This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Deformations of objects in nn-categories

Dennis Chen
(April 1, 2023)
Abstract

In this paper, we prove that the deformation theory of an object in an nn-category is controlled by the its nn-fold endomorphism algebra. This recovers Lurie’s results on deforming objects and categories. We also generalize a previous result by Blanc et al. ([BKP18]) on deforming a category and an object simultaneously to the case of nn-categories.

1 Introduction

In algebraic geometry, there is a notion of deforming various objects over local Artinian algebras. For example, take a scheme XX and a quasicoherent module MM over it. A deformation of MM over the dual numbers k[ϵ]k[\epsilon] is the data of a quasicoherent module MϵM_{\epsilon} over

Xϵ:=Speck[ϵ]×XX_{\epsilon}:=\operatorname{Spec}{k[\epsilon]}\times X

whose pullback along the inclusion XXϵX\to X_{\epsilon} gives MM. If one requires M,MϵM,M_{\epsilon} to be locally free, then MϵM_{\epsilon} is characterized wholly by its gluing data, which in this case is captured in the first cohomology group of End(M)\operatorname{End}(M). Hence locally free deformations over k[ϵ]k[\epsilon] of a locally free module is characterized by classes in H1(End(M))H^{1}(\operatorname{End}(M)).

Lurie generalizes these examples to the case of deforming an object in a category ([Lur11, Section 5.2], [Lur18, Section 16.5]). Using the framework of formal moduli problems, he shows that the \mathbbE1\mathbb{E}_{1}-formal moduli problem associated to deforming an object can be characterized by its algebra of endomorphisms:

ObjDef^MMapsAlgk(1),aug(𝒟(),kEnd𝖢(M)).\operatorname{\widehat{\operatorname{ObjDef}}}_{M}\simeq\operatorname{Maps}_{\operatorname{{Alg^{({1}),aug}_{k}}}}(\mathcal{D}({-}),k\oplus\operatorname{End}_{\mathsf{C}}(M)).

There’s also the classical notion of deforming a category and relating it to its Hochschild complex, as explained in [Kon95, Sei02, KL09], which is important for example in the study of Mirror symmetry and Fukaya categories.

Lurie reformulates this result in the context of infinity categories ([Lur11, Section 5.3], [Lur18, Section 16.6]):

CatDef^𝖢MapsAlgk(2),aug(𝒟(),kξ(𝖢))\operatorname{\widehat{\operatorname{CatDef}}}_{\mathsf{C}}\simeq\operatorname{Maps}_{\operatorname{{Alg^{({2}),aug}_{k}}}}(\mathcal{D}({-}),k\oplus\xi(\mathsf{C}))

where here ξ(𝖢)\xi(\mathsf{C}) denotes the derived center of 𝖢\mathsf{C}, which can be calculated via the Hochschild complex of 𝖢\mathsf{C}.

In this paper we follow Lurie’s arguments to generalize and unify his results of deforming an object in a category and deforming a category in 𝖯𝗋𝖫\mathsf{Pr^{L}}. Namely, given any kk-linear nn-category 𝖢\mathsf{C} and an object M\smallin𝖢M\smallin\mathsf{C}, we construct a functor ObjDefM\operatorname{ObjDef}_{M} and show that the \mathbbEn\mathbb{E}_{n} algebra characterizing the formal moduli problem ([Lur18, Definition 12.1.3.1]) associated to ObjDefM\operatorname{ObjDef}_{M} is the nn-iterated endormorphism space of MM, or the center of MM. We recover Lurie’s results for object deformations by taking 𝖢\mathsf{C} to be a 11-category, and we recover his results for category deformations by taking 𝖢\mathsf{C} to be 𝖯𝗋𝗄𝖫\mathsf{Pr^{L}_{k}}.

More precisely, let kk be a field, 𝖯𝗋𝗄𝖫\mathsf{Pr^{L}_{k}} be the (,1)(\infty,1)-category of presentable kk-linear categories and kk-linear colimit preserving functors. It has a monoidal structure given by the kk-linear tensor of categories. In other words, 𝖯𝗋𝗄𝖫:=LModLModk(𝖯𝗋𝖫)\mathsf{Pr^{L}_{k}}:=\operatorname{LMod}_{\operatorname{LMod_{k}}}(\mathsf{Pr^{L}}), the category of presentable categories with Modk\operatorname{Mod}_{k} action. Then inductively, we define 𝖯𝗋𝗄𝖫,𝗇\mathsf{Pr^{L,{n}}_{k}} as the (,1)(\infty,1)-category of presentable linear categories tensored over 𝖯𝗋𝗄𝖫,𝗇𝟣\mathsf{Pr^{L,{n-1}}_{k}} (see 1.2.1), the objects of which we call ”kk-linear nn-categories”. In a similar vein, one can define 𝖯𝗋𝖠𝖫,𝗇\mathsf{Pr^{L,{n}}_{A}} for an \mathbbEn+1\mathbb{E}_{n+1}-algebra AA.

We define a version of object deformations for a kk-linear nn-category. That is, given an nn-category 𝖢\smallin𝖯𝗋𝗄𝖫,𝗇\mathsf{C}\smallin\mathsf{Pr^{L,{n}}_{k}} and an object M\smallin𝖢M\smallin\mathsf{C}, we define a functor

ObjDefM:Algk(n),sm𝖲𝗉𝖼^\operatorname{ObjDef}_{M}:\operatorname{{Alg^{({n}),sm}_{k}}}\to\operatorname{\widehat{\operatorname{\mathsf{Spc}}}}

from small \mathbbEn\mathbb{E}_{n}-algebras to large spaces. The functor is intuitively given by the formula

ObjDefM(A):=LModA(𝖢)×𝖢{M}.\operatorname{ObjDef}_{M}(A):=\operatorname{LMod}_{A}(\mathsf{C})\times_{\mathsf{C}}\{M\}.

This functor will have an associated formal moduli problem which is characterized by an augmented \mathbbEn\mathbb{E}_{n}-algebra: the nn-fold endomorphism algebra of MM (thought of as a nonunital algebra). More precisely, we have the following definition:

1.0.1 Definition (nn-fold Endomorphism object).

Given M\smallin𝖢M\smallin\mathsf{C}. Let End𝖢1(M)=om𝖢(M,M)\operatorname{End}^{1}_{\mathsf{C}}(M)=\operatorname{\mathcal{H}\kern-2.0ptom}_{\mathsf{C}}(M,M). This has a clear basepoint idM\operatorname{id}_{M} Inductively we can define

End𝖢n+1(M):=omEnd𝖢n(M)(idMn,idMn),\operatorname{End}^{n+1}_{\mathsf{C}}(M):=\operatorname{\mathcal{H}\kern-2.0ptom}_{\operatorname{End}^{n}_{\mathsf{C}}(M)}(\operatorname{id}^{n}_{M},\operatorname{id}^{n}_{M}),

where idMn\operatorname{id}^{n}_{M} (or sometimes 1Mn1^{n}_{M}) is the identity of End𝖢n(M)\operatorname{End}^{n}_{\mathsf{C}}(M), with a new basepoint given by the identity idMn+1\smallinomEnd𝖢n(M)(id,id)\operatorname{id}^{n+1}_{M}\smallin\operatorname{\mathcal{H}\kern-2.0ptom}_{\operatorname{End}^{n}_{\mathsf{C}}(M)}(\operatorname{id},\operatorname{id}). When the context is clear, we may drop the nn and MM from idMn\operatorname{id}^{n}_{M}.

We may also use End𝖢0(M)\operatorname{End}^{0}_{\mathsf{C}}(M) to denote 𝖢\mathsf{C} where the basepoint is MM, which is an alternate base case for this induction. Here om\operatorname{\mathcal{H}\kern-2.0ptom} denotes the internal hom, see (1.3.1).

Our first main result is:

1.0.2 Theorem.

The formal moduli problem associated to ObjDefM\operatorname{ObjDef}_{M} is equivalent to

MapsAlgk(n),aug(𝒟n(),kEnd𝖢n(M)),\operatorname{Maps}_{\operatorname{{Alg^{({n}),aug}_{k}}}}(\mathcal{D}^{n}({-}),k\oplus\operatorname{End}_{\mathsf{C}}^{n}(M)),

where 𝒟n\mathcal{D}^{n} is the \mathbbEn\mathbb{E}_{n}-Koszul duality functor ([Lur17, Section 5.2.5]).

This directly generalizes previous results: using n=1n=1 we get exactly the classical result for deforming objects in categories [Lur11, Section 5.2], [Lur18, Section 16.5]. Using n=2n=2 and 𝖢=𝖯𝗋𝗄𝖫,𝟤\mathsf{C}=\mathsf{Pr^{L,{2}}_{k}} and letting MM be a given category in 𝖢\mathsf{C}, we get Lurie’s result for deforming categories [Lur11, Section 5.3], [Lur18, Section 16.6]. The proof is given in 2.4.1.

We next consider the problem of deforming an object and nn-category simultaneously. We follow Blanc, Katzarkov, and Pandit ([BKP18, Section 4]) and Lurie ([Lur18, Remark 16.0.0.3]), who previously considered the case of n=1n=1.

More precisely, let 𝖯𝗋𝖠,𝖫,𝗇\mathsf{Pr^{L,{n}}_{{A},\ast}} for the category of presentable pointed AA-linear nn-categories:

𝖯𝗋𝖠,𝖫,𝗇:=𝖯𝗋𝖠,LMod𝖠𝗇/𝖫,𝗇\mathsf{Pr^{L,{n}}_{{A},\ast}}:=\mathsf{Pr^{L,{n}}_{{A},\operatorname{LMod}^{n}_{A}/}}

Given an nn-category 𝖢\mathsf{C} and an object M\smallin𝖢M\smallin\mathsf{C}, we can define a simultaneous deformation functor as follows: given a small \mathbbEn+1\mathbb{E}_{n+1}-algebra AA, we let

SimDef(𝖢,M)(A):=𝖯𝗋𝖠,𝖫,𝗇×𝖯𝗋𝗄,𝖫,𝗇{(𝖢,M)}\operatorname{SimDef}_{(\mathsf{C},M)}(A):=\mathsf{Pr^{L,{n}}_{{A},\ast}}\times_{\mathsf{Pr^{L,{n}}_{k,\ast}}}\{(\mathsf{C},M)\}

where the map

𝖯𝗋𝖠,𝖫,𝗇𝖯𝗋𝗄,𝖫,𝗇\mathsf{Pr^{L,{n}}_{{A},\ast}}\to\mathsf{Pr^{L,{n}}_{k,\ast}}

is using the augmentation AkA\to k, and for consistency with the our other section, we let

𝖯𝗋𝖠,𝖫,𝗇:=LModLModAn(𝖯𝗋𝗄,𝖫,𝗇)\mathsf{Pr^{L,{n}}_{{A},\ast}}:=\operatorname{LMod}_{\operatorname{LMod}^{n}_{A}}(\mathsf{Pr^{L,{n}}_{k,\ast}})

be the category of left AA-modules in 𝖯𝗋𝗄,𝖫,𝗇\mathsf{Pr^{L,{n}}_{k,\ast}} (as opposed to [BKP18] which uses right modules). We show that the formal completion of this functor is characterized by the nonunital \mathbbEn+1\mathbb{E}_{n+1}-algebra

(1.0.3) ξ(𝖢,E):=Fib(ξ(𝖢)ξ(M))\operatorname{\xi}(\mathsf{C},E):=\operatorname{Fib}(\operatorname{\xi}(\mathsf{C})\to\operatorname{\xi}(M))

where ξ(𝖢)\operatorname{\xi}(\mathsf{C}) is the center of 𝖢\mathsf{C}, ξ(M)\operatorname{\xi}(M) is the center of MM, and the fiber is taken at 0\smallinξ(M)0\smallin\operatorname{\xi}(M). Explicitly, we can let ξ(𝖢):=End𝖯𝗋𝗄𝖫,𝗇n+1(𝖢)\operatorname{\xi}(\mathsf{C}):=\operatorname{End}^{n+1}_{\mathsf{Pr^{L,{n}}_{k}}}(\mathsf{C}), ξ(M):=End𝖢n(M)\operatorname{\xi}(M):=\operatorname{End}^{n}_{\mathsf{C}}(M) and the map between them is given by evaluation at MM.

Our second main result is:

1.0.4 Theorem.

There is an equivalence of formal moduli problems:

SimDef^(𝖢,M)MapsAlgk(n+1),aug(𝒟n+1(),kξ(𝖢,M)).\operatorname{\widehat{\operatorname{SimDef}}}_{(\mathsf{C},M)}\to\operatorname{Maps}_{\operatorname{{Alg^{({n+1}),aug}_{k}}}}(\mathcal{D}^{n+1}({-}),k\oplus\operatorname{\xi}(\mathsf{C},M)).

The proof is given in (3.4.1). For example, using n=1n=1, the center of 𝖢\mathsf{C} is represented by EndEnd(C)(1𝖢)\operatorname{End}_{\operatorname{End}(C)}(1_{\mathsf{C}})—in other words natural transformations from 1C1_{C} to itself—and the center of MM is represented by End𝖢(M)\operatorname{End}_{\mathsf{C}}(M). The map ξ(𝖢)ξ(M)\operatorname{\xi}(\mathsf{C})\to\operatorname{\xi}(M) is given by evaluation of the natural transformation at MM. This recovers Proposition 4.7 of [BKP18].

These deformation problems are related to the deformation problem of an \mathbbEn\mathbb{E}_{n}-monoidal category: Given an \mathbbEn\mathbb{E}_{n}-monoidal category 𝖣\mathsf{D}, its deformations can be identified with deformations of the pointed category (LMod𝖣n,LMod𝖣n1)(\operatorname{LMod}^{n}_{\mathsf{D}},\operatorname{LMod}^{n-1}_{\mathsf{D}}). These ideas are discussed in section 3.5. This uses the fully faithful embedding of \mathbbEn\mathbb{E}_{n}-monoidal categories into nn-pointed categories (categories with an object together) via the rule

𝖣(LMod𝖣n,LMod𝖣n1).\mathsf{D}^{\otimes}\mapsto(\operatorname{LMod}^{n}_{\mathsf{D}},\operatorname{LMod}^{n-1}_{\mathsf{D}}).

Hence one can study the deformation theory of 𝖣\mathsf{D} by studying the deformations of the pair (LMod𝖣n,LMod𝖣n1)(\operatorname{LMod}^{n}_{\mathsf{D}},\operatorname{LMod}^{n-1}_{\mathsf{D}}). This also recovers the deformations of \mathbbEn\mathbb{E}_{n} algebras (which can be thought of as single-object nn-categories kk-cells are trivial for k<nk<n). Toën, in theorem 5.1 and 5.2 of [Toë14], also relates deformations of \mathbbEn\mathbb{E}_{n}-monoidal categories to \mathbbEn+1\mathbb{E}_{n+1}-Hochschild cochains as defined in [Fra13].

The deformation theory of \mathbbEn\mathbb{E}_{n}-monoidal categories is incredibly important for various theories of quantization. In section 2 of [Toë14], Toën explains the connection between different variations of quantization—namely quantum groups, skein algebras, and Donaldson-Thomas invariants—to deformations of (monoidal) categories. For example, Toën relates quantum groups (see [Dri87]) to deforming the category of sheaves of the moduli space BunG()\operatorname{Bun}_{G}(\ast) of GG-bundles on the point.

1.1 Acknowledgements

I’d like to thank my advisor, David Nadler, from whose guidance I have benefited enormously. In addition, I’d like to thank Germán Stefanich for many insightful conversations and ideas. Lastly, this work was partially supported by NSF RTG grant DMS-1646385

1.2 Set theoretic issues

For this section, let’s hypothesize for now an increasing sequence of universes U0,U1,U_{0},U_{1},\dots We let ”small” mean U0U_{0}-small and ”large” mean U1U_{1}-small. We will only need two universes U0U_{0} and U1U_{1}.

To solve the set theoretic issues of even defining 𝖯𝗋𝗄𝖫,𝗇\mathsf{Pr^{L,{n}}_{k}} (and 𝖯𝗋𝖠𝖫,𝗇\mathsf{Pr^{L,{n}}_{A}} by analogy), we follow [Ste21]. There are two solutions.

First we can define 𝖢𝖺𝗍𝗄𝟣\mathsf{Cat^{1}_{k}} as the category of kk-linear categories with cocontinuous kk-linear functors between them. Then 𝖢𝖺𝗍𝗄𝟤\mathsf{Cat^{2}_{k}} to be the U2U_{2}-small category of all 𝖯𝗋𝗄𝖫\mathsf{Pr^{L}_{k}}-linear U1U_{1}-small categories with 𝖯𝗋𝗄𝖫\mathsf{Pr^{L}_{k}}-linear cocontinuous functors. We can continue the induction, producing larger and larger categories 𝖢𝖺𝗍𝗄𝗇\mathsf{Cat^{n}_{k}} which is UnU_{n}-small. Notice there is no presentability here.

The other idea is to only use two universes, one small U0U_{0} and one large U1U_{1}. Then one can define 𝖯𝗋𝗄𝖫,𝗇\mathsf{Pr^{L,{n}}_{k}} inductively, following chapter 12 of [Ste21].

1.2.1 Definition (Presentable kk-linear nn-categories).

Let’s define 𝖯𝗋𝗄𝖫,𝗇\mathsf{Pr^{L,{n}}_{k}} and 𝖯𝗋𝗄𝖫,𝗇\mathsf{Pr^{L,{n}\kern 1.0pt\wedge}_{k}} inductively: For n=0n=0, we define

𝖯𝗋𝗄𝖫,𝟢=𝖯𝗋𝗄𝖫,𝟢:=Modk.\mathsf{Pr^{L,{0}}_{k}}=\mathsf{Pr^{L,{0}\kern 1.0pt\wedge}_{k}}:=\operatorname{Mod}_{k}.

Next we inductively define:

𝖯𝗋𝗄𝖫,𝗇:=Mod𝖯𝗋𝗄𝖫,𝗇𝟣(𝖢𝖺𝗍cts^).\mathsf{Pr^{L,{n}\kern 1.0pt\wedge}_{k}}:=\operatorname{Mod}_{\mathsf{Pr^{L,{n-1}}_{k}}}(\widehat{\mathsf{Cat}_{\operatorname{cts}}}).

In other words, 𝖯𝗋𝗄𝖫,𝗇\mathsf{Pr^{L,{n}\kern 1.0pt\wedge}_{k}} is the category of 𝖯𝗋𝗄𝖫,𝗇𝟣\mathsf{Pr^{L,{n-1}}_{k}}-modules in the large category of cocomplete categories and cocontinuous functors. Finally we can define 𝖯𝗋𝗄𝖫,𝗇\mathsf{Pr^{L,{n}}_{k}} to be the full subcategory of U0U_{0}-compact objects of 𝖯𝗋𝗄𝖫,𝗇\mathsf{Pr^{L,{n}\kern 1.0pt\wedge}_{k}}. We will also denote this category by LModkn+1\operatorname{LMod}^{n+1}_{k}, see (2.1.5).

1.2.2 Remark.

Notice that 𝖯𝗋𝗄𝖫,𝟣\mathsf{Pr^{L,{1}}_{k}} agrees with the usual definition of 𝖯𝗋𝗄𝖫\mathsf{Pr^{L}_{k}} as the category of presentable kk-linear categories with cocontinuous kk-linear functors between them.

1.2.3 Remark.

We will make use of 𝖯𝗋𝗄𝖫,𝗇\mathsf{Pr^{L,{n}\kern 1.0pt\wedge}_{k}} mainly because like in [Ste21, Remark 8.4.3], we don’t know if the hom objects for 𝖢\smallin𝖯𝗋𝗄𝖫,𝗇\mathsf{C}\smallin\mathsf{Pr^{L,{n}}_{k}} are presentable. They may only exist in 𝖯𝗋𝗄𝖫,𝗇𝟣\mathsf{Pr^{L,{n-1}\kern 1.0pt\wedge}_{k}}. However it is true that for any category 𝖣\smallin𝖯𝗋𝗄𝖫,𝗇\mathsf{D}\smallin\mathsf{Pr^{L,{n}\kern 1.0pt\wedge}_{k}}, its hom objects are in 𝖯𝗋𝗄𝖫,𝗇𝟣\mathsf{Pr^{L,{n-1}\kern 1.0pt\wedge}_{k}}.

Despite which approach we take, our ObjDef\operatorname{ObjDef} fmp is perhaps large in general, in contrast to [Lur18, Section 16.5, 16.6]. The point is that our nn-categories as defined could have large nn-fold endomorphism objects, unlike the category deformation and object deformation problems that Lurie considered. The author doesn’t know whether these presentable nn-categories have presentable hom objects or not.

However, if our given nn-category 𝖢\mathsf{C} had small nn-fold endomorphism objects, then we have the following easily using our main result 1.0.2:

1.2.4 Proposition.

Given an nn-category 𝖢\smallin𝖯𝗋𝗄𝖫,𝗇\mathsf{C}\smallin\mathsf{Pr^{L,{n}}_{k}} (or 𝖢𝖺𝗍𝗄𝗇\mathsf{Cat^{n}_{k}}) with small nn-fold endomorphism objects. Then the formal moduli problem associated to ObjDefM\smallin𝖢\operatorname{ObjDef}_{M\smallin\mathsf{C}} is a functor that lands in 𝖲𝗉𝖼\operatorname{\mathsf{Spc}}, the category of U0U_{0}-small spaces.

