΛ=XΛ0XΛ1={z1,z2,,zm}X_{\Lambda}=X^{0}_{\Lambda}\cup X^{1}_{\Lambda}=\{z_{1},z_{2},\ldots,z_{m}\} such that z1>z2>>zmz_{1}>z_{2}>\cdots>z_{m} where m=m1+m2m=m_{1}+m_{2}. Then

degq(ρΛ)=i=1m(mi)zii=1mzi(zi+1)2+k(k+1)2m(m1)(m2)6.\deg_{q}(\rho_{\Lambda})=\sum_{i=1}^{m}(m-i)z_{i}-\sum_{i=1}^{m}\frac{z_{i}(z_{i}+1)}{2}+\frac{k(k+1)}{2}-\frac{m(m-1)(m-2)}{6}.
Proof.

Because now z1>z2>>zmz_{1}>z_{2}>\cdots>z_{m}, from (2.10) it is not difficult to see that

degq(Δ(X0)Δ(X1)Π(X0,X1))\displaystyle\deg_{q}(\Delta(X^{0})\Delta(X^{1})\Pi(X^{0},X^{1})) =(zi,zj)X×X,ijmax(zi,zj)=i=1m(mi)zi,\displaystyle=\sum_{(z_{i},z_{j})\in X\times X,\ i\neq j}\max(z_{i},z_{j})=\sum_{i=1}^{m}(m-i)z_{i},
degq(Θ(X0)Θ(X1))\displaystyle\deg_{q}(\Theta(X^{0})\Theta(X^{1})) =i=1mzi(zi+1)2.\displaystyle=\sum_{i=1}^{m}\frac{z_{i}(z_{i}+1)}{2}.

Moreover, we have

degq(|Uk(q)|p)\displaystyle\deg_{q}(|{\rm U}_{k}(q)|_{p^{\prime}}) =k(k+1)2,\displaystyle=\frac{k(k+1)}{2},
(m12)+(m22)++(22)\displaystyle\binom{m-1}{2}+\binom{m-2}{2}+\cdots+\binom{2}{2} =m(m1)(m2)6.\displaystyle=\frac{m(m-1)(m-2)}{6}.

Then the lemma follows from (2.11) directly. ∎

3. Unipotent Characters of Symplectic or Orthogonal Groups

3.1. Finite theta correspondence of unipotent characters

Let (G,G)(\text{\bf G},\text{\bf G}^{\prime}) be a reductive dual pair of a symplectic group and an even orthogonal group. For symbols Λ𝒮G\Lambda\in{\mathcal{S}}_{\text{\bf G}} and Λ𝒮G\Lambda^{\prime}\in{\mathcal{S}}_{\text{\bf G}^{\prime}}, we write Υ(Λ)=[μν]\Upsilon(\Lambda)=\genfrac{[}{]}{0.0pt}{}{\mu}{\nu} and Υ(Λ)=[μν]\Upsilon(\Lambda^{\prime})=\genfrac{[}{]}{0.0pt}{}{\mu^{\prime}}{\nu^{\prime}}. Now we define a relation on the set of symbols:

(3.1) Spk,On+={(Λ,Λ)𝒮Spk×𝒮On+νμ,νμ,def(Λ)=def(Λ)+1};Spk,On={(Λ,Λ)𝒮Spk×𝒮Onμν,μν,def(Λ)=def(Λ)1}\displaystyle\begin{split}{\mathcal{B}}_{{\rm Sp}_{k},{\rm O}^{+}_{n}}&=\{\,(\Lambda,\Lambda^{\prime})\in{\mathcal{S}}_{{\rm Sp}_{k}}\times{\mathcal{S}}_{{\rm O}^{+}_{n}}\mid\nu\preccurlyeq\mu^{\prime},\ \nu^{\prime}\preccurlyeq\mu,\ {\rm def}(\Lambda^{\prime})=-{\rm def}(\Lambda)+1\,\};\\ {\mathcal{B}}_{{\rm Sp}_{k},{\rm O}^{-}_{n}}&=\{\,(\Lambda,\Lambda^{\prime})\in{\mathcal{S}}_{{\rm Sp}_{k}}\times{\mathcal{S}}_{{\rm O}^{-}_{n}}\mid\mu\preccurlyeq\nu^{\prime},\ \mu^{\prime}\preccurlyeq\nu,\ {\rm def}(\Lambda^{\prime})=-{\rm def}(\Lambda)-1\,\}\end{split}

where both k,nk,n are even. It is known that the unipotent characters are preserved by the correspondence ΘG,G\Theta_{\text{\bf G},\text{\bf G}^{\prime}} (cf[AM93] theorem 3.5). The following result on the Θ\Theta-correspondence of unipotent characters is from [Pan19a] theorem 1.8:

Proposition 3.2.

Let (G,G)(\text{\bf G},\text{\bf G}^{\prime}) be a reductive dual pair of a symplectic group and an even orthogonal group. Then (ρΛ,ρΛ)ΘG,G(\rho_{\Lambda},\rho_{\Lambda})\in\Theta_{\text{\bf G},\text{\bf G}^{\prime}} if and only if (Λ,Λ)G,G(\Lambda,\Lambda^{\prime})\in{\mathcal{B}}_{\text{\bf G},\text{\bf G}^{\prime}}.

3.2. \ell-admissible symbols

Consider a dual pair (G,G)=(Spk,Onϵ)(\text{\bf G},\text{\bf G}^{\prime})=({\rm Sp}_{k},{\rm O}^{\epsilon}_{n}) or (Okϵ,Spn)({\rm O}^{\epsilon}_{k},{\rm Sp}_{n}) where both n,kn,k are even and knk\leq n. Let Λ𝒮G\Lambda\in{\mathcal{S}}_{\text{\bf G}}, and write

(3.3) Λ=(a1,a2,,am1b1,b2,,bm2),Υ(Λ)=[μ1,μ2,,μm1ν1,ν2,,νm2].\Lambda=\binom{a_{1},a_{2},\ldots,a_{m_{1}}}{b_{1},b_{2},\ldots,b_{m_{2}}},\qquad\Upsilon(\Lambda)=\genfrac{[}{]}{0.0pt}{}{\mu_{1},\mu_{2},\ldots,\mu_{m_{1}}}{\nu_{1},\nu_{2},\ldots,\nu_{m_{2}}}.

Then from (2.5) we can write

(3.4) def(Λ)={4d,if G=Ok+;4d+1,if G=Spk;4d+2,if G=Ok{\rm def}(\Lambda)=\begin{cases}4d,&\text{if $\text{\bf G}={\rm O}^{+}_{k}$};\\ 4d+1,&\text{if $\text{\bf G}={\rm Sp}_{k}$};\\ 4d+2,&\text{if $\text{\bf G}={\rm O}^{-}_{k}$}\end{cases}

for some dd\in{\mathbb{Z}}, and we define an integer

(3.5) τ={nk2+2d,if (G,G)=(Ok+,Spn) or (Spk,On+);nk2(2d+1),if (G,G)=(Ok,Spn) or (Spk,On).\tau=\begin{cases}\tfrac{n-k}{2}+2d,&\text{if $(\text{\bf G},\text{\bf G}^{\prime})=({\rm O}^{+}_{k},{\rm Sp}_{n})$ or $({\rm Sp}_{k},{\rm O}^{+}_{n})$};\\ \tfrac{n-k}{2}-(2d+1),&\text{if $(\text{\bf G},\text{\bf G}^{\prime})=({\rm O}^{-}_{k},{\rm Sp}_{n})$ or $({\rm Sp}_{k},{\rm O}^{-}_{n})$}.\end{cases}

Note that the number τ\tau depends on k,nk,n and def(Λ){\rm def}(\Lambda). If τ0\tau\geq 0, as in [Pan20a], θ¯(Λ)\underline{\theta}(\Lambda) is defined to be the symbol in 𝒮G{\mathcal{S}}_{\text{\bf G}^{\prime}} such that

(3.6) Υ(θ¯(Λ))={[ν1,ν2,,νm2μ1,μ2,,μm1][τ],if ϵ=+;[ν1,ν2,,νm2μ1,μ2,,μm1][τ],if ϵ=.\Upsilon(\underline{\theta}(\Lambda))=\begin{cases}\genfrac{[}{]}{0.0pt}{}{\nu_{1},\nu_{2},\ldots,\nu_{m_{2}}}{\mu_{1},\mu_{2},\ldots,\mu_{m_{1}}}\cup\genfrac{[}{]}{0.0pt}{}{\tau}{-},&\text{if $\epsilon=+$};\\ \genfrac{[}{]}{0.0pt}{}{\nu_{1},\nu_{2},\ldots,\nu_{m_{2}}}{\mu_{1},\mu_{2},\ldots,\mu_{m_{1}}}\cup\genfrac{[}{]}{0.0pt}{}{-}{\tau},&\text{if $\epsilon=-$}.\end{cases}

Moreover, if τν1\tau\geq\nu_{1} when ϵ=+\epsilon=+; or τμ1\tau\geq\mu_{1} when ϵ=\epsilon=-, we have

θ¯(Λ)={(τ+m2,b1,b2,,bm2a1,a2,,am1),if ϵ=+;(b1,b2,,bm2τ+m1,a1,a2,,am1),if ϵ=.\underline{\theta}(\Lambda)=\begin{cases}\binom{\tau+m_{2},b_{1},b_{2},\ldots,b_{m_{2}}}{a_{1},a_{2},\ldots,a_{m_{1}}},&\text{if $\epsilon=+$};\\ \binom{b_{1},b_{2},\ldots,b_{m_{2}}}{\tau+m_{1},a_{1},a_{2},\ldots,a_{m_{1}}},&\text{if $\epsilon=-$}.\end{cases}

Let Λ𝒮G\Lambda\in{\mathcal{S}}_{\text{\bf G}} with Υ(Λ)\Upsilon(\Lambda) given as in (3.3) and def(Λ){\rm def}(\Lambda) given as in (3.4), and let \ell be a non-negative even integer. Then Λ\Lambda is called \ell-admissible for the dual pair (G,G)(\text{\bf G},\text{\bf G}^{\prime}) if the following condition holds:

(3.7) {μ122d and ν12+2d,if (G,G)=(Sp,Oeven+);μ122d1 and ν12+2d+1,if (G,G)=(Sp,Oeven);μ122d+1 and ν12+2d,if (G,G)=(Oeven+,Sp);μ122d1 and ν12+2d+2,if (G,G)=(Oeven,Sp).\begin{cases}\mu_{1}\leq\frac{\ell}{2}-2d\text{ and }\nu_{1}\leq\frac{\ell}{2}+2d,&\text{if $(\text{\bf G},\text{\bf G}^{\prime})=({\rm Sp},{\rm O}^{+}_{\rm even})$};\\ \mu_{1}\leq\frac{\ell}{2}-2d-1\text{ and }\nu_{1}\leq\frac{\ell}{2}+2d+1,&\text{if $(\text{\bf G},\text{\bf G}^{\prime})=({\rm Sp},{\rm O}^{-}_{\rm even})$};\\ \mu_{1}\leq\frac{\ell}{2}-2d+1\text{ and }\nu_{1}\leq\frac{\ell}{2}+2d,&\text{if $(\text{\bf G},\text{\bf G}^{\prime})=({\rm O}^{+}_{\rm even},{\rm Sp})$};\\ \mu_{1}\leq\frac{\ell}{2}-2d-1\text{ and }\nu_{1}\leq\frac{\ell}{2}+2d+2,&\text{if $(\text{\bf G},\text{\bf G}^{\prime})=({\rm O}^{-}_{\rm even},{\rm Sp})$}.\end{cases}

A unipotent character ρΛ(G)1\rho_{\Lambda}\in{\mathcal{E}}(G)_{1} is called \ell-admissible if Λ\Lambda is \ell-admissible. It is obvious that if Λ\Lambda is \ell-admissible, then it is also \ell^{\prime}-admissible for any even \ell^{\prime}\geq\ell.

Example 3.8.

In this example we consider 0-admissible symbols Λ𝒮G\Lambda\in{\mathcal{S}}_{\text{\bf G}} for a dual pair (G,G)(\text{\bf G},\text{\bf G}^{\prime}). Write Λ=(a1,a2,,am1b1,b2,,bm2)\Lambda=\binom{a_{1},a_{2},\ldots,a_{m_{1}}}{b_{1},b_{2},\ldots,b_{m_{2}}} and Υ(Λ)=[μ1,μ2,,μm1ν1,ν2,,νm2]\Upsilon(\Lambda)=\genfrac{[}{]}{0.0pt}{}{\mu_{1},\mu_{2},\ldots,\mu_{m_{1}}}{\nu_{1},\nu_{2},\ldots,\nu_{m_{2}}}.

  1. (1)

    From (3.7), a symbol Λ𝒮Spk\Lambda\in{\mathcal{S}}_{{\rm Sp}_{k}} of defect 4d+14d+1 is 0-admissible for (Spk,On+)({\rm Sp}_{k},{\rm O}^{+}_{n}) if and only if μ12d\mu_{1}\leq-2d and ν12d\nu_{1}\leq 2d. Because μ1,ν1\mu_{1},\nu_{1} are non-negative, we must have d=0d=0 and hence μ1=ν1=0\mu_{1}=\nu_{1}=0. Therefore, Υ(Λ)=[00]\Upsilon(\Lambda)=\genfrac{[}{]}{0.0pt}{}{0}{0}, and then k=0k=0.

  2. (2)

    A symbol Λ𝒮Spk\Lambda\in{\mathcal{S}}_{{\rm Sp}_{k}} of defect 4d+14d+1 is 0-admissible for (Spk,On)({\rm Sp}_{k},{\rm O}^{-}_{n}) if and only if μ12d1\mu_{1}\leq-2d-1 and ν12d+1\nu_{1}\leq 2d+1. There is no integer dd such that both 2d1-2d-1 and 2d+12d+1 are non-negative.

  3. (3)

    A symbol Λ𝒮Ok+\Lambda\in{\mathcal{S}}_{{\rm O}^{+}_{k}} of defect 4d4d is 0-admissible for (Ok+,Spn)({\rm O}^{+}_{k},{\rm Sp}_{n}) if and only if μ12d+1\mu_{1}\leq-2d+1 and ν12d\nu_{1}\leq 2d. The only possibility is d=0d=0 and hence μ11\mu_{1}\leq 1 and ν10\nu_{1}\leq 0, i.e.,

    Υ(Λ)=[1,1,,10,0,,0]𝒫2(k),Λ=(k,k1,,1k1,k2,,0).\Upsilon(\Lambda)=\genfrac{[}{]}{0.0pt}{}{1,1,\ldots,1}{0,0,\ldots,0}\in{\mathcal{P}}_{2}(k),\qquad\Lambda=\binom{k,k-1,\ldots,1}{k-1,k-2,\ldots,0}.
  4. (4)

    A symbol Λ𝒮Ok\Lambda\in{\mathcal{S}}_{{\rm O}^{-}_{k}} of defect 4d+24d+2 is 0-admissible for (Ok,Spn)({\rm O}^{-}_{k},{\rm Sp}_{n}) if and only if μ12d1\mu_{1}\leq-2d-1 and ν12d+2\nu_{1}\leq 2d+2. The only possibility is d=1d=-1 and hence μ11\mu_{1}\leq 1 and ν10\nu_{1}\leq 0, i.e.,

    Υ(Λ)=[1,1,,10,0,,0]𝒫2(k1),Λ=(k1,k2,,1k,k1,,0).\Upsilon(\Lambda)=\genfrac{[}{]}{0.0pt}{}{1,1,\ldots,1}{0,0,\ldots,0}\in{\mathcal{P}}_{2}(k-1),\qquad\Lambda=\binom{k-1,k-2,\ldots,1}{k,k-1,\ldots,0}.
Lemma 3.9.

Consider the dual pair (G,G)=(Spk,Onϵ)(\text{\bf G},\text{\bf G}^{\prime})=({\rm Sp}_{k},{\rm O}^{\epsilon}_{n}) or (Okϵ,Spn)({\rm O}^{\epsilon}_{k},{\rm Sp}_{n}) where both n,kn,k are even and knk\leq n. Then every unipotent character ρΛ(G)1\rho_{\Lambda}\in{\mathcal{E}}(G)_{1} is kk-admissible. Consequently, if (G,G)(\text{\bf G},\text{\bf G}^{\prime}) is in stable range, then every unipotent character ρΛ(G)1\rho_{\Lambda}\in{\mathcal{E}}(G)_{1} is (nk)(n-k)-admissible.

Proof.

Let Λ𝒮G\Lambda\in{\mathcal{S}}_{\text{\bf G}}, and write Λ=(a1,a2,,am1b1,b2,,bm2)\Lambda=\binom{a_{1},a_{2},\ldots,a_{m_{1}}}{b_{1},b_{2},\ldots,b_{m_{2}}} and Υ(Λ)=[μ1,μ2,,μm1ν1,ν2,,νm2]\Upsilon(\Lambda)=\genfrac{[}{]}{0.0pt}{}{\mu_{1},\mu_{2},\ldots,\mu_{m_{1}}}{\nu_{1},\nu_{2},\ldots,\nu_{m_{2}}}.

  1. (1)

    Suppose that (G,G)=(Spk,On+)(\text{\bf G},\text{\bf G}^{\prime})=({\rm Sp}_{k},{\rm O}^{+}_{n}), and then def(Λ)=4d+1{\rm def}(\Lambda)=4d+1 for some dd\in{\mathbb{Z}}. Then we have

    μ1\displaystyle\mu_{1} |Υ(Λ)|=k22d(2d+1)=k22d4d2k22d,\displaystyle\leq|\Upsilon(\Lambda)|=\frac{k}{2}-2d(2d+1)=\frac{k}{2}-2d-4d^{2}\leq\frac{k}{2}-2d,
    ν1\displaystyle\nu_{1} |Υ(Λ)|=k22d(2d+1)=k2+2d(2d+1)2k2+2d.\displaystyle\leq|\Upsilon(\Lambda)|=\frac{k}{2}-2d(2d+1)=\frac{k}{2}+2d-(2d+1)^{2}\leq\frac{k}{2}+2d.
  2. (2)

    Suppose that (G,G)=(Spk,On)(\text{\bf G},\text{\bf G}^{\prime})=({\rm Sp}_{k},{\rm O}^{-}_{n}), and then def(Λ)=4d+1{\rm def}(\Lambda)=4d+1 for some dd\in{\mathbb{Z}}. Then we have

    μ1\displaystyle\mu_{1} |Υ(Λ)|=k22d(2d+1)k22d1,\displaystyle\leq|\Upsilon(\Lambda)|=\frac{k}{2}-2d(2d+1)\leq\frac{k}{2}-2d-1,
    ν1\displaystyle\nu_{1} |Υ(Λ)|=k22d(2d+1)k2+2d+1.\displaystyle\leq|\Upsilon(\Lambda)|=\frac{k}{2}-2d(2d+1)\leq\frac{k}{2}+2d+1.
  3. (3)

    Suppose that (G,G)=(Ok+,Spn)(\text{\bf G},\text{\bf G}^{\prime})=({\rm O}^{+}_{k},{\rm Sp}_{n}), and then def(Λ)=4d{\rm def}(\Lambda)=4d for some dd\in{\mathbb{Z}}. Then we have

    μ1\displaystyle\mu_{1} |Υ(Λ)|=k24d2k22d+1,\displaystyle\leq|\Upsilon(\Lambda)|=\frac{k}{2}-4d^{2}\leq\frac{k}{2}-2d+1,
    ν1\displaystyle\nu_{1} |Υ(Λ)|=k24d2k2+2d.\displaystyle\leq|\Upsilon(\Lambda)|=\frac{k}{2}-4d^{2}\leq\frac{k}{2}+2d.
  4. (4)

    Suppose that (G,G)=(Ok,Spn)(\text{\bf G},\text{\bf G}^{\prime})=({\rm O}^{-}_{k},{\rm Sp}_{n}), and then def(Λ)=4d+2{\rm def}(\Lambda)=4d+2 for some dd\in{\mathbb{Z}}. Then we have

    μ1\displaystyle\mu_{1} |Υ(Λ)|=k2(2d+1)2k22d1,\displaystyle\leq|\Upsilon(\Lambda)|=\frac{k}{2}-(2d+1)^{2}\leq\frac{k}{2}-2d-1,
    ν1\displaystyle\nu_{1} |Υ(Λ)|=k2(2d+1)2k2+2d+2.\displaystyle\leq|\Upsilon(\Lambda)|=\frac{k}{2}-(2d+1)^{2}\leq\frac{k}{2}+2d+2.

For all cases, we see that Λ\Lambda is kk-admissible.

Now if (G,G)(\text{\bf G},\text{\bf G}^{\prime}) is in stable range, then we have knkk\leq n-k. Therefore, Λ\Lambda is also (nk)(n-k)-admissible. ∎

The following lemma means that if Λ𝒮G\Lambda\in{\mathcal{S}}_{\text{\bf G}} is (nk)(n-k)-admissible, then θ¯(Λ)\underline{\theta}(\Lambda) (cf. (3.5)) is defined for the pair (G,G)=(Spk,Onϵ)(\text{\bf G},\text{\bf G}^{\prime})=({\rm Sp}_{k},{\rm O}^{\epsilon}_{n}) or (Okϵ,Spn)({\rm O}^{\epsilon}_{k},{\rm Sp}_{n}).

