This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Deformation cones of Tesler polytopes

Yonggyu Lee and Fu Liu Yonggyu Lee, Department of Mathematics, University of California, Davis, One Shields Avenue, Davis, CA 95616 USA. [email protected] Fu Liu, Department of Mathematics, University of California, Davis, One Shields Avenue, Davis, CA 95616 USA. [email protected]
Abstract.

For 𝒂0n{\boldsymbol{a}}\in\mathbb{R}_{\geq 0}^{n}, the Tesler polytope Tesn(𝒂)\operatorname{Tes}_{n}({\boldsymbol{a}}) is the set of upper triangular matrices with non-negative entries whose hook sum vector is 𝒂{\boldsymbol{a}}. We first give a different proof of the known fact that for every fixed 𝒂0>0n{\boldsymbol{a}}_{0}\in\mathbb{R}_{>0}^{n}, all the Tesler polytopes Tesn(𝒂)\operatorname{Tes}_{n}({\boldsymbol{a}}) are deformations of Tesn(𝒂0)\operatorname{Tes}_{n}({\boldsymbol{a}}_{0}). We then calculate the deformation cone of Tesn(𝒂0)\operatorname{Tes}_{n}({\boldsymbol{a}}_{0}). In the process, we also show that any deformation of Tesn(𝒂0)\operatorname{Tes}_{n}({\boldsymbol{a}}_{0}) is a translation of a Tesler polytope. Lastly, we consider a larger family of polytopes called flow polytopes which contains the family of Tesler polytopes and give a characterization on which flow polytopes are deformations of Tesn(𝒂0)\operatorname{Tes}_{n}({\boldsymbol{a}}_{0}).

1. Introduction

For 𝒂0n{\boldsymbol{a}}\in\mathbb{R}_{\geq 0}^{n}, the Tesler polytope, denoted as Tesn(𝒂)\operatorname{Tes}_{n}({\boldsymbol{a}}), is defined as the set of upper triangular matrices with non-negative entries whose “hook sum vector” is 𝒂{\boldsymbol{a}}. When 𝒂=𝟏:=(1,,1)n{\boldsymbol{a}}=\boldsymbol{1}:=(1,\dots,1)\in\mathbb{R}^{n}, elements of Tesn(𝒂)\operatorname{Tes}_{n}({\boldsymbol{a}}) with integer coordinates are called Tesler matrices. Tesler matrices were initially introduced by Tesler in the context of Macdonald polynomials and subsequently rediscovered by Haglund in his work on the diagonal Hilbert series [14]. As a result, Tesler matrices play a central role in the field of diagonal harmonics [1, 12, 13, 15, 25]. Motivated by this significance of Tesler matrices, Mészáros, Morales and Rhoades [18] defined and studied the Tesler polytopes of hook sum 𝒂>0n{\boldsymbol{a}}\in\mathbb{Z}_{>0}^{n}. Their research led to several intriguing findings, including the observation that Tesler polytopes are unimodularly equivalent to certain flow polytopes, which is a family of polytopes that have connection to various areas of mathematics such as toric geometry, representation theory, special functions and algebraic combinatorics, as detailed in [4] and its references. Please refer to [18] for more background about Tesler polytopes.

Beyond their general link to flow polytopes, specific subfamilies of Tesler polytopes are fascinating objects due to their own interesting combinatorial properties and their association with other mathematics domains. We have already mentioned that the importance of the Tesler matrix polytope Tesn(𝟏)\operatorname{Tes}_{n}({\boldsymbol{1}}) in the study of diagonal harmonics. Additionally, it is known [8] that Tesn(1,0,,0)\operatorname{Tes}_{n}(1,0,\dots,0) is unimodularly equivalent to the Chan-Robbins-Yuen (CRY) polytope, whose volume is the product of the first n2n-2 Catalan numbers [7, 26]. As of today, simple proofs for this surprising result are still undiscovered. Moreover, the CRY polytope is a face of the Birkhoff polyope which is also a well-studied subject. In particular, computing volumes of Birkhoff polytopes remains a challenging problem that has attracted a lot of recent research attention [5, 10, 21].

Noticing that important features remain the same, in our prior work [16], we extend the domain of Tesler polytopes Tesn(𝒂)\operatorname{Tes}_{n}({\boldsymbol{a}}) to 0n\mathbb{R}_{\geq 0}^{n}, and study a conjecture regarding Ehrhart positivity for both Tesn(𝟏)\operatorname{Tes}_{n}(\boldsymbol{1}) and Tesn(1,0,,0)\operatorname{Tes}_{n}(1,0,\dots,0), originally posed by Morales [19]. In this paper, we will continue our study on this broader family of Tesler polytopes. However, our primary focus will be directed towards investigating their deformation cones.

There are many ways of defining deformations of polytopes. The most commonly used one is stated in terms of the normal cone: a polytope QQ is a deformation of a polytope PP if the normal fan of PP is a refinement of the normal fan of QQ.

However, in this paper we use the one introduced in [6] by Castillo and the second author; see Definition 2.1 for details. It was shown in [6, Proposition 2.6] that Definition 2.1 is equivalent to the normal fan definition of deformations. We parametrize each deformation QQ of PP by a “deformation vector” and the collection of the deformation vectors forms the “deformation cone” of PP. Notably, the relative interior of the deformation cone is called the type cone [17], which contains the deformation vectors of all the polytopes with the same normal fan as PP. In the case when PP is a rational polytope, the type cone of PP is related to the nef cone of the toric variety associated to the normal fan of PP [9, Section 6.3].

One of the most famous family of deformations is generalized permutohedra, which are deformations of the regular permutohedron [11, 22, 23]. In the last decade, different directions of research have been done on determining the deformation cones of polytopes that are related to generalized permutohedra. In [6], Castillo and the second author define the nested permutohedron whose normal fan refines that of the regular permutohedron (so the regular permutohedron is a deformation of the nested permutohedron), and describe the deformation cone of the nested permutohedron. On the other hand, Padrol, Pilaud and Poullot [20] determine the deformation cones of nestohedra, which is a family of deformations of the regular permutohedron.

In this paper, we first give a new proof of a known fact ([2, Remark 9]) that for any fixed positive integer nn and 𝒂0>0n{\boldsymbol{a}}_{0}\in\mathbb{R}^{n}_{>0}, the Tesler polytope Tesn(𝒂)\operatorname{Tes}_{n}({\boldsymbol{a}}) is a deformation of Tesn(𝒂0)\operatorname{Tes}_{n}({\boldsymbol{a}}_{0}) for all 𝒂0n{\boldsymbol{a}}\in\mathbb{R}_{\geq 0}^{n} (Theorem 3.1).

Then we prove the following theorem - one of our main results - which gives a description of a deformation cone of Tesn(𝒂0)\operatorname{Tes}_{n}({\boldsymbol{a}}_{0}).

(Please refer to Section 2, especially Definition 2.1 and Section 2.3.1, for necessary definitions and notations.)

Theorem 1.1.

Let 𝐚0>0n{\boldsymbol{a}}_{0}\in\mathbb{R}^{n}_{>0}. Then the deformation cone of Tesn(𝐚0)\operatorname{Tes}_{n}({\boldsymbol{a}}_{0}) with respect to (Ln,Pn)(L_{n},-P_{n}) is

(1.1) {(𝒂,𝒃~)n×𝕌~(n)|ηi(𝒃~)ai for all 1in1}\{({\boldsymbol{a}},\tilde{{\boldsymbol{b}}})\in\mathbb{R}^{n}\times\widetilde{\mathbb{U}}(n)~{}~{}|~{}~{}\eta_{i}(\tilde{{\boldsymbol{b}}})\geq-a_{i}\text{ for all }1\leq i\leq n-1\}

where aia_{i} is the ii-th coordinate of 𝐚{\boldsymbol{a}}.

Moreover, any deformation of Tesn(𝐚0)\operatorname{Tes}_{n}({\boldsymbol{a}}_{0}) is a translation of a Tesler polytope.

It is worth mentioning that the above description of the deformation cone of Tesn(𝒂0)\operatorname{Tes}_{n}({\boldsymbol{a}}_{0}) is clearly minimal, i.e., none of the inequalities is redundant. Therefore, each of the linear inequality defines a facet of the deformation cone. Furthermore, the face structure of the deformation cone of Tesn(𝒂0)\operatorname{Tes}_{n}({\boldsymbol{a}}_{0}) is extremely easy to understand. This will allow us to give a complete characterization on which Tesler polytopes have the same normal fan (Theorem 3.9).

Recall that Mészáros et al [18] establish that Tesler polytopes is a subfamily of flow polytopes. In the last part of this paper, we strengthen this connection by providing the following characterization on which flow polytopes are deformations of Tesn(𝟏)\operatorname{Tes}_{n}(\boldsymbol{1}). (Please see Definitions 5.1 and 5.4 for the definitions of flow polytopes and critical position.)

Theorem 1.2.

Let 𝐚0>0n{\boldsymbol{a}}_{0}\in\mathbb{R}_{>0}^{n} and let 𝐚=(a1,,an)n{\boldsymbol{a}}=(a_{1},\dots,a_{n})\in\mathbb{R}^{n} such that Flown(𝐚)\operatorname{Flow}_{n}({\boldsymbol{a}}) is non-empty. Suppose ll is the critical position of 𝐚{\boldsymbol{a}}. Then the flow polytope Flown(𝐚)\operatorname{Flow}_{n}({\boldsymbol{a}}) is a deformation of Tesn(𝐚0)\operatorname{Tes}_{n}({\boldsymbol{a}}_{0}) if and only if l=nl=n or ai0a_{i}\geq 0 for all l+2inl+2\leq i\leq n.

Organization of the paper

In Section 2, we provide background on polyhedra theory, deformations of polytopes, and Tesler polytopes. In Section 3, we give a different proof for the known fact that for every fixed 𝒂0>0n{\boldsymbol{a}}_{0}\in\mathbb{R}_{>0}^{n}, all Tesler polytopes Tesn(𝒂)\operatorname{Tes}_{n}({\boldsymbol{a}}) are deformations of Tesn(𝒂0)\operatorname{Tes}_{n}({\boldsymbol{a}}_{0}), as well as provide a generalization of this fact in Theorem 3.9. In Section 4, we determine the deformation cone of Tesler polytopes (Theorem 2.1), and then use it to prove Theorem 3.9. In Section 5, we discuss which flow polytopes on the complete graph are deformations of Tesn(𝒂0)\operatorname{Tes}_{n}({\boldsymbol{a}}_{0}) and complete the proof of Theorem 1.2.

Acknowledgements

The second author is partially supported by a grant from the Simons Foundation #426756 and an NSF grant #2153897-0.

We are grateful to the two anonymous referees for their valuable comments and suggestions. In particular, we are thankful for one of the referees who bring out attention to the result stated in Theorem 3.9 which was not in a previous version of this article.

2. Preliminaries

In this section, we provide preliminaries and background for this paper. We start with basic definitions for polytopes required for introducing the concepts of deformation cones.

2.1. Polytopes

A polyhedron PP is a subset of m\mathbb{R}^{m} defined by finitely many linear inequalities

(2.1) ci,1x1++ci,kxkdi for 1isc_{i,1}x_{1}+\cdots+c_{i,k}x_{k}\leq d_{i}\text{ for }1\leq i\leq s

where ci,jc_{i,j} and di,jd_{i,j} are real numbers. We call (2.1) a tight inequality description for PP if for every 1is1\leq i\leq s, there exists a point (xi,1,,xi,k)(x_{i,1},\dots,x_{i,k}) in PP such that ci,1xi,1++ci,kxi,k=dic_{i,1}x_{i,1}+\cdots+c_{i,k}x_{i,k}=d_{i}. Note that (2.1) can also be written as 𝒄i,𝒙di\langle{\boldsymbol{c}}_{i},\boldsymbol{x}\rangle\leq d_{i} where ,\langle\cdot,\cdot\rangle is the dot product on m\mathbb{R}^{m}. If we let C=(ci,j)C=(c_{i,j}) and 𝒅\boldsymbol{d} be the column vector [d1,,dl]t[d_{1},\dots,d_{l}]^{t} then the above system can be written in the following matrix form

C𝒙𝒅.C\boldsymbol{x}\leq\boldsymbol{d}.

A polytope is a bounded polyhedron. Equivalently, a polytope PmP\subset\mathbb{R}^{m} may be defined as the convex hull of finitely many points in m\mathbb{R}^{m}. A polyhedron defined by homogeneous linear inequalities is called a (polyhedral) cone. We assume that readers are familiar with the basic concepts related to polytopes, such as face and dimension, presented in [3, 27]. There are many ways to choose a linear system to define a polytope.