In this paper, we will by default use the second method of restricting to presentable categories for concreteness, but the arguments don’t really differ regardless of which method one chooses.

1.3 Conventions

Our notational conventions are listed here. First, unless otherwise mentioned, we are working over a field kk and all mentions of kk-linear objects are infinity categorical. For example, ”finite dimensional vector space” will mean a compact object in the infinity category Modk\operatorname{Mod}_{k} of kk-modules.

We will also occasionally use the abbrevation ”fmp” for ”formal moduli problem”.

By default, categories of algebras will be large due to ObjDef\operatorname{ObjDef} being large. Notice that Algk(n),sm\operatorname{{Alg^{({n}),sm}_{k}}} is still a small category due to the finiteness conditions placed on small algebras!

1.3.1 Notation

Here is some basic notation and conventions. We will have more notation later which will be introduced as needed.

  • 𝖢,𝖣\mathsf{C},\mathsf{D} describe categories in 𝖯𝗋𝗄𝖫,𝗇\mathsf{Pr^{L,{n}}_{k}} (1.2.1). We also just call these nn-categories for short.

  • Similarly pairs (𝖢,E),(𝖣,F)(\mathsf{C},E),(\mathsf{D},F) denote objects in 𝖯𝗋𝗄,𝖫,𝗇\mathsf{Pr^{L,{n}}_{k,\ast}}.

  • 𝖲𝗉𝖼\operatorname{\mathsf{Spc}} denotes the category of small spaces. 𝖲𝗉𝖼^\operatorname{\widehat{\operatorname{\mathsf{Spc}}}} denotes the category of U1U_{1}-small spaces, or ”large” spaces.

  • Maps𝖢(x,y)\smallin𝖲𝗉𝖼^\operatorname{Maps}_{\mathsf{C}}(x,y)\smallin\operatorname{\widehat{\operatorname{\mathsf{Spc}}}} is the space of maps between xx and yy.

  • om𝖢(x,y)\operatorname{\mathcal{H}\kern-2.0ptom}_{\mathsf{C}}(x,y) denotes the hom object in 𝖯𝗋𝗄𝖫,𝗇𝟣\mathsf{Pr^{L,{n-1}}_{k}}, as given by the right adjoint to the tensor action on 𝖢\smallin𝖯𝗋𝗄𝖫,𝗇\mathsf{C}\smallin\mathsf{Pr^{L,{n}}_{k}}.

  • ξ(M)\operatorname{\xi}(M) denotes the center of M\smallin𝖢M\smallin\mathsf{C} which can be calculated via End𝖢n(M)\operatorname{End}^{n}_{\mathsf{C}}(M).

  • ξ(𝖢,E)\operatorname{\xi}(\mathsf{C},E) denotes the center of (𝖢,E)\smallin𝖯𝗋𝗄,𝖫,𝗇(\mathsf{C},E)\smallin\mathsf{Pr^{L,{n}}_{k,\ast}} which can be calculated via

    ξ(𝖢,E):=Fib(ξ(𝖢)ξ(M)).\operatorname{\xi}(\mathsf{C},E):=\operatorname{Fib}(\operatorname{\xi}(\mathsf{C})\to\operatorname{\xi}(M)).
  • Algn\operatorname{Alg}^{n} denotes the large category of \mathbbEn\mathbb{E}_{n}-algebras (or more precisely, nn-fold iterated algebras), following [Lur17]. Algk(n)\operatorname{{Alg^{({n})}_{k}}} denotes the large category of \mathbbEn\mathbb{E}_{n}-algebras over kk.

    • Algk(n),aug\operatorname{{Alg^{({n}),aug}_{k}}} denotes the (large) category of augmented \mathbbEn\mathbb{E}_{n} algebras over kk.

    • Algk(n),sm\operatorname{{Alg^{({n}),sm}_{k}}} denotes the category of artinian/small augmented \mathbbEn\mathbb{E}_{n}-algebras. Notice that this is always a small category due to the definition of small algebras.

  • LMod(𝖢)\operatorname{LMod}(\mathsf{C}) denotes Alg/LM(𝖢)\operatorname{\operatorname{Alg}_{/\operatorname{LM}}(\mathsf{C}^{\otimes})} for a category 𝖢\smallin𝖯𝗋𝗄𝖫,𝗇\mathsf{C}\smallin\mathsf{Pr^{L,{n}}_{k}}, following Definition 4.2.1.13 of [Lur17].

    • The cocartesian fibration

      (1.3.1) LMod(𝖢)Alg(𝖯𝗋𝗄𝖫,𝗇𝟣)\operatorname{LMod}(\mathsf{C})\to\operatorname{Alg}(\mathsf{Pr^{L,{n-1}}_{k}})

      denotes the cocartesian fibration

      Alg/LM(𝖢)AlgAssoc/LM(𝖢),\operatorname{\operatorname{Alg}_{/\operatorname{LM}}(\mathsf{C}^{\otimes})}\to\operatorname{\operatorname{Alg}_{\operatorname{Assoc}/\operatorname{LM}}(\mathsf{C}^{\otimes})},

      again following [Lur17] and using that AlgAssoc/LM(𝖢)Alg(𝖯𝗋𝗄𝖫,𝗇𝟣)\operatorname{\operatorname{Alg}_{\operatorname{Assoc}/\operatorname{LM}}(\mathsf{C}^{\otimes})}\simeq\operatorname{Alg}(\mathsf{Pr^{L,{n-1}}_{k}}) for 𝖢\smallin𝖯𝗋𝗄𝖫,𝗇\mathsf{C}\smallin\mathsf{Pr^{L,{n}}_{k}}.

  • LModRn\operatorname{LMod}^{n}_{R} denotes the nn-fold left modules of an \mathbbEn\mathbb{E}_{n}-algebra RR (see 2.1.1). We let LModR0\operatorname{LMod}^{0}_{R} denote RR, and LModR1\operatorname{LMod}^{-1}_{R} denote the unit 1R\smallinR1_{R}\smallin R. For R=kR=k, notice that LModkn\operatorname{LMod}^{n}_{k} agrees with 𝖯𝗋𝗄𝖫,𝗇𝟣\mathsf{Pr^{L,{n-1}}_{k}}, see (2.1.5).

  • MRM_{R} denotes LModRn1M\operatorname{LMod}_{R}^{n-1}\otimes M for M\smallin𝖢\smallin𝖯𝗋𝗄𝖫,𝗇M\smallin\mathsf{C}\smallin\mathsf{Pr^{L,{n}}_{k}} and R\smallinAlgk(n1)R\smallin\operatorname{{Alg^{({n-1})}_{k}}}.

  • 𝖢A\mathsf{C}_{A} denotes LModAn𝖢\smallin𝖯𝗋𝖠𝖫,𝗇\operatorname{LMod}^{n}_{A}\otimes\mathsf{C}\smallin\mathsf{Pr^{L,{n}}_{A}}.

  • (𝖢A,EA)(\mathsf{C}_{A},E_{A}) denotes (LModAn𝖢,LModAn1E)\smallin𝖯𝗋𝖠,𝖫,𝗇(\operatorname{LMod}^{n}_{A}\otimes\mathsf{C},\operatorname{LMod}^{n-1}_{A}\otimes E)\smallin\mathsf{Pr^{L,{n}}_{{A},\ast}}.

  • F^\widehat{F}: given a functor F:Algk(n),sm𝖲𝗉𝖼^F:\operatorname{{Alg^{({n}),sm}_{k}}}\to\operatorname{\widehat{\operatorname{\mathsf{Spc}}}}, we let F^\widehat{F} denote its fmp completion (see [Lur11, Remark 1.1.17], [Lur18, Remark 12.1.3.5]). In other words, it is the formal moduli problem associated to FF. For example, ObjDef^M\operatorname{\widehat{\operatorname{ObjDef}}}_{M} is the fmp completion of ObjDefM\operatorname{ObjDef}_{M}.

2 Deformations of objects

Throughout this section, we assume we’re given 𝖢\smallin𝖯𝗋𝗄𝖫,𝗇\mathsf{C}\smallin\mathsf{Pr^{L,{n}}_{k}} and an object M\smallin𝖢M\smallin\mathsf{C}. We’d like to show that the deformations of MM in the nn-category 𝖢\mathsf{C} is characterized by the \mathbbEn\mathbb{E}_{n}-algebra End𝖢n(M)\operatorname{End}_{\mathsf{C}}^{n}(M). The argument follows four steps, generally following Lurie’s ideas in [Lur11, Section 5.2, 5.3] or [Lur18, Section 16.5, 16.6]:

  1. 1.

    Construct the functor ObjDefM\operatorname{ObjDef}_{M} characterizing deformations of M\smallin𝖢M\smallin\mathsf{C}.

  2. 2.

    Prove ObjDefM\operatorname{ObjDef}_{M} is nn-proximate.

  3. 3.

    Construct the comparison map

    βobj:ObjDefMMapsAlgk(n),aug(𝒟n(),kEnd𝖢n(M))\beta^{\operatorname{obj}}:\operatorname{ObjDef}_{M}\to\operatorname{Maps}_{\operatorname{{Alg^{({n}),aug}_{k}}}}(\mathcal{D}^{n}({-}),k\oplus\operatorname{End}_{\mathsf{C}}^{n}(M))
  4. 4.

    Prove that βobj\beta^{\operatorname{obj}} is an equivalence.

2.1 Constructing the functor ObjDefM\operatorname{ObjDef}_{M}

First let’s define how to take nn-fold modules for an \mathbbEn\mathbb{E}_{n} algebra. We have functors

Alg(𝖯𝗋𝗄𝖫,𝗇)𝖯𝗋𝗄𝖫,𝗇+𝟣\operatorname{Alg}(\mathsf{Pr^{L,{n}}_{k}})\to\mathsf{Pr^{L,{n+1}}_{k}}

via 𝖣LMod𝖣(𝖯𝗋𝗄𝖫,𝗇)\mathsf{D}\mapsto\operatorname{LMod}_{\mathsf{D}}(\mathsf{Pr^{L,{n}}_{k}}). We also get induced functors by applying Algk(p)\operatorname{{Alg^{({p})}_{k}}} to get

Algp+1(𝖯𝗋𝗄𝖫,𝗇)Algp(𝖯𝗋𝗄𝖫,𝗇+𝟣).\operatorname{Alg}^{p+1}(\mathsf{Pr^{L,{n}}_{k}})\to\operatorname{Alg}^{p}(\mathsf{Pr^{L,{n+1}}_{k}}).

Composing these functors, we can define:

2.1.1 Definition (Iterated left modules).

Let LModn\operatorname{LMod}^{n} denote the composite functor given by

(2.1.2) LModn:Algk(n)Algk(n1)(𝖯𝗋𝗄𝖫)Algk(n2)(𝖯𝗋𝗄𝖫,𝟤)Alg(𝖯𝗋𝗄𝖫,𝗇𝟣)𝖯𝗋𝗄𝖫,𝗇.\operatorname{LMod}^{n}:\operatorname{{Alg^{({n})}_{k}}}\to\operatorname{{Alg^{({n-1})}_{k}}}(\mathsf{Pr^{L}_{k}})\to\operatorname{{Alg^{({n-2})}_{k}}}(\mathsf{Pr^{L,{2}}_{k}})\dots\to\operatorname{Alg}(\mathsf{Pr^{L,{n-1}}_{k}})\to\mathsf{Pr^{L,{n}}_{k}}.

We denote the evaluation of this functor on RR by LModRn\operatorname{LMod}^{n}_{R}. We will also use the variant functor

(2.1.3) LModn1:Algk(n)Algk(n1)(𝖯𝗋𝗄𝖫)Algk(n2)(𝖯𝗋𝗄𝖫,𝟤)Alg(𝖯𝗋𝗄𝖫,𝗇𝟣).\operatorname{LMod}^{n-1}:\operatorname{{Alg^{({n})}_{k}}}\to\operatorname{{Alg^{({n-1})}_{k}}}(\mathsf{Pr^{L}_{k}})\to\operatorname{{Alg^{({n-2})}_{k}}}(\mathsf{Pr^{L,{2}}_{k}})\dots\to\operatorname{Alg}(\mathsf{Pr^{L,{n-1}}_{k}}).

which ends one step early as compared to LModn\operatorname{LMod}^{n} above.

2.1.4 Remark.

Clearly there are variants where one can take iterated right modules, or even switch between taking left and right modules. Notice that if RR is an \mathbbE\mathbb{E}_{\infty}-algebra, then these constructions are all equivalent, and we may denote the category by ModRn\operatorname{Mod}^{n}_{R}.

2.1.5 Remark.

For R=kR=k, notice that we get LModkn𝖯𝗋𝗄𝖫,𝗇𝟣\operatorname{LMod}^{n}_{k}\simeq\mathsf{Pr^{L,{n-1}}_{k}} for n1n\geq 1. We can show this by induction: For n=1n=1, clearly LModk1=Modk=:𝖯𝗋𝗄𝖫,𝟢\operatorname{LMod}^{1}_{k}=\operatorname{Mod}_{k}=:\mathsf{Pr^{L,{0}}_{k}}. Next, if the result holds true for n=m1n=m-1, then we notice that

LModkm\displaystyle\operatorname{LMod}^{m}_{k} :=LModLModkm11\displaystyle:=\operatorname{LMod}^{1}_{\operatorname{LMod}^{m-1}_{k}}
LMod𝖯𝗋𝗄𝖫,𝗆𝟤(𝖯𝗋𝗄𝖫,𝗆𝟣)\displaystyle\simeq\operatorname{LMod}_{\mathsf{Pr^{L,{m-2}}_{k}}}(\mathsf{Pr^{L,{m-1}}_{k}})
𝖯𝗋𝗄𝖫,𝗆𝟣\displaystyle\simeq\mathsf{Pr^{L,{m-1}}_{k}}

since every object of 𝖯𝗋𝗄𝖫,𝗆𝟣\mathsf{Pr^{L,{m-1}}_{k}} is already an 𝖯𝗋𝗄𝖫,𝗆𝟤\mathsf{Pr^{L,{m-2}}_{k}}-module, by definition (1.2.1). Since kk is an \mathbbE\mathbb{E}_{\infty}-algebra, we may also denote LModkn\operatorname{LMod}^{n}_{k} by Modkn\operatorname{Mod}^{n}_{k}.

Recall that we define LMod(𝖢):=Alg/LM(𝖢)\operatorname{LMod}(\mathsf{C}):=\operatorname{\operatorname{Alg}_{/\operatorname{LM}}(\mathsf{C}^{\otimes})} (1.3.1), hence we have a cocartesian fibration

LMod(𝖢)Alg(𝖯𝗋𝗄𝖫,𝗇𝟣).\operatorname{LMod}(\mathsf{C})\to\operatorname{Alg}(\mathsf{Pr^{L,{n-1}}_{k}}).

We pull back along LModn1\operatorname{LMod}^{n-1} to get the left modules whose action is given by an \mathbbEn\mathbb{E}_{n}-algebra.

2.1.6 Definition (Left Modules).

Let LModalg(𝖢)\operatorname{LMod^{\operatorname{alg}}}(\mathsf{C}) to be the following pullback:

LModalg(𝖢){\operatorname{LMod^{\operatorname{alg}}}(\mathsf{C})}LMod(𝖢){\operatorname{LMod}(\mathsf{C})}Algk(n){\operatorname{{Alg^{({n})}_{k}}}}Alg(𝖯𝗋𝗄𝖫,𝗇𝟣){\operatorname{Alg}(\mathsf{Pr^{L,{n-1}}_{k}})}

\lrcorner\lrcorner

Here the left vertical map is the cocartesian fibration LMod(𝖢)AlgAssoc/LM(𝖢)\operatorname{LMod}(\mathsf{C})\to\operatorname{\operatorname{Alg}_{\operatorname{Assoc}/\operatorname{LM}}(\mathsf{C}^{\otimes})} and the lower horizontal map is the nn-fold LMod\operatorname{LMod} functor.

We can also further pull back along Algk(n),augAlgk(k)Alg(𝖯𝗋𝗄𝖫,𝗇𝟣)\operatorname{{Alg^{({n}),aug}_{k}}}\to\operatorname{{Alg^{({k})}_{k}}}\to\operatorname{Alg}(\mathsf{Pr^{L,{n-1}}_{k}}) to get

LModaug(C){\operatorname{LMod^{\operatorname{aug}}}(C)}LMod(𝖢){\operatorname{LMod}(\mathsf{C})}Algk(n),aug{\operatorname{{Alg^{({n}),aug}_{k}}}}Alg(𝖯𝗋𝗄𝖫,𝗇𝟣){\operatorname{Alg}(\mathsf{Pr^{L,{n-1}}_{k}})}

\lrcorner\lrcorner

Intuitively, objects of LModalg(C),LModaug(𝖢)\operatorname{LMod^{\operatorname{alg}}}(C),\operatorname{LMod^{\operatorname{aug}}}(\mathsf{C}) consists of triples (A,E,η)(A,E,\eta) where E\smallin𝖢E\smallin\mathsf{C}, A\smallinAlgk(n)A\smallin\operatorname{{Alg^{({n})}_{k}}} (or Algk(n),aug\operatorname{{Alg^{({n}),aug}_{k}}}), and η\eta is a left action of LModAn1\operatorname{LMod}^{n-1}_{A} on EE.

2.1.7 Remark.

Dually, we can use right modules instead by replacing the right vertical leg by

Alg/RM(𝖢)AlgAssoc/RM(𝖢)\operatorname{\operatorname{Alg}_{/\operatorname{RM}}(\mathsf{C}^{\otimes})}\to\operatorname{\operatorname{Alg}_{\operatorname{Assoc}/\operatorname{RM}}(\mathsf{C}^{\otimes})}

where we’re using the fact that since 𝖯𝗋𝗄𝖫,𝗇\mathsf{Pr^{L,{n}}_{k}} is symmetric monoidal, so we can choose to either use left or right modules to define 𝖢\mathsf{C}^{\otimes}.

In other words, we can pull back along the cocartesian fibration

RMod(𝖢)Alg(𝖯𝗋𝗄𝖫,𝗇𝟣).\operatorname{RMod}(\mathsf{C})\to\operatorname{Alg}(\mathsf{Pr^{L,{n-1}}_{k}}).

So we can analoguously define RModalg(𝖢)\operatorname{RMod^{\operatorname{alg}}}(\mathsf{C}) and RModaug(𝖢)\operatorname{RMod^{\operatorname{aug}}}(\mathsf{C}). This has objects (A,E,η)(A,E,\eta) where E\smallin𝖢E\smallin\mathsf{C}, A\smallinAlgk(n)A\smallin\operatorname{{Alg^{({n})}_{k}}} (or Algk(n),aug\operatorname{{Alg^{({n}),aug}_{k}}}), and η\eta is a right action of LModAn1\operatorname{LMod}^{n-1}_{A} on EE.

Now we’re finally ready to construct our functor. To do this, we construct first the associated fibration, then use straightening/unstraightening to get the functor we need. Recall we have a cocartesian fibration LModalg(C)Algk(n),aug\operatorname{LMod^{\operatorname{alg}}}(C)\to\operatorname{{Alg^{({n}),aug}_{k}}}. Let LModalg(C)cocart\operatorname{LMod^{\operatorname{alg}}}(C)^{\operatorname{cocart}} be the subcategory whose morphisms are the cocartesian arrows of this map. Then

(2.1.8) LModalg(C)cocartAlgk(n),aug\operatorname{LMod^{\operatorname{alg}}}(C)^{\operatorname{cocart}}\to\operatorname{{Alg^{({n}),aug}_{k}}}

is a left fibration. Our given object MM has a natural LModkn1\operatorname{LMod}^{n-1}_{k} action. This gives us an object (k,M)\smallinLModalg(C)(k,M)\smallin\operatorname{LMod^{\operatorname{alg}}}(C).

2.1.9 Definition (Deformation fibration).

Let Deform[𝖢,M]\operatorname{Deform}[\mathsf{C},M] be the slice of LModalg(C)cocart\operatorname{LMod^{\operatorname{alg}}}(C)^{\operatorname{cocart}} over the object (k,M)(k,M). In other words:

Deform[𝖢,M]:=(LModalg(𝖢)cocart)/(k,M).\operatorname{Deform}[\mathsf{C},M]:=(\operatorname{LMod^{\operatorname{alg}}}(\mathsf{C})^{\operatorname{cocart}})_{/(k,M)}.

We have an induced left fibration Deform[𝖢,M]Algk(n),aug\operatorname{Deform}[\mathsf{C},M]\to\operatorname{{Alg^{({n}),aug}_{k}}} by taking slices of 2.1.8:

Deform[𝖢,M]:=LModalg(C)/(k,M)cocartAlgk/k(n)Algk(n),aug.\operatorname{Deform}[\mathsf{C},M]:=\operatorname{LMod^{\operatorname{alg}}}(C)^{\operatorname{cocart}}_{/(k,M)}\longrightarrow\operatorname{{Alg^{({n})}_{k/k}}}\simeq\operatorname{{Alg^{({n}),aug}_{k}}}.
2.1.10 Construction (ObjDef\operatorname{ObjDef}).

