This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Deformation quantization and homological reduction of a lattice gauge model

M.J. Pflaum, G. Rudolph, M. Schmidt
Abstract

For a compact Lie group GG we consider a lattice gauge model given by the GG-Hamiltonian system which consists of the cotangent bundle of a power of GG with its canonical symplectic structure and standard moment map. We explicitly construct a Fedosov quantization of the underlying symplectic manifold using the Levi-Civita connection of the Killing metric on GG. We then explain and refine quantized homological reduction for the construction of a star product on the symplectically reduced space in the singular case. Afterwards we show that for G=SU(2)G={\mathrm{SU}}(2) the main hypotheses ensuring the method of quantized homological reduction to be applicable hold in the case of our lattice gauge model. For that case, this implies that the - in general singular - symplectically reduced phase space of the corresponding lattice gauge model carries a star product.

1 Introduction

In this paper, we apply the homological approach to singular reduction in deformation quantization developed in [13] to a model of gauge theory obtained via lattice approximation of Yang-Mills theory within the Hamiltonian approach. We refer to the classical paper [49] for the formulation of the full model (including matter fields) on a finite lattice and for its canonical quantization. In geometric terms, the underlying classical phase space is a product of copies of the cotangent bundle over the gauge group manifold GG, endowed with the canonical symplectic structure, and the canonical moment map is given by the Gauss constraint generator. In [46, 47], the canonical quantization procedure of this model was taken up in the language of CC^{*}-algebras. The authors of these papers studied the structure of both the field and the observable algebras of the model including a discussion of the Gauss law and the classification of the irreducible representations of the algebra of observables. The latter is, by definition, the quotient of the algebra of gauge invariant operators by the ideal generated by the Gauss law. In [29, 30], this structural analysis was continued with emphasis on the construction of the thermodynamical limit including also the quantum dynamics of the system. Here, we limit our attention to pure Yang-Mills theory (without matter fields) in the finite lattice context.

It should be clear that within the above approach the algebra of observables rather than the space of states plays the primary role. On the other hand, by standard CC^{*}-algebraic arguments or, alternatively, by the theory of systems of imprimitivity, one has a unique field algebra representation (the generalized Schrödinger representation) and, therefore, it is quite straightforward to reduce the gauge symmetry after quantization yielding an identification of the observable algebra of pure lattice Yang-Mills theory with the algebra of compact operators on the Hilbert space of square integrable functions over a product of copies of GG (the classical configuration space). As we are dealing with reduction after quantization here, this algebra a priori does not contain any information about the classical gauge orbit stratification of the reduced phase space, the latter being obtained via singular symplectic reduction for the moment map at level zero. However, using the polar decomposition map, the unreduced phase space may be identified with the product of copies of the complexification of GG, this way aquiring a natural Kähler structure. Thus, a concept developed by Huebschmann [40] combined with results of Hall [36] may be applied, yielding a costratification of the physical Hilbert space, which may be viewed as the quantum counterpart of the classical stratification. We refer to [43, 26, 25] for the study of this structure including a discussion of its possible physical relevance. Recently [48], we have also clarified how to implement the classical stratification on the level of the observable algebra, leading to a stratification of the latter that is, in a sense, dual to the costratification of the physical Hilbert space. In a sense, the above observable algebra endowed with this additional stratified structure may be viewed as a reasonable substitute for a (sometimes desired) theory obtained via quantization after reduction, which within the above approach has not been worked out yet.

Deformation quantization is another quantization procedure which heavily rests on the Hamiltonian structure of the classical phase space and on Marsden–Weinstein reduction. In this respect, it is rather close in spirit to the above described approach. On the other hand, in some aspects it differs drastically from the CC^{*}-algebraic approach. To be more precise, what we are dealing with here is Fedosov’s formal deformation quantization [21] of the unreduced phase space defined above. Then, various options for the star product can be chosen, see [14, 15, 31, 32, 34]. Using the above mentioned Kähler structure, a Fedosov star product of Wick type can be taken as well, see [17, 60]. It would be desirable to compare these options, but in this paper we merely choose one of them, namely the product of the standard order type. In [23], Fedosov has shown that there is a natural deformation quantization analog of classical regular symplectic reduction. Next, this issue was taken up by Bordemann, Herbig and Waldmann [16], who developed a deformation quantization formulation of the BRST-method. They proved that, under appropriate regularity properties of the group action, the BRST-procedure induces a star product on the reduced phase space. In [13], Bordemann, Herbig and Pflaum showed that this method may be extended to singular symplectic reduction, provided the following assumptions are fulfilled:

  1. (GH)

    The components of the moment map JJ generate the vanishing ideal of the zero level set J1(0)J^{-1}(0).

  2. (AC)

    The Koszul complex on JJ in the ring of smooth functions on phase space is acyclic.

Moreover, the star product of the underlying unreduced quantum deformation theory has to fulfill some equivariance conditions. The main ideas of this reduction procedure are as follows.

  1. 1.

    For a given GG-Hamiltonian system (M,ω,Ψ,J)(M,\omega,\Psi,J), one constructs the classical BRST-complex (𝒜,𝒟)(\mathcal{A}^{\bullet},\mathcal{D}) by taking the graded tensor product of the Chevalley–Eilenberg complex CE(𝔤,𝒞(M))\operatorname{CE}^{\bullet}(\mathfrak{g},\mathcal{C}^{\infty}(M)) associated with the 𝔤\mathfrak{g}-module 𝒞(M)\mathcal{C}^{\infty}(M) with the Koszul complex (K,)(K^{\bullet},\partial) on the moment map JJ and endows it with the structure of a differential graded commutative 𝒞(M)\mathcal{C}^{\infty}(M)-algebra. Moreover, one shows that the latter carries a natural Poisson structure. Now, one can prove that, under the assumptions (GH) and (AC), the classical symplectically reduced space is representable (via a deformation retract) as the zeroth cohomology of this BRST-complex with its natural structure of a differential graded Poisson algebra.

  2. 2.

    Assume we are given a star product \star obtained by formal deformation quantization of the GG-Hamiltonian system (M,ω,Ψ,J)(M,\omega,\Psi,J), fulfilling some natural invariance conditions to be discussed later. Combining this star product with the natural product on the Graßmann part, one can endow the [[λ]]{\mathbb{C}}[[\lambda]]-module 𝒜[[λ]]\mathcal{A}^{\bullet}[[\lambda]] of formal power series with values in 𝒜\mathcal{A}^{\bullet} with a star product \ast. Moreover, one constructs a deformation 𝓓\bm{\mathcal{D}} of the classical BRST-differential, thus arriving at a formal deformation quantization (𝒜[[λ]],,𝓓)(\mathcal{A}^{\bullet}[[\lambda]],\ast,\bm{\mathcal{D}}) (called the quantum BRST algebra) of the classical BRST algebra 𝒜\mathcal{A}^{\bullet}. Finally, one can prove that there exists a deformed version of the contraction mentioned under point 1, giving rise to a star product on the symplectically reduced space.

The main result of the present paper consists in the proof that the above conditions (GH) and (AC), together with the needed equivariance conditions on the star product \star, are fulfilled for the gauge model under consideration with gauge group G=SU(2)G={\mathrm{SU}}(2), see Section 5. That is, we have proved that homological reduction may be applied to lattice gauge theory. Clearly, the star product on the reduced phase space is given in a complicated implicit way. To make it more explicit, one has to study the deformation retract structure entering the whole construction. This will be done in future work.

There are two further results holding true for any compact connected gauge group GG which should be mentioned. First, we have calculated the (standard order) star product for the unreduced theory in detail (Section 3), thus, in particular extending results contained in [14] and, second, we have provided the reader with a deeper analysis of the assumptions needed for the deformation retract method used in various places of the paper, see Theorem 4.1 and Theorem 4.5 which is an improved version of Theorem 3.2 in [13].

One final remark is in order. Throughout this paper, we have exclusively discussed formal deformation quantization. It is a challenge for future work to clarify whether the homological reduction method may be developed for strict deformation quantization (see e.g. [53]) as well. This would make it possible to compare the quantum observable algebra structure obtained here with the observable algebra obtained via canonical quantization described above in closer terms.

Acknowledgements: M.J.P. thanks DESY Hamburg and the Max-Planck-Institut für Mathematik Bonn for hospitality and support of his research stays. He also thanks the Universities of Leipzig and Bonn for hospitality. Travel support by the Simons Foundation through award nr. 359389 and support by the NSF through award OAC 1934725 is gratefully acknowledged. M.S. acknowledges funding by DFG under grant SCHM1652/2. The authors also thank the referees for constructive advice.

2 The model

Throughout the paper GG will denote a compact Lie group and 𝔤\mathfrak{g} its Lie algebra. The lattice gauge model for which we construct a deformation quantization is best represented as a particular GG-Hamiltonian system. Recall, [66, Sec. 10.1], that by a GG-Hamiltonian system or a Hamiltonian GG-manifold one understands a quadruple (M,ω,Ψ,J)(M,\omega,\Psi,J) such that (M,ω)(M,\omega) is a symplectic manifold, Ψ:G×MM\Psi:G\times M\to M a smooth action of GG on MM by symplectomorphisms and such that J:M𝔤J:M\to\mathfrak{g}^{*} is a smooth map called the moment map which is GG-equivariant and which satisfies

dJX=XMωfor all X𝔤.dJ_{X}=-X_{M}\lrcorner\omega\quad\text{for all }X\in\mathfrak{g}\ . (2.1)

Here, JX:MJ_{X}:M\to\mathbb{R} denotes the function which maps a point pMp\in M to the pairing J(p),X\langle J(p),X\rangle and XMX_{M} is the fundamental vector field of X𝔤X\in\mathfrak{g} on MM. The symplectically reduced space M//GM/\!/G is now defined as the quotient space M0/GM_{0}/G of the zero level set M0=J1(0)M_{0}=J^{-1}(0) by the group action. Note that M0M_{0}, which often is also called the constraint surface, is invariant under the group action by equivariance of the moment map and might possess singularities in case 0 is not a regular value of the moment map.

To define our lattice gauge model, let Λ\Lambda be a finite spatial lattice. Its sets of zero-dimensional, one-dimensional and two-dimensional elements are denoted by, respectively, Λ0\Lambda^{0}, Λ1\Lambda^{1} and Λ2\Lambda^{2} and are called, respectively, sites, links and plaquettes. We also assume that for the links and plaquettes an arbitrary orientation has been chosen. In the Hamiltonian approach to lattice gauge theory, gauge fields, or in other words the variables, are approximated by their parallel transporters along links. Gauge transformations representing the symmetries are approximated by their values at the lattice sites. The classical configuration space can then be identified with the space GΛ1G^{\Lambda^{1}} of maps Λ1G\Lambda^{1}\to G, the classical symmetry group is the group GΛ0G^{\Lambda^{0}} of maps Λ0G\Lambda^{0}\to G with pointwise multiplication and the action of gGΛ0g\in G^{\Lambda^{0}} on aGΛ1a\in G^{\Lambda^{1}} is given by

(ga)():=g(x)a()g(y)1,(g\cdot a)(\ell):=g(x)a(\ell)g(y)^{-1}\,, (2.2)

where Λ1\ell\in\Lambda^{1} and xx, yy denote the starting point and the endpoint of \ell, respectively. The classical phase space is given by the associated Hamiltonian GG-manifold [1, 66] and the reduced classical phase space is obtained by symplectic reduction [62, 66, 70]. Dynamics is governed by the classical counterpart of the Kogut-Susskind lattice Hamiltonian. After identifying TG\mathrm{T}^{\ast}G with G×𝔤G\times\mathfrak{g}, and thus TGΛ1\mathrm{T}^{\ast}G^{\Lambda^{1}} with GΛ1×𝔤Λ1G^{\Lambda^{1}}\times\mathfrak{g}^{\Lambda^{1}}, by means of left-invariant vector fields, the classical Hamiltonian is given by

H(a,E)=κ22δΛ1NE()21κ2δpΛ2(tra(p)+tra(p)¯),H(a,E)=\frac{\kappa^{2}}{2\delta}\sum_{\ell\in\Lambda^{1}}^{N}\|E(\ell)\|^{2}-\frac{1}{\kappa^{2}\delta}\sum_{p\in\Lambda^{2}}\left(\operatorname{tr}a(p)+\overline{\operatorname{tr}a(p)}\right)\,, (2.3)

where aGΛ1a\in G^{\Lambda^{1}}, κ\kappa denotes the coupling constant, δ\delta denotes the lattice spacing and a(p)a(p) is the product of a()a(\ell) along the boundary of the plaquette pΛ2p\in\Lambda^{2} in the induced orientation. The trace is taken in some chosen unitary representation. Due to unitarity, the Hamiltonian does not depend on the choice of plaquette orientations. Finally, E𝔤Λ1E\in\mathfrak{g}^{\Lambda^{1}} is the canonically conjugate momentum (classical colour electric field).

In the analysis of the orbit type stratification in continuum gauge theory it is reasonable to first factorize with respect to the free action of pointed gauge transformations. This leads to an action of the compact gauge group GG on the quotient manifold. This procedure can also be applied to the case of lattice gauge theory under consideration. Given a lattice site x0x_{0}, it is easy to see that the normal subgroup

{gGΛ0:g(x0)=𝟙},\{g\in G^{\Lambda^{0}}:g(x_{0})=\mathbbm{1}\}\,, (2.4)

where 𝟙\mathbbm{1} denotes the unit element of GG, acts freely on GΛ1G^{\Lambda^{1}}. Hence, one may pass to the quotient manifold and the residual action by the quotient Lie group of GΛ0G^{\Lambda^{0}} with respect to this normal subgroup. Obviously, the quotient Lie group is isomophic to GG. Let us explain how to identify the quotient manifold with a direct product of copies of GG and the quotient action with the action of GG by diagonal conjugation. Choose a maximal tree 𝒯\mathcal{T} in the graph Λ1\Lambda^{1} and define the tree gauge of 𝒯\mathcal{T} as the subset

{aGΛ1:a()=𝟙 for all 𝒯}\{a\in G^{\Lambda^{1}}:a(\ell)=\mathbbm{1}\text{ for all }\ell\in\mathcal{T}\}

of GΛ1G^{\Lambda^{1}}. One can easily show that every element of GΛ1G^{\Lambda^{1}} is conjugate under GΛ0G^{\Lambda^{0}} to an element in the tree gauge of 𝒯\mathcal{T} and that two elements in the tree gauge of 𝒯\mathcal{T} are conjugate under GΛ0G^{\Lambda^{0}} if they are conjugate under the action of GG via constant gauge transformations. As a consequence, the natural inclusion map of the tree gauge into GΛ1G^{\Lambda^{1}} descends to a GG-equivariant diffeomorphism from that tree gauge onto the quotient manifold of GΛ1G^{\Lambda^{1}} with respect to the action of the subgroup (2.4). Finally, by choosing a numbering of the off-tree links in Λ1\Lambda^{1}, we can identify the tree gauge with the direct product of NN copies of GG, where NN denotes the number of off-tree links. The number NN does not depend on the choice of 𝒯\mathcal{T}. Under this identification, the action of GG on the tree gauge via constant gauge transformations translates into the action of GG on GNG^{N} by diagonal conjugation

Ψ¯:G×GNGN,(g,a¯)=(g,(a1,,aN))ga¯=(ga1g1,,gaNg1).\underline{\Psi}:G\times G^{N}\to G^{N},\>(g,\underline{a})=\big{(}g,(a_{1},\dots,a_{N})\big{)}\mapsto g\cdot\underline{a}=(ga_{1}g^{-1},\dots,ga_{N}g^{-1})\ . (2.5)

To summarize, for the analysis of the role of orbit types we may pass from the original Hamiltonian system with symmetries, given by the configuration space GΛ1G^{\Lambda^{1}}, the symmetry group GΛ0G^{\Lambda^{0}} and the action (2.2), to the reduced Hamiltonian system with symmetries given by the configuration space Q:=GNQ:=G^{N}, the symmetry group GG and the action of GG on QQ given by diagonal conjugation (2.5). This is the system we will discuss in this paper. The classical phase space is given by the associated Hamiltonian GG-manifold and the reduced classical phase space is obtained by symplectic reduction. First, by regular symplectic reduction, we obtain the partially reduced phase space TQ=TGN\mathrm{T}^{\ast}Q=\mathrm{T}^{\ast}G^{N} endowed with its canonical cotangent bundle projection π:TQQ\pi:\mathrm{T}^{\ast}Q\to Q. The action of GG on QQ lifts to a symplectic action on TQ\mathrm{T}^{\ast}Q admitting the standard moment map

J:TQ𝔤,J(ξ)(X):=ξ,XTQ(p),J:\mathrm{T}^{\ast}Q\to\mathfrak{g}^{\ast}\,,\quad J(\xi)\big{(}X):=\langle\xi,X_{\mathrm{T}^{\ast}Q}(p)\rangle\,,

where pQp\in Q, ξTpQ\xi\in\mathrm{T}^{\ast}_{p}Q, X𝔤X\in\mathfrak{g} and XTQX_{T^{*}Q} denotes the fundamental vector field on TQ\mathrm{T}^{\ast}Q defined by XX. So one obtains a GG-Hamiltonian system (TGN,ω,Ψ¯,J)(T^{*}G^{N},\omega,\underline{\Psi},J) which in the following we will briefly refer to as the lattice gauge model for the Lie group GG. Its reduced phase space is obtained from TQ\mathrm{T}^{\ast}Q by singular symplectic reduction at J=0J=0,

TQ//G:=J1(0)/G.\mathrm{T}^{\ast}Q/\!/G:=J^{-1}(0)/G\,.

That is, it is the set of orbits of the GG-action on the invariant subset J1(0)TQJ^{-1}(0)\subset\mathrm{T}^{\ast}Q, endowed with the quotient topology induced from the relative topology on this subset. In gauge theory, the condition J=0J=0 corresponds to the Gauß law constraint. It turns out that the action of GG on J1(0)J^{-1}(0) has the same orbit types as that on QQ. By definition, the orbit type strata of TQ//G\mathrm{T}^{\ast}Q/\!/G are the connected components of the orbit type subsets of TQ//G\mathrm{T}^{\ast}Q/\!/G. They are called strata, because they provide a stratification [63] of TQ//G\mathrm{T}^{\ast}Q/\!/G [70, 62]. By the theory of singular symplectic reduction, the orbit type strata of TQ//G\mathrm{T}^{\ast}Q/\!/G are endowed with symplectic manifold structures yielding a stratified symplectic space. As JJ is linear on the fibers of TQ\mathrm{T}^{\ast}Q and hence J1(0)J^{-1}(0) contains the zero section of TQ\mathrm{T}^{\ast}Q, the bundle projection π:TQQ\pi:\mathrm{T}^{\ast}Q\to Q induces a surjective map TQ//GQ/G\mathrm{T}^{\ast}Q/\!/G\to Q/G. This map need not preserve the orbit type though.

3 Fedosov deformation quantization of TGN\mathrm{T}^{\ast}G^{N}

We carry out Fedosov deformation quantization with respect to the Levi-Civita connection of the Killing metric on GNG^{N}. The subsequent presentation rests on the results of [14]. For our purposes, we have to discuss some points in more detail. In particular, we present an explicit formula for the lift of the Levi-Civita connection to TGN\mathrm{T}^{\ast}G^{N} and we calculate the bidifferential operators in the corresponding Fedosov star product explicitly.

3.1 Notation and conventions

First, we have to develop the necessary calculus on GNG^{N} and TGN\mathrm{T}^{\ast}G^{N}. Given kk-vector fields X1,,XNX_{1},\dots,X_{N} on GG, we can define a kk-vector field X¯=(X1,,XN)\underline{X}=(X_{1},\dots,X_{N}) on GNG^{N} by

X¯a¯=((X1)a1,,(XN)aN),a¯GN.\underline{X}_{\underline{a}}=\big{(}(X_{1})_{a_{1}},\dots,(X_{N})_{a_{N}}\big{)}\,,\quad\underline{a}\in G^{N}\,.

By analogy, given kk-forms ξ1,,ξN\xi_{1},\dots,\xi_{N} on GG, we can define a kk-form ξ¯=(ξ1,,ξN)\underline{\xi}=(\xi_{1},\dots,\xi_{N}) on GNG^{N} by

ξ¯a¯=((ξ1)a1,,(ξN)aN),a¯GN.\underline{\xi}_{\underline{a}}=\big{(}(\xi_{1})_{a_{1}},\dots,(\xi_{N})_{a_{N}}\big{)}\,,\quad\underline{a}\in G^{N}\,.

Evaluation of ξ¯\underline{\xi} on the kk-vector field X¯\underline{X} then yields

ξ¯(X¯)=i=1Nξi(Xi)C(GN).\underline{\xi}(\underline{X})=\sum_{i=1}^{N}\xi_{i}(X_{i})\in C^{\infty}(G^{N})\,. (3.1)

All the vector fields and differential forms we will meet are of this specific type. For example, the left-invariant vector fields on GNG^{N} are given by X¯𝔤N\underline{X}\in\mathfrak{g}^{N} and the left-invariant 1-forms by ξ¯𝔤N\underline{\xi}\in\mathfrak{g}^{\ast}{}^{N}. Clearly,

[X¯,Y¯]=([X1,Y1],,[XN,YN]).[\underline{X},\underline{Y}]=\big{(}[X_{1},Y_{1}],\dots,[X_{N},Y_{N}]\big{)}\,.

We will identify TGNGN×𝔤N\mathrm{T}^{\ast}G^{N}\cong G^{N}\times\mathfrak{g}^{\ast}{}^{N} via the global trivialization by left translation,

GN×𝔤NTGN,(a¯,α¯)α¯a¯.G^{N}\times\mathfrak{g}^{\ast}{}^{N}\to\mathrm{T}^{\ast}G^{N}\,,\qquad(\underline{a},\underline{\alpha})\mapsto\underline{\alpha}_{\underline{a}}\,. (3.2)

Accordingly,

T(a¯,α¯)(GN×𝔤)N=(Ta¯GN)(Tα¯𝔤)N=𝔤N𝔤.N\mathrm{T}_{(\underline{a},\underline{\alpha})}(G^{N}\times\mathfrak{g}^{\ast}{}^{N})=(\mathrm{T}_{\underline{a}}G^{N})\oplus(\mathrm{T}_{\underline{\alpha}}\mathfrak{g}^{\ast}{}^{N})=\mathfrak{g}^{N}\oplus\mathfrak{g}^{\ast}{}^{N}\,. (3.3)

Thus, we arrive at the identification

GN×𝔤×N𝔤N×𝔤NT(TGN),G^{N}\times\mathfrak{g}^{\ast}{}^{N}\times\mathfrak{g}^{N}\times\mathfrak{g}^{\ast}{}^{N}\cong\mathrm{T}(\mathrm{T}^{\ast}G^{N})\,,

where the tuple (a¯,α¯,X¯,ξ¯)(\underline{a},\underline{\alpha},\underline{X},\underline{\xi}) corresponds to the element of T(TGN)\mathrm{T}(\mathrm{T}^{\ast}G^{N}) which under (3.2) is represented by the curve

t(a¯exp(tX¯),α¯+tξ¯).t\mapsto\big{(}\underline{a}\exp(t\underline{X}),\underline{\alpha}+t\underline{\xi}\big{)}\,. (3.4)

For X¯𝔤N\underline{X}\in\mathfrak{g}^{N} and ξ¯𝔤N\underline{\xi}\in\mathfrak{g}^{\ast}{}^{N}, let (X¯,ξ¯)(\underline{X},\underline{\xi}) denote the vector field on TGN\mathrm{T}^{\ast}G^{N} defined by

(X¯,ξ¯)(a¯,α¯)=(a¯,α¯,X¯,ξ¯),(a¯,α¯)TGN.(\underline{X},\underline{\xi})_{(\underline{a},\underline{\alpha})}=(\underline{a},\underline{\alpha},\underline{X},\underline{\xi})\,,\qquad(\underline{a},\underline{\alpha})\in\mathrm{T}^{\ast}G^{N}\,. (3.5)

Vector fields of this type will be referred to as standard vector fields on TGN\mathrm{T}^{\ast}G^{N}. The flow of standard vector fields is given by

Φt(X¯,ξ¯)((a¯,α¯))=(a¯exp(tX¯),α¯+tξ¯)\Phi^{(\underline{X},\underline{\xi})}_{t}\big{(}(\underline{a},\underline{\alpha})\big{)}=\big{(}\underline{a}\exp(t\underline{X}),\underline{\alpha}+t\underline{\xi}\big{)} (3.6)

and their commutator reads

[(X¯,ξ¯),(Y¯,υ¯)]=([X¯,Y¯],0).\big{[}(\underline{X},\underline{\xi}),(\underline{Y},\underline{\upsilon})\big{]}=\big{(}[\underline{X},\underline{Y}],0\big{)}\,. (3.7)

Correspondingly, elements of T(TGN)\mathrm{T}^{\ast}(\mathrm{T}^{\ast}G^{N}) will be written in the form (a¯,α¯,ξ¯,X¯)(\underline{a},\underline{\alpha},\underline{\xi},\underline{X}), where (ξ¯,X¯)(\underline{\xi},\underline{X}) represents a cotangent vector at the point (a¯,α¯)(\underline{a},\underline{\alpha}) via (3.2) and the identification

T(a¯,α¯)(GN×𝔤)N=(Ta¯GN)(Tα¯𝔤)N=𝔤N𝔤N.\mathrm{T}^{\ast}_{(\underline{a},\underline{\alpha})}\big{(}G^{N}\times\mathfrak{g}^{\ast}{}^{N}\big{)}=\big{(}\mathrm{T}^{\ast}_{\underline{a}}G^{N}\big{)}\oplus\big{(}\mathrm{T}^{\ast}_{\underline{\alpha}}\mathfrak{g}^{\ast}{}^{N}\big{)}=\mathfrak{g}^{\ast}{}^{N}\oplus\mathfrak{g}^{N}\,.

In this description, the natural pairing between tangent vectors and cotangent vectors is given by

(a¯,α¯,ξ¯,X¯),(a¯,α¯,Y¯,υ¯)=ξ¯,Y¯+υ¯,X¯.\langle(\underline{a},\underline{\alpha},\underline{\xi},\underline{X}),(\underline{a},\underline{\alpha},\underline{Y},\underline{\upsilon})\rangle=\langle\underline{\xi},\underline{Y}\rangle+\langle\underline{\upsilon},\underline{X}\rangle\,.

For ξ¯𝔤N\underline{\xi}\in\mathfrak{g}^{\ast}{}^{N} and X¯𝔤N\underline{X}\in\mathfrak{g}^{N}, let (ξ¯,X¯)(\underline{\xi},\underline{X}) denote the 11-form on TGN\mathrm{T}^{\ast}G^{N} defined by

(ξ¯,X¯)(a¯,α¯)=(a¯,α¯,ξ¯,X¯),(a¯,α¯)TGN.(\underline{\xi},\underline{X})_{(\underline{a},\underline{\alpha})}=(\underline{a},\underline{\alpha},\underline{\xi},\underline{X})\,,\quad(\underline{a},\underline{\alpha})\in\mathrm{T}^{\ast}G^{N}\,. (3.8)

11-forms of this type will be referred to as standard 11-forms on TGN\mathrm{T}^{\ast}G^{N}. Recall that every vector field ZZ on GNG^{N} defines a tautological smooth function Z~\tilde{Z} on TGN\mathrm{T}^{\ast}G^{N} by

Z~(η):=η(Za¯),ηTa¯GN.\tilde{Z}(\eta):=\eta(Z_{\underline{a}})\,,\quad\eta\in\mathrm{T}^{\ast}_{\underline{a}}G^{N}\,. (3.9)

For left-invariant vector fields X¯𝔤N\underline{X}\in\mathfrak{g}^{N},

X¯~(a¯,α¯)=α¯(X¯).\tilde{\underline{X}}(\underline{a},\underline{\alpha})=\underline{\alpha}(\underline{X})\,. (3.10)

Together with (3.4), this yields

dX¯~,(a¯,α¯,Y¯,υ¯)=υ¯,X¯\left\langle\mathrm{d}\tilde{\underline{X}},(\underline{a},\underline{\alpha},\underline{Y},\underline{\upsilon})\right\rangle=\left\langle\underline{\upsilon},\underline{X}\right\rangle

and hence, in the sense of (3.8),

dX¯~=(0,X¯).\mathrm{d}\tilde{\underline{X}}=(0,\underline{X})\,. (3.11)

Recall further the coadjoint representations Ad\operatorname{Ad}^{\ast} of GG and ad\operatorname{ad}^{\ast} of 𝔤\mathfrak{g}, defined by

Ad(a)ξ,Y=ξ,Ad(a1)Y,ad(X)ξ,Y=ξ,[X,Y]\langle\operatorname{Ad}^{\ast}(a)\xi,Y\rangle=\langle\xi,\operatorname{Ad}(a^{-1})Y\rangle\,\quad\,,\qquad\langle\operatorname{ad}^{\ast}(X)\xi,Y\rangle=-\langle\xi,[X,Y]\rangle\,\quad

for all aGa\in G, X,Y𝔤X,Y\in\mathfrak{g} and ξ𝔤\xi\in\mathfrak{g}^{\ast}.

Finally, for concrete calculations we will occasionally need to fix a basis {E1,,Ed}\{E_{1},\dots,E_{d}\} in 𝔤\mathfrak{g}. We then agree on the following conventions. The corresponding dual basis will always be denoted {ε1,,εd}\{\varepsilon^{1},\dots,\varepsilon^{d}\}. Let :={1,,N}×{1,,d}\mathcal{I}:=\{1,\dots,N\}\times\{1,\dots,d\}. For I=(n,i)I=(n,i)\in\mathcal{I} we write

E¯I:=(0,,0,Ei,0,,0),ε¯I:=(0,,0,εi,0,,0),\underline{E}_{I}:=(0,\dots,0,E_{i},0,\dots,0)\,,\qquad\underline{\varepsilon}^{I}:=(0,\dots,0,\varepsilon^{i},0,\dots,0)\,, (3.12)

with the nonzero entry at the nn-th place. The families {E¯I:I}\{\underline{E}_{I}:I\in\mathcal{I}\} and {ε¯I:I}\{\underline{\varepsilon}^{I}:I\in\mathcal{I}\} are then dual bases in 𝔤N\mathfrak{g}^{N} and 𝔤N\mathfrak{g}^{\ast}{}^{N}, respectively, and thus provide dual global frames in TGN\mathrm{T}G^{N} and TGN\mathrm{T}^{\ast}G^{N}, respectively. Let CijkC_{ij}^{k} denote the structure constants of 𝔤\mathfrak{g} with respect to the basis (E1,,Ed)(E_{1},\dots,E_{d}). Then, the structure constants CIJKC_{IJ}^{K} of 𝔤N\mathfrak{g}^{N} with respect to the basis {E¯I}\{\underline{E}_{I}\} are given by

C(n,i),(m,j)(l,k):={Cijk|n=m=l,0|otherwise.C_{(n,i),(m,j)}^{(l,k)}:=\begin{cases}C_{ij}^{k}&|\hskip 7.11317ptn=m=l\,,\\ 0&|\hskip 7.11317pt\text{otherwise.}\end{cases} (3.13)

3.2 Symplectic structure and Poisson structure

Let us denote the tautological 11-form of TG\mathrm{T}^{\ast}G by θ\theta, the corresponding standard symplectic form by ω=dθ\omega={\mathrm{d}}\theta and the corresponding standard Poisson tensor by Λ\Lambda. Then,

θ¯=(θ,N,θ),ω¯=dθ¯=(ω,N,ω),Λ¯=(Λ,N,Λ)\underline{\theta}=(\theta,\stackrel{{\scriptstyle N}}{{\dots}},\theta)\,,\qquad\underline{\omega}=\mathrm{d}\underline{\theta}=(\omega,\stackrel{{\scriptstyle N}}{{\dots}},\omega)\,,\qquad\underline{\Lambda}=(\Lambda,\stackrel{{\scriptstyle N}}{{\dots}},\Lambda) (3.14)

represent, respectively, the tautological 1-form, the symplectic form and the Poisson tensor of TGN\mathrm{T}^{\ast}G^{N}. As usual, the Hamiltonian vector field generated by a function fC(TGN)f\in C^{\infty}(\mathrm{T}^{\ast}G^{N}) will be denoted by XfX_{f}. We choose the convention Xfω¯=dfX_{f}\lrcorner\,\underline{\omega}=-{\mathrm{d}}f.

We derive formulae for the symplectic structure and the Poisson structure of TGN\mathrm{T}^{\ast}G^{N} under the identification (3.2). For fC(TGN)f\in C^{\infty}(\mathrm{T}^{\ast}G^{N}), define partial differentials

dGf:TGN𝔤,Nd𝔤f:TGN𝔤N\mathrm{d}_{G}f:\mathrm{T}^{\ast}G^{N}\to\mathfrak{g}^{\ast}{}^{N}\,,\qquad\mathrm{d}_{\mathfrak{g}^{\ast}}f:\mathrm{T}^{\ast}G^{N}\to\mathfrak{g}^{N}

by

df((a¯,α¯,X¯,ξ¯))=dGf(a¯,α¯),X¯+d𝔤f(a¯,α¯),ξ¯.\mathrm{d}f\big{(}(\underline{a},\underline{\alpha},\underline{X},\underline{\xi})\big{)}=\langle\mathrm{d}_{G}f(\underline{a},\underline{\alpha}),\underline{X}\rangle+\langle\mathrm{d}_{\mathfrak{g}^{\ast}}f(\underline{a},\underline{\alpha}),\underline{\xi}\rangle\,. (3.15)
Lemma 3.1.