Let P0mP_{0}\subset\mathbb{R}^{m} be a polytope. We will use the following form to describe P0P_{0}:

(2.2) E𝒙=𝜶0 and G𝒙𝜷0,E\boldsymbol{x}=\boldsymbol{\alpha}_{0}\text{ and }G\boldsymbol{x}\leq\boldsymbol{\beta}_{0},

where E𝒙=𝜶0E\boldsymbol{x}=\boldsymbol{\alpha}_{0} defines the affine span of P0P_{0} and each inequality in G𝒙𝜷0G\boldsymbol{x}\leq\boldsymbol{\beta}_{0} defines a facet of P0P_{0}. Any such a description is called a minimal linear inequality description for P0P_{0} if matrices EE and GG are minimal in size, i.e, none of the equalities or inequalities are redundant. Note that any minimal inequality description is tight. It is not hard to see that minimal inequality descriptions for a non full dimensional polytope P0P_{0} are not unique. In particular, there are different choices for the matrices EE and GG in the expression (2.2). However, any choice of EE and GG must satisfy that the rows of EE are mdm-d linearly independent vectors and the rows of AA are in bijection with the facets of P0P_{0}, where dd is the dimension of P0P_{0}.

2.2. Deformations

In this part, we will start with the following definition of deformations initially introduced in [6]. As we mentioned earlier, this definition is equivalent to the normal fan definition of deformations given in the introduction. Another different but equivalent definition of deformation will then be given in Lemma 2.4. We finish this part with a discussion on the connection between deformation cones and type cones.

Definition 2.1.

Let P0mP_{0}\subset\mathbb{R}^{m} be a dd-dimensional polytope, and suppose (2.2) is a minimal linear inequality description for P0P_{0}. Suppose GG has kk rows where 𝒈i{\boldsymbol{g}}_{i} is the ii-th row vector of GG. For each ii, let FiF_{i} be the facet of PP defined by 𝒈i,𝒙=b0,i\langle{\boldsymbol{g}}_{i},\boldsymbol{x}\rangle=b_{0,i} where b0,ib_{0,i} is the ii-th entry of 𝒃0{\boldsymbol{b}}_{0}.

A polytope QmQ\subset\mathbb{R}^{m} is a deformation of P0P_{0}, if there exists 𝒂md{\boldsymbol{a}}\in\mathbb{R}^{m-d} and 𝒃k{\boldsymbol{b}}\in\mathbb{R}^{k} such that the following two conditions are satisfied :

  1. (1)

    QQ is defined by the system of linear inequalities:

    (2.3) E𝒙=𝒂 and G𝒙𝒃,E\boldsymbol{x}={\boldsymbol{a}}\text{ and }G\boldsymbol{x}\leq{\boldsymbol{b}},

    which is tight (but not necessarily minimal).

  2. (2)

    For any vertex 𝒗{\boldsymbol{v}} of P0P_{0}, if Fi1,Fi2,,FisF_{i_{1}},F_{i_{2}},...,F_{i_{s}} are the facets of P0P_{0} where 𝒗{\boldsymbol{v}} lies on, then the intersection:

    Q{𝒙m:𝒈ij,𝒙=bij,1js}Q\cap\{\boldsymbol{x}\in\mathbb{R}^{m}:\langle{\boldsymbol{g}}_{i_{j}},\boldsymbol{x}\rangle=b_{i_{j}},1\leq j\leq s\}

    where bijb_{i_{j}} is the iji_{j}-th component of 𝒃{\boldsymbol{b}}, is a vertex of QQ denoted by 𝒗(𝒂,𝒃){\boldsymbol{v}}_{({\boldsymbol{a}},{\boldsymbol{b}})}.

We call (𝒂,𝒃)({\boldsymbol{a}},{\boldsymbol{b}}) the deforming vector for QQ with respect to (EE,GG). Furthermore, if 𝒗𝒗(𝒂,𝒃){\boldsymbol{v}}\mapsto{\boldsymbol{v}}_{({\boldsymbol{a}},{\boldsymbol{b}})} gives a bijection from the vertex set of P0P_{0} to the vertex set of Q,Q, we say QQ is a weak deformation of P0P_{0}; otherwise, we say QQ is a strong deformation of P0.P_{0}.

The deformation cone of P0P_{0} with respect to (E,GE,G), denoted by Def(E,G)(P0)\operatorname{Def}_{(E,G)}({P_{0}}), is the collection of all the deforming vectors (𝒂,𝒃)({\boldsymbol{a}},{\boldsymbol{b}}) with respect to (E,GE,G).

Clearly, if we use a different minimal inequality description for P0P_{0} with matrices (E,G)(E^{\prime},G^{\prime}), we will obtain a different deformation cone Def(E,G)(P0)\operatorname{Def}_{(E^{\prime},G^{\prime})}(P_{0}). However, one can check that Def(E,G)(P0)\operatorname{Def}_{(E^{\prime},G^{\prime})}(P_{0}) can be obtained from Def(E,G)(P0)\operatorname{Def}_{(E,G)}(P_{0}) via an invertible linear transformation. In this paper, we will fix a minimal linear inequality description for the family of polytopes we consider, and thus we will sometimes omit the subscript (E,G)(E,G) and just write Def(P0)\operatorname{Def}(P_{0}).

Remark 2.2.

With a fixed minimal inequality description for P0P_{0}, the tightness requirement of the description (2.3) for QQ in Definition 2.1 guarantees the uniqueness of the deforming vector (𝒂,𝒃)({\boldsymbol{a}},{\boldsymbol{b}}) for any deformation QQ of P0P_{0}, and establishes a one to one correspondence between deformations QQ of P0P_{0} and deforming vectors (𝒂,𝒃)({\boldsymbol{a}},{\boldsymbol{b}}).

In particular, we want to emphasize that if QQ is a deformation of P0P_{0}, its corresponding deforming vector is the unique vector (𝒂,𝒃)({\boldsymbol{a}},{\boldsymbol{b}}) such that the description (2.3) is a tight linear inequality description.

Remark 2.3.

Recall that a polytope Q1mQ_{1}\subset\mathbb{R}^{m} is a translation of another polytope Q2mQ_{2}\subset\mathbb{R}^{m} if Q1=Q2+𝒕Q_{1}=Q_{2}+\boldsymbol{t} for some 𝒕m\boldsymbol{t}\in\mathbb{R}^{m}. It is easy to see that if QQ is a deformation of PP, then any translation of QQ is a deformation of PP.

The following lemma provides an alternative definition of deformations that will be used in our proofs. We use Vert(P)\operatorname{Vert}(P) to denote the set of vertices of a polytope PP:

Lemma 2.4.

[24] Let P0P_{0} and QQ be two polytopes in m\mathbb{R}^{m}. Then the following two statements are equivalent:

  1. (1)

    QQ is a deformation of P0P_{0}.

  2. (2)

    There exists a surjective map ϕ\phi from Vert(P0)\operatorname{Vert}(P_{0}) to Vert(Q)\operatorname{Vert}(Q) satisfying that for any adjacent vertices 𝒗{\boldsymbol{v}} and 𝒘{\boldsymbol{w}} of P0P_{0}, there exists r𝒗,𝒘0r_{{\boldsymbol{v}},{\boldsymbol{w}}}\in\mathbb{R}_{\geq 0} such that ϕ(𝒗)ϕ(𝒘)=r𝒗,𝒘(𝒗𝒘)\phi({\boldsymbol{v}})-\phi({\boldsymbol{w}})=r_{{\boldsymbol{v}},{\boldsymbol{w}}}({\boldsymbol{v}}-{\boldsymbol{w}}).

Moreover, suppose (2) is true, then QQ is a weak deformation of P0P_{0} if all r𝐯,𝐰r_{{\boldsymbol{v}},{\boldsymbol{w}}}’s are positive and QQ is a strong deformation of P0P_{0} if some of r𝐯,𝐰r_{{\boldsymbol{v}},{\boldsymbol{w}}}’s are zero.

Recall that the direction of a non-zero vector 𝒗{\boldsymbol{v}} is 𝒗𝒗,𝒗\dfrac{{\boldsymbol{v}}}{\sqrt{\langle{\boldsymbol{v}},{\boldsymbol{v}}\rangle}}. For any two adjacent vertices 𝒗{\boldsymbol{v}} and 𝒘{\boldsymbol{w}} of a polytope, we call the vector 𝒘𝒗{\boldsymbol{w}}-{\boldsymbol{v}} the edge vector from 𝒗{\boldsymbol{v}} to 𝒘{\boldsymbol{w}}, and the direction of 𝒘𝒗{\boldsymbol{w}}-{\boldsymbol{v}} the edge direction from 𝒗{\boldsymbol{v}} to 𝒘{\boldsymbol{w}}. It is not explicitly stated in the above lemma, but when 𝒗{\boldsymbol{v}} and 𝒘{\boldsymbol{w}} are adjacent vertices of P0P_{0}, the vertices ϕ(𝒗)\phi({\boldsymbol{v}}) and ϕ(𝒘)\phi({\boldsymbol{w}}) of QQ are either the same or adjacent. Moreover, when ϕ(𝒗)\phi({\boldsymbol{v}}) and ϕ(𝒘)\phi({\boldsymbol{w}}) are adjacent, the edge direction of ϕ(𝒗)\phi({\boldsymbol{v}}) and ϕ(𝒘)\phi({\boldsymbol{w}}) is the same as that of 𝒗{\boldsymbol{v}} and 𝒘{\boldsymbol{w}}.

In [6, Proposition 2.16], the authors gave connection between Definition 2.1 and the alternative definition of deformations provided by Lemma 2.4 which we summarize in the following lemma.

Lemma 2.5.

[6, Section 2] Let QQ be a deformation of P0P_{0} with deforming vector (𝐚,𝐛)({\boldsymbol{a}},{\boldsymbol{b}}). Then, the map

ϕ:Vert(P0)Vert(Q),\phi:\operatorname{Vert}(P_{0})\rightarrow\operatorname{Vert}(Q),

defined by ϕ(𝐯)=𝐯(𝐚,𝐛)\phi({\boldsymbol{v}})={\boldsymbol{v}}_{({\boldsymbol{a}},{\boldsymbol{b}})} where 𝐯(𝐚,𝐛){\boldsymbol{v}}_{({\boldsymbol{a}},{\boldsymbol{b}})} is given as in Definition 2.1/(2) satisfies the condition given in Lemma 2.4/(2).

Connection to type cones

It is straightforward to verify that QQ is a weak deformation of P0P_{0} if and only if QQ has the same normal fan as P0P_{0}. Thus, in this case, we also say that QQ and P0P_{0} are normally equivalent. In [17], McMullen introduced the concept of type cones of normally equivalent polytopes. We give its definition using the language developed in this paper.

Definition 2.6.

Assuming the hypothesis of P0P_{0} given in Definition 2.1. The type cone of P0P_{0} with respect to (E,G),(E,G), denoted by TC(E,G)(P0)\operatorname{TC}_{(E,G)}(P_{0}), is the collection of all the deforming vectors (𝒂,𝒃)({\boldsymbol{a}},{\boldsymbol{b}}) for weak deformations of P0P_{0} with respect to (E,GE,G).

Therefore, the type cone of P0P_{0} containing the deformation vectors of all the polytopes that are normally equivalent to P0P_{0}. Even though McMullen [17] did not introduce the terminology “deformation cone”, his analysis on type cones indicates the following connection between these two families of cones.

Lemma 2.7.

The relative interior of the deformation cone Def(E,G)(P0)\operatorname{Def}_{(E,G)}(P_{0}) of P0P_{0} is exactly the type cone TC(E,G)(P0)\operatorname{TC}_{(E,G)}(P_{0}) of P0P_{0}.

Furthermore, suppose KK is a face of the deformation cone Def(E,G)(P0)\operatorname{Def}_{(E,G)}(P_{0}) of P0P_{0}, and QQ is a deformation of P0P_{0} corresponding to a deforming vector in the relative interior of KK. Then KK is exactly the deformation cone Def(E,G)(Q)\operatorname{Def}_{(E,G)}(Q) of QQ and hence the relative interior of KK is the type cone TC(E,G)(Q)\operatorname{TC}_{(E,G)}(Q) of QQ.

The following immediate consequence of the above lemma will be useful to us.

Corollary 2.8.

For i=1,2i=1,2, suppose QiQ_{i} is a deformation of P0P_{0} with the deforming vector (𝐚i,𝐛i)({\boldsymbol{a}}_{i},{\boldsymbol{b}}_{i}), and suppose KiK_{i} is the (unique) face of Def(E,G)(P0)\operatorname{Def}_{(E,G)}(P_{0}) such that (𝐚i,𝐛i)({\boldsymbol{a}}_{i},{\boldsymbol{b}}_{i}) is in the relative interior of KiK_{i}. Then Q1Q_{1} is a deformation of Q2Q_{2} if and only if K1K_{1} is a face of K2K_{2}. Moreover, Q1Q_{1} is normally equivalent to Q2Q_{2} if and only if K1=K2K_{1}=K_{2}.