Deform[𝖢,M]Algk(n),aug\operatorname{Deform}[\mathsf{C},M]\to\operatorname{{Alg^{({n}),aug}_{k}}} classifies a functor Deform~[𝖢,M]:Algk(n),aug𝖲𝗉𝖼^\widetilde{\operatorname{Deform}}[\mathsf{C},M]:\operatorname{{Alg^{({n}),aug}_{k}}}\to\operatorname{\widehat{\operatorname{\mathsf{Spc}}}}. Here 𝖲𝗉𝖼^\operatorname{\widehat{\operatorname{\mathsf{Spc}}}} is the category of not-necessarily U0U_{0}-small spaces. Finally, by restricting to small algebras, we get the functor we wanted:

ObjDefM:Algk(n),sm𝖲𝗉𝖼^.\operatorname{ObjDef}_{M}:\operatorname{{Alg^{({n}),sm}_{k}}}\to\operatorname{\widehat{\operatorname{\mathsf{Spc}}}}.
2.1.11 Remark.

Notice that given an algebra A\smallinAlgk(n),augA\smallin\operatorname{{Alg^{({n}),aug}_{k}}}, ObjDefM(A)LModAn(𝖢)×𝖢{M}\operatorname{ObjDef}_{M}(A)\simeq\operatorname{LMod}^{n}_{A}(\mathsf{C})\times_{\mathsf{C}}\{M\}, where the map LModAn(𝖢)LModkn(𝖢)𝖢\operatorname{LMod}^{n}_{A}(\mathsf{C})\to\operatorname{LMod}^{n}_{k}(\mathsf{C})\simeq\mathsf{C} is given by the augmentation map AkA\to k. Here LModkn𝖯𝗋𝗄𝖫,𝗇𝟣\operatorname{LMod}^{n}_{k}\simeq\mathsf{Pr^{L,{n-1}}_{k}} (2.1.5), so since 𝖢\mathsf{C} is 𝖯𝗋𝗄𝖫,𝗇𝟣\mathsf{Pr^{L,{n-1}}_{k}}-linear , every object is a 𝖯𝗋𝗄𝖫,𝗇𝟣\mathsf{Pr^{L,{n-1}}_{k}}-module.

2.2 Proving ObjDefM\operatorname{ObjDef}_{M} is nn-proximate

Let’s begin with a generalization of fully faithfulness. Here we let 𝖢(x,y):=om𝖢(x,y)\mathsf{C}(x,y):=\operatorname{\mathcal{H}\kern-2.0ptom}_{\mathsf{C}}(x,y) for brevity. For the following definiton and proposition, we’ll need to use non-presentable NN-categories (in other words, we consider categories in 𝖯𝗋𝗄𝖫,𝗇\mathsf{Pr^{L,{n}\kern 1.0pt\wedge}_{k}}) because we’ll induct by taking repeated hom spaces (1.2.3).

2.2.1 Definition (nn-fully faithful).

Given a functor F;𝖢𝖣F;\mathsf{C}\to\mathsf{D} of NN-categories. Then we say

  • FF is 0-fully faithful if FF is an equivalence.

  • FF is nn-fully faithful if for all x,y\smallin𝖢x,y\smallin\mathsf{C}. the induced functor 𝖢(x,y)𝖣(F(x),F(y))\mathsf{C}(x,y)\to\mathsf{D}(F(x),F(y)) is (n1)(n-1)-fully faithful.

This is an inductive definition for 0nN0\leq n\leq N. Notice that the n=1n=1 case agrees with our usual notion of fully faithfulness.

Now we prove that ObjDefM\operatorname{ObjDef}_{M} is an nn-proximate fmp. We recall the following result:

2.2.2 Proposition ([Lur18] Prop 16.2.1.1).

Let kk be an \mathbbE2\mathbb{E}_{2}-ring and 𝖣\mathsf{D} a kk-linear category. Suppose we’re given a pullback:

A{A}A{A^{\prime}}B{B}B{B^{\prime}}

\lrcorner\lrcorner

in Algk\operatorname{Alg}_{k}. Then the induced functor LModA(𝖣)LModA(𝖣)×LModB(𝖣)LModB(𝖣)\operatorname{LMod}_{A}(\mathsf{D})\to\operatorname{LMod}_{A^{\prime}}(\mathsf{D})\times_{\operatorname{LMod}_{B^{\prime}}(\mathsf{D})}\operatorname{LMod}_{B}(\mathsf{D}) is fully faithful.

2.2.3 Remark.

Using the hypotheses of the above proposition (2.2.2), let M\smallinLModA(D)M\smallin\operatorname{LMod}_{A}(D), and let MR:=RAMM_{R}:=R\otimes_{A}M for any AA-algebra RR. Then, as explained in the proof of [Lur18, Prop 16.2.1.1], the conclusion of the above proposition (2.2.2) is equivalent to the unit map

MAMB×MBMAM_{A}\longrightarrow M_{B}\times_{M_{B^{\prime}}}M_{A^{\prime}}

being an equivalence for any M\smallinLModA(D)M\smallin\operatorname{LMod}_{A}(D). This is an easy application of the result that left adjoints are fully faithful if and only if the unit map is an equivalence.

Using this result, we’ll prove the following result by induction:

2.2.4 Proposition.

Given a pullback in Algk(n)\operatorname{{Alg^{({n})}_{k}}},

A{A}A{A^{\prime}}B{B}B{B^{\prime}}

\lrcorner\lrcorner

and M\smallin𝖢\smallin𝖯𝗋𝗄𝖫,𝗇M\smallin\mathsf{C}\smallin\mathsf{Pr^{L,{n}\kern 1.0pt\wedge}_{k}}. Given R\smallinAlgk(n)R\smallin\operatorname{{Alg^{({n})}_{k}}}, write MRM_{R} for

LModRn1M.\operatorname{LMod}^{n-1}_{R}\otimes M.

Then the comparison map

MAMB×MBMAM_{A}\longrightarrow M_{B}\times_{M_{B^{\prime}}}M_{A^{\prime}}

is representably (n1)(n-1)-fully faithful.

Here ”representably” nn-fully faithful means after taking homs out from any object 𝖢(X,)\mathsf{C}(X,{-}), the result is a nn-fully faithful functor.

Proof.

The case n=1n=1 is explained in remark (2.2.3). This is the base for our induction.

For the inductive step, we prove it for n>1n>1, assuming it’s done for n1n-1. Then given our pullback square along with M\smallin𝖢M\smallin\mathsf{C}, we are trying to show that

MAMB×MBMAM_{A}\longrightarrow M_{B}\times_{M_{B^{\prime}}}M_{A^{\prime}}

is representably (n1)(n-1)-fully faithful. This means that given any X\smallin𝖢X\smallin\mathsf{C}, we must show

𝖢(X,MA)𝖢(X,MB)×C(X,MB)C(X,MA)\mathsf{C}(X,M_{A})\longrightarrow\mathsf{C}(X,M_{B})\times_{C(X,M_{B^{\prime}})}C(X,M_{A^{\prime}})

is (n1)(n-1)-fully faithful. Let XRX_{R} denote LModRn1X\operatorname{LMod}^{n-1}_{R}\otimes X as with MM, and let 𝖢R\mathsf{C}_{R} denote LModRn𝖢\operatorname{LMod}^{n}_{R}\otimes\mathsf{C}. Then by the extension of scalars adjunction, we see that

𝖢(X,MR)𝖢R(XR,MR),\mathsf{C}(X,M_{R})\simeq\mathsf{C}_{R}(X_{R},M_{R}),

so our above map is equivalent to

𝖢A(XA,MA)𝖢B(XB,MB)×CB(XB,MB)CA(XA,MA).\mathsf{C}_{A}(X_{A},M_{A})\longrightarrow\mathsf{C}_{B}(X_{B},M_{B})\times_{C_{B^{\prime}}(X_{B^{\prime}},M_{B^{\prime}})}C_{A^{\prime}}(X_{A^{\prime}},M_{A^{\prime}}).

To show this map is (n1)(n-1)-fully faithful, we take any two objects PA,QA\smallin𝖢A(XA,MA)P_{A},Q_{A}\smallin\mathsf{C}_{A}(X_{A},M_{A}) and we try to show the induced map

𝖢A(XA,MA)(PA,QA)𝖢B(XB,MB)(PB,QB)×CB(XB,MB)(PB,QB)CA(XA,MA)(PA,QA)\mathsf{C}_{A}(X_{A},M_{A})(P_{A},Q_{A})\longrightarrow\mathsf{C}_{B}(X_{B},M_{B})(P_{B},Q_{B})\times_{C_{B^{\prime}}(X_{B^{\prime}},M_{B^{\prime}})(P_{B^{\prime}},Q_{B^{\prime}})}C_{A^{\prime}}(X_{A^{\prime}},M_{A^{\prime}})(P_{A^{\prime}},Q_{A^{\prime}})

is (n2)(n-2)-fully faithful (using the inductive definition of (n1)(n-1)-fully faithfulness).

This last map, once again by the extension of scalars adjunction, can be identified with

𝖢A(XA,MA)(PA,QA)𝖢A(XA,MA)(PA,QB)×CA(XA,MA)(PA,QB)CA(XA,MA)(PA,QA).\mathsf{C}_{A}(X_{A},M_{A})(P_{A},Q_{A})\longrightarrow\mathsf{C}_{A}(X_{A},M_{A})(P_{A},Q_{B})\times_{C_{A}(X_{A},M_{A})(P_{A},Q_{B^{\prime}})}C_{A}(X_{A},M_{A})(P_{A},Q_{A^{\prime}}).

But since by induction, we assume QAQ_{A} is representably (n2)(n-2)-fully faithful in 𝖢(XA,MA)\mathsf{C}(X_{A},M_{A})! This implies that the comparison morphism—the image under 𝖢A(XA,MA)(PA,)\mathsf{C}_{A}(X_{A},M_{A})(P_{A},{-}) of QAQB×QBQAQ_{A}\to Q_{B}\times_{Q_{B^{\prime}}}Q_{A^{\prime}}—is indeed (n2)(n-2)-fully faithful, as desired. ∎

Using this we prove

2.2.5 Proposition.

ObjDefM\operatorname{ObjDef}_{M} is an nn-proximate fmp.

Proof.

We seek to prove that given a pullback:

A{A}A{A^{\prime}}B{B}B{B^{\prime}}

\lrcorner\lrcorner

in Algk(n),aug\operatorname{{Alg^{({n}),aug}_{k}}}, the comparison ObjDefM(A)ObjDefM(A)×ObjDefM(B)ObjDefM(B)\operatorname{ObjDef}_{M}(A)\to\operatorname{ObjDef}_{M}(A^{\prime})\times_{\operatorname{ObjDef}_{M}(B^{\prime})}\operatorname{ObjDef}_{M}(B) is (n2)(n-2)-truncated.

Using our above result, we know that the comparison map

MAMB×MBMAM_{A}\longrightarrow M_{B}\times_{M_{B^{\prime}}}M_{A^{\prime}}

is representably (n1)(n-1)-fully faithful.

Thus, by extension of scalars, we have that given any XA\smallin𝖢AX_{A}\smallin\mathsf{C}_{A} (borrowing notation from the last proof), we have

𝖢A(XA,MA)𝖢B(XB,MB)×CB(XB,MB)CA(XA,MA).\mathsf{C}_{A}(X_{A},M_{A})\longrightarrow\mathsf{C}_{B}(X_{B},M_{B})\times_{C_{B^{\prime}}(X_{B^{\prime}},M_{B^{\prime}})}C_{A^{\prime}}(X_{A^{\prime}},M_{A^{\prime}}).

is (n1)(n-1)-fully faithful. Plugging in XA=MAX_{A}=M_{A}, we get that

End𝖢A(MA)End𝖢B(MB)×End𝖢B(MB)End𝖢A(MA)\operatorname{End}_{\mathsf{C}_{A}}(M_{A})\longrightarrow\operatorname{End}_{\mathsf{C}_{B}}(M_{B})\times_{\operatorname{End}_{\mathsf{C}_{B^{\prime}}}(M_{B^{\prime}})}\operatorname{End}_{\mathsf{C}_{A^{\prime}}}(M_{A^{\prime}})

is (n1)(n-1)-fully faithful. However, notice that using the basepoint MA:=LModAn1MM_{A}:=\operatorname{LMod}^{n-1}_{A}\otimes M for ObjDefM(A)\operatorname{ObjDef}_{M}(A), we see that ΩObjDefM(A)\Omega\operatorname{ObjDef}_{M}(A) can be identified with the fiber of End𝖢A(MA)End𝖢(M)\operatorname{End}_{\mathsf{C}_{A}}(M_{A})^{\simeq}\to\operatorname{End}_{\mathsf{C}}(M)^{\simeq}. Hence, the above (n1)(n-1)-fully faithful map descends through fibers and taking cores, and we get that

ΩObjDefM(A)ΩObjDefM(B)×ΩObjDefM(B)ΩObjDefM(A)\Omega\operatorname{ObjDef}_{M}(A)\longrightarrow\Omega\operatorname{ObjDef}_{M}(B)\times_{\Omega\operatorname{ObjDef}_{M}(B^{\prime})}\Omega\operatorname{ObjDef}_{M}(A^{\prime})

is (n1)(n-1)-faithful. It’s easy to show that this is equivalent to the map being (n3)(n-3)-truncated as we actually have a map of spaces. For example, when n=2n=2, we know 11-fully faithful maps between spaces are equivalent to 1-1-truncated inclusions.

Hence, removing the loop spaces, we see that the map

ObjDefM(A)ObjDefM(B)×ObjDefM(B)ObjDefM(A)\operatorname{ObjDef}_{M}(A)\longrightarrow\operatorname{ObjDef}_{M}(B)\times_{\operatorname{ObjDef}_{M}(B^{\prime})}\operatorname{ObjDef}_{M}(A^{\prime})

must be (n2)(n-2)-truncated, as desired. ∎

2.3 Constructing the comparison map βobj\beta^{\operatorname{obj}}

We construct the map

βobj:ObjDefMMapsAlgk(n),aug(𝒟n(),kξ(M)).\beta^{\operatorname{obj}}:\operatorname{ObjDef}_{M}\to\operatorname{Maps}_{\operatorname{{Alg^{({n}),aug}_{k}}}}(\mathcal{D}^{n}({-}),k\oplus\operatorname{\xi}(M)).

We begin by constructing a duality functor

𝒟n:Deform[𝖢,M]opRModaug(𝖢)×𝖢{M}\mathcal{D}^{n}:\operatorname{Deform}[\mathsf{C},M]^{\operatorname{op}}\to\operatorname{RMod^{\operatorname{aug}}}(\mathsf{C})\times_{\mathsf{C}}\{M\}

where RModaug(𝖢)\operatorname{RMod^{\operatorname{aug}}}(\mathsf{C}) is as defined in (2.1.7).

2.3.1 Construction (Duality functor 𝒟n\mathcal{D}^{n}).

Let λn:nAlgk(n),aug×Algk(n),aug\lambda^{n}:\operatorname{\mathcal{M}}^{n}\to\operatorname{{Alg^{({n}),aug}_{k}}}\times\operatorname{{Alg^{({n}),aug}_{k}}} be the pairing of categories inducing \mathbbEn\mathbb{E}_{n}-Koszul duality ([Lur17, Construction 5.2.5.32]). Objects of n\operatorname{\mathcal{M}}^{n} intuitively consist of two algebras A,B\smallinAlgk(n),augA,B\smallin\operatorname{{Alg^{({n}),aug}_{k}}} along with an augmentation of their tensor product: AkBkA\otimes_{k}B\to k.

Let AkBkA\otimes_{k}B\to k be an \mathbbEn\mathbb{E}_{n}-pairing between A,B\smallinAlgk(n),smA,B\smallin\operatorname{{Alg^{({n}),sm}_{k}}} (so it’s an object of n\operatorname{\mathcal{M}}^{n}). Suppose we’re given the data (A,MA,η)(A,M_{A},\eta) where MA\smallinLModA(𝖢)M_{A}\smallin\operatorname{LMod}_{A}(\mathsf{C}) and η:kAMAM\eta:k\otimes_{A}M_{A}\to M is an equivalence, so this data can be thought of as an object in ObjDefM(A)\operatorname{ObjDef}_{M}(A). Notice that

MALModBn\smallinBiModLModBnLModAnLModBn(𝖢)M_{A}\otimes\operatorname{LMod}^{n}_{B}\smallin{}_{LMod^{n}_{A}\otimes LMod^{n}_{B}}\operatorname{BiMod}_{\operatorname{LMod}^{n}_{B}}(\mathsf{C})

Thus we have

MLModknABMALModBn\smallinRModLModBn(𝖢)M\simeq\operatorname{LMod}^{n}_{k}\otimes_{A\otimes B}M_{A}\otimes\operatorname{LMod}^{n}_{B}\smallin\operatorname{RMod}_{\operatorname{LMod}^{n}_{B}}(\mathsf{C})

where the equivalence uses the given pairing and η\eta. This construction gives a right LModBn\operatorname{LMod}^{n}_{B} action on MM. This construction produces a functor:

Deform[𝖢,M]×nDeform[𝖢,M]×(RModaug(𝖢)×𝖢{M})\operatorname{Deform}[\mathsf{C},M]\times\operatorname{\mathcal{M}}^{n}\to\operatorname{Deform}[\mathsf{C},M]\times(\operatorname{RMod^{\operatorname{aug}}}(\mathsf{C})\times_{\mathsf{C}}\{M\})

This is a left representable pairing of categories, which induces a duality functor (by [Lur11, Construction 3.1.3])

𝒟n:Deform[𝖢,M]opRModaug(𝖢)×𝖢{M},\mathcal{D}^{n}:\operatorname{Deform}[\mathsf{C},M]^{\operatorname{op}}\to\operatorname{RMod^{\operatorname{aug}}}(\mathsf{C})\times_{\mathsf{C}}\{M\},

as required.

Now, we can easily get our compairson βobj\beta^{\operatorname{obj}}.

2.3.2 Construction (Comparison map βobj\beta^{\operatorname{obj}}).

Notice that 𝒟n\mathcal{D}^{n} (2.3.1) constructed above has codomain equivalent to

Algk/ξ(M)(n),aug,\operatorname{{Alg^{({n}),aug}_{k/{\operatorname{\xi}(M)}}}},

where ξ(M)\operatorname{\xi}(M) is a center of MM.

We have a square:

DeformMop{\operatorname{Deform}_{M}^{\operatorname{op}}}Algk/ξ(M)(n),aug{\operatorname{{Alg^{({n}),aug}_{k/{\operatorname{\xi}(M)}}}}}Algk(n),augop{\operatorname{{Alg^{({n}),aug}_{k}}}^{\operatorname{op}}}Algk(n),aug{\operatorname{{Alg^{({n}),aug}_{k}}}}𝒟n\scriptstyle{\mathcal{D}^{n}}𝒟n\scriptstyle{\mathcal{D}^{n}}

Here the top horizontal functor is the duality functor defined just above, the bottom functor is \mathbbEn\mathbb{E}_{n}-Koszul duality functor. The left and right vertical maps are canonical Cartesian fibrations.

We restrict to small algebras:

DeformMop|Algk(n),sm{\operatorname{Deform}_{M}^{\operatorname{op}}\big{|}_{\operatorname{{Alg^{({n}),sm}_{k}}}}}Algk/ξ(M)(n),sm{\operatorname{{Alg^{({n}),sm}_{k/{\operatorname{\xi}(M)}}}}}Algk(n),smop{\operatorname{{Alg^{({n}),sm}_{k}}}^{\operatorname{op}}}Algk(n),sm{\operatorname{{Alg^{({n}),sm}_{k}}}}𝒟n\scriptstyle{\mathcal{D}^{n}}𝒟n\scriptstyle{\mathcal{D}^{n}}

Note that the bottom morphism is an equivalence. This morphism of the vertical left fibrations gives us a comparison morphism βobj\beta^{\operatorname{obj}} of the two induced functors

(2.3.3) βobj:ObjDefMMapsAlgk(n),aug(𝒟n(),kξ(M)),\beta^{\operatorname{obj}}:\operatorname{ObjDef}_{M}\to\operatorname{Maps}_{\operatorname{{Alg^{({n}),aug}_{k}}}}(\mathcal{D}^{n}({-}),k\oplus\operatorname{\xi}(M)),

as desired.

2.4 Proving βobj\beta^{\operatorname{obj}} induces an equivalence

We would like to show:

2.4.1 Theorem.

Given any nn-category 𝖢\mathsf{C} with an object M\smallin𝖢M\smallin\mathsf{C}, the map βobj\beta^{\operatorname{obj}} (2.3.3) induces an equivalence

ObjDef^MMapsAlgk(n),aug(𝒟n(),kξ(M)).\operatorname{\widehat{\operatorname{ObjDef}}}_{M}\to\operatorname{Maps}_{\operatorname{{Alg^{({n}),aug}_{k}}}}(\mathcal{D}^{n}({-}),k\oplus\operatorname{\xi}(M)).

To do this, we first use Lurie’s Proposition 1.2.10 in [Lur11] to reduce to the cases where the input algebra is kk[m]k\oplus k[m] for m>0m>0, as values on these algebras determine the tangent complex in our current deformation context.