For all (a¯,α¯)TGN(\underline{a},\underline{\alpha})\in\mathrm{T}^{\ast}G^{N}, all standard vector fields (X¯,ξ¯)(\underline{X},\underline{\xi}) and all functions f,gf,g on TGN\mathrm{T}^{\ast}G^{N}, one has

θ¯(a¯,α¯)((X¯,ξ¯))\displaystyle\underline{\theta}_{(\underline{a},\underline{\alpha})}\big{(}(\underline{X},\underline{\xi})\big{)} =α¯(X¯),\displaystyle=\underline{\alpha}(\underline{X})\,, (3.16)
ω¯(a¯,α¯)((X¯,ξ¯),(Y¯,ζ¯))\displaystyle\underline{\omega}_{(\underline{a},\underline{\alpha})}\big{(}(\underline{X},\underline{\xi}),(\underline{Y},\underline{\zeta})\big{)} =ξ¯(Y¯)ζ¯(X¯)α¯([X¯,Y¯]),\displaystyle=\underline{\xi}(\underline{Y})-\underline{\zeta}(\underline{X})-\underline{\alpha}([\underline{X},\underline{Y}])\,, (3.17)
(Xf)(a¯,α¯)\displaystyle(X_{f})_{(\underline{a},\underline{\alpha})} =(a¯,α¯,d𝔤f(a¯,α¯),ad(d𝔤f(a¯,α¯))α¯dGf(a¯,α¯)),\displaystyle=\big{(}\underline{a},\underline{\alpha},\mathrm{d}_{\mathfrak{g}^{\ast}}f(\underline{a},\underline{\alpha}),-\operatorname{ad}^{\ast}(\mathrm{d}_{\mathfrak{g}^{\ast}}f(\underline{a},\underline{\alpha}))\underline{\alpha}-\mathrm{d}_{G}f(\underline{a},\underline{\alpha})\big{)}\,, (3.18)
{f,g}(a¯,α¯)\displaystyle\{f,g\}(\underline{a},\underline{\alpha}) =dGg(a¯,α¯),d𝔤f(a¯,α¯)dGf(a¯,α¯),d𝔤g(a¯,α¯)\displaystyle=\langle\mathrm{d}_{G}g(\underline{a},\underline{\alpha}),\mathrm{d}_{\mathfrak{g}^{\ast}}f(\underline{a},\underline{\alpha})\rangle-\langle\mathrm{d}_{G}f(\underline{a},\underline{\alpha}),\mathrm{d}_{\mathfrak{g}^{\ast}}g(\underline{a},\underline{\alpha})\rangle
+α¯([d𝔤f(a¯,α¯),d𝔤g(a¯,α¯)]),\displaystyle\hskip 85.35826pt+\underline{\alpha}\big{(}[\mathrm{d}_{\mathfrak{g}^{\ast}}f(\underline{a},\underline{\alpha})\,,\mathrm{d}_{\mathfrak{g}^{\ast}}g(\underline{a},\underline{\alpha})]\big{)}\ , (3.19)
J(a¯,α¯)\displaystyle J(\underline{a},\underline{\alpha}) =i=1N(Ad(ai)αiαi).\displaystyle=\sum_{i=1}^{N}\big{(}\operatorname{Ad}^{\ast}(a_{i})\alpha_{i}-\alpha_{i}\big{)}\ . (3.20)
Proof.

(3.16) and (3.17) follow by straightforward calculation. To prove (3.18), we plug the ansatz (Xf)(a¯,α¯)=(a¯,α¯,X¯,ξ¯)(X_{f})_{(\underline{a},\underline{\alpha})}=(\underline{a},\underline{\alpha},\underline{X},\underline{\xi}) into the equation

ω¯(a¯,α¯)(Xf,(Y¯,ζ¯))=df((Y¯,ζ¯))\underline{\omega}_{(\underline{a},\underline{\alpha})}\big{(}X_{f},(\underline{Y},\underline{\zeta})\big{)}=-\mathrm{d}f\big{(}(\underline{Y},\underline{\zeta})\big{)}

with a standard vector field (Y¯,ζ¯)(\underline{Y},\underline{\zeta}). In view of (3.15) and (3.17), this yields

ξ¯(Y¯)ζ¯(X¯)α¯([X¯,Y¯])=dGf(a¯,α¯),Y¯d𝔤f(a¯,α¯),ζ¯\underline{\xi}(\underline{Y})-\underline{\zeta}(\underline{X})-\underline{\alpha}([\underline{X},\underline{Y}])=-\langle\mathrm{d}_{G}f(\underline{a},\underline{\alpha}),\underline{Y}\rangle-\langle\mathrm{d}_{\mathfrak{g}^{\ast}}f(\underline{a},\underline{\alpha}),\underline{\zeta}\rangle

for all Y¯𝔤N\underline{Y}\in\mathfrak{g}^{N} and ζ¯𝔤N\underline{\zeta}\in\mathfrak{g}^{\ast}{}^{N}. Putting Y¯=0\underline{Y}=0, we read off X¯=d𝔤f(a¯,α¯)\underline{X}=\mathrm{d}_{\mathfrak{g}^{\ast}}f(\underline{a},\underline{\alpha}). Putting then ζ¯=0\underline{\zeta}=0, we find ξ¯=ad(d𝔤f(a¯,α¯))α¯dGf(a¯,α¯)\underline{\xi}=-\operatorname{ad}^{\ast}(\mathrm{d}_{\mathfrak{g}^{\ast}}f(\underline{a},\underline{\alpha}))\underline{\alpha}-\mathrm{d}_{G}f(\underline{a},\underline{\alpha}). Formula (3.19) then follows from {f,g}=ω(Xf,Xg)\{f,g\}=\omega(X_{f},X_{g}). To prove (3.20), we observe that the fundamental vector field on GNG^{N} generated by B𝔤B\in\mathfrak{g} via the action by diagonal conjugation is given by

(BGN)a¯=(Ra1B𝟙La1B𝟙,,RaNB𝟙LaNB𝟙).(B_{G^{N}})_{\underline{a}}=\big{(}\mathrm{R}_{a_{1}}^{\prime}B_{\mathbbm{1}}-\mathrm{L}_{a_{1}}^{\prime}B_{\mathbbm{1}},\dots,\mathrm{R}_{a_{N}}^{\prime}B_{\mathbbm{1}}-\mathrm{L}_{a_{N}}^{\prime}B_{\mathbbm{1}}\big{)}\ .

Hence, by left-invariance,

J(a¯,α¯),B=α¯a¯,(BGN)a¯=i(αi)ai,RaiB𝟙LaiB𝟙=iαi,Ad(ai1)BB.\displaystyle\langle J(\underline{a},\underline{\alpha}),B\rangle=\langle\underline{\alpha}_{\underline{a}},(B_{G^{N}})_{\underline{a}}\rangle=\sum\nolimits_{i}\langle(\alpha_{i})_{a_{i}},\mathrm{R}_{a_{i}}^{\prime}B_{\mathbbm{1}}-\mathrm{L}_{a_{i}}^{\prime}B_{\mathbbm{1}}\rangle=\sum\nolimits_{i}\langle\alpha_{i},\operatorname{Ad}(a_{i}^{-1})B-B\rangle\ .

This yields the assertion. ∎

3.3 Lift of the Levi-Civita connection

To derive the Fedosov standard ordered star product with respect to the Levi-Civita connection of the Killing metric on GNG^{N}, we first have to find a homogeneous and symplectic lift of this connection to TGN\mathrm{T}^{\ast}G^{N}. Recall that, given a Riemannian manifold QQ with Levi-Civita connection ^{\widehat{\nabla}}, a torsion-free linear connection ˇ\check{\nabla} on TQ\mathrm{T}^{\ast}Q is called

  1. 1.

    a lift of ^{\widehat{\nabla}} if π(ˇZW)=(^Z^W^)π\pi^{\prime}\circ(\check{\nabla}_{Z}W)=({\widehat{\nabla}}_{\widehat{Z}}{\widehat{W}})\circ\pi for all vector fields ZZ, WW on TQ\mathrm{T}^{\ast}Q and Z^\widehat{Z}, W^\widehat{W} on QQ satisfying πZ=Z^π\pi^{\prime}\circ Z=\widehat{Z}\circ\pi and πW=W^π\pi^{\prime}\circ W=\widehat{W}\circ\pi,

  2. 2.

    symplectic if ˇω=0\check{\nabla}\omega=0,

  3. 3.

    homogeneous if [λ¯,ˇUV]ˇ[λ¯,U]VˇU[λ¯V]=0[{\underline{\lambda}},\check{\nabla}_{U}V]-\check{\nabla}_{[{\underline{\lambda}},U]}V-\check{\nabla}_{U}[{\underline{\lambda}}V]=0 for all vector fields UU, VV on TQ\mathrm{T}^{\ast}Q, where λ¯{\underline{\lambda}} denotes the Liouville vector field.

It turns out that homogeneous symplectic lifts are not unique, see e.g. [10]. As observed in [14], one option to make the lift unique is to impose the additional condition that

ω(U1,Rˇ(V,U2)U3+Rˇ(V,U3)U2)+(cyclic permutations of U1,U2,U3)=0\omega\big{(}U_{1},\check{R}(V,U_{2})U_{3}+\check{R}(V,U_{3})U_{2}\big{)}+(\text{cyclic permutations of }U_{1},U_{2},U_{3})=0

for all vector fields UiU_{i}, VV on TQ\mathrm{T}^{\ast}Q, where Rˇ\check{R} denotes the curvature tensor of ˇ\check{\nabla}, viewed as a 22-form on TQ\mathrm{T}^{\ast}Q with values in the 1,11,1-tensor fields on TQ\mathrm{T}^{\ast}Q. Let us refer to this connection as the BNW lift of ^{\widehat{\nabla}} and let us denote it by {\nabla}. To write it down, we need the following lifting operations. First, ^{\widehat{\nabla}} defines a horizontal lifting operator h\mathrm{h} by mapping every vector field ZZ on QQ to a vector field hZ\mathrm{h}Z on TQ\mathrm{T}^{\ast}Q, its horizontal lift, which is uniquely determined by the conditions

π(hZ)=Zπ,K^(hZ)=0,\pi^{\prime}\circ(\mathrm{h}Z)=Z\circ\pi\,,\qquad{\widehat{K}}\circ(\mathrm{h}Z)=0\,, (3.21)

where K^:T(TQ)TQ{\widehat{K}}:\mathrm{T}(\mathrm{T}^{\ast}Q)\to\mathrm{T}^{\ast}Q is the connection mapping of ^{\widehat{\nabla}}. Second, the structure of the cotangent bundle defines a (metric-independent) vertical lifting operator mapping every 11-form ζ\zeta on QQ to the vertical vector field vζ\mathrm{v}\zeta on TQ\mathrm{T}^{\ast}Q induced by the complete flow

TQ×TQ,(p,t)p+tζ(π(p)).\mathrm{T}^{\ast}Q\times{\mathbb{R}}\to\mathrm{T}^{\ast}Q\,,\qquad(p,t)\mapsto p+t\zeta\big{(}\pi(p)\big{)}\,.

Third, the lift of 11-forms and the operation sending vector fields ZZ on QQ to their tautological functions Z~\tilde{Z} on TQ\mathrm{T}^{\ast}Q combine to a lifting operation which turns 1,11,1-tensor fields on QQ into vertical vector fields on TQ\mathrm{T}^{\ast}Q, TvTT\mapsto\mathrm{v}T. By definition, for 1,11,1-tensor fields of the form T=ZζT=Z\otimes\zeta with a vector field ZZ and a 11-form ζ\zeta,

v(Zζ)=Z~(vζ).\mathrm{v}(Z\otimes\zeta)=\tilde{Z}(\mathrm{v}\zeta)\,.

According to [14], the BNW lift of ^{\widehat{\nabla}} to TQ\mathrm{T}^{\ast}Q is given by the formulae

vζ(vβ)\displaystyle{\nabla}_{\mathrm{v}\zeta}(\mathrm{v}\beta) :=0,vζ(hZ):=0,hZ(vζ):=v(^Zζ),\displaystyle:=0\,,\qquad{\nabla}_{\mathrm{v}\zeta}(\mathrm{h}Z):=0\,,\qquad{\nabla}_{\mathrm{h}Z}\left(\mathrm{v}\zeta\right):=\mathrm{v}\left({\widehat{\nabla}}_{Z}\zeta\right)\,,
hZ(hW)\displaystyle{\nabla}_{\mathrm{h}Z}(\mathrm{h}W) :=h(^ZW)+v(12R^(Z,W)+16R^(Z,)W+16R^(W,)Z)\displaystyle:=\mathrm{h}\left({\widehat{\nabla}}_{Z}W\right)+\mathrm{v}\left(\frac{1}{2}{\widehat{R}}(Z,W)\,\cdot+\frac{1}{6}{\widehat{R}}(Z,\cdot)W+\frac{1}{6}{\widehat{R}}(W,\cdot)Z\right)

holding true for all vector fields ZZ, WW on QQ and 11-forms ζ\zeta, β\beta on QQ. Here, R^{\widehat{R}} denotes the Riemann curvature tensor of ^{\widehat{\nabla}}, and the corresponding terms are 1,11,1-tensor fieldes on QQ, viewed as mappings of vector fields, with the dot representing the variable.

Remark 3.2.

The BNW lift can be obtained by standard symplectification, see e.g. [10], of the complete lift of ^{\widehat{\nabla}} to TQ\mathrm{T}^{\ast}Q in the sense of Yano and Patterson [78]. This was observed in [64] and has also been proved in [68].

Let us determine {\nabla} for Q=GNQ=G^{N} endowed with the Killing metric. It suffices to do this for Z=X¯Z=\underline{X} and W=Y¯W=\underline{Y} with X¯\underline{X} and Y¯\underline{Y} being left-invariant vector fields on GNG^{N} and for ζ=ξ¯\zeta=\underline{\xi} and β=υ¯\beta=\underline{\upsilon} with ξ¯\underline{\xi} and υ¯\underline{\upsilon} being left-invariant 11-forms on GNG^{N}. Recall that for such fields, the Levi-Civita connection is given by

^X¯Y¯=12[X¯,Y¯],^X¯ξ¯=12ad(X¯)ξ¯.{\widehat{\nabla}}_{\underline{X}}\underline{Y}=\frac{1}{2}[\underline{X},\underline{Y}]\,,\qquad{\widehat{\nabla}}_{\underline{X}}\underline{\xi}=\frac{1}{2}\operatorname{ad}^{\ast}(\underline{X})\underline{\xi}\,. (3.22)

As a preparation, we derive the lifting operators. Clearly, the vertical lift of a left-invariant 11-form ξ¯\underline{\xi} on GNG^{N} is given by

(vξ¯)(a¯,α¯)=(a¯,α¯,0,ξ¯).(\mathrm{v}\underline{\xi})_{(\underline{a},\underline{\alpha})}=\left(\underline{a},\underline{\alpha},0,\underline{\xi}\right)\,. (3.23)

To find the horizontal lifting operator h\mathrm{h}, we have to compute the connection mapping K^{\widehat{K}}. We use that

K^(ζZ)=^Zζ{\widehat{K}}(\zeta^{\prime}Z)={\widehat{\nabla}}_{Z}\zeta

for any vector field ZZ and any 11-form ζ\zeta on GNG^{N} [67, Prop. 1.5.6], and that K^{\widehat{K}} acts on T(a¯,α¯)(Ta¯GN)\mathrm{T}_{(\underline{a},\underline{\alpha})}(\mathrm{T}^{\ast}_{\underline{a}}G^{N}) as the natural identification with Ta¯GN\mathrm{T}^{\ast}_{\underline{a}}G^{N}. We find

K^(a¯,α¯,X¯,ξ¯)\displaystyle{\widehat{K}}(\underline{a},\underline{\alpha},\underline{X},\underline{\xi}) =K^(a¯,α¯,X¯,0)+K^(a¯,α¯,0,ξ¯)\displaystyle={\widehat{K}}(\underline{a},\underline{\alpha},\underline{X},0)+{\widehat{K}}(\underline{a},\underline{\alpha},0,\underline{\xi})
=K^(α¯(a¯,X¯))+(a¯,ξ¯)\displaystyle={\widehat{K}}(\underline{\alpha}^{\prime}(\underline{a},\underline{X}))+(\underline{a},\underline{\xi})
=(a¯,ξ¯+12ad(X¯)α¯).\displaystyle=\left(\underline{a},\underline{\xi}+\frac{1}{2}\operatorname{ad}^{\ast}(\underline{X})\underline{\alpha}\right)\,.

Hence, from (3.21) we read off that for left-invariant vector fields Z=X¯Z=\underline{X}, the horizontal lift is given by

(hX¯)(a¯,α¯)=(a¯,α¯,X¯,12ad(X¯)α¯).(\mathrm{h}\underline{X})_{(\underline{a},\underline{\alpha})}=\left(\underline{a},\underline{\alpha},\underline{X},-\frac{1}{2}\operatorname{ad}^{\ast}(\underline{X})\underline{\alpha}\right)\,. (3.24)
Proposition 3.3.

For a¯GN\underline{a}\in G^{N}, α¯𝔤N\underline{\alpha}\in\mathfrak{g}^{\ast}{}^{N} and X¯𝔤N\underline{X}\in\mathfrak{g}^{N}, ξ¯𝔤N\underline{\xi}\in\mathfrak{g}^{\ast}{}^{N},

(hX¯vξ¯)(a¯,α¯)\displaystyle\left({\nabla}_{\mathrm{h}\underline{X}}\mathrm{v}\underline{\xi}\right)_{(\underline{a},\underline{\alpha})} =(a¯,α¯,0,12ad(X¯)ξ¯),\displaystyle=\left(\underline{a},\underline{\alpha},0,\frac{1}{2}\operatorname{ad}^{\ast}(\underline{X})\,\underline{\xi}\right), (3.25)
(hX¯hY¯)(a¯,α¯)\displaystyle\left({\nabla}_{\mathrm{h}\underline{X}}\mathrm{h}\underline{Y}\right)_{(\underline{a},\underline{\alpha})} =(a¯,α¯,12[X¯,Y¯],16ad(Y¯)ad(X¯)α¯112ad(Y¯)ad(X¯)α¯).\displaystyle=\left(\underline{a},\underline{\alpha},\frac{1}{2}[\underline{X},\underline{Y}],\frac{1}{6}\operatorname{ad}^{\ast}(\underline{Y})\operatorname{ad}^{\ast}(\underline{X})\,\underline{\alpha}-\frac{1}{12}\operatorname{ad}^{\ast}(\underline{Y})\operatorname{ad}^{\ast}(\underline{X})\,\underline{\alpha}\right)\,. (3.26)
Proof.

Eq. (3.25) is a direct consequence of (3.22) and (3.23), because ad(X¯)ξ¯\operatorname{ad}^{\ast}(\underline{X})\,\underline{\xi} is a left-invariant 11-form on GNG^{N}, so that (3.23) applies. To prove Eq. (3.26), it remains to calculate the vertical lifts of the curvature terms. For that purpose, we observe that v(T)Z~=(T(Z))\mathrm{v}(T)\,\tilde{Z}=\big{(}T(Z)\big{)}^{\sim} for all 1,11,1-tensor fields TT and all vector fields ZZ on a manifold QQ and that

R^(X¯,Y¯)=14ad([X¯,Y¯]){\widehat{R}}(\underline{X},\underline{Y})=-\frac{1}{4}\operatorname{ad}\big{(}[\underline{X},\underline{Y}]\big{)}

for all left-invariant vector fields X¯\underline{X}, Y¯\underline{Y} on GNG^{N}. Using this, we check that

v(R^(X¯,Y¯))(a¯,α¯)\displaystyle\mathrm{v}\big{(}{\widehat{R}}(\underline{X},\underline{Y})\big{)}_{(\underline{a},\underline{\alpha})} =(a¯,α¯,0,14ad([X¯,Y¯])α¯),\displaystyle=\left(\underline{a},\underline{\alpha},0,\frac{1}{4}\operatorname{ad}^{\ast}\big{(}[\underline{X},\underline{Y}]\big{)}\,\underline{\alpha}\right), (3.27)
v(R^(X¯,)Y¯)(a¯,α¯)\displaystyle\mathrm{v}\big{(}{\widehat{R}}(\underline{X},\cdot)\underline{Y}\big{)}_{(\underline{a},\underline{\alpha})} =(a¯,α¯,0,14ad(X¯)ad(Y¯)α¯).\displaystyle=\left(\underline{a},\underline{\alpha},0,\frac{1}{4}\operatorname{ad}^{\ast}(\underline{X})\operatorname{ad}^{\ast}(\underline{Y})\,\underline{\alpha}\right). (3.28)

Now, (3.26) follows by plugging (3.22), (3.24), (3.27) and (3.28) into the defining formula for hX¯(hY¯){\nabla}_{\mathrm{h}\underline{X}}(\mathrm{h}\underline{Y}). ∎

Another useful formula can be obtained by calculating {\nabla} for standard vector fields.

Proposition 3.4.

Let X¯\underline{X}, Y¯𝔤N\underline{Y}\in\mathfrak{g}^{N} and ξ¯\underline{\xi}, υ¯𝔤N\underline{\upsilon}\in\mathfrak{g}^{\ast}{}^{N}. Then, for all a¯GN\underline{a}\in G^{N} and α¯𝔤N\underline{\alpha}\in\mathfrak{g}^{\ast}{}^{N},

((X¯,ξ¯)(Y¯,υ¯))(a¯,α¯)\displaystyle\left({\nabla}_{(\underline{X},\underline{\xi})}(\underline{Y},\underline{\upsilon})\right)_{(\underline{a},\underline{\alpha})} =(a¯,α¯,12[X¯,Y¯],12ad(X¯)υ¯+12ad(Y¯)ξ¯\displaystyle=\left(\underline{a}\,,\,\underline{\alpha}\,,\,\frac{1}{2}[\underline{X},\underline{Y}]\,,\,\frac{1}{2}\operatorname{ad}^{\ast}(\underline{X})\underline{\upsilon}+\frac{1}{2}\operatorname{ad}^{\ast}(\underline{Y})\underline{\xi}\right.
+16(ad(X¯)ad(Y¯)+ad(Y¯)ad(X¯))α¯).\displaystyle\hskip 56.9055pt\left.+\frac{1}{6}\big{(}\operatorname{ad}^{\ast}(\underline{X})\operatorname{ad}^{\ast}(\underline{Y})+\operatorname{ad}^{\ast}(\underline{Y})\operatorname{ad}^{\ast}(\underline{X})\big{)}\underline{\alpha}\right). (3.29)
Proof.

Choose a basis {ε¯I}\{\underline{\varepsilon}^{I}\} in 𝔤N\mathfrak{g}^{\ast}{}^{N}, expand α¯=α¯Iε¯I\underline{\alpha}=\underline{\alpha}_{I}\underline{\varepsilon}^{I} (summation convention) and define coefficient functions

pI:TGN,pI(a¯,α¯):=α¯I.p_{I}:\mathrm{T}^{\ast}G^{N}\to{\mathbb{R}}\,,\qquad p_{I}(\underline{a},\underline{\alpha}):=\underline{\alpha}_{I}\,. (3.30)

According to (3.24),

(X¯,ξ¯)=hX¯+vξ¯+12pIv(ad(X¯)ε¯I).(\underline{X},\underline{\xi})=\mathrm{h}\underline{X}+\mathrm{v}\underline{\xi}+\frac{1}{2}\,p_{I}\,\mathrm{v}\left(\operatorname{ad}^{\ast}(\underline{X})\underline{\varepsilon}^{I}\right)\,.

Plugging this decomposition for (X¯,ξ¯)(\underline{X},\underline{\xi}) and (Y¯,υ¯)(\underline{Y},\underline{\upsilon}) into (X¯,ξ¯)(Y¯,υ¯){\nabla}_{(\underline{X},\underline{\xi})}(\underline{Y},\underline{\upsilon}), we find

(X¯,ξ¯)(Y¯,υ¯)\displaystyle{\nabla}_{(\underline{X},\underline{\xi})}(\underline{Y},\underline{\upsilon}) =hX¯(hY¯)+hX¯(vυ¯)+12((X¯,ξ¯)pI)v(ad(Y¯)ε¯I)\displaystyle={\nabla}_{\mathrm{h}\underline{X}}(\mathrm{h}\underline{Y})+{\nabla}_{\mathrm{h}\underline{X}}(\mathrm{v}\underline{\upsilon})+\frac{1}{2}\,\big{(}(\underline{X},\underline{\xi})p_{I}\big{)}\,\mathrm{v}\left(\operatorname{ad}^{\ast}(\underline{Y})\underline{\varepsilon}^{I}\right)
+12pIhX¯(v(ad(Y¯)ε¯I)).\displaystyle\hskip 156.49014pt+\frac{1}{2}\,p_{I}\,{\nabla}_{\mathrm{h}\underline{X}}\left(\mathrm{v}\left(\operatorname{ad}^{\ast}(\underline{Y})\underline{\varepsilon}^{I}\right)\right)\,.

Using the formulae of Proposition 3.3 and (X¯,ξ¯)(a¯,α¯)pI=ξ¯I,(\underline{X},\underline{\xi})_{(\underline{a},\underline{\alpha})}p_{I}=\underline{\xi}_{I}\,, we obtain the assertion. ∎

For later purposes, let us prove that the BNW lift of the Levi-Civita connection defined by the Killing metric on GNG^{N} is GG-invariant. The lifted GG-action on TGNGN×𝔤N\mathrm{T}^{\ast}G^{N}\cong G^{N}\times\mathfrak{g}^{\ast}{}^{N} reads

(g,(a¯,α¯))Ψg(a¯,α¯)=(ga¯g1,Ad(g)α¯),gG(g,(\underline{a},\underline{\alpha}))\mapsto\Psi_{g}(\underline{a},\underline{\alpha})=(g\underline{a}g^{-1},\operatorname{Ad}^{*}(g)\underline{\alpha})\,,\quad g\in G (3.31)

and the induced action on T(TGN)(GN×𝔤)N×(𝔤N×𝔤)N\mathrm{T}(\mathrm{T}^{\ast}G^{N})\cong(G^{N}\times\mathfrak{g}^{\ast}{}^{N})\times(\mathfrak{g}^{N}\times\mathfrak{g}^{\ast}{}^{N}) via the tangent mapping of Ψg\Psi_{g} is given by

Ψg(a¯,α¯,X¯,ξ¯)=(ga¯g1,Ad(g)α¯,Ad(g)X¯,Ad(g)ξ¯).\Psi^{\prime}_{g}(\underline{a},\underline{\alpha},\underline{X},\underline{\xi})=(g\underline{a}g^{-1},\operatorname{Ad}^{*}(g)\underline{\alpha},\operatorname{Ad}(g)\underline{X},\operatorname{Ad}^{*}(g)\underline{\xi})\,. (3.32)
Proposition 3.5.

The BNW lift of the Levi-Civita connection on GNG^{N} defined by the Killing metric is GG-invariant, that is, (Ψg)=(\Psi_{g})_{\ast}{\nabla}={\nabla}.

Proof.

It suffices to show that

(Ψg)(X¯,ξ¯)(Ψg)(Y¯,υ¯)=(Ψg)((X¯,ξ¯)(Y¯,υ¯)){\nabla}_{(\Psi_{g})_{*}(\underline{X},\underline{\xi})}(\Psi_{g})_{*}(\underline{Y},\underline{\upsilon})=(\Psi_{g}^{\prime})_{\ast}\left({\nabla}_{(\underline{X},\underline{\xi})}(\underline{Y},\underline{\upsilon})\right)

for all standard vector fields (X¯,ξ¯)(\underline{X},\underline{\xi}) and (Y¯,υ¯)(\underline{Y},\underline{\upsilon}) on TGN\mathrm{T}^{\ast}G^{N}. Evaluating both sides at a point (a¯,α¯)(\underline{a},\underline{\alpha}) by means of (3.29) and (3.32) and using the equivariance properties

ad((Ψg)X¯)=(Ψg)ad(X¯)(Ψg1),ad((Ψg)X¯)=(Ψg1)ad(X¯)(Ψg),\operatorname{ad}\big{(}(\Psi_{g})_{*}\underline{X}\big{)}=(\Psi_{g})_{*}\circ\operatorname{ad}(\underline{X})\circ(\Psi_{g}^{-1})_{*}\,,\quad\operatorname{ad}^{*}\big{(}(\Psi_{g})_{*}\underline{X}\big{)}=(\Psi_{g}^{-1})^{*}\circ\operatorname{ad}^{*}(\underline{X})\circ(\Psi_{g})^{*}\,,

we obtain the assertion by direct inspection. ∎

In the general case, GG-invariance of {\nabla} can be obtained by direct inspection of the defining formulae for {\nabla} using the equivariance of h\mathrm{h} and v\mathrm{v}. Alternatively, it follows from the geometric interpretation of {\nabla} provided by Remark 3.2.

3.4 Fedosov star product

Now, we are prepared to derive the Fedosov star product of standard order type corresponding to the lifted connection {\nabla}. First, let us briefly recall the Fedosov construction [21]. The starting point is the formal Weyl algebra bundle W(M)W(M) over the symplectic manifold M=TGNM=\mathrm{T}^{\ast}G^{N}. Recall that W(M)W(M) is fiberwise defined as the [[λ]]{\mathbb{C}}[[\lambda]]-module

W(M)p:=(k=0Sk(TpM))[[λ]],W(M)_{p}:=\left(\prod_{k=0}^{\infty}{\rm S}^{k}(\mathrm{T}^{\ast}_{p}M)\right)[[\lambda]]\,,

that is, elements of W(M)pW(M)_{p} must be viewed as formal power series in the parameter λ\lambda and as formal series in the symmetric degree of symmetric tensors over TpM\mathrm{T}^{\ast}_{p}M. Let us denote by 𝒲(M):=Γ(W(M)){\cal W}(M):=\Gamma^{\infty}\big{(}W(M)\big{)} the corresponding space of sections. In the sequel, the basic object will be W(M)W(M) tensorized with the bundle ΛM\Lambda^{\bullet}M of exterior forms on MM, that is, W(M)ΛMW(M)\otimes\Lambda^{\bullet}M. This bundle may be endowed (pointwise) with a natural associative and supercommutative product

μ(ab):=ab:=(fg)(αβ),\mu(a\otimes b):=ab:=(f\vee g)\otimes(\alpha\wedge\beta)\,,

for elements a=fαa=f\otimes\alpha and b=gβb=g\otimes\beta. Its (graded) algebra of sections is the tensor product Γ(W(M)ΛM)𝒲(M)𝒞(M)Ω(M)\Gamma^{\infty}\big{(}W(M)\otimes\Lambda^{\bullet}M\big{)}\cong{\cal W}(M)\otimes_{\mathcal{C}^{\infty}(M)}\Omega^{\bullet}(M). We refer to Section 6.4 of [73] for further details. In the next step, one deforms μ\mu by using a fiberwise Moyal-type product asba\circ_{s}b. We use the standard ordered type. In the case at hand, it is given in terms of the dual global frames {E¯I:I}\{\underline{E}_{I}:I\in\mathcal{I}\} in TGN\mathrm{T}G^{N} and {ε¯I:I}\{\underline{\varepsilon}^{I}:I\in\mathcal{I}\} in TGN\mathrm{T}^{\ast}G^{N} by

asb:=μeλiis(vε¯I)is(hE¯I)aba\circ_{s}b:=\mu\circ{\mathrm{e}}^{\frac{\lambda}{\mathrm{i}}i_{s}\left(\mathrm{v}\underline{\varepsilon}^{I}\right)\,\otimes\,i_{s}\left(\mathrm{h}\underline{E}_{I}\right)}a\otimes b (3.33)

(summation convention), where isi_{s} means the operation of symmetric insertion and v\mathrm{v} and h\mathrm{h} are given by (3.23) and (3.24). Formula (3.33) explains how the connection {\nabla} enters the Fedosov construction. It is easy to see that the product s\circ_{s} does not depend on the choice of frames. Next, we wish to define the star product of standard ordered type for functions on MM. For that purpose, we denote by

σ:𝒲(M)𝒞(M)Ω(M)C(M)[[λ]]\sigma:{\cal W}(M)\otimes_{\mathcal{C}^{\infty}(M)}\Omega^{\bullet}(M)\to C^{\infty}(M)[[\lambda]]

the canonical projection onto the part of symmetric and antisymmetric degree zero. Now, the key idea of the Fedosov construction consists in distinguishing a subalgebra of 𝒲(M){\cal W}(M) such that σ\sigma restricted to that subalgebra is bijective. Then, the associative product s\circ_{s} may be pulled back to C(M)[[λ]]C^{\infty}(M)[[\lambda]] via this bijection yielding an associative [[λ]]{\mathbb{C}}[[\lambda]]-bilinear product. Such a subalgebra may be obtained as the kernel of a superderivation D:𝒲(M)𝒲(M)𝒞(M)Ω1(M)D:{\cal W}(M)\to{\cal W}(M)\otimes_{\mathcal{C}^{\infty}(M)}\Omega^{1}(M) of antisymmetric degree one fulfilling D2=0D^{2}=0, called the Fedosov derivation. It is constructed using the BNW lift {\nabla}, see formula (71) in [14] for the standard order Fedosov derivation DsD_{s}. Associated with DsD_{s}, for every fC(M)[[λ]]f\in C^{\infty}(M)[[\lambda]], there exists a unique element τs(f)kerDs𝒲(M)\tau_{s}(f)\in\ker D_{s}\cap{\cal W}(M), such that σ(τs(f))=f\sigma(\tau_{s}(f))=f and the mapping τs:C(M)[[λ]]𝒲(M)\tau_{s}:C^{\infty}(M)[[\lambda]]\to{\cal W}(M) (called the Fedosov Taylor series) is [[λ]]{\mathbb{C}}[[\lambda]]-linear. According to Theorem 3.3 in [21] (or Theorem 2 in [14]), it can be determined recursively. Now, the Fedosov star product is defined as follows:

fg:=σ(τs(f)sτs(g)),f\star g:=\sigma(\tau_{s}(f)\circ_{s}\tau_{s}(g))\,, (3.34)

for any f,gC(M)[[λ]]f,g\in C^{\infty}(M)[[\lambda]]. One can derive an explicit formula for s\circ_{s} in the case of a general cotangent bundle, see Theorem 9 in [14].