2.3. Tesler polytopes

In this part, we formally introduce Tesler polytopes and provide necessary setup and notations to study the deformation cones of Tesler polytopes. We start by setting up the space that Tesler polytopes live in. Recall that the directed complete graph Kn+1\vec{K}_{n+1} is the graph on the vertex set [n+1]={1,2,,n+1}[n+1]=\{1,2,\dots,n+1\} in which there is an edge from the vertex ii to the vertex jj for all 1i<jn+11\leq i<j\leq n+1. For convenience, we use

En+1:={(i,j)|1i<jn+1}E_{n+1}:=\{(i,j)~{}~{}|~{}~{}1\leq i<j\leq n+1\}

to represent the edge set of Kn+1\vec{K}_{n+1}. Let 𝕌(n)=En+1\mathbb{U}(n)=\mathbb{R}^{E_{n+1}}. We will represent the elements 𝒎𝕌(n)\boldsymbol{m}\in\mathbb{U}(n) as upper triangular matrices (mi,j)(m_{i,j}) in the following way: we use mi,im_{i,i} to denote the coordinate of 𝒎\boldsymbol{m} corresponding to the edge (i,n+1)(i,n+1) for each 1in1\leq i\leq n, and mi,jm_{i,j} to denote the coordinate of 𝒎\boldsymbol{m} corresponding to the edge (i,j)(i,j) for each pair 1i<jn1\leq i<j\leq n. Then for any 1in1\leq i\leq n, we define the ii-th hook sum of 𝒎𝕌(n)\boldsymbol{m}\in\mathbb{U}(n) to be

ηi(𝒎):=mi,i+i<jmi,jj<imj,i\eta_{i}(\boldsymbol{m}):=m_{i,i}+\sum_{i<j}m_{i,j}-\sum_{j<i}m_{j,i}

and the hook sum vector of 𝒎\boldsymbol{m} to be η(𝒎)=(η1(𝒎),,ηn(𝒎))\eta(\boldsymbol{m})=(\eta_{1}(\boldsymbol{m}),\dots,\eta_{n}(\boldsymbol{m})).

Example 2.9.

Let 𝒎=[1234510]\boldsymbol{m}=\begin{bmatrix}1&{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}2}&3\\ &{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}4}&{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}5}\\ &&10\\ \end{bmatrix}. The second hook sum of 𝒎\boldsymbol{m} is η2(𝒎)=4+52\eta_{2}(\boldsymbol{m})={\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}4}+{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}5}-{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}2}=7. One can see that the elements involved in η2(𝒎)\eta_{2}(\boldsymbol{m}) forms a hook in 𝒎\boldsymbol{m}. We can similarly compute the other two hook sums of 𝒎\boldsymbol{m} and the hook sum vector of 𝒎\boldsymbol{m} is η(𝒎)=(6,7,2)\eta(\boldsymbol{m})=(6,7,2)

For any 𝒂0n{\boldsymbol{a}}\in\mathbb{R}_{\geq 0}^{n}, we define the Tesler polytope of hook sum 𝐚{\boldsymbol{a}} to be

(2.4) Tesn(𝒂):={𝒎𝕌(n)|𝜼(𝒎)=𝒂,mi,j0 for 1ijn}.\operatorname{Tes}_{n}({\boldsymbol{a}}):=\biggl{\{}\boldsymbol{m}\in\mathbb{U}(n)~{}~{}\biggl{|}\begin{array}[]{c}\boldsymbol{\eta}(\boldsymbol{m})={\boldsymbol{a}},\\[5.69054pt] m_{i,j}\geq 0\text{ for }1\leq i\leq j\leq n\end{array}\biggl{\}}.

One sees that the condition mn,n0m_{n,n}\geq 0 is implied by the conditions that mi,n0m_{i,n}\geq 0 for each 1in11\leq i\leq n-1 and that the nn-th hook sum ana_{n} is non-negative. Hence, the inequality mn,n0m_{n,n}\geq 0 is redundant in the above description. Therefore, we use the following inequality description as the definition of Tesn(𝒂)\operatorname{Tes}_{n}({\boldsymbol{a}}):

(2.5) Tesn(𝒂):={𝒎=(mi,j)𝕌(n)|𝜼(𝒎)=𝒂,mi,j0 for 1ijn where (i,j)(n,n)}.\operatorname{Tes}_{n}({\boldsymbol{a}}):=\biggl{\{}\boldsymbol{m}=(m_{i,j})\in\mathbb{U}(n)~{}~{}\biggl{|}\begin{array}[]{c}\boldsymbol{\eta}(\boldsymbol{m})={\boldsymbol{a}},\\[5.69054pt] m_{i,j}\geq 0\text{ for }1\leq i\leq j\leq n\text{ where }(i,j)\neq(n,n)\end{array}\biggl{\}}.

2.3.1. Notations for Theorem 1.1

In order to describe deformation cones of Tesler polytopes (in Theorem 1.1), we need to express Tesler polytopes in the form of (2.2). Note that 𝒎𝜼(𝒎)\boldsymbol{m}\mapsto\boldsymbol{\eta}(\boldsymbol{m}) is a linear transformation from 𝕌(n)\mathbb{U}(n) to n\mathbb{R}^{n}. Let LnL_{n} be the matrix associated with this linear transformation. More precisely, we can describe LnL_{n} in the following way: LnL_{n} can be obtained from removing the last row of the incidence matrix111Incidence matrix of a directed graph on n+1n+1 nodes {1, 2, …, n+1} is a matrix B\rm{B}=(bi,e)=(b_{i,e}) where bi,e=1b_{i,e}=1 if the vertex ii is the initial vertex of the edge ee, bi,e=1b_{i,e}=-1 if the vertex ii is the terminal vertex, and bi,e=0b_{i,e}=0 otherwise. of Kn+1\vec{K}_{n+1}. The columns of LnL_{n} are indexed by En+1E_{n+1}. Hence, the row vectors of LnL_{n} can be considered to be in 𝕌(n)\mathbb{U}(n). For any 𝒎𝕌(n)\boldsymbol{m}\in\mathbb{U}(n), we consider Ln𝒎L_{n}\boldsymbol{m} to be the vector whose ii-th entry is the dot product of the ii-th row of LnL_{n} and 𝒎\boldsymbol{m}. With this notation, one can check that 𝜼(𝒎)=Ln𝒎\boldsymbol{\eta}(\boldsymbol{m})=L_{n}\boldsymbol{m}. Similarly, let ψ\psi be the projection that deletes mn,nm_{n,n} for all 𝒎=(mi,j)𝕌(n)\boldsymbol{m}=(m_{i,j})\in\mathbb{U}(n) and let PnP_{n} be the matrix associated with the map ψ\psi. Then the inequality description in (2.5) can be written as ψ(𝒎)𝟎\psi(\boldsymbol{m})\geq{\boldsymbol{0}} or equivalently, Pn𝒎𝟎-P_{n}\boldsymbol{m}\leq{\boldsymbol{0}}. Combining these together, we obtain a matrix description for Tesn(𝒂)\operatorname{Tes}_{n}({\boldsymbol{a}}):

Tesn(𝒂)={𝒎𝕌(n)|Ln𝒎=𝒂 and Pn𝒎𝟎},\operatorname{Tes}_{n}({\boldsymbol{a}})=\{\boldsymbol{m}\in\mathbb{U}(n)~{}~{}|~{}~{}L_{n}\boldsymbol{m}={\boldsymbol{a}}\text{ and }-P_{n}\boldsymbol{m}\leq\boldsymbol{0}\},

It was shown in [16, Lemma 4.2] that for all 𝒂=(a1,,an)0n{\boldsymbol{a}}=(a_{1},\dots,a_{n})\in\mathbb{R}_{\geq 0}^{n} with a1>0a_{1}>0, we have that Tesn(𝒂)\operatorname{Tes}_{n}({\boldsymbol{a}}) is a full dimensional polytope in the subspace of 𝕌(n)\mathbb{U}(n) defined by Ln𝒎=𝒂L_{n}\boldsymbol{m}={\boldsymbol{a}}. Furthermore, by [16, Corollary 4.6] that for all 𝒂>0n{\boldsymbol{a}}\in\mathbb{R}_{>0}^{n}, we have that each inequality in Pn𝒎𝟎-P_{n}\boldsymbol{m}\leq\boldsymbol{0} defines a facet of Tesn(𝒂).\operatorname{Tes}_{n}({\boldsymbol{a}}). Therefore, for 𝒂0>0n{\boldsymbol{a}}_{0}\in\mathbb{R}_{>0}^{n}, the matrix description

(2.6) Ln𝒎=𝒂0 and Pn𝒎𝟎L_{n}\boldsymbol{m}={\boldsymbol{a}}_{0}\text{ and }-P_{n}\boldsymbol{m}\leq\boldsymbol{0}

is a minimal linear inequality description for Tesn(𝒂0)\operatorname{Tes}_{n}({\boldsymbol{a}}_{0}). Hence, The deformation cone of Tesn(𝒂0)\operatorname{Tes}_{n}({\boldsymbol{a}}_{0}) studied in this paper and described in Theorem 1.1 is with respect to (Ln,Pn)(L_{n},-P_{n}).

Clearly, each deforming vector (𝒂,𝒃~)({\boldsymbol{a}},\tilde{{\boldsymbol{b}}}) lives in n×𝕌~(n)\mathbb{R}^{n}\times\widetilde{\mathbb{U}}(n), where 𝕌~(n)\widetilde{\mathbb{U}}(n) is the image of 𝕌(n)\mathbb{U}(n) under the projection ψ\psi. One sees that the concept of ii-th hook sum of a matrix in 𝕌~(n)\widetilde{\mathbb{U}}(n) still makes sense as long as ini\neq n. Therefore, by abusing the notation, for any 1in11\leq i\leq n-1, we define the ii-th hook sum of 𝒃~=(b~i,j)𝕌~(n)\tilde{{\boldsymbol{b}}}=(\tilde{b}_{i,j})\in\widetilde{\mathbb{U}}(n) to be

ηi(𝒃~):=b~i,i+i<jb~i,jj<ib~j,i.\eta_{i}(\tilde{{\boldsymbol{b}}}):=\tilde{b}_{i,i}+\sum_{i<j}\tilde{b}_{i,j}-\sum_{j<i}\tilde{b}_{j,i}.

2.4. Prior work on Tesler polytopes

In this part, we review definitions and results related to Tesler polytopes given in [18] and [16] that are relevant to this paper. Because we treat 𝒎𝕌(n)\boldsymbol{m}\in\mathbb{U}(n) as an upper triangular matrix, we will talk about the ii-th row or ii-th column of 𝒎\boldsymbol{m}.

For any positive integer nn and 𝒂0n{\boldsymbol{a}}\in\mathbb{Z}_{\geq 0}^{n}, Mészáros, Morales and Rhoades [18] gave the characterization for the face poset of Tesn(𝒂)\operatorname{Tes}_{n}({\boldsymbol{a}}) using the concept of support. Their characterization can be easily generalized to any 𝒂0n{\boldsymbol{a}}\in\mathbb{R}_{\geq 0}^{n} by the same proof.

Definition 2.10.

For any matrix 𝒎\boldsymbol{m} in 𝕌(n)\mathbb{U}(n), define the support of 𝒎\boldsymbol{m}, denoted by supp(𝒎)\operatorname{supp}(\boldsymbol{m}), to be the matrix (si,j)𝕌(n)(s_{i,j})\in\mathbb{U}(n),

 where si,j={1,if the (i,j)-th entry of 𝒎 is not zero,0,otherwise.\text{ where }s_{i,j}=\begin{cases}1,&\text{if the $(i,j)$-th entry of $\boldsymbol{m}$ is not zero,}\\ 0,&\text{otherwise.}\end{cases}

Let 𝒎\boldsymbol{m} and 𝒎\boldsymbol{m}^{\prime} be two matrices in 𝕌(n)\mathbb{U}(n). We write supp(𝒎)supp(𝒎)\operatorname{supp}(\boldsymbol{m})\leq\operatorname{supp}(\boldsymbol{m}^{\prime}), if supp(𝒎)=(ai,j)\operatorname{supp}(\boldsymbol{m})=(a_{i,j}) and supp(𝒎)=(bi,j)\operatorname{supp}(\boldsymbol{m}^{\prime})=(b_{i,j}) satisfying ai,jbi,ja_{i,j}\leq b_{i,j} for any 1ijn1\leq i\leq j\leq n.

For 1ijn1\leq i\leq j\leq n, let Hi,jnH_{i,j}^{n} be the hyperplane consisting of 𝒎𝕌(n)\boldsymbol{m}\in\mathbb{U}(n) whose (i,j)(i,j)-th entry is 0,0, that is,

(2.7) Hi,jn:={𝒎=(ml,k)𝕌(n)|mi,j=0}.H_{i,j}^{n}:=\{\boldsymbol{m}=(m_{l,k})\in\mathbb{U}(n)~{}~{}|~{}~{}m_{i,j}=0\}.