Then we have a square:

ObjDefM(kk[m]){\operatorname{ObjDef}_{M}(k\oplus k[m])}MapsAlgk(n),aug(𝒟n(kk[m]),kξ(M)){\operatorname{Maps}_{\operatorname{{Alg^{({n}),aug}_{k}}}}(\mathcal{D}^{n}(k\oplus k[m]),k\oplus\operatorname{\xi}(M))}ΩnObjDefM(kk[m+n]){\Omega^{n}\operatorname{ObjDef}_{M}(k\oplus k[m+n])}ΩnMapsAlgk(n),aug(𝒟n(kk[m+n]),kξ(M)){\Omega^{n}\operatorname{Maps}_{\operatorname{{Alg^{({n}),aug}_{k}}}}(\mathcal{D}^{n}(k\oplus k[m+n]),k\oplus\operatorname{\xi}(M))}βobj\scriptstyle{\beta^{\operatorname{obj}}}\scriptstyle{\sim}Ωnβobj\scriptstyle{\Omega^{n}\beta^{\operatorname{obj}}}

Since ObjDefM\operatorname{ObjDef}_{M} is an nn-proximate fmp, we can reduce our task to showing that the bottom map is an equivalence.

So we’ve reduced our problem to proving the following:

2.4.2 Proposition.

Let (𝖢,M)(\mathsf{C},M) be an nn-category with an object. Then the bottom leg of the square

ObjDefM(kk[m]){\operatorname{ObjDef}_{M}(k\oplus k[m])}MapsAlgk(n),aug(𝒟n(kk[m]),kξ(M)){\operatorname{Maps}_{\operatorname{{Alg^{({n}),aug}_{k}}}}(\mathcal{D}^{n}(k\oplus k[m]),k\oplus\operatorname{\xi}(M))}ΩnObjDefM(kk[m+n]){\Omega^{n}\operatorname{ObjDef}_{M}(k\oplus k[m+n])}ΩnMapsAlgk(n),aug(𝒟n(kk[m+n]),kξ(M)){\Omega^{n}\operatorname{Maps}_{\operatorname{{Alg^{({n}),aug}_{k}}}}(\mathcal{D}^{n}(k\oplus k[m+n]),k\oplus\operatorname{\xi}(M))}βobj\scriptstyle{\beta^{\operatorname{obj}}}\scriptstyle{\sim}Ωnβobj\scriptstyle{\Omega^{n}\beta^{\operatorname{obj}}}

is an equivalence for all m>0m>0.

We start with some preliminary lemmas. First we need a lemma about functors out of LModRn\operatorname{LMod}^{n}_{R}, a Morita style result. This is just an nn-categorical version of [Lur17, Theorem 4.8.4.1], and indeed it follows from that result.

2.4.3 Theorem.

Let RR be an \mathbbEn\mathbb{E}_{n}-algebra where n1n\geq 1 and 𝖬\smallin𝖯𝗋𝗄𝖫,𝗇\mathsf{M}\smallin\mathsf{Pr^{L,{n}}_{k}} be an nn-category. Then the composition

om𝖯𝗋𝗄𝖫,𝗇(LModRn,𝖬)\displaystyle\operatorname{\mathcal{H}\kern-2.0ptom}_{\mathsf{Pr^{L,{{n}}}_{k}}}(\operatorname{LMod}^{n}_{R},\mathsf{M}) LinFunModkn(LModRn,𝖬)\displaystyle\subseteq\operatorname{LinFun}_{\operatorname{Mod}^{n}_{k}}(\operatorname{LMod}^{n}_{R},\mathsf{M})
Fun(RModLModRn1(LModRn),RModLModRn1(𝖬))\displaystyle\to\operatorname{Fun}(\operatorname{RMod}_{\operatorname{LMod}^{n-1}_{R}}(\operatorname{LMod}^{n}_{R}),\operatorname{RMod}_{\operatorname{LMod}^{n-1}_{R}}(\mathsf{M}))
RModLModRn1(𝖬)\displaystyle\to\operatorname{RMod}_{\operatorname{LMod}^{n-1}_{R}}(\mathsf{M})

is an equivalence. The second map uses the functoriality of RModLModRn1\operatorname{RMod}_{\operatorname{LMod}^{n-1}_{R}}, and the third map is evaluation at the bimodule RR.

2.4.4 Remark.

Of course by reversing left and right, there is an analoguous dual version of 2.4.3. Note the difference between om𝖯𝗋𝗄𝖫,𝗇\operatorname{\mathcal{H}\kern-2.0ptom}_{\mathsf{Pr^{L,{{n}}}_{k}}} and LinFunModkn\operatorname{LinFun}_{\operatorname{Mod}^{n}_{k}} is that while they are both Modkn\operatorname{Mod}^{n}_{k}-linear, functors in the former also have to preserve colimits.

Proof.

We just use [Lur17, Theorem 4.8.4.1] directly to prove this one. Let KK contain all small simplices. If RR is an \mathbbEn\mathbb{E}_{n}-algebra, then LModRn1\operatorname{LMod}^{n-1}_{R} is an \mathbbE1\mathbb{E}_{1}-algebra in Modkn\operatorname{Mod}^{n}_{k}. 𝖬\mathsf{M} is also right tensored over Modkn\operatorname{Mod}^{n}_{k} (as left and right modules over Modkn\operatorname{Mod}^{n}_{k} are equivalent). So we directly apply the dual of [Lur17, Theorem 4.8.4.1] using the category 𝖢=Modkn\mathsf{C}=\operatorname{Mod}^{n}_{k}, the right module 𝖬\mathsf{M}, and the algebra LModRn1\smallin𝖢\operatorname{LMod}^{n-1}_{R}\smallin\mathsf{C}. This gives us exactly what we needed. ∎

The considerations in [Lur17, Section 4.8], show that the categorical dual of LModS\operatorname{LMod}_{S} is RModS\operatorname{RMod}_{S}. If we apply this here where R=LModRn1R=\operatorname{LMod}^{n-1}_{R}, we see that the reason that

RModLModRn1\operatorname{RMod}_{\operatorname{LMod}^{n-1}_{R}}

shows up is because it’s the categorical dual of LModRn\operatorname{LMod}^{n}_{R}. This motivates the following notation:

2.4.5 Notation (Duality).

Let

LModRn{\operatorname{LMod}^{n}_{R}}^{\vee}

denote the categorical dual of LModRn\operatorname{LMod}^{n}_{R} in 𝖯𝗋𝗄𝖫,𝗇\mathsf{Pr^{L,{n}}_{k}}. So in the case that n1n\geq 1, we get

LModRnRModLModRn1.{\operatorname{LMod}^{n}_{R}}^{\vee}\simeq\operatorname{RMod}_{\operatorname{LMod}^{n-1}_{R}}.

In the case that n=0n=0, we would get the kk-linear dual of RR, if it exists.

Now we can do some simple calculations of endormophism spaces. First one about endormorphisms of the unit object in LModRn\operatorname{LMod}^{n}_{R}. For the next few results, recall that we have the convention that LModR0:=R\operatorname{LMod}^{0}_{R}:=R and LModR1:=1R\smallinR\operatorname{LMod}^{-1}_{R}:=1_{R}\smallin R.

2.4.6 Corollary.

Let RR be an \mathbbEn\mathbb{E}_{n}-algebra, where n1n\geq 1. Then:

  1. 1.

    The evaluation map

    evLModRn2:EndLModRn(LModRn1)LModRn1.\operatorname{ev}_{\operatorname{LMod}^{n-2}_{R}}:\operatorname{End}_{\operatorname{LMod}^{n}_{R}}(\operatorname{LMod}^{n-1}_{R})\to\operatorname{LMod}^{n-1}_{R}.

    is an equivalence sending the identity to LModRn2\operatorname{LMod}^{n-2}_{R}.

  2. 2.

    The composite map of evaluations

    evm:EndLModRnm(LModRn1)LModRnm,\operatorname{ev}^{m}:\operatorname{End}^{m}_{\operatorname{LMod}^{n}_{R}}(\operatorname{LMod}^{n-1}_{R})\to\operatorname{LMod}^{n-m}_{R},

    is an equivalence that sends the identity to LModRnm1\operatorname{LMod}^{n-m-1}_{R}.

2.4.7 Remark.

Notice for the case that n=1n=1, this corollary gives the simple result that

ev1R:EndLModR(R)R\operatorname{ev}_{1_{R}}:\operatorname{End}_{\operatorname{LMod}_{R}}(R)\to R

is an equivalence.

Proof.

The domain of evLModRn2\operatorname{ev}_{\operatorname{LMod}^{n-2}_{R}} is

omLModRn(LModRn1,LModRn1)\operatorname{\mathcal{H}\kern-2.0ptom}_{\operatorname{LMod}^{n}_{R}}(\operatorname{LMod}^{n-1}_{R},\operatorname{LMod}^{n-1}_{R})

by definition. We use the free-forgetful adjunction between LModRn\operatorname{LMod}^{n}_{R} and Modkn\operatorname{Mod}^{n}_{k}, which gives us

omLModRn(LModRn1,LModRn1)omModkn(Modkn1,LModRn1).\operatorname{\mathcal{H}\kern-2.0ptom}_{\operatorname{LMod}^{n}_{R}}(\operatorname{LMod}^{n-1}_{R},\operatorname{LMod}^{n-1}_{R})\simeq\operatorname{\mathcal{H}\kern-2.0ptom}_{\operatorname{Mod}^{n}_{k}}(\operatorname{Mod}^{n-1}_{k},\operatorname{LMod}^{n-1}_{R}).

Then the Morita result 2.4.3 then let’s us simplify the second mapping space via evaluation to

evModkn2:omModkn(Modkn1,LModRn1)\displaystyle\operatorname{ev}_{\operatorname{Mod}^{n-2}_{k}}:\operatorname{\mathcal{H}\kern-2.0ptom}_{\operatorname{Mod}^{n}_{k}}(\operatorname{Mod}^{n-1}_{k},\operatorname{LMod}^{n-1}_{R}) RModModkn2(LModRn1)\displaystyle\simeq\operatorname{RMod}_{\operatorname{Mod}^{n-2}_{k}}(\operatorname{LMod}^{n-1}_{R})
LModRn1.\displaystyle\simeq\operatorname{LMod}^{n-1}_{R}.

But this can clearly be identified with evLModRn2\operatorname{ev}_{\operatorname{LMod}^{n-2}_{R}} when precomposing with the free-forgetful adjunction, thus we’re done.

For the second statement, it follows from a simple induction and reduction of various endomorphism spaces using the first result. ∎

We can secondly calculate a result about endormophisms of the augmentation module in LModRn\operatorname{LMod}^{n}_{R}.

2.4.8 Corollary.

Let RR be an augmented \mathbbEn\mathbb{E}_{n}-algebra where n1n\geq 1. Then:

  1. 1.

    The evaluation map

    evModkn2:EndLModRn(Modkn1)LModBarRn1.\operatorname{ev}_{\operatorname{Mod}^{n-2}_{k}}:\operatorname{End}_{\operatorname{LMod}^{n}_{R}}(\operatorname{Mod}^{n-1}_{k})\to{\operatorname{LMod}^{n-1}_{\operatorname{Bar}{R}}}^{\vee}.

    is an equivalence which sends the identity map to the augmentation module Modkn2\operatorname{Mod}^{n-2}_{k}.

  2. 2.

    The composite map of evaluations

    evm:EndLModRnm(Modkn1)LModBarmRnm,\operatorname{ev}^{m}:\operatorname{End}^{m}_{\operatorname{LMod}^{n}_{R}}(\operatorname{Mod}^{n-1}_{k})\to{\operatorname{LMod}^{n-m}_{\operatorname{Bar}^{m}{R}}}^{\vee},

    is an equivalence which sends the mm-fold identity to the augmentation module Modknm1\operatorname{Mod}^{n-m-1}_{k} when mn1m\leq n-1.

2.4.9 Remark.

As a special case, when m=nm=n we get

evn:EndLModRnn(Modkn1)BarnR𝒟nR\operatorname{ev}^{n}:\operatorname{End}^{n}_{\operatorname{LMod}^{n}_{R}}(\operatorname{Mod}^{n-1}_{k})\to{\operatorname{Bar}^{n}{R}}^{\vee}\simeq\mathcal{D}^{n}R

is an equivalence.

Proof.

Let’s use the extension of scalars along the augmentation map RkR\to k to identify

omLModRn(Modkn1,Modkn1)\displaystyle\operatorname{\mathcal{H}\kern-2.0ptom}_{\operatorname{LMod}^{n}_{R}}(\operatorname{Mod}^{n-1}_{k},\operatorname{Mod}^{n-1}_{k}) omModkn(Modkn1RModkn1,Modkn1)\displaystyle\simeq\operatorname{\mathcal{H}\kern-2.0ptom}_{\operatorname{Mod}^{n}_{k}}(\operatorname{Mod}^{n-1}_{k}\otimes_{R}\operatorname{Mod}^{n-1}_{k},\operatorname{Mod}^{n-1}_{k})
omModkn(LModkRkn1,Modkn1)\displaystyle\simeq\operatorname{\mathcal{H}\kern-2.0ptom}_{\operatorname{Mod}^{n}_{k}}(\operatorname{LMod}^{n-1}_{k\otimes_{R}k},\operatorname{Mod}^{n-1}_{k})

Now if n=1n=1, we see the last mapping space simplifies directly to BarR\operatorname{Bar}{R}^{\vee}. Otherwise if n>1n>1, we use the Morita result 2.4.3 to get

evLModkRkn2:omModkn(LModkRkn1,Modkn1)\displaystyle\operatorname{ev}_{\operatorname{LMod}^{n-2}_{k\otimes_{R}k}}:\operatorname{\mathcal{H}\kern-2.0ptom}_{\operatorname{Mod}^{n}_{k}}(\operatorname{LMod}^{n-1}_{k\otimes_{R}k},\operatorname{Mod}^{n-1}_{k}) RModLModkRkn2(Modkn1)\displaystyle\simeq\operatorname{RMod}_{\operatorname{LMod}^{n-2}_{k\otimes_{R}k}}(\operatorname{Mod}^{n-1}_{k})
RModLModBarRn2,\displaystyle\simeq\operatorname{RMod}_{\operatorname{LMod}^{n-2}_{\operatorname{Bar}{R}}},

as required! Tracing the identifications, we see it indeed corresponds with evLModkn2\operatorname{ev}_{\operatorname{LMod}^{n-2}_{k}}, which by definition sends the identity map to the augmentation module.

For the induction we just iteratively use the first result. Notice that even if we replace LModRn\operatorname{LMod}^{n}_{R} with it’s dual LModRn=RModLModRn1{\operatorname{LMod}^{n}_{R}}^{\vee}=\operatorname{RMod}_{\operatorname{LMod}^{n-1}_{R}}, the identification above

omLModRn(Modkn1,Modkn1)\displaystyle\operatorname{\mathcal{H}\kern-2.0ptom}_{{\operatorname{LMod}^{n}_{R}}^{\vee}}(\operatorname{Mod}^{n-1}_{k},\operatorname{Mod}^{n-1}_{k}) omModkn(Modkn1RModkn1,Modkn1)\displaystyle\simeq\operatorname{\mathcal{H}\kern-2.0ptom}_{\operatorname{Mod}^{n}_{k}}(\operatorname{Mod}^{n-1}_{k}\otimes_{R}\operatorname{Mod}^{n-1}_{k},\operatorname{Mod}^{n-1}_{k})
omModkn(LModkRkn1,Modkn1)\displaystyle\simeq\operatorname{\mathcal{H}\kern-2.0ptom}_{\operatorname{Mod}^{n}_{k}}(\operatorname{LMod}^{n-1}_{k\otimes_{R}k},\operatorname{Mod}^{n-1}_{k})

can basically go unchanged, which is why the induction works past the second step (which requires calculating endomorphisms of the augmentation module in the category LModRnm=RModLModRnm1{\operatorname{LMod}^{n-m}_{R}}^{\vee}=\operatorname{RMod}_{\operatorname{LMod}^{n-m-1}_{R}} when 2mn12\leq m\leq n-1).

Lastly when m=nm=n, the final dual that we take is not a categorical dual but just a kk-linear dual, thus giving us Barn(R){\operatorname{Bar}^{n}(R)}^{\vee} at the end. ∎

2.4.10 Remark.

Note that given R\smallinAlgk(n),augR\smallin\operatorname{{Alg^{({n}),aug}_{k}}}, ie an nn-fold augmented algebra, we can take it’s opposite in nn-different ways given its nn-commuting multiplications. If we choose the very first multiplication to take RopR^{\operatorname{op}}, then we get LModRopnRModLModRn1\operatorname{LMod}^{n}_{R^{\operatorname{op}}}\simeq\operatorname{RMod}_{\operatorname{LMod}^{n-1}_{R}}. However, regardless of which factor we take RopR^{\operatorname{op}} on, we get (not canonically) equivalent algebras because any of these op\operatorname{op}-funtors correspond to choosing an element on the determinant 1-1 connected component of O(n)O(n), which naturally acts on \mathbbEn\mathbb{E}_{n}. Such an identification relies on a path between these two elements of O(n)O(n).

We could also take the Bar construction on various multiplication levels of RR. Notice that if we choose to take op\operatorname{op} and Bar\operatorname{Bar} on the first level (as we do in the above argument), we get that (BarR)opBar(R2op)(\operatorname{Bar}{R})^{\operatorname{op}}\simeq\operatorname{Bar}(R^{2-\operatorname{op}}), where we need to take the opposite of the second multiplication of RR. This is because in (BarR)op(\operatorname{Bar}{R})^{\operatorname{op}}, after taking Bar on the first multiplication, it is removed (or turned into a comultliplication), hence taking op afterwards affects the second multiplication of our original algebra RR.

By using the standard calculation

Bar(Aop)Bar(A)\operatorname{Bar}(A^{\operatorname{op}})\simeq\operatorname{Bar}(A)

on 11-algebras, we can see that

(BarR)op\displaystyle(\operatorname{Bar}{R})^{\operatorname{op}} Bar(R2op)\displaystyle\simeq\operatorname{Bar}(R^{2-\operatorname{op}})
Bar(Rop)\displaystyle\simeq\operatorname{Bar}(R^{\operatorname{op}})
Bar(R),\displaystyle\simeq\operatorname{Bar}(R),

which finally let’s us identify RModLModBarRn2\operatorname{RMod}_{\operatorname{LMod}^{n-2}_{\operatorname{Bar}{R}}} with LModBarRn1\operatorname{LMod}^{n-1}_{\operatorname{Bar}{R}}. So as long as mn1m\leq n-1 in the argument above, we didn’t really need the categorical duals in the endomorphism space formula in the above lemma. Using this result would have made the induction after the second step a little more symmetric-looking, however this identification relies on a choice of a path in O(n)O(n) between the two different opposites that we take and isn’t canonical.

Next we need some results on endomorphism spaces and tensor products. These results could have been proven directly without the above corollaries, but we separated out the arguments for clarity.

2.4.11 Lemma (Endomorphisms and tensors 1).

Let RR be a small \mathbbEn\mathbb{E}_{n}-algebra, and (𝖢,M)(\mathsf{C},M) be an nn-category with an object. Let 𝖢R\mathsf{C}_{R} denote LModRn(𝖢)\operatorname{LMod}^{n}_{R}(\mathsf{C}) and MRM_{R} denote LModRn1MLMod^{n-1}_{R}\otimes M. Then the canonical tensoring map

im:EndLModRnm(LModRn1)End𝖢m(M)End𝖢Rm(MR)i_{m}:\operatorname{End}^{m}_{\operatorname{LMod}^{n}_{R}}(\operatorname{LMod}^{n-1}_{R})\otimes\operatorname{End}^{m}_{\mathsf{C}}(M)\to\operatorname{End}^{m}_{\mathsf{C}_{R}}(M_{R})

is an equivalence for 0mn0\leq m\leq n. In this equivalence 1Rm11Mm11^{m-1}_{R}\otimes 1^{m-1}_{M} goes to 1MRm11^{m-1}_{M_{R}}.

Proof.

We prove it by induction. For m=0m=0, the result is obvious: the map defaults to the comparison map

i0:LModRn𝖢𝖢Ri_{0}:\operatorname{LMod}^{n}_{R}\otimes\mathsf{C}\to\mathsf{C}_{R}

which is an equivalence that also sends LModRn1M\operatorname{LMod}^{n-1}_{R}\otimes M to MRM_{R}, as required.

Next let’s assume it’s true for m1m-1, where 1mn1\leq m\leq n and we’ll prove that it’s true for mm. We can simplify our codomain through a series of steps. First, by definition we have

End𝖢Rm(MR):=omEnd𝖢Rm1(MR)(1MRm1,1MRm1).\operatorname{End}^{m}_{\mathsf{C}_{R}}(M_{R}):=\operatorname{\mathcal{H}\kern-2.0ptom}_{\operatorname{End}^{m-1}_{\mathsf{C}_{R}}(M_{R})}(1^{m-1}_{M_{R}},1^{m-1}_{M_{R}}).

Our inductive hypothesis says im1i_{m-1} is an equivalence. Using the functoriality of im1i_{m-1}, combined with 2.4.6, gives us an equivalence between omEnd𝖢Rm1(MR)(1MRm1,1MRm1)\operatorname{\mathcal{H}\kern-2.0ptom}_{\operatorname{End}^{m-1}_{\mathsf{C}_{R}}(M_{R})}(1^{m-1}_{M_{R}},1^{m-1}_{M_{R}}) and

omLModRnm+1End𝖢m1(M)(LModRnm1Mm1,LModRnm1Mm1).\operatorname{\mathcal{H}\kern-2.0ptom}_{\operatorname{LMod}^{n-m+1}_{R}\otimes\operatorname{End}^{m-1}_{\mathsf{C}}(M)}(\operatorname{LMod}^{n-m}_{R}\otimes 1^{m-1}_{M},\operatorname{LMod}^{n-m}_{R}\otimes 1^{m-1}_{M}).