Lemma 3.10.

Consider the dual pair (G,G)=(Spk,Onϵ)(\text{\bf G},\text{\bf G}^{\prime})=({\rm Sp}_{k},{\rm O}^{\epsilon}_{n}) or (Okϵ,Spn)({\rm O}^{\epsilon}_{k},{\rm Sp}_{n}) where both n,kn,k are even and knk\leq n. If Λ\Lambda is (nk)(n-k)-admissible, then τ0\tau\geq 0.

Proof.

First, suppose that either

  • (G,G)=(Spk,On+)(\text{\bf G},\text{\bf G}^{\prime})=({\rm Sp}_{k},{\rm O}^{+}_{n}) and def(Λ)=4d+1{\rm def}(\Lambda)=4d+1, or

  • (G,G)=(Ok+,Spn)(\text{\bf G},\text{\bf G}^{\prime})=({\rm O}^{+}_{k},{\rm Sp}_{n}) and def(Λ)=4d{\rm def}(\Lambda)=4d

for some dd\in{\mathbb{Z}}. If Λ\Lambda is (nk)(n-k)-admissible, then by (3.5) and (3.7) we have τ=12(nk)+2dν10\tau=\frac{1}{2}(n-k)+2d\geq\nu_{1}\geq 0. Next, suppose that either

  • (G,G)=(Spk,On)(\text{\bf G},\text{\bf G}^{\prime})=({\rm Sp}_{k},{\rm O}^{-}_{n}) and def(Λ)=4d+1{\rm def}(\Lambda)=4d+1, or

  • (G,G)=(Ok,Spn)(\text{\bf G},\text{\bf G}^{\prime})=({\rm O}^{-}_{k},{\rm Sp}_{n}) and def(Λ)=4d+2{\rm def}(\Lambda)=4d+2

for some dd\in{\mathbb{Z}}. If Λ\Lambda is (nk)(n-k)-admissible, then we have τ=12(nk)2d1μ10\tau=\frac{1}{2}(n-k)-2d-1\geq\mu_{1}\geq 0. ∎

Now we recall the definition of Θ\Theta-rank of ρ(G)\rho^{\prime}\in{\mathcal{E}}(G^{\prime}), denoted by Θ-rk(ρ)\Theta\text{\rm-rk}(\rho^{\prime}), from [Pan21a] subsection 3.1:

  • If G\text{\bf G}^{\prime} is a symplectic group, we consider dual pairs (Okϵ,G)({\rm O}^{\epsilon}_{k},\text{\bf G}^{\prime}) and define

    (3.11) Θ-rk(ρ)=min{kρΘ(ρ) for some ρ(Okϵ(q)),ϵ=+ or }.\Theta\text{\rm-rk}(\rho^{\prime})=\min\{\,k\mid\rho^{\prime}\in\Theta(\rho)\text{ for some }\rho\in{\mathcal{E}}({\rm O}^{\epsilon}_{k}(q)),\ \epsilon=+\text{ or }-\,\}.
  • If G\text{\bf G}^{\prime} is an orthogonal group, we consider dual pairs (Spk,G)({\rm Sp}_{k},\text{\bf G}^{\prime}) and define

    (3.12) Θ-rk(ρ)=min{kρχΘ(ρ) for some ρ(Spk(q)) and some linear character χ(G)}.\Theta\text{\rm-rk}(\rho^{\prime})=\min\{\,k\mid\rho^{\prime}\chi^{\prime}\in\Theta(\rho)\text{ for some }\rho\in{\mathcal{E}}({\rm Sp}_{k}(q))\\ \text{ and some linear character }\chi^{\prime}\in{\mathcal{E}}(G^{\prime})\,\}.

    Note that an orthogonal group GG^{\prime} has at most four linear characters: 𝟏{\bf 1}, sgn{\rm sgn}, χG\chi_{\text{\bf G}^{\prime}} and χGsgn\chi_{\text{\bf G}^{\prime}}{\rm sgn} where χG\chi_{\text{\bf G}^{\prime}} denotes the linear character of order two given by the spinor norm.

Lemma 3.13.

Consider the dual pair (G,G)=(Spk,Onϵ)(\text{\bf G},\text{\bf G}^{\prime})=({\rm Sp}_{k},{\rm O}^{\epsilon}_{n}) or (Okϵ,Spn)({\rm O}^{\epsilon}_{k},{\rm Sp}_{n}) where both n,kn,k are even and knk\leq n. If Λ𝒮G\Lambda\in{\mathcal{S}}_{\text{\bf G}} is (nk)(n-k)-admissible, then θ¯(ρΛ)\underline{\theta}(\rho_{\Lambda}) is of Θ\Theta-rank kk.

Proof.

Write Λ\Lambda and Υ(Λ)\Upsilon(\Lambda) as in (3.3). Suppose that Λ𝒮G\Lambda\in{\mathcal{S}}_{\text{\bf G}} is (nk)(n-k)-admissible. Then τ0\tau\geq 0 by Lemma 3.10, and so the unipotent character θ¯(ρΛ)\underline{\theta}(\rho_{\Lambda}) is defined.

  1. (1)

    Suppose that (G,G)=(Spk,On+)(\text{\bf G},\text{\bf G}^{\prime})=({\rm Sp}_{k},{\rm O}^{+}_{n}) and then def(Λ)=4d+1{\rm def}(\Lambda)=4d+1 for some dd\in{\mathbb{Z}}. Now the condition ν112(nk)+2d\nu_{1}\leq\frac{1}{2}(n-k)+2d means that ν1τ\nu_{1}\leq\tau and then

    Υ(θ¯(Λ))=[τ,ν1,ν2,,νm2μ1,μ2,,μm1].\Upsilon(\underline{\theta}(\Lambda))=\genfrac{[}{]}{0.0pt}{}{\tau,\nu_{1},\nu_{2},\ldots,\nu_{m_{2}}}{\mu_{1},\mu_{2},\ldots,\mu_{m_{1}}}.

    By the result in [Pan19b] section 8, we see that the unipotent character θ¯(ρΛ)(On+(q))\underline{\theta}(\rho_{\Lambda})\in{\mathcal{E}}({\rm O}^{+}_{n}(q)) does not occur in the Θ\Theta-correspondence for the dual pair (Spk,On+)({\rm Sp}_{k^{\prime}},{\rm O}^{+}_{n}) for any k<kk^{\prime}<k. The condition μ1nk22d\mu_{1}\leq\frac{n-k}{2}-2d means that μ1+(m11)τ+m2\mu_{1}+(m_{1}-1)\leq\tau+m_{2} from (3.5) and (3.6), i.e., a1τ+m2a_{1}\leq\tau+m_{2}. This implies that the unipotent character θ¯(ρΛ)sgn(On+(q))\underline{\theta}(\rho_{\Lambda}){\rm sgn}\in{\mathcal{E}}({\rm O}^{+}_{n}(q)) does not occur in the Θ\Theta-correspondence for the dual pair (Spk′′,On+)({\rm Sp}_{k^{\prime\prime}},{\rm O}^{+}_{n}) for any k′′<kk^{\prime\prime}<k. Moreover, by [Pan21a] Lemma 2.16, we see that both θ¯(ρΛ)χOn+,θ¯(ρΛ)χOn+sgn\underline{\theta}(\rho_{\Lambda})\chi_{{\rm O}^{+}_{n}},\underline{\theta}(\rho_{\Lambda})\chi_{{\rm O}^{+}_{n}}{\rm sgn} do not occur in the Θ\Theta-correspondence for dual pair (Spk′′′,On+)({\rm Sp}_{k^{\prime\prime\prime}},{\rm O}^{+}_{n}) for any k′′′<kk^{\prime\prime\prime}<k.

  2. (2)

    Suppose that (G,G)=(Spk,On)(\text{\bf G},\text{\bf G}^{\prime})=({\rm Sp}_{k},{\rm O}^{-}_{n}) and then def(Λ)=4d+1{\rm def}(\Lambda)=4d+1 for some dd\in{\mathbb{Z}}. Then the condition μ1nk22d1\mu_{1}\leq\frac{n-k}{2}-2d-1 means that μ1τ\mu_{1}\leq\tau and then

    Υ(θ¯(Λ))=[ν1,ν2,,νm2τ,μ1,μ2,,μm1].\Upsilon(\underline{\theta}(\Lambda))=\genfrac{[}{]}{0.0pt}{}{\nu_{1},\nu_{2},\ldots,\nu_{m_{2}}}{\tau,\mu_{1},\mu_{2},\ldots,\mu_{m_{1}}}.

    Hence θ¯(ρΛ)(On(q))\underline{\theta}(\rho_{\Lambda})\in{\mathcal{E}}({\rm O}^{-}_{n}(q)) does not occur in the Θ\Theta-correspondence for the dual pair (Spk,On)({\rm Sp}_{k^{\prime}},{\rm O}^{-}_{n}) for any k<kk^{\prime}<k. The condition ν1nk2+2d+1\nu_{1}\leq\frac{n-k}{2}+2d+1 means that b1τ+m1b_{1}\leq\tau+m_{1}. This implies that the unipotent character θ¯(ρΛ)sgn(On(q))\underline{\theta}(\rho_{\Lambda}){\rm sgn}\in{\mathcal{E}}({\rm O}^{-}_{n}(q)) does not occur in the Θ\Theta-correspondence for the dual pair (Spk′′,On)({\rm Sp}_{k^{\prime\prime}},{\rm O}^{-}_{n}) for any k′′<kk^{\prime\prime}<k. As in (1), we know that both θ¯(ρΛ)χOn,θ¯(ρΛ)χOnsgn\underline{\theta}(\rho_{\Lambda})\chi_{{\rm O}^{-}_{n}},\underline{\theta}(\rho_{\Lambda})\chi_{{\rm O}^{-}_{n}}{\rm sgn} do not occur in the Θ\Theta-correspondence for dual pair (Spk′′′,On)({\rm Sp}_{k^{\prime\prime\prime}},{\rm O}^{-}_{n}) for any k′′′<kk^{\prime\prime\prime}<k.

  3. (3)

    Suppose that (G,G)=(Ok+,Spn)(\text{\bf G},\text{\bf G}^{\prime})=({\rm O}^{+}_{k},{\rm Sp}_{n}) and then def(Λ)=4d{\rm def}(\Lambda)=4d for some dd\in{\mathbb{Z}}. Then the conditions ν1nk2+2d\nu_{1}\leq\frac{n-k}{2}+2d means that ν1τ\nu_{1}\leq\tau. Then the unipotent character θ¯(ρΛ)(Spn(q))\underline{\theta}(\rho_{\Lambda})\in{\mathcal{E}}({\rm Sp}_{n}(q)) does not occur in the Θ\Theta-correspondence for the dual pair (Ok+,Spn)({\rm O}^{+}_{k^{\prime}},{\rm Sp}_{n}) for any even k<kk^{\prime}<k. The condition μ1nk22d+1\mu_{1}\leq\frac{n-k}{2}-2d+1 means that a1τ+m2a_{1}\leq\tau+m_{2}. This implies that the unipotent character θ¯(ρΛ)(Spn(q))\underline{\theta}(\rho_{\Lambda})\in{\mathcal{E}}({\rm Sp}_{n}(q)) does not occur in the Θ\Theta-correspondence for the dual pair (Ok′′,Spn)({\rm O}^{-}_{k^{\prime\prime}},{\rm Sp}_{n}) for any even k′′<kk^{\prime\prime}<k. From [Pan21a] lemma 2.13, we know that any unipotent character of Spn(q){\rm Sp}_{n}(q) does not occur in the Θ\Theta-correspondence for the dual pair (Ok′′′,Spn)({\rm O}_{k^{\prime\prime\prime}},{\rm Sp}_{n}) for any odd k′′′<nk^{\prime\prime\prime}<n.

  4. (4)

    Suppose that (G,G)=(Ok,Spn)(\text{\bf G},\text{\bf G}^{\prime})=({\rm O}^{-}_{k},{\rm Sp}_{n}) and then def(Λ)=4d+2{\rm def}(\Lambda)=4d+2 for some dd\in{\mathbb{Z}}. Then condition μ1nk22d1\mu_{1}\leq\frac{n-k}{2}-2d-1 means that μ1τ\mu_{1}\leq\tau, and the condition ν1nk2+2d+2\nu_{1}\leq\frac{n-k}{2}+2d+2 means that b1τ+m2b_{1}\leq\tau+m_{2}. The remaining proof is similar to that of (3).

For all four cases, we conclude that θ¯(ρΛ)\underline{\theta}(\rho_{\Lambda}) is of Θ\Theta-rank kk from (3.11) and (3.12). ∎

Proposition 3.14.

Suppose that both n,kn,k are even and knk\leq n. Then a unipotent character ρ(Onϵ(q))1\rho^{\prime}\in{\mathcal{E}}({\rm O}^{\epsilon}_{n}(q))_{1} is of Θ\Theta-rank kk if and only if ρ\rho^{\prime} or ρsgn\rho^{\prime}{\rm sgn} is equal to θ¯(ρΛ)\underline{\theta}(\rho_{\Lambda}) for some (nk)(n-k)-admissible unipotent character ρΛ(Spk(q))\rho_{\Lambda}\in{\mathcal{E}}({\rm Sp}_{k}(q)).

Proof.

Let ρ\rho^{\prime} be a unipotent character of Onϵ(q){\rm O}^{\epsilon}_{n}(q). If ρ=θ¯(ρΛ)\rho^{\prime}=\underline{\theta}(\rho_{\Lambda}) or ρsgn=θ¯(ρΛ)\rho^{\prime}\cdot{\rm sgn}=\underline{\theta}(\rho_{\Lambda}) for some (nk)(n-k)-admissible Λ𝒮Spk\Lambda\in{\mathcal{S}}_{{\rm Sp}_{k}}, then Θ-rk(ρ)=Θ-rk(ρsgn)=k\Theta\text{\rm-rk}(\rho^{\prime})=\Theta\text{\rm-rk}(\rho^{\prime}\cdot{\rm sgn})=k by Lemma 3.13.

Now suppose that Θ-rk(ρ)=k\Theta\text{\rm-rk}(\rho^{\prime})=k. Then from [Pan20a] and the definition of Θ\Theta-rank, we know that ρ\rho^{\prime} or ρsgn\rho^{\prime}\cdot{\rm sgn} is equal to ρθ¯(Λ)=θ¯(ρΛ)\rho_{\underline{\theta}(\Lambda)}=\underline{\theta}(\rho_{\Lambda}) for some Λ𝒮Spk\Lambda\in{\mathcal{S}}_{{\rm Sp}_{k}}. Without loss of generality, we may assume that ρ=θ¯(ρΛ)\rho^{\prime}=\underline{\theta}(\rho_{\Lambda}). So now we need to show that Λ\Lambda is (nk)(n-k)-admissible. Write

Υ(Λ)=[μ1,μ2,,μm1ν1,ν2,,νm2].\Upsilon(\Lambda)=\genfrac{[}{]}{0.0pt}{}{\mu_{1},\mu_{2},\ldots,\mu_{m_{1}}}{\nu_{1},\nu_{2},\ldots,\nu_{m_{2}}}.

Suppose that ϵ=+\epsilon=+ and def(Λ)=4d+1{\rm def}(\Lambda)=4d+1 for some dd\in{\mathbb{Z}}. Then

Υ(θ¯(Λ))=[ν1,ν2,,νm2μ1,μ2,,μm1][τ]\Upsilon(\underline{\theta}(\Lambda))=\genfrac{[}{]}{0.0pt}{}{\nu_{1},\nu_{2},\ldots,\nu_{m_{2}}}{\mu_{1},\mu_{2},\ldots,\mu_{m_{1}}}\cup\genfrac{[}{]}{0.0pt}{}{\tau}{-}

by (3.6). Note that def(θ¯(Λ))=4d{\rm def}(\underline{\theta}(\Lambda))=-4d. If Λ\Lambda is not (nk)(n-k)-admissible, by definition there are two possibilities:

  • ν1>12(nk)+2d\nu_{1}>\frac{1}{2}(n-k)+2d, or

  • μ1>12(nk)2d\mu_{1}>\frac{1}{2}(n-k)-2d.

Suppose that ν1>12(nk)+2d=τ\nu_{1}>\frac{1}{2}(n-k)+2d=\tau. Then the rank of the symbol Λ\Lambda^{\prime} such that

Υ(Λ)=[μ1,μ2,,μm1ν2,ν3,,νm2][τ]\Upsilon(\Lambda^{\prime})=\genfrac{[}{]}{0.0pt}{}{\mu_{1},\mu_{2},\ldots,\mu_{m_{1}}}{\nu_{2},\nu_{3},\ldots,\nu_{m_{2}}}\cup\genfrac{[}{]}{0.0pt}{}{-}{\tau}

is less than the rank of Λ\Lambda. Then we see that (ρΛ,ρθ¯(Λ))(\rho_{\Lambda^{\prime}},\rho_{\underline{\theta}(\Lambda)}) occurs in the correspondence Θ\Theta for a dual pair (Spk,On+)({\rm Sp}_{k^{\prime}},{\rm O}^{+}_{n}) for some k<kk^{\prime}<k.

Now ρsgn=ρθ¯(Λ)t\rho^{\prime}\cdot{\rm sgn}=\rho_{\underline{\theta}(\Lambda)^{\rm t}} and def(θ¯(Λ)t)=4d{\rm def}(\underline{\theta}(\Lambda)^{\rm t})=4d. By the same argument as above (with dd replaced by d-d and ν1\nu_{1} replaced by μ1\mu_{1}), we see that if μ1>12(nk)2d\mu_{1}>\frac{1}{2}(n-k)-2d, then ρsgn\rho^{\prime}\cdot{\rm sgn} occurs in the Θ\Theta-correspondence for a dual pair (Spk′′,On+)({\rm Sp}_{k^{\prime\prime}},{\rm O}^{+}_{n}) for some k′′<kk^{\prime\prime}<k. Therefore we conclude that Θ-rk(ρ)<k\Theta\text{\rm-rk}(\rho^{\prime})<k if Λ\Lambda is not (nk)(n-k)-admissible.

The proof for the case that ϵ=\epsilon=- is similar. ∎

Proposition 3.15.

Suppose that both n,kn,k are even and knk\leq n. Then a unipotent character ρ(Spn(q))1\rho^{\prime}\in{\mathcal{E}}({\rm Sp}_{n}(q))_{1} is of Θ\Theta-rank kk if and only if ρ=θ¯(ρΛ)\rho^{\prime}=\underline{\theta}(\rho_{\Lambda}) for some (nk)(n-k)-admissible unipotent character ρΛ(Okϵ(q))\rho_{\Lambda}\in{\mathcal{E}}({\rm O}^{\epsilon}_{k}(q)) and some ϵ=+\epsilon=+ or -.

Proof.

Let ρ\rho^{\prime} be a unipotent character of Spn(q){\rm Sp}_{n}(q). If ρ=θ¯(ρΛ)\rho^{\prime}=\underline{\theta}(\rho_{\Lambda}) for some (nk)(n-k)-admissible Λ𝒮Okϵ\Lambda\in{\mathcal{S}}_{{\rm O}^{\epsilon}_{k}} for some ϵ=+\epsilon=+ or -, then Θ-rk(ρ)=k\Theta\text{\rm-rk}(\rho^{\prime})=k by Lemma 3.13.

Now suppose that Θ-rk(ρ)=k\Theta\text{\rm-rk}(\rho^{\prime})=k. Then we know that ρ=ρθ¯(Λ)=θ¯(ρΛ)\rho^{\prime}=\rho_{\underline{\theta}(\Lambda)}=\underline{\theta}(\rho_{\Lambda}) for some Λ𝒮Okϵ\Lambda\in{\mathcal{S}}_{{\rm O}^{\epsilon}_{k}} and some ϵ=+\epsilon=+ or -. Suppose that ϵ=+\epsilon=+ and def(Λ)=4d{\rm def}(\Lambda)=4d for some dd\in{\mathbb{Z}}. If Λ\Lambda is not (nk)(n-k)-admissible, then

  • μ1>12(nk)2d+1\mu_{1}>\frac{1}{2}(n-k)-2d+1; or

  • ν1>12(nk)+2d\nu_{1}>\frac{1}{2}(n-k)+2d.

If ν1>12(nk)+2d=τ\nu_{1}>\frac{1}{2}(n-k)+2d=\tau, then we know that ρθ¯(Λ)\rho_{\underline{\theta}(\Lambda)} occurs in the Θ\Theta-correspondence for the dual pair (Ok+,Spn)({\rm O}^{+}_{k^{\prime}},{\rm Sp}_{n}) for some even k<kk^{\prime}<k. If μ1>12(nk)2d+1\mu_{1}>\frac{1}{2}(n-k)-2d+1, then we know that ρθ¯(Λ)\rho_{\underline{\theta}(\Lambda)} occurs in the Θ\Theta-correspondence for the dual pair (Ok′′,Spn)({\rm O}^{-}_{k^{\prime\prime}},{\rm Sp}_{n}) for some even k′′<kk^{\prime\prime}<k. Therefore Λ\Lambda must be (nk)(n-k)-admissible. The proof for case ϵ=\epsilon=- is similar. ∎

3.3. Degree difference for symplectic/orthogonal dual pairs

Proposition 3.16.