Here, we wish to determine this star product explicitly for the case under consideration. For that purpose, we recall that there is a canonical representation of the star product algebra (C(M)[[λ]],)(C^{\infty}(M)[[\lambda]],\star), called the standard order representation:

ρ(f)ψ:=i(fπψ),\rho(f)\psi:=i^{\ast}(f\star\pi^{\ast}\psi)\,, (3.35)

for any fC(M)[[λ]]f\in C^{\infty}(M)[[\lambda]] and ψC(GN)[[λ]]\psi\in C^{\infty}(G^{N})[[\lambda]]. Here, i:GNM=TGNi:G^{N}\to M=\mathrm{T}^{\ast}G^{N} denotes the canonical embedding via the zero section. Now, a key observation is that the calculations may be performed in the representation ρ\rho, see [14, Cor. 10]. More precisely, this corollary states that the restriction of ρ\rho to the subalgebra of smooth complex-valued functions polynomial in the momenta as well as to the subalgebra of formal power series with coefficients in the functions which are analytic in the fiber variables is injective. Thus, let us analyze formula (3.35) for these two classes of functions.

A function fC(TQ)f\in C^{\infty}(\mathrm{T}^{\ast}Q) is called fiber-homogeneous if it is of the form

f=πfJ1JlpJ1pJl,f=\pi^{\ast}f^{J_{1}\dots J_{l}}p_{J_{1}}\cdots p_{J_{l}}\,, (3.36)

with a symmetric tensor field fJ1Jlf^{J_{1}\dots J_{l}} on GNG^{N}. Here, pIp_{I} denote the coefficient functions with respect to the global frame (ε¯I)(\underline{\varepsilon}^{I}) in TGN\mathrm{T}^{\ast}G^{N} given by (3.30).

Proposition 3.6.

For fiber-homogeneous functions ff of degree ll, one has

ρ(f)=(λi)lfJ1JlE¯J1E¯Jl\rho(f)=\left(\frac{\lambda}{\mathrm{i}}\right)^{l}f^{J_{1}\dots J_{l}}\,\underline{E}_{J_{1}}\cdots\underline{E}_{J_{l}} (3.37)

(symmetric operator ordering).

Proof.

Let ψC(GN)\psi\in C^{\infty}(G^{N}) be given. Using (3.35), (3.34) and the relation τsπ=πτ0,\tau_{s}\circ\pi^{\ast}=\pi^{\ast}\circ\tau_{0}\,, where τ0\tau_{0} is the Fedosov-Taylor series with respect to ^{\widehat{\nabla}}, we obtain

ρ(f)ψ=σi(τs(f)sπ(τ0(ψ))).\rho(f)\psi=\sigma\circ i^{\ast}\big{(}\tau_{s}(f)\circ_{s}\pi^{\ast}(\tau_{0}(\psi))\big{)}\,.

By (3.33), then

ρ(f)ψ\displaystyle\rho(f)\psi =r=01r!(λi)r(σi{is(vε¯I1)is(vε¯Ir)τs(f)})\displaystyle=\sum_{r=0}^{\infty}\frac{1}{r!}\left(\frac{\lambda}{\mathrm{i}}\right)^{r}\left(\sigma\circ i^{\ast}\left\{i_{s}(\mathrm{v}\underline{\varepsilon}^{I_{1}})\dots i_{s}(\mathrm{v}\underline{\varepsilon}^{I_{r}})\tau_{s}(f)\right\}\right)
(σi{is(hE¯I1)is(hE¯Ir)π(τ0(ψ))}).\displaystyle\hskip 113.81102pt\cdot\left(\sigma\circ i^{\ast}\Big{\{}i_{s}\left(\mathrm{h}\underline{E}_{I_{1}}\right)\dots i_{s}\left(\mathrm{h}\underline{E}_{I_{r}}\right)\pi^{\ast}(\tau_{0}(\psi))\Big{\}}\right)\,.

The second factor yields σ(is(E¯I1)is(E¯I1)τ0(ψ))\sigma\left(i_{s}(\underline{E}_{I_{1}})\dots i_{s}(\underline{E}_{I_{1}})\tau_{0}(\psi)\right). By Theorem 4 in [14], we have τ0(ψ)=eD^ψ\tau_{0}(\psi)=\mathrm{e}^{{\widehat{D}}}\psi, where D^=ε¯I^E¯I{\widehat{D}}=\underline{\varepsilon}^{I}\vee{\widehat{\nabla}}_{\underline{E}_{I}}. Since σ\sigma projects onto degree 0, in eD^\mathrm{e}^{{\widehat{D}}} only the term of order rr survives. Thus,

ρ(f)ψ\displaystyle\rho(f)\psi =r=01r!(λi)r(σi{is(vε¯I1)is(vε¯Ir)τs(f)})(E¯I1E¯Irψ),\displaystyle=\sum_{r=0}^{\infty}\frac{1}{r!}\left(\frac{\lambda}{\mathrm{i}}\right)^{r}\left(\sigma\circ i^{\ast}\left\{i_{s}(\mathrm{v}\underline{\varepsilon}^{I_{1}})\dots i_{s}(\mathrm{v}\underline{\varepsilon}^{I_{r}})\tau_{s}(f)\right\}\right)\left(\underline{E}_{I_{1}}\cdots\underline{E}_{I_{r}}\psi\right)\,,

where we have used that the first factor is symmetric under permutation of indices. In the first factor, we use σi=iσ\sigma\circ i^{\ast}=i^{\ast}\circ\sigma. According to [14, Lem. 7], given ff and rr, there exist local sections φI\varphi_{I} such that the term of order rr of τs(f)\tau_{s}(f) can locally be written as

τs(f)(r)=D(r)f+(ε¯I,0)φI,\tau_{s}(f)^{(r)}=D^{(r)}f+(\underline{\varepsilon}^{I},0)\vee\varphi_{I}\,,

where D=(ε¯I,0)(E¯I,0)+(0,E¯I)(0,ε¯I)D=(\underline{\varepsilon}^{I},0)\vee{\nabla}_{(\underline{E}_{I},0)}+(0,\underline{E}_{I})\vee{\nabla}_{(0,\underline{\varepsilon}^{I})}. Using this and vε¯I=(0,ε¯I)=pI,\mathrm{v}\underline{\varepsilon}^{I}=(0,\underline{\varepsilon}^{I})=\frac{\partial}{\partial p_{I}}\,, for the first factor we obtain

i(pI1pIrf).i^{\ast}\left(\frac{\partial}{\partial p_{I_{1}}}\cdots\frac{\partial}{\partial p_{I_{r}}}f\right)\,.

In view of (3.36), this trivially vanishes for r>lr>l. It vanishes for r<lr<l, too, because ipI=0i^{\ast}p_{I}=0. Thus, the first factor yields δrll!fI1Il.\delta_{rl}\,l!\,f^{I_{1}\dots I_{l}}\,. This proves (3.37). ∎

We immediately read off the following special case.

Corollary 3.7.

For a function ff which is linear in the momenta,

ρ(f)ψ=λiX¯(ψ),\rho(f)\psi=\frac{\lambda}{\mathrm{i}}{\underline{X}}(\psi), (3.38)

with X¯\underline{X} defined by f(a¯,α)=α¯(X¯)f(\underline{a},\alpha)={\underline{\alpha}}(\underline{X}). ∎

Following [14], we first derive a formula for the star product \star of exponentials of tautological functions of left-invariant vector fields on GNG^{N} and then, using this formula, we extend \star to arbitrary functions on TGN\mathrm{T}^{\ast}G^{N}.

Lemma 3.8 (Bordemann, Neumaier, Waldmann [14, Sec. 8, Lem. 10]).

For functions of the form eX¯~{{\mathrm{e}}^{\widetilde{\underline{X}}}} with X¯\underline{X} being a left-invariant vector field on GNG^{N}, the standard ordered star product is given by

eX¯~eY¯~=eiλH(λiX¯,λiY¯),{{\mathrm{e}}^{\widetilde{\underline{X}}}}\star{{\mathrm{e}}^{\widetilde{\underline{Y}}}}={{\mathrm{e}}^{\frac{\mathrm{i}}{\lambda}H(\frac{\lambda}{\mathrm{i}}\underline{X},\frac{\lambda}{\mathrm{i}}\underline{Y})^{\sim}}}\,, (3.39)

where HH denotes the Baker-Campbell-Hausdorff series.

Proof.

By (3.38), for all ψC(GN)\psi\in C^{\infty}(G^{N}), we have

ρ(eX¯~)ψ=exp(λiX¯)ψ,\rho\left({{\mathrm{e}}^{\widetilde{\underline{X}}}}\right)\psi=\exp\left(\circ\frac{\lambda}{\mathrm{i}}\underline{X}\right)\psi\,, (3.40)

where \circ denotes the composition of vector fields viewed as differential operators on C(G)C^{\infty}(G). Using the representation property and (3.40), we calculate

ρ(eX¯~eY¯~)ψ=ρ(eiλH(λiX¯,λiY¯))ψ.\rho\left({{\mathrm{e}}^{\widetilde{\underline{X}}}}\star{{\mathrm{e}}^{\widetilde{\underline{Y}}}}\right)\psi=\rho\left({{\mathrm{e}}^{\frac{\mathrm{i}}{\lambda}H\left(\frac{\lambda}{\mathrm{i}}\underline{X},\frac{\lambda}{\mathrm{i}}\underline{Y}\right)^{\sim}}}\right)\psi\,.

In view of Corollary 10 in [14], this yields the assertion. ∎

Define operators

Bm:C(TGN)×C(TGN)C(TGN)B_{m}:C^{\infty}(\mathrm{T}^{\ast}G^{N})\times C^{\infty}(\mathrm{T}^{\ast}G^{N})\to C^{\infty}(\mathrm{T}^{\ast}G^{N})

by

eX¯~eY¯~=m=0(λi)mBm(eX¯~,eY¯~).{{\mathrm{e}}^{\widetilde{\underline{X}}}}\star{{\mathrm{e}}^{\widetilde{\underline{Y}}}}=\sum_{m=0}^{\infty}\left(\frac{\lambda}{\mathrm{i}}\right)^{m}B_{m}\left({{\mathrm{e}}^{\widetilde{\underline{X}}}},{{\mathrm{e}}^{\widetilde{\underline{Y}}}}\right)\,. (3.41)

Explicit expressions for BmB_{m} will be derived below.

Now, we can extend formula (3.39) to arbitrary functions on TGN\mathrm{T}^{\ast}G^{N}.

Proposition 3.9 (Bordemann, Neumaier, Waldmann [14, Sec. 8, Prop. 11]).

For f,gC(TGN)f,g\in C^{\infty}(\mathrm{T}^{\ast}G^{N}), one has

fg=m=0(λi)mn=0m1n!Bmn((0,ε¯J1)(0,ε¯Jn)f,(E¯J1,0)(E¯Jn,0)g).f\star g=\sum_{m=0}^{\infty}\left(\frac{\lambda}{\mathrm{i}}\right)^{m}\sum_{n=0}^{m}\frac{1}{n!}B_{m-n}\left((0,\underline{\varepsilon}^{J_{1}})\cdots(0,\underline{\varepsilon}^{J_{n}})f,(\underline{E}_{J_{1}},0)\cdots(\underline{E}_{J_{n}},0)g\right)\,. (3.42)
Proof.

We follow the proof of Proposition 11 in loc. cit. It suffices to check (3.42) for fiber-homogeneous functions ff and gg of degree ll and kk, respectively. We show that (3.42) holds under application of ρ\rho. Since both sides of formula (3.42) belong to the subspace generated by the fiber-homogeneous functions, this formula then follows from [14, Cor. 10]. By the representation property and by (3.37),

ρ(fg)=ρ(f)ρ(g)=(λi)l+k(fJ1JlE¯J1E¯Jl)(gI1IkE¯I1E¯Ik).\rho(f\star g)=\rho(f)\rho(g)=\left(\frac{\lambda}{\mathrm{i}}\right)^{l+k}\left(f^{J_{1}\dots J_{l}}\,\underline{E}_{J_{1}}\cdots\underline{E}_{J_{l}}\right)\left(g^{I_{1}\dots I_{k}}\,\underline{E}_{I_{1}}\cdots\underline{E}_{I_{k}}\right)\,.

Since fJ1Jlf^{J_{1}\dots J_{l}} is symmetric under permutation of indices, we can apply the Leibniz rule to rewrite the right hand side as

(λi)l+kn=0l(ln)fJ1Jl(E¯J1E¯JngI1Ik)E¯Jn+1E¯JlE¯I1E¯Ik.\left(\frac{\lambda}{\mathrm{i}}\right)^{l+k}\sum_{n=0}^{l}{l\choose n}f^{J_{1}\dots J_{l}}\left(\underline{E}_{J_{1}}\cdots\underline{E}_{J_{n}}g^{I_{1}\dots I_{k}}\right)\underline{E}_{J_{n+1}}\cdots\underline{E}_{J_{l}}\underline{E}_{I_{1}}\cdots\underline{E}_{I_{k}}\,.

Using the symmetry of fJ1Jlf^{J_{1}\dots J_{l}} and (3.37), we can replace E¯Jn+1E¯Jl\underline{E}_{J_{n+1}}\cdots\underline{E}_{J_{l}} by

1(ln)!σSlnE¯Jn+σ(1)E¯Jn+σ(ln)=(λi)nlρ(pJn+1pJl).\frac{1}{(l-n)!}\sum_{\sigma\in\mathrm{S}_{l-n}}\underline{E}_{J_{n+\sigma(1)}}\cdots\underline{E}_{J_{n+\sigma(l-n)}}=\left(\frac{\lambda}{\mathrm{i}}\right)^{n-l}\rho\left(p_{J_{n+1}}\cdots p_{J_{l}}\right)\,.

By analogy, we can replace E¯I1E¯Ik\underline{E}_{I_{1}}\cdots\underline{E}_{I_{k}} by (λi)kρ(pI1pIk)\left(\frac{\lambda}{\mathrm{i}}\right)^{-k}\rho\left(p_{I_{1}}\cdots p_{I_{k}}\right). Hence,

ρ\displaystyle\rho (fg)=n=0l(λi)n(ln)fJ1Jl(E¯J1E¯JngI1Ik)ρ(pJn+1pJlpI1pIk).\displaystyle(f\star g)=\sum_{n=0}^{l}\left(\frac{\lambda}{\mathrm{i}}\right)^{n}{l\choose n}f^{J_{1}\dots J_{l}}\left(\underline{E}_{J_{1}}\cdots\underline{E}_{J_{n}}g^{I_{1}\dots I_{k}}\right)\rho\left(p_{J_{n+1}}\cdots p_{J_{l}}\star p_{I_{1}}\cdots p_{I_{k}}\right)\,.

Since pJn+1pJlp_{J_{n+1}}\cdots p_{J_{l}} and pI1pIkp_{I_{1}}\cdots p_{I_{k}} are invariant under the point transformations generated by left translations on GNG^{N}, we can apply (3.41) to get

(pJn+1pJl)(pI1pIk)=r=0(λi)rBr(pJn+1pJl,pI1pIk).(p_{J_{n+1}}\cdots p_{J_{l}})\star(p_{I_{1}}\cdots p_{I_{k}})=\sum_{r=0}^{\infty}\left(\frac{\lambda}{\mathrm{i}}\right)^{r}B_{r}\left(p_{J_{n+1}}\cdots p_{J_{l}},p_{I_{1}}\cdots p_{I_{k}}\right)\,.

Since for functions φ\varphi on GNG^{N} and hh on TGN\mathrm{T}^{\ast}G^{N} we have φρ(h)=ρ((πφ)h),\varphi\rho(h)=\rho\big{(}(\pi^{\ast}\varphi)h\big{)}\,, and since the differential operators BrB_{r} vanish on functions of the form πφ\pi^{\ast}\varphi, we obtain

ρ(fg)\displaystyle\rho(f\star g) =r=0n=0l(λi)n+r(ln)ρ(Br((πfJ1Jl)pJn+1pJl,\displaystyle=\sum_{r=0}^{\infty}\sum_{n=0}^{l}\left(\frac{\lambda}{\mathrm{i}}\right)^{n+r}{l\choose n}\rho\left(B_{r}\left(\left(\pi^{\ast}f^{J_{1}\dots J_{l}}\right)p_{J_{n+1}}\cdots p_{J_{l}}\,,\,\right.\right.
π(E¯J1E¯JngI1Ik)pI1pIk)).\displaystyle\hskip 142.26378pt\left.\left.\pi^{\ast}\left(\underline{E}_{J_{1}}\cdots\underline{E}_{J_{n}}g^{I_{1}\dots I_{k}}\right)p_{I_{1}}\cdots p_{I_{k}}\right)\right)\,.

The second argument of BrB_{r} can be rewritten as

((E¯J1,0)(E¯Jn,0)(πgI1Ik))pI1pIk=(E¯J1,0)(E¯Jn,0)g,\left((\underline{E}_{J_{1}},0)\cdots(\underline{E}_{J_{n}},0)\left(\pi^{\ast}g^{I_{1}\dots I_{k}}\right)\right)p_{I_{1}}\cdots p_{I_{k}}=(\underline{E}_{J_{1}},0)\cdots(\underline{E}_{J_{n}},0)g\,,

because (E¯J,0)pI=0(\underline{E}_{J},0)p_{I}=0. The first argument can be rewritten as

(ln)!l!pJ1pJnf=(ln)!l!(0,ε¯J1)(0,ε¯Jn)f.\frac{(l-n)!}{l!}\,\frac{\partial}{\partial p_{J_{1}}}\cdots\frac{\partial}{\partial p_{J_{n}}}f=\frac{(l-n)!}{l!}\,(0,\underline{\varepsilon}^{J_{1}})\cdots(0,\underline{\varepsilon}^{J_{n}})f\,.

Thus,

ρ(fg)=ρ(r=0n=0l(λi)n+r1n!Br((0,ε¯J1)(0,ε¯Jn)f,(E¯J1,0)(E¯Jn,0)g)).\rho(f\star g)=\rho\left(\sum_{r=0}^{\infty}\sum_{n=0}^{l}\left(\frac{\lambda}{\mathrm{i}}\right)^{n+r}\frac{1}{n!}B_{r}\left((0,\underline{\varepsilon}^{J_{1}})\cdots(0,\underline{\varepsilon}^{J_{n}})f,(\underline{E}_{J_{1}},0)\cdots(\underline{E}_{J_{n}},0)g\right)\right).

The summation over nn can be extended to \infty, because (0,ε¯J1)(0,ε¯Jn)f=0(0,\underline{\varepsilon}^{J_{1}})\cdots(0,\underline{\varepsilon}^{J_{n}})f=0 for n>ln>l. Finally, we replace the summation variable rr by m=r+nm=r+n. Then,

ρ(fg)=ρ(m=0n=0m(λi)m1n!Bmn((0,ε¯J1)(0,ε¯Jn)f,(E¯J1,0)(E¯Jn,0)g)).\rho(f\star g)=\rho\left(\sum_{m=0}^{\infty}\sum_{n=0}^{m}\left(\frac{\lambda}{\mathrm{i}}\right)^{m}\frac{1}{n!}B_{m-n}\left((0,\underline{\varepsilon}^{J_{1}})\cdots(0,\underline{\varepsilon}^{J_{n}})f,(\underline{E}_{J_{1}},0)\cdots(\underline{E}_{J_{n}},0)g\right)\right).

This proves (3.42). ∎

We use the Baker-Campbell-Hausdorff formula to determine the bi-differential operators BmB_{m} explicitly. In what follows, let μ:C(TGN)×C(TGN)C(TGN)\mu:C^{\infty}(\mathrm{T}^{\ast}G^{N})\times C^{\infty}(\mathrm{T}^{\ast}G^{N})\to C^{\infty}(\mathrm{T}^{\ast}G^{N}) be the multiplication mapping. Writing {\mathbb{N}} for the set of nonnegative integers, we define 𝒦r\mathcal{K}_{r} to be the set of all triples 𝐤=(k1,k2,k)κ×κ×\mathbf{k}=(\vec{k}_{1},\vec{k}_{2},k\big{)}\in{\mathbb{N}}^{\kappa}\times{\mathbb{N}}^{\kappa}\times{\mathbb{N}}, where κ\kappa\in{\mathbb{N}}, satisfying the conditions

k1i+k2i>0 for all i=1,,κ,|k1|+|k2|+k=r1,k_{1i}+k_{2i}>0\text{ for all }i=1,\dots,\kappa\,,\qquad|\vec{k}_{1}|+|\vec{k}_{2}|+k=r-1\,,

where |ka|=ka1++kaκ|\vec{k}_{a}|=k_{a1}+\cdots+k_{a\kappa}. Given 𝐤=(k1,k2,k)𝒦r\mathbf{k}=(\vec{k}_{1},\vec{k}_{2},k)\in\mathcal{K}_{r}, let 𝐤\mathcal{B}_{\mathbf{k}} be the set of all pairs (I~,J~)(\tilde{I},\tilde{J}), where

I~\displaystyle\tilde{I} =((I1,1,,I1,k11),,(Iκ,1,,Iκ,k1κ),(I1,,Ik)),\displaystyle=\big{(}(I_{1,1},\dots,I_{1,k_{11}}),\dots,(I_{\kappa,1},\dots,I_{\kappa,k_{1\kappa}}),(I_{1},\dots,I_{k})\big{)}\,,
J~\displaystyle\tilde{J} =((J1,1,,J1,k21),,(Jκ,1,,Jκ,k2κ),J),\displaystyle=\big{(}(J_{1,1},\dots,J_{1,k_{21}}),\dots,(J_{\kappa,1},\dots,J_{\kappa,k_{2\kappa}}),J\big{)}\,,

with Ii,j,Ii,Ji,j,JI_{i,j},I_{i},J_{i,j},J\in\mathcal{I} belonging to the same copy of GG, i.e., having coinciding first entries. Given (I~,J~)𝐤(\tilde{I},\tilde{J})\in\mathcal{B}_{\mathbf{k}} and X¯\underline{X}, define functions E¯I~,J~\underline{E}_{\tilde{I},\tilde{J}} by

E¯I~,J~\displaystyle\underline{E}_{\tilde{I},\tilde{J}} :=(1)κ(κ+1)(|k2|+1)k11!k21!k1κ!k2κ!k!\displaystyle:=\frac{(-1)^{\kappa}}{(\kappa+1)(|\vec{k}_{2}|+1)k_{11}!k_{21}!\cdots k_{1\kappa}!k_{2\kappa}!k!}
(ad(E¯I1,1)ad(E¯I1,k11)ad(E¯J1,1)ad(E¯J1,k21)\displaystyle\hskip 56.9055pt\bigg{(}\operatorname{ad}\left(\underline{E}_{I_{1,1}}\right)\cdots\operatorname{ad}\left(\underline{E}_{I_{1,k_{11}}}\right)\operatorname{ad}\left(\underline{E}_{J_{1,1}}\right)\cdots\operatorname{ad}\left(\underline{E}_{J_{1,k_{21}}}\right)\cdots
ad(E¯Iκ,1)ad(E¯Iκ,k1κ)ad(E¯Jκ,1)ad(E¯Jκ,k2κ)\displaystyle\hskip 85.35826pt\cdots\operatorname{ad}\left(\underline{E}_{I_{\kappa,1}}\right)\cdots\operatorname{ad}\left(\underline{E}_{I_{\kappa,k_{1\kappa}}}\right)\operatorname{ad}\left(\underline{E}_{J_{\kappa,1}}\right)\cdots\operatorname{ad}\left(\underline{E}_{J_{\kappa,k_{2\kappa}}}\right)
ad(E¯I1)ad(E¯Ik)E¯J).\displaystyle\hskip 56.9055pt\operatorname{ad}\left(\underline{E}_{I_{1}}\right)\cdots\operatorname{ad}\left(\underline{E}_{I_{k}}\right)\underline{E}_{J}\bigg{)}^{\sim}.
Proposition 3.10.

The bidifferential operators BmB_{m} are given by

Bm\displaystyle B_{m} =nBn|n|!r=2𝐤1,,𝐤nr𝒦r(I~i,J~i)𝐤iE¯I~1,J~1E¯I~nr,J~nr\displaystyle={\sum_{\vec{n}}}^{\ast}\frac{B_{\vec{n}}}{|\vec{n}|!}\prod_{r=2}^{\infty}\sum_{~{}~{}\mathbf{k}^{1},\dots,\mathbf{k}^{n_{r}}\in\mathcal{K}_{r}~{}~{}}\sum_{(\tilde{I}^{i},\tilde{J}^{i})\in\mathcal{B}_{\mathbf{k}^{i}}}\underline{E}_{\tilde{I}^{1},\tilde{J}^{1}}\cdots\underline{E}_{\tilde{I}^{n_{r}},\tilde{J}^{n_{r}}}
μ((ε¯I~1ε¯I~nr)(ε¯J~1ε¯J~nr)),\displaystyle\hskip 170.71652pt\,\mu\circ\left(\left(\underline{\varepsilon}^{\tilde{I}^{1}}\cdots\underline{\varepsilon}^{\tilde{I}^{n_{r}}}\right)\otimes\left(\underline{\varepsilon}^{\tilde{J}^{1}}\cdots\underline{\varepsilon}^{\tilde{J}^{n_{r}}}\right)\right)\,, (3.43)

where n\sum_{\vec{n}}^{\ast} stands for the sum over all finite sequences n=(n2,,ns)\vec{n}=(n_{2},\dots,n_{s}) of nonnegative integers satisfying r=2s(r1)nr=m\sum_{r=2}^{s}(r-1)n_{r}=m and

Bn\displaystyle B_{\vec{n}} =(|n|n2)(|n|n2n3)(|n|n2n3n4)\displaystyle={|\vec{n}|\choose n_{2}}{|\vec{n}|-n_{2}\choose n_{3}}{|\vec{n}|-n_{2}-n_{3}\choose n_{4}}\cdots
ε¯I~\displaystyle\underline{\varepsilon}^{\tilde{I}} =(0,ε¯I1,1)(0,ε¯I1,k11)(0,ε¯Iκ,1)(0,ε¯Iκ,k1κ)(0,ε¯I1)(0,ε¯Ik),\displaystyle=(0,\underline{\varepsilon}^{I_{1,1}})\cdots(0,\underline{\varepsilon}^{I_{1,k_{11}}})\cdots\cdots(0,\underline{\varepsilon}^{I_{\kappa,1}})\cdots(0,\underline{\varepsilon}^{I_{\kappa,k_{1\kappa}}})(0,\underline{\varepsilon}^{I_{1}})\cdots(0,\underline{\varepsilon}^{I_{k}})\,,
ε¯J~\displaystyle\underline{\varepsilon}^{\tilde{J}} =(0,ε¯J1,1)(0,ε¯J1,k21)(0,ε¯Jκ,1)(0,ε¯Jκ,k2κ)(0,ε¯J).\displaystyle=(0,\underline{\varepsilon}^{J_{1,1}})\cdots(0,\underline{\varepsilon}^{J_{1,k_{21}}})\cdots\cdots(0,\underline{\varepsilon}^{J_{\kappa,1}})\cdots(0,\underline{\varepsilon}^{J_{\kappa,k_{2\kappa}}})(0,\underline{\varepsilon}^{J})\,.
Proof.

Recall that

H(X¯,Y¯)=X¯+Y¯+r=2Hr(X¯,Y¯),H(\underline{X},\underline{Y})=\underline{X}+\underline{Y}+\sum_{r=2}^{\infty}H_{r}(\underline{X},\underline{Y})\,, (3.44)

where the Lie algebra elements Hr(X¯,Y¯)H_{r}(\underline{X},\underline{Y}) are given by

Hr(X¯,Y¯)=𝐤𝒦r(1)κad(X¯)k11ad(Y¯)k21ad(X¯)k1κad(Y¯)k2κad(X¯)kY(κ+1)(|k2|+1)k11!k21!k1κ!k2κ!k!.H_{r}(\underline{X},\underline{Y})=\sum_{\mathbf{k}\in\mathcal{K}_{r}}(-1)^{\kappa}\frac{\operatorname{ad}(\underline{X})^{k_{11}}\operatorname{ad}(\underline{Y})^{k_{21}}\cdots\operatorname{ad}(\underline{X})^{k_{1\kappa}}\operatorname{ad}(\underline{Y})^{k_{2\kappa}}\operatorname{ad}(\underline{X})^{k}Y}{(\kappa+1)(|\vec{k}_{2}|+1)k_{11}!k_{21}!\cdots k_{1\kappa}!k_{2\kappa}!k!}\,. (3.45)

Plugging (3.44) into (3.39), we find

(eX¯~eY¯~)(a¯,α¯)=eα¯(X¯)eα¯(Y¯)er=2(λi)r1α¯(Hr(X¯,Y¯)).\left({{\mathrm{e}}^{\widetilde{\underline{X}}}}\star{{\mathrm{e}}^{\widetilde{\underline{Y}}}}\right)(\underline{a},\underline{\alpha})=\mathrm{e}^{\underline{\alpha}(\underline{X})}\mathrm{e}^{\underline{\alpha}(\underline{Y})}\mathrm{e}^{\sum_{r=2}^{\infty}(\frac{\lambda}{\mathrm{i}})^{r-1}\underline{\alpha}(H_{r}(\underline{X},\underline{Y}))}\,.