Next, using the free-forgetful adjunction, we can simplify the above mapping space to

omEnd𝖢m1(M)(1Mm1,LModRnm1Mm1).\operatorname{\mathcal{H}\kern-2.0ptom}_{\operatorname{End}^{m-1}_{\mathsf{C}}(M)}(1^{m-1}_{M},\operatorname{LMod}^{n-m}_{R}\otimes 1^{m-1}_{M}).

Now we know that LModRnm\operatorname{LMod}^{n-m}_{R} is dualizable for 1mn1\leq m\leq n using results on LMod\operatorname{LMod} in [Lur17, Remark 4.8.4.8]. For n=mn=m, the LModRnm\operatorname{LMod}^{n-m}_{R} simplifies to just RR. Since RR is small, it is dualizable as a kk-module!

Thus for all 0mn0\leq m\leq n, we know that LModRnm\operatorname{LMod}^{n-m}_{R} is dualizable, so we can pull it out of the mapping space:

omEnd𝖢m1(M)(1Mm1,LModRnm1Mm1)LModRnmomEnd𝖢m1(M)(1Mm1,1Mm1)\operatorname{\mathcal{H}\kern-2.0ptom}_{\operatorname{End}^{m-1}_{\mathsf{C}}(M)}(1^{m-1}_{M},\operatorname{LMod}^{n-m}_{R}\otimes 1^{m-1}_{M})\simeq\operatorname{LMod}^{n-m}_{R}\otimes\operatorname{\mathcal{H}\kern-2.0ptom}_{\operatorname{End}^{m-1}_{\mathsf{C}}(M)}(1^{m-1}_{M},1^{m-1}_{M})

which again using 2.4.6 we can identify with

EndLModRnm(LModRn1)End𝖢m(M).\operatorname{End}^{m}_{\operatorname{LMod}^{n}_{R}}(\operatorname{LMod}^{n-1}_{R})\otimes\operatorname{End}^{m}_{\mathsf{C}}(M).

We can trace this comparison map backwards and we’ll see it clearly sends a pair of maps to their external tensor. In other words it induces the map imi_{m}. Thus we’re done, we’ve show imi_{m} is equivalent to a composition of equivalences. ∎

The second endomorphism result is about the augmentation module instead of the ring itself.

2.4.12 Lemma (Endomorphisms and tensors 2).

Let RR be a free \mathbbEn\mathbb{E}_{n}-algebra on a finite-dimensional vector space, and (𝖢,M)(\mathsf{C},M) be an nn-category with an object. Let 𝖢R\mathsf{C}_{R} denote LModRn(𝖢)\operatorname{LMod}^{n}_{R}(\mathsf{C}) and MaugM_{\operatorname{aug}} denote LModkn1MLMod^{n-1}_{k}\otimes M. Here Modkn1\operatorname{Mod}^{n-1}_{k} denotes the augmentation module. Then the canonical tensoring map

jm:EndLModRnm(Modkn1)End𝖢m(M)End𝖢Rm(Maug)j_{m}:\operatorname{End}^{m}_{\operatorname{LMod}^{n}_{R}}(\operatorname{Mod}^{n-1}_{k})\otimes\operatorname{End}^{m}_{\mathsf{C}}(M)\to\operatorname{End}^{m}_{\mathsf{C}_{R}}(M_{\operatorname{aug}})

is an equivalence for 0mn0\leq m\leq n. In this equivalence 1km11Mm11^{m-1}_{k}\otimes 1^{m-1}_{M} goes to 1Maugm11^{m-1}_{M_{\operatorname{aug}}}.

Proof.

We follow the last proof and start by induction. For m=0m=0, the result is by definition:

j0:LModRn𝖢𝖢Rj_{0}:\operatorname{LMod}^{n}_{R}\otimes\mathsf{C}\to\mathsf{C}_{R}

is clearly an equivalence sending Modkn1M\operatorname{Mod}^{n-1}_{k}\otimes M to MaugM_{\operatorname{aug}}.

Next let’s assume it’s true for m1m-1. Let’s simplify our codomain through a series of steps. We have

End𝖢Rm(Maug):=omEnd𝖢Rm1(Maug)(1Maugm1,1Maugm1).\operatorname{End}^{m}_{\mathsf{C}_{R}}(M_{\operatorname{aug}}):=\operatorname{\mathcal{H}\kern-2.0ptom}_{\operatorname{End}^{m-1}_{\mathsf{C}_{R}}(M_{\operatorname{aug}})}(1^{m-1}_{M_{\operatorname{aug}}},1^{m-1}_{M_{\operatorname{aug}}}).

Our inductive hypothesis says jm1j_{m-1} is an equivalence, thus it’s also an equivalence on mapping spaces. This result combined with our calculation 2.4.8 gives

omEnd𝖢Rm1(Maug)(1Maugm1,1Maugm1)\displaystyle\operatorname{\mathcal{H}\kern-2.0ptom}_{\operatorname{End}^{m-1}_{\mathsf{C}_{R}}(M_{\operatorname{aug}})}(1^{m-1}_{M_{\operatorname{aug}}},1^{m-1}_{M_{\operatorname{aug}}})
\displaystyle\simeq omLModBarm1Rnm+1End𝖢m1(M)(LModknm1Mm1,LModknm1Mm1).\displaystyle\operatorname{\mathcal{H}\kern-2.0ptom}_{{\operatorname{LMod}^{n-m+1}_{\operatorname{Bar}^{m-1}{R}}}^{\vee}\otimes\operatorname{End}^{m-1}_{\mathsf{C}}(M)}(\operatorname{LMod}^{n-m}_{k}\otimes 1^{m-1}_{M},\operatorname{LMod}^{n-m}_{k}\otimes 1^{m-1}_{M}).

Now we use the extension of scalars along Barm1Rk\operatorname{Bar}^{m-1}{R}\to k to simplify the right mapping space to get

omEnd𝖢m1(M)(LModknmBarm1RLModknm1Mm1,1Mm1)\operatorname{\mathcal{H}\kern-2.0ptom}_{\operatorname{End}^{m-1}_{\mathsf{C}}(M)}(\operatorname{LMod}^{n-m}_{k}\otimes_{\operatorname{Bar}^{m-1}{R}}\operatorname{LMod}^{n-m}_{k}\otimes 1^{m-1}_{M},1^{m-1}_{M})

which simplifies to

omEnd𝖢m1(M)(LModBarmRnm1Mm1,1Mm1).\operatorname{\mathcal{H}\kern-2.0ptom}_{\operatorname{End}^{m-1}_{\mathsf{C}}(M)}(\operatorname{LMod}^{n-m}_{\operatorname{Bar}^{m}{R}}\otimes 1^{m-1}_{M},1^{m-1}_{M}).

Since LModBarmRnm\operatorname{LMod}^{n-m}_{\operatorname{Bar}^{m}{R}} is dualizable (for n=mn=m we’re using RR is free on a finite-dimensional vector space, thus Barm(R)\operatorname{Bar}^{m}(R) is dualizable [Lur17, Proposition 5.2.3.15]), we can pull it out of the mapping space:

LModBarmRnmomEnd𝖢m1(M)(1Mm1,1Mm1){\operatorname{LMod}^{n-m}_{\operatorname{Bar}^{m}{R}}}^{\vee}\otimes\operatorname{\mathcal{H}\kern-2.0ptom}_{\operatorname{End}^{m-1}_{\mathsf{C}}(M)}(1^{m-1}_{M},1^{m-1}_{M})

But using our calculation 2.4.8, we can clearly identify this with our domain

EndLModRnm(Modkn1)End𝖢m(M).\operatorname{End}^{m}_{\operatorname{LMod}^{n}_{R}}(\operatorname{Mod}^{n-1}_{k})\otimes\operatorname{End}^{m}_{\mathsf{C}}(M).

If you trace this calculation, you can see that this chain of equivalences is equivalent to the tensoring map jmj_{m}. ∎

Now we’re ready to prove the proposition.

Proof of 2.4.2.

We’d like to show the bottom leg of

ObjDefM(kk[m]){\operatorname{ObjDef}_{M}(k\oplus k[m])}MapsAlgk(n),aug(𝒟n(kk[m]),kξ(M)){\operatorname{Maps}_{\operatorname{{Alg^{({n}),aug}_{k}}}}(\mathcal{D}^{n}(k\oplus k[m]),k\oplus\operatorname{\xi}(M))}ΩnObjDefM(kk[m+n]){\Omega^{n}\operatorname{ObjDef}_{M}(k\oplus k[m+n])}ΩnMapsAlgk(n),aug(𝒟n(kk[m+n]),kξ(M)){\Omega^{n}\operatorname{Maps}_{\operatorname{{Alg^{({n}),aug}_{k}}}}(\mathcal{D}^{n}(k\oplus k[m+n]),k\oplus\operatorname{\xi}(M))}βobj\scriptstyle{\beta^{\operatorname{obj}}}\scriptstyle{\sim}Ωnβobj\scriptstyle{\Omega^{n}\beta^{\operatorname{obj}}}

is an equivalence.

First let R=kk[m+n]R=k\oplus k[m+n] (which is a small algebra), so our bottom leg is now

(2.4.13) ΩnβRobj:ΩnObjDefM(R)ΩnMapsAlgk(n),aug(𝒟n(R),kξ(M)).\Omega^{n}\beta^{\operatorname{obj}}_{R}:\Omega^{n}\operatorname{ObjDef}_{M}(R)\to\Omega^{n}\operatorname{Maps}_{\operatorname{{Alg^{({n}),aug}_{k}}}}(\mathcal{D}^{n}(R),k\oplus\operatorname{\xi}(M)).

First we identify βRobj\beta^{\operatorname{obj}}_{R} with the following map

LModRn(𝖢)×𝖢{M}{\operatorname{LMod}^{n}_{R}(\mathsf{C})\times_{\mathsf{C}}\{M\}}LMod𝒟nRn(𝖢)×𝖢{M}{\operatorname{LMod}^{n}_{\mathcal{D}^{n}R}(\mathsf{C})\times_{\mathsf{C}}\{M\}}kR𝒟nRR\scriptstyle{{}_{\mathcal{D}^{n}R}k_{R}\otimes_{R}{-}}

by using two observations:

  • For the domain, ObjDefM(R)LModRn(𝖢)×𝖢{M}\operatorname{ObjDef}_{M}(R)\simeq\operatorname{LMod}^{n}_{R}(\mathsf{C})\times_{\mathsf{C}}\{M\}. In the pullback, the map LModRn(𝖢)𝖢\operatorname{LMod}^{n}_{R}(\mathsf{C})\to\mathsf{C} is given by the augmentation map.

  • For the codomain, MapsAlgk(n),aug(𝒟n(R),kξ(M))LMod𝒟nRn(𝖢)×𝖢{M}\operatorname{Maps}_{\operatorname{{Alg^{({n}),aug}_{k}}}}(\mathcal{D}^{n}(R),k\oplus\operatorname{\xi}(M))\simeq\operatorname{LMod}^{n}_{\mathcal{D}^{n}R}(\mathsf{C})\times_{\mathsf{C}}\{M\}. In the pullback, the map LMod𝒟nRn(𝖢)𝖢\operatorname{LMod}^{n}_{\mathcal{D}^{n}R}(\mathsf{C})\to\mathsf{C} is given by the forgetful functor.

as well as just unpacking the definition of βobj\beta^{\operatorname{obj}} (2.3.3). Notice here we are suppressing the LModn1\operatorname{LMod}^{n-1} in the tensor product kR𝒟nRR{}_{\mathcal{D}^{n}R}k_{R}\otimes_{R}{-}, using the fact that

LModn1:Algn1𝖯𝗋𝗄𝖫,𝗇𝟣\operatorname{LMod}^{n-1}:\operatorname{Alg}^{n-1}\to\mathsf{Pr^{L,{n-1}}_{k}}

is monoidal and fully faithful, and thinking of the \mathbbEn\mathbb{E}_{n} Koszul duality pairing R𝒟nRkR\otimes\mathcal{D}^{n}R\to k as giving the \mathbbEn1\mathbb{E}_{n-1} algebra kk two commuting central actions by RR and 𝒟nR\mathcal{D}^{n}R [Lur17, Proposition 5.2.5.33, Lemma 5.2.5.36]. After taking LModn1\operatorname{LMod}^{n-1} we get exactly the correct tensoring that defines βobj\beta^{\operatorname{obj}}.

We have a triangle

LModRn(𝖢){\operatorname{LMod}^{n}_{R}(\mathsf{C})}LMod𝒟nRn(𝖢){\operatorname{LMod}^{n}_{\mathcal{D}^{n}R}(\mathsf{C})}𝖢{\mathsf{C}}U\scriptstyle{U}kR𝒟nRR\scriptstyle{{}_{\mathcal{D}^{n}R}k_{R}\otimes_{R}{-}}aug\scriptstyle{aug}

which gives βRobj\beta^{\operatorname{obj}}_{R} after taking fibers at M\smallin𝖢M\smallin\mathsf{C}—for the domain along the forgetful functor UU to 𝖢\mathsf{C}, for the codomain along the extension of scalars of the augmentation map RkR\to k to 𝖢\mathsf{C}. This triangle commutes because if you take left adjoints everywhere, you get the classical calculation that the Koszul dual of a square-zero algebra is a free algebra [Lur11, Proposition 4.5.6]

Now the horizontal map in the triangle can be identified with

LModRn𝖢{\operatorname{LMod}^{n}_{R}\otimes\mathsf{C}}LMod𝒟nRn𝖢.{\operatorname{LMod}^{n}_{\mathcal{D}^{n}R}\otimes\mathsf{C}.}(kR𝒟nRR)1𝖢\scriptstyle{({}_{\mathcal{D}^{n}R}k_{R}\otimes_{R}{-})\otimes 1_{\mathsf{C}}}

For notational convenience, given any \mathbbEn\mathbb{E}_{n} augmented algebra BB, let 𝖢B:=LModBn(𝖢)\mathsf{C}_{B}:=\operatorname{LMod}^{n}_{B}(\mathsf{C}) and MB:=LModBn1MM_{B}:=\operatorname{LMod}^{n-1}_{B}\otimes M, and Maug:=LModk,augn1MM_{\operatorname{aug}}:=\operatorname{LMod}^{n-1}_{k,\operatorname{aug}}\otimes M. For the last definition, LModk,augn1\operatorname{LMod}^{n-1}_{k,\operatorname{aug}} is the augmentation module, induced by the augmentation map BkB\to k.

We want to analyze ΩnβRobj\Omega^{n}\beta^{\operatorname{obj}}_{R} (2.4.13). Our domain can be identified with the fiber of

End𝖢Rn(MR)End𝖢n(M)\operatorname{End}^{n}_{\mathsf{C}_{R}}(M_{R})\to\operatorname{End}^{n}_{\mathsf{C}}(M)

and the codomain can be identified with

End𝖢𝒟nRn(Maug)End𝖢n(M).\operatorname{End}^{n}_{\mathsf{C}_{\mathcal{D}^{n}R}}(M_{\operatorname{aug}})\to\operatorname{End}^{n}_{\mathsf{C}}(M).

The asymmetry here is because in the domain, the basepoint is MRM_{R} while in the codomain, the basepoint is MaugM_{\operatorname{aug}}.

Our map Ωnβobj\Omega^{n}\beta^{\operatorname{obj}} is induced by the nn-functoriality of βobj\beta^{\operatorname{obj}}. Indeed on nn-cells, βobj\beta^{\operatorname{obj}} induces a functoriality map

θ:End𝖢Rn(MR)End𝖢𝒟nRn(Maug).\theta:\operatorname{End}^{n}_{\mathsf{C}_{R}}(M_{R})\to\operatorname{End}^{n}_{\mathsf{C}_{\mathcal{D}^{n}R}}(M_{\operatorname{aug}}).

As this map is induced by the tensor product (kR𝒟nRR)1𝖢({}_{\mathcal{D}^{n}R}k_{R}\otimes_{R}{-})\otimes 1_{\mathsf{C}}, we have a natural square

EndLModRnn(LModRn1)End𝖢n(M)EndLMod𝒟nRnn(LModk,augn1)End𝖢n(M)End𝖢Rn(MR)End𝖢𝒟nRn(Maug)LαRθ.\leavevmode\hbox to293.18pt{\vbox to56.58pt{\pgfpicture\makeatletter\hbox{\hskip 146.59122pt\lower-28.33871pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}{{}}{{}}}{{{}}}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-146.59122pt}{-28.23888pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\hskip 59.02986pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-54.72432pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\operatorname{End}^{n}_{\operatorname{LMod}^{n}_{R}}(\operatorname{LMod}_{R}^{n-1})\otimes\operatorname{End}^{n}_{\mathsf{C}}(M)}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 59.02986pt\hfil&\hfil\hskip 23.99997pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 0.0pt\hfil&\hfil\hskip 87.56136pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-59.25584pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\operatorname{End}^{n}_{\operatorname{LMod}^{n}_{\mathcal{D}^{n}R}}(\operatorname{LMod}_{k,\operatorname{aug}}^{n-1})\otimes\operatorname{End}^{n}_{\mathsf{C}}(M)}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 63.56139pt\hfil\cr\vskip 18.00005pt\cr\hfil\hskip 26.37692pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-22.07138pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\operatorname{End}^{n}_{\mathsf{C}_{R}}(M_{R})}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 26.37692pt\hfil&\hfil\hskip 23.99997pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 0.0pt\hfil&\hfil\hskip 52.58481pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-24.2793pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\operatorname{End}^{n}_{\mathsf{C}_{\mathcal{D}^{n}R}}(M_{\operatorname{aug}})}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 28.58484pt\hfil\cr}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{{{{}}}{{}}{{}}{{}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-87.56136pt}{1.64644pt}\pgfsys@lineto{-87.56136pt}{-15.82921pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{-87.56136pt}{-16.02919pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-85.20859pt}{-9.68303pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{L}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-28.3315pt}{11.38837pt}\pgfsys@lineto{18.86848pt}{11.38837pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{19.06847pt}{11.38837pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-6.77048pt}{13.74113pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\alpha}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{83.02983pt}{1.37088pt}\pgfsys@lineto{83.02983pt}{-15.82921pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{83.02983pt}{-16.02919pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{85.3826pt}{-9.8208pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{R}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-60.98444pt}{-25.73888pt}\pgfsys@lineto{53.84503pt}{-25.73888pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{54.04501pt}{-25.73888pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-5.01277pt}{-23.38611pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\theta}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}.

The left and right legs come from the from the identification MR:=LModRn1MM_{R}:=\operatorname{LMod}^{n-1}_{R}\otimes M and Maug:=Modkn1MM_{\operatorname{aug}}:=\operatorname{Mod}^{n-1}_{k}\otimes M. Notice α\alpha is induced by the functoriality of the map

(2.4.14) LModRn{\operatorname{LMod}^{n}_{R}}LMod𝒟nRn{\operatorname{LMod}^{n}_{\mathcal{D}^{n}R}}kR𝒟nRR\scriptstyle{{}_{\mathcal{D}^{n}R}k_{R}\otimes_{R}{-}}

on the left factor and identity on the right factor (since it’s functoriality of the identity on the right factor).

We would like to show that L,R,αL,R,\alpha are all equivalences, which would then show θ\theta is an equivalence. This would let us conclude Ωβobj\Omega\beta^{\operatorname{obj}} is an equivalence by taking fibers.

First, showing LL and RR are equivalences is just our calculation of endomorphism spaces in 2.4.11, and 2.4.12.

Next we try to show α\alpha is an equivalence. Since the right hand factor of α\alpha is identity, we only have to focus on the left hand factor of α\alpha:

α:EndLModRnn(LModRn1)EndLMod𝒟nRnn(LModk,augn1),\alpha^{\prime}:\operatorname{End}^{n}_{\operatorname{LMod}^{n}_{R}}(\operatorname{LMod}_{R}^{n-1})\to\operatorname{End}^{n}_{\operatorname{LMod}^{n}_{\mathcal{D}^{n}R}}(\operatorname{LMod}_{k,\operatorname{aug}}^{n-1}),

which is induced by the functoriality of

LModRn{\operatorname{LMod}^{n}_{R}}LMod𝒟nRn{\operatorname{LMod}^{n}_{\mathcal{D}^{n}R}}kR𝒟nRR\scriptstyle{{}_{\mathcal{D}^{n}R}k_{R}\otimes_{R}{-}}

on nn-cells. By Morita equivalence 2.4.3, any LModkn\operatorname{LMod}^{n}_{k}-linear colimit preserving functor

F:LModRnLMod𝒟nRnF:\operatorname{LMod}^{n}_{R}\to\operatorname{LMod}^{n}_{\mathcal{D}^{n}R}

corresponds uniquely to a bimodule structure QR𝒟nR{}_{\mathcal{D}^{n}R}Q_{R} on Q\smallinLModknQ\smallin\operatorname{LMod}^{n}_{k} (we are again suppressing notation: in reality we have QLModRn1LMod𝒟nRn1{}_{\operatorname{LMod}^{n-1}_{\mathcal{D}^{n}R}}Q_{\operatorname{LMod}^{n-1}_{R}}).