Consider the dual pair (G,G)=(Okϵ,Spn)(\text{\bf G},\text{\bf G}^{\prime})=({\rm O}^{\epsilon}_{k},{\rm Sp}_{n}) or (Spk,Onϵ)({\rm Sp}_{k},{\rm O}^{\epsilon}_{n}) where both k,nk,n are even and knk\leq n, ϵ=+\epsilon=+ or -. If Λ𝒮G\Lambda\in{\mathcal{S}}_{\text{\bf G}} is (nk)(n-k)-admissible, then

degq(θ¯(ρΛ))=degq(ρΛ)+{12k(nk+1),if (G,G)=(Okϵ,Spn);12k(nk1),if (G,G)=(Spk,Onϵ).\deg_{q}(\underline{\theta}(\rho_{\Lambda}))=\deg_{q}(\rho_{\Lambda})+\begin{cases}\frac{1}{2}k(n-k+1),&\text{if\/ $(\text{\bf G},\text{\bf G}^{\prime})=({\rm O}^{\epsilon}_{k},{\rm Sp}_{n})$};\\ \frac{1}{2}k(n-k-1),&\text{if\/ $(\text{\bf G},\text{\bf G}^{\prime})=({\rm Sp}_{k},{\rm O}^{\epsilon}_{n})$}.\end{cases}
Proof.

Let Λ𝒮G\Lambda\in{\mathcal{S}}_{\text{\bf G}} be (nk)(n-k)-admissible, and write Λ=(a1,a2,,am1b1,b2,,bm2)\Lambda=\binom{a_{1},a_{2},\ldots,a_{m_{1}}}{b_{1},b_{2},\ldots,b_{m_{2}}}, Υ(Λ)=[μ1,μ2,,μm1ν1,ν2,,νm2]\Upsilon(\Lambda)=\genfrac{[}{]}{0.0pt}{}{\mu_{1},\mu_{2},\ldots,\mu_{m_{1}}}{\nu_{1},\nu_{2},\ldots,\nu_{m_{2}}}. Let z1,z2,,zmz_{1},z_{2},\ldots,z_{m} denote the entries a1,,am1,b1,,bm2a_{1},\ldots,a_{m_{1}},b_{1},\ldots,b_{m_{2}} of Λ\Lambda where z1z2zmz_{1}\geq z_{2}\geq\cdots\geq z_{m} and m=m1+m2m=m_{1}+m_{2}. By Lemma 3.10 and Lemma 3.13, we know that θ¯(ρΛ)\underline{\theta}(\rho_{\Lambda}) is defined and of Θ\Theta-rank kk. Let {z1,z2,,zm+1}\{z^{\prime}_{1},z^{\prime}_{2},\ldots,z^{\prime}_{m+1}\} denote the set of entries of θ¯(Λ)\underline{\theta}(\Lambda) where z1z2zm+1z^{\prime}_{1}\geq z^{\prime}_{2}\geq\cdots\geq z^{\prime}_{m+1}. From (2.2), we know that

(3.17) k2=rk(Λ)=i=1mzi(m12)2,n2=rk(θ¯(Λ))=i=1m+1zi(m2)2.\displaystyle\begin{split}\frac{k}{2}={\rm rk}(\Lambda)&=\sum_{i=1}^{m}z_{i}-\left\lfloor\left(\frac{m-1}{2}\right)^{2}\right\rfloor,\\ \frac{n}{2}={\rm rk}(\underline{\theta}(\Lambda))&=\sum_{i=1}^{m+1}z^{\prime}_{i}-\left\lfloor\left(\frac{m}{2}\right)^{2}\right\rfloor.\end{split}

Now we consider the following cases:

  1. (1)

    Suppose that (G,G)=(Ok+,Spn)(\text{\bf G},\text{\bf G}^{\prime})=({\rm O}^{+}_{k},{\rm Sp}_{n}). Now by (3.1) and (3.6) we can write θ¯(Λ)=(b1,b2,,bm2+1a1,a2,,am1)\underline{\theta}(\Lambda)=\binom{b^{\prime}_{1},b^{\prime}_{2},\ldots,b^{\prime}_{m_{2}+1}}{a_{1},a_{2},\ldots,a_{m_{1}}} for some bib^{\prime}_{i}. The assumption that Λ\Lambda is (nk)(n-k)-admissible implies that b1=τ+m2b^{\prime}_{1}=\tau+m_{2}, bj+1=bjb^{\prime}_{j+1}=b_{j} for j=1,2,,m2j=1,2,\ldots,m_{2}, and b1a1b^{\prime}_{1}\geq a_{1}. Hence z1=b1z_{1}^{\prime}=b_{1}^{\prime} and zi+1=ziz^{\prime}_{i+1}=z_{i} for i=1,2,,mi=1,2,\ldots,m. Now def(Λ)0(mod4){\rm def}(\Lambda)\equiv 0\pmod{4}, so mm is even. From (3.17), we obtain

    z1=n2+(m2)2k2(m12)2=12(nk+m).z^{\prime}_{1}=\frac{n}{2}+\left(\frac{m}{2}\right)^{2}-\frac{k}{2}-\left\lfloor\left(\frac{m-1}{2}\right)^{2}\right\rfloor=\frac{1}{2}(n-k+m).

    Now degq(|Okϵ(q)|p)=14k2\deg_{q}(|{\rm O}^{\epsilon}_{k}(q)|_{p^{\prime}})=\frac{1}{4}k^{2} and degq(|Spn(q)|p)=14n(n+2)\deg_{q}(|{\rm Sp}_{n}(q)|_{p^{\prime}})=\frac{1}{4}n(n+2). Moreover,

    (m+1(i+1))zi+1zi+1(zi+1+1)=(mi)zizi(zi+1)(m+1-(i+1))z^{\prime}_{i+1}-z^{\prime}_{i+1}(z^{\prime}_{i+1}+1)=(m-i)z_{i}-z_{i}(z_{i}+1)

    for i=1,2,,mi=1,2,\ldots,m. Then by Lemma 2.7, we have

    degq(θ¯(ρΛ))degq(ρΛ)\displaystyle\deg_{q}(\underline{\theta}(\rho_{\Lambda}))-\deg_{q}(\rho_{\Lambda})
    =mz1z1(z1+1)14m(m2)+14n(n+2)14k2\displaystyle=mz^{\prime}_{1}-z^{\prime}_{1}(z^{\prime}_{1}+1)-\tfrac{1}{4}m(m-2)+\tfrac{1}{4}n(n+2)-\tfrac{1}{4}k^{2}
    =12m(nk+m)14(nk+m)(nk+m+2)14m(m2)+14n(n+2)14k2\displaystyle=\tfrac{1}{2}m(n-k+m)-\tfrac{1}{4}(n-k+m)(n-k+m+2)-\tfrac{1}{4}m(m-2)+\tfrac{1}{4}n(n+2)-\tfrac{1}{4}k^{2}
    =12k(nk+1).\displaystyle=\tfrac{1}{2}k(n-k+1).
  2. (2)

    Suppose that (G,G)=(Ok,Spn)(\text{\bf G},\text{\bf G}^{\prime})=({\rm O}^{-}_{k},{\rm Sp}_{n}). Now we can write θ¯(Λ)=(b1,b2,,bm2a1,a2,,am1+1)\underline{\theta}(\Lambda)=\binom{b_{1},b_{2},\ldots,b_{m_{2}}}{a^{\prime}_{1},a^{\prime}_{2},\ldots,a^{\prime}_{m_{1}+1}}. The assumption that Λ\Lambda is (nk)(n-k)-admissible implies that a1=τ+m1a^{\prime}_{1}=\tau+m_{1}, aj+1=aja^{\prime}_{j+1}=a_{j} for j=1,2,,m1j=1,2,\ldots,m_{1}, and a1b1a^{\prime}_{1}\geq b_{1}. Hence z1=a1z_{1}^{\prime}=a_{1}^{\prime} and zi+1=ziz^{\prime}_{i+1}=z_{i} for i=1,2,,mi=1,2,\ldots,m. Then the remaining argument is exactly the same as in the above case.

  3. (3)

    Suppose that (G,G)=(Spk,Onϵ)(\text{\bf G},\text{\bf G}^{\prime})=({\rm Sp}_{k},{\rm O}^{\epsilon}_{n}). Now θ¯(Λ)\underline{\theta}(\Lambda) is written as in case (1) if ϵ=+\epsilon=+; and as in case (2) if ϵ=\epsilon=-. Now def(Λ)1(mod4){\rm def}(\Lambda)\equiv 1\pmod{4}, so mm is odd. The assumption that Λ\Lambda is (nk)(n-k)-admissible implies that

    z1=n2+(m2)2k2(m12)2=12(nk+m1)z^{\prime}_{1}=\frac{n}{2}+\left\lfloor\left(\frac{m}{2}\right)^{2}\right\rfloor-\frac{k}{2}-\left(\frac{m-1}{2}\right)^{2}=\frac{1}{2}(n-k+m-1)

    and zi+1=ziz^{\prime}_{i+1}=z_{i} for i=1,2,,mi=1,2,\ldots,m. Then by Lemma 2.7, we have

    degq(θ¯(ρΛ))degq(ρΛ)\displaystyle\deg_{q}(\underline{\theta}(\rho_{\Lambda}))-\deg_{q}(\rho_{\Lambda}) =mz1z1(z1+1)14(m1)2+14n214k(k+2)\displaystyle=mz^{\prime}_{1}-z^{\prime}_{1}(z^{\prime}_{1}+1)-\tfrac{1}{4}(m-1)^{2}+\tfrac{1}{4}n^{2}-\tfrac{1}{4}k(k+2)
    =12m(nk+m1)14(nk+m1)(nk+m+1)\displaystyle=\tfrac{1}{2}m(n-k+m-1)-\tfrac{1}{4}(n-k+m-1)(n-k+m+1)
    14(m1)2+14n214k(k+2)\displaystyle\qquad\qquad\qquad\qquad\qquad\qquad-\tfrac{1}{4}(m-1)^{2}+\tfrac{1}{4}n^{2}-\tfrac{1}{4}k(k+2)
    =12k(nk1).\displaystyle=\tfrac{1}{2}k(n-k-1).

4. Unipotent Characters of Unitary Groups

4.1. Finite theta correspondence of unipotent characters

Let (G,G)=(Uk,Un)(\text{\bf G},\text{\bf G}^{\prime})=({\rm U}_{k},{\rm U}_{n}) be a reductive dual pair of two unitary groups. For symbols Λ𝒮G\Lambda\in{\mathcal{S}}_{\text{\bf G}} and Λ𝒮G\Lambda^{\prime}\in{\mathcal{S}}_{\text{\bf G}^{\prime}}, we write Υ(Λ)=[μν]\Upsilon(\Lambda)=\genfrac{[}{]}{0.0pt}{}{\mu}{\nu} and Υ(Λ)=[μν]\Upsilon(\Lambda^{\prime})=\genfrac{[}{]}{0.0pt}{}{\mu^{\prime}}{\nu^{\prime}}. Now we define Uk,Un{\mathcal{B}}_{{\rm U}_{k},{\rm U}_{n}} as follows:

  • if k+nk+n is even, then

    Uk,Un={(Λ,Λ)𝒮Uk×𝒮Unνμ,νμ,def(Λ)={0,if def(Λ)=0;def(Λ)+1,if def(Λ)0}.{\mathcal{B}}_{{\rm U}_{k},{\rm U}_{n}}=\Biggl{\{}\,(\Lambda,\Lambda^{\prime})\in{\mathcal{S}}_{{\rm U}_{k}}\times{\mathcal{S}}_{{\rm U}_{n}}\mid\nu\preccurlyeq\mu^{\prime},\ \nu^{\prime}\preccurlyeq\mu,\\ {\rm def}(\Lambda^{\prime})=\begin{cases}0,&\text{if ${\rm def}(\Lambda)=0$};\\ -{\rm def}(\Lambda)+1,&\text{if ${\rm def}(\Lambda)\neq 0$}\end{cases}\,\Biggr{\}}.
  • if k+nk+n is odd, then

    Uk,Un={(Λ,Λ)𝒮Uk×𝒮Unμν,μν,def(Λ)=def(Λ)1}.{\mathcal{B}}_{{\rm U}_{k},{\rm U}_{n}}=\{\,(\Lambda,\Lambda^{\prime})\in{\mathcal{S}}_{{\rm U}_{k}}\times{\mathcal{S}}_{{\rm U}_{n}}\mid\mu\preccurlyeq\nu^{\prime},\ \mu^{\prime}\preccurlyeq\nu,\ {\rm def}(\Lambda^{\prime})=-{\rm def}(\Lambda)-1\,\}.

Here the relation μν\mu\preccurlyeq\nu^{\prime} is given in (2.1). It is known that the unipotent characters are preserved by the ΘG,G\Theta_{\text{\bf G},\text{\bf G}^{\prime}} (cf[AM93] theorem 3.5). The following proposition on the Θ\Theta-correspondence of unipotent characters for a unitary dual pair is rephrased from [AMR96] théorème 5.15 (see also [Pan19b] proposition 5.13):

Proposition 4.1.

Let ρΛ(Uk(q))1\rho_{\Lambda}\in{\mathcal{E}}({\rm U}_{k}(q))_{1} and ρΛ(Un(q))1\rho_{\Lambda^{\prime}}\in{\mathcal{E}}({\rm U}_{n}(q))_{1}. Then (ρΛ,ρΛ)ΘUk,Un(\rho_{\Lambda},\rho_{\Lambda^{\prime}})\in\Theta_{{\rm U}_{k},{\rm U}_{n}} if and only if (Λ,Λ)Uk,Un(\Lambda,\Lambda^{\prime})\in{\mathcal{B}}_{{\rm U}_{k},{\rm U}_{n}}.

4.2. \ell-admissible unipotent characters

Consider the dual pair (G,G)=(Uk,Un)(\text{\bf G},\text{\bf G}^{\prime})=({\rm U}_{k},{\rm U}_{n}) such that knk\leq n. Let Λ𝒮Uk\Lambda\in{\mathcal{S}}_{{\rm U}_{k}}, and write

Λ=(a1,a2,,am1b1,b2,,bm2),Υ(Λ)=[μ1,μ2,,μm1ν1,ν2,,νm2].\Lambda=\binom{a_{1},a_{2},\ldots,a_{m_{1}}}{b_{1},b_{2},\ldots,b_{m_{2}}},\qquad\Upsilon(\Lambda)=\genfrac{[}{]}{0.0pt}{}{\mu_{1},\mu_{2},\ldots,\mu_{m_{1}}}{\nu_{1},\nu_{2},\ldots,\nu_{m_{2}}}.

Suppose that (Λ,Λ)Uk,Un(\Lambda,\Lambda^{\prime})\in{\mathcal{B}}_{{\rm U}_{k},{\rm U}_{n}}. Let d=|def(Λ)|d=|{\rm def}(\Lambda)| and d=|def(Λ)|d^{\prime}=|{\rm def}(\Lambda^{\prime})|. Define

(4.2) τ=12[(nd(d+1)2)(kd(d+1)2)].\tau=\frac{1}{2}\left[\left(n-\frac{d^{\prime}(d^{\prime}+1)}{2}\right)-\left(k-\frac{d(d+1)}{2}\right)\right].

Then from the definition of Uk,Un{\mathcal{B}}_{{\rm U}_{k},{\rm U}_{n}} we can check that

(4.3) τ={12(nk+d),if k+n+d is even;12(nkd1),if k+n+d is odd.\tau=\begin{cases}\frac{1}{2}(n-k+d),&\text{if $k+n+d$ is even};\\ \frac{1}{2}(n-k-d-1),&\text{if $k+n+d$ is odd}.\end{cases}

Note that τ\tau is an integer depending on k,nk,n and def(Λ){\rm def}(\Lambda). If τ0\tau\geq 0, then θ¯(Λ)\underline{\theta}(\Lambda) is defined to be the symbol in 𝒮Un{\mathcal{S}}_{{\rm U}_{n}} such that

Υ(θ¯(Λ))={Υ(Λ)t[τ],if k+n is even;Υ(Λ)t[τ],if k+n is odd.\Upsilon(\underline{\theta}(\Lambda))=\begin{cases}\Upsilon(\Lambda)^{\rm t}\cup\genfrac{[}{]}{0.0pt}{}{\tau}{-},&\text{if $k+n$ is even};\\ \Upsilon(\Lambda)^{\rm t}\cup\genfrac{[}{]}{0.0pt}{}{-}{\tau},&\text{if $k+n$ is odd}.\end{cases}

For a non-negative integer \ell, a symbol Λ𝒮Uk\Lambda\in{\mathcal{S}}_{{\rm U}_{k}} is called \ell-admissible if the following conditions hold:

(4.4) {μ112(d) and ν112(+d),if  is even, d is even;μ112(+d+1) and ν112(d1),if  is even, d is odd;μ112(d1) and ν112(+d+1),if  is odd, d is even;μ112(+d) and ν112(d),if  is odd, d is odd.\begin{cases}\mu_{1}\leq\frac{1}{2}(\ell-d)\text{ and }\nu_{1}\leq\frac{1}{2}(\ell+d),&\text{if $\ell$ is even, $d$ is even};\\ \mu_{1}\leq\frac{1}{2}(\ell+d+1)\text{ and }\nu_{1}\leq\frac{1}{2}(\ell-d-1),&\text{if $\ell$ is even, $d$ is odd};\\ \mu_{1}\leq\frac{1}{2}(\ell-d-1)\text{ and }\nu_{1}\leq\frac{1}{2}(\ell+d+1),&\text{if $\ell$ is odd, $d$ is even};\\ \mu_{1}\leq\frac{1}{2}(\ell+d)\text{ and }\nu_{1}\leq\frac{1}{2}(\ell-d),&\text{if $\ell$ is odd, $d$ is odd}.\end{cases}

It is clear that if Λ\Lambda is \ell-admissible, then it is also \ell^{\prime}-admissible for any \ell^{\prime}\geq\ell. A unipotent character ρΛ(Uk(q))1\rho_{\Lambda}\in{\mathcal{E}}({\rm U}_{k}(q))_{1} is called \ell-admissible if Λ𝒮Uk\Lambda\in{\mathcal{S}}_{{\rm U}_{k}} is \ell-admissible.

Lemma 4.5.

Every unipotent character ρΛ(Uk(q))1\rho_{\Lambda}\in{\mathcal{E}}({\rm U}_{k}(q))_{1} is kk-admissible. Consequently, if the dual pair (G,G)=(Uk,Un)(\text{\bf G},\text{\bf G}^{\prime})=({\rm U}_{k},{\rm U}_{n}) is in stable range, then every ρΛ(G)1\rho_{\Lambda}\in{\mathcal{E}}(G)_{1} is (nk)(n-k)-admissible.

Proof.

Let Λ𝒮Uk\Lambda\in{\mathcal{S}}_{{\rm U}_{k}}, d=|def(Λ)|d=|{\rm def}(\Lambda)|, and write Λ=(a1,a2,,am1b1,b2,,bm2)\Lambda=\binom{a_{1},a_{2},\ldots,a_{m_{1}}}{b_{1},b_{2},\ldots,b_{m_{2}}}, Υ(Λ)=[μ1,μ2,,μm1ν1,ν2,,νm2]\Upsilon(\Lambda)=\genfrac{[}{]}{0.0pt}{}{\mu_{1},\mu_{2},\ldots,\mu_{m_{1}}}{\nu_{1},\nu_{2},\ldots,\nu_{m_{2}}}.

  1. (1)

    Suppose that kk is even. Then

    μ1\displaystyle\mu_{1} |Υ(Λ)|=12(kd(d+1)){12(kd),if d is even;12(k+d+1),if d is odd,\displaystyle\leq|\Upsilon(\Lambda)|=\frac{1}{2}(k-d(d+1))\leq\begin{cases}\frac{1}{2}(k-d),&\text{if $d$ is even};\\ \frac{1}{2}(k+d+1),&\text{if $d$ is odd},\end{cases}
    ν1\displaystyle\nu_{1} |Υ(Λ)|=12(kd(d+1)){12(k+d),if d is even;12(kd1),if d is odd.\displaystyle\leq|\Upsilon(\Lambda)|=\frac{1}{2}(k-d(d+1))\leq\begin{cases}\frac{1}{2}(k+d),&\text{if $d$ is even};\\ \frac{1}{2}(k-d-1),&\text{if $d$ is odd}.\end{cases}
  2. (2)

    Suppose that kk is odd. Then

    μ1\displaystyle\mu_{1} |Υ(Λ)|=12(kd(d+1)){12(kd1),if d is even;22(k+d),if d is odd,\displaystyle\leq|\Upsilon(\Lambda)|=\frac{1}{2}(k-d(d+1))\leq\begin{cases}\frac{1}{2}(k-d-1),&\text{if $d$ is even};\\ \frac{2}{2}(k+d),&\text{if $d$ is odd},\end{cases}
    ν1\displaystyle\nu_{1} |Υ(Λ)|=12(kd(d+1)){12(k+d+1),if d is even;22(kd),if d is odd.\displaystyle\leq|\Upsilon(\Lambda)|=\frac{1}{2}(k-d(d+1))\leq\begin{cases}\frac{1}{2}(k+d+1),&\text{if $d$ is even};\\ \frac{2}{2}(k-d),&\text{if $d$ is odd}.\end{cases}

For two cases, Λ\Lambda is always kk-admissible.