We say the intersection Hi1,j1nHik,jknH_{i_{1},j_{1}}^{n}\cap\cdots\cap H_{i_{k},j_{k}}^{n} does not make any zero rows if the intersection is not contained in Hi,inHi,i+1nHi,nnH_{i,i}^{n}\cap H_{i,i+1}^{n}\cap\cdots\cap H_{i,n}^{n} for any 1in1\leq i\leq n.

Theorem 2.11.

[18, Lemma 2.4] Suppose 𝐚0n{\boldsymbol{a}}\in\mathbb{R}_{\geq 0}^{n} and let 𝐯Tesn(𝐚){\boldsymbol{v}}\in\operatorname{Tes}_{n}({\boldsymbol{a}}). Then 𝐯{\boldsymbol{v}} is a vertex of Tesn(𝐚)\operatorname{Tes}_{n}({\boldsymbol{a}}) if and only if supp(𝐯)\operatorname{supp}({\boldsymbol{v}}) has at most one 11 on each row. In particular, when 𝐚>0n{\boldsymbol{a}}\in\mathbb{R}_{>0}^{n}, we have that 𝐯{\boldsymbol{v}} is a vertex in Tesn(𝐚)\operatorname{Tes}_{n}({\boldsymbol{a}}) if and only if each row of supp(𝐯)\operatorname{supp}({\boldsymbol{v}}) has exactly one 11.

Lemma 2.12.

[18, Lemmas 2.1 and 2.4] Let 𝐚0n{\boldsymbol{a}}\in\mathbb{R}_{\geq 0}^{n}, and 𝐯{\boldsymbol{v}} be a vertex of Tesn(𝐚).\operatorname{Tes}_{n}({\boldsymbol{a}}). If 𝐮Tesn(𝐚)\boldsymbol{u}\in\operatorname{Tes}_{n}({\boldsymbol{a}}) satisfying supp(𝐮)supp(𝐯)\operatorname{supp}(\boldsymbol{u})\leq\operatorname{supp}({\boldsymbol{v}}), then 𝐮=𝐯.\boldsymbol{u}={\boldsymbol{v}}.

Recall that two vertices of a polytope are said to be adjacent if they are connected by an edge. The last two results of [18] we include here are a characterization for adjacent vertices of Tesn(𝒂)\operatorname{Tes}_{n}({\boldsymbol{a}}) and a characterization for a specific type of vertex.

Lemma 2.13.

[18, Theorem 2.7] Let 𝐚0n{\boldsymbol{a}}\in\mathbb{R}_{\geq 0}^{n}. Two vertices 𝐯{\boldsymbol{v}} and 𝐰{\boldsymbol{w}} of Tesn(𝐚)\operatorname{Tes}_{n}({\boldsymbol{a}}) are adjacent if and only if for every 1kn1\leq k\leq n, the kk-th row of supp(𝐰)\operatorname{supp}({\boldsymbol{w}}) can be obtained from the kk-th row of supp(𝐯)\operatorname{supp}({\boldsymbol{v}}) by exactly one of the following operations:

  1. (O1)

    Leaving the kk-th row of supp(𝒗)\operatorname{supp}({\boldsymbol{v}}) unchanged.

  2. (O2)

    Changing the unique 11 in kk-th row of supp(𝒗)\operatorname{supp}({\boldsymbol{v}}) to 0.

  3. (O3)

    Changing a single 0 in the kk-th row to a 11 (if kk-th row of supp(𝒗)\operatorname{supp}({\boldsymbol{v}}) is a zero row).

  4. (O4)

    Moving the unique 11 in the kk-th row of supp(𝒗)\operatorname{supp}({\boldsymbol{v}}) to a different position in the kk-th row (this operation must take place in precisely one row of supp(𝒗)\operatorname{supp}({\boldsymbol{v}})).

In particular, when 𝐚>0n{\boldsymbol{a}}\in\mathbb{R}_{>0}^{n}, two vertices 𝐯,𝐰{\boldsymbol{v}},{\boldsymbol{w}} are adjacent if and only if there exists a unique k:1knk:1\leq k\leq n such that supp(𝐰)supp({\boldsymbol{w}}) is obtained from supp(𝐯)supp({\boldsymbol{v}}) by moving 11 on the kk-th row to a different place on the same row.

Lemma 2.14.

[18, Lemma 2.4] Let 𝐚=(a1,,an)0n{\boldsymbol{a}}=(a_{1},\dots,a_{n})\in\mathbb{R}_{\geq 0}^{n}. The kk-th row of a vertex 𝐯{\boldsymbol{v}} of Tesn(𝐚)\operatorname{Tes}_{n}({\boldsymbol{a}}) is a zero row if and only if ak=0a_{k}=0 and the entries of kk-th column of 𝐯{\boldsymbol{v}} above the diagonal (excluding the diagonal entry) are all zero.

Example 2.15.

Let 𝒂=(2,2,3,4){\boldsymbol{a}}=(2,2,3,4), and

𝒗=(0200004308) and 𝒘=(0020002506).{\boldsymbol{v}}=\begin{pmatrix}0&2&0&0\\ &0&0&4\\ &&3&0\\ &&&8\\ \end{pmatrix}\text{ and }{\boldsymbol{w}}=\begin{pmatrix}0&0&2&0\\ &0&0&2\\ &&5&0\\ &&&6\\ \end{pmatrix}.

Then

supp(𝒗)=(0100001101) and supp(𝒘)=(0010001101).\operatorname{supp}({\boldsymbol{v}})=\begin{pmatrix}0&1&0&0\\ &0&0&1\\ &&1&0\\ &&&1\\ \end{pmatrix}\text{ and }\operatorname{supp}({\boldsymbol{w}})=\begin{pmatrix}0&0&1&0\\ &0&0&1\\ &&1&0\\ &&&1\\ \end{pmatrix}.

Using Theorem 2.11, one can easily check that 𝒗{\boldsymbol{v}} and 𝒘{\boldsymbol{w}} are vertices of Tes4(2,2,3,4)\operatorname{Tes}_{4}(2,2,3,4). Also, they are adjacent vertices, because supp(𝒘)\operatorname{supp}({\boldsymbol{w}}) can be obtained by moving 1 on the first row of supp(𝒗)\operatorname{supp}({\boldsymbol{v}}) to the right.

3. All Tesler polytopes are deformations of Tesn(𝟏)\operatorname{Tes}_{n}({\boldsymbol{1}})

The main goal of this section is to prove the following theorem:

Theorem 3.1.

Let 𝐚0>0n{\boldsymbol{a}}_{0}\in\mathbb{R}_{>0}^{n}. Then for any 𝐚=(a1,,an)0n{\boldsymbol{a}}=(a_{1},\dots,a_{n})\in\mathbb{R}_{\geq 0}^{n}, the Tesler polytope Tesn(𝐚)\operatorname{Tes}_{n}({\boldsymbol{a}}) is a deformation of Tesn(𝐚0)\operatorname{Tes}_{n}({\boldsymbol{a}}_{0}). More precisely, Tesn(𝐚)\operatorname{Tes}_{n}({\boldsymbol{a}}) is a weak deformation of Tesn(𝐚0)\operatorname{Tes}_{n}({\boldsymbol{a}}_{0}) (equivalently, is normally equivalent to Tesn(𝐚0)\operatorname{Tes}_{n}({\boldsymbol{a}}_{0})) if 𝐚>0n1×0{\boldsymbol{a}}\in\mathbb{R}_{>0}^{n-1}\times\mathbb{R}_{\geq 0}, and is a strong deformation of Tesn(𝐚0)\operatorname{Tes}_{n}({\boldsymbol{a}}_{0}) if ai=0a_{i}=0 for some 1in11\leq i\leq n-1.

In particular, all Tesler polytopes Tesn(𝐚)\operatorname{Tes}_{n}({\boldsymbol{a}}) (for 𝐚0n{\boldsymbol{a}}\in\mathbb{R}_{\geq 0}^{n}) are deformations of the Tesler polytope Tesn(𝟏)\operatorname{Tes}_{n}({\boldsymbol{1}}).

Throughout this section, we use the alternative definition of deformations introduced in Lemma 2.4. We will utilize a machinery that was used in the proof of Lemma 2.4 in [18].

Definition 3.2.

Let 𝒂0n{\boldsymbol{a}}\in\mathbb{R}_{\geq 0}^{n} and 𝒗=(vi,j){\boldsymbol{v}}=(v_{i,j}) be a vertex of Tesn(𝒂)\operatorname{Tes}_{n}({\boldsymbol{a}}).

  1. (1)

    Define j𝒗:{0,1,2,,n}{0,1,2,,n}j_{{\boldsymbol{v}}}:\{0,1,2,\dots,n\}\longrightarrow\{0,1,2,\dots,n\} by

    j𝒗(k)={0if k=0 or the k-th row of 𝒗 is a zero row,lif k0 and vk,l is the unique nonzero entry on the k-th row.j_{{\boldsymbol{v}}}(k)=\begin{cases}0&\text{if $k=0$ or the $k$-th row of ${\boldsymbol{v}}$ is a zero row},\\ l&\text{if $k\neq 0$ and $v_{k,l}$ is the unique nonzero entry on the $k$-th row.}\end{cases}

    (This is well-defined by Theorem 2.11).

  2. (2)

    Since 𝒗{\boldsymbol{v}} is upper triangular, the sequence {k,j𝒗(k),j𝒗2(k),}\{k,j_{{\boldsymbol{v}}}(k),j_{{\boldsymbol{v}}}^{2}(k),\dots\} is strictly increasing until it stabilizes. Assume that qq is the smallest integer such that j𝒗q1(k)=j𝒗q(k)j_{{\boldsymbol{v}}}^{q-1}(k)=j_{{\boldsymbol{v}}}^{q}(k). Define

    Dep𝒗(k)={(k,j𝒗(k)),(j𝒗(k),j𝒗2(k)),,(j𝒗q1(k),j𝒗q(k))}.\operatorname{Dep}_{{\boldsymbol{v}}}(k)=\{(k,j_{{\boldsymbol{v}}}(k)),(j_{{\boldsymbol{v}}}(k),j_{{\boldsymbol{v}}}^{2}(k)),\dots,(j_{{\boldsymbol{v}}}^{q-1}(k),j_{{\boldsymbol{v}}}^{q}(k))\}.
  3. (3)

    Let D𝒗(k)𝕌(n)D_{{\boldsymbol{v}}}(k)\in\mathbb{U}(n) be the upper triangular {0,1}\{0,1\}-matrix recording the positions appearing in Dep𝒗(k)\operatorname{Dep}_{{\boldsymbol{v}}}(k). More precisely,

    D𝒗(k):=(mi,j) where mi,j={1,if (i,j)Dep𝒗(k),0,if (i,j)Dep𝒗(k).D_{{\boldsymbol{v}}}(k):=(m_{i,j})\text{ where }m_{i,j}=\begin{cases}1,&\text{if }(i,j)\in\operatorname{Dep}_{{\boldsymbol{v}}}(k),\\ 0,&\text{if }(i,j)\notin\operatorname{Dep}_{{\boldsymbol{v}}}(k)\end{cases}.

The purpose of this definition is to describe the edge vector from a vertex of Tesn(𝒂)\operatorname{Tes}_{n}({\boldsymbol{a}}) to one of its adjacent vertices.

Proposition 3.3.

Let 𝐚=(a1,,an)0n{\boldsymbol{a}}=(a_{1},\dots,a_{n})\in\mathbb{R}_{\geq 0}^{n}. Suppose 𝐯=(vi,j){\boldsymbol{v}}=(v_{i,j}) and 𝐰=(wi,j){\boldsymbol{w}}=(w_{i,j}) are adjacent vertices of Tesn(𝐚)\operatorname{Tes}_{n}({\boldsymbol{a}}), and suppose the first row that supp(𝐯)\operatorname{supp}({\boldsymbol{v}}) and supp(𝐰)\operatorname{supp}({\boldsymbol{w}}) differ is the kk-th row. Then

𝒘𝒗=c(D𝒘(k)D𝒗(k)){\boldsymbol{w}}-{\boldsymbol{v}}=c(D_{{\boldsymbol{w}}}(k)-D_{{\boldsymbol{v}}}(k))

where c>0c\in\mathbb{R}_{>0} is the unique non-zero entry in the kk-th row of 𝐯{\boldsymbol{v}} (or that of 𝐰{\boldsymbol{w}}).

Example 3.4.