The forward direction of this equivalence takes the functor FF and evaluates it on LModRn1\operatorname{LMod}^{n-1}_{R}, which gives Q𝒟nR{}_{\mathcal{D}^{n}R}Q with its 𝒟nR\mathcal{D}^{n}R action. The RR action comes from looking at nn-fold endomorphism spaces, ie exactly the functoriality map on nn-cells:

Fn:EndLModRnn(LModRn1)EndLMod𝒟nRnn(Q𝒟nR),F^{n}:\operatorname{End}^{n}_{\operatorname{LMod}^{n}_{R}}(\operatorname{LMod}_{R}^{n-1})\to\operatorname{End}^{n}_{\operatorname{LMod}^{n}_{\mathcal{D}^{n}R}}({}_{\mathcal{D}^{n}R}Q),

This clearly gives a bimodule QR𝒟nR{}_{\mathcal{D}^{n}R}Q_{R}.

Applying this to our functor F=kR𝒟nRRF={}_{\mathcal{D}^{n}R}k_{R}\otimes_{R}{-}, we note that FF clearly corresponds to the bimodule given by Koszul duality, kR𝒟nR{}_{\mathcal{D}^{n}R}k_{R}. Also notice that

α=Fn:EndLModRnn(LModRn1)EndLMod𝒟nRnn(LModk,augn1).\alpha^{\prime}=F^{n}:\operatorname{End}^{n}_{\operatorname{LMod}^{n}_{R}}(\operatorname{LMod}_{R}^{n-1})\to\operatorname{End}^{n}_{\operatorname{LMod}^{n}_{\mathcal{D}^{n}R}}(\operatorname{LMod}^{n-1}_{k,\operatorname{aug}}).

This map can be identified with a map

(2.4.15) R𝒟n𝒟nRR\to\mathcal{D}^{n}\mathcal{D}^{n}R

using our calculations in 2.4.6 and 2.4.9. This map MUST be the adjunct to the Koszul duality pairing

R𝒟nRk,R\otimes\mathcal{D}^{n}R\to k,

since it must give kk the Koszul duality structure kR𝒟nR{}_{\mathcal{D}^{n}R}k_{R} by what we said above. In other words, 2.4.15 is the unit of the self-adjuntion of 𝒟n\mathcal{D}^{n}. Since RR is small, this unit is an equivalence (just combine [Lur11, Theorem 4.5.5] with [Lur11, Proposition 1.3.5]). Thus α\alpha^{\prime}, and thus α\alpha, is an equivalence, as needed.

We’ve finally proved that θ\theta is an equivalence. Finally we can conclude that Ωnβobj\Omega^{n}\beta^{\operatorname{obj}} is an equivalence because Ωnβobj\Omega^{n}\beta^{\operatorname{obj}} is induced by taking fibers of the vertical maps in the square

End𝖢Rn(MR){\operatorname{End}^{n}_{\mathsf{C}_{R}}(M_{R})}End𝖢𝒟nRn(Maug){\operatorname{End}^{n}_{\mathsf{C}_{\mathcal{D}^{n}R}}(M_{\operatorname{aug}})}End𝖢n(M){\operatorname{End}^{n}_{\mathsf{C}}(M)}End𝖢n(M).{\operatorname{End}^{n}_{\mathsf{C}}(M).}θ\scriptstyle{\theta}id\scriptstyle{\operatorname{id}}

2.4.16 Remark.

Note that since we can identify θ\theta and α\alpha, our last square can be simplified to be

Rζ(M){R\otimes\zeta(M)}𝒟n𝒟nRζ(M){\mathcal{D}^{n}\mathcal{D}^{n}R\otimes\zeta(M)}ζ(M){\zeta(M)}ζ(M){\zeta(M)}α\scriptstyle{\alpha}aug\scriptstyle{aug}aug\scriptstyle{aug}id\scriptstyle{\operatorname{id}}

which after taking fibers (which gives Ωnβobj)\Omega^{n}\beta^{\operatorname{obj}}), just says that mRζ(M)m𝒟n𝒟nRζ(M)m_{R}\otimes\zeta(M)\simeq m_{\mathcal{D}^{n}\mathcal{D}^{n}R}\otimes\zeta(M).

2.4.17 Remark.

We can alternatively follow [Lur11, Proposition 5.3.19], to prove this last step instead. We’ll use the fiber sequence mAAkm_{A}\to A\to k instead of the more restricted k[n]kk[n]kk[n]\to k\oplus k[n]\to k, to get the following:

We can identify the domain of ΩnβAobj\Omega^{n}\beta^{\operatorname{obj}}_{A} with

MapsAlgk(n),aug(Freen(mA),kξ(M))\operatorname{Maps}_{\operatorname{{Alg^{({n}),aug}_{k}}}}(\operatorname{Free}^{n}(m_{A}^{\vee}),k\oplus\operatorname{\xi}(M))

and the codomain with

MapsAlgk(n),aug(𝒟n(ΩnA),kξ(M)).\operatorname{Maps}_{\operatorname{{Alg^{({n}),aug}_{k}}}}(\mathcal{D}^{n}(\Omega^{n}A),k\oplus\operatorname{\xi}(M)).

Using the functoriality of ΩnβAobj\Omega^{n}\beta^{\operatorname{obj}}_{A} in (𝖢,M)(\mathsf{C},M)—the input for ξ(M)\operatorname{\xi}(M)—and the Yoneda lemma, it follows that ΩnβAobj\Omega^{n}\beta^{\operatorname{obj}}_{A} is induced by a map

𝒟n(ΩnA)Freen(k[mA]).\mathcal{D}^{n}(\Omega^{n}A)\to\operatorname{Free}^{n}(k[m_{A}^{\vee}]).

This is equivalent to having a map after passing to Koszul duals (for small algebras AA) which gives

kmΩnAΩnA.k\oplus m_{\Omega^{n}A}\to\Omega^{n}A.

If one can show that this map is an inverse to the natural comparison map

η:ΩnAkmΩnA\eta:\Omega^{n}A\to k\oplus m_{\Omega^{n}A}

then we’d be done. Here we’re using the fact that ΩnA\Omega^{n}A is actually square zero, so η\eta is an equivalence.

2.5 Examples

Here we list several example deformation problems that our theorem 2.4.1 characterizes.

2.5.1 Example (Object in a 1-category).

Taking a 11-category 𝖢\smallin𝖯𝗋𝗄𝖫\mathsf{C}\smallin\mathsf{Pr^{L}_{k}} and an object M\smallin𝖢M\smallin\mathsf{C}, we see that we recover Lurie’s result about deforming an object in a category ([Lur11, Section 5.2], [Lur18, Section 16.5]).

Thus our theorem 2.4.1 recovers many classical results, like deforming a quasicoherent module MM on a scheme XX over the dual numbers k[ϵ]k[\epsilon]. We can use 𝖢=QCoh(X)\mathsf{C}=\operatorname{QCoh}(X), and we see that deformations of MM over k[ϵ]k[\epsilon] are given by maps

𝒟(1)(k[ϵ])=kηEnd(M)\mathcal{D}^{(1)}(k[\epsilon])=k\langle\eta\rangle\to\operatorname{End}(M)

where kηk\langle\eta\rangle is the free associative algebra generated in cohomological degree 11. Taking π0\pi_{0} of the hom space

omk(kη,End(M))\operatorname{\mathcal{H}\kern-2.0ptom}_{k}(k\langle\eta\rangle,\operatorname{End}(M))

thus gives the first cohomology H1(End(M))H^{1}(\operatorname{End}(M)), recovering the classical result.

2.5.2 Example (Deformations of categories).

Taking the category to be 𝖯𝗋𝗄𝖫\mathsf{Pr^{L}_{k}}, we recover Lurie’s result on deforming categories ([Lur11, Section 5.3], [Lur18, Section 16.6]). In particular, note that the center of a category 𝖣\smallin𝖯𝗋𝗄𝖫\mathsf{D}\smallin\mathsf{Pr^{L}_{k}} is its Hochschild homology

HH(𝖣)=EndEnd(𝖣)(1𝖣).HH(\mathsf{D})=\operatorname{End}_{\operatorname{End}(\mathsf{D})}(1_{\mathsf{D}}).

3 Simultaneous deformations

Throughout this section, we assume we’re given 𝖢\smallin𝖯𝗋𝗄𝖫,𝗇\mathsf{C}\smallin\mathsf{Pr^{L,{n}}_{k}} and an object M\smallin𝖢M\smallin\mathsf{C}. We now shift our study to the situation of deforming an object MM and a category 𝖢\mathsf{C} together, considered as an object of 𝖯𝗋𝗄,𝖫,𝗇\mathsf{Pr^{L,{n}}_{k,\ast}}. We aim to show such deformations are characterized by the \mathbbEn+1\mathbb{E}_{n+1}-algebra ξ(𝖢,M)\operatorname{\xi}(\mathsf{C},M), which can be described as the fiber of ξ(𝖢)ξ(M)\operatorname{\xi}(\mathsf{C})\to\operatorname{\xi}(M) (see 1.0.3).

The argument again follows four steps, following ideas in [Lur11, Section 5.2, 5.3] and [BKP18, Section 4.1]:

  1. 1.

    Construct the functor SimDef(𝖢,M)\operatorname{SimDef}_{(\mathsf{C},M)}.

  2. 2.

    Prove SimDef(𝖢,M)\operatorname{SimDef}_{(\mathsf{C},M)} is n+1n+1-proximate.

  3. 3.

    Construct the comparison map

    βsim:SimDef(𝖢,M)MapsAlgk(n+1),aug(𝒟n+1(),kξ(𝖢,M))\beta^{\operatorname{sim}}:\operatorname{SimDef}_{(\mathsf{C},M)}\to\operatorname{Maps}_{\operatorname{{Alg^{({n+1}),aug}_{k}}}}(\mathcal{D}^{n+1}({-}),k\oplus\operatorname{\xi}(\mathsf{C},M))
  4. 4.

    Prove that βsim\beta^{\operatorname{sim}} is an equivalence.

This idea is very similar to the case of deforming an object in an nn-category and we hope to unify these two approaches in the future.

3.1 Constructing the functor SimDef(𝖢,M)\operatorname{SimDef}_{(\mathsf{C},M)}

Like the ObjDef\operatorname{ObjDef} case, we start with the functor

LModn:Algkn+1Alg(𝖯𝗋𝗄𝖫,𝗇)Alg(𝖯𝗋𝗄,𝖫,𝗇)\operatorname{LMod}^{n}:\operatorname{Alg}^{n+1}_{k}\longrightarrow\operatorname{Alg}(\mathsf{Pr^{L,{n}}_{k}})\simeq\operatorname{Alg}(\mathsf{Pr^{L,{n}}_{k,\ast}})

given by ALModAnA\mapsto\operatorname{LMod}^{n}_{A}, or A(LModAn,LModAn1)A\mapsto(\operatorname{LMod}^{n}_{A},\operatorname{LMod}^{n-1}_{A}) in the pointed version (see 2.1.1).

3.1.1 Definition (Left Module categories).

Let LCatn\operatorname{LCat^{n}} be the pullback

LCatn{\operatorname{LCat^{n}}}LMod(𝖯𝗋𝗄𝖫,𝗇){\operatorname{LMod}(\mathsf{Pr^{L,{n}}_{k}})}Algk(n+1){\operatorname{{Alg^{({n+1})}_{k}}}}Alg(𝖯𝗋𝗄𝖫,𝗇){\operatorname{Alg}(\mathsf{Pr^{L,{n}}_{k}})}

\lrcorner\lrcorner

and let LCatn\operatorname{LCat^{n}_{\ast}} be the pullback

LCatnLMod(𝖯𝗋𝗄,𝖫,𝗇)Algk(n+1)Alg(𝖯𝗋𝗄,𝖫,𝗇)

\lrcorner

,
\leavevmode\hbox to124.04pt{\vbox to53.81pt{\pgfpicture\makeatletter\hbox{\hskip 62.01949pt\lower-26.9526pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}{{}}{{}}}{{{}}}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-62.01949pt}{-26.85277pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\hskip 17.04167pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-12.73613pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\operatorname{LCat^{n}_{\ast}}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 17.04167pt\hfil&\hfil\hskip 54.7639pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-26.45839pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\operatorname{LMod}(\mathsf{Pr^{L,{n}}_{k,\ast}})}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 30.76393pt\hfil\cr\vskip 18.00005pt\cr\hfil\hskip 19.25557pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-14.95003pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\operatorname{{Alg^{({n+1})}_{k}}}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 19.25557pt\hfil&\hfil\hskip 49.27777pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-20.97226pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\operatorname{Alg}(\mathsf{Pr^{L,{n}}_{k,\ast}})}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 25.2778pt\hfil\cr}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{{{{}}}{{}}{{}}{{}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} { {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-25.52225pt}{11.50003pt}\pgfsys@lineto{-0.10834pt}{11.50003pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.09164pt}{11.50003pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-42.76392pt}{3.83754pt}\pgfsys@lineto{-42.76392pt}{-15.64865pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{-42.76392pt}{-15.84863pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }\definecolor[named]{tikz@color}{rgb}{0,0,0}\definecolor[named]{.}{rgb}{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-28.75955pt}{-3.70377pt}\pgfsys@invoke{ }\hbox{{\definecolor[named]{.}{rgb}{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\hbox{${\definecolor[named]{.}{rgb}{0,0,0}\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}\scalebox{1.5}{$\lrcorner$}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{31.25555pt}{2.107pt}\pgfsys@lineto{31.25555pt}{-15.0931pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{31.25555pt}{-15.29308pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-23.30835pt}{-24.35277pt}\pgfsys@lineto{5.37779pt}{-24.35277pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.57777pt}{-24.35277pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}},

where the left leg is given by the usual cocartesian fibration [Lur17, Definition 4.2.1.13]. There’s a obvious projection LCatnLCatn\operatorname{LCat^{n}_{\ast}}\to\operatorname{LCat^{n}} that forgets the basepoint.

3.1.2 Remark.

Intuitively, objects of LCatn\operatorname{LCat^{n}_{\ast}} consists of 44-tuples (A,𝖣,N,η)(A,\mathsf{D},N,\eta) where N\smallin𝖣N\smallin\mathsf{D}, A\smallinAlgk(n+1)A\smallin\operatorname{{Alg^{({n+1})}_{k}}}, and η\eta is a left action of LModAn\operatorname{LMod}^{n}_{A} on (𝖣,N)\smallin𝖯𝗋𝗄,𝖫,𝗇(\mathsf{D},N)\smallin\mathsf{Pr^{L,{n}}_{k,\ast}}.

3.1.3 Remark.

Dually, we can use right modules instead by replacing the right vertical leg by

RMod(𝖯𝗋𝗄,𝖫,𝗇)Alg(𝖯𝗋𝗄,𝖫,𝗇)\operatorname{RMod}(\mathsf{Pr^{L,{n}}_{k,\ast}})\longrightarrow\operatorname{Alg}(\mathsf{Pr^{L,{n}}_{k,\ast}})

So we can analoguously define RCatn\operatorname{RCat^{n}_{\ast}}. This has objects (A,𝖣,M,η)(A,\mathsf{D},M,\eta) where N\smallin𝖣N\smallin\mathsf{D}, A\smallinAlgk(n+1)A\smallin\operatorname{{Alg^{({n+1})}_{k}}}, and η\eta is a right action of LModAn\operatorname{LMod}^{n}_{A} on (𝖣,N)\smallin𝖯𝗋𝗄,𝖫,𝗇(\mathsf{D},N)\smallin\mathsf{Pr^{L,{n}}_{k,\ast}}.

Similarly we can analogously define RCatn\operatorname{RCat^{n}}.

First, just like with ObjDef (2.1.9), we first define the associated left fibration to SimDef.

3.1.4 Definition (Simultaneous deformation fibration).

Let LCatnAlgk(n+1)\operatorname{LCat^{n}_{\ast}}\to\operatorname{{Alg^{({n+1})}_{k}}} be the cocartesian fibration defined above (3.1.1). We can get a left fibration by restricting to only cocartesian arrows:

(3.1.5) LCatn,cocartAlgk(n+1).\operatorname{LCat^{n,\operatorname{cocart}}_{\ast}}\longrightarrow\operatorname{{Alg^{({n+1})}_{k}}}.

Finally, let sDef[𝖢,M]\operatorname{sDef}[\mathsf{C},M] be the slice

(LCatn,cocart)/(k,𝖢,M).(\operatorname{LCat^{n,\operatorname{cocart}}_{\ast}})_{/(k,\mathsf{C},M)}.

By slicing the fibration (3.1.5), we see that we have a left fibration

(3.1.6) sDef[𝖢,M]Algk/k(n+1)Algk(n+1),aug.\operatorname{sDef}[\mathsf{C},M]\to\operatorname{{Alg^{({n+1})}_{k/k}}}\simeq\operatorname{{Alg^{({n+1}),aug}_{k}}}.

Now we’re ready to construct SimDef(𝖢,M)\operatorname{SimDef}_{(\mathsf{C},M)}.

3.1.7 Construction (SimDef\operatorname{SimDef}).

We look at our given pair (𝖢,M)(\mathsf{C},M), with natural LModkn\operatorname{LMod}^{n}_{k} action, which we’ll denote as (k,𝖢,M)\smallinLCatn(k,\mathsf{C},M)\smallin\operatorname{LCat^{n}_{\ast}}, the action being implicit.

By straightening, the left fibration (3.1.6)

sDef[𝖢,M]Algk(n+1),aug\operatorname{sDef}[\mathsf{C},M]\to\operatorname{{Alg^{({n+1}),aug}_{k}}}

classifies a functor sDef~[𝖢,M]:Algk(n+1),aug𝖲𝗉𝖼^\widetilde{\operatorname{sDef}}[\mathsf{C},M]:\operatorname{{Alg^{({n+1}),aug}_{k}}}\to\operatorname{\widehat{\operatorname{\mathsf{Spc}}}}. Here 𝖲𝗉𝖼^\operatorname{\widehat{\operatorname{\mathsf{Spc}}}} is the category of not-necessarily U0U_{0}-small spaces. Finally, by restricting to small algebras, we get the functor we wanted:

SimDef(𝖢,M):Algk(n+1),sm𝖲𝗉𝖼^.\operatorname{SimDef}_{(\mathsf{C},M)}:\operatorname{{Alg^{({n+1}),sm}_{k}}}\to\operatorname{\widehat{\operatorname{\mathsf{Spc}}}}.
3.1.8 Remark.

Notice that given an algebra A\smallinAlgk(n+1),augA\smallin\operatorname{{Alg^{({n+1}),aug}_{k}}},

SimDef(𝖢,M)(A)𝖯𝗋𝖠,𝖫,𝗇×𝖯𝗋𝗄,𝖫,𝗇{(𝖢,M)},\operatorname{SimDef}_{(\mathsf{C},M)}(A)\simeq\mathsf{Pr^{L,{n}}_{{A},\ast}}\times_{\mathsf{Pr^{L,{n}}_{k,\ast}}}\{(\mathsf{C},M)\},

as mentioned in the introduction.

3.2 Proving SimDef(𝖢,M)\operatorname{SimDef}_{(\mathsf{C},M)} is n+1n+1-proximate

To prove this statement, we show the existence of a fiber sequence of deformation functors, generalizing Proposition 4.3 of [BKP18].

We begin with constructing the maps.

3.2.1 Construction (Comparison with ObjDef).

We construct the projection

SimDef(𝖢,M)ObjDef𝖢\smallin𝖯𝗋𝗄𝖫,𝗇.\operatorname{SimDef}_{(\mathsf{C},M)}\longrightarrow\operatorname{ObjDef}_{\mathsf{C}\smallin\mathsf{Pr^{L,{n}}_{k}}}.

which intuitively just forgets the ”point” MM and its deformation, ie it sends a simultaneous deformation (A,𝖢A,MA)(A,\mathsf{C}_{A},M_{A}) and forgets the MM-deformation MAM_{A}.

More precisely, first we use the projection

LCatnLCatn\operatorname{LCat^{n}_{\ast}}\longrightarrow\operatorname{LCat^{n}}

which commutes to the projections to Algk(n+1)\operatorname{{Alg^{({n+1})}_{k}}}, which induces a projection of slices

sDef[𝖢,M]Deform[𝖢\smallin𝖯𝗋𝗄𝖫,𝗇]\operatorname{sDef}[\mathsf{C},M]\longrightarrow\operatorname{Deform}[\mathsf{C}\smallin\mathsf{Pr^{L,{n}}_{k}}]

over Algk(n+1),aug\operatorname{{Alg^{({n+1}),aug}_{k}}}. This induces a projection

(3.2.2) SimDef(𝖢,M)ObjDef𝖢\smallin𝖯𝗋𝗄𝖫,𝗇.\operatorname{SimDef}_{(\mathsf{C},M)}\longrightarrow\operatorname{ObjDef}_{\mathsf{C}\smallin\mathsf{Pr^{L,{n}}_{k}}}.

of functors Algk(n+1),sm𝖲𝗉𝖼^\operatorname{{Alg^{({n+1}),sm}_{k}}}\to\operatorname{\widehat{\operatorname{\mathsf{Spc}}}}

3.2.3 Remark.

The codomain of this projection, in the case that n=1n=1, is usually called CatDef𝖢\operatorname{CatDef}_{\mathsf{C}}.