Expanding the last exponential and using the binomial formula, we obtain

(eX¯~eY¯~)(a¯,α¯)=eα¯(X¯)eα¯(Y¯)m=0(λi)mnBn|n|!r=2(α¯(Hr(X¯,Y¯)))nr,\left({{\mathrm{e}}^{\widetilde{\underline{X}}}}\star{{\mathrm{e}}^{\widetilde{\underline{Y}}}}\right)(\underline{a},\underline{\alpha})=\mathrm{e}^{\underline{\alpha}(\underline{X})}\mathrm{e}^{\underline{\alpha}(\underline{Y})}\sum_{m=0}^{\infty}\left(\frac{\lambda}{\mathrm{i}}\right)^{m}{\sum_{\vec{n}}}^{\ast}\frac{B_{\vec{n}}}{|\vec{n}|!}\prod_{r=2}^{\infty}\big{(}\underline{\alpha}(H_{r}(\underline{X},\underline{Y}))\big{)}^{n_{r}}\,,

with n\sum_{\vec{n}}^{\ast} and BnB_{\vec{n}} given as in the proposition. Comparison with (3.41) then yields

Bm(eX¯~,eY¯~)(a¯,α¯)=(eX¯eY¯)(a¯,α¯)nBn|n|!r=2(α¯(Hr(X¯,Y¯)))nr.B_{m}({{\mathrm{e}}^{\widetilde{\underline{X}}}},{{\mathrm{e}}^{\widetilde{\underline{Y}}}})(\underline{a},\underline{\alpha})=\left(\mathrm{e}_{\underline{X}}\mathrm{e}_{\underline{Y}}\right)(\underline{a},\underline{\alpha}){\sum_{\vec{n}}}^{\ast}\frac{B_{\vec{n}}}{|\vec{n}|!}\prod_{r=2}^{\infty}\big{(}\underline{\alpha}(H_{r}(\underline{X},\underline{Y}))\big{)}^{n_{r}}\,. (3.46)

To read off a formula for BmB_{m} in terms of a bidifferential operator, we expand X¯\underline{X} and Y¯\underline{Y} with respect to the basis {E¯I}\{\underline{E}_{I}\} in 𝔤N\mathfrak{g}^{N} and plug this into (3.45). In the condensed notation

X¯I~\displaystyle\underline{X}^{\tilde{I}} :=X¯I1,1X¯I1,k11X¯Iκ,1X¯Iκ,k1κX¯I1X¯Ik,\displaystyle:=\underline{X}^{I_{1,1}}\cdots\underline{X}^{I_{1,k_{11}}}\cdots\cdots\underline{X}^{I_{\kappa,1}}\cdots\underline{X}^{I_{\kappa,k_{1\kappa}}}\underline{X}^{I_{1}}\cdots\underline{X}^{I_{k}}\ ,
Y¯J~\displaystyle\underline{Y}^{\tilde{J}} :=Y¯J1,1Y¯J1,k21Y¯Jκ,1Y¯Jκ,k2κY¯J,\displaystyle:=\underline{Y}^{J_{1,1}}\cdots\underline{Y}^{J_{1,k_{21}}}\cdots\cdots\underline{Y}^{J_{\kappa,1}}\cdots\underline{Y}^{J_{\kappa,k_{2\kappa}}}\underline{Y}^{J},

this yields

α¯(Hr(X¯,Y¯))=(𝐤𝒦r(I~,J~)𝐤E¯I~,J~X¯I~Y¯J~)(a¯,α¯)\underline{\alpha}(H_{r}(\underline{X},\underline{Y}))=\left(\sum_{\mathbf{k}\in\mathcal{K}_{r}}\sum_{(\tilde{I},\tilde{J})\in\mathcal{B}_{\mathbf{k}}}\underline{E}_{\tilde{I},\tilde{J}}\underline{X}^{\tilde{I}}\underline{Y}^{\tilde{J}}\right)(\underline{a},\underline{\alpha})

and thus

(α¯\displaystyle\big{(}\underline{\alpha} (Hr(X¯,Y¯)))nr\displaystyle(H_{r}(\underline{X},\underline{Y}))\big{)}^{n_{r}}
=(𝐤1,,𝐤nr𝒦r(I~i,J~i)𝐤iE¯I~1,J~1E¯I~nr,J~nrX¯I~1Y¯J~1X¯I~nrY¯J~nr)(a¯,α¯).\displaystyle=\left(\sum_{\mathbf{k}^{1},\dots,\mathbf{k}^{n_{r}}\in\mathcal{K}_{r}~{}~{}}\sum_{(\tilde{I}^{i},\tilde{J}^{i})\in\mathcal{B}_{\mathbf{k}^{i}}}\underline{E}_{\tilde{I}^{1},\tilde{J}^{1}}\cdots\underline{E}_{\tilde{I}^{n_{r}},\tilde{J}^{n_{r}}}\underline{X}^{\tilde{I}^{1}}\underline{Y}^{\tilde{J}^{1}}\cdots\underline{X}^{\tilde{I}^{n_{r}}}\underline{Y}^{\tilde{J}^{n_{r}}}\right)(\underline{a},\underline{\alpha})\ . (3.47)

Plugging (3.47) into (3.46) and using that X¯IeX¯~=(0,ε¯I)eX¯~\underline{X}^{I}{{\mathrm{e}}^{\widetilde{\underline{X}}}}=(0,\underline{\varepsilon}^{I}){{\mathrm{e}}^{\widetilde{\underline{X}}}}, we obtain the assertion. ∎

Remark 3.11.

For B0B_{0}, B1B_{1} and B2B_{2}, we obtain

B0\displaystyle B_{0} =μ,\displaystyle=\mu\,,
B1\displaystyle B_{1} =12[E¯I,E¯J]μ((0,ε¯I)(0,ε¯J)),\displaystyle=\frac{1}{2}\,\,[\underline{E}_{I},\underline{E}_{J}]^{\sim}\,\,\mu\circ\left((0,\underline{\varepsilon}^{I})\otimes(0,\underline{\varepsilon}^{J})\right)\,,
B2\displaystyle B_{2} =124{2[E¯I,[E¯J,E¯K]]μ((0,ε¯I)(0,ε¯J)(0,ε^K)(0,ε¯K)×(0,ε¯I)ε^J)\displaystyle=\frac{1}{24}\left\{2\,[\underline{E}_{I},[\underline{E}_{J},\underline{E}_{K}]]^{\sim}\,\,\mu\circ\left((0,\underline{\varepsilon}^{I})(0,\underline{\varepsilon}^{J})\otimes(0,\hat{\varepsilon}^{K})-(0,\underline{\varepsilon}^{K})\times(0,\underline{\varepsilon}^{I})\hat{\varepsilon}^{J}\right)\right.
+3[E¯I,E¯L][E¯K,E¯L]μ((0,ε¯I)(0,ε¯K)(0,ε¯J)(0,ε¯L))}.\displaystyle\hskip 71.13188pt+\left.3\,[\underline{E}_{I},\underline{E}_{L}]^{\sim}\,[\underline{E}_{K},\underline{E}_{L}]^{\sim}\,\,\mu\circ\left((0,\underline{\varepsilon}^{I})(0,\underline{\varepsilon}^{K})\otimes(0,\underline{\varepsilon}^{J})(0,\underline{\varepsilon}^{L})\right)\right\}\,.

4 Homological reduction

4.1 The method

Classical homological reduction of a GG-Hamiltonian system essentially goes back to the work of Batalin–Fradkin–Vilkoviski [5, 6, 7, 8] and was later interpreted mathematically in terms of the tensor product of a Koszul-Tate resolution of the constraint ideal with the Chevalley–Eilenberg complex of the Lie algebra of the symmetry group [58, 72]. In the case of a regular GG-Hamiltonian system Bordemann–Herbig–Waldmann [16] constructed a star product on the reduced symplectic space via homological perturbation of the classical homological reduction á la Batalin–Fradkin–Vilkoviski; see also [35, 20]. In [65], Reichert relates the characteristic classes of the unreduced with the reduced star product and thus shows that, under reasonable assumptions on the initial data of the Hamiltonian system, deformation quantization commutes with homological reduction. The method from [16] was generalized by Herbig [37] and Bordemann–Herbig–Pflaum [13] to the singular case under the condition that the zero level set is a complete intersection and that its vanishing ideal is generated by the components of the moment map. Let us explain the main ideas behind classical homological reduction and its quantized version within the framework of deformation theory. For the necessary tools from homological algebra and homological perturbation theory we refer the reader to [38, 27, 74, 52, 19] and to Appendix A.

Assume that (M,ω,Ψ,J)(M,\omega,\Psi,J) is a GG-Hamiltonian system where GG, as before, is assumed to be a compact Lie group. Denote by π:M0M//G\pi:M_{0}\to M/\!/G the canonical projection from the the zero level set M0=J1(0)M_{0}=J^{-1}(0) onto the symplectically reduced space. The reduced phase space M//GM/\!/G becomes in a natural way a commutative locally ringed space with structure sheaf 𝒞M//G\mathcal{C}^{\infty}_{M/\!/G} given by

𝒞M//G(U)=(𝒞(U~))G/(M0(U~))G.\mathcal{C}^{\infty}_{M/\!/G}(U)=\left(\mathcal{C}^{\infty}(\widetilde{U})\right)^{G}\big{/}\left(\mathcal{I}_{M_{0}}(\widetilde{U})\right)^{G}\ .

Here, UU runs through the open sets of M//GM/\!/G, U~\widetilde{U} denotes for given UM//GU\subset M/\!/G an open subset of MM such that U~M0=π1(U)\widetilde{U}\cap M_{0}=\pi^{-1}(U), M0𝒞M\mathcal{I}_{M_{0}}\subset\mathcal{C}^{\infty}_{M} is the vanishing ideal sheaf of the constraint surface, and ()G\big{(}-\big{)}^{G} denotes the GG-invariant part. One can prove that the ringed space (M//G,𝒞M//G)\left(M/\!/G,\mathcal{C}^{\infty}_{M/\!/G}\right) is a differentiable space in the sense of Spallek [71], cf. also [61], and that it has a natural minimal Whitney stratification [70]. More importantly from the point of view of geometric mechanics is the observation by Sjamaar and Lerman [70] that the so-called algebra of smooth functions 𝒞(M//G):=𝒞M//G(M//G)\mathcal{C}^{\infty}(M/\!/G):=\mathcal{C}^{\infty}_{M/\!/G}(M/\!/G) on the reduced space carries a Poisson structure

{,}M//G:𝒞(M//G)×𝒞(M//G)𝒞(M//G).\big{\{}-,-\big{\}}_{\!M/\!/G}:\mathcal{C}^{\infty}(M/\!/G)\times\mathcal{C}^{\infty}(M/\!/G)\to\mathcal{C}^{\infty}(M/\!/G)\ .

This Poisson structure is uniquely determined by the condition that it is compatible with the natural Poisson bracket {,}M\big{\{}-,-\big{\}}_{\!M} on the symplectic manifold (M,ω)(M,\omega). This means that the Poisson bracket of two elements f,g𝒞(M//G)f,g\in\mathcal{C}^{\infty}(M/\!/G) is given by

{f,g}M//Gπ={f~,g~}M|J1(0),\big{\{}f,g\big{\}}_{\!M/\!/G}\circ\pi=\big{\{}\widetilde{f},\widetilde{g}\big{\}}_{\!M}\big{|}_{J^{-1}(0)}\ , (4.1)

where f~,g~𝒞(M)\widetilde{f},\widetilde{g}\in\mathcal{C}^{\infty}(M) are chosen to be GG-invariant and to satisfy f~|M0=fπ\widetilde{f}|_{M_{0}}=f\circ\pi and g~|M0=gπ\widetilde{g}|_{M_{0}}=g\circ\pi. It was shown in [70] that the strata SS of the natural stratification of M//GM/\!/G are symplectic manifolds and that the embeddings (S,𝒞S)(M//G,𝒞M//G)(S,\mathcal{C}^{\infty}_{S})\to\left(M/\!/G,\mathcal{C}^{\infty}_{M/\!/G}\right) are Poisson.

In homological reduction, the so constructed Poisson algebra of smooth functions on a symplectically reduced space is expressed in terms of the zeroth cohomology of a certain cochain complex carrying the structure of a graded Poisson algebra. Under certain assumptions, the latter can be deformed along the graded Poisson structure and the zeroth cohomology of the deformed algebra is a deformation quantization of the original Poisson algebra. Before we can describe the details of this method we need the following.

4.2 A tool combining real algebraic with symplectic geometry

A crucial ingredient for homological reduction to work in the singular case is a certain solution to (a variant of) the so-called extension problem in real algebraic geometry, cf. [75, 76, 56, 11, 24]. By that one understands the following. Assume that ZZ is a closed subset of a smooth manifold MM, IZ𝒞(M)I_{Z}\subset\mathcal{C}^{\infty}(M) the vanishing ideal, and 𝗋:𝒞(M)𝒞(Z)\mathsf{r}:\mathcal{C}^{\infty}(M)\to\mathcal{C}(Z), ff|Zf\mapsto f|_{Z} the restriction map. Then IZI_{Z} is a closed ideal, so one obtains a short exact sequence of Fréchet algebras

0IZ𝒞(M)𝗋𝒞(Z)0,0\longrightarrow I_{Z}\longrightarrow\mathcal{C}^{\infty}(M)\overset{\mathsf{r}}{\longrightarrow}\mathcal{C}^{\infty}(Z)\longrightarrow 0\ ,

where 𝒞(Z)𝒞(Z)\mathcal{C}^{\infty}(Z)\subset\mathcal{C}(Z) denotes the image of 𝗋\mathsf{r} equipped with the quotient topology. The question now arises under which conditions on MM and ZZ this sequence has a continuous split, meaning that a continuous map 𝖾:𝒞(Z)𝒞(M)\mathsf{e}:\mathcal{C}^{\infty}(Z)\to\mathcal{C}^{\infty}(M) exists such that 𝗋𝖾=id\mathsf{r}\circ\mathsf{e}=\operatorname{id}. If such a continuous split exists, one says that ZMZ\subset M has the extension property [11, Sec. 7.1]. According to the solution of the extension problem by Bierstone and Schwarz [11, Thm. 0.2.1], every Nash subanalytic subset ZZ of a real analytic manifold MM has the extension property; see [11, Def. 0.1.2] for the definition of Nash subanalytic sets. Note that every semianalytic hence every analytic subset of a real analytic manifold is Nash subanalytic by [55, §17].

Two important results which entail that the extension theorem by Bierstone and Schwarz can be applied to our situation are the observation by Kutzschebauch and Loose [51] that every symplectic manifold carries a real analytic structure in which the symplectic form is real analytic and [57, Theorem 1.3] by Matumoto and Shiota that every smooth manifold with a compact Lie group action carries an analytic structure in which the GG-action is real analytic, see also [44]. Note that in either case the real analytic structure is not unique but only unique up to isomorphism. Therefore it is not immediately clear that a real analytic structure on the underlying space of a given GG-Hamiltonian system can be chosen so that both the group action and the symplectic form are real analytic. Below we show that this is indeed the case. We also verify that, as a consequence, the moment map of a GG-Hamiltonian system equipped with such a compatible real analytic structure is real analytic as well, so its zero level set is analytic and therefore has the desired extension property. Note that hereby we assume that all manifolds are second countable.

Theorem 4.1.

Let (M,ω)(M,\omega) be a symplectic manifold. Then the following holds true:

  1. (i)

    There exists a real analytic structure on MM that means an atlas of MM with real analytic transition maps in regard to which ω\omega becomes a real analytic 22-form.

Under the assumption that GG is a compact Lie group with a Hamiltonian action Ψ\Psi on MM and J:M𝔤J:M\to\mathfrak{g}^{*} the corresponding moment map the following additional statements are satisfied:

  1. (ii)

    The real analytic structure in (i) can be chosen so that the GG-action on MM and the symplectic form ω\omega are real analytic. In regard to such a real analytic structure the moment map JJ is real analytic as well.

  2. (iii)

    The zero level set M0={pM:J(p)=0}M_{0}=\{p\in M:J(p)=0\} has the extension property. Moreover, the extension map 𝖾:𝒞(M0)𝒞(M)\mathsf{e}:\mathcal{C}^{\infty}(M_{0})\to\mathcal{C}^{\infty}(M) can be chosen to be equivariant.

To prove the theorem, we need some preliminary results. As before, GG will always denote a compact Lie group with its canonical real analytic structure. Recall first from [39, Chapter 2] or [51] the definition of the Whitney topology on 𝒞(M)\mathcal{C}^{\infty}(M) for a smooth nn-dimensional manifold MM. Let Φ=(Ui,xi=(xi1,,xin))iI\Phi=(U_{i},x_{i}=(x_{i}^{1},\ldots,x_{i}^{n}))_{i\in I} with II\subset\mathbb{N} be a locally finite smooth atlas of MM, K=(Ki)iIK=(K_{i})_{i\in I} a family of compact subsets KiUiK_{i}\subset U_{i}, m=(mi)iIm=(m_{i})_{i\in I} a family of positive integers, and ε=(εi)iI\varepsilon=(\varepsilon_{i})_{i\in I} a family of positive real numbers. We call such a quadruple (Φ,K,m,ε)(\Phi,K,m,\varepsilon) a limiting cover of MM. Associated to every limiting cover and every f𝒞(M)f\in\mathcal{C}^{\infty}(M) is the basic neighborhood

N(f;Φ,K,m,ε)={g𝒞(M):suppKiαn,|α|mi||α|gxα(p)|α|fxα(p)|εi for all iI}.N(f;\Phi,K,m,\varepsilon)=\left\{g\in\mathcal{C}^{\infty}(M):\sup_{p\in K_{i}\atop\alpha\in\mathbb{N}^{n},\>|\alpha|\leq m_{i}}\left|\frac{\partial^{|\alpha|}g}{\partial x^{\alpha}}(p)-\frac{\partial^{|\alpha|}f}{\partial x^{\alpha}}(p)\right|\leq\varepsilon_{i}\text{ for all }i\in I\right\}\ .

One verifies that the basic neighborhoods N(f;Φ,K,m,ε)N(f;\Phi,K,m,\varepsilon) where ff runs through the elements of 𝒞(M)\mathcal{C}^{\infty}(M) and (Φ,K,m,ε)(\Phi,K,m,\varepsilon) through the limiting covers of MM forms a basis of a topology.

The topology generated by this basis on 𝒞(M)\mathcal{C}^{\infty}(M) is translation invariant by construction. It is called the Whitney topology. The definition of the Whitney topology can be extended in a straightforward way to the space Ωk(M)\Omega^{k}(M) of smooth kk-forms on MM. A fundamental observation by Whitney [75, Lem. 6] was that for an open subset UnU\subset\mathbb{R}^{n} the space of real analytic functions on UU is dense in 𝒞(U)\mathcal{C}^{\infty}(U) with respect to the Whitney topology. More generally, the Grauert–Morrey embedding theorem [28] together with Whitney’s result imply that 𝒞ω(M)\mathcal{C}^{\omega}(M) is dense in 𝒞(M)\mathcal{C}^{\infty}(M) in the Whitney topology for any real analytic manifold MM, see [44, Thm. 13.4].

Lemma 4.2.

Let MM be a real analytic manifold equipped with an analytic GG-action, k>0k\in\mathbb{N}_{>0}, and NΩk1(M)N\subset\Omega^{k-1}(M) an open zero neighborhood in the Whitney topology.

If ω\omega is a smooth and GG-invariant closed kk-form on MM, then there exists an invariant θN\theta\in N such that ωa=ωdθ\omega^{\textup{a}}=\omega-d\theta is real analytic. In particular this means that one can find a GG-invariant analytic representative within the de Rham cohomology class of ω\omega.

Proof of Lemma 4.2.

Consider the averaging operator A:Ω(M)Ω(M)A:\Omega^{\bullet}(M)\to\Omega^{\bullet}(M) which is defined by integration with respect to the normalized Haar measure on GG:

Aϱ=GLgϱ𝑑gfor all ϱΩk(M).A\varrho=\int_{G}{\mathrm{L}}^{*}_{g}\varrho\,dg\quad\text{for all }\varrho\in\Omega^{k}(M)\ . (4.2)

The operator AA then is a projection onto the space of GG-invariant forms, commutes with the exterior differential, and maps real analytic forms to real analytic forms by [44, Prop. 14.4]. By [44, Theorem 15.4], A:Ω(M)Ω(M)A:\Omega^{\bullet}(M)\to\Omega^{\bullet}(M) is also continuous with respect to the Whitney topology. So N1=A1NN_{1}=A^{-1}N is a zero neighborhood, and there exists, by [51, Lem. 2], an element θ1N1\theta_{1}\in N_{1} so that ω1=ωdθ1\omega_{1}=\omega-d\theta_{1} is real analytic. Then ωa=Aω1\omega^{\textup{a}}=A\omega_{1} is GG-invariant by construction and real analytic by [44, Prop. 14.4]. Moreover, ωa=ωdθ\omega^{\textup{a}}=\omega-d\theta, where θ=Aθ1N\theta=A\theta_{1}\in N. ∎

Lemma 4.3.

Let MM be a real analytic manifold and f:Mf:M\to\mathbb{R} a smooth function such that dfdf is a real analytic 11-form. Then ff is real analytic.

Proof of Lemma 4.3.

Since the problem is local, it suffices to assume that MM is an open subset UU of some n\mathbb{R}^{n}. Recall, for example from [50, Prop. 2.2.10], the well-known criterion for real analyticity which says that g:Ug:U\to\mathbb{R} is real analytic if and only if for each aUa\in U there exists an open ball VUV\subset U around aa together with constants C,R>0C,R>0 such that

||α|gxα(v)|Cα!R|α|for all vV,αn.\left|\frac{\partial^{|\alpha|}g}{\partial x^{\alpha}}(v)\right|\leq C\frac{\alpha!}{R^{|\alpha|}}\quad\text{for all }v\in V,\>\alpha\in\mathbb{N}^{n}\ .

Here x=(x1,,xn)x=(x^{1},\ldots,x^{n}) denote the standard coordinates of n\mathbb{R}^{n}. Now assume that f:Uf:U\to\mathbb{R} is smooth and that the partial derivatives if=fxi:U\partial_{i}f=\frac{\partial f}{\partial x^{i}}:U\to\mathbb{R}, i=1,,ni=1,\dots,n are real analytic. By the mentioned criterion there exist for every point aUa\in U open balls ViUV_{i}\subset U around aa and constants Ci,Ri>0C_{i},R_{i}>0, i=1,,ni=1,\dots,n, such that

||α|ifxα(v)|Ciα!Ri|α|for all vVi,αn.\left|\frac{\partial^{|\alpha|}\partial_{i}f}{\partial x^{\alpha}}(v)\right|\leq C_{i}\frac{\alpha!}{R_{i}^{|\alpha|}}\quad\text{for all }v\in V_{i},\>\alpha\in\mathbb{N}^{n}\ .

Choose an open ball VV relatively compact in UU such that aVV1Vna\in V\subset V_{1}\cap\ldots\cap V_{n} and put R=min{R1,,Rn}R=\min\{R_{1},\ldots,R_{n}\}. Choose C>0C>0 which is larger than supvV¯{|f(v)|}\sup_{v\in\overline{V}}\{|f(v)|\} and larger than each of the products RCiR\cdot C_{i}. Then the estimate

||α|fxα(v)|Cα!R|α|,vV,\left|\frac{\partial^{|\alpha|}f}{\partial x^{\alpha}}(v)\right|\leq C\frac{\alpha!}{R^{|\alpha|}}\ ,\quad v\in V\ ,

holds true for α=0\alpha=0 by definition of VV and CC. Let us show that it also holds for non-zero αn\alpha\in\mathbb{N}^{n}. Then αj>0\alpha_{j}>0 for some j{1,,n}j\in\{1,\ldots,n\}. Put

βi={αiif ijαj1if i=j.\beta_{i}=\begin{cases}\alpha_{i}&\text{if }i\neq j\\ \alpha_{j}-1&\text{if }i=j\ .\end{cases}

One obtains

||α|fxα(v)|=||β|jfxβ(v)|Cjβ!Rj|β|Cα!R|α|for all vV,\left|\frac{\partial^{|\alpha|}f}{\partial x^{\alpha}}(v)\right|=\left|\frac{\partial^{|\beta|}\partial_{j}f}{\partial x^{\beta}}(v)\right|\leq C_{j}\frac{\beta!}{R_{j}^{|\beta|}}\leq C\frac{\alpha!}{R^{|\alpha|}}\quad\text{for all }v\in V\ ,

hence ff satisfies the analyticity criterion and the claim is proved. ∎

Proof of Theorem 4.1.

ad (i). This has been proved in [51]. The main idea in that work was to verify a non-equivariant version of Lemma 4.2 and then apply Moser’s trick. We generalize this ansatz to the equivariant case.
ad (ii). By [57, Theorem 1.3] there exists an analytic structure on MM with respect to which the GG-action Ψ\Psi is real analytic. To show the claim it now suffices to construct an analytic GG-invariant symplectic form ωa\omega^{\textup{a}} on MM and a GG-equivariant diffeomeorphism f:MMf:M\to M so that fωa=ωf^{*}\omega^{\textup{a}}=\omega. Following [51] we will apply Moser’s trick to construct ff. First choose a zero neighborhood NN in the Whitney topology on Ω1(M)\Omega^{1}(M) so that ωt=ωtdθ\omega_{t}=\omega-td\theta is a non-degenerate 22-form for all θN\theta\in N and t[0,1]t\in[0,1]. For each such θ\theta and tt there then exists a uniquely defined smooth vector field Xt:MTMX_{t}:M\to TM so that

Xtωt=θ.X_{t}\lrcorner\,\omega_{t}=\theta\ .

Note that XtX_{t} depends smoothly on tt. After possibly shrinking the neighborhood NN one can achieve that the non-autonomous vector field XtX_{t} is integrable up to t=1t=1 which means that there exists a family of diffeomorphism (φt)t[0,1](\varphi_{t})_{t\in[0,1]} of MM which is smooth in tt so that f0=idMf_{0}=\operatorname{id}_{M} and

ddtφt=Xtφtfor all t[0,1].\frac{d}{dt}\varphi_{t}=X_{t}\circ\varphi_{t}\quad\text{for all }t\in[0,1]\ .

Note that XtX_{t} and hence φt\varphi_{t} are GG-equivariant in case θ\theta is GG-invariant. By Lemma 4.2 one can now find a real analytic GG-invariant form θN\theta\in N so that ωa=ωdθ\omega^{\textup{a}}=\omega-d\theta is real analytic. By construction, ωa\omega^{\textup{a}} then has to be GG-invariant as well. Moreover, the vector fields XtX_{t} and the diffeomeorphisms φt\varphi_{t} are GG-equivariant as well for all t[0,1]t\in[0,1]. By Moser’s trick,

ω=φ1ωa\omega=\varphi_{1}^{*}\omega^{\textup{a}}

and the first claim of (ii) is proved. Since the moment map satisfies dJZ=ZMωdJ_{Z}=-Z_{M}\lrcorner\,\omega for all Z𝔤Z\in\mathfrak{g} and since both the GG-action and ω\omega are real analytic the remaining claim now follows from Lemma 4.3.
ad (iii). Choose the analytic structure as in (ii). Then M0=J1(0)M_{0}=J^{-1}(0) is an analytic subset of MM, hence is Nash subanalytic by [55, §17] and so has the extension property by [11, Thm. 0.2.1]. By averaging over the unique normalized Haar measure on GG one can achieve that the extension map 𝖾:𝒞(M0)𝒞(M)\mathsf{e}:\mathcal{C}^{\infty}(M_{0})\to\mathcal{C}^{\infty}(M) is GG-equivariant. ∎

4.3 Classical homological reduction

Next we explain algebraic reduction [2] which underlies classical homological reduction. Observe that by definition of the constraint surface the functions JZ=J(),ZJ_{Z}=\langle J(-),Z\rangle with Z𝔤Z\in\mathfrak{g}^{*} vanish on the constraint surface. The ideal I(J)𝒞I(J)\subset\mathcal{C}^{\infty} generated by these functions JZJ_{Z} is contained in the vanishing ideal M0(M)={f𝒞(M):f|M0=0}\mathcal{I}_{M_{0}}(M)=\{f\in\mathcal{C}^{\infty}(M):f|_{M_{0}}=0\} which we will denote from now on by IM0I_{M_{0}} as in [2]. Equality of the ideals I(J)I(J) and IM0I_{M_{0}} then holds under the following condition.

  1. (GH)

    Generating Hypothesis.   The functions JZJ_{Z} with Z𝔤Z\in\mathfrak{g} generate the vanishing ideal IM0I_{M_{0}} of the constraint surface.

Note that a generating system of I(J)I(J) is also given by the components Jl:MJ_{l}:M\to\mathbb{R}, l=1,,dl=1,\ldots,d of the representation J=l=1dJlεlJ=\sum_{l=1}^{d}J_{l}\,\varepsilon^{l} in terms of a basis (ε1,,εd)(\varepsilon^{1},\ldots,\varepsilon^{d}) of the dual 𝔤\mathfrak{g}^{*}. In classical homological reduction the Poisson algebra (𝒞(M//G),{,}M//G)\left(\mathcal{C}^{\infty}(M/\!/G),\big{\{}-,-\big{\}}_{M/\!/G}\right) is expressed – under the assumption of the generating condition and acyclicity of the Koszul complex on JJ – as the zeroth cohomology of the so-called BRST complex constructed below. In addition to being a differential graded algebra, the BRST complex carries a graded Poisson structure which it inherits from the natural Poisson bracket on 𝒞(M)\mathcal{C}^{\infty}(M). The particular virtue of the BRST complex now is that it admits under the assumptions made a formal deformation quantization which leads to a star product on the reduced phase space.

The first ingredient to the BRST complex is the Koszul complex (K(𝒞(M),J),)\left(K_{\bullet}(\mathcal{C}^{\infty}(M),J),\partial\right) on the map J:M𝔤J:M\to\mathfrak{g}^{*}, see Example A.2. Its degree kk component is the free 𝒞(M)\mathcal{C}^{\infty}(M)-module

Kk=Kk(𝒞(M),J)=𝒞(M)k𝔤,K_{k}=K_{k}(\mathcal{C}^{\infty}(M),J)=\mathcal{C}^{\infty}(M)\otimes\wedge^{k}\mathfrak{g}\ ,

and the differential is given by contraction with JJ:

:Kk(𝒞(M),J)Kk1(𝒞(M),J),αJ,α=l=1dJl(εlα).\partial:K_{k}(\mathcal{C}^{\infty}(M),J)\to K_{k-1}(\mathcal{C}^{\infty}(M),J),\>\alpha\mapsto\langle J,\alpha\rangle=\sum_{l=1}^{d}J_{l}(\varepsilon^{l}\lrcorner\,\alpha)\ .

As before, (E1,,Ed)(E_{1},\ldots,E_{d}) denotes here a basis of the Lie algebra 𝔤\mathfrak{g}, (ε1,,εd)(\varepsilon^{1},\ldots,\varepsilon^{d}) its dual basis in 𝔤\mathfrak{g}^{*}, and the Jl𝒞(M)J_{l}\in\mathcal{C}^{\infty}(M), l=1,,dl=1,\ldots,d are the uniquely determined maps so that J=l=1dJlεlJ=\sum_{l=1}^{d}J_{l}\varepsilon^{l}. The second condition on the GG-Hamiltonian system which is needed to entail that the zeroth homology of the Koszul complex coincides with the algebra 𝒞(M0)\mathcal{C}^{\infty}(M_{0}) of smooth functions on the constraint surface is the following:

  1. (AC)

    Acyclicity Condition.   The Koszul complex (K(𝒞(M),J),)\left(K_{\bullet}(\mathcal{C}^{\infty}(M),J),\partial\right) is acyclic.

Proposition 4.4.

Let (M,ω,Ψ,J)(M,\omega,\Psi,J) be a GG-Hamiltonian system which satisfies conditions (GH) and (AC). Then the complex

0KdK1K0=𝒞(M)𝒞(M0)00\longrightarrow K_{d}\overset{\partial}{\longrightarrow}\ldots\overset{\partial}{\longrightarrow}K_{1}\overset{\partial}{\longrightarrow}K_{0}=\mathcal{C}^{\infty}(M)\longrightarrow\mathcal{C}^{\infty}(M_{0})\longrightarrow 0

is contractible, so K(𝒞(M),J)K_{\bullet}(\mathcal{C}^{\infty}(M),J) is a free resolution of

𝒞(M0)=𝒞(M)/IM0H0(K(𝒞(M),J))\mathcal{C}^{\infty}(M_{0})=\mathcal{C}^{\infty}(M)/I_{M_{0}}\cong H_{0}\big{(}K_{\bullet}(\mathcal{C}^{\infty}(M),J)\big{)}

in the category of 𝒞(M)\mathcal{C}^{\infty}(M)-modules.

Proof.

This is immediate by definition of the Koszul complex, since IM0=I(J)I_{M_{0}}=I(J) by the generating hypothesis and since im(:K1K0)=I(J)\operatorname{im}\left(\partial:K_{1}\to K_{0}\right)=I(J) by the acyclicity condition. ∎

In [13] it was observed that under the assumptions (GH) and (AC) the Koszul complex allows for a contracting homotopy consisting of linear maps continuous with respect to the natural Fréchet topologies on 𝒞(M)\mathcal{C}^{\infty}(M) and its quotient 𝒞(M0)\mathcal{C}^{\infty}(M_{0}). Here we provide a strengthening of that result. By virtue of Theorem 4.1, a GG-Hamiltonian system always carries a real analytic structure so that the symplectic form and the group action are both real analytic. This observation implies that one can leave out the technical assumption of ”local analyticity” in the statement of [13, Thm. 3.2]. More precisely, the following holds.

Theorem 4.5.

Let (M,ω,Ψ,J)(M,\omega,\Psi,J) be a GG-Hamiltonian system with GG compact. Assume that the Koszul complex K(𝒞(M),J)K_{\bullet}(\mathcal{C}^{\infty}(M),J) is a free resolution of 𝒞(M0)\mathcal{C}^{\infty}(M_{0}). Then there exists an equivariant continuous linear section 𝖾:𝒞(M0)𝒞(M)\mathsf{e}:\mathcal{C}^{\infty}(M_{0})\to\mathcal{C}^{\infty}(M), called extension map, of the restriction map 𝗋:𝒞(M)𝒞(M0)\mathsf{r}:\mathcal{C}^{\infty}(M)\to\mathcal{C}^{\infty}(M_{0}), ff|M0f\mapsto f|_{M_{0}} together with a family h=(hk)kh=(h_{k})_{k\in\mathbb{N}} of continuous linear maps hk:KkKk+1h_{k}:K_{k}\to K_{k+1} such that

((𝒞(M0),0)𝗋𝖾(K,),h)\left((\mathcal{C}^{\infty}(M_{0}),0)\overset{\mathsf{e}}{\underset{\mathsf{r}}{\rightleftarrows}}(K_{\bullet},\partial),h\right)

is a deformation retract. This means that 𝖾:(𝒞(M0),0)(K,)\mathsf{e}:(\mathcal{C}^{\infty}(M_{0}),0)\to(K_{\bullet},\partial) and 𝗋:(K,)(𝒞(M0),0)\mathsf{r}:(K_{\bullet},\partial)\to(\mathcal{C}^{\infty}(M_{0}),0) are chain maps fulfilling 𝗋𝖾=id\mathsf{r}\circ\mathsf{e}=\operatorname{id} and id𝖾𝗋=h+h\operatorname{id}-\mathsf{e}\circ\mathsf{r}=\partial h+h\partial. Moreover, one can achieve that the hkh_{k} are equivariant and that the side conditions hh=0h\circ h=0, h0𝖾=0h_{0}\circ\mathsf{e}=0 and 𝗋h1=0\mathsf{r}\circ h_{-1}=0 hold true.