Now if (Uk,Un)({\rm U}_{k},{\rm U}_{n}) is in stable range, then we have knkk\leq n-k. Therefore, Λ\Lambda is also (nk)(n-k)-admissible. ∎

Lemma 4.6.

For a non-negative integer dd, let ρd=ρΛd\rho_{d}=\rho_{\Lambda_{d}} denote the unipotent cuspidal character of Uk(q){\rm U}_{k}(q) where k=12d(d+1)k=\frac{1}{2}d(d+1). Then Λd\Lambda_{d} is \ell-admissible for d\ell\geq d if d\ell-d is even; and is \ell-admissible for d+1\ell\geq d+1 if d\ell-d is odd.

Proof.

It is known that Λd=(d1,d2,,0)\Lambda_{d}=\binom{d-1,d-2,\ldots,0}{-} if dd is even; and Λd=(d1,d2,,0)\Lambda_{d}=\binom{-}{d-1,d-2,\ldots,0} if dd is odd, and Υ(Λd)=[00]\Upsilon(\Lambda_{d})=\genfrac{[}{]}{0.0pt}{}{0}{0}, i.e., μ1=ν1=0\mu_{1}=\nu_{1}=0. Note that def(Λd)=d{\rm def}(\Lambda_{d})=d if dd is even; and def(Λd)=d{\rm def}(\Lambda_{d})=-d if dd is odd. Then the lemma follows from (4.4) immediately. ∎

Example 4.7.

Let StUk{\rm St}_{{\rm U}_{k}} denote the Steinberg character of Uk(q){\rm U}_{k}(q) where k1k\geq 1. It is known that degq(StUk)=12k(k1)\deg_{q}({\rm St}_{{\rm U}_{k}})=\frac{1}{2}k(k-1). Moreover, the symbol Λ\Lambda associated to StUk{\rm St}_{{\rm U}_{k}} satisfies

Λ={(k22,k42,,0k2,k22,,1)(k12,k32,,1k12,k32,,0)Υ(Λ)={[1,1,,1],if k is even;[1,1,,1],if k is odd.\Lambda=\begin{cases}\binom{\frac{k-2}{2},\frac{k-4}{2},\ldots,0}{\frac{k}{2},\frac{k-2}{2},\ldots,1}\\ \binom{\frac{k-1}{2},\frac{k-3}{2},\ldots,1}{\frac{k-1}{2},\frac{k-3}{2},\ldots,0}\end{cases}\ \Upsilon(\Lambda)=\begin{cases}\genfrac{[}{]}{0.0pt}{}{-}{1,1,\ldots,1},&\text{if $k$ is even};\\ \genfrac{[}{]}{0.0pt}{}{1,1,\ldots,1}{-},&\text{if $k$ is odd}.\end{cases}

Note that now def(Λ)=0{\rm def}(\Lambda)=0 if kk is even, def(Λ)=1{\rm def}(\Lambda)=-1 if kk is odd. Therefore we see that StUk{\rm St}_{{\rm U}_{k}} is 11-admissible, and hence it is \ell-admissible for any 1\ell\geq 1.

Lemma 4.8.

Consider the dual pair (Uk,Un)({\rm U}_{k},{\rm U}_{n}) where knk\leq n. If Λ𝒮Uk\Lambda\in{\mathcal{S}}_{{\rm U}_{k}} is (nk)(n-k)-admissible, then τ0\tau\geq 0.

Proof.

Write Υ(Λ)=[μ1,μ2,,μm1ν1,ν2,,νm2]\Upsilon(\Lambda)=\genfrac{[}{]}{0.0pt}{}{\mu_{1},\mu_{2},\ldots,\mu_{m_{1}}}{\nu_{1},\nu_{2},\ldots,\nu_{m_{2}}}. Suppose that Λ𝒮Uk\Lambda\in{\mathcal{S}}_{{\rm U}_{k}} is (nk)(n-k)-admissible. First suppose that k+n+dk+n+d is even. The condition that Λ\Lambda is (nk)(n-k)-admissible means that (nk)+d0(n-k)+d\geq 0 from (4.4). This is exactly the condition that τ0\tau\geq 0.

Next, suppose that k+n+dk+n+d is odd. The condition that Λ\Lambda is (nk)(n-k)-admissible means that (nk)d10(n-k)-d-1\geq 0 from (4.4). Then again we have τ0\tau\geq 0. ∎

Recall that from [Pan21a] subsection 3.1, the Θ\Theta-rank of ρ(Un(q))\rho^{\prime}\in{\mathcal{E}}({\rm U}_{n}(q)) is defined by

(4.9) Θ-rk(ρ)=min{kρχΘ(ρ) for some ρ(Uk(q))and some linear character χ(Un(q))}.\Theta\text{\rm-rk}(\rho^{\prime})=\min\{\,k\mid\rho^{\prime}\chi^{\prime}\in\Theta(\rho)\text{ for some }\rho\in{\mathcal{E}}({\rm U}_{k}(q))\\ \text{and some linear character }\chi^{\prime}\in{\mathcal{E}}({\rm U}_{n}(q))\,\}.
Lemma 4.10.

Consider the dual pair (G,G)=(Uk,Un)(\text{\bf G},\text{\bf G}^{\prime})=({\rm U}_{k},{\rm U}_{n}) where knk\leq n. If Λ𝒮Uk\Lambda\in{\mathcal{S}}_{{\rm U}_{k}} is (nk)(n-k)-admissible, then θ¯(ρΛ)\underline{\theta}(\rho_{\Lambda}) is of Θ\Theta-rank kk.

Proof.

Suppose that Λ𝒮Uk\Lambda\in{\mathcal{S}}_{{\rm U}_{k}} is (nk)(n-k)-admissible for (Uk,Un)({\rm U}_{k},{\rm U}_{n}). From the previous lemma, we know that τ0\tau\geq 0 and so θ¯(ρΛ)\underline{\theta}(\rho_{\Lambda}) is defined. Let d=|def(Λ)|d=|{\rm def}(\Lambda)|.

  1. (1)

    Suppose that k+nk+n is even. Now we have τν1\tau\geq\nu_{1}. Then

    θ¯(Λ)=(τ+m2,b1,b2,,bm2a1,a2,,am1),Υ(θ¯(Λ))=[τ,ν1,ν2,,νm2μ1,μ2,,μm1].\underline{\theta}(\Lambda)=\binom{\tau+m_{2},b_{1},b_{2},\ldots,b_{m_{2}}}{a_{1},a_{2},\ldots,a_{m_{1}}},\qquad\Upsilon(\underline{\theta}(\Lambda))=\genfrac{[}{]}{0.0pt}{}{\tau,\nu_{1},\nu_{2},\ldots,\nu_{m_{2}}}{\mu_{1},\mu_{2},\ldots,\mu_{m_{1}}}.
    1. (a)

      Suppose that dd is even. Then the condition ν112(nk+d)\nu_{1}\leq\frac{1}{2}(n-k+d) implies that ρθ¯(Λ)\rho_{\underline{\theta}(\Lambda)} does not occur in the Θ\Theta-correspondence for the dual pair (Uk,Un)({\rm U}_{k^{\prime}},{\rm U}_{n}) for any k<kk^{\prime}<k such that k+nk^{\prime}+n is even. The condition μ112(nkd)\mu_{1}\leq\frac{1}{2}(n-k-d) means that 2(μ1+m11)2(τ+m2)12(\mu_{1}+m_{1}-1)\leq 2(\tau+m_{2})-1, i.e.,

      rkU(a1,a2,,am1b1,b2,,bm2)rkU(a2,,am1τ+m2,b1,b2,,bm2).\text{\rm rk}_{\rm U}\binom{a_{1},a_{2},\ldots,a_{m_{1}}}{b_{1},b_{2},\ldots,b_{m_{2}}}\leq\text{\rm rk}_{\rm U}\binom{a_{2},\ldots,a_{m_{1}}}{\tau+m_{2},b_{1},b_{2},\ldots,b_{m_{2}}}.

      Therefore the unipotent character θ¯(ρΛ)\underline{\theta}(\rho_{\Lambda}) of Un(q){\rm U}_{n}(q) does not occur in the Θ\Theta-correspondence for the dual pair (Uk′′,Un)({\rm U}_{k^{\prime\prime}},{\rm U}_{n}) for any k′′<kk^{\prime\prime}<k such that k′′+nk^{\prime\prime}+n is odd.

    2. (b)

      Suppose that dd is odd. The condition ν112(nkd1)\nu_{1}\leq\frac{1}{2}(n-k-d-1) implies that θ¯(ρΛ)\underline{\theta}(\rho_{\Lambda}) does not occur in the Θ\Theta-correspondence for the dual pair (Uk,Un)({\rm U}_{k^{\prime}},{\rm U}_{n}) for any k<kk^{\prime}<k such that k+nk^{\prime}+n is even. The condition μ112(nk+d+1)\mu_{1}\leq\frac{1}{2}(n-k+d+1) implies θ¯(ρΛ)\underline{\theta}(\rho_{\Lambda}) does not occur in the Θ\Theta-correspondence for the dual pair (Uk′′,Un)({\rm U}_{k^{\prime\prime}},{\rm U}_{n}) for any k′′<kk^{\prime\prime}<k such that k′′+nk^{\prime\prime}+n is odd.

  2. (2)

    Suppose that k+nk+n is odd. Now we have τμ1\tau\geq\mu_{1}. Then

    θ¯(Λ)=(b1,b2,,bm2τ+m1,a1,a2,,am1),Υ(θ¯(Λ))=[ν1,ν2,,νm2τ,μ1,μ2,,μm1].\underline{\theta}(\Lambda)=\binom{b_{1},b_{2},\ldots,b_{m_{2}}}{\tau+m_{1},a_{1},a_{2},\ldots,a_{m_{1}}},\qquad\Upsilon(\underline{\theta}(\Lambda))=\genfrac{[}{]}{0.0pt}{}{\nu_{1},\nu_{2},\ldots,\nu_{m_{2}}}{\tau,\mu_{1},\mu_{2},\ldots,\mu_{m_{1}}}.
    1. (a)

      Suppose that dd is even. The condition μ112(nkd1)\mu_{1}\leq\frac{1}{2}(n-k-d-1) implies that θ¯(ρΛ)\underline{\theta}(\rho_{\Lambda}) does not occur in the Θ\Theta-correspondence for the dual pair (Uk,Un)({\rm U}_{k^{\prime}},{\rm U}_{n}) for any k<kk^{\prime}<k such that k+nk^{\prime}+n is even. The condition ν112(nk+d+1)\nu_{1}\leq\frac{1}{2}(n-k+d+1) means 2(ν1+m21)2(τ+m1)+12(\nu_{1}+m_{2}-1)\leq 2(\tau+m_{1})+1, i.e., .

      rkU(a1,a2,,am1b1,b2,,bm2)rkU(τ+m1,a1,a2,,am1b2,,bm2).\text{\rm rk}_{\rm U}\binom{a_{1},a_{2},\ldots,a_{m_{1}}}{b_{1},b_{2},\ldots,b_{m_{2}}}\leq\text{\rm rk}_{\rm U}\binom{\tau+m_{1},a_{1},a_{2},\ldots,a_{m_{1}}}{b_{2},\ldots,b_{m_{2}}}.

      Therefore θ¯(ρΛ)\underline{\theta}(\rho_{\Lambda}) does not occur in the Θ\Theta-correspondence for the dual pair (Uk′′,Un)({\rm U}_{k^{\prime\prime}},{\rm U}_{n}) for any k′′<kk^{\prime\prime}<k such that k′′+nk^{\prime\prime}+n is odd.

    2. (b)

      Suppose that dd is odd. The condition μ112(nk+d)\mu_{1}\leq\frac{1}{2}(n-k+d) implies that θ¯(ρΛ)\underline{\theta}(\rho_{\Lambda}) does not occur in the Θ\Theta-correspondence for the dual pair (Uk,Un)({\rm U}_{k^{\prime}},{\rm U}_{n}) for any k<kk^{\prime}<k such that k+nk^{\prime}+n is even. The condition ν112(nkd)\nu_{1}\leq\frac{1}{2}(n-k-d) implies that θ¯(ρΛ)\underline{\theta}(\rho_{\Lambda}) does not occur in the Θ\Theta-correspondence for the dual pair (Uk′′,Un)({\rm U}_{k^{\prime\prime}},{\rm U}_{n}) for any k′′<kk^{\prime\prime}<k such that k′′+nk^{\prime\prime}+n is odd.

For all cases, we conclude that θ¯(ρΛ)\underline{\theta}(\rho_{\Lambda}) is of Θ\Theta-rank kk. ∎

Proposition 4.11.

Consider the dual pair (G,G)=(Uk,Un)(\text{\bf G},\text{\bf G}^{\prime})=({\rm U}_{k},{\rm U}_{n}) where knk\leq n. A unipotent character ρ(Un(q))1\rho^{\prime}\in{\mathcal{E}}({\rm U}_{n}(q))_{1} is of Θ\Theta-rank kk if and only if ρ=θ¯(ρΛ)\rho^{\prime}=\underline{\theta}(\rho_{\Lambda}) for some (nk)(n-k)-admissible symbol Λ𝒮Uk\Lambda\in{\mathcal{S}}_{{\rm U}_{k}}.

Proof.

Let ρ\rho^{\prime} be a unipotent character of Un(q){\rm U}_{n}(q). Suppose that ρ=θ¯(ρΛ)\rho^{\prime}=\underline{\theta}(\rho_{\Lambda}) for some (nk)(n-k)-admissible Λ𝒮Uk\Lambda\in{\mathcal{S}}_{{\rm U}_{k}}. Then Θ-rk(ρ)=k\Theta\text{\rm-rk}(\rho^{\prime})=k by Lemma 4.10.

Now we suppose that ρ\rho^{\prime} is of Θ\Theta-rank kk. From [Pan21a], we know that ρ=θ¯(ρΛ)\rho^{\prime}=\underline{\theta}(\rho_{\Lambda}) for some symbol Λ𝒮Uk\Lambda\in{\mathcal{S}}_{{\rm U}_{k}}. We need to show that Λ\Lambda is (nk)(n-k)-admissible. Write Υ(Λ)=[μ1,μ2,,μm1ν1,ν2,,νm2]\Upsilon(\Lambda)=\genfrac{[}{]}{0.0pt}{}{\mu_{1},\mu_{2},\ldots,\mu_{m_{1}}}{\nu_{1},\nu_{2},\ldots,\nu_{m_{2}}} and let d=|def(Λ)|d=|{\rm def}(\Lambda)|. From [Pan19b] section 8, we can conclude the following.

  1. (1)

    Suppose that k+nk+n is even and dd is even.

    1. (a)

      If μ1>12(nkd)\mu_{1}>\frac{1}{2}(n-k-d), we know that θ¯(ρΛ)\underline{\theta}(\rho_{\Lambda}) occurs in the Θ\Theta-correspondence for the dual pair (Uk,Un)({\rm U}_{k^{\prime}},{\rm U}_{n}) for some k<kk^{\prime}<k such that k+nk^{\prime}+n is even.

    2. (b)

      If ν1>12(nk+d)\nu_{1}>\frac{1}{2}(n-k+d), then θ¯(ρΛ)\underline{\theta}(\rho_{\Lambda}) occurs in the Θ\Theta-correspondence for the dual pair (Uk′′,Un)({\rm U}_{k^{\prime\prime}},{\rm U}_{n}) for some k′′<kk^{\prime\prime}<k such that k′′+nk^{\prime\prime}+n is odd.

  2. (2)

    Suppose that k+nk+n is even and dd is odd.

    1. (a)

      If μ1>12(nk+d+1)\mu_{1}>\frac{1}{2}(n-k+d+1), we know that θ¯(ρΛ)\underline{\theta}(\rho_{\Lambda}) occurs in the Θ\Theta-correspondence for the dual pair (Uk,Un)({\rm U}_{k^{\prime}},{\rm U}_{n}) for some k<kk^{\prime}<k such that k+nk^{\prime}+n is even.

    2. (b)

      If ν1>12(nkd1)\nu_{1}>\frac{1}{2}(n-k-d-1), then θ¯(ρΛ)\underline{\theta}(\rho_{\Lambda}) occurs in the Θ\Theta-correspondence for the dual pair (Uk′′,Un)({\rm U}_{k^{\prime\prime}},{\rm U}_{n}) for some k′′<kk^{\prime\prime}<k such that k′′+nk^{\prime\prime}+n is odd.

  3. (3)

    Suppose that k+nk+n is odd and dd is even.

    1. (a)

      If μ1>12(nkd1)\mu_{1}>\frac{1}{2}(n-k-d-1), we know that θ¯(ρΛ)\underline{\theta}(\rho_{\Lambda}) occurs in the Θ\Theta-correspondence for the dual pair (Uk,Un)({\rm U}_{k^{\prime}},{\rm U}_{n}) for some k<kk^{\prime}<k such that k+nk^{\prime}+n is even.

    2. (b)

      If ν1>12(nk+d+1)\nu_{1}>\frac{1}{2}(n-k+d+1), then θ¯(ρΛ)\underline{\theta}(\rho_{\Lambda}) occurs in the Θ\Theta-correspondence for the dual pair (Uk′′,Un)({\rm U}_{k^{\prime\prime}},{\rm U}_{n}) for some k′′<kk^{\prime\prime}<k such that k′′+nk^{\prime\prime}+n is odd.

  4. (4)

    Suppose that k+nk+n is odd and dd is odd.

    1. (a)

      If μ1>12(nk+d)\mu_{1}>\frac{1}{2}(n-k+d), we know that θ¯(ρΛ)\underline{\theta}(\rho_{\Lambda}) occurs in the Θ\Theta-correspondence for the dual pair (Uk,Un)({\rm U}_{k^{\prime}},{\rm U}_{n}) for some k<kk^{\prime}<k such that k+nk^{\prime}+n is even.

    2. (b)

      If ν1>12(nkd)\nu_{1}>\frac{1}{2}(n-k-d), then θ¯(ρΛ)\underline{\theta}(\rho_{\Lambda}) occurs in the Θ\Theta-correspondence for the dual pair (Uk′′,Un)({\rm U}_{k^{\prime\prime}},{\rm U}_{n}) for some k′′<kk^{\prime\prime}<k such that k′′+nk^{\prime\prime}+n is odd.

Therefore, for all cases, if Λ𝒮Uk\Lambda\in{\mathcal{S}}_{{\rm U}_{k}} is not (nk)(n-k)-admissible, we will conclude that Θ-rk(θ¯(ρΛ))<k\Theta\text{\rm-rk}(\underline{\theta}(\rho_{\Lambda}))<k. ∎

4.3. Degree differences for unitary dual pairs

Proposition 4.12.

Consider the dual pair (G,G)=(Uk,Un)(\text{\bf G},\text{\bf G}^{\prime})=({\rm U}_{k},{\rm U}_{n}) where knk\leq n. If Λ𝒮Uk\Lambda\in{\mathcal{S}}_{{\rm U}_{k}} is (nk)(n-k)-admissible, then

degq(θ¯(ρΛ))=degq(ρΛ)+k(nk).\deg_{q}(\underline{\theta}(\rho_{\Lambda}))=\deg_{q}(\rho_{\Lambda})+k(n-k).
Proof.

Let Λ𝒮Uk\Lambda\in{\mathcal{S}}_{{\rm U}_{k}} be (nk)(n-k)-admissible, and write Λ=(a1,a2,,am1b1,b2,,bm2)\Lambda=\binom{a_{1},a_{2},\ldots,a_{m_{1}}}{b_{1},b_{2},\ldots,b_{m_{2}}}, Υ(Λ)=[μ1,μ2,,μm1ν1,ν2,,νm2]\Upsilon(\Lambda)=\genfrac{[}{]}{0.0pt}{}{\mu_{1},\mu_{2},\ldots,\mu_{m_{1}}}{\nu_{1},\nu_{2},\ldots,\nu_{m_{2}}}.