Next we analyze the fiber of this projection.

3.2.4 Construction.

The fiber of the projection

𝖯𝗋𝗄,𝖫,𝗇𝖯𝗋𝗄𝖫,𝗇\mathsf{Pr^{L,{n}}_{k,\ast}}\longrightarrow\mathsf{Pr^{L,{n}}_{k}}

at the category 𝖢\mathsf{C} is equivalent to the Kan complex Maps𝖯𝗋𝗄𝖫,𝗇(Modkn,𝖢)𝖢\operatorname{Maps}_{\mathsf{Pr^{L,{n}}_{k}}}(\operatorname{Mod}^{n}_{k},\mathsf{C})\simeq\mathsf{C}^{\simeq}. The fiber map 𝖢𝖯𝗋𝗄,𝖫,𝗇\mathsf{C}^{\simeq}\to\mathsf{Pr^{L,{n}}_{k,\ast}} sends M\smallin𝖢M\smallin\mathsf{C} to (𝖢,M)(\mathsf{C},M). This induces a functor

Deform[M\smallin𝖢]sDef[𝖢,M]\operatorname{Deform}[M\smallin\mathsf{C}]\longrightarrow\operatorname{sDef}[\mathsf{C},M]

commuting with the projections to Algk(n+1),aug\operatorname{{Alg^{({n+1}),aug}_{k}}}. This induces a natural transformation

(3.2.5) ObjDefM\smallin𝖢SimDef(𝖢,M)\operatorname{ObjDef}_{M\smallin\mathsf{C}}\longrightarrow\operatorname{SimDef}_{(\mathsf{C},M)}

By our construction, it’s directly obvious that we have a fiber sequence:

3.2.6 Proposition.

The natural transformations constructed above (3.2.2, 3.2.5) fit into a fiber sequence of functors Algk(n+1),sm𝖲𝗉𝖼^\operatorname{{Alg^{({n+1}),sm}_{k}}}\to\operatorname{\widehat{\operatorname{\mathsf{Spc}}}}:

ObjDefM\smallin𝖢SimDef(𝖢,M)ObjDef𝖢\smallin𝖯𝗋𝗄𝖫,𝗇.\operatorname{ObjDef}_{M\smallin\mathsf{C}}\to\operatorname{SimDef}_{(\mathsf{C},M)}\to\operatorname{ObjDef}_{\mathsf{C}\smallin\mathsf{Pr^{L,{n}}_{k}}}.

Now we show some consequences of having this fiber sequences. First, it proves what we wanted to show:

3.2.7 Proposition.

SimDef(𝖢,M)\operatorname{SimDef}_{(\mathsf{C},M)} is an n+1n+1-proximate fmp.

Proof.

Since ObjDefM\smallin𝖢\operatorname{ObjDef}_{M\smallin\mathsf{C}} is nn-proximate and ObjDef𝖢\smallin𝖯𝗋𝗄𝖫,𝗇\operatorname{ObjDef}_{\mathsf{C}\smallin\mathsf{Pr^{L,{n}}_{k}}} is n+1n+1-proximate (2.2), we see that since taking loop spaces and pullbacks preserve limits, that SimDef(𝖢,M)\operatorname{SimDef}_{(\mathsf{C},M)} must also be n+1n+1-proximate. ∎

Since the completion functor from n+1n+1-proximate fmps to fmps is limit-preserving, we can also easily see

3.2.8 Proposition.

The fiber sequence we constructed descends to fmp completions, and we have a natural comparison of fiber sequences:

ObjDefM\smallin𝖢{\operatorname{ObjDef}_{M\smallin\mathsf{C}}}SimDef(𝖢,M){\operatorname{SimDef}_{(\mathsf{C},M)}}ObjDef𝖢\smallin𝖯𝗋𝗄𝖫,𝗇{\operatorname{ObjDef}_{\mathsf{C}\smallin\mathsf{Pr^{L,{n}}_{k}}}}ObjDef^M\mathbbEn+1{\operatorname{\widehat{\operatorname{ObjDef}}}^{\mathbb{E}_{n+1}}_{M}}SimDef^(𝖢,M){\operatorname{\widehat{\operatorname{SimDef}}}_{(\mathsf{C},M)}}ObjDef^𝖢\smallin𝖯𝗋𝗄𝖫,𝗇{\operatorname{\widehat{\operatorname{ObjDef}}}_{\mathsf{C}\smallin\mathsf{Pr^{L,{n}}_{k}}}}

where the vertical maps are the units for the fmp-completion functor.

3.3 Constructing the comparison map βsim\beta^{\operatorname{sim}}

For this section, we’ll use the following notation:

3.3.1 Notation.

Given an nn-category 𝖢\mathsf{C} with a left action by an \mathbbEn\mathbb{E}_{n}-algebra AA (in other words, a left action by LModAn)\operatorname{LMod}^{n}_{A}) and a right action by an \mathbbEn\mathbb{E}_{n}-algebra BB, we emphasize this structure as so:

[𝖢]BA{}_{A}[\mathsf{C}]_{B}

Let λn+1:n+1Algk(n+1),aug×Algk(n+1),aug\lambda^{n+1}:\operatorname{\mathcal{M}}^{n+1}\to\operatorname{{Alg^{({n+1}),aug}_{k}}}\times\operatorname{{Alg^{({n+1}),aug}_{k}}} be the pairing of categories inducing \mathbbEn+1\mathbb{E}_{n+1}-Koszul duality ([Lur17, Construction 5.2.5.32]). Objects of n\operatorname{\mathcal{M}}^{n} intuitively consist of two algebras A,B\smallinAlgk(n+1),augA,B\smallin\operatorname{{Alg^{({n+1}),aug}_{k}}} along with an augmentation of their tensor product: AkBkA\otimes_{k}B\to k. This gives kk the structure of a AkBA\otimes_{k}B module.

Let AkBkA\otimes_{k}B\to k be an \mathbbEn+1\mathbb{E}_{n+1}-pairing between A,B\smallinAlgk(n+1),smA,B\smallin\operatorname{{Alg^{({n+1}),sm}_{k}}} (so it’s an object of n+1\operatorname{\mathcal{M}}^{n+1}). Suppose we’re given a simultaneous deformation (A,𝖢A,MA)\smallinSimDef(𝖢,M)(A)(A,\mathsf{C}_{A},M_{A})\smallin\operatorname{SimDef}_{(\mathsf{C},M)}(A) (where the actions and augmentation equivalences are suppressed). Notice that

(𝖢A,MA)LModBn\smallinBiModLModBnLModAnLModBn(𝖯𝗋𝗄,𝖫,𝗇)(\mathsf{C}_{A},M_{A})\otimes\operatorname{LMod}^{n}_{B}\smallin{}_{\operatorname{LMod}^{n}_{A}\otimes\operatorname{LMod}^{n}_{B}}\operatorname{BiMod}_{\operatorname{LMod}^{n}_{B}}(\mathsf{Pr^{L,{n}}_{k,\ast}})

Here we let LModBn\operatorname{LMod}^{n}_{B} stand in for the pointed category (LModBn,LModBn1)\smallin𝖯𝗋𝗄,𝖫,𝗇(\operatorname{LMod}^{n}_{B},\operatorname{LMod}^{n-1}_{B})\smallin\mathsf{Pr^{L,{n}}_{k,\ast}}.

Thus we have

(𝖢,M)LModknAB[(𝖢A,MA)LModBn]\smallinRModLModBn(𝖯𝗋𝗄,𝖫,𝗇)(\mathsf{C},M)\simeq\operatorname{LMod}^{n}_{k}\underset{A\otimes B}{\otimes}[(\mathsf{C}_{A},M_{A})\otimes\operatorname{LMod}^{n}_{B}]\smallin\operatorname{RMod}_{\operatorname{LMod}^{n}_{B}}(\mathsf{Pr^{L,{n}}_{k,\ast}})

where the equivalence uses the given pairing and the augmentation equivalences. This construction gives a right LModBn\operatorname{LMod}^{n}_{B} action on (𝖢,M)(\mathsf{C},M). Notice we gave Modkn\operatorname{Mod}^{n}_{k} a right LModAnLModBn\operatorname{LMod}^{n}_{A}\otimes\operatorname{LMod}^{n}_{B} module structure using the augmentation.

In fact we have just a little more, we know that the action of LModBn\operatorname{LMod}^{n}_{B} on MM is ”trivial”: (𝖢A,MA)(\mathsf{C}_{A},M_{A}) can be written as a map

[LModAn]kA[𝖢A]kA{}_{A}[\operatorname{LMod}^{n}_{A}]_{k}\longrightarrow{}_{A}[\mathsf{C}_{A}]_{k}

The shorthand subscripts on the left denote left actions of LModAn\operatorname{LMod}^{n}_{A} and analogously, the right subscripts show right actions.

Then the above process can be seen as tensoring on the left by Modkn\operatorname{Mod}^{n}_{k}, this time seen as having a left LModBopn\operatorname{LMod}^{n}_{B^{\operatorname{op}}} and right LModAn\operatorname{LMod}^{n}_{A} action (which is equivalent to the right action of ABA\otimes B. All this distinction of op\operatorname{op}-algebras only matters for the very trivial case n=0n=0). Thus we get

[Modkn]ABop𝐴[LModAn]kA[Modkn]ABop𝐴[𝖢A]kA{}_{B^{\operatorname{op}}}[{\operatorname{Mod}^{n}_{k}}]_{A}\underset{A}{\otimes}{}_{A}[\operatorname{LMod}^{n}_{A}]_{k}\longrightarrow{}_{B^{\operatorname{op}}}[{\operatorname{Mod}^{n}_{k}}]_{A}\underset{A}{\otimes}{}_{A}[\mathsf{C}_{A}]_{k}

where our tensors are over AA. This reduces to

[Modkn]kBop[𝖢]kBop{}_{B^{\operatorname{op}}}[{\operatorname{Mod}^{n}_{k}}]_{k}\longrightarrow{}_{B^{\operatorname{op}}}[\mathsf{C}]_{k}

which shows the right BB-action (or left BopB^{\operatorname{op}}-action). Notice that the action of BB on Modkn\operatorname{Mod}^{n}_{k} is ”trivial” since it is no longer coupled with the action of AA! Hence it’s image, which points out MM, also has trivial action in this way.

This construction produces a functor:

(3.3.2) sDef[𝖢,M]×n+1sDef[𝖢,M]×(RCatn,triv×𝖯𝗋𝗄𝖫,𝗇{(𝖢,M)})\operatorname{sDef}[\mathsf{C},M]\times\operatorname{\mathcal{M}}^{n+1}\to\operatorname{sDef}[\mathsf{C},M]\times(\operatorname{RCat^{n,triv}_{\ast}}\times_{\mathsf{Pr^{L,{n}}_{k}}}\{(\mathsf{C},M)\})

where RCatn,triv\operatorname{RCat^{n,triv}_{\ast}} is the category of pointed nn-categories with right actions by augmented algebras which are trivial on the given point. Each object is an object of RCatn\operatorname{RCat^{n}_{\ast}} with extra triviality data. In other words, (𝖣,E)(\mathsf{D},E) with RR-action (where RR is augmented) is trivial when the map

Modkn𝖣\operatorname{Mod}^{n}_{k}\longrightarrow\mathsf{D}

picking out EE factors through the right RR-module map

[Modkn]R[𝖣]R,[\operatorname{Mod}^{n}_{k}]_{R}\longrightarrow[\mathsf{D}]_{R},

where the action of RR on Modkn\operatorname{Mod}^{n}_{k} is given by the augmentation map. The explicit definition is given as follows:

3.3.3 Construction (RCatn,triv\operatorname{RCat^{n,triv}_{\ast}}).

We have a functor

Triv:Algk(n+1),augRMod(𝖯𝗋𝗄𝖫,𝗇)\operatorname{Triv}:\operatorname{{Alg^{({n+1}),aug}_{k}}}\to\operatorname{RMod}(\mathsf{Pr^{L,{n}}_{k}})

sending an augmented algebra AA to the category with right augmentation AA-action LModk\operatorname{LMod}_{k}. Let

π:RMod(𝖯𝗋𝗄𝖫,𝗇)Alg(𝖯𝗋𝗄𝖫,𝗇)\pi:\operatorname{RMod}(\mathsf{Pr^{L,{n}}_{k}})\to\operatorname{Alg}(\mathsf{Pr^{L,{n}}_{k}})

be the natural projection. Finally, we have two maps from Algk(n+1),aug\operatorname{{Alg^{({n+1}),aug}_{k}}}. First we have

aug:Algk(n+1),augArr(RMod(𝖯𝗋𝗄𝖫,𝗇))\operatorname{aug}:\operatorname{{Alg^{({n+1}),aug}_{k}}}\to\operatorname{Arr}(\operatorname{RMod}(\mathsf{Pr^{L,{n}}_{k}}))

taking AA to the augmentation functor LModALModk\operatorname{LMod}_{A}\to\operatorname{LMod}_{k}, equipped with natural right AA-action and right augmentation AA-action respectively. Secondly we have

d:Algk(n+1),augFun(Δ2,Alg(𝖯𝗋𝗄𝖫,𝗇))d:\operatorname{{Alg^{({n+1}),aug}_{k}}}\to\operatorname{Fun}(\Delta^{2},\operatorname{Alg}(\mathsf{Pr^{L,{n}}_{k}}))

sending AA to the degenerate triangle

LModA{\operatorname{LMod}_{A}}LModA{\operatorname{LMod}_{A}}LModA{\operatorname{LMod}_{A}}=\scriptstyle{=}=\scriptstyle{=}=\scriptstyle{=}

Finally we can define: Let RCatn,triv\operatorname{RCat^{n,triv}_{\ast}} be the pullback:

RCatn,triv{\operatorname{RCat^{n,triv}_{\ast}}}Fun(Δ2,RMod(𝖯𝗋𝗄𝖫,𝗇)){\operatorname{Fun}(\Delta^{2},\operatorname{RMod}(\mathsf{Pr^{L,{n}}_{k}}))}Algk(n+1),aug{\operatorname{{Alg^{({n+1}),aug}_{k}}}}Arr(RMod(𝖯𝗋𝗄𝖫,𝗇))×Fun(Δ2,Alg(𝖯𝗋𝗄𝖫,𝗇)){{\operatorname{Arr}(\operatorname{RMod}(\mathsf{Pr^{L,{n}}_{k}}))\times\operatorname{Fun}(\Delta^{2},\operatorname{Alg}(\mathsf{Pr^{L,{n}}_{k}}))}}

\lrcorner\lrcorner

(ev[0,1],π)\scriptstyle{(\operatorname{ev}_{[0,1]},\pi)}(aug,d)\scriptstyle{(\operatorname{aug},d)}

Of course, we can analogously define the version with left actions instead.

Now continuing our construction, the functor we constructed (3.3.2) is a left representable pairing of categories, which induces a duality functor:

(3.3.4) 𝒟n+1:sDef[𝖢,M]opRCatn,triv×𝖯𝗋𝗄,𝖫,𝗇{(𝖢,M)}\mathcal{D}^{n+1}:\operatorname{sDef}[\mathsf{C},M]^{\operatorname{op}}\to\operatorname{RCat^{n,triv}_{\ast}}\times_{\mathsf{Pr^{L,{n}}_{k,\ast}}}\{(\mathsf{C},M)\}

Notice the codomain of this functor is equivalent to Algk/ξ(𝖢,M)(n+1),aug\operatorname{{Alg^{({n+1}),aug}_{k/{\operatorname{\xi}(\mathsf{C},M)}}}}, where ξ(𝖢,M)\operatorname{\xi}(\mathsf{C},M) is as defined in 1.0.3.

We have a square:

sDef[𝖢,M]op{\operatorname{sDef}[\mathsf{C},M]^{\operatorname{op}}}Algk/ξ(𝖢,M)(n+1),aug{\operatorname{{Alg^{({n+1}),aug}_{k/{\operatorname{\xi}(\mathsf{C},M)}}}}}Algk(n+1),augop{\operatorname{{Alg^{({n+1}),aug}_{k}}}^{\operatorname{op}}}Algk(n+1),aug{\operatorname{{Alg^{({n+1}),aug}_{k}}}}𝒟n+1\scriptstyle{\mathcal{D}^{n+1}}𝒟n+1\scriptstyle{\mathcal{D}^{n+1}}

Here the top horizontal functor is the duality functor we just defined (3.3.4), the bottom functor is \mathbbEn+1\mathbb{E}_{n+1}-Koszul duality functor. The left and right vertical maps are canonical Cartesian fibrations. By restricting to small algebras and using straightening/unstraightening, we finally get a comparison morphism of the two induced functors Algk(n+1),sm𝖲𝗉𝖼^\operatorname{{Alg^{({n+1}),sm}_{k}}}\to\operatorname{\widehat{\operatorname{\mathsf{Spc}}}}:

(3.3.5) βsim:SimDef(𝖢,M)MapsAlgk(n+1),aug(𝒟n+1(),kξ(𝖢,M))\beta^{\operatorname{sim}}:\operatorname{SimDef}_{(\mathsf{C},M)}\to\operatorname{Maps}_{\operatorname{{Alg^{({n+1}),aug}_{k}}}}(\mathcal{D}^{n+1}({-}),k\oplus\operatorname{\xi}(\mathsf{C},M))

3.4 Proving βsim\beta^{\operatorname{sim}} induces an equivalence

Now we can finally prove our main theorem:

3.4.1 Theorem.

The map βsim\beta^{\operatorname{sim}} (3.3.5) induces an equivalence

SimDef^(𝖢,M)MapsAlgk(n+1),aug(𝒟n+1(),kξ(𝖢,M))\operatorname{\widehat{\operatorname{SimDef}}}_{(\mathsf{C},M)}\to\operatorname{Maps}_{\operatorname{{Alg^{({n+1}),aug}_{k}}}}(\mathcal{D}^{n+1}({-}),k\oplus\operatorname{\xi}(\mathsf{C},M))

of formal moduli problems.

We’ll use some notation here:

3.4.2 Notation ((Fmp associated to an algebra)).

Given an \mathbbEn\mathbb{E}_{n} augmented algebra RR, let ΨRn\Psi^{n}_{R} denote the \mathbbEn\mathbb{E}_{n}-fmp associated to RR. In other words,

ΨRn:=MapsAlgk(n),aug(𝒟n,R).\Psi^{n}_{R}:=\operatorname{Maps}_{\operatorname{{Alg^{({n}),aug}_{k}}}}(\mathcal{D}^{n}{-},R).

To do this, we only have to show that after taking n+1n+1-fold loop spaces, we have an equivalence

Ωn+1SimDef(𝖢,M)Ωn+1Ψkξ(𝖢,M))n+1\Omega^{n+1}\operatorname{SimDef}_{(\mathsf{C},M)}\to\Omega^{n+1}\Psi^{n+1}_{k\oplus\operatorname{\xi}(\mathsf{C},M))}

since SimDef(𝖢,M)\operatorname{SimDef}_{(\mathsf{C},M)} is an nn-proximate fmp. We use Lurie’s Proposition 1.2.10 in [Lur11] to reduce to the cases where the algebra is kk[m]k\oplus k[m], as values on these algebras determine the tangent complex in our current context.

So we’ve reduced the theorem to the following proposition:

3.4.3 Proposition.

Let A:=k[m]A:=k[m] and B:=kk[m+n+1]B:=k\oplus k[m+n+1]. Then AA is the n+1n+1-th loop space of BB. This induces the following diagram:

SimDef(𝖢,M)(A){\operatorname{SimDef}_{(\mathsf{C},M)}(A)}Ψkξ(𝖢,M))n+1(A){\Psi^{n+1}_{k\oplus\operatorname{\xi}(\mathsf{C},M))}(A)}Ωn+1SimDef(𝖢,M)(B){\Omega^{n+1}\operatorname{SimDef}_{(\mathsf{C},M)}(B)}Ωn+1Ψkξ(𝖢,M))n+1(B){\Omega^{n+1}\Psi^{n+1}_{k\oplus\operatorname{\xi}(\mathsf{C},M))}(B)}βsim\scriptstyle{\beta^{\operatorname{sim}}}

\lrcorner\lrcorner

\scriptstyle{\sim}Ωn+1βsim\scriptstyle{\Omega^{n+1}\beta^{\operatorname{sim}}}

Then the bottom map of this diagram is an equivalence.

Proof.

We have the fiber sequence k[m+n+1]Bkk[m+n+1]\to B\to k. Let 𝖢B:=LModBn(𝖢)\mathsf{C}_{B}:=\operatorname{LMod}^{n}_{B}(\mathsf{C}) and MB:=LModBn1MM_{B}:=\operatorname{LMod}^{n-1}_{B}\otimes M.

Notice that Ωn+1SimDef(𝖢,M)(B)\Omega^{n+1}\operatorname{SimDef}_{(\mathsf{C},M)}(B) can be identified with the fiber of the augmentation map

End𝖯𝗋𝖡,𝖫,𝗇n+1(𝖢B,MB)End𝖯𝗋𝗄,𝖫,𝗇n+1(𝖢,M).\operatorname{End}^{n+1}_{\mathsf{Pr^{L,{n}}_{{B},\ast}}}(\mathsf{C}_{B},M_{B})\to\operatorname{End}^{n+1}_{\mathsf{Pr^{L,{n}}_{k,\ast}}}(\mathsf{C},M).