Proof.

Let us provide a proof emphasizing where Theorem 4.1 comes in. According to that theorem there exists an analytic structure on MM so that that the GG-action Ψ\Psi and the moment map JJ are real analytic. By (iii) in the same theorem there exists an equivariant extension map 𝖾:𝒞(M0)𝒞(M)\mathsf{e}:\mathcal{C}^{\infty}(M_{0})\to\mathcal{C}^{\infty}(M). It remains to construct a chain homotopy h=(hk)kh=(h_{k})_{k\in\mathbb{N}} with the desired properties. To this end we follow the idea in the proof of [13, Thm. 3.2] and apply the division theorem by Bierstone and Schwarz [11, Thm. 0.1.3.] which says that for any matrix ΦMatk×l(𝒞ω(M))\Phi\in\operatorname{Mat}_{k\times l}(\mathcal{C}^{\omega}(M)) of real analytic functions on an analytic manifold the image of the map Φ#:𝒞(M)l𝒞(M)k\Phi_{\#}:\mathcal{C}^{\infty}(M)^{l}\to\mathcal{C}^{\infty}(M)^{k} induced by matrix multiplication with Φ\Phi is closed and has a continuous linear split σ:imΦ𝒞(M)l\sigma:\operatorname{im}\Phi\to\mathcal{C}^{\infty}(M)^{l}. The latter means that Φ#σ=idimΦ\Phi_{\#}\sigma=\operatorname{id}_{\operatorname{im}\Phi}. Note that the image of such a splitting is closed since σΦ#\sigma\Phi_{\#} acts as identity on imσ\operatorname{im}\sigma which by continuity implies

imσ¯=σΦ#(imσ¯)imσ.\overline{\operatorname{im}\sigma}=\sigma\Phi_{\#}(\overline{\operatorname{im}\sigma})\subset\operatorname{im}\sigma\ . (4.3)

Now consider the following sequence which is exact by assumption:

0𝒞(M0)𝗋K01K12dKd0.0\longleftarrow\mathcal{C}^{\infty}(M_{0})\overset{\mathsf{r}}{\longleftarrow}K_{0}\overset{\partial_{1}}{\longleftarrow}K_{1}\overset{\partial_{2}}{\longleftarrow}\ldots\overset{\partial_{d}}{\longleftarrow}K_{d}\longleftarrow 0\ . (4.4)

By the division theorem of Bierstone and Schwarz, imkKk1\operatorname{im}\partial_{k}\subset K_{k-1} is closed for k=1,,dk=1,\ldots,d and there exists for each such kk a continuous linear splitting σk1:imkKk\sigma_{k-1}:\operatorname{im}\partial_{k}\to K_{k} of k\partial_{k}. By equivariance of the k\partial_{k} and after possibly averaging over GG one can assume that each σk\sigma_{k} is equivariant. For the particular case k=1k=-1 we put σ1=𝖾\sigma_{-1}=\mathsf{e}. Finally we assume σl\sigma_{l} to be 0 for those ll for which it has not been defined yet. By exactness of the sequence 4.4 one obtains the direct sum decompositions Kk=imσk1imk+1K_{k}=\operatorname{im}\sigma_{k-1}\oplus\operatorname{im}\partial_{k+1} for k=0,dk=0,\ldots d. We know already by the division theorem that imk+1\operatorname{im}\partial_{k+1} is closed. The subspace imσk1\operatorname{im}\sigma_{k-1} is so, too, by the above argument involving Eq. (4.3). Let πk:Kkimk+1\pi_{k}:K_{k}\to\operatorname{im}\partial_{k+1} denote the canonical projection along imσk1\operatorname{im}\sigma_{k-1} for k=0,dk=0,\ldots d and put π1:=id𝒞(M0)\pi_{-1}:=\operatorname{id}_{\mathcal{C}^{\infty}(M_{0})}. Then πk\pi_{k} is continuous and equivariant since imk+1\operatorname{im}\partial_{k+1} and imσk1\operatorname{im}\sigma_{k-1} are closed GG-invariant subspaces of KkK_{k}. Furthermore, σk1k=idKkπk\sigma_{k-1}\partial_{k}=\operatorname{id}_{K_{k}}-\pi_{k} for k=0,,dk=0,\ldots,d since both sides act in the same way on imσk1\operatorname{im}\sigma_{k-1} and imk+1\operatorname{im}\partial_{k+1}. Now let

hk:={σkπkfor k=0,,d1,0else.h_{k}:=\begin{cases}\sigma_{k}\pi_{k}&\text{for }k=0,\ldots,d-1,\\ 0&\text{else}\ .\end{cases}

Then compute

id𝒞(M0)𝖾𝗋=π0=1h0=1h0+h10\operatorname{id}_{\mathcal{C}^{\infty}(M_{0})}-\mathsf{e}\circ\mathsf{r}=\pi_{0}=\partial_{1}h_{0}=\partial_{1}h_{0}+h_{-1}\partial_{0}

and for k>0k>0

k+1hk+hk1k=k+1σkπk+σk1πk1k=πk+σk1k=idKk.\partial_{k+1}h_{k}+h_{k-1}\partial_{k}=\partial_{k+1}\sigma_{k}\pi_{k}+\sigma_{k-1}\pi_{k-1}\partial_{k}=\pi_{k}+\sigma_{k-1}\partial_{k}=\operatorname{id}_{K_{k}}\ .

Thus h=(hk)kh=(h_{k})_{k\in\mathbb{N}} is the desired chain homotopy. Since hk+1hk=σk+1πk+1σkπk=0h_{k+1}h_{k}=\sigma_{k+1}\pi_{k+1}\sigma_{k}\pi_{k}=0 for k=0,,dk=0,\ldots,d and h0𝖾=σ0π0σ1=0h_{0}\,\mathsf{e}=\sigma_{0}\pi_{0}\sigma_{-1}=0 , the first and second side conditions are fulfilled. Since h1=0h_{-1}=0 by construction, the third side condition holds trivially. ∎

It later will turn out to be convenient to write the Koszul complex as a cohomological complex that is we put Kk=Kk(𝒞(M),J)K^{k}=K_{-k}(\mathcal{C}^{\infty}(M),J) for kk\in-\mathbb{N} and Kk=0K^{k}=0 for k{0}k\in\mathbb{N}\setminus\{0\}. Note that KK^{\bullet} is a bounded cochain complex.

The second crucial ingredient in the construction of the BRST complex is the Chevalley–Eilenberg complex (CE(𝔤,𝒞(M)),δ)\left(\operatorname{CE}^{\bullet}(\mathfrak{g},\mathcal{C}^{\infty}(M)),\delta\right) of the 𝔤\mathfrak{g}-module 𝒞(M)\mathcal{C}^{\infty}(M), see Example A.3. Observe that the space 𝒞(M)\mathcal{C}^{\infty}(M) of smooth functions on MM carries a natural structure of 𝔤\mathfrak{g}-module. An element X𝔤X\in\mathfrak{g} hereby acts by the associated fundamental vector field XMX_{M}. More precisely, the 𝔤\mathfrak{g}-module structure on 𝒞(M)\mathcal{C}^{\infty}(M) is given by the map

L:𝔤×𝒞(M)𝒞(M),(X,f)LXf=XMf.L:\mathfrak{g}\times\mathcal{C}^{\infty}(M)\to\mathcal{C}^{\infty}(M),\>(X,f)\mapsto L_{X}f=X_{M}f\ . (4.5)
Remark 4.6.

Since 𝒞(M)\mathcal{C}^{\infty}(M) is a commutative algebra, the Chevalley–Eilenberg complex becomes a differential graded algebra with the algebra structure given by the tensor product of the graded commutative algebra Λ𝔤\Lambda^{\bullet}\mathfrak{g}^{*} and the commutative algebra 𝒞(M)\mathcal{C}^{\infty}(M). It is straightforward to check that the product of this algebra structure is graded commutative and that the Chevalley–Eilenberg coboundary then coincides with the unique graded linear map δ:CE(𝔤,𝒞(M))CE(𝔤,𝒞(M))\delta:\operatorname{CE}^{\bullet}(\mathfrak{g},\mathcal{C}^{\infty}(M))\to\operatorname{CE}^{\bullet}(\mathfrak{g},\mathcal{C}^{\infty}(M)) of degree +1+1 which satisfies the graded Leibniz identity, acts on elements f𝒞(M)f\in\mathcal{C}^{\infty}(M) of degree 0 by

δf(ξ)=ξMffor all ξ𝔤\delta f(\xi)=\xi_{M}f\quad\text{for all }\xi\in\mathfrak{g}

and on elements of degree 11 of the form α1\alpha\otimes 1 with α𝔤\alpha\in\mathfrak{g}^{*} by

δ(α1)(ξ,ζ)=α([ξ,ζ])for all ξ,ζ𝔤.\delta(\alpha\otimes 1)(\xi,\zeta)=-\alpha([\xi,\zeta])\quad\text{for all }\xi,\zeta\in\mathfrak{g}\ .
Lemma 4.7.

The 𝔤\mathfrak{g}-module structure LL on 𝒞(M)\mathcal{C}^{\infty}(M) leaves the vanishing ideal IM0I_{M_{0}} invariant and hence induces a 𝔤\mathfrak{g}-module structure L0:𝔤×𝒞(M0)𝒞(M0)L^{0}:\mathfrak{g}\times\mathcal{C}^{\infty}(M_{0})\to\mathcal{C}^{\infty}(M_{0}) on the quotient 𝒞(M0)𝒞(M)/IM0\mathcal{C}^{\infty}(M_{0})\cong\mathcal{C}^{\infty}(M)/I_{M_{0}}. The action of an element X𝔤X\in\mathfrak{g} on 𝒞(M0)\mathcal{C}^{\infty}(M_{0}) is then given by

LX0=𝗋LX𝖾,L^{0}_{X}=\mathsf{r}\circ L_{X}\circ\mathsf{e}\ , (4.6)

where 𝖾:𝒞(M0)𝒞(M)\mathsf{e}:\mathcal{C}^{\infty}(M_{0})\to\mathcal{C}^{\infty}(M) is a GG-equivariant extension map. In case GG is a connected compact Lie group one has with respect to this 𝔤\mathfrak{g}-module structure:

H0(𝔤,𝒞(M0))=(𝒞(M0))𝔤=(𝒞(M0))G𝒞(M//G).H^{0}(\mathfrak{g},\mathcal{C}^{\infty}(M_{0}))=\left(\mathcal{C}^{\infty}(M_{0})\right)^{\mathfrak{g}}=\left(\mathcal{C}^{\infty}(M_{0})\right)^{G}\cong\mathcal{C}^{\infty}(M/\!/G)\ . (4.7)
Proof.

Let fIM0f\in I_{M_{0}}, X𝔤X\in\mathfrak{g} and pM0p\in M_{0}. Then

XMf(p)=ddtf(exp(tX)p)|t=0=0X_{M}f(p)=\frac{d}{dt}\left.f(\exp(tX)\cdot p)\right|_{t=0}=0

since texp(tX)pt\mapsto\exp(tX)\cdot p is a smooth path in M0M_{0} by GG-invariance. This means that LL leaves the ideal IM0I_{M_{0}} invariant. The induced 𝔤\mathfrak{g}-module structure on the quotient 𝒞(M0)\mathcal{C}^{\infty}(M_{0}) can be written in the form (4.6) since by Theorem 4.1 an extension map 𝖾\mathsf{e} exists.

To prove (4.7) observe that H0(𝔤,𝒞(M))=𝒞(M)𝔤H^{0}(\mathfrak{g},\mathcal{C}^{\infty}(M))=\mathcal{C}^{\infty}(M)^{\mathfrak{g}} for any GG-manifold MM and that H0(𝔤,𝒞(M0))=𝒞(M0)𝔤H^{0}(\mathfrak{g},\mathcal{C}^{\infty}(M_{0}))=\mathcal{C}^{\infty}(M_{0})^{\mathfrak{g}} for the constraint surface of the Hamiltonian system. In the case of a connected compact Lie group GG this implies that H0(𝔤,𝒞(M))=𝒞(M)GH^{0}(\mathfrak{g},\mathcal{C}^{\infty}(M))=\mathcal{C}^{\infty}(M)^{G} and that H0(𝔤,𝒞(M0))=𝒞(M0)GH^{0}(\mathfrak{g},\mathcal{C}^{\infty}(M_{0}))=\mathcal{C}^{\infty}(M_{0})^{G}. ∎

So, finally, we have all the tools to construct the classical BRST complex 𝒜\mathcal{A}^{\bullet} of a GG-Hamiltonian system (M,ω,Ψ,J)(M,\omega,\Psi,J). As a graded algebra, 𝒜\mathcal{A}^{\bullet} is defined as the graded tensor product of the Chevalley–Eilenberg complex CE(𝔤,𝒞(M))\operatorname{CE}^{\bullet}(\mathfrak{g},\mathcal{C}^{\infty}(M)) with the Koszul complex (K,)(K^{\bullet},\partial), that is

𝒜=CE(𝔤,𝒞(M))𝒞(M)(K,).\mathcal{A}^{\bullet}=\operatorname{CE}^{\bullet}(\mathfrak{g},\mathcal{C}^{\infty}(M))\otimes_{\mathcal{C}^{\infty}(M)}(K^{\bullet},\partial)\ . (4.8)

Expanding the right hand side one obtains for nn\in\mathbb{Z}

𝒜n=𝒞(M)k,lk+l=nΛk𝔤Λl𝔤==S𝒞(M)n(𝔤[1]𝔤[1])=k,lk+l=nCEk(𝔤,S𝒞(M)l(𝔤[1])).\begin{split}\mathcal{A}^{n}\,&=\mathcal{C}^{\infty}(M)\otimes\bigoplus_{k,l\in\mathbb{Z}\atop k+l=n}\Lambda^{k}\mathfrak{g}^{*}\otimes\Lambda^{-l}\mathfrak{g}=\\ &=S^{n}_{\mathcal{C}^{\infty}(M)}(\mathfrak{g}^{*}[-1]\oplus\mathfrak{g}[1])=\bigoplus_{k,l\in\mathbb{Z}\atop k+l=n}\operatorname{CE}^{k}(\mathfrak{g},S^{l}_{\mathcal{C}^{\infty}(M)}(\mathfrak{g}[1]))\ .\end{split} (4.9)

Elements of 𝔤\mathfrak{g}^{*} thus have degree +1+1 and are called ghosts in the physics literature, whereas elements of 𝔤\mathfrak{g} have degree 1-1 and are named antighosts. Note that k,lk+l=nΛk𝔤Λl𝔤\bigoplus\limits_{k,l\in\mathbb{Z}\atop k+l=n}\Lambda^{k}\mathfrak{g}^{*}\otimes\Lambda^{-l}\mathfrak{g} can be interpreted as the degree nn vector space underlying the free graded commutative algebra

S(𝔤[1]𝔤[1])S^{\bullet}(\mathfrak{g}^{*}[-1]\oplus\mathfrak{g}[1])

on the graded vector space 𝔤[1]𝔤[1]\mathfrak{g}^{*}[-1]\oplus\mathfrak{g}[1]. Under this identification, the product map μ\mu on S(𝔤[1]𝔤[1])S^{\bullet}(\mathfrak{g}^{*}[-1]\oplus\mathfrak{g}[1]) is the unique graded commutative associative bilinear operation fulfilling the equalities

μ(αβ)=αβ,μ(XY)=XY,andμ(αX)=μ(Xα)=αX\mu(\alpha\otimes\beta)=\alpha\wedge\beta,\quad\mu(X\otimes Y)=X\wedge Y,\quad\text{and}\quad\mu(\alpha\otimes X)=-\mu(X\otimes\alpha)=\alpha\otimes X

for all α,β𝔤\alpha,\beta\in\mathfrak{g}^{*} and X,Y𝔤X,Y\in\mathfrak{g}. Sometimes we will write vwv\wedge w for the product μ(v,w)\mu(v,w) of two elements v,wS(𝔤[1]𝔤[1])v,w\in S^{\bullet}(\mathfrak{g}^{*}[-1]\oplus\mathfrak{g}[1]). The BRST complex can now be written in the form

𝒜=𝒞(M)S(𝔤[1]𝔤[1]).\mathcal{A}^{\bullet}=\mathcal{C}^{\infty}(M)\otimes S^{\bullet}(\mathfrak{g}^{*}[-1]\oplus\mathfrak{g}[1])\ . (4.10)

The differentials :KK\partial:K^{\bullet}\to K^{\bullet} and δ:CE(𝔤,𝒞(M))CE(𝔤,𝒞(M))\delta:\operatorname{CE}^{\bullet}(\mathfrak{g},\mathcal{C}^{\infty}(M))\to\operatorname{CE}^{\bullet}(\mathfrak{g},\mathcal{C}^{\infty}(M)) extend in a natural way to graded derivations on 𝒜\mathcal{A}^{\bullet} by letting them act trivially on 𝔤[1]\mathfrak{g}^{*}[-1] and 𝔤[1])\mathfrak{g}[1]), respectively. The thus extended differentials supercommute, so

𝒟=δ+2\mathcal{D}=\delta+2\partial

is a differential of degree +1+1 on 𝒜\mathcal{A}^{\bullet}. In addition, 𝒜\mathcal{A}^{\bullet} inherits from S(𝔤[1]𝔤[1])S^{\bullet}(\mathfrak{g}^{*}[-1]\oplus\mathfrak{g}[1]) a graded commutative associative product which we also denote by μ\mu. Thus (𝒜,μ,𝒟)\big{(}\mathcal{A}^{\bullet},\mu,\mathcal{D}\big{)} becomes a differential graded commutative 𝒞(M)\mathcal{C}^{\infty}(M)-algebra which one calls the classical BRST algebra. The BRST algebra also carries a natural Poisson bracket. For its definition we need some more notation. To this end let

i:𝔤𝔤End(S(𝔤[1]𝔤[1]))i:\mathfrak{g}^{*}\oplus\mathfrak{g}\to\operatorname{End}\left(S^{\bullet}(\mathfrak{g}^{*}[-1]\oplus\mathfrak{g}[1])\right)

be left insertion which means let ii be the unique linear map from 𝔤𝔤\mathfrak{g}^{*}\oplus\mathfrak{g} to the graded endomorphism ring of S(𝔤[1]𝔤[1])S^{\bullet}(\mathfrak{g}^{*}[-1]\oplus\mathfrak{g}[1]) such that

i(X)(ωZ)=(Xω)Zandi(α)(ωZ)=(1)kω(αZ)i(X)(\omega\otimes\mathrm{Z})=(X\lrcorner\omega)\otimes\mathrm{Z}\quad\text{and}\quad i(\alpha)(\omega\otimes\mathrm{Z})=(-1)^{k}\omega\otimes(\alpha\lrcorner\mathrm{Z})

for all α𝔤\alpha\in\mathfrak{g}^{*}, X𝔤X\in\mathfrak{g}, ωΛk𝔤\omega\in\Lambda^{k}\mathfrak{g}^{*} and ZΛl𝔤\mathrm{Z}\in\Lambda^{l}\mathfrak{g}. By right insertion we understand the unique linear map

j:𝔤𝔤End(S(𝔤[1]𝔤[1]))j:\mathfrak{g}^{*}\oplus\mathfrak{g}\to\operatorname{End}\left(S^{\bullet}(\mathfrak{g}^{*}[-1]\oplus\mathfrak{g}[1])\right)

such that j(v)x=(1)n+1i(v)xj(v)x=(-1)^{n+1}i(v)x for all v𝔤𝔤v\in\mathfrak{g}^{*}\oplus\mathfrak{g} and xSn(𝔤[1]𝔤[1])x\in S^{n}(\mathfrak{g}^{*}[-1]\oplus\mathfrak{g}[1]). Then we define the Poisson endomorphisms PP and PP^{*} on S(𝔤[1]𝔤[1])S(𝔤[1]𝔤[1])S^{\bullet}(\mathfrak{g}^{*}[-1]\oplus\mathfrak{g}[1])\otimes S^{\bullet}(\mathfrak{g}^{*}[-1]\oplus\mathfrak{g}[1]) by

P=l=1dj(εl)i(El)andP=l=1dj(El)i(εl),P=\sum_{l=1}^{d}j(\varepsilon^{l})\otimes i(E_{l})\quad\text{and}\quad P^{*}=\sum_{l=1}^{d}j(E_{l})\otimes i(\varepsilon^{l})\ , (4.11)

where as before (El,,Ed)(E_{l},\ldots,E_{d}) is a basis of 𝔤\mathfrak{g} and (εl,,εd)(\varepsilon^{l},\ldots,\varepsilon^{d}) its dual basis. Note that PP and PP^{*} do not depend on the particular choice of these bases. Now we can subsume and define the Poisson bracket on the BRST algebra. See [37, 3.10], [16, Sec. 4] and [13, Sec. 4] for further details and a proof.

Proposition 4.8.

As a graded algebra, the classical BRST algebra 𝒜\mathcal{A}^{\bullet} of a GG-Hamiltonian system (M,ω,Ψ,J)(M,\omega,\Psi,J) coincides with the free graded commutative 𝒞(M)\mathcal{C}^{\infty}(M)-algebra generated by 𝔤[1]𝔤[1]\mathfrak{g}^{*}[-1]\oplus\mathfrak{g}[1]. Moreover, 𝒜\mathcal{A}^{\bullet} carries an even graded Poisson bracket {,}𝒜\{-,-\}_{\mathcal{A}} given by

{fv,gw}𝒜={f,g}Mμ(v,w)+2fgμ((P+P)(vw))\{f\,v,g\,w\}_{\mathcal{A}}=\{f,g\}_{M}\,\mu(v,w)+2fg\,\mu\!\left((P+P^{*})(v\otimes w)\right)

for all f,g𝒞(M)f,g\in\mathcal{C}^{\infty}(M) and v,wS(𝔤[1]𝔤[1])v,w\in S^{\bullet}(\mathfrak{g}^{*}[-1]\oplus\mathfrak{g}[1]). Finally, the element

θ=14[,]+J𝒜1\theta=-\frac{1}{4}[-,-]+J\in\mathcal{A}^{1} (4.12)

satisfies {θ,θ}𝒜=0\{\theta,\theta\}_{\mathcal{A}}=0 and 𝒟={θ,}𝒜\mathcal{D}=\{\theta,-\}_{\mathcal{A}} which again entails that 𝒟2=0\mathcal{D}^{2}=0 and that (𝒜,μ,𝒟)(\mathcal{A}^{\bullet},\mu,\mathcal{D}) is a differential graded algebra. One calls θ\theta the classical BRST charge and 𝒟\mathcal{D} the classical BRST differential.

The crucial observation from [13, Thm. 4.1] now is that under the assumption of the generating hypothesis (GH) and the acyclicity hypothesis (AH) the BRST cochain complex (𝒜,𝒟)(\mathcal{A}^{\bullet},\mathcal{D}) and the Chevalley–Eilenberg complex (CE(𝔤,𝒞(M0)),δ0)\left(\operatorname{CE}^{\bullet}(\mathfrak{g},\mathcal{C}^{\infty}(M_{0})),\delta^{0}\right) with values in the 𝔤\mathfrak{g}-module of smooth functions on the constraint surface are quasi-isomorphic in the additive category of Fréchet spaces. Note that by δ0\delta^{0} we denote here the Chevalley–Eilenberg coboundary with respect to the 𝔤\mathfrak{g}-representation L0L^{0} on 𝒞(M0)\mathcal{C}^{\infty}(M_{0}).

Theorem 4.9.

Let (M,ω,Ψ,J)(M,\omega,\Psi,J) be a GG-Hamiltonian system for which the Koszul complex K(𝒞(M),J)K_{\bullet}(\mathcal{C}^{\infty}(M),J) is a free resolution of 𝒞(M0)\mathcal{C}^{\infty}(M_{0}). Choose an equivariant continuous extension map 𝖾:𝒞(M0)𝒞(M)\mathsf{e}:\mathcal{C}^{\infty}(M_{0})\to\mathcal{C}^{\infty}(M) and an equivariant continuous homotopy h=(hk)kh=(h_{k})_{k\in\mathbb{N}} according to Theorem 4.5. Then

((CE(𝔤,𝒞(M0)),δ0)𝗋𝖾(𝒜,𝒟),12h)\left(\left(\operatorname{CE}^{\bullet}(\mathfrak{g},\mathcal{C}^{\infty}(M_{0})),\delta^{0}\right)\overset{\mathsf{e}}{\underset{\mathsf{r}}{\rightleftarrows}}(\mathcal{A}^{\bullet},\mathcal{D}),\frac{1}{2}h\right) (4.13)

is a deformation retract. If GG is connected, the Poisson bracket of two elements f,g𝒞(M//G)f,g\in\mathcal{C}^{\infty}(M/\!/G) can be recovered by the identity

{f,g}M//G=𝗋{𝖾(f),𝖾(g)}𝒜\{f,g\}_{M/\!/G}=\mathsf{r}\{\mathsf{e}(f),\mathsf{e}(g)\}_{\cal A} (4.14)

under the natural identifications 𝒞(M//G)𝒞(M0)G=𝒞(M0)𝔤=H0(𝔤,𝒞(M0))\mathcal{C}^{\infty}(M/\!/G)\cong\mathcal{C}^{\infty}(M_{0})^{G}=\mathcal{C}^{\infty}(M_{0})^{\mathfrak{g}}=H^{0}(\mathfrak{g},\mathcal{C}^{\infty}(M_{0})).

Proof.

Treating 𝒟\mathcal{D} as a perturbation of 22\partial, we can apply the Perturbation Lemma A.5 to the deformation retract provided by Theorem 4.5. This yields that (4.13) is a deformation retract. See the proof of [13, Thm. 4.1] for details. The equality (4.14) follows immediately from (4.1), equivariance of the extension map 𝖾\mathsf{e} and the definition of the Poisson bracket {,}𝒜\{-,-\}_{\cal A} in Proposition 4.8. ∎

Remark 4.10.

The preceding result says in other words that the symplectically reduced space (M//G,𝒞M//G,{,})(M/\!/G,\mathcal{C}^{\infty}_{M/\!/G},\{-,-\}) is representable as the zeroth cohomology of the BRST complex with its natural structure of a differential graded Poisson algebra.

4.4 The quantized version

Under the assumption that the star product \star on a GG-Hamiltonian system (M,ω,Ψ,J)(M,\omega,\Psi,J) satisfies certain invariance conditions described below and that the conditions (GH) and (AC) hold true, the classical BRST algebra allows for a formal deformation quantization which then induces a star product on H0(𝔤,𝒞(M0))H^{0}(\mathfrak{g},\mathcal{C}^{\infty}(M_{0})). Let us describe this ansatz in more detail. The main assumption is that \star is a GG-invariant star product which means that

Lg(f1f2)=Lg(f1)Lg(f2)for all gG,f1,f2𝒞(M),L_{g}^{*}(f_{1}\star f_{2})=L_{g}^{*}(f_{1})\star L_{g}^{*}(f_{2})\quad\text{for all }g\in G,\>f_{1},f_{2}\in\mathcal{C}^{\infty}(M)\ , (4.15)

where LgL_{g} denotes the left action of a group element gGg\in G. GG-invariance of \star implies that the star product is also 𝔤\mathfrak{g}-invariant meaning that

{Jξ,f1f2}={Jξ,f1}f2+f2{Jξ,f2}for all ξ𝔤,f1,f2𝒞(M).\{J_{\xi},f_{1}\star f_{2}\}=\{J_{\xi},f_{1}\}\star f_{2}+f_{2}\star\{J_{\xi},f_{2}\}\quad\text{for all }\xi\in\mathfrak{g},\>f_{1},f_{2}\in\mathcal{C}^{\infty}(M)\ . (4.16)

In case the Lie group GG is connected and simply-connected, a 𝔤\mathfrak{g}-invariant star product is also GG-invariant.

To construct a quantized version of the BRST complex (4.8) we need a 𝔤\mathfrak{g}-module structure on the deformed algebra (𝒞(M)[[λ]],)\left(\mathcal{C}^{\infty}(M)[[\lambda]],\star\right). To this end we assume the star product to be covariant which means that

JXJYJYJX=λJ[X,Y]for all X,Y𝔤.J_{X}\star J_{Y}-J_{Y}\star J_{X}=\lambda J_{[X,Y]}\quad\text{for all }X,Y\in\mathfrak{g}\ . (4.17)
Lemma 4.11.

Let \star be a covariant star product on the GG-Hamiltonian system (M,ω,Ψ,J)(M,\omega,\Psi,J). Then the operation

𝑳:𝔤×𝒞(M)[[λ]]𝒞(M)[[λ]],(X,f)𝑳Xf=1λad(JX)f:=1λ(JXffJX)\bm{L}:\mathfrak{g}\times\mathcal{C}^{\infty}(M)[[\lambda]]\to\mathcal{C}^{\infty}(M)[[\lambda]],\>(X,f)\mapsto\bm{L}_{X}f=\frac{1}{\lambda}\operatorname{ad}_{\star}(J_{X})f:=\frac{1}{\lambda}\left(J_{X}\ast f-f\ast J_{X}\right)

is a 𝔤\mathfrak{g}-representation called the quantized representation of 𝔤\mathfrak{g} on 𝒞(M)[[λ]]\mathcal{C}^{\infty}(M)[[\lambda]].

Proof.

One immediately computes that for X,Y𝔤X,Y\in\mathfrak{g} and f𝒞(M)f\in\mathcal{C}^{\infty}(M)

[ad(JX),ad(JY)]f=(JXJYfJYJXffJXJY+fJYJX)\left[\operatorname{ad}_{\star}(J_{X}),\operatorname{ad}_{\star}(J_{Y})\right]f=\left(J_{X}\star J_{Y}\star f-J_{Y}\star J_{X}\star f-f\star J_{X}\star J_{Y}+f\star J_{Y}\star J_{X}\right)

and that

ad(J[X,Y])f=(J[X,Y]ffJ[X,Y]).\operatorname{ad}_{\star}(J_{[X,Y]})f=\left(J_{[X,Y]}\star f-f\star J_{[X,Y]}\right)\ .

By covariance of the star product the equality

1λ2[ad(JX),ad(JY)]f=1λad(J[X,Y])f\frac{1}{\lambda^{2}}\left[\operatorname{ad}_{\star}(J_{X}),\operatorname{ad}_{\star}(J_{Y})\right]f=\frac{1}{\lambda}\operatorname{ad}_{\star}(J_{[X,Y]})f

follows. This proves the claim. ∎

Remark 4.12.
  1. (a)

    Covariance of the star product on a GG-Hamiltonian system implies in particular that the classical moment map JJ is a quantum moment map, see [77, 33].

  2. (b)

    According to [16, 33] a covariant star product exists for every GG-Hamiltonian system with a compact Lie group action; see also [22, Sec. 5.8].

  3. (c)

    The natural action of 𝔤\mathfrak{g} on 𝒞(M)\mathcal{C}^{\infty}(M) extends by

    L:𝔤×𝒞(M)[[λ]]𝒞(M)[[λ]],(X,f)LXf=nXMfnλn with f=nfnλnL:\mathfrak{g}\times\mathcal{C}^{\infty}(M)[[\lambda]]\to\mathcal{C}^{\infty}(M)[[\lambda]],\>(X,f)\mapsto L_{X}f=\sum_{n\in\mathbb{N}}X_{M}f_{n}\lambda^{n}\text{ with }f=\sum_{n\in\mathbb{N}}f_{n}\lambda^{n}

    to another 𝔤\mathfrak{g}-representation on 𝒞(M)[[λ]]\mathcal{C}^{\infty}(M)[[\lambda]] which we call the classical one. By construction, the quantized representation 𝑳\bm{L} is a deformation of the classical representation LL which means that

    𝑳XfXMfλ𝒞(M)[[λ]]for all X𝔤,f𝒞(M).\bm{L}_{X}f-X_{M}f\in\lambda\mathcal{C}^{\infty}(M)[[\lambda]]\quad\text{for all }X\in\mathfrak{g},\>f\in\mathcal{C}^{\infty}(M)\ .

    In general, 𝑳\bm{L} and LL do not coincide, though. If they do, which in other words means that

    JXffJX=λ{JX,f}for all X𝔤,f𝒞(M),J_{X}\star f-f\star J_{X}=\lambda\{J_{X},f\}\quad\text{for all }X\in\mathfrak{g},\>f\in\mathcal{C}^{\infty}(M)\ , (4.18)

    then one calls the star product strongly invariant.

Remark 4.13.

The ring of formal power series [[λ]]\mathbb{R}[[\lambda]] and modules over it of the form V[[λ]]V[[\lambda]], where VV is a real vector space, carry a natural translation invariant topology called the λ\lambda-adic topology. A fundamental system of 0-neighborhoods is given by the family of subspaces (λkV[[λ]])k\left(\lambda^{k}V[[\lambda]]\right)_{k\in\mathbb{N}}. As remarked in [12, Sec. 2.1], [[λ]]\mathbb{R}[[\lambda]] and modules of the form V[[λ]]V[[\lambda]] thus become completely metrizable. We will silently make use of this fact several times in the following.