Let 𝒗{\boldsymbol{v}} and 𝒘{\boldsymbol{w}} be as in Example 2.15. The supports of 𝒘{\boldsymbol{w}} and 𝒗{\boldsymbol{v}} differ at the 11st row already. Hence k=1.k=1. We now compute D𝒘(k)D𝒗(k)=D𝒘(1)D𝒗(1)D_{{\boldsymbol{w}}}(k)-D_{{\boldsymbol{v}}}(k)=D_{{\boldsymbol{w}}}(1)-D_{{\boldsymbol{v}}}(1):

D𝒘(1)D𝒗(1)=(0010000100)(0100001001)=(0110001101).D_{{\boldsymbol{w}}}(1)-D_{{\boldsymbol{v}}}(1)=\begin{pmatrix}0&0&1&0\\ &0&0&0\\ &&1&0\\ &&&0\end{pmatrix}-\begin{pmatrix}0&1&0&0\\ &0&0&1\\ &&0&0\\ &&&1\end{pmatrix}=\begin{pmatrix}0&-1&1&0\\ &0&0&-1\\ &&1&0\\ &&&-1\end{pmatrix}.

Next, we compute the edge vector from 𝒗{\boldsymbol{v}} to 𝒘{\boldsymbol{w}} directly:

𝒘𝒗=(0020002506)(0200004308)=2(0110001101),{\boldsymbol{w}}-{\boldsymbol{v}}=\begin{pmatrix}0&0&2&0\\ &0&0&2\\ &&5&0\\ &&&6\end{pmatrix}-\begin{pmatrix}0&2&0&0\\ &0&0&4\\ &&3&0\\ &&&8\end{pmatrix}=2\begin{pmatrix}0&-1&1&0\\ &0&0&-1\\ &&1&0\\ &&&-1\end{pmatrix},

which is 2(D𝒘(1)D𝒗(1))2(D_{{\boldsymbol{w}}}(1)-D_{{\boldsymbol{v}}}(1)), agreeing with the assertion of Proposition 3.3.

We need two preliminary lemmas before proving Proposition 3.3.

Lemma 3.5.

Let 𝐚0n{\boldsymbol{a}}\in\mathbb{R}_{\geq 0}^{n} and 𝐯=(vi,j)Vert(Tesn(𝐚)){\boldsymbol{v}}=(v_{i,j})\in\operatorname{Vert}(\operatorname{Tes}_{n}({\boldsymbol{a}})). Suppose the kk-th row of 𝐯{\boldsymbol{v}} is a non-zero row, and cc is the non-zero entry in the kk-th row. Assume

Dep𝒗(k)={(k,j𝒗(k)),(j𝒗(k),j𝒗2(k)),,(j𝒗q1(k),j𝒗q(k))}.\operatorname{Dep}_{{\boldsymbol{v}}}(k)=\{(k,j_{{\boldsymbol{v}}}(k)),(j_{{\boldsymbol{v}}}(k),j_{{\boldsymbol{v}}}^{2}(k)),\dots,(j_{{\boldsymbol{v}}}^{q-1}(k),j_{{\boldsymbol{v}}}^{q}(k))\}.

Then D𝐯(k)D_{{\boldsymbol{v}}}(k) has the following properties:

  1. (1)

    𝜼(D𝒗(k))=𝒆k\boldsymbol{\eta}(D_{{\boldsymbol{v}}}(k))={\boldsymbol{e}}_{k} where 𝒆k{\boldsymbol{e}}_{k} is the kk-th standard basis vector of n\mathbb{R}^{n}.

  2. (2)

    The entries of 𝒗cD𝒗(k){\boldsymbol{v}}-cD_{{\boldsymbol{v}}}(k) are all non-negative.

Proof.

For convenince, we use di,jd_{i,j} to denote the (i,j)(i,j)-th entry of D𝒗(k)D_{{\boldsymbol{v}}}(k).

By convention, we let j𝒗0(k)=k.j_{{\boldsymbol{v}}}^{0}(k)=k. Then it follows from the definition of Dep𝒗(k)\operatorname{Dep}_{{\boldsymbol{v}}}(k) that

1j𝒗0(k)<j𝒗1(k)<j𝒗2(k)<<j𝒗q2(k)<j𝒗q1(k)=j𝒗q(k)n.1\leq j_{{\boldsymbol{v}}}^{0}(k)<j_{{\boldsymbol{v}}}^{1}(k)<j_{{\boldsymbol{v}}}^{2}(k)<\cdots<j_{{\boldsymbol{v}}}^{q-2}(k)<j_{{\boldsymbol{v}}}^{q-1}(k)=j_{{\boldsymbol{v}}}^{q}(k)\leq n.

Therefore, di,jd_{i,j} is 11 if (i,j)=(j𝒗l1(k),j𝒗l(k))(i,j)=(j_{{\boldsymbol{v}}}^{l-1}(k),j_{{\boldsymbol{v}}}^{l}(k)) for some l=1,2,,q,l=1,2,\dots,q, and is 0 otherwise. Clearly, if ij𝒗l(k)i\neq j_{{\boldsymbol{v}}}^{l}(k) for some l=0,1,,q1,l=0,1,\dots,q-1, then ηi(D𝒗(k))=0.\eta_{i}(D_{{\boldsymbol{v}}}(k))=0. If i=j𝒗l(k)i=j_{{\boldsymbol{v}}}^{l}(k) for some l=1,2,,q1,l=1,2,\dots,q-1, then

ηi(D𝒗(k))=jj𝒗l(k)dj𝒗l(k),jj<j𝒗l(k)dj,j𝒗l(k)=dj𝒗l(k),j𝒗l+1(k)dj𝒗l1(k),j𝒗l(k)=11=0.\eta_{i}(D_{{\boldsymbol{v}}}(k))=\sum_{j\geq j_{{\boldsymbol{v}}}^{l}(k)}d_{j_{{\boldsymbol{v}}}^{l}(k),j}-\sum_{j<j_{{\boldsymbol{v}}}^{l}(k)}d_{j,j_{{\boldsymbol{v}}}^{l}(k)}=d_{j_{{\boldsymbol{v}}}^{l}(k),j_{{\boldsymbol{v}}}^{l+1}(k)}-d_{j_{{\boldsymbol{v}}}^{l-1}(k),j_{{\boldsymbol{v}}}^{l}(k)}=1-1=0.

If i=k=j𝒗0(k),i=k=j_{{\boldsymbol{v}}}^{0}(k), then

ηi(D𝒗(k))=ηk(D𝒗(k))=jkdk,jj<kdj,k=dk,j𝒗1(k)=1.\eta_{i}(D_{{\boldsymbol{v}}}(k))=\eta_{k}(D_{{\boldsymbol{v}}}(k))=\sum_{j\geq k}d_{k,j}-\sum_{j<k}d_{j,k}=d_{k,j_{{\boldsymbol{v}}}^{1}(k)}=1.

Thus, 𝜼(D𝒗(k))=𝒆k\boldsymbol{\eta}(D_{{\boldsymbol{v}}}(k))={\boldsymbol{e}}_{k}, i.e. Property (1) follows.

For Property (2), we first show that

(3.1) vj𝒗l1(k),j𝒗l(k)vj𝒗l(k),j𝒗l+1(k),for any l=1,2,,q1.v_{j_{{\boldsymbol{v}}}^{l-1}(k),j_{{\boldsymbol{v}}}^{l}(k)}\leq v_{j_{{\boldsymbol{v}}}^{l}(k),j_{{\boldsymbol{v}}}^{l+1}(k)},\quad\text{for any $l=1,2,\dots,q-1.$}

Since 𝒗Tesn(𝒂),{\boldsymbol{v}}\in\operatorname{Tes}_{n}({\boldsymbol{a}}), by the definition of Tesn(𝒂)\operatorname{Tes}_{n}({\boldsymbol{a}}), we have that all the entries in 𝒗{\boldsymbol{v}} are non-negative, and ηj𝒗l(k)(𝒗)\eta_{j_{{\boldsymbol{v}}}^{l}(k)}({\boldsymbol{v}}), the j𝒗l(k)j_{{\boldsymbol{v}}}^{l}(k)-th hook sum of 𝒗{\boldsymbol{v}} is non-negative. However,

ηj𝒗l(k)(𝒗)=jj𝒗l(k)vj𝒗l(k),ji<j𝒗l(k)vi,j𝒗l(k).\eta_{j_{{\boldsymbol{v}}}^{l}(k)}({\boldsymbol{v}})=\sum_{j\geq j_{{\boldsymbol{v}}}^{l}(k)}v_{j_{{\boldsymbol{v}}}^{l}(k),j}-\sum_{i<j_{{\boldsymbol{v}}}^{l}(k)}v_{i,j_{{\boldsymbol{v}}}^{l}(k)}.

Hence, (3.1) follows from the fact that vj𝒗l(k),j𝒗l+1(k)v_{j_{{\boldsymbol{v}}}^{l}(k),j_{{\boldsymbol{v}}}^{l+1}(k)} is the only positive element in the j𝒗l(k)j_{{\boldsymbol{v}}}^{l}(k)-th row of 𝒗.{\boldsymbol{v}}. Given (3.1), we immediately have that

c=vk,j𝒗(k)vj𝒗l(k),j𝒗l+1(k),for any l=1,2,,q1.c=v_{k,j_{{\boldsymbol{v}}}(k)}\leq v_{j_{{\boldsymbol{v}}}^{l}(k),j_{{\boldsymbol{v}}}^{l+1}(k)},\quad\text{for any $l=1,2,\dots,q-1$.}

Thus, Property (2) follows. ∎

Lemma 3.6.

Let 𝐚0n{\boldsymbol{a}}\in\mathbb{R}_{\geq 0}^{n}. Suppose 𝐯{\boldsymbol{v}} and 𝐰{\boldsymbol{w}} of Tesn(𝐚)\operatorname{Tes}_{n}({\boldsymbol{a}}) are adjacent vertices of Tesn(𝐚),\operatorname{Tes}_{n}({\boldsymbol{a}}), and suppose that the first row in which supp(𝐯)\operatorname{supp}({\boldsymbol{v}}) and supp(𝐰)\operatorname{supp}({\boldsymbol{w}}) differ is the kk-th row. Then the followings are true.

  1. (1)

    The first k1k-1 rows of 𝒗{\boldsymbol{v}} and 𝒘{\boldsymbol{w}} are the same.

  2. (2)

    The kk-th row is the (unique) row of supp(𝒘)\operatorname{supp}({\boldsymbol{w}}) that is obtained from that of supp(𝒗)\operatorname{supp}({\boldsymbol{v}}) by operation (O4) of Lemma 2.13. Furthermore, the unique non-zero entries in the kk-th rows of 𝒗{\boldsymbol{v}} and 𝒘{\boldsymbol{w}} are equal to one another.

  3. (3)

    Let cc be the non-zero entry in the kk-th row of 𝒘.{\boldsymbol{w}}. For any kijn,k\leq i\leq j\leq n, if wi,j0w_{i,j}\neq 0 (or equivalently wi,j>0w_{i,j}>0) but vi,j=0v_{i,j}=0, then we have that (i,j)Dep𝒘(k)(i,j)\in\operatorname{Dep}_{\boldsymbol{w}}(k) and wi,j=c.w_{i,j}=c.

Proof.

By Theorem 2.11, each row of 𝒗{\boldsymbol{v}} has at most one non-negative entry. This implies that for any i,i, the first ii rows of supp(𝒗)\operatorname{supp}({\boldsymbol{v}}), together with the hook sum condition η(𝒗)=𝒂,\eta({\boldsymbol{v}})={\boldsymbol{a}}, determine the first ii rows of 𝒗.{\boldsymbol{v}}. The same thing holds for 𝒘.{\boldsymbol{w}}. Therefore, since supp(𝒗)\operatorname{supp}({\boldsymbol{v}}) and supp(𝒘)\operatorname{supp}({\boldsymbol{w}}) agree at the first k1k-1 rows, we conclude that (1) is true.

Then using the fact that ηk(𝒘)=ak=ηk(𝒗)\eta_{k}({\boldsymbol{w}})=a_{k}=\eta_{k}({\boldsymbol{v}}), we see that

(3.2) j=knvk,j=j=knwk,j.\sum_{j=k}^{n}v_{k,j}=\sum_{j=k}^{n}w_{k,j}.

Since supp(𝒗)\operatorname{supp}({\boldsymbol{v}}) and supp(𝒘)\operatorname{supp}({\boldsymbol{w}}) differ at the kk-th row, the equation (3.2) implies that the only operation (among the four operations) listed in Lemma 2.13 that can be applied to the kk-th row of supp(𝒗)\operatorname{supp}({\boldsymbol{v}}) to obtain that of supp(𝒘)\operatorname{supp}({\boldsymbol{w}}) is operation (O4). Thus, 𝒗{\boldsymbol{v}} and 𝒘{\boldsymbol{w}} each has exactly one non-zero entry in their kk-th row, but in different places. This together with (3.2) completes our proof for (2).