  1. (1)

    Suppose that k+nk+n is odd. The assumption that Λ\Lambda is (nk)(n-k)-admissible means that

    θ¯(Λ)=(b1,b2,,bm2τ+m1,a1,a2,,am1),Υ(θ¯(Λ))=[ν1,ν2,,νm2τ,μ1,μ2,,μm1].\underline{\theta}(\Lambda)=\binom{b_{1},b_{2},\ldots,b_{m_{2}}}{\tau+m_{1},a_{1},a_{2},\ldots,a_{m_{1}}},\qquad\Upsilon(\underline{\theta}(\Lambda))=\genfrac{[}{]}{0.0pt}{}{\nu_{1},\nu_{2},\ldots,\nu_{m_{2}}}{\tau,\mu_{1},\mu_{2},\ldots,\mu_{m_{1}}}.
    1. (a)

      Suppose that m1+m2m_{1}+m_{2} is even. Then def(Λ)=m1m2{\rm def}(\Lambda)=m_{1}-m_{2} is even and non-negative, and def(θ¯(Λ))=m2m11{\rm def}(\underline{\theta}(\Lambda))=m_{2}-m_{1}-1 is odd and negative. By (2.8), we have

      k\displaystyle k =i=1m12ai+j=1m22bj12m(m2)+12(m1m2)\displaystyle=\sum_{i=1}^{m_{1}}2a_{i}+\sum_{j=1}^{m_{2}}2b_{j}-\frac{1}{2}m(m-2)+\frac{1}{2}(m_{1}-m_{2})
      n\displaystyle n =2(τ+m1)+i=1m12ai+j=1m22bj12(m+1)(m1)+12(m1m2+1)\displaystyle=2(\tau+m_{1})+\sum_{i=1}^{m_{1}}2a_{i}+\sum_{j=1}^{m_{2}}2b_{j}-\frac{1}{2}(m+1)(m-1)+\frac{1}{2}(m_{1}-m_{2}+1)

      where m=m1+m2m=m_{1}+m_{2}. Then we have

      2(τ+m1)+1=nk+m.2(\tau+m_{1})+1=n-k+m.

      Now by (2.9), we have

      XΛ0\displaystyle X^{0}_{\Lambda} ={2b1,2b2,,2bm2},\displaystyle=\{2b_{1},2b_{2},\ldots,2b_{m_{2}}\}, XΛ1\displaystyle X^{1}_{\Lambda} ={2a1+1,2a2+1,,2am1+1};\displaystyle=\{2a_{1}+1,2a_{2}+1,\ldots,2a_{m_{1}}+1\};
      Xθ¯(Λ)0\displaystyle X^{0}_{\underline{\theta}(\Lambda)} ={2b1,2b2,,2bm2},\displaystyle=\{2b_{1},2b_{2},\ldots,2b_{m_{2}}\}, Xθ¯(Λ)1\displaystyle X^{1}_{\underline{\theta}(\Lambda)} ={2(τ+m1)+1,2a1+1,2a2+1,,2am1+1}.\displaystyle=\{2(\tau+m_{1})+1,2a_{1}+1,2a_{2}+1,\ldots,2a_{m_{1}}+1\}.

      Write

      XΛ0XΛ1={z1,z2,,zm},Xθ¯(Λ)0Xθ¯(Λ)1={z1,z2,,zm+1}\displaystyle X^{0}_{\Lambda}\cup X^{1}_{\Lambda}=\{z_{1},z_{2},\ldots,z_{m}\},\qquad X^{0}_{\underline{\theta}(\Lambda)}\cup X^{1}_{\underline{\theta}(\Lambda)}=\{z^{\prime}_{1},z^{\prime}_{2},\ldots,z^{\prime}_{m+1}\}

      with z1>z2>>zmz_{1}>z_{2}>\cdots>z_{m} and z1>z2>>zm+1z^{\prime}_{1}>z^{\prime}_{2}>\cdots>z^{\prime}_{m+1}. Now zi+1=ziz^{\prime}_{i+1}=z_{i} for i=1,,mi=1,\ldots,m, and z1=nk+mz^{\prime}_{1}=n-k+m. Hence by Lemma 2.12, we have

      degq(θ¯(ρΛ))degq(ρΛ)\displaystyle\deg_{q}(\underline{\theta}(\rho_{\Lambda}))-\deg_{q}(\rho_{\Lambda})
      =mz112z1(z1+1)+12n(n+1)12k(k+1)12m(m1)\displaystyle=mz^{\prime}_{1}-\tfrac{1}{2}z^{\prime}_{1}(z^{\prime}_{1}+1)+\tfrac{1}{2}n(n+1)-\tfrac{1}{2}k(k+1)-\tfrac{1}{2}m(m-1)
      =12(nk+m)(m(nk)1)+12n(n+1)12k(k+1)12m(m1)\displaystyle=\tfrac{1}{2}(n-k+m)(m-(n-k)-1)+\tfrac{1}{2}n(n+1)-\tfrac{1}{2}k(k+1)-\tfrac{1}{2}m(m-1)
      =k(nk).\displaystyle=k(n-k).
    2. (b)

      Suppose that m1+m2m_{1}+m_{2} is odd. Then def(Λ)=m1m2{\rm def}(\Lambda)=m_{1}-m_{2} is odd and negative, and def(θ¯(Λ))=m2m11{\rm def}(\underline{\theta}(\Lambda))=m_{2}-m_{1}-1 is even and non-negative. By (2.8), we have

      k\displaystyle k =i=1m12ai+j=1m22bj12m(m2)+12(m2m1)\displaystyle=\sum_{i=1}^{m_{1}}2a_{i}+\sum_{j=1}^{m_{2}}2b_{j}-\frac{1}{2}m(m-2)+\frac{1}{2}(m_{2}-m_{1})
      n\displaystyle n =2(τ+m1)+i=1m12ai+j=1m22bj12(m+1)(m1)+12(m2m11)\displaystyle=2(\tau+m_{1})+\sum_{i=1}^{m_{1}}2a_{i}+\sum_{j=1}^{m_{2}}2b_{j}-\frac{1}{2}(m+1)(m-1)+\frac{1}{2}(m_{2}-m_{1}-1)

      where m=m1+m2m=m_{1}+m_{2}. Then we have

      2(τ+m1)=nk+m.2(\tau+m_{1})=n-k+m.

      Now by (2.9), we have

      XΛ0\displaystyle X^{0}_{\Lambda} ={2a1,2a2,,2am1},\displaystyle=\{2a_{1},2a_{2},\ldots,2a_{m_{1}}\}, XΛ1\displaystyle X^{1}_{\Lambda} ={2b1+1,2b2+1,,2bm2+1};\displaystyle=\{2b_{1}+1,2b_{2}+1,\ldots,2b_{m_{2}}+1\};
      Xθ¯(Λ)0\displaystyle X^{0}_{\underline{\theta}(\Lambda)} ={2(τ+m1),2a1,2a2,,2am1},\displaystyle=\{2(\tau+m_{1}),2a_{1},2a_{2},\ldots,2a_{m_{1}}\}, Xθ¯(Λ)1\displaystyle X^{1}_{\underline{\theta}(\Lambda)} ={2b1+1,2b2+1,,2bm2+1}.\displaystyle=\{2b_{1}+1,2b_{2}+1,\ldots,2b_{m_{2}}+1\}.

      The remaining proof is the same as in case (a).

  2. (2)

    Suppose that k+nk+n is even. The assumption that Λ\Lambda is (nk)(n-k)-admissible means that

    θ¯(Λ)=(τ+m2,b1,b2,,bm2a1,a2,,am1),Υ(θ¯(Λ))=[τ,ν1,ν2,,νm2μ1,μ2,,μm1].\underline{\theta}(\Lambda)=\binom{\tau+m_{2},b_{1},b_{2},\ldots,b_{m_{2}}}{a_{1},a_{2},\ldots,a_{m_{1}}},\qquad\Upsilon(\underline{\theta}(\Lambda))=\genfrac{[}{]}{0.0pt}{}{\tau,\nu_{1},\nu_{2},\ldots,\nu_{m_{2}}}{\mu_{1},\mu_{2},\ldots,\mu_{m_{1}}}.

    Now the proof is similar to that in case (1). The only difference is that the element τ+m1\tau+m_{1} is replaced by τ+m2\tau+m_{2}.

Example 4.13.

Consider the dual pair (Uk,Un)({\rm U}_{k},{\rm U}_{n}) with k=12d(d+1)k=\frac{1}{2}d(d+1) and n=12(d+1)(d+2)n=\frac{1}{2}(d+1)(d+2) where dd is a non-negative integer. Let ρd\rho_{d} denote the unipotent cuspidal character of Uk{\rm U}_{k}. It is known that

degq(ρd)=124(d1)d(d+1)(3d+2).\deg_{q}(\rho_{d})=\frac{1}{24}(d-1)d(d+1)(3d+2).

from [Lus77] (9.5.1). Note that ρd=ρΛd\rho_{d}=\rho_{\Lambda_{d}} where symbol Λd\Lambda_{d} is given in the proof of Lemma 4.6. It is easy to check that θ¯(ρd)=ρd+1\underline{\theta}(\rho_{d})=\rho_{d+1} for the dual pair (Uk,Un)({\rm U}_{k},{\rm U}_{n}), and then

degq(ρd)+k(nk)\displaystyle\deg_{q}(\rho_{d})+k(n-k) =124(d1)d(d+1)(3d+2)+12d(d+1)2\displaystyle=\frac{1}{24}(d-1)d(d+1)(3d+2)+\frac{1}{2}d(d+1)^{2}
=124d(d+1)(d+2)(3d+5)\displaystyle=\frac{1}{24}d(d+1)(d+2)(3d+5)
=degq(ρd+1).\displaystyle=\deg_{q}(\rho_{d+1}).

5. Degree Differences in the Eta Correspondence

5.1. Lusztig correspondence for symplectic or orthogonal groups

Let G be a symplectic group or an orthogonal group. For s(G)0s\in(G^{*})^{0}, we define

(5.1) G(0)=G(0)(s)=λ{λ1,,λn},λ±1G[λ](s);G()=G()(s)=G[1](s);G(+)=G(+)(s)={(G[1](s)),if G is symplectic;G[1](s),otherwise,\displaystyle\begin{split}\text{\bf G}^{(0)}=\text{\bf G}^{(0)}(s)&=\prod_{\langle\lambda\rangle\subset\{\lambda_{1},\ldots,\lambda_{n}\},\ \lambda\neq\pm 1}\text{\bf G}_{[\lambda]}(s);\\ \text{\bf G}^{(-)}=\text{\bf G}^{(-)}(s)&=\text{\bf G}_{[-1]}(s);\\ \text{\bf G}^{(+)}=\text{\bf G}^{(+)}(s)&=\begin{cases}(\text{\bf G}_{[1]}(s))^{*},&\text{if $\text{\bf G}$ is symplectic};\\ \text{\bf G}_{[1]}(s),&\text{otherwise},\end{cases}\end{split}

where G[λ](s)\text{\bf G}_{[\lambda]}(s) is given in [AMR96] subsection 1.B (see also [Pan19b] subsection 2.2). One can see that

  • if G=Okϵ\text{\bf G}={\rm O}^{\epsilon}_{k} where kk is even, then G()=Ok()ϵ\text{\bf G}^{(-)}={\rm O}^{\epsilon^{\prime}}_{k^{(-)}}, and G(+)=Ok(+)ϵϵ\text{\bf G}^{(+)}={\rm O}^{\epsilon^{\prime}\epsilon}_{k^{(+)}} where k(),k(+)k^{(-)},k^{(+)} are even;

  • if G=Spk\text{\bf G}={\rm Sp}_{k}, then G()=Ok()ϵ\text{\bf G}^{(-)}={\rm O}^{\epsilon^{\prime}}_{k^{(-)}}, and G(+)=Spk(+)\text{\bf G}^{(+)}={\rm Sp}_{k^{(+)}} where k(),k(+)k^{(-)},k^{(+)} are even;

  • if G=Ok\text{\bf G}={\rm O}_{k} where kk is odd, then G()=Spk()\text{\bf G}^{(-)}={\rm Sp}_{k^{(-)}}, and G(+)=Spk(+)\text{\bf G}^{(+)}={\rm Sp}_{k^{(+)}} where k(),k(+)k^{(-)},k^{(+)} are even,

for some ϵ=+\epsilon^{\prime}=+ or - and some k(),k(+)k^{(-)},k^{(+)} all depending on ss. Note that k()+k(+)kk^{(-)}+k^{(+)}\leq k for the first two cases above, and k()+k(+)k1k^{(-)}+k^{(+)}\leq k-1 if G=Ok\text{\bf G}={\rm O}_{k} is an odd orthogonal group. Then we have a (modified) Lusztig correspondence

Ξs:(G)s\displaystyle\Xi_{s}\colon{\mathcal{E}}(G)_{s} (G(0)(s)×G()(s)×G(+)(s))1\displaystyle\rightarrow{\mathcal{E}}(G^{(0)}(s)\times G^{(-)}(s)\times G^{(+)}(s))_{1}
ρ\displaystyle\rho ρ(0)ρΛ()ρΛ(+)\displaystyle\mapsto\rho^{(0)}\otimes\rho_{\Lambda^{(-)}}\otimes\rho_{\Lambda^{(+)}}

where Λ()𝒮G()\Lambda^{(-)}\in{\mathcal{S}}_{\text{\bf G}^{(-)}} and Λ(+)𝒮G(+)\Lambda^{(+)}\in{\mathcal{S}}_{\text{\bf G}^{(+)}}. The mapping Ξs\Xi_{s} is two-to-one, more precisely Ξs(ρ)=Ξs(ρsgn)\Xi_{s}(\rho)=\Xi_{s}(\rho\cdot{\rm sgn}) when G is an odd-orthogonal group; and Ξs\Xi_{s} is a bijection otherwise.

Let (G,G)=(Okϵ,Spn)(\text{\bf G},\text{\bf G}^{\prime})=({\rm O}^{\epsilon}_{k},{\rm Sp}_{n}) or (Spk,Onϵ)({\rm Sp}_{k},{\rm O}^{\epsilon}_{n}), and let \ell be a non-negative integer. Now we define the \ell-admissibility of ρ(G)\rho\in{\mathcal{E}}(G) according the following cases:

  1. (I)

    Suppose that G=Spk\text{\bf G}={\rm Sp}_{k} where kk is even, \ell is even. Now G()=Ok()ϵ\text{\bf G}^{(-)}={\rm O}^{\epsilon^{\prime}}_{k^{(-)}} for some ϵ=+\epsilon^{\prime}=+ or -, and G(+)=Spk(+)\text{\bf G}^{(+)}={\rm Sp}_{k^{(+)}}. Then ρ(G)\rho\in{\mathcal{E}}(G) is called \ell-admissible for the dual pair (G,G)(\text{\bf G},\text{\bf G}^{\prime}) if

    • ρΛ()\rho_{\Lambda^{(-)}} is \ell-admissible for (G(),Speven)(\text{\bf G}^{(-)},{\rm Sp}_{\rm even}) and

    • ρΛ(+)\rho_{\Lambda^{(+)}} is \ell-admissible for (G(+),Oevenϵ)(\text{\bf G}^{(+)},{\rm O}^{\epsilon^{\prime}}_{\rm even}) given in (3.7).

  2. (II)

    Suppose that G=Spk\text{\bf G}={\rm Sp}_{k} where kk is even, \ell is odd. Now G()=Ok()ϵ\text{\bf G}^{(-)}={\rm O}^{\epsilon^{\prime}}_{k^{(-)}} for some ϵ=+\epsilon^{\prime}=+ or -, and G(+)=Spk(+)\text{\bf G}^{(+)}={\rm Sp}_{k^{(+)}}. Then ρ(G)\rho\in{\mathcal{E}}(G) is called \ell-admissible for the dual pair (G,G)(\text{\bf G},\text{\bf G}^{\prime}) if

    • ρΛ()\rho_{\Lambda^{(-)}} is (1)(\ell-1)-admissible for (G(),Speven)(\text{\bf G}^{(-)},{\rm Sp}_{\rm even}) and

    • ρΛ(+)\rho_{\Lambda^{(+)}} is (1)(\ell-1)-admissible for (G(+),Oevenϵ)(\text{\bf G}^{(+)},{\rm O}^{\epsilon^{\prime}}_{\rm even}).

  3. (III)

    Suppose that G=Okϵ\text{\bf G}={\rm O}^{\epsilon}_{k} where kk is even, \ell is even. Then both G(),G(+)\text{\bf G}^{(-)},\text{\bf G}^{(+)} are even-orthogonal groups. Then ρ(G)\rho\in{\mathcal{E}}(G) is called \ell-admissible for the dual pair (G,G)(\text{\bf G},\text{\bf G}^{\prime}) if

    • ρΛ()\rho_{\Lambda^{(-)}} is \ell-admissible for (G(),Speven)(\text{\bf G}^{(-)},{\rm Sp}_{\rm even}) and

    • ρΛ(+)\rho_{\Lambda^{(+)}} is \ell-admissible for (G(+),Speven)(\text{\bf G}^{(+)},{\rm Sp}_{\rm even}).

  4. (IV)

    Suppose that G=Ok\text{\bf G}={\rm O}_{k} where kk is odd, \ell is odd. Now G()=Spk()\text{\bf G}^{(-)}={\rm Sp}_{k^{(-)}}, and G(+)=Spk(+)\text{\bf G}^{(+)}={\rm Sp}_{k^{(+)}}. Let ρ(G)\rho\in{\mathcal{E}}(G). Because now GSOk(q)×{±1}G\simeq{\rm SO}_{k}(q)\times\{\pm 1\}, we can write ρρ1ρ2\rho\simeq\rho_{1}\otimes\rho_{2} where ρ1(SOk(q))\rho_{1}\in{\mathcal{E}}({\rm SO}_{k}(q)) and ρ2({±1})\rho_{2}\in{\mathcal{E}}(\{\pm 1\}). Let ϵ=+\epsilon^{\prime}=+ of ρ2=𝟏\rho_{2}=\bf 1 and ϵ=\epsilon^{\prime}=- if ρ2=sgn\rho_{2}={\rm sgn}. Then ρ(G)\rho\in{\mathcal{E}}(G) is called \ell-admissible for the dual pair (G,G)(\text{\bf G},\text{\bf G}^{\prime}) if

    • ρΛ()\rho_{\Lambda^{(-)}} is (+1)(\ell+1)-admissible for (G(),Oevenϵ)(\text{\bf G}^{(-)},{\rm O}^{\epsilon^{\prime}}_{\rm even}) and

    • ρΛ(+)\rho_{\Lambda^{(+)}} is (1)(\ell-1)-admissible for (G(+),Oevenϵ)(\text{\bf G}^{(+)},{\rm O}^{\epsilon^{\prime}}_{\rm even}).

Note that the case when G=Okϵ\text{\bf G}={\rm O}^{\epsilon}_{k} and k+k+\ell is odd is undefined. It is clear that if ρ\rho is \ell-admissible then it is also \ell^{\prime}-admissible (if it is defined) for any \ell^{\prime}\geq\ell.

Lemma 5.2.

If the dual pair (G,G)=(Spk,Onϵ)(\text{\bf G},\text{\bf G}^{\prime})=({\rm Sp}_{k},{\rm O}^{\epsilon}_{n}) or (Okϵ,Spn)({\rm O}^{\epsilon}_{k},{\rm Sp}_{n}) is in stable range, then every irreducible character ρ(G)\rho\in{\mathcal{E}}(G) is (nk)(n-k)-admissible.

Proof.

Suppose that (G,G)(\text{\bf G},\text{\bf G}^{\prime}) is in stable range, ρ(G)s\rho\in{\mathcal{E}}(G)_{s} for some ss, and write Ξs(ρ)=ρ(0)ρΛ()ρΛ(+)\Xi_{s}(\rho)=\rho^{(0)}\otimes\rho_{\Lambda^{(-)}}\otimes\rho_{\Lambda^{(+)}}.

  1. (1)

    Suppose that (G,G)=(Spk,Onϵ)(\text{\bf G},\text{\bf G}^{\prime})=({\rm Sp}_{k},{\rm O}^{\epsilon}_{n}) and nn is even. Now nkn-k is even and knkk\leq n-k. Now both k(ε)knkk^{(\varepsilon)}\leq k\leq n-k, and so ρΛ(ε)\rho_{\Lambda^{(\varepsilon)}} is (nk)(n-k)-admissible by Lemma 3.9 for both ε=+\varepsilon=+ and -.

  2. (2)

    Suppose that (G,G)=(Spk,On)(\text{\bf G},\text{\bf G}^{\prime})=({\rm Sp}_{k},{\rm O}_{n}) and nn is odd. Now nkn-k is odd and knk1k\leq n-k-1. Now both k(ε)knk1k^{(\varepsilon)}\leq k\leq n-k-1, and so ρΛ(ε)\rho_{\Lambda^{(\varepsilon)}} is (nk1)(n-k-1)-admissible by Lemma 3.9 for both ε=+\varepsilon=+ and -.

  3. (3)

    Suppose that (G,G)=(Okϵ,Spn)(\text{\bf G},\text{\bf G}^{\prime})=({\rm O}^{\epsilon}_{k},{\rm Sp}_{n}) and kk is even. Now nkn-k is even and knkk\leq n-k. Now both k(ε)knkk^{(\varepsilon)}\leq k\leq n-k, and so ρΛ(ε)\rho_{\Lambda^{(\varepsilon)}} is (nk)(n-k)-admissible by Lemma 3.9 for both ε=+\varepsilon=+ and -.