In the next step we define a product \cdot on the space S(𝔤[1]𝔤[1])[[λ]]S^{\bullet}(\mathfrak{g}^{*}[-1]\oplus\mathfrak{g}[1])[[\lambda]] of power series in λ\lambda with coefficients in the free graded algebra over 𝔤[1]𝔤[1]\mathfrak{g}^{*}[-1]\oplus\mathfrak{g}[1] and then extend it to a formal deformation of the classical BRST algebra. The product \cdot is given by

vw=μ(e2λP(vw))for v,wS(𝔤[1]𝔤[1]),v\cdot w=\mu\left(e^{-2\lambda P}(v\otimes w)\right)\quad\text{for }v,w\in S^{\bullet}(\mathfrak{g}^{*}[-1]\oplus\mathfrak{g}[1])\ ,

where PP denotes the endomorphism from Eq. (4.11) and the graded commutative product μ\mu on S(𝔤[1]𝔤[1])S^{\bullet}(\mathfrak{g}^{*}[-1]\oplus\mathfrak{g}[1]) has been extended in a unique way to a λ\lambda-adically continuous and [[λ]]\mathbb{R}[[\lambda]]-bilinear associative product on S(𝔤[1]𝔤[1])[[λ]]S^{\bullet}(\mathfrak{g}^{*}[-1]\oplus\mathfrak{g}[1])[[\lambda]] which we again denote by μ\mu. Combination of the product \cdot with the covariant star product on MM gives rise to the formal deformation of the classical BRST algebra we are looking for. More precisely, the formally deformed product on 𝒜[[λ]]\mathcal{A}^{\bullet}[[\lambda]] is defined by

(fv)(gw)=(fg)(vw)for f,g𝒞(M),v,wS(𝔤[1]+𝔤[1])(f\,v)*(g\,w)=(f\star g)\,(v\cdot w)\quad\text{for }f,g\in\mathcal{C}^{\infty}(M),\>v,w\in S(\mathfrak{g}^{*}[-1]+\mathfrak{g}[1]) (4.19)

and then extended in a canonical way to a continuous and [[λ]]\mathbb{R}[[\lambda]]-bilinear associative product.

Now we equip 𝒜[[λ]]\mathcal{A}^{\bullet}[[\lambda]] with a differential called the quantum BRST differential which will turn out to be a deformation of the classical BRST differential. To this end we first extend the 𝔤\mathfrak{g}-module structure on 𝒞(M)[[λ]]\mathcal{C}^{\infty}(M)[[\lambda]] to one on S𝒞(M)(𝔤[1])[[λ]]S^{\bullet}_{\mathcal{C}^{\infty}(M)}(\mathfrak{g}[1])[[\lambda]] by the map

𝑳:𝔤×S𝒞(M)(𝔤[1])[[λ]]S𝒞(M)(𝔤[1])[[λ]],(X,fv)𝑳X(fv)=1λ(ad(JX)f)v+fad(X)v,\begin{split}\bm{L}:\>&\mathfrak{g}\times S^{\bullet}_{\mathcal{C}^{\infty}(M)}(\mathfrak{g}[1])[[\lambda]]\to S^{\bullet}_{\mathcal{C}^{\infty}(M)}(\mathfrak{g}[1])[[\lambda]],\\ &(X,f\,v)\mapsto\bm{L}_{X}(f\,v)=\frac{1}{\lambda}(\operatorname{ad}_{*}(J_{X})f)\,v+f\,\operatorname{ad}(X)v\ ,\end{split}

where X𝔤X\in\mathfrak{g}, f𝒞(M)[[λ]]f\in\mathcal{C}^{\infty}(M)[[\lambda]] and vS(𝔤[1])v\in S^{\bullet}(\mathfrak{g}[1]). By definition, it is clear that 𝑳\bm{L} is a deformation of the representation L:𝔤×S𝒞(M)(𝔤[1])S𝒞(M)(𝔤[1])L:\mathfrak{g}\times S^{\bullet}_{\mathcal{C}^{\infty}(M)}(\mathfrak{g}[1])\to S^{\bullet}_{\mathcal{C}^{\infty}(M)}(\mathfrak{g}[1]). By the identification from Equation (4.9) and the fact that 𝑳\bm{L} leaves the symmetric degree invariant, the 𝔤\mathfrak{g}-module structure 𝑳\bm{L} on S𝒞(M)(𝔤[1])S^{\bullet}_{\mathcal{C}^{\infty}(M)}(\mathfrak{g}[1]) gives rise to a Chevalley–Eilenberg coboundary

𝜹:𝒜[[λ]]𝒜[[λ]].\bm{\delta}:\mathcal{A}^{\bullet}[[\lambda]]\to\mathcal{A}^{\bullet}[[\lambda]]\ .

Secondly, we need a deformation of the Koszul complex. To this end put

𝑲k=𝑲k=𝑲k(𝒞[[λ]],,J)={𝒞(M,Λk𝔤)[[λ]]for k,0for k<0.\bm{K}^{-k}=\bm{K}_{k}=\bm{K}_{k}(\mathcal{C}^{\infty}[[\lambda]],\star,J)=\begin{cases}\mathcal{C}^{\infty}(M,\Lambda^{-k}\mathfrak{g})[[\lambda]]&\text{for }k\in\mathbb{N},\\ 0&\text{for }k\in\mathbb{Z}_{<0}.\end{cases}

Following [13, 35], the quantized Koszul differential \bm{\partial} is now given in degree kk by

:𝑲(𝒞(M)[[λ]],,J)𝑲(𝒞(M)[[λ]],,J),fvl(fJl)i(εl)v+λ2f(j,k,l=1dCjklEli(εj)i(εk)v+i(Δ)v),\begin{split}\bm{\partial}:\>&\bm{K}_{\bullet}(\mathcal{C}^{\infty}(M)[[\lambda]],\star,J)\to\bm{K}_{\bullet}(\mathcal{C}^{\infty}(M)[[\lambda]],\star,J)\ ,\\ &f\,v\mapsto\sum_{l}(f\star J_{l})\,i(\varepsilon^{l})v+\frac{\lambda}{2}f\left(\sum_{j,k,l=1}^{d}C^{l}_{jk}E_{l}\wedge i(\varepsilon^{j})i(\varepsilon^{k})v+i(\Delta)v\right)\ ,\end{split} (4.20)

where f𝒞(M)[[λ]]f\in\mathcal{C}^{\infty}(M)[[\lambda]], vΛ𝔤v\in\Lambda^{\bullet}\mathfrak{g}, Cjkl=εl([Ej,Ek])C^{l}_{jk}=\varepsilon^{l}([E_{j},E_{k}]) are the structure constants of the Lie algebra 𝔤\mathfrak{g} with respect to the basis (Ek)1kd(E_{k})_{1\leq k\leq d} of 𝔤\mathfrak{g}, and Δ𝔤\Delta\in\mathfrak{g}^{*} is the modular 11-form defined by

Δ(X)=tradXfor all X𝔤.\Delta(X)=\operatorname{tr}\operatorname{ad}_{X}\quad\text{for all }X\in\mathfrak{g}\ .

The degree kk component of the quantized Koszul differential will be denoted k\bm{\partial}_{k}. By definition, k\bm{\partial}_{k} maps 𝒞(M,Λk𝔤)[[λ]]\mathcal{C}^{\infty}(M,\Lambda^{k}\mathfrak{g})[[\lambda]] to 𝒞(M,Λk1𝔤)[[λ]]\mathcal{C}^{\infty}(M,\Lambda^{k-1}\mathfrak{g})[[\lambda]].

Proposition 4.14.

Let (M,ω,Ψ,J)(M,\omega,\Psi,J) be a GG-Hamiltonian system satisfying conditions (GH) and (AC). Choose an equivariant continuous linear extension map 𝖾:𝒞(M0)𝒞(M)\mathsf{e}:\mathcal{C}^{\infty}(M_{0})\to\mathcal{C}^{\infty}(M) and a continuous equivariant homotopy h=(hk)kh=(h_{k})_{k\in\mathbb{N}} as in Theorem 4.5 such that the side conditions h0𝖾=0h_{0}\circ\mathsf{e}=0 and hk+1hk=0h_{k+1}\circ h_{k}=0 for kk\in\mathbb{N} are fulfilled. Assume further that \star is an invariant and covariant star product on 𝒞(M)[[λ]]\mathcal{C}^{\infty}(M)[[\lambda]]. Then (𝐊(𝒞[[λ]],,J),)\left(\bm{K}^{\bullet}(\mathcal{C}^{\infty}[[\lambda]],\star,J),\bm{\partial}\right) is an acyclic cochain complex called the quantized Koszul complex. Its 0-degree homology is given by H0(𝐊)𝒞(M0)[[λ]]H^{0}(\bm{K}^{\bullet})\cong\mathcal{C}^{\infty}(M_{0})[[\lambda]]. Moreover,

((𝒞(M0)[[λ]],0)𝗿𝖾(𝑲,),𝒉)\left((\mathcal{C}^{\infty}(M_{0})[[\lambda]],0)\overset{\mathsf{e}}{\underset{\bm{\mathsf{r}}}{\rightleftarrows}}(\bm{K}_{\bullet},\bm{\partial}),\bm{h}\right)

is a special deformation retract, where the map 𝗿\bm{\mathsf{r}} and the homotopy 𝐡\bm{h} are defined, recursively, as follows:

𝗿=𝗋(id+(11)h0)1,𝒉0=h0(id+(11)h0)1,𝒉k=hk(hk1k+k+1hk)1.\begin{split}\bm{\mathsf{r}}&=\mathsf{r}\left(\operatorname{id}+(\bm{\partial}_{1}-\partial_{1})h_{0}\right)^{-1}\ ,\\ \bm{h}_{0}&=h_{0}\left(\operatorname{id}+(\bm{\partial}_{1}-\partial_{1})h_{0}\right)^{-1}\ ,\\ \bm{h}_{k}&=h_{k}\left(h_{k-1}\bm{\partial}_{k}+\bm{\partial}_{k+1}h_{k}\right)^{-1}\ .\end{split}

Finally, \bm{\partial}, 𝗿\bm{\mathsf{r}} and 𝐡\bm{h} are deformations of \partial, 𝗋\mathsf{r} and the homotopy hh, respectively, which means that =+O(λ)\bm{\partial}=\partial+O(\lambda), 𝗿=𝗋+O(λ)\bm{\mathsf{r}}=\mathsf{r}+O(\lambda) and 𝐡k=hk+O(λ)\bm{h}^{k}=h^{k}+O(\lambda) for all kk.

Proof.

By [37, Thm. 4.1] or [35, Lem. 3.4], we have 2=0\bm{\partial}^{2}=0, so \bm{\partial} is a differential. By construction, \bm{\partial} is a deformation of the classical Koszul differential, which in particular implies that the Neumann series k((11)h0)k\sum_{k\in\mathbb{N}}\left((\partial_{1}-\bm{\partial}_{1})h_{0}\right)^{k} converges in the λ\lambda-adic topology. Its limit is (id+(11)h0)1\left(\operatorname{id}+(\bm{\partial}_{1}-\partial_{1})h_{0}\right)^{-1}, so 𝗿\bm{\mathsf{r}} is well-defined and a deformation of 𝗋\mathsf{r} as claimed. In the same way one shows that 𝒉0\bm{h}_{0} is well-defined and a deformation of h0h_{0}. By induction one verifies the corresponding claim for 𝒉k\bm{h}_{k}. Since \bm{\partial} is a perturbation of \partial in the sense of homological perturbation theory, application of the perturbation lemma [13, Lemma A.1] (see also A.5 and [19, 2.4 & 3.2]) now entails that (𝖾,𝗿)(\mathsf{e},\bm{\mathsf{r}}) is a special deformation retract with retracting homotopy 𝒉\bm{h}. ∎

Observe that the quantized Koszul differential extends to a graded derivation on 𝒜[[λ]]\mathcal{A}^{\bullet}[[\lambda]] by letting it act trivially on 𝔤[1]\mathfrak{g}^{*}[-1]. We will denote this extension again by \bm{\partial}. Now we can formulate the following crucial result originally proved in [37] and [16].

Proposition-Definition 4.15.

Let (M,ω,Ψ,J)(M,\omega,\Psi,J) be a GG-Hamiltonian system and \star a GG-invariant and covariant star product on MM. Let \ast be the associative product on 𝒜[[λ]]\mathcal{A}^{\bullet}[[\lambda]] defined by (4.19), \bm{\partial} the deformed Koszul differential, and 𝛅\bm{\delta} the Chevalley–Eilenberg differential induced by the 𝔤\mathfrak{g}-representation 𝐋\bm{L}. Then the differentials 𝛅\bm{\delta} and \bm{\partial} supercommute, so the quantum BRST differential defined by

𝓓=𝜹+2\bm{\mathcal{D}}=\bm{\delta}+2\bm{\partial} (4.21)

is a differential on 𝒜[[λ]]\mathcal{A}^{\bullet}[[\lambda]]. Moreover, the quantized BRST charge

𝜽=14[,]+J+λ2Δ𝒜1[[λ]]\bm{\theta}=-\frac{1}{4}[-,-]+J+\frac{\lambda}{2}\Delta\in\mathcal{A}^{1}[[\lambda]] (4.22)

satisfies 𝛉𝛉=0\bm{\theta}\ast\bm{\theta}=0 and 𝓓=1λad(𝛉)\bm{\mathcal{D}}=\frac{1}{\lambda}\operatorname{ad}_{\ast}(\bm{\theta}), hence 𝓓\bm{\mathcal{D}} is a graded derivation. The triple (𝒜[[λ]],,𝓓)(\mathcal{A}^{\bullet}[[\lambda]],\ast,\bm{\mathcal{D}}) thus becomes a differential graded algebra called the quantum BRST algebra. It is a deformation of the classical BRST algebra 𝒜\mathcal{A}^{\bullet}.

Proof.

That 𝜹\bm{\delta} and \bm{\partial} supercommute follows by straightforward but lengthy computation, see e.g. [37, Thm. 4.1.2]. ∎

Before coming to quantum reduction of the star product we need one more tool, namely a deformed representation of 𝔤\mathfrak{g} on 𝒞(M0)[[λ]]\mathcal{C}^{\infty}(M_{0})[[\lambda]].

Lemma 4.16.

Under the assumptions of Proposition 4.14 on the GG-Hamiltonian system (M,ω,Ψ,J)(M,\omega,\Psi,J) and with the quantized representation from Lemma 4.11, the operation

𝑳0:𝔤×𝒞(M0)[[λ]]𝒞(M0)[[λ]],(X,f)𝑳X0f=𝗿𝑳X𝖾(f)\bm{L}^{0}:\mathfrak{g}\times\mathcal{C}^{\infty}(M_{0})[[\lambda]]\to\mathcal{C}^{\infty}(M_{0})[[\lambda]],\>(X,f)\mapsto\bm{L}^{0}_{X}f=\bm{\mathsf{r}}\bm{L}_{X}\mathsf{e}(f)

is a representation of 𝔤\mathfrak{g} on 𝒞(M0)[[λ]]\mathcal{C}^{\infty}(M_{0})[[\lambda]] which we call a quantized representation as well. It is a deformation of the representation L0L^{0} of 𝔤\mathfrak{g} on 𝒞(M0)\mathcal{C}^{\infty}(M_{0}) defined in Lemma 4.7.

The Chevalley–Eilenberg differential induced by 𝑳0\bm{L}^{0} will be denoted 𝜹0\bm{\delta}^{0}. We can now formulate the method of quantum reduction of the star product on the quantized BRST algebra.

Theorem 4.17.

Let (M,ω,Ψ,J)(M,\omega,\Psi,J) be a GG-Hamiltonian system for which the Koszul complex K(𝒞(M),J)K_{\bullet}(\mathcal{C}^{\infty}(M),J) is a free resolution of 𝒞(M0)\mathcal{C}^{\infty}(M_{0}). Let \star be an invariant and covariant star product on 𝒞(M)[[λ]]\mathcal{C}^{\infty}(M)[[\lambda]]. Let 𝖾:𝒞(M0)𝒞(M)\mathsf{e}:\mathcal{C}^{\infty}(M_{0})\to\mathcal{C}^{\infty}(M) be an extension map and h=(hk)kh=(h_{k})_{k\in\mathbb{N}} an equivariant continuous homotopy as in Theorem 4.5 so that the side conditions are fulfilled. Further, let 𝗿\bm{\mathsf{r}} and 𝐡\bm{h} be the deformed restriction map and deformed homotopy, respectively, from Proposition 4.14. Then

((CE(𝔤,𝒞(M0)[[λ]]),𝜹0)𝗿𝖾(𝒜[[λ]],𝓓),12𝒉)\left(\left(\operatorname{CE}^{\bullet}(\mathfrak{g},\mathcal{C}^{\infty}(M_{0})[[\lambda]]),\bm{\delta}^{0}\right)\overset{\mathsf{e}}{\underset{\bm{\mathsf{r}}}{\rightleftarrows}}(\mathcal{A}^{\bullet}[[\lambda]],\bm{\mathcal{D}}),\frac{1}{2}\bm{h}\right) (4.23)

is a deformation retract. Hence the star product \ast on the quantized BRST algebra induces an associative product ~\tilde{\star} on H0(𝔤,𝒞(M0)[[λ]])H^{0}(\mathfrak{g},\mathcal{C}^{\infty}(M_{0})[[\lambda]]) by

f~g=𝗿(𝖾(f)𝖾(g))for f,gZ0(𝔤,𝒞(M0)[[λ]]).f\,\tilde{\star}\,g=\bm{\mathsf{r}}\left(\mathsf{e}(f)\ast\mathsf{e}(g)\right)\quad\text{for }f,g\in Z^{0}(\mathfrak{g},\mathcal{C}^{\infty}(M_{0})[[\lambda]])\ . (4.24)
Proof.

Since 𝓓\bm{\mathcal{D}} is a perturbation of the differential 22\bm{\partial} fulfilling the assumptions of A.5 one can apply that version of the perturbation lemma. By equivariance of hh one obtains the particular form of the homotopy in the perturbed deformation retract. See [13, Thm. 6.1] for further details. It remains to prove associativity of the operation (4.24). This has been achieved in [37, Thm. 4.3.3]. ∎

Corollary 4.18.

If in addition to the assumptions of the preceding theorem the \star product on the GG-Hamiltonian system (M,ω,Ψ,J)(M,\omega,\Psi,J) is strongly invariant, then the representations L0L^{0} and 𝐋0\bm{L}^{0} of 𝔤\mathfrak{g} on 𝒞(M0)[[λ]]\mathcal{C}^{\infty}(M_{0})[[\lambda]] coincide and the invariance spaces H0(𝔤,𝒞(M0)[[λ]])H^{0}(\mathfrak{g},\mathcal{C}^{\infty}(M_{0})[[\lambda]]) and H0(𝔤,𝒞(M0))[[λ]]H^{0}(\mathfrak{g},\mathcal{C}^{\infty}(M_{0}))[[\lambda]] are naturally isomorphic. If furthermore GG is connected, then, under the natural identifications

H0(𝔤,𝒞(M0)[[λ]])H0(𝔤,𝒞(M0))[[λ]]𝒞(M0)𝔤[[λ]]=𝒞(M0)G[[λ]],H^{0}(\mathfrak{g},\mathcal{C}^{\infty}(M_{0})[[\lambda]])\cong H^{0}(\mathfrak{g},\mathcal{C}^{\infty}(M_{0}))[[\lambda]]\cong\mathcal{C}^{\infty}(M_{0})^{\mathfrak{g}}[[\lambda]]=\mathcal{C}^{\infty}(M_{0})^{G}[[\lambda]]\ ,

the formula

f~g=𝗿(𝖾(f)𝖾(g))for f,g𝒞(M0)G[[λ]]f\,\tilde{\star}\,g=\bm{\mathsf{r}}\left(\mathsf{e}(f)\ast\mathsf{e}(g)\right)\quad\text{for }f,g\in\mathcal{C}^{\infty}(M_{0})^{G}[[\lambda]] (4.25)

defines a star product on the symplectically reduced phase space (𝒞(M//G),{,}M//G)\left(\mathcal{C}^{\infty}(M/\!/G),\{-,-\}_{M/\!/G}\right).

Proof.

By definition in Eq. (4.18), strong invariance of the star product implies that the representations LL and 𝑳\bm{L} coincide. Since by definition for x𝔤x\in\mathfrak{g}

𝑳X0=𝗿LX0𝖾=𝗋(id+(11)h0)1LX0𝖾\bm{L}^{0}_{X}=\bm{\mathsf{r}}L^{0}_{X}\mathsf{e}=\mathsf{r}(\operatorname{id}+(\bm{\partial}_{1}-\partial_{1})h_{0})^{-1}L^{0}_{X}\mathsf{e}

and since LXL_{X} commutes with 1\bm{\partial}_{1}, 1\partial_{1}, and h0h_{0}, one concludes that 𝑳X0=𝗋LX𝖾=LX0\bm{L}^{0}_{X}=\mathsf{r}L_{X}\mathsf{e}=L_{X}^{0}. But this implies that H0(𝔤,𝒞(M0)[[λ]])H0(𝔤,𝒞(M0))[[λ]]H^{0}(\mathfrak{g},\mathcal{C}^{\infty}(M_{0})[[\lambda]])\cong H^{0}(\mathfrak{g},\mathcal{C}^{\infty}(M_{0}))[[\lambda]]. The rest of the claim is a straightforward consequence of this. ∎

The final result is due to Herbig [37]. See loc. cit. for a proof.

Theorem 4.19 (cf. [37, Prop. 4.3.6]).

Let GG be a compact connected semisimple Lie group and (M,ω,Ψ,J)(M,\omega,\Psi,J) a GG-Hamiltonian system satisfying the generating condition (GH) and the acyclicity condition (AC). Assume further that \star is an invariant and covariant star product on 𝒞(M)[[λ]]\mathcal{C}^{\infty}(M)[[\lambda]]. Then there exists a sequence of continuous linear maps

Sk:𝒞(M0)G𝒞(M0)S_{k}:\mathcal{C}^{\infty}(M_{0})^{G}\to\mathcal{C}^{\infty}(M_{0})

such that

S=kλkSk:H0(𝔤,𝒞(M0)[[λ]]=𝒞(M0)G[[λ]]𝒞(M0)[[λ]]S=\sum_{k\in\mathbb{N}}\lambda^{k}S_{k}:H^{0}(\mathfrak{g},\mathcal{C}^{\infty}(M_{0})[[\lambda]]=\mathcal{C}^{\infty}(M_{0})^{G}[[\lambda]]\to\mathcal{C}^{\infty}(M_{0})[[\lambda]]

has image H0(𝔤,𝒞(M0)[[λ]])H^{0}(\mathfrak{g},\mathcal{C}^{\infty}(M_{0})[[\lambda]]) and is a topologically linear isomorphism onto its image. Moreover, if \ast is the star product on the quantized BRST algebra and 𝗿\bm{\mathsf{r}} the deformed restriction map from Proposition 4.14, then

f^g:=S1(S(f)~S(g))=S1𝗿(𝖾(S(f))𝖾(S(g)))for f,g𝒞(M//G)𝒞(M0)Gf\,\hat{\star}\,g:=S^{-1}\left(S(f)\,\tilde{\star}\,S(g)\right)=S^{-1}\bm{\mathsf{r}}\left(\mathsf{e}(S(f))\ast\mathsf{e}(S(g))\right)\>\>\text{for }f,g\in\mathcal{C}^{\infty}(M/\!/G)\cong\mathcal{C}^{\infty}(M_{0})^{G}

defines a star product on the symplectically reduced phase space (𝒞(M//G),{,}M//G)\left(\mathcal{C}^{\infty}(M/\!/G),\{-,-\}_{M/\!/G}\right).

5 Application to the model

We now want to apply the homological quantization method to the quantum lattice gauge model obtained by deformation quantization, see Section 3. By the discussion in the previous section, we have to check the generating hypothesis (GH) and the acyclicity condition (AC) for the GG-Hamiltonian system (TGN,ω,Ψ¯,J)({T^{*}G}^{N},\omega,\underline{\Psi},J), together with the invariance and covariance of the star product derived in Subsection 3.2. As a consequence, we will be able to conclude that Theorems 4.17 and 4.19 hold true for our model. This will be accomplished in the following subsections for the case G=SU(2)G={\mathrm{SU}}(2).

It is not evident whether these properties also hold for other star products, notably for the star product of Weyl type. To answer this question for the latter, one may use the analysis of the relation with the standard ordered star product as provided in Section 8 of [14]. This will be discussed elsewhere.

In the sequel, we will denote by MM the cotangent bundle TGNT^{*}G^{N} with the natural analytic structure inherited from the Lie group GG and by ω\omega the canonical symplectic form on M=TGNM=T^{*}G^{N}.

5.1 The generating hypothesis

We wish to apply [2, Thm. 6.3], which relates the generating hypothesis to algebraic conditions for a covering by local models.

Let (a¯,A¯)M(\underline{a},\underline{A})\in M be given. The tangent space T(a¯,A¯)M\mathrm{T}_{(\underline{a},\underline{A})}M is acted upon by the isotropy representations of the stabilizer subgroup G(a¯,A¯)G_{(\underline{a},\underline{A})} of (a¯,A¯)(\underline{a},\underline{A}) and the corresponding Lie subalgebra 𝔤(a¯,A¯)\mathfrak{g}_{(\underline{a},\underline{A})} (where the latter representation is the Lie algebra representation induced by the former one). Choose a G(a¯,A¯)G_{(\underline{a},\underline{A})}-invariant vector space complement VV of the tangent space of the orbit at (a¯,A¯)(\underline{a},\underline{A}) in ker(J(a¯,A¯))T(a¯,A¯)J1(0)\ker\big{(}J^{\prime}_{(\underline{a},\underline{A})}\big{)}\cong\mathrm{T}_{(\underline{a},\underline{A})}J^{-1}(0). For example, we may choose the orthogonal complement with respect to the Riemannian metric induced by the scalar product on 𝔤\mathfrak{g}. By the theory of symplectic reduction [66, Ch. 10], VV is a symplectic subspace, called a symplectic slice, and the induced action of G(a¯,A¯)G_{(\underline{a},\underline{A})} on VV is Hamiltonian with momentum mapping

JV:V𝔤(a¯,A¯),JV(v),B=12ω(a¯,A¯)(v,Bv) for all vV,B𝔤(a¯,A¯),J^{V}:V\to\mathfrak{g}_{(\underline{a},\underline{A})}^{\ast}\,,\quad\langle J^{V}(v),B\rangle=\frac{1}{2}\omega_{(\underline{a},\underline{A})}\left(v,B\cdot v\right)~{}\text{ for all }~{}v\in V,~{}B\in\mathfrak{g}_{(\underline{a},\underline{A})}\,, (5.1)

where BvB\cdot v means the action via the isotropy representation. By the Symplectic Tubular Neighbourhood Theorem, the Hamiltonian Lie group action so defined is a local model for the original Hamiltonian Lie group action in a neighbourhood of (a¯,A¯)(\underline{a},\underline{A}) in the sense of Theorem 4.1 in [2]. Therefore, Theorem 6.3 in this article yields that the generating hypothesis holds if and only if for every element of a covering of MM by symplectic tubular neighbourhoods, the ideal I(JV)I(J^{V}) generated in the polynomial ring [V]{\mathbb{R}}[V] by the functions JBVJ^{V}_{B} with B𝔤(a¯,A¯)B\in\mathfrak{g}_{(\underline{a},\underline{A})} is a real radical ideal. The latter means that I(JV)I(J^{V}) coincides with its real radical, that is,

I(JV)={f[V]:f2k+j=1rgj2I(JV) for some k and some gj[V]}.I(J^{V})=\left\{f\in{\mathbb{R}}[V]:f^{2k}+\sum_{j=1}^{r}g_{j}^{2}\in I(J^{V})\text{ for some $k$ and some $g_{j}\in{\mathbb{R}}[V]$}\right\}.

In the special situation of a cotangent bundle, it suffices to consider symplectic tubular neighbourhoods about orbits of points in the zero section. Thus, let us determine VV and JVJ^{V} for elements (a¯,0¯)(\underline{a},\underline{0}) of the zero section. First, consider the general situation of the Hamiltonian Lie group action (TQ,G,J)(\mathrm{T}^{\ast}Q,G,J) associated with a Lie group action (Q,G)(Q,G). Let

s0:QTQ,qs0(q):=0q,s_{0}:Q\to\mathrm{T}^{\ast}Q\,,\quad q\mapsto s_{0}(q):=0_{q}\,,

denote the zero section. For every qQq\in Q, we have the natural splitting

T0q(TQ)=TqQTqQ,\mathrm{T}_{0_{q}}(\mathrm{T}^{\ast}Q)=\mathrm{T}_{q}Q\oplus\mathrm{T}^{\ast}_{q}Q\,, (5.2)

given by the tangent mapping (s0)q:TqQT0q(TQ)(s_{0})^{\prime}_{q}:\mathrm{T}_{q}Q\to\mathrm{T}_{0_{q}}(\mathrm{T}^{\ast}Q) and the inclusion TqQT0q(TQ)\mathrm{T}^{\ast}_{q}Q\subset\mathrm{T}_{0_{q}}(\mathrm{T}^{\ast}Q). One has

T0q(G0q)\displaystyle\mathrm{T}_{0_{q}}(G\cdot 0_{q}) =Tq(Gq){0},\displaystyle=\mathrm{T}_{q}(G\cdot q)\oplus\{0\}\,, (5.3)
ker(J0q)\displaystyle\ker\big{(}J^{\prime}_{0_{q}}\big{)} =TqQ(J1(0)TqQ),\displaystyle=\mathrm{T}_{q}Q\oplus\left(J^{-1}(0)\cap\mathrm{T}^{\ast}_{q}Q\right)\,, (5.4)
ω0q((X1,η1),(X2,η2))\displaystyle\omega_{0_{q}}\big{(}(X_{1},\eta_{1}),(X_{2},\eta_{2})\big{)} =η1(X2)η2(X1),\displaystyle=\eta_{1}(X_{2})-\eta_{2}(X_{1})\,, (5.5)

where XiTqQX_{i}\in\mathrm{T}_{q}Q and ηiTqQ\eta_{i}\in\mathrm{T}^{\ast}_{q}Q. The last equation means that the symplectic form ω0q\omega_{0_{q}} is given by the natural symplectic form of TqQTqQ\mathrm{T}_{q}Q\oplus\mathrm{T}^{\ast}_{q}Q, Moreover, the isotropy representation of B𝔤0q=𝔤qB\in\mathfrak{g}_{0_{q}}=\mathfrak{g}_{q} is given by

[D(B)00D(B)T],\begin{bmatrix}D(B)&0\\ 0&-D(B)^{\mathrm{T}}\end{bmatrix}\,, (5.6)

where D:𝔤qEnd(TqQ)D:\mathfrak{g}_{q}\to\operatorname{End}(\mathrm{T}_{q}Q) is the isotropy representation defined by the action of GG on QQ. By (5.3) and (5.4), if VqV_{q} is a GqG_{q}-invariant vector space complement of Tq(Gq)\mathrm{T}_{q}(G\cdot q) in TqQ\mathrm{T}_{q}Q, then the subspace VT0q(TQ)V\subset\mathrm{T}_{0_{q}}(\mathrm{T}^{\ast}Q) defined relative to the splitting (5.2) by

V=Vq(J1(0)TqQ)V=V_{q}\oplus\left(J^{-1}(0)\cap\mathrm{T}^{\ast}_{q}Q\right)

is a G0qG_{0_{q}}-invariant complement of T0q(G0q)\mathrm{T}_{0_{q}}(G\cdot 0_{q}) in ker(J0q)\ker(J^{\prime}_{0_{q}}). On the one hand, by the special form of JJ in the cotangent bundle situation, the subspace (J1(0)TqQ)TqQ\left(J^{-1}(0)\cap\mathrm{T}^{\ast}_{q}Q\right)\subset\mathrm{T}^{\ast}_{q}Q coincides with the annihilator of the subspace Tq(Gq)TqQ\mathrm{T}_{q}(G\cdot q)\subset\mathrm{T}_{q}Q. On the other hand, this annihilator may be identified with VqV_{q}^{\ast}. Thus, we may write

V=VqVq.V=V_{q}\oplus V_{q}^{\ast}\,. (5.7)

Under this identification, according to (5.6), the restriction to VV of the isotropy representation of B𝔤0qB\in\mathfrak{g}_{0_{q}} is given by

[D(B)Vq00(D(B)Vq)T].\begin{bmatrix}D(B)_{\upharpoonright V_{q}}&0\\ 0&-\big{(}D(B)_{\upharpoonright V_{q}}\big{)}^{\mathrm{T}}\end{bmatrix}\,. (5.8)

Thus, by (5.5), the momentum mapping JVJ^{V} defined by (5.1) reads

JV(X,η),B=η(D(B)X).\langle J^{V}(X,\eta),B\rangle=\eta\big{(}D(B)X\big{)}\,. (5.9)

Now, we apply this to our model. Here, Q=GNQ=G^{N} and q=a¯q=\underline{a}. Since the fundamental vector field generated by B𝔤B\in\mathfrak{g} of the action by diagonal conjugation is given by

BGN(a¯)=Ra¯BLa¯B=La¯(Ad(a¯1)BB),B_{G^{N}}(\underline{a})=\mathrm{R}_{\underline{a}}^{\prime}B-\mathrm{L}_{\underline{a}}^{\prime}B=\mathrm{L}_{\underline{a}}^{\prime}\big{(}\operatorname{Ad}(\underline{a}^{-1})B-B\big{)}\,,

we have

Ta¯(Ga¯)=La¯{Ad(a¯1)BB:B𝔤}.\mathrm{T}_{\underline{a}}(G\cdot\underline{a})=\mathrm{L}_{\underline{a}}^{\prime}\big{\{}\operatorname{Ad}(\underline{a}^{-1})B-B:B\in\mathfrak{g}\big{\}}\,.