We’ll suppress the 𝖯𝗋𝗄,𝖫,𝗇\mathsf{Pr^{L,{n}}_{k,\ast}} and 𝖯𝗋𝖡,𝖫,𝗇\mathsf{Pr^{L,{n}}_{{B},\ast}} from now on. These two objects are both fibers:

Endn+1(𝖢B,MB)Fib(Endn+1(CB)End𝖢Bn(MB))evMB\operatorname{End}^{n+1}(\mathsf{C}_{B},M_{B})\simeq\leavevmode\hbox to156.84pt{\vbox to19.17pt{\pgfpicture\makeatletter\hbox{\hskip 78.41983pt\lower-9.63731pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}}{{{}}}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-78.41983pt}{-9.53748pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\hskip 37.98181pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-33.67627pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\operatorname{Fib}(\operatorname{End}^{n+1}(C_{B})}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 37.98181pt\hfil&\hfil\hskip 52.438pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-24.13249pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\operatorname{End}^{n}_{\mathsf{C}_{B}}(M_{B}))}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 28.43803pt\hfil\cr}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{{{{}}}{{}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-2.25621pt}{-7.03748pt}\pgfsys@lineto{20.9438pt}{-7.03748pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{21.14378pt}{-7.03748pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{2.68878pt}{-2.22472pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\operatorname{ev}_{M_{B}}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{ {}{}{}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}
Endn+1(𝖢,M)Fib(Endn+1(C)End𝖢n(M))evM\operatorname{End}^{n+1}(\mathsf{C},M)\simeq\leavevmode\hbox to147.78pt{\vbox to18.67pt{\pgfpicture\makeatletter\hbox{\hskip 73.89124pt\lower-9.38399pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}}{{{}}}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-73.89124pt}{-9.28415pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\hskip 35.71751pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-31.41197pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\operatorname{Fib}(\operatorname{End}^{n+1}(C)}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 35.71751pt\hfil&\hfil\hskip 50.1737pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-21.8682pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\operatorname{End}^{n}_{\mathsf{C}}(M))}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 26.17374pt\hfil\cr}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{{{{}}}{{}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-2.25621pt}{-6.78415pt}\pgfsys@lineto{20.9438pt}{-6.78415pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{21.14378pt}{-6.78415pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{3.98267pt}{-3.06471pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\operatorname{ev}_{M}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{ {}{}{}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}

where we suppressed the 𝖯𝗋𝗄𝖫,𝗇\mathsf{Pr^{L,{n}}_{k}} in the subscripts. Therefore, Ωn+1SimDef(𝖢,M)(B)\Omega^{n+1}\operatorname{SimDef}_{(\mathsf{C},M)}(B) can be identified with the fiber of the comparison map of the square

(3.4.4) Endn+1(CB){\operatorname{End}^{n+1}(C_{B})}EndCBn(MB){\operatorname{End}^{n}_{C_{B}}(M_{B})}Endn(𝖢B){\operatorname{End}^{n}(\mathsf{C}_{B})}End𝖢n+1(M){\operatorname{End}^{n+1}_{\mathsf{C}}(M)}evMB\scriptstyle{\operatorname{ev}_{M_{B}}}aug\scriptstyle{aug}aug\scriptstyle{aug}evM\scriptstyle{\operatorname{ev}_{M}}

where by ”comparison map” we mean the map from the top left corner to the pullback of the bottom and right legs.

Notice that if we take the fiber of the left map in this square, we get

Ωn+1ObjDef𝖢\smallin𝖯𝗋𝗄𝖫,𝗇(B)\Omega^{n+1}\operatorname{ObjDef}_{\mathsf{C}\smallin\mathsf{Pr^{L,{n}}_{k}}}(B)

and if we take the fiber of the right map in this square, we get

ΩnObjDefM(B).\Omega^{n}\operatorname{ObjDef}_{M}(B).

This shows we have a fiber sequence

(3.4.5) Ωn+1SimDef(𝖢,M)(B)Ωn+1ObjDef𝖢\smallin𝖯𝗋𝗄𝖫,𝗇(B)ΩnObjDefM(B).\Omega^{n+1}\operatorname{SimDef}_{(\mathsf{C},M)}(B)\to\Omega^{n+1}\operatorname{ObjDef}_{\mathsf{C}\smallin\mathsf{Pr^{L,{n}}_{k}}}(B)\to\Omega^{n}\operatorname{ObjDef}_{M}(B).

which is natural in BB, or more generally, any \mathbbEn+1\mathbb{E}_{n+1} algebra. Notice this sequence is closely related to the sequence we used in 3.2.6. The second map is induced by evaluation at MM, just as in the square 3.4.4.

Let ΨAn\Psi^{n}_{A} denote the \mathbbEn\mathbb{E}_{n}-fmp associated to the augmented algebra AA. In other words,

ΨAn:=MapsAlgk(n+1),aug(𝒟n+1(B),A)\Psi^{n}_{A}:=\operatorname{Maps}_{\operatorname{{Alg^{({n+1}),aug}_{k}}}}(\mathcal{D}^{n+1}(B),A)

Clearly by using the various comparison maps for each fmp (2.3.3, 3.3.5), we get the following diagram

(3.4.6) Ωn+1SimDef(𝖢,M)(B){\Omega^{n+1}\operatorname{SimDef}_{(\mathsf{C},M)}(B)}Ωn+1ObjDef𝖢\smallin𝖯𝗋𝗄𝖫,𝗇(B){\Omega^{n+1}\operatorname{ObjDef}_{\mathsf{C}\smallin\mathsf{Pr^{L,{n}}_{k}}}(B)}ΩnObjDefM(B){\Omega^{n}\operatorname{ObjDef}_{M}(B)}Ωn+1Ψkξ(𝖢,M)n+1(B){\Omega^{n+1}\Psi^{n+1}_{k\oplus\operatorname{\xi}(\mathsf{C},M)}(B)}Ωn+1Ψkξ(𝖢)n+1(B){\Omega^{n+1}\Psi^{n+1}_{k\oplus\operatorname{\xi}(\mathsf{C})}(B)}ΩnΨkξ(M)n(B){\Omega^{n}\Psi^{n}_{k\oplus\operatorname{\xi}(M)}(B)}Ωn+1βsim\scriptstyle{\Omega^{n+1}\beta^{\operatorname{sim}}}\scriptstyle{\sim}\scriptstyle{\sim}

If we can show that the bottom sequence is also a fiber sequence, we’ll be done, as the comparison Ωn+1βsim\Omega^{n+1}\beta^{\operatorname{sim}} on the left would have to be an equivalence.

Since the Ψ\Psi’s are fmps, we can push in the loop spaces to act on BB, giving us this equivalent bottom sequence:

Ψkξ(𝖢,M)n+1(A)Ψkξ(𝖢)n+1(A)Ψkξ(M)n(kk[m+1])\Psi^{n+1}_{k\oplus\operatorname{\xi}(\mathsf{C},M)}(A)\to\Psi^{n+1}_{k\oplus\operatorname{\xi}(\mathsf{C})}(A)\to\Psi^{n}_{k\oplus\operatorname{\xi}(M)}(k\oplus k[m+1])

Next we can combine the identify 𝒟n+1(kk[N])\mathcal{D}^{n+1}(k\oplus k[N]) with Freen+1(k[Nn1])\operatorname{Free}^{n+1}(k[-N-n-1]) with the free-forgetful adjunction (with nonunital algebras) to identify the sequence with

Mapsk(k[mn1],ξ(𝖢,M))Mapsk(k[mn1],ξ(𝖢))Mapsk(k[mn1],ξ(M))\operatorname{Maps}_{k}(k[-m-n-1],\operatorname{\xi}(\mathsf{C},M))\to\operatorname{Maps}_{k}(k[-m-n-1],\operatorname{\xi}(\mathsf{C}))\to\operatorname{Maps}_{k}(k[-m-n-1],\operatorname{\xi}(M))

where the second map is by evaluation at MM, just like in 3.4.4. This is clearly a fiber sequence since

ξ(𝖢,M)ξ(𝖢)ξ(M)\operatorname{\xi}(\mathsf{C},M)\to\operatorname{\xi}(\mathsf{C})\to\operatorname{\xi}(M)

is a fiber sequence in nonunital algebras (where the second map is evaluation at MM). ∎

3.5 Examples

Now we give an application of theorem 3.4.1.

3.5.1 Example (Monoidal categories and algebras).

Our main example is deforming \mathbbEn\mathbb{E}_{n}-monoidal mm-categories, which includes the case of deforming \mathbbEn\mathbb{E}_{n}-algebras as the m=0m=0 case. These are very important in the study of shifted sympletic structures. For example, [Pan+13] discusses the relation between nn-Poisson structures on derived affine stacks and the deformation theory of \mathbbEn\mathbb{E}_{n}-monoidal categories. They are also important in the study of Quantization, as discussed in [Toë14].

Given an \mathbbEn\mathbb{E}_{n}-monoidal mm-category 𝖣\mathsf{D}^{\otimes}, its deformation theory is the same as the simulatenous deformation theory of the pair (LMod𝖣n,LMod𝖣n1)(\operatorname{LMod}^{n}_{\mathsf{D}},\operatorname{LMod}^{n-1}_{\mathsf{D}}). Namely, theorem 3.4.1 says that \mathbbEn\mathbb{E}_{n}-monoidal deformations of the \mathbbEn\mathbb{E}_{n}-monoidal kk-category 𝖣\mathsf{D}^{\otimes} are characterized by

ξ(LMod𝖣n,LMod𝖣n1)=Fib(ξ(LMod𝖣n)ξ(LMod𝖣n1)).\operatorname{\xi}(\operatorname{LMod}^{n}_{\mathsf{D}},\operatorname{LMod}^{n-1}_{\mathsf{D}})=\operatorname{Fib}(\operatorname{\xi}(\operatorname{LMod}^{n}_{\mathsf{D}})\to\operatorname{\xi}(\operatorname{LMod}^{n-1}_{\mathsf{D}})).

In the \mathbbE1\mathbb{E}_{1}-algebra case, we see that deformations of an algebra AA are characterized by

ξ(LModA,A)=Fib(HH(A)A)\operatorname{\xi}(\operatorname{LMod}_{A},A)=\operatorname{Fib}(HH(A)\to A)

where HH(A)HH(A) denotes the Hochschild complex of AA (ie the derived center of LModA\operatorname{LMod}_{A}). We can recover the classical result that first-order deformations of AA are characterized by HH2(A)HH^{2}(A) when AA is connective. See for example [Fox93] for the case that AA is concentrated in degree 0. Note that in this case,

HH2(A)=π0(omk(k[2],HH(A)))π0(omk(k[2],Fib(HH(A)A)))HH^{2}(A)=\pi_{0}(\operatorname{\mathcal{H}\kern-2.0ptom}_{k}(k[-2],HH(A)))\simeq\pi_{0}(\operatorname{\mathcal{H}\kern-2.0ptom}_{k}(k[-2],\operatorname{Fib}(HH(A)\to A)))

since AA is connective, by using the long exact sequence of cohomology groups. Then we use our theorem 3.4.1 to see:

AlgDef^A(kk[0])\displaystyle\operatorname{\widehat{\operatorname{AlgDef}}}_{A}(k\oplus k[0]) omAlgk(2),aug(Free(k[2]),Fib(HH(A)A))\displaystyle\simeq\operatorname{\mathcal{H}\kern-2.0ptom}_{\operatorname{{Alg^{({2}),aug}_{k}}}}(\operatorname{Free}(k[-2]),\operatorname{Fib}(HH(A)\to A))
omk(k[2],Fib(HH(A)A)),\displaystyle\simeq\operatorname{\mathcal{H}\kern-2.0ptom}_{k}(k[-2],\operatorname{Fib}(HH(A)\to A)),

and hence

π0(AlgDef^A(kk[0]))HH2(A).\pi_{0}(\operatorname{\widehat{\operatorname{AlgDef}}}_{A}(k\oplus k[0]))\simeq HH^{2}(A).

We sketch the argument for deforming \mathbbEn\mathbb{E}_{n}-monoidal mm-categories. Given an \mathbbEn\mathbb{E}_{n}-monoidal mm-category 𝖣\mathsf{D}^{\otimes} (note that we drop the superscript sometimes, especially when we need 𝖣\mathsf{D}^{\otimes} itself as a subscript), we let \mathbbEn-MonDef𝖣\operatorname{\mathbb{E}_{n}{\text{-}}MonDef}_{\mathsf{D}} be the functor that assigns to each small \mathbbEn+m+1\mathbb{E}_{n+m+1}-algebra BB to the groupoid core of

\mathbbEn-MonCatB×\mathbbEn-MonCatk{𝖣},\operatorname{\mathbb{E}_{n}{\text{-}}MonCat}_{B}\times_{\operatorname{\mathbb{E}_{n}{\text{-}}MonCat}_{k}}\{\mathsf{D}^{\otimes}\},

where \mathbbEn-MonCatB\operatorname{\mathbb{E}_{n}{\text{-}}MonCat}_{B} denotes the category of \mathbbEn\mathbb{E}_{n}-monoidal mm-categories with a central BB-action, and the map \mathbbEn-MonCatB\mathbbEn-MonCatk\operatorname{\mathbb{E}_{n}{\text{-}}MonCat}_{B}\to\operatorname{\mathbb{E}_{n}{\text{-}}MonCat}_{k} is given by the augmentation map BkB\to k. Observe that LMod𝖣n\operatorname{LMod}^{n}_{\mathsf{D}} is now an n+mn+m-category as it’s a category consisting of n+m1n+m-1-categories with a 𝖣\mathsf{D}-central action. Hence notice that taking nn-fold endomorphism spaces in this category produces mm-categories. Notice one can define using a left fibration like we do with ObjDef\operatorname{ObjDef} (2.1.10).

The key insight is that we have a comparison

\mathbbEn-MonDef𝖣ObjDefLMod𝖣n\smallin𝖯𝗋𝗄𝖫,𝗇+𝗆=:CatDefLMod𝖣n\operatorname{\mathbb{E}_{n}{\text{-}}MonDef}_{\mathsf{D}}\to\operatorname{ObjDef}_{\operatorname{LMod}^{n}_{\mathsf{D}}\smallin\mathsf{Pr^{L,{n+m}}_{k}}}=:\operatorname{CatDef}_{\operatorname{LMod}^{n}_{\mathsf{D}}}

given by taking a deformation 𝖣B\smallin\mathbbEn-MonDef𝖣(B)\mathsf{D}^{\otimes}_{B}\smallin\operatorname{\mathbb{E}_{n}{\text{-}}MonDef}_{\mathsf{D}}(B) to LMod𝖣Bn\operatorname{LMod}^{n}_{\mathsf{D}_{B}}. Further there’s a map

ObjDefLMod𝖣n1\smallinLMod𝖣n\mathbbEn-MonDef𝖣\operatorname{ObjDef}_{\operatorname{LMod}^{n-1}_{\mathsf{D}}\smallin\operatorname{LMod}^{n}_{\mathsf{D}}}\to\operatorname{\mathbb{E}_{n}{\text{-}}MonDef}_{\mathsf{D}}

which sends a deformation M\smallinBLMod𝖣nM\smallin B\otimes\operatorname{LMod}^{n}_{\mathsf{D}} to End𝖣n(M)\operatorname{End}^{n}_{\mathsf{D}}(M). This is an mm-category by what we said above. Notice that the composition

ObjDefLMod𝖣n1\smallinLMod𝖣n\mathbbEn-MonDef𝖣CatDefLMod𝖣n\operatorname{ObjDef}_{\operatorname{LMod}^{n-1}_{\mathsf{D}}\smallin\operatorname{LMod}^{n}_{\mathsf{D}}}\to\operatorname{\mathbb{E}_{n}{\text{-}}MonDef}_{\mathsf{D}}\to\operatorname{CatDef}_{\operatorname{LMod}^{n}_{\mathsf{D}}}

is a fibration because the monoidal categories 𝖣B\mathsf{D}^{\otimes}_{B} that get sent to the basepoint LModB𝖣n\operatorname{LMod}^{n}_{B\otimes\mathsf{D}} of CatDefLMod𝖣n\operatorname{CatDef}_{\operatorname{LMod}^{n}_{\mathsf{D}}} are exactly characterized by objects M\smallinObjDefLMod𝖣n1(B)M\smallin\operatorname{ObjDef}_{\operatorname{LMod}^{n-1}_{\mathsf{D}}}(B) by Morita-equivalence arguments.

One can construct a comparison map

\mathbbEn-MonDef𝖣SimDef(LMod𝖣n,LMod𝖣n1)\operatorname{\mathbb{E}_{n}{\text{-}}MonDef}_{\mathsf{D}}\to\operatorname{SimDef}_{(\operatorname{LMod}^{n}_{\mathsf{D}},\operatorname{LMod}^{n-1}_{\mathsf{D}})}

in the following way: map 𝖣B\smallin\mathbbEn-MonDef𝖣(B)\mathsf{D}_{B}\smallin\operatorname{\mathbb{E}_{n}{\text{-}}MonDef}_{\mathsf{D}}(B) to the pair

(LMod𝖣Bn,LMod𝖣Bn1)\smallinSimDef(LMod𝖣n,LMod𝖣n1)(B).(\operatorname{LMod}^{n}_{\mathsf{D}_{B}},\operatorname{LMod}^{n-1}_{\mathsf{D}_{B}})\smallin\operatorname{SimDef}_{(\operatorname{LMod}^{n}_{\mathsf{D}},\operatorname{LMod}^{n-1}_{\mathsf{D}})}(B).

Then we have a comparison of fiber sequences

ObjDefLMod𝖣n1\smallinLMod𝖣n{\operatorname{ObjDef}_{\operatorname{LMod}^{n-1}_{\mathsf{D}}\smallin\operatorname{LMod}^{n}_{\mathsf{D}}}}\mathbbEn-MonDef𝖣{\operatorname{\mathbb{E}_{n}{\text{-}}MonDef}_{\mathsf{D}}}CatDefLMod𝖣n{\operatorname{CatDef}_{\operatorname{LMod}^{n}_{\mathsf{D}}}}ObjDefLMod𝖣n1\smallinLMod𝖣n{\operatorname{ObjDef}_{\operatorname{LMod}^{n-1}_{\mathsf{D}}\smallin\operatorname{LMod}^{n}_{\mathsf{D}}}}SimDef(LMod𝖣n,LMod𝖣n1){\operatorname{SimDef}_{(\operatorname{LMod}^{n}_{\mathsf{D}},\operatorname{LMod}^{n-1}_{\mathsf{D}})}}CatDefLMod𝖣n.{\operatorname{CatDef}_{\operatorname{LMod}^{n}_{\mathsf{D}}}.}

This is an equivalence after passing to fmp completions, as the left and right legs are equivalences.

References

  • [BKP18] Anthony Blanc, Ludmil Katzarkov and Pranav Pandit “Generators in formal deformations of categories” In Compos. Math. 154.10, 2018, pp. 2055–2089 DOI: 10.1112/s0010437x18007303
  • [Dri87] V.. Drinfeld “Quantum groups” In Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986) Amer. Math. Soc., Providence, RI, 1987, pp. 798–820
  • [Fox93] Thomas F. Fox “An introduction to algebraic deformation theory” In J. Pure Appl. Algebra 84.1, 1993, pp. 17–41 DOI: 10.1016/0022-4049(93)90160-U
  • [Fra13] John Francis “The tangent complex and Hochschild cohomology of \mathbbEn\mathbb{E}_{n}-rings” In Compos. Math. 149.3, 2013, pp. 430–480 DOI: 10.1112/S0010437X12000140
  • [KL09] Bernhard Keller and Wendy Lowen “On Hochschild cohomology and Morita deformations” In Int. Math. Res. Not. IMRN, 2009, pp. 3221–3235 DOI: 10.1093/imrp/rnp050
  • [Kon95] Maxim Kontsevich “Homological algebra of mirror symmetry” In Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994) Birkhäuser, Basel, 1995, pp. 120–139
  • [Lur11] Jacob Lurie “Derived Algebraic Geometry X: Formal Moduli Problems” Preprint available at https://www.math.ias.edu/~lurie/papers/DAG-X.pdf, 2011
  • [Lur17] Jacob Lurie “Higher Algebra” Preprint available at math.ias.edu/~lurie/papers/HA.pdf, 2017
  • [Lur18] Jacob Lurie “Spectral algebraic geometry” Preprint available at https://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf, 2018
  • [Pan+13] Tony Pantev, Bertrand Toën, Michel Vaquié and Gabriele Vezzosi “Shifted symplectic structures” In Publ. Math. Inst. Hautes Études Sci. 117, 2013, pp. 271–328 DOI: 10.1007/s10240-013-0054-1
  • [Sei02] Paul Seidel “Fukaya categories and deformations” In Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002) Higher Ed. Press, Beijing, 2002, pp. 351–360
  • [Ste21] Germán Stefanich “Higher Quasicoherent Sheaves” Thesis (Ph.D.)–University of California, Berkeley ProQuest LLC, Ann Arbor, MI, 2021, pp. 347 URL: http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqm&rft_dat=xri:pqdiss:28540389
  • [Toë14] Bertrand Toën “Derived Algebraic Geometry and Deformation Quantization” arXiv, 2014 DOI: 10.48550/ARXIV.1403.6995