  4. (4)

    Suppose that (G,G)=(Ok,Spn)(\text{\bf G},\text{\bf G}^{\prime})=({\rm O}_{k},{\rm Sp}_{n}) and kk is odd. Now nkn-k is odd and knkk\leq n-k. Now both k(ε)k1nk1k^{(\varepsilon)}\leq k-1\leq n-k-1, and so ρΛ(ε)\rho_{\Lambda^{(\varepsilon)}} is (nk1)(n-k-1)-admissible by Lemma 3.9 for both ε=+\varepsilon=+ and -.

For all cases, we conclude that ρ\rho is (nk)(n-k)-admissible from the definition above. ∎

Now Lemma 3.13 can be generalized to any irreducible characters:

Lemma 5.3.

Consider the dual pair (G,G)=(Okϵ,Spn)(\text{\bf G},\text{\bf G}^{\prime})=({\rm O}^{\epsilon}_{k},{\rm Sp}_{n}) or (Spk,Onϵ)({\rm Sp}_{k},{\rm O}^{\epsilon}_{n}) where knk\leq n and ϵ=+\epsilon=+ or -. If ρ(G)\rho\in{\mathcal{E}}(G) is (nk)(n-k)-admissible, then θ¯(ρ)\underline{\theta}(\rho) is defined and of Θ\Theta-rank kk.

Proof.

Suppose that ρ(G)s\rho\in{\mathcal{E}}(G)_{s} for some ss is (nk)(n-k)-admissible. Write Ξs(ρ)=ρ(0)ρΛ()ρΛ(+)\Xi_{s}(\rho)=\rho^{(0)}\otimes\rho_{\Lambda^{(-)}}\otimes\rho_{\Lambda^{(+)}}. Now we consider the following cases:

  1. (1)

    Suppose that (G,G)=(Spk,Onϵ)(\text{\bf G},\text{\bf G}^{\prime})=({\rm Sp}_{k},{\rm O}^{\epsilon}_{n}) where both k,nk,n are even and knk\leq n. By the definition above, both ρΛ(),ρΛ(+)\rho_{\Lambda^{(-)}},\rho_{\Lambda^{(+)}} are (nk)(n-k)-admissible. Now G()=Ok()ϵ\text{\bf G}^{(-)}={\rm O}^{\epsilon^{\prime}}_{k^{(-)}} and G(+)=Spk(+)\text{\bf G}^{(+)}={\rm Sp}_{k^{(+)}} for some ϵ=+\epsilon^{\prime}=+ or - depending on ss. Now ss is conjugate to an element of the form (t,1k(+))(t,1_{k^{(+)}}) where tt does not have eigenvalue 11. Let n(+)n^{(+)} be such that n(+)k(+)=nkn^{(+)}-k^{(+)}=n-k and so the unipotent character ρΛ(+)\rho_{\Lambda^{(+)}} is (n(+)k(+))(n^{(+)}-k^{(+)})-admissible. Then θ¯(ρΛ(+))=ρθ¯(Λ(+))\underline{\theta}(\rho_{\Lambda^{(+)}})=\rho_{\underline{\theta}(\Lambda^{(+)})} is defined for the dual pair (Spk(+),On(+)ϵϵ)({\rm Sp}_{k^{(+)}},{\rm O}^{\epsilon^{\prime}\epsilon}_{n^{(+)}}). Hence θ¯(ρ)\underline{\theta}(\rho) is defined for the dual pair (G,G)(\text{\bf G},\text{\bf G}^{\prime}) for some sGs^{\prime}\in G^{\prime*} via the following commutative diagram

    (5.4) ρθ¯θ¯(ρ)ΞsΞsρ(0)ρΛ()ρΛ(+)ididθ¯ρ(0)ρΛ()ρθ¯(Λ(+))\begin{CD}\rho @>{\underline{\theta}}>{}>\underline{\theta}(\rho)\\ @V{\Xi_{s}}V{}V@V{}V{\Xi_{s^{\prime}}}V\\ \rho^{(0)}\otimes\rho_{\Lambda^{(-)}}\otimes\rho_{\Lambda^{(+)}}@>{{\rm id}\otimes{\rm id}\otimes\underline{\theta}}>{}>\rho^{(0)}\otimes\rho_{\Lambda^{(-)}}\otimes\rho_{\underline{\theta}(\Lambda^{(+)})}\\ \end{CD}

    where ss^{\prime} is an element of the form (t,1n(+))(t,1_{n^{(+)}}) so that G(0)G(0)\text{\bf G}^{(0)}\simeq\text{\bf G}^{\prime(0)}, G()G()\text{\bf G}^{(-)}\simeq\text{\bf G}^{\prime(-)} and (G(+),G(+))=(Spk(+),On(+)ϵϵ)(\text{\bf G}^{(+)},\text{\bf G}^{\prime(+)})=({\rm Sp}_{k^{(+)}},{\rm O}^{\epsilon^{\prime}\epsilon}_{n^{(+)}}).

    As in the proof of Lemma 3.13, the (n(+)k(+))(n^{(+)}-k^{(+)})-admissibility of ρΛ(+)\rho_{\Lambda^{(+)}} implies that both unipotent characters θ¯(ρΛ(+)),θ¯(ρΛ(+))sgn\underline{\theta}(\rho_{\Lambda^{(+)}}),\underline{\theta}(\rho_{\Lambda^{(+)}}){\rm sgn} of On(+)ϵϵ(q){\rm O}^{\epsilon^{\prime}\epsilon}_{n^{(+)}}(q) do not occur in the Θ\Theta-correspondence for the dual pair (Spk(+),On(+)ϵϵ)({\rm Sp}_{k^{\prime(+)}},{\rm O}^{\epsilon^{\prime}\epsilon}_{n^{(+)}}) for any k(+)<k(+)k^{\prime(+)}<k^{(+)}. Hence by [Pan19b] theorem 6.9 and remark 6.10, we see that both irreducible characters θ¯(ρ),θ¯(ρ)sgn\underline{\theta}(\rho),\underline{\theta}(\rho){\rm sgn} of Onϵ(q){\rm O}^{\epsilon}_{n}(q) do not occur in the Θ\Theta-correspondence for the dual pair (Spk,Onϵ)({\rm Sp}_{k^{\prime}},{\rm O}^{\epsilon}_{n}) for any k<kk^{\prime}<k.

    We know that θ¯(ρ)χOnϵ(G)s\underline{\theta}(\rho)\chi_{{\rm O}^{\epsilon}_{n}}\in{\mathcal{E}}(G^{\prime})_{-s^{\prime}}, and if we write

    Ξs(θ¯(ρ)χOnϵ)=ρ(0)ρΛ()ρΛ(+),\Xi_{-s^{\prime}}(\underline{\theta}(\rho)\chi_{{\rm O}^{\epsilon}_{n}})=\rho^{\prime(0)}\otimes\rho_{\Lambda^{\prime(-)}}\otimes\rho_{\Lambda^{\prime(+)}},

    then we have Λ()=θ¯(Λ(+))\Lambda^{\prime(-)}=\underline{\theta}(\Lambda^{(+)}) and Λ(+)=Λ()\Lambda^{\prime(+)}=\Lambda^{(-)}. By the same argument as in the previous paragraph, the (n()k())(n^{(-)}-k^{(-)})-admissibility of ρΛ()\rho_{\Lambda^{(-)}} implies that both θ¯(ρ)χOnϵ,θ¯(ρ)χOnϵsgn\underline{\theta}(\rho)\chi_{{\rm O}^{\epsilon}_{n}},\underline{\theta}(\rho)\chi_{{\rm O}^{\epsilon}_{n}}{\rm sgn} of Onϵ(q){\rm O}^{\epsilon}_{n}(q) do not occur in the Θ\Theta-correspondence for the dual pair (Spk′′,Onϵ)({\rm Sp}_{k^{\prime\prime}},{\rm O}^{\epsilon}_{n}) for any k′′<kk^{\prime\prime}<k.

  2. (2)

    Suppose that (G,G)=(Spk,On)(\text{\bf G},\text{\bf G}^{\prime})=({\rm Sp}_{k},{\rm O}_{n}) where kk is even, nn is odd, and knk\leq n. By definition, now both ρΛ(),ρΛ(+)\rho_{\Lambda^{(-)}},\rho_{\Lambda^{(+)}} are (nk1)(n-k-1)-admissible. Now G()=Ok()ϵ\text{\bf G}^{(-)}={\rm O}^{\epsilon^{\prime}}_{k^{(-)}} and G(+)=Spk(+)\text{\bf G}^{(+)}={\rm Sp}_{k^{(+)}} for some ϵ=+\epsilon^{\prime}=+ or - depending on ss. Note that now both k(),k(+)k^{(-)},k^{(+)} are even. Let n()n^{(-)} be an even integer such that n()k()=nk1n^{(-)}-k^{(-)}=n-k-1 and so the unipotent character ρΛ()\rho_{\Lambda^{(-)}} is (n()k())(n^{(-)}-k^{(-)})-admissible. Then θ¯(ρΛ())=ρθ¯(Λ())\underline{\theta}(\rho_{\Lambda^{(-)}})=\rho_{\underline{\theta}(\Lambda^{(-)})} is defined for the dual pair (Ok()ϵ,Spn())({\rm O}^{\epsilon^{\prime}}_{k^{(-)}},{\rm Sp}_{n^{(-)}}). Hence θ¯(ρ)\underline{\theta}(\rho) is defined for the dual pair (Spk,On)({\rm Sp}_{k},{\rm O}_{n}) via the following commutative diagram

    (5.5) ρθ¯θ¯(ρ)ΞsιΞsρ(0)ρΛ()ρΛ(+)idθ¯idρ(0)ρθ¯(Λ())ρΛ()\begin{CD}\rho @>{\underline{\theta}}>{}>\underline{\theta}(\rho)\\ @V{\Xi_{s}}V{}V@V{}V{\iota\circ\Xi_{s^{\prime}}}V\\ \rho^{(0)}\otimes\rho_{\Lambda^{(-)}}\otimes\rho_{\Lambda^{(+)}}@>{{\rm id}\otimes\underline{\theta}\otimes{\rm id}}>{}>\rho^{(0)}\otimes\rho_{\underline{\theta}(\Lambda^{(-)})}\otimes\rho_{\Lambda^{(-)}}\\ \end{CD}

    where sGs^{\prime}\in G^{\prime*} is an element so that G(0)G(0)\text{\bf G}^{(0)}\simeq\text{\bf G}^{\prime(0)}, (G(),G(+))=(Ok()ϵ,Spn(+))(\text{\bf G}^{(-)},\text{\bf G}^{\prime(+)})=({\rm O}^{\epsilon^{\prime}}_{k^{(-)}},{\rm Sp}_{n^{(+)}}), and G(+)G()\text{\bf G}^{(+)}\simeq\text{\bf G}^{\prime(-)}, and ι(ρ(0)ρ()ρ(+))=ρ(0)ρ(+)ρ()\iota(\rho^{(0)}\otimes\rho^{(-)}\otimes\rho^{(+)})=\rho^{(0)}\otimes\rho^{(+)}\otimes\rho^{(-)}. The remaining argument is similar to that in case (1).

  3. (3)

    Suppose that (G,G)=(Okϵ,Spn)(\text{\bf G},\text{\bf G}^{\prime})=({\rm O}^{\epsilon}_{k},{\rm Sp}_{n}) where both k,nk,n are even and knk\leq n. Now both ρΛ(),ρΛ(+)\rho_{\Lambda^{(-)}},\rho_{\Lambda^{(+)}} are (nk)(n-k)-admissible. Moreover G()=Ok()ϵ\text{\bf G}^{(-)}={\rm O}^{\epsilon^{\prime}}_{k^{(-)}} and G(+)=Ok(+)ϵϵ\text{\bf G}^{(+)}={\rm O}^{\epsilon^{\prime}\epsilon}_{k^{(+)}} for some ϵ=+\epsilon^{\prime}=+ or - depending on ss. Let n(+)n^{(+)} be such that n(+)k(+)=nkn^{(+)}-k^{(+)}=n-k and so the unipotent character ρΛ(+)\rho_{\Lambda^{(+)}} is (n(+)k(+))(n^{(+)}-k^{(+)})-admissible. Then θ¯(ρΛ(+))=ρθ¯(Λ(+))\underline{\theta}(\rho_{\Lambda^{(+)}})=\rho_{\underline{\theta}(\Lambda^{(+)})} is defined for the dual pair (Spk(+),On(+)ϵϵ)({\rm Sp}_{k^{(+)}},{\rm O}^{\epsilon^{\prime}\epsilon}_{n^{(+)}}). Hence θ¯(ρ)\underline{\theta}(\rho) is defined for the dual pair (Okϵ,Spn)({\rm O}^{\epsilon}_{k},{\rm Sp}_{n}) via the same diagram (5.4) where ss^{\prime} is an element so that G(0)G(0)\text{\bf G}^{(0)}\simeq\text{\bf G}^{\prime(0)}, G()G()\text{\bf G}^{(-)}\simeq\text{\bf G}^{\prime(-)} and (G(+),G(+))=(Ok(+)ϵϵ,Spn(+))(\text{\bf G}^{(+)},\text{\bf G}^{\prime(+)})=({\rm O}^{\epsilon^{\prime}\epsilon}_{k^{(+)}},{\rm Sp}_{n^{(+)}}).

    As in the proof of Lemma 3.13, the (n(+)k(+))(n^{(+)}-k^{(+)})-admissibility of ρΛ(+)\rho_{\Lambda^{(+)}} implies that θ¯(ρΛ(+))\underline{\theta}(\rho_{\Lambda^{(+)}}) of Spn(+)(q){\rm Sp}_{n^{(+)}}(q) does not occur in the Θ\Theta-correspondence for the dual pair (Ok(+)ϵ′′,Spn(+))({\rm O}^{\epsilon^{\prime\prime}}_{k^{\prime(+)}},{\rm Sp}_{n^{(+)}}) for any ϵ′′=+\epsilon^{\prime\prime}=+ or - and any even k(+)<k(+)k^{\prime(+)}<k^{(+)}. Hence we see that the irreducible characters θ¯(ρ)\underline{\theta}(\rho) of Spn(q){\rm Sp}_{n}(q) does not occur in the Θ\Theta-correspondence for the dual pair (Okϵ′′,Spn)({\rm O}^{\epsilon^{\prime\prime}}_{k^{\prime}},{\rm Sp}_{n}) for any ϵ′′=+\epsilon^{\prime\prime}=+ or - and any even integer kk^{\prime} such that k<kk^{\prime}<k.

    Similarly, from diagram (5.5), the (n()k())(n^{(-)}-k^{(-)})-admissibility of ρΛ()\rho_{\Lambda^{(-)}} implies that the θ¯(ρ)\underline{\theta}(\rho) of Spn(q){\rm Sp}_{n}(q) does not occur in the Θ\Theta-correspondence for the dual pair (Ok′′ϵ′′,Spn)({\rm O}^{\epsilon^{\prime\prime}}_{k^{\prime\prime}},{\rm Sp}_{n}) for any ϵ′′=+\epsilon^{\prime\prime}=+ or - and any odd integer k′′k^{\prime\prime} such that k′′<kk^{\prime\prime}<k.

  4. (4)

    Suppose that (G,G)=(Okϵ,Spn)(\text{\bf G},\text{\bf G}^{\prime})=({\rm O}^{\epsilon}_{k},{\rm Sp}_{n}) where kk is odd, nn is even, and knk\leq n. By definition, now ρΛ()\rho_{\Lambda^{(-)}} is (nk+1)(n-k+1)-admissible and ρΛ(+)\rho_{\Lambda^{(+)}} is (nk1)(n-k-1)-admissible. Now G()=Spk()\text{\bf G}^{(-)}={\rm Sp}_{k^{(-)}} and G(+)=Spk(+)\text{\bf G}^{(+)}={\rm Sp}_{k^{(+)}}. Let n()n^{(-)} be such that n()k()=nk+1n^{(-)}-k^{(-)}=n-k+1 and so the unipotent character ρΛ()\rho_{\Lambda^{(-)}} is (n()k())(n^{(-)}-k^{(-)})-admissible. Then θ¯(ρΛ())=ρθ¯(Λ())\underline{\theta}(\rho_{\Lambda^{(-)}})=\rho_{\underline{\theta}(\Lambda^{(-)})} is defined for the dual pair (Spk(),On()ϵ)({\rm Sp}_{k^{(-)}},{\rm O}^{\epsilon^{\prime}}_{n^{(-)}}). Hence θ¯(ρ)\underline{\theta}(\rho) is defined for the dual pair (Okϵ,Spn)({\rm O}^{\epsilon}_{k},{\rm Sp}_{n}) via the commutative diagram

    ρθ¯θ¯(ρ)ιΞsΞsρ(0)ρΛ(+)ρΛ()idθ¯idρ(0)ρθ¯(Λ(+))ρΛ(+)\begin{CD}\rho @>{\underline{\theta}}>{}>\underline{\theta}(\rho)\\ @V{\iota\circ\Xi_{s}}V{}V@V{}V{\Xi_{s^{\prime}}}V\\ \rho^{(0)}\otimes\rho_{\Lambda^{(+)}}\otimes\rho_{\Lambda^{(-)}}@>{{\rm id}\otimes\underline{\theta}\otimes{\rm id}}>{}>\rho^{(0)}\otimes\rho_{\underline{\theta}(\Lambda^{(+)})}\otimes\rho_{\Lambda^{(+)}}\\ \end{CD}

    where ss^{\prime} is an element so that G(0)G(0)\text{\bf G}^{(0)}\simeq\text{\bf G}^{\prime(0)}, (G(+),G())=(Spk(+),On()ϵ)(\text{\bf G}^{(+)},\text{\bf G}^{\prime(-)})=({\rm Sp}_{k^{(+)}},{\rm O}^{\epsilon^{\prime}}_{n^{(-)}}), and G()G(+)\text{\bf G}^{(-)}\simeq\text{\bf G}^{\prime(+)}.

    As in the proof as above, the (nk+1)(n-k+1)-admissibility of ρΛ()\rho_{\Lambda^{(-)}} implies that the irreducible characters θ¯(ρ)\underline{\theta}(\rho) of Spn(q){\rm Sp}_{n}(q) does not occur in the Θ\Theta-correspondence for the dual pair (Okϵ′′,Spn)({\rm O}^{\epsilon^{\prime\prime}}_{k^{\prime}},{\rm Sp}_{n}) for any ϵ′′=+\epsilon^{\prime\prime}=+ or - and any odd integer kk^{\prime} such that k<kk^{\prime}<k. Moreover, the (nk1)(n-k-1)-admissibility of ρΛ(+)\rho_{\Lambda^{(+)}} implies that the irreducible characters θ¯(ρ)\underline{\theta}(\rho) of Spn(q){\rm Sp}_{n}(q) does not occur in the Θ\Theta-correspondence for the dual pair (Ok′′ϵ′′,Spn)({\rm O}^{\epsilon^{\prime\prime}}_{k^{\prime\prime}},{\rm Sp}_{n}) for any ϵ′′=+\epsilon^{\prime\prime}=+ or - and any even integer k′′k^{\prime\prime} such that k′′<kk^{\prime\prime}<k.

For all cases, we conclude that Θ-rk(θ¯(ρ))=k\Theta\text{\rm-rk}(\underline{\theta}(\rho))=k. ∎

Proposition 5.6.

Suppose that both n,kn,k are non-negative integers such that kk is even and knk\leq n. Then ρ(Onϵ(q))\rho^{\prime}\in{\mathcal{E}}({\rm O}^{\epsilon}_{n}(q)) is of Θ\Theta-rank kk if and only if there is a linear character χ\chi of Onϵ(q){\rm O}^{\epsilon}_{n}(q) such that ρχ=θ¯(ρ)\rho^{\prime}\chi=\underline{\theta}(\rho) for some (nk)(n-k)-admissible character ρ(Spk(q))\rho\in{\mathcal{E}}({\rm Sp}_{k}(q)).

Proof.

Let ρ\rho^{\prime} be an irreducible character of Onϵ(q){\rm O}^{\epsilon}_{n}(q). Suppose that there is an (nk)(n-k)-admissible irreducible character ρ\rho of Spk(q){\rm Sp}_{k}(q) and a linear character χ\chi of Onϵ(q){\rm O}^{\epsilon}_{n}(q) such that θ¯(ρ)=ρχ\underline{\theta}(\rho)=\rho^{\prime}\chi. By Lemma 5.3, we know that Θ-rk(ρχ)=k\Theta\text{\rm-rk}(\rho^{\prime}\chi)=k and hence Θ-rk(ρ)=k\Theta\text{\rm-rk}(\rho^{\prime})=k.