For the complement Va¯V_{\underline{a}}, we choose the orthogonal complement with respect to the metric defined by some GG-invariant scalar product ,\langle\cdot,\cdot\rangle on 𝔤\mathfrak{g}. This leads to

Va¯=La{X¯𝔤N:iAd(ai)XiXi=0}.V_{\underline{a}}=\mathrm{L}_{a}^{\prime}\{\underline{X}\in\mathfrak{g}^{N}:\sum_{i}\operatorname{Ad}(a_{i})X_{i}-X_{i}=0\}\,.

This means that under the metric isomorphism, Va¯V_{\underline{a}} corresponds to J1(0)Ta¯GNJ^{-1}(0)\cap\mathrm{T}^{\ast}_{\underline{a}}G^{N}. Using the metric to identify Va¯V_{\underline{a}}^{\ast} with Va¯V_{\underline{a}}, we obtain V=Va¯Va¯V=V_{\underline{a}}\oplus V_{\underline{a}}, with the pairing given by the metric. In analyzing JVJ^{V}, we may omit the transport to a¯\underline{a}. Thus, we may work with

Va¯\displaystyle V_{\underline{a}} ={X¯𝔤N:iAd(ai)XiXi=0},\displaystyle=\{\underline{X}\in\mathfrak{g}^{N}:\sum_{i}\operatorname{Ad}(a_{i})X_{i}-X_{i}=0\}\,, (5.10)
V\displaystyle V ={(X¯,Y¯)𝔤N𝔤N:iAd(ai)XiXi=0=iAd(ai)YiYi}.\displaystyle=\left\{(\underline{X},\underline{Y})\in\mathfrak{g}^{N}\oplus\mathfrak{g}^{N}:\sum\nolimits_{i}\operatorname{Ad}(a_{i})X_{i}-X_{i}=0=\sum\nolimits_{i}\operatorname{Ad}(a_{i})Y_{i}-Y_{i}\right\}\,. (5.11)

The isotropy representation of B𝔤a¯B\in\mathfrak{g}_{\underline{a}} is given by D(B)=ad(B)D(B)=\operatorname{ad}(B). Thus, (5.9) yields

JV(X¯,Y¯),B=iYi,[B,Xi]=i[Xi,Yi],B,B𝔤a¯.\langle J^{V}(\underline{X},\underline{Y}),B\rangle=\sum_{i}\langle Y_{i},[B,X_{i}]\rangle=\left\langle\sum\nolimits_{i}[X_{i},Y_{i}],B\right\rangle\,,\quad B\in\mathfrak{g}_{\underline{a}}\,. (5.12)

Next, we restrict attention to the case G=SU(2)G={\mathrm{SU}}(2). Under the identification of 𝔰𝔲(2)\mathfrak{su}(2) with 3{\mathbb{R}}^{3} endowed with the cross product, see e.g. Example 5.2.8 in [66], (5.12) reads

JV(X¯,Y¯),B=i(Xi×Yi)B,B𝔤a¯3.\langle J^{V}(\underline{X},\underline{Y}),B\rangle=\sum_{i}(X_{i}\times Y_{i})\cdot B\,,\quad B\in\mathfrak{g}_{\underline{a}}\subset{\mathbb{R}}^{3}\,. (5.13)

Here, the dot denotes the standard scalar product in 3{\mathbb{R}}^{3}. Let ZZ and TT denote the center and the toral subgroup of diagonal matrices, respectively. The following stabilizers occur [25].

  1. (Z)(Z)

    Ga¯=ZG_{\underline{a}}=Z. This is the generic case provided N2N\geq 2.

  2. (T)(T)

    Ga¯G_{\underline{a}} is conjugate to TT. This happens if and only if all aia_{i} commute but at least one of them is not ±𝟙\pm\mathbbm{1}. Since a tubular neighbourhood is GG-invariant, without loss of generality we may assume aiTa_{i}\in T and Ga¯=TG_{\underline{a}}=T.

  3. (G)(G)

    Ga¯=SU(2)G_{\underline{a}}={\mathrm{SU}}(2). This holds in the case a¯ZN\underline{a}\in Z^{N}, that is, ai=±𝟙a_{i}=\pm\mathbbm{1} for all ii.

In case Ga¯=ZG_{\underline{a}}=Z, we have 𝔤a¯=0\mathfrak{g}_{\underline{a}}=0, so that JV0J^{V}\equiv 0 and hence I(JV)=0I(J^{V})=0, which is a real radical ideal, indeed.

Stabilizer TT

Here, a1,,aNTa_{1},\dots,a_{N}\in T. Under the isomorphism 𝔰𝔲(2)3\mathfrak{su}(2)\cong{\mathbb{R}}^{3}, the Lie subalgebra of TT corresponds to the subspace spanned by e13\vec{e}_{1}\in{\mathbb{R}}^{3}. Hence, by (5.13),

JV(X¯,Y¯)=i((Xi×Yi)e1)e1.J^{V}(\underline{X},\underline{Y})=\sum_{i}\big{(}(X_{i}\times Y_{i})\cdot\vec{e}_{1}\big{)}\vec{e}_{1}\,. (5.14)

Since the action is Abelian, we may use one of the criteria of Theorem 6.8 in [2] to show that the ideal generated by the functions JBVJ^{V}_{B} with B𝔤a¯B\in\mathfrak{g}_{\underline{a}} in 𝒞(V)\mathcal{C}^{\infty}(V) is a real radical ideal. Then, Theorem 6.3 of that work ensures that the ideal generated by these functions in [V]{\mathbb{R}}[V] is a real radical ideal, too. The criterion provided by Theorem 6.8 we use is that the following condition holds at every point (X¯,Y¯)(JV)1(0)(\underline{X},\underline{Y})\in(J^{V})^{-1}(0).

Nonpositivity condition. For every B𝔤a¯B\in\mathfrak{g}_{\underline{a}}, either JBV=0J^{V}_{B}=0 in some neighbourhood of (X¯,Y¯)(\underline{X},\underline{Y}) in VV or any neighbourhood of (X¯,Y¯)(\underline{X},\underline{Y}) contains points (X¯±,Y¯±)(\underline{X}_{\pm},\underline{Y}_{\pm}) such that JBV(X¯,Y¯)<0J^{V}_{B}(\underline{X}_{-},\underline{Y}_{-})<0 and JBV(X¯+,Y¯+)>0J^{V}_{B}(\underline{X}_{+},\underline{Y}_{+})>0.

Clearly, we may restrict attention to B=e1B=\vec{e}_{1}. Without loss of generality, we may assume that aN±𝟙a_{N}\neq\pm\mathbbm{1}. Then, we may find x\vec{x} in the x2x_{2}-x3x_{3} plane such that

i=1N1(Ad(ai)e2e2)+Ad(aN)xx=0.\sum_{i=1}^{N-1}\big{(}\operatorname{Ad}(a_{i})\vec{e}_{2}-\vec{e}_{2}\big{)}+\operatorname{Ad}(a_{N})\vec{x}-\vec{x}=0\,. (5.15)

Then, denoting the rotation by π/2\pi/2 about the x1x_{1}-axis by RR, we have

i=1N1(Ad(ai)e3e3)+Ad(aN)RxRx=0.\sum_{i=1}^{N-1}\big{(}\operatorname{Ad}(a_{i})\vec{e}_{3}-\vec{e}_{3}\big{)}+\operatorname{Ad}(a_{N})R\vec{x}-R\vec{x}=0\,. (5.16)

Define curves

γ±(t):=(X¯+t(e2,,e2,x),Y¯±t(e3,,e3,Rx)).\gamma_{\pm}(t):=\left(\underline{X}+t(\vec{e}_{2},\dots,\vec{e}_{2},\vec{x}),\underline{Y}\pm t(\vec{e}_{3},\dots,\vec{e}_{3},R\vec{x})\right)\,.

By (5.15) and (5.16), γ±(t)V\gamma_{\pm}(t)\in V for all tt. We compute

JBV(γ±(t))\displaystyle J^{V}_{B}\big{(}\gamma_{\pm}(t)\big{)} =i=1N1((Xi+te2)×(Yi±te3))e1+((XN+tx)×(YN±tRx))e1\displaystyle=\sum_{i=1}^{N-1}\big{(}(X_{i}+t\vec{e}_{2})\times(Y_{i}\pm t\vec{e}_{3})\big{)}\cdot\vec{e}_{1}+\big{(}(X_{N}+t\vec{x})\times(Y_{N}\pm tR\vec{x})\big{)}\cdot\vec{e}_{1}
=α±t±βt2\displaystyle=\alpha_{\pm}t\pm\beta t^{2}

with

α±\displaystyle\alpha_{\pm} =i=1N1(e3Yi±e2Xi)+(e1×x)YN±((Rx)×e1)XN,\displaystyle=\sum_{i=1}^{N-1}(\vec{e}_{3}\cdot Y_{i}\pm\vec{e}_{2}\cdot X_{i})+(\vec{e}_{1}\times\vec{x})\cdot Y_{N}\pm\big{(}(R\vec{x})\times\vec{e}_{1}\big{)}\cdot X_{N}\,,
β\displaystyle\beta =N+x21.\displaystyle=N+\|\vec{x}\|^{2}-1\,.

If α+0\alpha_{+}\neq 0, the zeros of the polynomial α+t+Nt2\alpha_{+}t+Nt^{2} are distinct and hence JBV(γ±(t))J^{V}_{B}\big{(}\gamma_{\pm}(t)\big{)} takes both positive and negative values in any neighbourhood of t=0t=0. A similar argument applies if α0\alpha_{-}\neq 0. Finally, if both α±=0\alpha_{\pm}=0, then JBV(γ+(t))>0J^{V}_{B}\big{(}\gamma_{+}(t)\big{)}>0 and JBV(γ(t))<0J^{V}_{B}\big{(}\gamma_{-}(t)\big{)}<0 for any t0t\neq 0.

This shows that, in the case where a¯\underline{a} has stabilizer TT, the ideal generated by the functions JBVJ^{V}_{B} with B𝔤a¯B\in\mathfrak{g}_{\underline{a}} in 𝒞(V)\mathcal{C}^{\infty}(V) is a real radical ideal.

Stabilizer SU(2){\mathrm{SU}}(2)

Here, a¯ZN\underline{a}\in Z^{N} and hence 𝔤a¯=𝔤3\mathfrak{g}_{\underline{a}}=\mathfrak{g}\equiv{\mathbb{R}}^{3}. Hence, by (5.11) and (5.13),

V=𝔤N𝔤N,JV(X¯,Y¯)=iXi×Yi.V=\mathfrak{g}^{N}\oplus\mathfrak{g}^{N}\,,\qquad J^{V}(\underline{X},\underline{Y})=\sum_{i}X_{i}\times Y_{i}\,. (5.17)

In this case, we have the following

Proposition 5.1.

For every a¯ZN\underline{a}\in Z^{N}, the ideal I(JV)I(J^{V}) is a real radical ideal.

Proof.

Denote JkV:=JVekJ^{V}_{k}:=J^{V}\cdot\vec{e}_{k}. Thus,

JkV(X¯,Y¯)=i(Xi×Yi)ek=iXimYinεmnkJ^{V}_{k}(\underline{X},\underline{Y})=\sum_{i}(X_{i}\times Y_{i})\cdot\vec{e}_{k}=\sum_{i}X_{im}Y_{in}\varepsilon_{mnk}

(summation convention). By letting X¯,Y¯𝔤N\underline{X},\underline{Y}\in\mathfrak{g}_{\mathbb{C}}^{N}, we can extend JkVJ^{V}_{k} to polynomial functions J~kV\tilde{J}^{V}_{k} on VV_{\mathbb{C}}. Let II_{\mathbb{C}} denote the ideal in [V]{\mathbb{C}}[V_{\mathbb{C}}] generated by these extensions.

To prove the assertion, we apply the criterion of Theorem 6.5 in [2] , which states that I(JV)I(J^{V}) is a real radical ideal in [V]{\mathbb{R}}[V] if and only if

  1. 1.

    II_{\mathbb{C}} is radical, meaning that

    I={f[V]:fkI for some k},I_{\mathbb{C}}=\{f\in{\mathbb{C}}[V_{\mathbb{C}}]:f^{k}\in I_{\mathbb{C}}\text{ for some }k\}\,,
  2. 2.

    for every irreducible component WW of the zero locus (J~V)1(0)(\tilde{J}^{V})^{-1}(0) of the J~kV\tilde{J}^{V}_{k}, the real dimension of (the smooth part of) WVW\cap V coincides with the complex dimension of (the smooth part of) WW.

To check these conditions, we apply Theorem 7.8 in [2] , which states that if all WW contain a point (X¯,Y¯)(\underline{X},\underline{Y}) where the differentials (tangent mappings) dJ~kV(X¯,Y¯)\mathrm{d}\tilde{J}^{V}_{k}(\underline{X},\underline{Y}) are linearly independent, then II_{\mathbb{C}} is radical and the complex dimension of WW is 3(2N1)3(2N-1). We compute

dJ~kV(X¯,Y¯)=i(dXi×Yi+Xi×dYi)ek=i((Yi×ek)dXi+(ek×Xi)dYi).\mathrm{d}\tilde{J}^{V}_{k}(\underline{X},\underline{Y})=\sum_{i}(\mathrm{d}X_{i}\times Y_{i}+X_{i}\times\mathrm{d}Y_{i})\cdot\vec{e}_{k}=\sum_{i}\big{(}(Y_{i}\times\vec{e}_{k})\cdot\mathrm{d}X_{i}+(\vec{e}_{k}\times X_{i})\cdot\mathrm{d}Y_{i}\big{)}\ .

Hence, for λ1,λ2,λ3\lambda_{1},\lambda_{2},\lambda_{3}\in{\mathbb{C}},

kλkdJkV(X¯,Y¯)=i(Yi×λ)dXi+(λ×Xi)dYi.\sum_{k}\lambda_{k}\mathrm{d}J^{V}_{k}(\underline{X},\underline{Y})=\sum_{i}(Y_{i}\times\vec{\lambda})\cdot\mathrm{d}X_{i}+(\vec{\lambda}\times X_{i})\cdot\mathrm{d}Y_{i}\,.

This vanishes if and only if

λ×Xi=0 and λ×Yi=0 for all i.\vec{\lambda}\times X_{i}=0~{}\text{ and }~{}\vec{\lambda}\times Y_{i}=0~{}\text{ for all $i$.}

This system of linear equations has a nontrivial solution λ\vec{\lambda} if and only if all XiX_{i} and YiY_{i} are parallel. We check that the subset MV(J~V)1(0)M^{V}\subset(\tilde{J}^{V})^{-1}(0) of points violating this condition is dense. Let (X¯,Y¯)(J~V)1(0)(\underline{X},\underline{Y})\in(\tilde{J}^{V})^{-1}(0) such that all XiX_{i} and YiY_{i} are parallel, i.e., Xi=ξiaX_{i}=\xi_{i}\vec{a} and Yi=υiaY_{i}=\upsilon_{i}\vec{a} with a30\vec{a}\in{\mathbb{C}}^{3}\setminus 0 and ξi,υi\xi_{i},\upsilon_{i}\in{\mathbb{C}}. We construct a curve γ(t)\gamma(t) such that γ(0)=(X¯,Y¯)\gamma(0)=(\underline{X},\underline{Y}) and γ(t)MV\gamma(t)\in M^{V} for all t0t\neq 0. Choose b30\vec{b}\in{\mathbb{C}}^{3}\setminus 0 so that a\vec{a} and b\vec{b} are not parallel. We have to distinguish the following cases. If ξ1,υ20\xi_{1},\upsilon_{2}\neq 0, we put

γ(t):=((X1,tξ1b+(1t)X2,X3,,XN),(tυ2b+(1t)Y1,Y2,Y3,,YN)).\gamma(t):=\big{(}(X_{1},t\xi_{1}\vec{b}+(1-t)X_{2},X_{3},\dots,X_{N}),(t\upsilon_{2}\vec{b}+(1-t)Y_{1},Y_{2},Y_{3},\dots,Y_{N})\big{)}\,.

If ξ10\xi_{1}\neq 0 and υ2=0\upsilon_{2}=0, then

γ(t):=((X1,tξ1b+(1t)X2,X3,,XN),(t2b+(1t)Y1,ta,Y3,,YN))\gamma(t):=\big{(}(X_{1},t\xi_{1}\vec{b}+(1-t)X_{2},X_{3},\dots,X_{N}),(t^{2}\vec{b}+(1-t)Y_{1},t\vec{a},Y_{3},\dots,Y_{N})\big{)}

and analogously for ξ1=0\xi_{1}=0 and υ20\upsilon_{2}\neq 0. Finally, if ξ1=υ2=0\xi_{1}=\upsilon_{2}=0, then

γ(t):=((ta,tb+(1t)X2,X3,,XN),(tb+(1t)Y1,ta,Y3,,YN)).\gamma(t):=\big{(}(t\vec{a},t\vec{b}+(1-t)X_{2},X_{3},\dots,X_{N}),(t\vec{b}+(1-t)Y_{1},t\vec{a},Y_{3},\dots,Y_{N})\big{)}\,.

We leave it to the reader to check that in each case, J~V(γ(t))=0\tilde{J}^{V}\big{(}\gamma(t)\big{)}=0 for all tt. Then, γ(t)MV\gamma(t)\in M^{V} for all t0t\neq 0.

As a consequence, Theorem 7.8 in [2] cited above yields that II_{\mathbb{C}} is radical and that the irreducible components of (J~V)1(0)(\tilde{J}^{V})^{-1}(0) have complex dimension 3(2N1)3(2N-1). In view of Theorem 6.5 in [2] cited above, to prove the assertion it remains to show that for all irreducible components WW of (J~V)1(0)(\tilde{J}^{V})^{-1}(0), the real dimension of WVW\cap V is 3(2N1)3(2N-1), too. Now, WVW\cap V is an irreducible component of (JV)1(0)(J^{V})^{-1}(0) and the argument showing that MVM^{V} is dense in (J~V)1(0)(\tilde{J}^{V})^{-1}(0) applies without change to the subset of (JV)1(0)(J^{V})^{-1}(0) of points (X¯,Y¯)(\underline{X},\underline{Y}), where the differentials dJkV\mathrm{d}J^{V}_{k} are linearly independent. This yields the assertion. ∎

5.2 The acyclicity condition

We apply Theorem 3.1 in [13]. According to this theorem, if the generating hypothesis is satisfied, a sufficient condition for the acyclicity condition to hold is that the set of points (a¯,A¯)(\underline{a},\underline{A}) where J(a¯,A¯)J^{\prime}_{(\underline{a},\underline{A})} is surjective is dense in J1(0)J^{-1}(0). To check this, we need the following lemma. Given aGa\in G, let C𝔤(a)\mathrm{C}_{\mathfrak{g}}(a) denote the centralizer of aa in 𝔤\mathfrak{g}, i.e.,

C𝔤(a):={X𝔤:Ad(a)X=X}.\mathrm{C}_{\mathfrak{g}}(a):=\{X\in\mathfrak{g}:\operatorname{Ad}(a)X=X\}\,.
Lemma 5.2.

The orthogonal complement of im(J(a¯,A¯))\operatorname{im}\big{(}J^{\prime}_{(\underline{a},\underline{A})}\big{)} in 𝔤\mathfrak{g} is

(iC𝔤(ai))(iC𝔤(Ad(ai)Ai)).\left(\bigcap\nolimits_{i}\mathrm{C}_{\mathfrak{g}}(a_{i})\right)\cap\left(\bigcap\nolimits_{i}\mathrm{C}_{\mathfrak{g}}\big{(}\operatorname{Ad}(a_{i})A_{i}\big{)}\right)\,.
Proof.

We compute

J(a¯,A¯)(La¯X¯,Y¯)=i(Ad(ai)[Xi,Ai]+Ad(ai)YiYi).J^{\prime}_{(\underline{a},\underline{A})}(\mathrm{L}_{\underline{a}}^{\prime}\underline{X},\underline{Y})=\sum_{i}\big{(}\operatorname{Ad}(a_{i})[X_{i},A_{i}]+\operatorname{Ad}(a_{i})Y_{i}-Y_{i}\big{)}\ .

Hence, B𝔤B\in\mathfrak{g} is orthogonal to im(J(a¯,A¯))\operatorname{im}\big{(}J^{\prime}_{(\underline{a},\underline{A})}\big{)} if and only if

i(Ad(ai)[Xi,Ai]+Ad(ai)YiYi,B)=0 for all X¯,Y¯𝔤N.\left\langle\sum\nolimits_{i}\big{(}\operatorname{Ad}(a_{i})[X_{i},A_{i}]+\operatorname{Ad}(a_{i})Y_{i}-Y_{i},B\big{)}\right\rangle=0~{}\text{ for all }~{}\underline{X},\underline{Y}\in\mathfrak{g}^{N}\,.

This is equivalent to

Ad(ai)[Xi,Ai],B\displaystyle\left\langle\operatorname{Ad}(a_{i})[X_{i},A_{i}],B\right\rangle =Xi,[Ai,Ad(ai1)B]=0 for all Xi𝔤,\displaystyle=\left\langle X_{i},[A_{i},\operatorname{Ad}(a_{i}^{-1})B]\right\rangle=0~{}\text{ for all }~{}X_{i}\in\mathfrak{g}\,,
Ad(ai)YiYi,B\displaystyle\left\langle\operatorname{Ad}(a_{i})Y_{i}-Y_{i},B\right\rangle =Yi,Ad(ai1)BB]=0 for all Yi𝔤,\displaystyle=\left\langle Y_{i},\operatorname{Ad}(a_{i}^{-1})B-B]\right\rangle=0~{}\text{ for all }~{}Y_{i}\in\mathfrak{g}\,,

that is, to

[Ad(ai)Ai,B]=0 and Ad(ai)B=B for all i.[\operatorname{Ad}(a_{i})A_{i},B]=0~{}\text{ and }~{}\operatorname{Ad}(a_{i})B=B~{}\text{ for all }~{}i\,.

This yields the assertion. ∎

Now, as before, let G=SU(2)G={\mathrm{SU}}(2) and let TSU(2)T\subset{\mathrm{SU}}(2) denote the subgroup of diagonal matrices.

Lemma 5.3.

Let a1,a2T{±𝟙}a_{1},a_{2}\in T\setminus\{\pm\mathbbm{1}\}. For every B1𝔤B_{1}\in\mathfrak{g}, there exists B2𝔤B_{2}\in\mathfrak{g} such that Ad(a1)B1B1+Ad(a2)B2B2=0\operatorname{Ad}(a_{1})B_{1}-B_{1}+\operatorname{Ad}(a_{2})B_{2}-B_{2}=0.

Proof.

We identify the adjoint action of GG on 𝔤\mathfrak{g} in the usual way with the action on 3{\mathbb{R}}^{3} defined via the covering homomorphism SU(2)SO(3){\mathrm{SU}}(2)\to{\mathrm{SO}}(3). Then, the Lie subalgebra 𝔱\mathfrak{t} associated with TT is given by the x1x_{1}-axis and the linear transformations Ad(a)\operatorname{Ad}(a) with aTa\in T correspond bijectively to the rotations about this axis. If Ad(a1)B1B1=0\operatorname{Ad}(a_{1})B_{1}-B_{1}=0, we may choose B2=0B_{2}=0. Otherwise, B1𝔱B_{1}\notin\mathfrak{t} and hence also Ad(a2)B1B10\operatorname{Ad}(a_{2})B_{1}-B_{1}\neq 0. Since both Ad(a1)B1B1\operatorname{Ad}(a_{1})B_{1}-B_{1} and Ad(a2)B1B1\operatorname{Ad}(a_{2})B_{1}-B_{1} belong to the x2x_{2}-x3x_{3}-plane, there is aTa\in T such that

Ad(a1)B1B1=λAd(a)(Ad(a2)B1B1).\operatorname{Ad}(a_{1})B_{1}-B_{1}=\lambda\operatorname{Ad}(a)(\operatorname{Ad}(a_{2})B_{1}-B_{1})\,.

Putting B2:=λAd(a)B1B_{2}:=-\lambda\operatorname{Ad}(a)B_{1}, we obtain the desired result. ∎

Proposition 5.4.

For G=SU(2)G={\mathrm{SU}}(2), the acyclicity condition is satisfied.

Proof.

As noted above, in view of Theorem 3.1 in [13], it suffices to check that the set of points (a¯,A¯)(\underline{a},\underline{A}) where J(a¯,A¯)J^{\prime}_{(\underline{a},\underline{A})} is surjective is dense in J1(0)J^{-1}(0) . In view of Lemma 5.2, J(a¯,A¯)J^{\prime}_{(\underline{a},\underline{A})} is surjective if and only if

I(a¯,A¯):=(iC𝔤(ai))(iC𝔤(Ad(ai)Ai))I(\underline{a},\underline{A}):=\left(\bigcap\nolimits_{i}\mathrm{C}_{\mathfrak{g}}(a_{i})\right)\cap\left(\bigcap\nolimits_{i}\mathrm{C}_{\mathfrak{g}}\big{(}\operatorname{Ad}(a_{i})A_{i}\big{)}\right)

vanishes. Let (a¯,A¯)J1(0)(\underline{a},\underline{A})\in J^{-1}(0) be given. The subspace I(a¯,A¯)I(\underline{a},\underline{A}) can be 0, 𝔱\mathfrak{t} or 𝔤\mathfrak{g}. In the first case, nothing has to be shown. In the other two cases, we will construct a path tA¯(t)t\mapsto\underline{A}(t) such that

A¯(0)=A¯,(a¯,A¯(t))J1(0)t,I(a¯,A¯(t))=0t0.\underline{A}(0)=\underline{A}\,,\qquad(\underline{a},\underline{A}(t))\in J^{-1}(0)~{}~{}\forall~{}t\,,\qquad I(\underline{a},\underline{A}(t))=0~{}~{}\forall~{}t\neq 0\,. (5.18)

This will yield the assertion. In case I(a¯,A¯)=𝔤I(\underline{a},\underline{A})=\mathfrak{g}, one has ai=±𝟙a_{i}=\pm\mathbbm{1} and Ai=0A_{i}=0 for all ii. There exist B1B_{1}, B2𝔤B_{2}\in\mathfrak{g} such that C𝔤(B1)C𝔤(B2)=0\mathrm{C}_{\mathfrak{g}}(B_{1})\cap\mathrm{C}_{\mathfrak{g}}(B_{2})=0. Define

A¯(t):=(tB1,tB2,0,,0),t.\underline{A}(t):=(tB_{1},tB_{2},0,\dots,0)\,,\qquad t\in{\mathbb{R}}\,.

In case I(a¯,A¯)=𝔱I(\underline{a},\underline{A})=\mathfrak{t}, one has aiTa_{i}\in T and Ai𝔱A_{i}\in\mathfrak{t} for all ii. Then, Ad(ai)Ai=Ai\operatorname{Ad}(a_{i})A_{i}=A_{i} for all ii. If ai=±𝟙a_{i}=\pm\mathbbm{1} for all ii, then iC𝔤(ai)=𝔤\bigcap\nolimits_{i}\mathrm{C}_{\mathfrak{g}}(a_{i})=\mathfrak{g}, so for some jj we must have C𝔤(Aj)=𝔱\mathrm{C}_{\mathfrak{g}}(A_{j})=\mathfrak{t}. Assuming without loss of generality that j=1j=1, we may choose B𝔤𝔱B\in\mathfrak{g}\setminus\mathfrak{t} and put

A¯(t):=(A1,A2+tB,A3,,AN),t.\underline{A}(t):=(A_{1},A_{2}+tB,A_{3},\dots,A_{N})\,,\qquad t\in{\mathbb{R}}\,. (5.19)

Then, I(a¯,A¯(t))C𝔤(A1)C𝔤(A2+tB)={0}I(\underline{a},\underline{A}(t))\subset\mathrm{C}_{\mathfrak{g}}(A_{1})\cap\mathrm{C}_{\mathfrak{g}}(A_{2}+tB)=\{0\} for all t0t\neq 0. If there are jj such that aj±𝟙a_{j}\neq\pm\mathbbm{1} and kk such that ak=±𝟙a_{k}=\pm\mathbbm{1}, then, assuming j=1j=1 and k=2k=2, we may choose B𝔤𝔱B\in\mathfrak{g}\setminus\mathfrak{t} and define A(t)A(t) by (5.19). Then, I(a¯,A¯(t))C𝔤(a1)C𝔤(A2+tB)={0}I(\underline{a},\underline{A}(t))\subset\mathrm{C}_{\mathfrak{g}}(a_{1})\cap\mathrm{C}_{\mathfrak{g}}(A_{2}+tB)=\{0\} for all t0t\neq 0. Finally, if ai±𝟙a_{i}\neq\pm\mathbbm{1} for all ii, then we may choose B1𝔤𝔱B_{1}\in\mathfrak{g}\setminus\mathfrak{t}, apply Lemma 5.3 to find B2B_{2} such that Ad(a1)B1B1+Ad(a2)B2B2=0\operatorname{Ad}(a_{1})B_{1}-B_{1}+\operatorname{Ad}(a_{2})B_{2}-B_{2}=0, and put

A¯(t):=(A1+tB1,A2+tB2,A3,,AN),t.\underline{A}(t):=(A_{1}+tB_{1},A_{2}+tB_{2},A_{3},\dots,A_{N})\,,\qquad t\in{\mathbb{R}}\,.

Clearly, A1+Ad(a1)B1𝔱A_{1}+\operatorname{Ad}(a_{1})B_{1}\notin\mathfrak{t}. Thus, I(a¯,A¯(t))C𝔤(a1)C𝔤(A1+tB)={0}I(\underline{a},\underline{A}(t))\subset\mathrm{C}_{\mathfrak{g}}(a_{1})\cap\mathrm{C}_{\mathfrak{g}}(A_{1}+tB)=\{0\} for all t0t\neq 0. ∎

5.3 Invariance conditions

In this subsection, we check the invariance and covariance conditions introduced in subsection 4.4. In the sequel, we assume that GG is connected.

Concerning the invariance condition, we have the following well-known criterion, see [34, 59, 9].

Proposition 5.5.

Let (M,ω,𝔤)(M,\omega,\mathfrak{g}) be a symplectic 𝔤\mathfrak{g}-manifold, \nabla a torsion-free, symplectic connection on MM and ΩνZ2(M)[[ν]]\Omega\in\nu Z^{2}(M)[[\nu]] a series of closed two-forms. Then, the star-product constructed from these data is 𝔤\mathfrak{g}-invariant if and only if \nabla and Ω\Omega are 𝔤\mathfrak{g}-invariant.

By the assumption of connectedness of GG, we obtain the corresponding statement for the GG-action. In the case at hand we have Ω=0\Omega=0 and, by Proposition 3.5, the lifted connection is GG-invariant. This implies the following.

Corollary 5.6.

The Fedosov star product of the standard ordered type is GG-invariant.

Remark 5.7.

Using the concrete form of the family of bi-differential operators BB derived in Subsection 3.4, one can check the GG-invariance of the star product also by direct inspection. We leave this as an exercise to the reader.

Covariance will be implied by the following lemma.

Lemma 5.8.

For B𝔤B\in\mathfrak{g} and fC(TGN)f\in C^{\infty}(\mathrm{T}^{\ast}G^{N}), we have

JBffJB=iλ{f,JB}+O(λ2),J_{B}\star f-f\star J_{B}=\mathrm{i}\lambda\{f,J_{B}\}+O(\lambda^{2})\,,

where in case ff is fiber-homogeneous of order nn, the highest order in λ\lambda is λn\lambda^{n}.

Proof.