Finally, we prove (3) by induction on i.i. Clearly, it holds when i=k.i=k. Assume (3) holds for any i:ki<i0i:k\leq i<i_{0} for some i0n,i_{0}\leq n, and we consider the cases when i=i0.i=i_{0}. One observes that the ii-th row of supp(𝒘)\operatorname{supp}({\boldsymbol{w}}) must be obtained from supp(𝒗)\operatorname{supp}({\boldsymbol{v}}) by operation (O3) of Lemma 2.13. Hence, the ii-th row of 𝒗{\boldsymbol{v}} is a zero row, and wi,jw_{i,j} is the unique non-zero entry in the ii-th row of 𝒘.{\boldsymbol{w}}. Applying Lemma 2.14 to 𝒗{\boldsymbol{v}}, we have that

ai=0andv1,i=v2,i==vi1,i=0.a_{i}=0\quad\text{and}\quad v_{1,i}=v_{2,i}=\cdots=v_{i-1,i}=0.

Thus, ηi(𝒘)=ai=0\eta_{i}({\boldsymbol{w}})=a_{i}=0, which implies that wi,j=l=1i1wl,i.w_{i,j}=\sum_{l=1}^{i-1}w_{l,i}. Since we have already shown (1) holds, we can rewrite this equality as

wi,j=l=ki1wl,i.w_{i,j}=\sum_{l=k}^{i-1}w_{l,i}.

Let L={kli1|wl,i0}.L=\{k\leq l\leq i-1\ |\ w_{l,i}\neq 0\}. Because wi,j0,w_{i,j}\neq 0, we have that L.L\neq\emptyset. For any lL,l\in L, we have wl,i0w_{l,i}\neq 0 and vl,i=0,v_{l,i}=0, and thus by the induction hypothesis (l,i)Dep𝒘(k)(l,i)\in\operatorname{Dep}_{\boldsymbol{w}}(k) and wl,i=c.w_{l,i}=c. However, it follows from the definition of Dep𝒘(k)\operatorname{Dep}_{\boldsymbol{w}}(k) that no two pairs in Dep𝒘(k)\operatorname{Dep}_{\boldsymbol{w}}(k) share the same second coordinates unless one of the pair is in the form of (x,x).(x,x). But l<il<i for any lL.l\in L. We conclude that LL contains a unique element, say l0.l_{0}. Then clearly we have that wi,j=wl0,i=cw_{i,j}=w_{l_{0},i}=c. Furthermore, since (l0,i)Dep𝒘(k)(l_{0},i)\in\operatorname{Dep}_{\boldsymbol{w}}(k), one verifies that (i,j)Dep𝒘(k),(i,j)\in\operatorname{Dep}_{\boldsymbol{w}}(k), completing our inductive proof. ∎

Proof of Proposition 3.3.

By Lemma 3.6/(2), we must have that the two non-zero entries in the kk-th rows of 𝒗{\boldsymbol{v}} and 𝒘{\boldsymbol{w}} agree, i.e., vk,j𝒗(k)=wk,j𝒘(k)v_{k,j_{{\boldsymbol{v}}}(k)}=w_{k,j_{{\boldsymbol{w}}}(k)}. Let

c:=vk,j𝒗(k)=wk,j𝒘(k).c:=v_{k,j_{{\boldsymbol{v}}}(k)}=w_{k,j_{{\boldsymbol{w}}}(k)}.

Then it follows from Lemma 3.5/(1) that c𝜼(D𝒗(k))=c𝜼(D𝒘(k))=c𝒆kc\boldsymbol{\eta}(D_{{\boldsymbol{v}}}(k))=c\boldsymbol{\eta}(D_{{\boldsymbol{w}}}(k))=c{\boldsymbol{e}}_{k}. Thus, if we let

𝒖:=𝒘+cD𝒗(k)cD𝒘(k),\boldsymbol{u}:={\boldsymbol{w}}+cD_{{\boldsymbol{v}}}(k)-cD_{{\boldsymbol{w}}}(k),

then 𝜼(𝒖)=𝜼(𝒘)=𝒂.\boldsymbol{\eta}(\boldsymbol{u})=\boldsymbol{\eta}({\boldsymbol{w}})={\boldsymbol{a}}. Also, by Lemma 3.5/(2), the entries of 𝒘cD𝒘(k){\boldsymbol{w}}-cD_{{\boldsymbol{w}}}(k) are non-negative which implies that the entries of 𝒖=(𝒘cD𝒘(k))+cD𝒗(k)\boldsymbol{u}=\left({\boldsymbol{w}}-cD_{{\boldsymbol{w}}}(k)\right)+cD_{{\boldsymbol{v}}}(k) are non-negative as well. Therefore, we conclude that 𝒖Tesn(𝒂)\boldsymbol{u}\in\operatorname{Tes}_{n}({\boldsymbol{a}}). It is left to show that 𝒖=𝒗,\boldsymbol{u}={\boldsymbol{v}}, which by Lemma 2.12 can be reduced to showing supp(𝒖)supp(𝒗)\operatorname{supp}(\boldsymbol{u})\leq\operatorname{supp}({\boldsymbol{v}}). Since D𝒗(k)D_{{\boldsymbol{v}}}(k) and 𝒘cD𝒘(k){\boldsymbol{w}}-cD_{{\boldsymbol{w}}}(k) have non-negative entries, one sees that showing supp(𝒖)supp(𝒗)\operatorname{supp}(\boldsymbol{u})\leq\operatorname{supp}({\boldsymbol{v}}) is equivalent to showing the following two statements:

  1. (i)

    supp(cD𝒗(k))supp(𝒗)\operatorname{supp}(cD_{{\boldsymbol{v}}}(k))\leq\operatorname{supp}({\boldsymbol{v}}), and

  2. (ii)

    supp(𝒘cD𝒘(k))supp(𝒗).\operatorname{supp}({\boldsymbol{w}}-cD_{\boldsymbol{w}}(k))\leq\operatorname{supp}({\boldsymbol{v}}).

We see that (i) follows directly from the definition of D𝒗(k)D_{{\boldsymbol{v}}}(k).

By Lemma 3.6/(1) and the definition of D𝒘(k)D_{\boldsymbol{w}}(k), one sees that the first k1k-1 rows of 𝒘cD𝒘(k){\boldsymbol{w}}-cD_{{\boldsymbol{w}}}(k) are the same as that of 𝒗,{\boldsymbol{v}}, and the kk-th row of 𝒘cD𝒘(k){\boldsymbol{w}}-cD_{\boldsymbol{w}}(k) is a zero row. One sees that in order to finish proving (ii), it is sufficient to show that for any k<ijn,k<i\leq j\leq n, if wi,j0,w_{i,j}\neq 0, then either vi,j0v_{i,j}\neq 0 or the (i,j)(i,j)-th entry of 𝒘cD𝒘(k){\boldsymbol{w}}-cD_{\boldsymbol{w}}(k) is 0.0. However, if wi,j0w_{i,j}\neq 0 and vi,j=0,v_{i,j}=0, it follows from Lemma 3.6/(3) that wi,j=cw_{i,j}=c, and thus the (i,j)(i,j)-th entry of 𝒘cD𝒘(k){\boldsymbol{w}}-cD_{\boldsymbol{w}}(k) is 0,0, completing the proof. ∎

We need one more lemma before proving the result of this section.

Lemma 3.7.

Let 𝐚0>0n{\boldsymbol{a}}_{0}\in\mathbb{R}_{>0}^{n} and 𝐚0n{\boldsymbol{a}}\in\mathbb{R}_{\geq 0}^{n}. Then for any 𝐯Vert(Tesn(𝐚0)){\boldsymbol{v}}\in\operatorname{Vert}(\operatorname{Tes}_{n}({\boldsymbol{a}}_{0})), there exists a unique 𝐯Tesn(𝐚){\boldsymbol{v}}^{\prime}\in\operatorname{Tes}_{n}({\boldsymbol{a}}) such that supp(𝐯)supp(𝐯)\operatorname{supp}({\boldsymbol{v}}^{\prime})\leq\operatorname{supp}({\boldsymbol{v}}). Furthermore, this unique 𝐯{\boldsymbol{v}}^{\prime} is a vertex of Tesn(𝐚).\operatorname{Tes}_{n}({\boldsymbol{a}}).

Proof.

Because 𝒂0>0n{\boldsymbol{a}}_{0}\in\mathbb{R}_{>0}^{n}, by Theorem 2.11, each row of supp(𝒗)\operatorname{supp}({\boldsymbol{v}}) has exactly one 11. Let S:={(i,ji)| 1in}S:=\{(i,j_{i})\ |\ 1\leq i\leq n\} be the set of indices of the entries in supp(𝒗)\operatorname{supp}({\boldsymbol{v}}) that are 1.1. It is easy to see that there exists a unique solution 𝒗=(vi,j)𝕌(n){\boldsymbol{v}}^{\prime}=(v^{\prime}_{i,j})\in\mathbb{U}(n) satisfying

𝜼(𝒗)=𝒂 and vi,j=0for every (i,j)S.\boldsymbol{\eta}({\boldsymbol{v}}^{\prime})={\boldsymbol{a}}\quad\text{ and }\quad v^{\prime}_{i,j}=0\ \text{for every }(i,j)\not\in S.

Note that the condition vi,j=0v^{\prime}_{i,j}=0 for every (i,j)S(i,j)\not\in S is equivalent to the condition supp(𝒗)supp(𝒗).\operatorname{supp}({\boldsymbol{v}}^{\prime})\leq\operatorname{supp}({\boldsymbol{v}}). Hence, the first assertion of the lemma follows.

Since supp(𝒗)supp(𝒗)\operatorname{supp}({\boldsymbol{v}}^{\prime})\leq\operatorname{supp}({\boldsymbol{v}}) implies that there is at most one non-zero entry in each row of 𝒗{\boldsymbol{v}}^{\prime}, by Theorem 2.11, 𝒗{\boldsymbol{v}}^{\prime} has to be a vertex of Tesn(𝒂)\operatorname{Tes}_{n}({\boldsymbol{a}}). ∎

Now, we are ready to prove our main result of this section.

Proof of Theorem 3.1.

We prove the theorem using Lemma 2.4. For any vertex 𝒗{\boldsymbol{v}} of Tesn(𝒂0)\operatorname{Tes}_{n}({\boldsymbol{a}}_{0}), we let ϕ(𝒗)\phi({\boldsymbol{v}}) be the unique point/vertex 𝒗{\boldsymbol{v}}^{\prime} in Tesn(𝒂)\operatorname{Tes}_{n}({\boldsymbol{a}}) satisfying supp(𝒗)supp(𝒗)\operatorname{supp}({\boldsymbol{v}}^{\prime})\leq\operatorname{supp}({\boldsymbol{v}}) asserted by Lemma 3.7. Hence, ϕ\phi is a well-defined map from Vert(Tesn(𝒂0))\operatorname{Vert}(\operatorname{Tes}_{n}({\boldsymbol{a}}_{0})) to Vert(Tesn(𝒂))\operatorname{Vert}(\operatorname{Tes}_{n}({\boldsymbol{a}})).

For any vertex 𝒗{\boldsymbol{v}}^{\prime} of Tesn(𝒂)\operatorname{Tes}_{n}({\boldsymbol{a}}), it follows from Theorem 2.11 that there exists a {0,1}\{0,1\}-matrix 𝒎𝕌(n)\boldsymbol{m}\in\mathbb{U}(n) such that each row of 𝒎\boldsymbol{m} has exactly one 11 and supp(𝒗)𝒎.\operatorname{supp}({\boldsymbol{v}}^{\prime})\leq\boldsymbol{m}. Applying Theorem 2.11 again, there exists a vertex 𝒗{\boldsymbol{v}} of Tesn(𝒂0)\operatorname{Tes}_{n}({\boldsymbol{a}}_{0}) such that supp(𝒗)=𝒎.\operatorname{supp}({\boldsymbol{v}})=\boldsymbol{m}. Therefore, the surjectivity of ϕ\phi follows.

Assume that 𝒗{\boldsymbol{v}} and 𝒘{\boldsymbol{w}} are adjacent vertices of Tesn(𝒂0)\operatorname{Tes}_{n}({\boldsymbol{a}}_{0}) where their support only differ in the kk-th row. Let 𝒗=ϕ(𝒗){\boldsymbol{v}}^{\prime}=\phi({\boldsymbol{v}}) and 𝒘=ϕ(𝒘){\boldsymbol{w}}^{\prime}=\phi({\boldsymbol{w}}). In order to apply Lemma 2.4, we need to show that there exists r𝒗,𝒘0r_{{\boldsymbol{v}},{\boldsymbol{w}}}\in\mathbb{R}_{\geq 0} such that

𝒘𝒗=r𝒘,𝒗(𝒘𝒗).{\boldsymbol{w}}^{\prime}-{\boldsymbol{v}}^{\prime}=r_{{\boldsymbol{w}},{\boldsymbol{v}}}({\boldsymbol{w}}-{\boldsymbol{v}}).

We consider two cases below.