Conversely, suppose that ρ(Onϵ(q))\rho^{\prime}\in{\mathcal{E}}({\rm O}^{\epsilon}_{n}(q)) such that Θ-rk(ρ)=k\Theta\text{\rm-rk}(\rho^{\prime})=k. From [Pan21a] we know that there exists a linear character χ\chi of Onϵ(q){\rm O}^{\epsilon}_{n}(q) such that ρχ=θ¯(ρ)\rho^{\prime}\chi=\underline{\theta}(\rho) for some ρ(Spk(q))\rho\in{\mathcal{E}}({\rm Sp}_{k}(q)). Now we need to show that ρ\rho is (nk)(n-k)-admissible. Suppose that ρ(Spk(q))s\rho\in{\mathcal{E}}({\rm Sp}_{k}(q))_{s} for some ss and write Ξs(ρ)=ρ(0)ρΛ()ρΛ(+)\Xi_{s}(\rho)=\rho^{(0)}\otimes\rho_{\Lambda^{(-)}}\otimes\rho_{\Lambda^{(+)}} where Λ()𝒮Ok()ϵ\Lambda^{(-)}\in{\mathcal{S}}_{{\rm O}^{\epsilon^{\prime}}_{k^{(-)}}} and Λ(+)𝒮Spk(+)\Lambda^{(+)}\in{\mathcal{S}}_{{\rm Sp}_{k^{(+)}}} for some ϵ=+\epsilon^{\prime}=+ or - depending on ss.

  1. (1)

    Suppose that nn is even. If ρΛ(+)\rho_{\Lambda^{(+)}} is not (nk)(n-k)-admissible, then by the proof of Proposition 3.14 we see that ρχ\rho^{\prime}\chi or ρχsgn\rho^{\prime}\chi{\rm sgn} have Θ\Theta-rank less than kk. Similarly, if ρΛ()\rho_{\Lambda^{(-)}} is not (nk)(n-k)-admissible, then ρχχOnϵ\rho^{\prime}\chi\chi_{{\rm O}^{\epsilon}_{n}} or ρχχOnϵsgn\rho^{\prime}\chi\chi_{{\rm O}^{\epsilon}_{n}}{\rm sgn} will have Θ\Theta-rank less than kk.

  2. (2)

    Suppose that nn is odd. If ρΛ()\rho_{\Lambda^{(-)}} is not (nk1)(n-k-1)-admissible, then ρχ\rho^{\prime}\chi or ρχsgn\rho^{\prime}\chi{\rm sgn} will have Θ\Theta-rank less than kk. Similarly, if ρΛ(+)\rho_{\Lambda^{(+)}} is not (nk1)(n-k-1)-admissible, then ρχχOnϵ\rho^{\prime}\chi\chi_{{\rm O}^{\epsilon}_{n}} or ρχχOnϵsgn\rho^{\prime}\chi\chi_{{\rm O}^{\epsilon}_{n}}{\rm sgn} will have Θ\Theta-rank less than kk.

Therefore, we conclude that ρ\rho must be (nk)(n-k)-admissible. ∎

Proposition 5.7.

Suppose that both n,kn,k are non-negative integers such that nn is even and knk\leq n. Then ρ(Spn(q))\rho^{\prime}\in{\mathcal{E}}({\rm Sp}_{n}(q)) is of Θ\Theta-rank kk is and only if ρ=θ¯(ρ)\rho^{\prime}=\underline{\theta}(\rho) for some (nk)(n-k)-admissible character ρ(Okϵ(q))\rho\in{\mathcal{E}}({\rm O}^{\epsilon}_{k}(q)) and some ϵ=+\epsilon=+ or -.

Proof.

Let ρ\rho^{\prime} be an irreducible character of Spn(q){\rm Sp}_{n}(q). Suppose that there is an (nk)(n-k)-admissible irreducible character ρ\rho of Okϵ(q){\rm O}^{\epsilon}_{k}(q) for ϵ=+\epsilon=+ or - such that θ¯(ρ)=ρ\underline{\theta}(\rho)=\rho^{\prime}. By Lemma 5.3, we know that Θ-rk(ρ)=k\Theta\text{\rm-rk}(\rho^{\prime})=k.

Conversely, suppose that ρ(Spn(q))\rho^{\prime}\in{\mathcal{E}}({\rm Sp}_{n}(q)) has Θ\Theta-rank kk. Then there is an orthogonal group Okϵ(q){\rm O}^{\epsilon}_{k}(q) and ρ(Okϵ(q))\rho\in{\mathcal{E}}({\rm O}^{\epsilon}_{k}(q)) such that θ¯(ρ)=ρ\underline{\theta}(\rho)=\rho^{\prime}. Suppose that ρ(Okϵ(q))s\rho\in{\mathcal{E}}({\rm O}^{\epsilon}_{k}(q))_{s} for some ss and write Ξs(ρ)=ρ(0)ρΛ()ρΛ(+)\Xi_{s}(\rho)=\rho^{(0)}\otimes\rho_{\Lambda^{(-)}}\otimes\rho_{\Lambda^{(+)}}.

  1. (1)

    Suppose that kk is even. Then Λ()𝒮Ok()ϵ\Lambda^{(-)}\in{\mathcal{S}}_{{\rm O}^{\epsilon^{\prime}}_{k^{(-)}}} and Λ(+)𝒮Ok(+)ϵϵ\Lambda^{(+)}\in{\mathcal{S}}_{{\rm O}^{\epsilon^{\prime}\epsilon}_{k^{(+)}}} for some ϵ=+\epsilon^{\prime}=+ or - depending on ss. If ρΛ(+)\rho_{\Lambda^{(+)}} is not (nk)(n-k)-admissible, then ρ\rho^{\prime} will occur in the Θ\Theta-correspondence for the dual pair (Okϵ,Spn)({\rm O}^{\epsilon}_{k^{\prime}},{\rm Sp}_{n}) for some even integer k<kk^{\prime}<k. Similarly, if ρΛ()\rho_{\Lambda^{(-)}} is not (nk)(n-k)-admissible, then ρ\rho^{\prime} will occur in the Θ\Theta-correspondence for the dual pair (Okϵ,Spn)({\rm O}^{\epsilon}_{k^{\prime}},{\rm Sp}_{n}) for some odd integer k<kk^{\prime}<k.

  2. (2)

    Suppose that kk is odd. Then Λ()𝒮Spk()\Lambda^{(-)}\in{\mathcal{S}}_{{\rm Sp}_{k^{(-)}}} and Λ(+)𝒮Spk(+)\Lambda^{(+)}\in{\mathcal{S}}_{{\rm Sp}_{k^{(+)}}}. If ρΛ(+)\rho_{\Lambda^{(+)}} is not (nk1)(n-k-1)-admissible, then ρ\rho^{\prime} will occur in the Θ\Theta-correspondence for the dual pair (Okϵ,Spn)({\rm O}^{\epsilon}_{k^{\prime}},{\rm Sp}_{n}) for some odd integer k<kk^{\prime}<k. Similarly, if ρΛ()\rho_{\Lambda^{(-)}} is not (nk+1)(n-k+1)-admissible, then ρ\rho^{\prime} will occur in the Θ\Theta-correspondence for the dual pair (Okϵ,Spn)({\rm O}^{\epsilon}_{k^{\prime}},{\rm Sp}_{n}) for some even integer k<kk^{\prime}<k.

Therefore, ρ\rho is (nk)(n-k)-admissible and so the proposition is proved. ∎

Now we generalize Proposition 3.16 to general irreducible characters.

Proposition 5.8.

Consider the dual pair (G,G)=(Okϵ,Spn)(\text{\bf G},\text{\bf G}^{\prime})=({\rm O}^{\epsilon}_{k},{\rm Sp}_{n}) or (Spk,Onϵ)({\rm Sp}_{k},{\rm O}^{\epsilon}_{n}) where knk\leq n. If ρ(G)\rho\in{\mathcal{E}}(G) is (nk)(n-k)-admissible, then

degq(θ¯(ρ))=degq(ρ)+{12k(nk+1),if (G,G)=(Okϵ,Spn);12k(nk1),if (G,G)=(Spk,Onϵ).\deg_{q}(\underline{\theta}(\rho))=\deg_{q}(\rho)+\begin{cases}\frac{1}{2}k(n-k+1),&\text{if\/ $(\text{\bf G},\text{\bf G}^{\prime})=({\rm O}^{\epsilon}_{k},{\rm Sp}_{n})$};\\ \frac{1}{2}k(n-k-1),&\text{if\/ $(\text{\bf G},\text{\bf G}^{\prime})=({\rm Sp}_{k},{\rm O}^{\epsilon}_{n})$}.\end{cases}
Proof.

For ρ(G)s\rho\in{\mathcal{E}}(G)_{s} for some ss, we write Ξs(ρ)=ρ(0)ρΛ()ρΛ(+)\Xi_{s}(\rho)=\rho^{(0)}\otimes\rho_{\Lambda^{(-)}}\otimes\rho_{\Lambda^{(+)}}. From [Lus84] 4.23 (see also [DM91] remark 13.24), it is known that

(5.9) ρ(1)=|G|p|G(0)|p|G()|p|G(+)|pρ(0)(1)ρΛ()(1)ρΛ(+)(1).\rho(1)=\frac{|G|_{p^{\prime}}}{|G^{(0)}|_{p^{\prime}}|G^{(-)}|_{p^{\prime}}|G^{(+)}|_{p^{\prime}}}\rho^{(0)}(1)\rho_{\Lambda^{(-)}}(1)\rho_{\Lambda^{(+)}}(1).
  1. (1)

    Suppose that (G,G)=(Okϵ,Spn)(\text{\bf G},\text{\bf G}^{\prime})=({\rm O}^{\epsilon}_{k},{\rm Sp}_{n}) or (Spk,Onϵ)({\rm Sp}_{k},{\rm O}^{\epsilon}_{n}) where both k,nk,n are even. Now we have a commutative diagram

    ρθ¯ρΞsΞsρ(0)ρΛ()ρΛ(+)ididθ¯ρ(0)ρΛ()ρΛ(+)\begin{CD}\rho @>{\underline{\theta}}>{}>\rho^{\prime}\\ @V{\Xi_{s}}V{}V@V{}V{\Xi_{s^{\prime}}}V\\ \rho^{(0)}\otimes\rho_{\Lambda^{(-)}}\otimes\rho_{\Lambda^{(+)}}@>{{\rm id}\otimes{\rm id}\otimes\underline{\theta}}>{}>\rho^{\prime(0)}\otimes\rho_{\Lambda^{\prime(-)}}\otimes\rho_{\Lambda^{\prime(+)}}\\ \end{CD}

    We know that G(0)G(0)\text{\bf G}^{(0)}\simeq\text{\bf G}^{\prime(0)}, ρ(0)=ρ(0)\rho^{(0)}=\rho^{\prime(0)} and G()G()\text{\bf G}^{(-)}\simeq\text{\bf G}^{\prime(-)}, ρΛ()=ρΛ()\rho_{\Lambda^{(-)}}=\rho_{\Lambda^{\prime(-)}}. Therefore by (5.9), we have

    degq(θ¯(ρ))degq(ρ)=degq(θ¯(ρΛ(+)))degq(ρΛ(+))+degq(|G|p)degq(|G|p)degq(|G(+)|p)+degq(|G(+)|p).\deg_{q}(\underline{\theta}(\rho))-\deg_{q}(\rho)=\deg_{q}(\underline{\theta}(\rho_{\Lambda^{(+)}}))-\deg_{q}(\rho_{\Lambda^{(+)}})\\ +\deg_{q}(|G^{\prime}|_{p^{\prime}})-\deg_{q}(|G|_{p^{\prime}})-\deg_{q}(|G^{\prime(+)}|_{p^{\prime}})+\deg_{q}(|G^{(+)}|_{p^{\prime}}).
    1. (a)

      Suppose that (G,G)=(Okϵ,Spn)(\text{\bf G},\text{\bf G}^{\prime})=({\rm O}^{\epsilon}_{k},{\rm Sp}_{n}). Then G(+)=Ok2lϵ\text{\bf G}^{(+)}={\rm O}^{\epsilon}_{k-2l} and G(+)=Spn2l\text{\bf G}^{\prime(+)}={\rm Sp}_{n-2l} for some non-negative integer ll. Hence by Proposition 3.16, we have

      degq(θ¯(ρΛ(+)))degq(ρΛ(+))\displaystyle\deg_{q}(\underline{\theta}(\rho_{\Lambda^{(+)}}))-\deg_{q}(\rho_{\Lambda^{(+)}}) =12(k2l)(n2l(k2l)+1),\displaystyle=\tfrac{1}{2}(k-2l)(n-2l-(k-2l)+1),
      degq(|G|p)degq(|G|p)\displaystyle\deg_{q}(|G^{\prime}|_{p^{\prime}})-\deg_{q}(|G|_{p^{\prime}}) =14n(n+2)14k2,\displaystyle=\tfrac{1}{4}n(n+2)-\tfrac{1}{4}k^{2},
      degq(|G(+)|p)+degq(|G(+)|p)\displaystyle-\deg_{q}(|G^{\prime(+)}|_{p^{\prime}})+\deg_{q}(|G^{(+)}|_{p^{\prime}}) =14(n2l)(n2l+21)+14(k2l)2.\displaystyle=-\tfrac{1}{4}(n-2l)(n-2l+21)+\tfrac{1}{4}(k-2l)^{2}.

      Therefore,

      degq(θ¯(ρ))degq(ρ)\displaystyle\deg_{q}(\underline{\theta}(\rho))-\deg_{q}(\rho)
      =12(k2l)(nk+1)+14n(n+2)14k214(n2l)(n2l+2)+14(k2l)2\displaystyle=\tfrac{1}{2}(k-2l)(n-k+1)+\tfrac{1}{4}n(n+2)-\tfrac{1}{4}k^{2}-\tfrac{1}{4}(n-2l)(n-2l+2)+\tfrac{1}{4}(k-2l)^{2}
      =12k(nk+1).\displaystyle=\tfrac{1}{2}k(n-k+1).
    2. (b)

      Suppose that (G,G)=(Spk,Onϵ)(\text{\bf G},\text{\bf G}^{\prime})=({\rm Sp}_{k},{\rm O}^{\epsilon}_{n}). Then G(+)=Spk2l\text{\bf G}^{(+)}={\rm Sp}_{k-2l} and G(+)=On2lϵ\text{\bf G}^{\prime(+)}={\rm O}^{\epsilon}_{n-2l} for some non-negative integer ll. Hence by Proposition 3.16, we have

      degq(θ¯(ρΛ(+)))degq(ρΛ(+))\displaystyle\deg_{q}(\underline{\theta}(\rho_{\Lambda^{(+)}}))-\deg_{q}(\rho_{\Lambda^{(+)}}) =12(k2l)(n2l(k2l)1),\displaystyle=\tfrac{1}{2}(k-2l)(n-2l-(k-2l)-1),
      degq(|G|p)degq(|G|p)\displaystyle\deg_{q}(|G^{\prime}|_{p^{\prime}})-\deg_{q}(|G|_{p^{\prime}}) =14n214k(k+2),\displaystyle=\tfrac{1}{4}n^{2}-\tfrac{1}{4}k(k+2),
      degq(|G(+)|p)+degq(|G(+)|p)\displaystyle-\deg_{q}(|G^{\prime(+)}|_{p^{\prime}})+\deg_{q}(|G^{(+)}|_{p^{\prime}}) =14(n2l)2+14(k2l)(k2l+2).\displaystyle=-\tfrac{1}{4}(n-2l)^{2}+\tfrac{1}{4}(k-2l)(k-2l+2).

      Therefore

      degq(θ¯(ρ))degq(ρ)\displaystyle\deg_{q}(\underline{\theta}(\rho))-\deg_{q}(\rho)
      =12(k2l)(nk1)+14n214k(k+2)14(n2l)2+14(k2l)(k2l+21)\displaystyle=\tfrac{1}{2}(k-2l)(n-k-1)+\tfrac{1}{4}n^{2}-\tfrac{1}{4}k(k+2)-\tfrac{1}{4}(n-2l)^{2}+\tfrac{1}{4}(k-2l)(k-2l+21)
      =12k(nk1).\displaystyle=\tfrac{1}{2}k(n-k-1).
  2. (2)

    Suppose that (G,G)=(Ok,Spn)(\text{\bf G},\text{\bf G}^{\prime})=({\rm O}_{k},{\rm Sp}_{n}) where kk is odd and nn even; or (Spk,On)({\rm Sp}_{k},{\rm O}_{n}) where kk is even and nn is odd.

    1. (a)

      Suppose that (G,G)=(Ok,Spn)(\text{\bf G},\text{\bf G}^{\prime})=({\rm O}_{k},{\rm Sp}_{n}) where kk is odd and nn is even. Now we have a commutative diagram

      ρθ¯ριΞsΞsρ(0)ρΛ(+)ρΛ()idθ¯idρ(0)ρΛ()ρΛ(+)\begin{CD}\rho @>{\underline{\theta}}>{}>\rho^{\prime}\\ @V{\iota\circ\Xi_{s}}V{}V@V{}V{\Xi_{s^{\prime}}}V\\ \rho^{(0)}\otimes\rho_{\Lambda^{(+)}}\otimes\rho_{\Lambda^{(-)}}@>{{\rm id}\otimes\underline{\theta}\otimes{\rm id}}>{}>\rho^{\prime(0)}\otimes\rho_{\Lambda^{\prime(-)}}\otimes\rho_{\Lambda^{\prime(+)}}\\ \end{CD}

      We know that G(0)G(0)\text{\bf G}^{(0)}\simeq\text{\bf G}^{\prime(0)}, ρ(0)=ρ(0)\rho^{(0)}=\rho^{\prime(0)} and G()G(+)\text{\bf G}^{(-)}\simeq\text{\bf G}^{\prime(+)}, ρΛ()=ρΛ(+)\rho_{\Lambda^{(-)}}=\rho_{\Lambda^{\prime(+)}}. Therefore by (5.9), we have

      degq(θ¯(ρ))degq(ρ)=degq(θ¯(ρΛ(+)))degq(ρΛ(+))+degq(|G|p)degq(|G|p)degq(|G()|p)+degq(|G(+)|p).\deg_{q}(\underline{\theta}(\rho))-\deg_{q}(\rho)=\deg_{q}(\underline{\theta}(\rho_{\Lambda^{(+)}}))-\deg_{q}(\rho_{\Lambda^{(+)}})\\ +\deg_{q}(|G^{\prime}|_{p^{\prime}})-\deg_{q}(|G|_{p^{\prime}})-\deg_{q}(|G^{\prime(-)}|_{p^{\prime}})+\deg_{q}(|G^{(+)}|_{p^{\prime}}).

      Then G(+)=Spk2l1\text{\bf G}^{(+)}={\rm Sp}_{k-2l-1} and G()=On2lϵ\text{\bf G}^{\prime(-)}={\rm O}^{\epsilon}_{n-2l} for some non-negative integer ll. Hence by Proposition 3.16, we have

      degq(θ¯(ρΛ()))degq(ρΛ())\displaystyle\deg_{q}(\underline{\theta}(\rho_{\Lambda^{(-)}}))-\deg_{q}(\rho_{\Lambda^{(-)}}) =12(k2l1)(n2l(k2l1)1),\displaystyle=\tfrac{1}{2}(k-2l-1)(n-2l-(k-2l-1)-1),
      degq(|G|p)degq(|G|p)\displaystyle\deg_{q}(|G^{\prime}|_{p^{\prime}})-\deg_{q}(|G|_{p^{\prime}}) =14n(n+2)14(k1)(k+1),\displaystyle=\tfrac{1}{4}n(n+2)-\tfrac{1}{4}(k-1)(k+1),
      degq(|G()|p)+degq(|G(+)|p)\displaystyle-\deg_{q}(|G^{\prime(-)}|_{p^{\prime}})+\deg_{q}(|G^{(+)}|_{p^{\prime}}) =14(n2l)2+14(k12l)(k+12l).\displaystyle=-\tfrac{1}{4}(n-2l)^{2}+\tfrac{1}{4}(k-1-2l)(k+1-2l).