We observe that according to (3.20), the function JBJ_{B} is linear in the fiber variable α¯\underline{\alpha}. Hence, (0,ε¯I)(0,ε¯K)(E¯I1,0)(E¯Ir,0)JB=0(0,\underline{\varepsilon}^{I})(0,\underline{\varepsilon}^{K})(\underline{E}_{I_{1}},0)\cdots(\underline{E}_{I_{r}},0)J_{B}=0 for any II, KK and I1,,IrI_{1},\dots,I_{r}. As a consequence, in the expansions (3.42) of JBfJ_{B}\star f and of fJBf\star J_{B}, only the contributions of B0B_{0} and B1B_{1} survive. Thus,

JB\displaystyle J_{B} ffJB\displaystyle\star f-f\star J_{B}
=\displaystyle= λi(B1(JB,f)B1(f,JB)+B0((0,ε¯I)JB,(E¯I,0)f)B0((0,ε¯I)f,(E¯I,0)JB))\displaystyle\frac{\lambda}{\mathrm{i}}\bigg{(}B_{1}(J_{B},f)-B_{1}(f,J_{B})+B_{0}\big{(}(0,\underline{\varepsilon}^{I})J_{B},(\underline{E}_{I},0)f\big{)}-B_{0}\big{(}(0,\underline{\varepsilon}^{I})f,(\underline{E}_{I},0)J_{B}\big{)}\bigg{)}
m=2(λi)m(1(m1)!B1((0,ε¯I1)(0,ε¯Im1)f,(E¯I1,0)(E¯Im1,0)JB)\displaystyle-\sum_{m=2}^{\infty}\left(\frac{\lambda}{\mathrm{i}}\right)^{m}\left(\frac{1}{(m-1)!}B_{1}\big{(}(0,\underline{\varepsilon}^{I_{1}})\cdots(0,\underline{\varepsilon}^{I_{m-1}})f,(\underline{E}_{I_{1}},0)\cdots(\underline{E}_{I_{m-1}},0)J_{B}\big{)}\right.
+1m!B0((0,ε¯I1)(0,ε¯Im)f,(E¯I1,0)(E¯Im,0)JB)).\displaystyle\hskip 85.35826pt+\left.\frac{1}{m!}B_{0}\big{(}(0,\underline{\varepsilon}^{I_{1}})\cdots(0,\underline{\varepsilon}^{I_{m}})f,(\underline{E}_{I_{1}},0)\cdots(\underline{E}_{I_{m}},0)J_{B}\big{)}\right)\,.

Clearly, if ff is fiber-homogeneous of order nn, the sum over mm runs up to m=nm=n. Consider the contributions of first order in λ\lambda. The formulae for B0B_{0} and B1B_{1} given in Remark 3.11 yield

JBffJB\displaystyle J_{B}\star f-f\star J_{B} =λi(((0,ε¯I)JB)((E¯I,0)f)((0,ε¯I)f)((E¯I,0)JB)\displaystyle=\frac{\lambda}{\mathrm{i}}\bigg{(}\big{(}(0,\underline{\varepsilon}^{I})J_{B}\big{)}\cdot\big{(}(\underline{E}_{I},0)f\big{)}-\big{(}(0,\underline{\varepsilon}^{I})f\big{)}\cdot\big{(}(\underline{E}_{I},0)J_{B}\big{)}
+[E¯I,E¯K]((0,ε¯I)JB)((0,ε¯K)f))+O(λ2).\displaystyle\hskip 28.45274pt+[\underline{E}_{I},\underline{E}_{K}]^{\sim}\cdot\big{(}(0,\underline{\varepsilon}^{I})J_{B}\big{)}\cdot\big{(}(0,\underline{\varepsilon}^{K})f\big{)}\bigg{)}+O(\lambda^{2})\,.

On the other hand, expanding the partial differentials dGf\mathrm{d}_{G}f and d𝔤f\mathrm{d}_{\mathfrak{g}^{\ast}}f defined by (3.15) wrt. the bases {ε¯I}\{\underline{\varepsilon}^{I}\} in (𝔤)N(\mathfrak{g}^{\ast})^{N} and {E¯I}\{\underline{E}_{I}\} in 𝔤N\mathfrak{g}^{N}, we find

dGf=((E¯I,0)f)ε¯I,d𝔤f=((0,ε¯I)f)E¯I.\mathrm{d}_{G}f=\big{(}(\underline{E}_{I},0)f\big{)}\underline{\varepsilon}^{I}\,,\qquad\mathrm{d}_{\mathfrak{g}^{\ast}}f=\big{(}(0,\underline{\varepsilon}^{I})f\big{)}\underline{E}_{I}\,.

Then,

[d𝔤JB,d𝔤f]=((0,ε¯I)JB)((0,ε¯K)f)[E¯I,E¯K][\mathrm{d}_{\mathfrak{g}^{\ast}}J_{B},\mathrm{d}_{\mathfrak{g}^{\ast}}f]=\big{(}(0,\underline{\varepsilon}^{I})J_{B}\big{)}\cdot\big{(}(0,\underline{\varepsilon}^{K})f\big{)}[\underline{E}_{I},\underline{E}_{K}]

and (3.19) yields

{JB,f}\displaystyle\{J_{B},f\} =((E¯I,0)f)((0,ε¯I)JB)((E¯I,0)JB)((0,ε¯I)f)\displaystyle=\big{(}(\underline{E}_{I},0)f\big{)}\cdot\big{(}(0,\underline{\varepsilon}^{I})J_{B}\big{)}-\big{(}(\underline{E}_{I},0)J_{B}\big{)}\cdot\big{(}(0,\underline{\varepsilon}^{I})f\big{)}
+((0,ε¯I)JB)((0,ε¯K)f)[E¯I,E¯K].\displaystyle\hskip 28.45274pt+\big{(}(0,\underline{\varepsilon}^{I})J_{B}\big{)}\cdot\big{(}(0,\underline{\varepsilon}^{K})f\big{)}\cdot[\underline{E}_{I},\underline{E}_{K}]^{\sim}\,.

This yields the assertion. ∎

Proposition 5.9.

The Fedosov star product of the standard ordered type is covariant.

Proof.

We have to show that

JBJCJCJB=iλJ[B,C]J_{B}\star J_{C}-J_{C}\star J_{B}=\mathrm{i}\lambda J_{[B,C]}

for all B,C𝔤B,C\in\mathfrak{g}. Since both JBJ_{B} and JCJ_{C} are linear in the fiber variable, Lemma 5.9 yields

JBJCJCJB=iλ{JC,JB}.J_{B}\star J_{C}-J_{C}\star J_{B}=\mathrm{i}\lambda\{J_{C},J_{B}\}\,.

Since JJ is equivariant, {JC,JB}=J[B,C]\{J_{C},J_{B}\}=J_{[B,C]}, cf. eg. [66, Prop. 10.1.14]. ∎

To summarize, the standard ordered Fedosov star product on 𝒞(TGN)\mathcal{C}^{\infty}(T^{*}G^{N}) is invariant and covariant for G=SU(2)G={\mathrm{SU}}(2), but by Lemma 5.8 it is not necessarily strongly invariant. Combining this with the fact that conditions (GH) and (AC) are satisfied, Theorems 4.17 and 4.19 can be applied in this situation, but not Corollary 4.18. More precisely, one concludes the following.

Corollary 5.10.

Let G=SU(2)G={\mathrm{SU}}(2) and (TGN,ω,Ψ¯,J)(T^{*}G^{N},\omega,\underline{\Psi},J) be the associated lattice gauge model. Then the standard ordered Fedosov star product \star on 𝒞(TGN)\mathcal{C}^{\infty}(T^{*}G^{N}) gives rise to a star product \ast on the quantized BRST algebra which then, after appropriate choices of an extension map 𝖾\mathsf{e}, a homotopy hh and deformations 𝗿\bm{\mathsf{r}} and 𝐡\bm{h} of the restriction map and homotopy, respectively, induces a star product ~\tilde{\star} on H0(𝔤,𝒞(TGN)[[λ]])H^{0}(\mathfrak{g},\mathcal{C}^{\infty}(T^{*}G^{N})[[\lambda]]) by

f~g=𝗿(𝖾(f)𝖾(g))for f,gZ0(𝔤,𝒞(TGN)[[λ]]).f\,\tilde{\star}\,g=\bm{\mathsf{r}}(\mathsf{e}(f)\ast\mathsf{e}(g))\quad\text{for }f,g\in Z^{0}(\mathfrak{g},\mathcal{C}^{\infty}(T^{*}G^{N})[[\lambda]])\ .

Moreover, there exists a star product ^\hat{\star} on the reduced phase space TGN//GT^{*}G^{N}/\!/G of the form

f^g=S1(S(f)~S(g))for f,g𝒞(TGN//G)𝒞(TG0N)G,f\,\hat{\star}\,g=S^{-1}(S(f)\,\tilde{\star}\,S(g))\quad\text{for }f,g\in\mathcal{C}^{\infty}(T^{*}G^{N}/\!/G)\cong\mathcal{C}^{\infty}(T^{*}G^{N}_{0})^{G}\ ,

where S:𝒞(TG0N)G[[λ]]H0(𝔤,𝒞(TG0N)[[λ]])S:\mathcal{C}^{\infty}(T^{*}G^{N}_{0})^{G}[[\lambda]]\to H^{0}(\mathfrak{g},\mathcal{C}^{\infty}(T^{*}G^{N}_{0})[[\lambda]]) is a topological linear isomorphism onto H0(𝔤,𝒞(TG0N)[[λ]])𝒞(TG0N)[[λ]]H^{0}(\mathfrak{g},\mathcal{C}^{\infty}(T^{*}G^{N}_{0})[[\lambda]])\subset\mathcal{C}^{\infty}(T^{*}G^{N}_{0})[[\lambda]] of the form S=kλkSkS=\sum_{k\in\mathbb{N}}\lambda^{k}S_{k} with Sk:𝒞(TG0N)𝒞(TG0N)S_{k}:\mathcal{C}^{\infty}(T^{*}G^{N}_{0})\to\mathcal{C}^{\infty}(T^{*}G^{N}_{0}) continuous linear.

6 Outlook

There is a variety of challenging open problems which may be subject to future work:

  1. 1.

    Clearly, the star product on the reduced phase space is given in a complicated implicit way. To make it more explicit, one has to study the deformation retract structure entering the whole construction in more detail.

  2. 2.

    The model under consideration carries a natural Kähler structure. Thus, it will be interesting to derive the corresponding star product of Wick type. Moreover, it will be easy to find the star product of Weyl type. Thereafter, it will be possible to compare the properties of these products with the star product of standard order type dealt with in this paper.

  3. 3.

    One should try to extend the results of Section 5 to other Lie groups, notably to SU(n){\mathrm{SU}}(n) for n>2n>2. In particular, it would be interesting to find examples for which the conditions (GH) and (AC) are not fulfilled. These are nontrivial tasks, because in each new case one deals with a new, different stratified structure and, thus, it seems to be hard to find general arguments. Moreover, it is likely that in some cases (GH) will be fulfilled, but (AC) not, or even the other way around. For the analysis of Condition (GH) it is crucial to study the ideal generated by the components of the linearized moment map JVJ^{V} for various Lie groups or classes of Lie groups to see whether it is radical or not. This should be possible by means of real algebraic geometry. If (GH) is fulfilled, then by Theorem 3.1 in [11], checking condition (AC) boils down to checking that the set of points for which the tangent mapping of the moment map is surjective is dense in the zero level set of the moment map. In case Condition (AC) is not satisfied, there is no finite resolution of the classical observable algebra of the reduced phase space (as a module of the observable algebra of the unreduced space), but there still is a resolution of inifinite length, namely the Koszul–Tate resolution [3]. This method already has proved a powerful tool in the quantization of gauge theories [4]. One can expect that it will be one too for quantized homological reduction where Condition (AC) is not satisfied.

  4. 4.

    Our paper deals with formal deformation quantization only. It is a challenge to clarify whether the homological reduction method may be developed for strict deformation quantization (see e.g. [53]) as well. As already mentioned in the introduction, this would make it possible to compare the quantum observable algebra structure obtained here with the observable algebra obtained via canonical quantization described above in closer terms. It appears to be promising to use methods from complex analysis as they were used in [69] for a strict quantization of coadjoint orbits.

Appendix A Tools from homological algebra

For the convenience of the reader we recall here some examples of complexes from homological algebra which are crucial for our paper and the fundamental concepts of homological perturbation theory. For more details on the former we refer the reader to [38, 27, 74], for the latter to [72, 52, 19].

Example A.1.

Let RR be a unital ring. Then every (ungraded) RR-module MM can be understood as a cochain complex MM^{\bullet} concentrated in degree 0 by putting

Mk={Mfor k=0,0else.M^{k}=\begin{cases}M&\text{for }k=0,\\ 0&\text{else.}\end{cases}

Likewise one constructs the chain complex MM_{\bullet} concentrated in degree 0.

Example A.2.

Let RR be a commutative ring, EE a free RR-module of finite rank dd, and x:ERx:E\to R an RR-linear map. Then the Koszul complex on xx is the chain complex of RR-modules

K(x):0RΛ1EΛ2EΛdE0,K_{\bullet}(x):0\longleftarrow R\overset{\partial}{\longleftarrow}\Lambda^{1}E\overset{\partial}{\longleftarrow}\Lambda^{2}E\ \overset{\partial}{\longleftarrow}\ldots\overset{\partial}{\longleftarrow}\Lambda^{d}E\longleftarrow 0\ ,

where the Koszul differential :ΛkEΛk1E\partial:\Lambda^{k}E\to\Lambda^{k-1}E is given by

(e1ek)=l=1kx(el)e1el^ekfor all e1,ekE.\partial(e_{1}\wedge\ldots\wedge e_{k})=\sum_{l=1}^{k}x(e_{l})\,e_{1}\wedge\ldots\wedge\widehat{e_{l}}\wedge\ldots\wedge e_{k}\quad\text{for all }e_{1}\ldots,e_{k}\in E\ .

Under an isomorphism ERdE\cong R^{d}, the map xx can be identified with a sequence x1,xdx_{1},\ldots x_{d} of RR-linear maps xl:RRx_{l}:R\to R. It is a classical result in commutative algebra that the Koszul complex K(x)K_{\bullet}(x) is acyclic if x1,xdx_{1},\ldots x_{d} is a regular sequence that is if xlx_{l} is a not a zero-divisor on R/(x1,,xl1)R/(x_{1},\ldots,x_{l-1}) for l=1,,dl=1,\ldots,d. In this case, H0(K(x))H_{0}(K_{\bullet}(x)) coincides with the quotient ring S=R/(x1,,xd)S=R/(x_{1},\ldots,x_{d}), and the Koszul complex is a free resolution of SS in the category of RR-modules.

Example A.3.

Let 𝔤\mathfrak{g} be a Lie algebra and VV a 𝔤\mathfrak{g}-module. The Chevalley–Eilenberg complex (CE(𝔤,V),δ)\left(\operatorname{CE}^{\bullet}(\mathfrak{g},V),\delta\right) then is the cochain complex

CE(𝔤,V)=Hom(Λk𝔤,V):0N𝛿V𝔤VΛ𝔤0\operatorname{CE}^{\bullet}(\mathfrak{g},V)=\operatorname{Hom}\left(\Lambda^{k}\mathfrak{g},V\right):0\rightarrow N\overset{\delta}{\rightarrow}V\otimes\mathfrak{g}^{*}\rightarrow\ldots\rightarrow V\otimes\Lambda^{\ell}\mathfrak{g}^{*}\rightarrow 0

with the Chevalley–Eilenberg coboundary δ:CEk(𝔤,V)CEk+1(𝔤,V)\delta:\operatorname{CE}^{k}(\mathfrak{g},V)\to\operatorname{CE}^{k+1}(\mathfrak{g},V) given by

δf(X1,,Xk+1)=1ik+1(1)i+1Xif(X1,,X^i,,Xk+1)+1i<jk+1(1)i+jf([Xi,Xj],X1,,X^i,X^j,,Xk+1),\begin{split}\delta f\,(X_{1},\ldots,X_{k+1})=\,&\sum_{1\leq i\leq k+1}(-1)^{i+1}X_{i}\cdot f(X_{1},\ldots,\widehat{X}_{i},\ldots,X_{k+1})\\ &+\sum_{1\leq i<j\leq k+1}(-1)^{i+j}f([X_{i},X_{j}],X_{1},\ldots,\widehat{X}_{i},\ldots\widehat{X}_{j},\ldots,X_{k+1})\ ,\end{split}

for all fCEk(𝔤,V)f\in\operatorname{CE}^{k}(\mathfrak{g},V) and X1,,Xk+1𝔤X_{1},\ldots,X_{k+1}\in\mathfrak{g}. Chevalley and Eilenberg showed in [18] that δ2=0\delta^{2}=0, so (CE(𝔤,V),δ)\big{(}\operatorname{CE}^{\bullet}(\mathfrak{g},V),\delta\big{)} is a cochain complex indeed. Its cohomology is the Lie algebra cohomology of 𝔤\mathfrak{g} with values in the 𝔤\mathfrak{g}-module VV and is denoted H(𝔤,V)H^{\bullet}(\mathfrak{g},V). Note that H0(𝔤,V)H^{0}(\mathfrak{g},V) coincides with the invariant part V𝔤V^{\mathfrak{g}}.

Of particular importance for our considerations is the following concept.

Definition A.4 (cf. [19, 2.1 & 2.3]).

By a deformation retract one understands a triple (i,p,h)(i,p,h) consisting of a quasi-isomorphism of cochain complexes i:(C,δ)(D,d)i:(C^{\bullet},\delta)\to(D^{\bullet},d), a quasi-inverse p:(D,d)(C,δ)p:(D^{\bullet},d)\to(C^{\bullet},\delta) so that pi=idCp\circ i=\operatorname{id}_{C^{\bullet}} and a degree 1-1 graded map h=(hk)kh=(h^{k})_{k\in\mathbb{Z}} which is a chain homotopy from ipi\circ p to idC\operatorname{id}_{C^{\bullet}} that is which satisfies

ipid=hd+dh.i\circ p-\operatorname{id}=h\circ d+d\circ h\ .

One usually denotes a deformation retract in the form

((C,δ)𝑝𝑖(D,d),h).\left((C^{\bullet},\delta)\overset{i}{\underset{p}{\rightleftarrows}}(D^{\bullet},d),h\right)\ . (A.1)

A deformation retract (i,p,h)(i,p,h) is called special if the conditions

hh=0,hi=0,ph=0,h\circ h=0\ ,\quad h\circ i=0\ ,\quad p\circ h=0\ , (A.2)

are satisfied. Sometimes these conditions are referred to as side conditions 1, 2, and 3, respectively.

Note that by properly changing the homotopy hh of a deformation retract one can achieve that the three side conditions hold true, see [52].

In homological perturbation theory [52, 19, 41, 42] one studies the behavior of a deformation retract (i,p,h)(i,p,h) under perturbation. By the latter one understands a differential D:DD\textsf{D}:D^{\bullet}\to D^{\bullet} of the form D=d+t\textsf{D}=d+t which means that tt is a graded map of the same degree as dd and (d+t)2=0(d+t)^{2}=0.

Perturbation Lemma A.5.

Let ((C,δ)𝑝𝑖(D,d),h)\left((C^{\bullet},\delta)\overset{i}{\underset{p}{\rightleftarrows}}(D^{\bullet},d),h\right) be a deformation retract of filtered complexes satisfying side condition (3) and D=d+t\textsf{D}=d+t a perturbation. Assume that τ:=pti\tau:=pti satisfies τp=pt\tau p=pt and that th+htth+ht raises the filtration. Then id+th+ht\operatorname{id}+\,th+ht is invertible, Δ=δ+τ\Delta=\delta+\tau is a differential on CC^{\bullet} and

((C,Δ)𝑝i(D,D),H)\left((C^{\bullet},\Delta)\overset{\textsf{i}}{\underset{p}{\rightleftarrows}}(D^{\bullet},\textsf{D}),H\right) (A.3)

is a deformation retract with H=h(id+th+ht)1H=h(\operatorname{id}+th+ht)^{-1} and i=iH(tiiτ)\textsf{i}=i-H(ti-i\tau). If all side conditions hold for (i,p,h)(i,p,h), then they hold for (A.3).

Proof.

See the appendix of [13]. ∎

There exists a number of variants of the perturbation lemma for which we refer to the literature, in particular to [13, Lemmata A.1 & A.2] and [19, 2.4 & 3.2].

Remark A.6.

All of the above definitions and constructions can be performed when replacing the category of RR-modules by an arbitrary abelian category or, with some additional care, by an additive subcategory of an abelian category. This is of relevance for homological reduction since there one essentially works within the category of Fréchet spaces which is an additive but not abelian subcategory of the abelian category of vector spaces over the field of real respectively complex numbers. In particular this means that the kk-th (co)homology of a complex of Fréchet spaces might not be a Fréchet space again. But in any case it is still a vector space equipped with a compatible (possibly non-Hausdorff) vector space topology. In our construction of homological reduction and quantization we will point out this issue when necessary.

References

  • [1] R. Abraham, J.E. Marsden: Foundations of Mechanics, 2nd ed., Addison-Wesley Publishing Company, 1978.
  • [2] J. Arms, M. Gotay, G. Jennings: Geometric and algebraic reduction for singular momentum maps, Adv. Math. 79, no.1, 43–103 (1990).
  • [3] L.L. Avramov: Infinite Free Resolutions, in Six Lectures on Commutative Algebra, ed. by J. Elias et al., Springer Basel AG 1998.
  • [4] G. Barnich, F. Brandt, M. Henneaux: Local BRST cohomology in gauge theories, Phys. Rep. 338 (2000), no. 5, 439–569.
  • [5] I.A. Batalin, E.S. Fradkin: A generalized canonical formalism and quantization of reducible gauge theories, Phys. Lett. 122B (1983), 157–164.
  • [6] I.A. Batalin, G.S. Vilkovisky: Relativistic S-matrix of dynamical systems with boson and fermion constraints, Phys. Lett. 69B (1977), 309–312.
  • [7] I.A. Batalin, G.S. Vilkovisky: Quantization of gauge theories with linearly dependent generators, Phys. Rev. D 28 (1983), 2567–2582.
  • [8] I.A. Batalin, G.S. Vilkovisky: Existence theorem for gauge algebra, J. Math. Phys. 26 (1985), 172–184.
  • [9] M. Bertelson, P. Bieliavsky, S. Gutt: Parametrizing equivalence classes of invariant star products, Lett. Math. Phys. 46 (1998), 339–345.
  • [10] P. Bieliavsky, M. Cahen, S. Gutt, J. Rawnsley, L. Schwachhöfer: Symplectic connections, Int. J. GeomṀeth. Mod. Phys. 03, no. 03 (2006) 375–420.
  • [11] E. Bierstone, G.W. Schwarz: Continuous linear division and extension of 𝒞{\mathcal{C}}^{\infty} functions, Duke Math. J. 50 (1983), no. 1, 233–271.
  • [12] M. Bordemann: Deformation quantization: a survey, J. Phys. Conf. Ser. 103 (2008), 012002.
  • [13] M. Bordemann, H.-C. Herbig, M.J. Pflaum: A homological approach to singular reduction in deformation quantization, in Singularity Theory: Proceedings of the 2005 Marseille Singularity School and Conference, ed. by D. Cheniot, et. al (World Scientific Publication, 2007).
  • [14] M. Bordemann, N. Neumaier, S. Waldmann: Homogeneous Fedosov star products on cotangent bundles I, Commun. Math. Phys 198, 363–396 (1998).
  • [15] M. Bordemann, N. Neumaier, S. Waldmann: Homogeneous Fedosov star products on cotangent bundles II, J. Geom. Phys 29, 199–234 (1999).
  • [16] M. Bordemann, H.-C. Herbig, S. Waldmann: BRST cohomology and phase space reduction in deformation quantization, Commun. Math. Phys. 210, 107–144 (2000).
  • [17] M. Bordemann, S. Waldmann: A Fedosov Star Product of the Wick Type for Kähler Manifolds, Lett. Math. Phys. Vol. 41, Issue 3, 243–253 (1997).
  • [18] C. Chevalley, S. Eilenberg: Cohomology theory of Lie groups and Lie algebras, Trans. Amer. Math. Soc. 63 (1948), 85–124.
  • [19] M. Crainic: On the perturbation lemma, and deformations, arXiv:math/0403266 (2004).
  • [20] C. Esposito, A. Kraft, and S. Waldmann: BRST Reduction of Quantum Algebras with *-Involutions, Commun. Math. Phys., https://doi.org/10.1007/s00220-020-03764-7 (2020).
  • [21] B.V. Fedosov: A simple geometrical construction of deformation quantization, J. Differ. Geom. 40 (1994), 213–238.
  • [22] B.V. Fedosov: Deformation Quantization and Index Theory, Mathematical Topics, vol. 9, Akademie Verlag, Berlin, 1996.
  • [23] B.V. Fedosov: Non-abelian reduction in deformation quantization, Lett. Math. Phys. 43 (1998), 213–238.
  • [24] Ch. Fefferman: Whitney’s extension problem for CmC^{m}, Ann. of Math. (2) 164 (2006), no. 1, 313–359.
  • [25] E. Fuchs, P.D. Jarvis, G. Rudolph, M. Schmidt: The Hilbert space costratification for the orbit type strata of SU(2)SU(2)-lattice gauge theory, J. Math. Phys. 59, 083505 (2018).
  • [26] F. Fürstenberg, G. Rudolph, M. Schmidt: Defining relations for the orbit type strata of SU(2){\mathrm{SU}}(2)-lattice gauge models. J. Geom. Phys. 119 (2017), 66–81.
  • [27] S. Gelfand, and Y.I. Manin: Methods of homological algebra, Springer Monographs in Mathematics, 2nd. edition, Springer-Verlag, Berlin, 2003.
  • [28] H. Grauert: On Levi’s problem and the imbedding of real-analytic manifolds. Ann. of Math. (2) 68 (1958), 460–472.
  • [29] H. Grundling, G. Rudolph: QCD on an infinite lattice. Commun. Math. Phys. 318 (2013) 717–766.
  • [30] H. Grundling, G. Rudolph: Dynamics for QCD on an infinite lattice, Commun. Math. Phys. 349 (2017) 1163–1202.
  • [31] S. Gutt: An explicit star product on the cotangent bundle of a Lie group, Lett. Math. Phys. 7, 249–258 (1983).
  • [32] S. Gutt: Deformation quantization and group actions, in Quantization, Geometry and Noncommutative Structures in Mathematical Physics, Mathematical Physics Studies, A. Cardona et al. (eds.), 2017.
  • [33] S. Gutt: Group Actions in Deformation Quantisation, arXiv:1904.12930 (2019).
  • [34] S. Gutt, J. Rawnsley: Natural star products on symplectic manifolds and quantum momentum maps, Lett. Math. Phys. 66, 123–139 (2003).
  • [35] S. Gutt, S. Waldmann: Involutions and representations for reduced quantum algebras, Adv. Math. 224, 2583–2644 (2010).
  • [36] B.C. Hall: The Segal-Bargmann “coherent state” transform for compact Lie groups, J. Funct. Anal. 122 (1994), 103–151.
  • [37] H.-Ch. Herbig: Variations on Homological Reduction, PhD thesis, Universität Frankfurt a.M. (2007), arXiv:0708.3598.
  • [38] P.J. Hilton, U. Stammbach: A Course in Homological Algebra, Graduate Texts in Mathematics, Springer-Verlag, New York, 1971.
  • [39] M. Hirsch: Differential topology. Springer-Verlag, Berlin Heidelberg New York 1988.
  • [40] J. Huebschmann: Kähler quantization and reduction. J. reine angew. Math. 591 (2006), 75–109.
  • [41] J. Huebschmann: On the construction of AA_{\infty}-structures, Georgian Math. J. 17 (2010), no. 1, 161–202.
  • [42] J. Huebschmann: Origins and breadth of the theory of higher homotopies, in Higher structures in geometry and physics, Progr. Math., vol. 287, Birkhäuser/Springer, New York, 2011, pp. 25–38.
  • [43] J. Huebschmann, G. Rudolph, M. Schmidt: A lattice gauge model for quantum mechanics on a stratified space. Commun. Math. Phys.  286 (2009), 459–494.
  • [44] S. Illman: Group actions and Hilbert’s fifth problem, in Handbook of global analysis, 533–589, Elsevier Sci. B. V., Amsterdam, 2008.
  • [45] M. Kashiwara, P. Schapira: Sheaves on manifolds. With a chapter in French by Christian Houzel. Corrected reprint of the 1990 original. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 292, Springer-Verlag, Berlin, 1994.
  • [46] J. Kijowski, G. Rudolph: On the Gauss law and global charge for quantum chromodynamics. J. Math. Phys. 43 (2002) 1796–1808.
  • [47] J. Kijowski, G. Rudolph: Charge superselection sectors for QCD on the lattice. J. Math. Phys. 46 (2005) 032303.
  • [48] S. Knappe, G. Rudolph, M. Schmidt: Stratified structure of the observable algbebra of Hamiltonian lattice gauge theory, arXiv:1909.10921 (2019).
  • [49] J.  Kogut, L. Susskind: Hamiltonian formulation of Wilson’s lattice gauge theories, Phys. Rev. D 11 (1975) 395–408.
  • [50] S. Krantz, H.R. Parks: A primer of real analytic functions, 2nd Ed., Birkhäuser Advanced Texts: Basler Lehrbücher, 2002.
  • [51] F. Kutzschebauch, F. Loose: Real Analytic Structures on a Symplectic Manifold, Proc. Amer. Math. Soc. 128, Nr. 10, 3009–3016 (2002).
  • [52] L.A. Lambe: Homological Perturbation Theory, in Encyclopaedia of Mathematics, Supplement Volume II, Kluwer Academic Publishers 2000, 264–267.
  • [53] N.P. Landsman: Mathematical Topics Between Classical and Quantum Mechanics. Springer 1998.
  • [54] N.P. Landsman: Strict quantization of coadjoint orbits. J. Math. Physics 39, 6372 (1998); https://doi.org/10.1063/1.532644.
  • [55] S. Łojasiewicz: Ensemble semi-analytique, I.H.E.S., Bures-sur-Yvette 1965,
    https://perso.univ-rennes1.fr/michel.coste/Lojasiewicz.pdf.
  • [56] B. Malgrange: Ideals of differentiable functions, Tata Institute of Fundamental Research Studies in Mathematics, No. 3, Tata Inst. of Fund. Research, Bombay, 1967.
  • [57] T. Matumoto, M. Shiota: Unique triangulation of the orbit space of a differentiable transformation group and its applications, in Homotopy theory and related topics (Kyoto, 1984), vol. 9 of Adv. Stud. Pure Math. North-Holland, Amsterdam, 1987, pp. 41–55.
  • [58] D. McMullan: Yang-Mills theory and the Batalin–Fradkin–Vilkovisky formalism, J. of Math. Phys. 28, 428 (1987), https://doi.org/10.1063/1.527678.
  • [59] M.F. Müller-Bahns, and N. Neumaier: Some remarks on 𝔤\mathfrak{g}-invariant Fedosov star products and quantum momentum mappings. J. Geom. Phys. 50 (2004), no. 1-4, 257–272.
  • [60] N.A. Neumaier: Klassifikationsergebnisse in der Deformationsquantisierung, Thesis, University of Freiburg (2001).
  • [61] J.A. Navarro González, J.B. Sancho de Salas: 𝒞\mathcal{C}^{\infty}-differentiable spaces, Lecture Notes in Mathematics, vol. 1824, Springer-Verlag, Berlin, 2003.
  • [62] J.-P. Ortega, T.S. Ratiu: Momentum maps and Hamiltonian reduction, Progress in Mathematics, vol. 222, Birkhäuser Boston, Inc., Boston, MA, 2004.
  • [63] M.J. Pflaum, Analytic and geometric study of stratified spaces, Lecture Notes in Mathematics, vol. 1768, Springer-Verlag, Berlin, 2001.
  • [64] J.F. Plebanski, M. Przanowski, F.J. Turrubiates: Induced symplectic connection on the phase space. Acta Physica Polonica 32, 3–15 (2001).
  • [65] T. Reichert:. Characteristic classes of star products on Marsden-Weinstein reduced symplectic manifolds. Lett. Math. Phys. 107 (2017), no. 4, 643–658.
  • [66] G. Rudolph, M. Schmidt: Differential Geometry and Mathematical Physics. Part I. Manifolds, Lie Groups and Hamiltonian Systems, Springer 2013.
  • [67] G. Rudolph, M. Schmidt: Differential Geometry and Mathematical Physics. Part II. Fibre Bundles, Topology and Gauge Fields, Springer 2017.
  • [68] G. Rudolph, M. Schmidt: On a connection used in deformation quantization arXiv:2009.03790 (2020).
  • [69] Ph. Schmitt. Strict quantization of coadjoint orbits. arXiv:1907.03185 (2019).
  • [70] R. Sjamaar, E. Lerman: Stratified symplectic spaces and reduction, Ann. of Math. 134 (1991) 375–422.
  • [71] K. Spallek: Differenzierbare Räume, Math. Ann. 180 (1969), 269–296.
  • [72] J. Stasheff, Homological reduction of constrained Poisson algebras, J. Differential Geom. 45 (1997), no. 1, 221–240.
  • [73] S. Waldmann: Poisson-Geometrie und Deformationsquantisierung, Springer 2007.
  • [74] Ch. Weibel: An Introduction to Homological Algebra, Cambridge Studies in Advanced Mathematics 38, Cambridge University Press (1994)..
  • [75] H. Whitney: Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc.  36 (1934), no. 1, 63–89.
  • [76] H. Whitney: On the extension of differentiable functions, Bull. Amer. Math. Soc. 50 (1944), 76–81.
  • [77] P. Xu: Fedosov *-Products and Quantum Momentum Maps, Commun. Math. Physics 197, 167–197 (1998).
  • [78] K. Yano, E.M. Patterson: Vertical and complete lifts from a manifold to its cotangent bundle, J. Math. Soc. Japan 19, no. 1 (1967) 91–113.