  1. Case 1

    Suppose the kk-th row of supp(𝒗)\operatorname{supp}({\boldsymbol{v}}^{\prime}) or that of supp(𝒘)\operatorname{supp}({\boldsymbol{w}}^{\prime}) is a zero row. Without loss of generality, assume that the kk-th row of supp(𝒗)\operatorname{supp}({\boldsymbol{v}}^{\prime}) is a zero row. Then since supp(𝒗)\operatorname{supp}({\boldsymbol{v}}) and supp(𝒘)\operatorname{supp}({\boldsymbol{w}}) only differs in the kk-th row, supp(𝒗)supp(𝒘)\operatorname{supp}({\boldsymbol{v}}^{\prime})\leq\operatorname{supp}({\boldsymbol{w}}). Thus, it follows from Lemma 3.7 and the constrution of ϕ\phi that 𝒗=𝒘{\boldsymbol{v}}^{\prime}={\boldsymbol{w}}^{\prime}. Therefore, we can choose r𝒗,𝒘=0r_{{\boldsymbol{v}},{\boldsymbol{w}}}=0.

  2. Case 2

    Suppose neither the kk-th row of supp(𝒗)\operatorname{supp}({\boldsymbol{v}}^{\prime}) nor that of supp(𝒘)\operatorname{supp}({\boldsymbol{w}}^{\prime}) is a zero row.

    Let 𝒗=(vi,j){\boldsymbol{v}}^{\prime}=(v^{\prime}_{i,j}), and vk,lv^{\prime}_{k,l} be the (unique) non-zero entry in the kk-th row of supp(𝒗).\operatorname{supp}({\boldsymbol{v}}^{\prime}). Because supp(𝒗)supp(𝒗)\operatorname{supp}({\boldsymbol{v}}^{\prime})\leq\operatorname{supp}({\boldsymbol{v}}), clearly we have j𝒗(k)=l=j𝒗(k)j_{{\boldsymbol{v}}}(k)=l=j_{{\boldsymbol{v}}^{\prime}}(k). Next, because vk,l0,v^{\prime}_{k,l}\neq 0, it follows from Lemma 2.14 that the ll-th row of 𝒗{\boldsymbol{v}}^{\prime} is a non-zero row. Using the same argument as above, we get j𝒗(l)=j𝒗(l),j_{{\boldsymbol{v}}}(l)=j_{{\boldsymbol{v}}^{\prime}}(l), or equivalently, j𝒗2(k)=j𝒗2(k)j_{{\boldsymbol{v}}^{\prime}}^{2}(k)=j_{{\boldsymbol{v}}}^{2}(k). By iterating this process, we obtain j𝒗s(k)=j𝒗s(k)j_{{\boldsymbol{v}}^{\prime}}^{s}(k)=j_{{\boldsymbol{v}}}^{s}(k) for any integer s0s\geq 0. Therefore, Dep𝒗(k)=Dep𝒗(k)\operatorname{Dep}_{{\boldsymbol{v}}^{\prime}}(k)=\operatorname{Dep}_{{\boldsymbol{v}}}(k) or equivalently, D𝒗(k)=D𝒗(k)D_{{\boldsymbol{v}}^{\prime}}(k)=D_{{\boldsymbol{v}}}(k).

    Similarly, we obtain D𝒘(k)=D𝒘(k)D_{{\boldsymbol{w}}^{\prime}}(k)=D_{{\boldsymbol{w}}}(k). By Proposition 3.3,

    𝒘𝒗=c(D𝒘(k)D𝒗(k)) and 𝒘𝒗=d(D𝒘(k)D𝒗(k)){\boldsymbol{w}}-{\boldsymbol{v}}=c(D_{{\boldsymbol{w}}}(k)-D_{{\boldsymbol{v}}}(k))\text{ and }{\boldsymbol{w}}^{\prime}-{\boldsymbol{v}}^{\prime}=d(D_{{\boldsymbol{w}}^{\prime}}(k)-D_{{\boldsymbol{v}}^{\prime}}(k))

    where cc and dd are the unique non-zero (positive) entries of 𝒗{\boldsymbol{v}} and 𝒗{\boldsymbol{v}}^{\prime} respectively. Therefore, we can take r𝒘,𝒗=dcr_{{\boldsymbol{w}},{\boldsymbol{v}}}=\dfrac{d}{c}.

In particular, when 𝒂>0n1×0{\boldsymbol{a}}\in\mathbb{R}_{>0}^{n-1}\times\mathbb{R}_{\geq 0}, r𝒘,𝒗r_{{\boldsymbol{w}},{\boldsymbol{v}}} is always positive because Case 1 does not happen. However, when some of aia_{i} where 1in11\leq i\leq n-1 are zero, one can easily see that Case 1 does happen which means the corresponding r𝒘,𝒗r_{{\boldsymbol{w}},{\boldsymbol{v}}}’s are zero. This completes our proof. ∎

We have proved Theorem 3.1 using the alternative definition of deformations given in Lemma 2.4. Below we will make a connection to the language used in Definition 2.1, i.e., the original definition of deformations we introduced. Recall that for 𝒂0>0n,{\boldsymbol{a}}_{0}\in\mathbb{R}_{>0}^{n}, the matrix description (2.6) is a minimal linear description for Tesn(𝒂0).\operatorname{Tes}_{n}({\boldsymbol{a}}_{0}). Therefore, it is natural to ask for 𝒂0n{\boldsymbol{a}}\in\mathbb{R}_{\geq 0}^{n}, what the deforming vector for Tesn(𝒂)\operatorname{Tes}_{n}({\boldsymbol{a}}) is.

Lemma 3.8.

Suppose 𝐚0>0n{\boldsymbol{a}}_{0}\in\mathbb{R}_{>0}^{n} and 𝐚0n{\boldsymbol{a}}\in\mathbb{R}_{\geq 0}^{n}. Then the system of linear inequalities

(3.3) Ln𝒎=𝒂 and Pn𝒎𝟎L_{n}\boldsymbol{m}={\boldsymbol{a}}\text{ and }-P_{n}\boldsymbol{m}\leq\boldsymbol{0}

is a tight linear inequality description for the non-empty Tesler polytope Tesn(𝐚).\operatorname{Tes}_{n}({\boldsymbol{a}}). Hence, Tesn(𝐚)\operatorname{Tes}_{n}({\boldsymbol{a}}) is a deformation of Tesn(𝐚0)\operatorname{Tes}_{n}({\boldsymbol{a}}_{0}) with deforming vector (𝐚,𝟎)({\boldsymbol{a}},{\boldsymbol{0}}) with respect to (Ln,Pn)(L_{n},-P_{n}).

Proof.

We already know that the system of linear equalities (3.3) defines the non-empty polytope Tesn(𝒂).\operatorname{Tes}_{n}({\boldsymbol{a}}). Hence, we only need to show the tightness part of the first assertion of the lemma. Note that Pn𝒎𝟎-P_{n}\boldsymbol{m}\leq{\boldsymbol{0}} is the same as

mi,j0 for 1ijn where (i,j)(n,n).m_{i,j}\geq 0\text{ for }1\leq i\leq j\leq n\text{ where }(i,j)\neq(n,n).

So we need to show that for every 1ijn1\leq i\leq j\leq n with (i,j)(n,n)(i,j)\neq(n,n), there exists a point 𝒎Tesn(𝒂)\boldsymbol{m}\in\operatorname{Tes}_{n}({\boldsymbol{a}}) such that mi,j=0.m_{i,j}=0. We construct two points 𝒎1=(mi,j1){\boldsymbol{m}}^{1}=(m_{i,j}^{1}) and 𝒎2=(mi,j2){\boldsymbol{m}}^{2}=(m_{i,j}^{2}) where

mi,j1={ai,if i=j,0,otherwise; and mi,j2={l=1ial,if j=i+1,l=1nal,if (i,j)=(n,n),0otherwise.m^{1}_{i,j}=\begin{cases}a_{i},&\text{if $i=j$},\\ 0,&\text{otherwise};\end{cases}\quad\text{ and }\quad m^{2}_{i,j}=\begin{cases}\sum_{l=1}^{i}a_{l},&\text{if $j=i+1$,}\\ \sum_{l=1}^{n}a_{l},&\text{if $(i,j)=(n,n)$},\\ 0&\text{otherwise}.\end{cases}

It is straightforward to verify that 𝒎1,𝒎2Tesn(𝒂)\boldsymbol{m}^{1},\boldsymbol{m}^{2}\in\operatorname{Tes}_{n}({\boldsymbol{a}}). By definition, mi,j1=0m^{1}_{i,j}=0 for all 1i<jn1\leq i<j\leq n and mi,i2=0m^{2}_{i,i}=0 for all 1in1.1\leq i\leq n-1. Therefore, the first assertion follows.

Finally, by Theorem 3.1, we already know that Tesn(𝒂)\operatorname{Tes}_{n}({\boldsymbol{a}}) is a deformation of Tesn(𝒂0).\operatorname{Tes}_{n}({\boldsymbol{a}}_{0}). Thus, the second assertion follows from the first assertion and Remark 2.2. ∎

We finish this section by stating a generalization of Theorem 3.1, in response to a question asked by an anonymous referee. For each 𝒂0n{\boldsymbol{a}}\in\mathbb{R}_{\geq 0}^{n}, we define (𝒂)={i[n1]|ai>0}\mathcal{I}({\boldsymbol{a}})=\{i\in[n-1]\ |\ a_{i}>0\} to be the set of indices in [n1][n-1] such that aia_{i} is nonzero. Note that we do not care about whether ana_{n} is zero or not.

Theorem 3.9.

Let 𝐚,𝐛0n{\boldsymbol{a}},{\boldsymbol{b}}\in\mathbb{R}_{\geq 0}^{n}. Then Tesn(𝐚)\operatorname{Tes}_{n}({\boldsymbol{a}}) is a deformation of Tesn(𝐛)\operatorname{Tes}_{n}({\boldsymbol{b}}) if (𝐚)(𝐛)\mathcal{I}({\boldsymbol{a}})\subseteq\mathcal{I}({\boldsymbol{b}}). Moreover, Tesn(𝐚)\operatorname{Tes}_{n}({\boldsymbol{a}}) is normally equivalent to Tesn(𝐛)\operatorname{Tes}_{n}({\boldsymbol{b}}) if (𝐚)=(𝐛)\mathcal{I}({\boldsymbol{a}})=\mathcal{I}({\boldsymbol{b}}).

One sees that Theorem 3.1 is a special case of Theorem 3.9 when taking 𝒃>0n{\boldsymbol{b}}\in\mathbb{R}_{>0}^{n}. It is possible to revise our proof for Theorem 3.1 to give a proof for Theorem 3.9. However, the arguments will be much more complicated. Instead, we will prove Theorem 3.9 in the next section as a consequence of Theorem 1.1 and Corollary 2.8.

4. The deformation cone of Tesler polytopes

In this section, we give a proof for Theorem 1.1, which describes the deformation cone of Tesn(𝒂0)\operatorname{Tes}_{n}({\boldsymbol{a}}_{0}) for 𝒂0>0n{\boldsymbol{a}}_{0}\in\mathbb{R}^{n}_{>0}, and then prove Theorem 3.9 by applying Corollary 2.8. In order to prove Theorem 1.1, we need the following preliminary lemma. Recall that 𝕌~(n)\widetilde{\mathbb{U}}(n) is the image of 𝕌(n)\mathbb{U}(n) under the projection which deletes the (n,n)(n,n)-th entry. For convenience, for any (𝒂,𝒃~)n×𝕌~(n)({\boldsymbol{a}},\tilde{{\boldsymbol{b}}})\in\mathbb{R}^{n}\times\widetilde{\mathbb{U}}(n), where 𝒂=(a1,,an){\boldsymbol{a}}=(a_{1},\dots,a_{n}) and 𝒃~=(b~i,j)\tilde{{\boldsymbol{b}}}=(\tilde{b}_{i,j}), let

(4.1) Q(𝒂,𝒃~):={𝒎𝕌(n)|Ln𝒎=𝒂 and Pn𝒎𝒃~}.Q({\boldsymbol{a}},\tilde{{\boldsymbol{b}}}):=\{\boldsymbol{m}\in\mathbb{U}(n)~{}~{}|~{}~{}L_{n}\boldsymbol{m}={\boldsymbol{a}}\text{ and }-P_{n}\boldsymbol{m}\leq\tilde{{\boldsymbol{b}}}\}.

Note that for arbitrary choices of (𝒂,𝒃~)({\boldsymbol{a}},\tilde{{\boldsymbol{b}}}), the above linear inequality description might not be tight.

Lemma 4.1.