      Therefore

      degq(θ¯(ρ))degq(ρ)\displaystyle\deg_{q}(\underline{\theta}(\rho))-\deg_{q}(\rho) =12(k2l1)(nk)+14n(n+2)14(k1)(k+1)\displaystyle=\tfrac{1}{2}(k-2l-1)(n-k)+\tfrac{1}{4}n(n+2)-\tfrac{1}{4}(k-1)(k+1)
      14(n2l)2+14(k12l)(k+12l)\displaystyle\qquad\qquad\qquad\qquad-\tfrac{1}{4}(n-2l)^{2}+\tfrac{1}{4}(k-1-2l)(k+1-2l)
      =12k(nk+1).\displaystyle=\tfrac{1}{2}k(n-k+1).
    2. (b)

      Suppose that (G,G)=(Spk,On)(\text{\bf G},\text{\bf G}^{\prime})=({\rm Sp}_{k},{\rm O}_{n}) where kk is even and nn is odd. Now we have a commutative diagram

      ρθ¯ρΞsιΞsρ(0)ρΛ()ρΛ(+)idθ¯idρ(0)ρΛ(+)ρΛ()\begin{CD}\rho @>{\underline{\theta}}>{}>\rho^{\prime}\\ @V{\Xi_{s}}V{}V@V{}V{\iota\circ\Xi_{s^{\prime}}}V\\ \rho^{(0)}\otimes\rho_{\Lambda^{(-)}}\otimes\rho_{\Lambda^{(+)}}@>{{\rm id}\otimes\underline{\theta}\otimes{\rm id}}>{}>\rho^{\prime(0)}\otimes\rho_{\Lambda^{\prime(+)}}\otimes\rho_{\Lambda^{\prime(-)}}\\ \end{CD}

      We know that G(0)G(0)\text{\bf G}^{(0)}\simeq\text{\bf G}^{\prime(0)}, ρ(0)=ρ(0)\rho^{(0)}=\rho^{\prime(0)} and G(+)G()\text{\bf G}^{(+)}\simeq\text{\bf G}^{\prime(-)}, ρΛ(+)=ρΛ()\rho_{\Lambda^{(+)}}=\rho_{\Lambda^{\prime(-)}}. Therefore by (5.9), we have

      degq(θ¯(ρ))degq(ρ)=degq(θ¯(ρΛ()))degq(ρΛ())+degq(|G|p)degq(|G|p)degq(|G(+)|p)+degq(|G()|p).\deg_{q}(\underline{\theta}(\rho))-\deg_{q}(\rho)=\deg_{q}(\underline{\theta}(\rho_{\Lambda^{(-)}}))-\deg_{q}(\rho_{\Lambda^{(-)}})\\ +\deg_{q}(|G^{\prime}|_{p^{\prime}})-\deg_{q}(|G|_{p^{\prime}})-\deg_{q}(|G^{\prime(+)}|_{p^{\prime}})+\deg_{q}(|G^{(-)}|_{p^{\prime}}).

      Then G()=Ok2lϵ\text{\bf G}^{(-)}={\rm O}^{\epsilon}_{k-2l} and G(+)=Spn2l1\text{\bf G}^{\prime(+)}={\rm Sp}_{n-2l-1} for some non-negative integer ll. Hence by Proposition 3.16, we have

      degq(θ¯(ρΛ()))degq(ρΛ())\displaystyle\deg_{q}(\underline{\theta}(\rho_{\Lambda^{(-)}}))-\deg_{q}(\rho_{\Lambda^{(-)}}) =12(k2l)(n2l1(k2l)+1),\displaystyle=\tfrac{1}{2}(k-2l)(n-2l-1-(k-2l)+1),
      degq(|G|p)degq(|G|p)\displaystyle\deg_{q}(|G^{\prime}|_{p^{\prime}})-\deg_{q}(|G|_{p^{\prime}}) =14(n1)(n+1)14k(k+2),\displaystyle=\tfrac{1}{4}(n-1)(n+1)-\tfrac{1}{4}k(k+2),
      degq(|G(+)|p)+degq(|G()|p)\displaystyle-\deg_{q}(|G^{\prime(+)}|_{p^{\prime}})+\deg_{q}(|G^{(-)}|_{p^{\prime}}) =14(n12l)(n+12l)+14(k2l)2.\displaystyle=-\tfrac{1}{4}(n-1-2l)(n+1-2l)+\tfrac{1}{4}(k-2l)^{2}.

      Therefore

      degq(θ¯(ρ))degq(ρ)\displaystyle\deg_{q}(\underline{\theta}(\rho))-\deg_{q}(\rho) =12(k2l)(nk)+14(n1)(n+1)14k(k+2)\displaystyle=\tfrac{1}{2}(k-2l)(n-k)+\tfrac{1}{4}(n-1)(n+1)-\tfrac{1}{4}k(k+2)
      14(n12l)(n+12l)+14(k2l)2\displaystyle\qquad\qquad\qquad\quad-\tfrac{1}{4}(n-1-2l)(n+1-2l)+\tfrac{1}{4}(k-2l)^{2}
      =12k(nk1).\displaystyle=\tfrac{1}{2}k(n-k-1).

5.2. Lusztig correspondence for unitary groups

Let G=Uk\text{\bf G}={\rm U}_{k}. For sG=Uk(q)s\in G^{*}={\rm U}_{k}(q), we can write

(5.10) CG(s)=i=1rj=1tiGLkij(1)i(qi)C_{G^{*}}(s)=\prod_{i=1}^{r}\prod_{j=1}^{t_{i}}{\rm GL}_{k_{ij}}^{(-1)^{i}}(q^{i})

for some non-negative integers r,ti,kijr,t_{i},k_{ij} such that i=1rj=1tiikij=k\sum_{i=1}^{r}\sum_{j=1}^{t_{i}}ik_{ij}=k where GLkij+1=GLkij+:=GLkij{\rm GL}^{+1}_{k_{ij}}={\rm GL}^{+}_{k_{ij}}:={\rm GL}_{k_{ij}} and GLkij1=GLkij:=Ukij{\rm GL}^{-1}_{k_{ij}}={\rm GL}^{-}_{k_{ij}}:={\rm U}_{k_{ij}}. For i=1i=1, we can let t1=q+1t_{1}=q+1 and each j=1,,t1j=1,\ldots,t_{1} corresponds an eigenvalue λjf¯q\lambda_{j}\in\overline{\text{\bf f}}_{q} of ss such that λjq+1=1\lambda_{j}^{q+1}=1. Let ρ(G)s\rho\in{\mathcal{E}}(G)_{s} and for the Lusztig correspondence 𝔏s:(G)1(CG(s))1{\mathfrak{L}}_{s}\colon{\mathcal{E}}(G)_{1}\rightarrow{\mathcal{E}}(C_{G^{*}}(s))_{1} we can write

(5.11) 𝔏s(ρ)=i=1rj=1tiρ(ij){\mathfrak{L}}_{s}(\rho)=\bigotimes_{i=1}^{r}\bigotimes_{j=1}^{t_{i}}\rho^{(ij)}

for some ρ(ij)(GLkij(1)i(qi))1\rho^{(ij)}\in{\mathcal{E}}({\rm GL}_{k_{ij}}^{(-1)^{i}}(q^{i}))_{1}. Note that ρ(1j)\rho^{(1j)} is a unipotent character of Uk1j(q){\rm U}_{k_{1j}}(q).

Now for a non-negative integer \ell, an irreducible character ρ(Uk(q))\rho\in{\mathcal{E}}({\rm U}_{k}(q)) is called \ell-admissible if each ρ(1j)\rho^{(1j)} is \ell-admissible for j=1,,t1j=1,\ldots,t_{1}. It is clear that if ρ\rho is \ell-admissible, then ρ\rho is also \ell^{\prime}-admissible for any \ell^{\prime}\geq\ell, and ρχ\rho\chi is also \ell-admissible for any linear character χ\chi of Uk(q){\rm U}_{k}(q).

Lemma 5.12.

If the dual pair (G,G)=(Uk,Un)(\text{\bf G},\text{\bf G}^{\prime})=({\rm U}_{k},{\rm U}_{n}) is in stable range, then every irreducible character ρ(G)\rho\in{\mathcal{E}}(G) is (nk)(n-k)-admissible.

Proof.

Suppose that the dual pair (G,G)=(Uk,Un)(\text{\bf G},\text{\bf G}^{\prime})=({\rm U}_{k},{\rm U}_{n}) is in stable range, and let ρ(G)s\rho\in{\mathcal{E}}(G)_{s} for some ss. Write 𝔏s(ρ)=i=1rj=1tiρ(ij){\mathfrak{L}}_{s}(\rho)=\bigotimes_{i=1}^{r}\bigotimes_{j=1}^{t_{i}}\rho^{(ij)} as above. Let kijk_{ij} be given as in (5.10). Then k1jknkk_{1j}\leq k\leq n-k and hence ρ(1j)\rho^{(1j)} is (nk)(n-k)-admissible by Lemma 4.5 for each j=1,,t1j=1,\ldots,t_{1}. Hence ρ\rho is (nk)(n-k)-admissible by the definition above. ∎

Lemma 5.13.

Consider the dual pair (G,G)=(Uk,Un)(\text{\bf G},\text{\bf G}^{\prime})=({\rm U}_{k},{\rm U}_{n}) where knk\leq n. If ρ(G)\rho\in{\mathcal{E}}(G) is (nk)(n-k)-admissible, then θ¯(ρ)\underline{\theta}(\rho) is defined and of Θ\Theta-rank kk.

Proof.

Let ρ\rho be an (nk)(n-k)-admissible character of Uk(q){\rm U}_{k}(q). Suppose that ρ(G)s\rho\in{\mathcal{E}}(G)_{s} for some ss. Let G(1)=Uk1,1\text{\bf G}^{(1)}=U_{k_{1,1}} be the component in (5.10) corresponding the eigenvalue 11, and let G(0)\text{\bf G}^{(0)} be the product of the other components. So we have CG(s)=G(0)×G(1)C_{G^{*}}(s)=G^{(0)}\times G^{(1)} and 𝔏s(ρ)=ρ(0)ρ(1){\mathfrak{L}}_{s}(\rho)=\rho^{(0)}\otimes\rho^{(1)} where ρ(1)=ρ(1,1)\rho^{(1)}=\rho^{(1,1)} and ρ(0)\rho^{(0)} is the tensor product of the components ρ(ij)\rho^{(ij)} with (i,j)(1,1)(i,j)\neq(1,1).

Let n1,1n_{1,1} be such that n1,1k1,1=nkn_{1,1}-k_{1,1}=n-k, so the unipotent character ρ(1,1)\rho^{(1,1)} is (n1,1k1,1)(n_{1,1}-k_{1,1})-admissible. Then θ¯(ρ(1))\underline{\theta}(\rho^{(1)}) is defined for the dual pair (Uk1,1,Un1,1)({\rm U}_{k_{1,1}},{\rm U}_{n_{1,1}}) by Lemma 4.8. Hence θ¯(ρ)\underline{\theta}(\rho) is defined for the dual pair (Uk,Un)({\rm U}_{k},{\rm U}_{n}) via the following commutative diagram

(5.14) ρθ¯ρ𝔏s𝔏sρ(0)ρ(1)idθ¯ρ(0)θ¯(ρ(1))\begin{CD}\rho @>{\underline{\theta}}>{}>\rho^{\prime}\\ @V{{\mathfrak{L}}_{s}}V{}V@V{}V{{\mathfrak{L}}_{s^{\prime}}}V\\ \rho^{(0)}\otimes\rho^{(1)}@>{{\rm id}\otimes\underline{\theta}}>{}>\rho^{(0)}\otimes\underline{\theta}(\rho^{(1)})\\ \end{CD}

where s=(s,1nk)Uk(q)×Unk(q)Un(q)s^{\prime}=(s,1_{n-k})\in{\rm U}_{k}(q)\times{\rm U}_{n-k}(q)\subset{\rm U}_{n}(q).

Let χ\chi be a linear character of Un(q){\rm U}_{n}(q) and suppose that θ¯(ρ)χ\underline{\theta}(\rho)\chi is in (Un(q))s′′{\mathcal{E}}({\rm U}_{n}(q))_{s^{\prime\prime}} for some s′′s^{\prime\prime}. Note that if we write

𝔏s(θ¯(ρ))=i=1rj=1tiρ(ij),𝔏s′′(θ¯(ρ)χ)=i=1r′′j=1ti′′ρ′′(ij),{\mathfrak{L}}_{s^{\prime}}(\underline{\theta}(\rho))=\bigotimes_{i=1}^{r^{\prime}}\bigotimes_{j=1}^{t^{\prime}_{i}}\rho^{\prime(ij)},\qquad{\mathfrak{L}}_{s^{\prime\prime}}(\underline{\theta}(\rho)\chi)=\bigotimes_{i=1}^{r^{\prime\prime}}\bigotimes_{j=1}^{t^{\prime\prime}_{i}}\rho^{\prime\prime(ij)},

then we know that two ordered set of the components

{ρ(1,1),ρ(1,2),,ρ(1t1)}and{ρ′′(1,1),ρ′′(1,2),,ρ′′(1t1′′)}\{\rho^{\prime(1,1)},\rho^{\prime(1,2)},\ldots,\rho^{\prime(1t^{\prime}_{1})}\}\quad\text{and}\quad\{\rho^{\prime\prime(1,1)},\rho^{\prime\prime(1,2)},\ldots,\rho^{\prime\prime(1t^{\prime\prime}_{1})}\}

are different by a permutation. Now the assumption that each ρ(1j)\rho^{(1j)} is (nk)(n-k)-admissible means that θ¯(ρ)χ\underline{\theta}(\rho)\chi of Un(q){\rm U}_{n}(q) does not occurs in the Θ\Theta-correspondence for the dual pair (Uk,Un)({\rm U}_{k^{\prime}},{\rm U}_{n}) for any k<kk^{\prime}<k. This implies that Θ-rk(θ¯(ρ))=k\Theta\text{\rm-rk}(\underline{\theta}(\rho))=k. ∎

Proposition 5.15.

Let n,kn,k be non-negative integers such that knk\leq n. Then ρ(Un(q))\rho^{\prime}\in{\mathcal{E}}({\rm U}_{n}(q)) is of Θ\Theta-rank kk if and only if there is a linear character χ\chi of Un(q){\rm U}_{n}(q) such that ρχ=θ¯(ρ)\rho^{\prime}\chi=\underline{\theta}(\rho) for some (nk)(n-k)-admissible character ρ(Uk(q))\rho\in{\mathcal{E}}({\rm U}_{k}(q)).

Proof.

The proof is similar to those of Proposition 5.6 or Proposition 5.7. ∎

Now we generalize Proposition 4.12 to general irreducible characters.

Proposition 5.16.

Consider the dual pair (G,G)=(Uk,Un)(\text{\bf G},\text{\bf G}^{\prime})=({\rm U}_{k},{\rm U}_{n}) where knk\leq n. If an irreducible character ρ(Uk(q))\rho\in{\mathcal{E}}({\rm U}_{k}(q)) is (nk)(n-k)-admissible, then

degq(θ¯(ρ))=degq(ρ)+k(nk).\deg_{q}(\underline{\theta}(\rho))=\deg_{q}(\rho)+k(n-k).
Proof.

Let ρ\rho be an (nk)(n-k)-admissible irreducible character of Uk(q){\rm U}_{k}(q). Suppose that ρ(G)s\rho\in{\mathcal{E}}(G)_{s} for some ss and write 𝔏s(ρ)=ρ(0)ρ(1){\mathfrak{L}}_{s}(\rho)=\rho^{(0)}\otimes\rho^{(1)}. Let ρ=θ¯(ρ)(G)s\rho^{\prime}=\underline{\theta}(\rho)\in{\mathcal{E}}(G^{\prime})_{s^{\prime}} for some ss^{\prime} and write 𝔏s(ρ)=ρ(0)ρ(1){\mathfrak{L}}_{s^{\prime}}(\rho^{\prime})=\rho^{\prime(0)}\otimes\rho^{\prime(1)} as above. Now we have a commutative diagram

ρθ¯ρ𝔏s𝔏sρ(0)ρ(1)idθ¯ρ(0)ρ(1)\begin{CD}\rho @>{\underline{\theta}}>{}>\rho^{\prime}\\ @V{{\mathfrak{L}}_{s}}V{}V@V{}V{{\mathfrak{L}}_{s^{\prime}}}V\\ \rho^{(0)}\otimes\rho^{(1)}@>{{\rm id}\otimes\underline{\theta}}>{}>\rho^{\prime(0)}\otimes\rho^{\prime(1)}\\ \end{CD}

We know that

degq(θ¯(ρ))\displaystyle\deg_{q}(\underline{\theta}(\rho)) =|G|p+degq(ρ(0))+degq(ρ(1))|G(0)|p|G(1)|p,\displaystyle=|G^{\prime}|_{p^{\prime}}+\deg_{q}(\rho^{\prime(0)})+\deg_{q}(\rho^{\prime(1)})-|G^{\prime(0)}|_{p^{\prime}}-|G^{\prime(1)}|_{p^{\prime}},
degq(ρ)\displaystyle\deg_{q}(\rho) =|G|p+degq(ρ(0))+degq(ρ(1))|G(0)|p|G(1)|p.\displaystyle=|G|_{p^{\prime}}+\deg_{q}(\rho^{(0)})+\deg_{q}(\rho^{(1)})-|G^{(0)}|_{p^{\prime}}-|G^{(1)}|_{p^{\prime}}.

Now we have G(1)=Ukl\text{\bf G}^{(1)}={\rm U}_{k-l} and G(1)=Unl\text{\bf G}^{\prime(1)}={\rm U}_{n-l} for some non-negative integer lkl\leq k, G(0)G(0)G^{(0)}\simeq G^{\prime(0)}, ρ(0)=ρ(0)\rho^{(0)}=\rho^{\prime(0)}. Then by Proposition 4.12, we have

degq(ρ(1))degq(ρ(1))\displaystyle\deg_{q}(\rho^{\prime(1)})-\deg_{q}(\rho^{(1)}) =(kl)(nl(kl))=(kl)(nk),\displaystyle=(k-l)(n-l-(k-l))=(k-l)(n-k),
degq(|G|p)degq(|G|p)\displaystyle\deg_{q}(|G^{\prime}|_{p^{\prime}})-\deg_{q}(|G|_{p^{\prime}}) =12n(n+1)12k(k+1),\displaystyle=\tfrac{1}{2}n(n+1)-\tfrac{1}{2}k(k+1),
degq(|G(1)|p)+degq(|G(1)|p)\displaystyle-\deg_{q}(|G^{\prime(1)}|_{p^{\prime}})+\deg_{q}(|G^{(1)}|_{p^{\prime}}) =12(nl)(nl+1)+12(kl)(kl+1).\displaystyle=-\tfrac{1}{2}(n-l)(n-l+1)+\tfrac{1}{2}(k-l)(k-l+1).

Therefore

degq(θ¯(ρ))degq(ρ)\displaystyle\deg_{q}(\underline{\theta}(\rho))-\deg_{q}(\rho)
=(kl)(nk)+12n(n+1)12k(k+1)12(nl)(nl+1)+12(kl)(kl+1)\displaystyle=(k-l)(n-k)+\tfrac{1}{2}n(n+1)-\tfrac{1}{2}k(k+1)-\tfrac{1}{2}(n-l)(n-l+1)+\tfrac{1}{2}(k-l)(k-l+1)
=k(nk).\displaystyle=k(n-k).

5.3. Proofs of the main results

Proof of Theorem 1.1.

Part (i) is Lemma 5.3 and Lemma 5.13. Part (ii) is Proposition 5.6, Proposition 5.7 and Proposition 5.15. ∎

Proof of Theorem 1.3.

The theorem is Proposition 5.8 and Proposition 5.16. ∎

References

  • [AM93] J. Adams and A. Moy, Unipotent representations and reductive dual pairs over finite fields, Trans. Amer. Math. Soc. 340 (1993), 309–321.
  • [AMR96] A.-M. Aubert, J. Michel, and R. Rouquier, Correspondance de Howe pour les groupes réductifs sur les corps finis, Duke Math. J. 83 (1996), 353–397.
  • [DM91] F. Digne and J. Michel, Representations of finite groups of Lie type, Cambridge University Press, Cambridge, 1991.
  • [FS90] P. Fong and B. Srinivasan, Brauer trees in classical groups, J. Algebra 131 (1990), 179–225.
  • [GH17] S. Gurevich and R. Howe, Small representations of finite classical groups, Representation theory, number theory, and invariant theory, Progr. Math., vol. 323, 2017, pp. 209–234.
  • [GH20] by same author, Rank and duality in representation theory, Jpn. J. Math. 15 (2020), 223–309.
  • [GLT19] R. M. Guralnick, M. Larsen, and P. H. Tiep, Character levels and character bounds II, arXiv:1904.08070 (2019).
  • [GLT20] by same author, Character levels and character bounds, Forum Math. Pi 8 (2020), e2, 81 pp.
  • [Lus77] G. Lusztig, Irreducible representations of finite classical groups, Invent. Math. 43 (1977), 125–175.
  • [Lus84] by same author, Characters of reductive groups over a finite field, Ann. Math. Stud., no. 107, Princeton University Press, Princeton, 1984.
  • [Pan19a] S.-Y. Pan, Howe correspondence of unipotent characters for a finite symplectic/even-orthogonal dual pair, arXiv:1901.00623 (2019).
  • [Pan19b] by same author, Lusztig correspondence and Howe correspondence for finite reductive dual pairs, arXiv:1906.01158 (2019).
  • [Pan20a] by same author, On theta and eta correspondences for finite symplectic/orthogonal dual pairs, arXiv:2006.06241 (2020).
  • [Pan20b] by same author, On theta and eta correspondences for finite unitary dual pairs, arXiv:2007.10635 (2020).
  • [Pan21a] by same author, On theta ranks of irreducible characters of a finite classical group, arXiv:2102.09220 (2021).
  • [Pan21b] by same author, Uniform projection of the Weil character, Adv. Math. 381 (2021), 107624, 80 pp.