Let 𝐚0>0n{\boldsymbol{a}}_{0}\in\mathbb{R}_{>0}^{n}. Suppose QQ is a deformation of Tesn(𝐚0)\operatorname{Tes}_{n}({\boldsymbol{a}}_{0}) with deforming vector (𝐚,𝐛~)({\boldsymbol{a}},\tilde{{\boldsymbol{b}}}). (Thus, Q=Q(𝐚,𝐛~)Q=Q({\boldsymbol{a}},\tilde{{\boldsymbol{b}}}) and (𝐚,𝐛~)Def(Tesn(𝐚0))({\boldsymbol{a}},\tilde{{\boldsymbol{b}}})\in\operatorname{Def}(\operatorname{Tes}_{n}({\boldsymbol{a}}_{0})).) Then the following statements are true:

  1. (1)

    For any 𝒗Vert(Tesn(𝒂0)){\boldsymbol{v}}\in\operatorname{Vert}(\operatorname{Tes}_{n}({\boldsymbol{a}}_{0})), there exists a unique 𝒗=(vi,j)Vert(Q(𝒂,𝒃~)){\boldsymbol{v}}^{\prime}=(v^{\prime}_{i,j})\in\operatorname{Vert}(Q({\boldsymbol{a}},\tilde{{\boldsymbol{b}}})) such that for all 1ijn1\leq i\leq j\leq n where (i,j)(n,n)(i,j)\neq(n,n) if vi,j=0v_{i,j}=0 then vi,j=b~i,jv^{\prime}_{i,j}=-\tilde{b}_{i,j} .

  2. (2)

    Let ϕ\phi be a map from Vert(Tesn(𝒂0))\operatorname{Vert}(\operatorname{Tes}_{n}({\boldsymbol{a}}_{0})) to Vert(Q(𝒂,𝒃~))\operatorname{Vert}(Q({\boldsymbol{a}},\tilde{{\boldsymbol{b}}})) defined by ϕ(𝒗)=𝒗\phi({\boldsymbol{v}})={\boldsymbol{v}}^{\prime} where 𝒗{\boldsymbol{v}}^{\prime} is the unique vertex assumed by part (1) above. Then for any pair of adjacent vertices 𝒗1{\boldsymbol{v}}_{1} and 𝒗2{\boldsymbol{v}}_{2} of Tesn(𝒂0)\operatorname{Tes}_{n}({\boldsymbol{a}}_{0}), there exists a non-negative real number rr such that ϕ(𝒗1)ϕ(𝒗2)=r(𝒗1𝒗2)\phi({\boldsymbol{v}}_{1})-\phi({\boldsymbol{v}}_{2})=r({\boldsymbol{v}}_{1}-{\boldsymbol{v}}_{2}), i.e, ϕ\phi satisfies the condition described in Lemma 2.4/(2).

Proof.

Let 𝒗{\boldsymbol{v}} be a vertex of Tesn(𝒂0).\operatorname{Tes}_{n}({\boldsymbol{a}}_{0}). Recall that (2.6) is a minimal linear inequality description for Tesn(𝒂0)\operatorname{Tes}_{n}({\boldsymbol{a}}_{0}) which means that each inequality in Pn𝒎𝟎-P_{n}\boldsymbol{m}\leq\boldsymbol{0} is facet-defining. Hence, the set of facets of Tesn(𝒂0)\operatorname{Tes}_{n}({\boldsymbol{a}}_{0}) containing 𝒗{\boldsymbol{v}} is

{Hi,jnTesn(𝒂0)|vi,j=0}.\{H_{i,j}^{n}\cap\operatorname{Tes}_{n}({\boldsymbol{a}}_{0})~{}~{}|~{}~{}v_{i,j}=0\}.

By Definition 2.1/(2), the vertex 𝒗(𝒂,𝒃~){\boldsymbol{v}}_{({\boldsymbol{a}},\tilde{{\boldsymbol{b}}})} of Q(𝒂,𝒃~)Q({\boldsymbol{a}},\tilde{{\boldsymbol{b}}}) is the unique point 𝒗{\boldsymbol{v}}^{\prime} satisfying the desired condition in (1). Then, the second part follows from Lemma 2.5. ∎

We describe a procedure of obtaining 𝒗=ϕ(𝒗){\boldsymbol{v}}^{\prime}=\phi({\boldsymbol{v}}) from 𝒗{\boldsymbol{v}} in the following example.

Example 4.2.

Let 𝒂0=(1,1,1,1){\boldsymbol{a}}_{0}=(1,1,1,1), 𝒂=(8,7,8,1),{\boldsymbol{a}}=(8,7,8,1), and

𝒃~:=[123456789].\tilde{{\boldsymbol{b}}}:=\begin{bmatrix}-1&2&-3&-4\\ &-5&6&7\\ &&-8&9\end{bmatrix}.

By using Theorem 1.1, one can check that Q=Q(𝒂,𝒃~)Q=Q({\boldsymbol{a}},\tilde{{\boldsymbol{b}}}) is a deformation of Tesn(𝟏)\operatorname{Tes}_{n}({\boldsymbol{1}}) with deforming vector (𝒂,𝒃~)({\boldsymbol{a}},\tilde{{\boldsymbol{b}}}). Let

𝒗:=[0100020301]{\boldsymbol{v}}:=\begin{bmatrix}0&1&0&0\\ &0&2&0\\ &&3&0\\ &&&1\\ \end{bmatrix}

which is a vertex of Tesn(𝟏)\operatorname{Tes}_{n}(\boldsymbol{1}). By the proof of Lemma 4.1, we know that 𝒗=ϕ(𝒗){\boldsymbol{v}}^{\prime}=\phi({\boldsymbol{v}}) is defined to be 𝒗(𝒂,𝒃~){\boldsymbol{v}}_{({\boldsymbol{a}},\tilde{{\boldsymbol{b}}})}. Hence, we can find 𝒗{\boldsymbol{v}}^{\prime} in the following way: We first change zero entries in 𝒗{\boldsymbol{v}} to corresponding b~i,j-\tilde{b}_{i,j}’s and change the four non-zero entries to undetermined variables w,x,y,zw,x,y,z:

𝒗=[0100020301]𝒗:=[1w345x7y9z].{\boldsymbol{v}}=\begin{bmatrix}0&1&0&0\\ &0&2&0\\ &&3&0\\ &&&1\end{bmatrix}\quad\rightarrow\quad{\boldsymbol{v}}^{\prime}:=\begin{bmatrix}1&w&3&4\\ &5&x&-7\\ &&y&-9\\ &&&z\end{bmatrix}.

We then use the hook sum conditions for QQ to determine w,x,y,zw,x,y,z:

{η1(𝒗)=1+w+3+4=8η2(𝒗)=5+x+(7)w=7η3(𝒗)=y+(9)(x+3)=8η4(𝒗)=z((9)+(7)+4)=1{w=0x=9y=29z=11𝒗=[103459729911].\begin{cases}\eta_{1}({\boldsymbol{v}}^{\prime})=1+w+3+4=8\\ \eta_{2}({\boldsymbol{v}}^{\prime})=5+x+(-7)-w=7\\ \eta_{3}({\boldsymbol{v}}^{\prime})=y+(-9)-(x+3)=8\\ \eta_{4}({\boldsymbol{v}}^{\prime})=z-((-9)+(-7)+4)=1\end{cases}\ \ \implies\ \ \begin{cases}w=0\\ x=9\\ y=29\\ z=-11\\ \end{cases}\ \ \implies\ \ {\boldsymbol{v}}^{\prime}=\begin{bmatrix}1&0&3&4\\ &5&9&-7\\ &&29&-9\\ &&&-11\end{bmatrix}.
Proof of Theorem 1.1.

Thanks to Theorem 3.1, without loss of generality, we can assume that 𝒂0=𝟏{\boldsymbol{a}}_{0}=\boldsymbol{1}. Let

A:={(𝒂,𝒃~)n×𝕌~(n))|ηi(𝒃~)ai for all 1in1}.A:=\{({\boldsymbol{a}},\tilde{{\boldsymbol{b}}})\in\mathbb{R}^{n}\times\widetilde{\mathbb{U}}(n))~{}~{}|~{}~{}\eta_{i}(\tilde{{\boldsymbol{b}}})\geq-a_{i}\text{ for all }1\leq i\leq n-1\}.

We will show that Def(Tesn(𝟏))=A\operatorname{Def}(\operatorname{Tes}_{n}(\boldsymbol{1}))=A by showing two-sided inclusion.

We first show that Def(Tesn(𝟏))A\operatorname{Def}(\operatorname{Tes}_{n}(\boldsymbol{1}))\subseteq A. Suppose (𝒂,𝒃~)Def(Tesn(𝟏))({\boldsymbol{a}},\tilde{{\boldsymbol{b}}})\in\operatorname{Def}(\operatorname{Tes}_{n}(\boldsymbol{1})). Let II be the n×nn\times n identity matrix and ϕ\phi be the map described in Lemma 4.1. It is clear that II is a vertex of Tesn(𝟏)\operatorname{Tes}_{n}(\boldsymbol{1}) by Theorem 2.11. Let 𝒘=ϕ(I){\boldsymbol{w}}=\phi(I) be the vertex of Q(𝒂,𝒃~)Q({\boldsymbol{a}},\tilde{{\boldsymbol{b}}}) corresponding to II. Then, by Lemma 4.1, we have that

wi,j=b~i,j,for all 1i<jn,w_{i,j}=-\tilde{b}_{i,j},\quad\text{for all $1\leq i<j\leq n$},

and wi,iw_{i,i}’s can be determined using hook sum conditions:

w1,1b~1,2b~1,n=a1,w_{1,1}-\tilde{b}_{1,2}-\cdots-\tilde{b}_{1,n}=a_{1},
(wi,ib~i,i+1b~i,n)(b~1,ib~i1,i)=ai,2in.(w_{i,i}-\tilde{b}_{i,i+1}-\cdots-\tilde{b}_{i,n})-(-\tilde{b}_{1,i}-\cdots-\tilde{b}_{i-1,i})=a_{i},\quad 2\leq i\leq n.

From the above equations, we obtain

wi,i=ηi(𝒃~)b~i,i+aifor all 1in.w_{i,i}=\eta_{i}(\tilde{{\boldsymbol{b}}})-\tilde{b}_{i,i}+a_{i}\quad\text{for all $1\leq i\leq n$.}

Since 𝒘Q(𝒂,𝒃~){\boldsymbol{w}}\in Q({\boldsymbol{a}},\tilde{{\boldsymbol{b}}}), we have inequalities wi,ib~i,iw_{i,i}\geq-\tilde{b}_{i,i} for all 1in11\leq i\leq n-1 which implies that ηi(𝒃~)ai\eta_{i}(\tilde{{\boldsymbol{b}}})\geq-a_{i} for all 1in11\leq i\leq n-1. Therefore, (𝒂,𝒃~)A({\boldsymbol{a}},\tilde{{\boldsymbol{b}}})\in A.

Next we show that ADef(Tesn(𝟏))A\subseteq\operatorname{Def}(\operatorname{Tes}_{n}(\boldsymbol{1})). Assume that (𝒂,𝒃~)A({\boldsymbol{a}},\tilde{{\boldsymbol{b}}})\in A and let Q:=Q(𝒂,𝒃~)Q:=Q({\boldsymbol{a}},\tilde{{\boldsymbol{b}}}). We will show that QQ is a deformation of Tesn(𝟏)\operatorname{Tes}_{n}({\boldsymbol{1}}) with deforming vector (𝒂,𝒃~)({\boldsymbol{a}},\tilde{{\boldsymbol{b}}}). Since (𝒂,𝒃~)A({\boldsymbol{a}},\tilde{{\boldsymbol{b}}})\in A, we have (η1(𝒃~)+a1,,ηn1(𝒃~)+an1,0)0n(\eta_{1}(\tilde{{\boldsymbol{b}}})+a_{1},\dots,\eta_{n-1}(\tilde{{\boldsymbol{b}}})+a_{n-1},0)\in\mathbb{R}_{\geq 0}^{n}. Therefore, it follows from Lemma 3.8 that

(4.2) T:={𝒎𝕌(n)|Ln𝒎=(η1(𝒃~)+a1,,ηn1(𝒃~)+an1,0)Pn𝒎𝟎}T:=\biggl{\{}\boldsymbol{m}\in\mathbb{U}(n)~{}~{}\biggl{|}\begin{array}[]{c}L_{n}\boldsymbol{m}=(\eta_{1}(\tilde{{\boldsymbol{b}}})+a_{1},\dots,\eta_{n-1}(\tilde{{\boldsymbol{b}}})+a_{n-1},0)\\[5.69054pt] -P_{n}\boldsymbol{m}\leq{\boldsymbol{0}}\end{array}\biggl{\}}

is a non-empty Tesler polytope and the linear inequality description above is tight. Let 𝒃𝕌(n){\boldsymbol{b}}\in\mathbb{U}(n) be the upper triangular matrix obtained from 𝒃~\tilde{{\boldsymbol{b}}} by appending i=1n1b~i,nan\displaystyle\sum_{i=1}^{n-1}\tilde{b}_{i,n}-a_{n} as its (n,n)(n,n)th-entry. Then

Ln𝒃=𝜼(𝒃)=(η1(𝒃~),,ηn1(𝒃~),an) and Pn𝒃=𝒃~.L_{n}{\boldsymbol{b}}=\boldsymbol{\eta}({\boldsymbol{b}})=(\eta_{1}(\tilde{{\boldsymbol{b}}}),\dots,\eta_{n-1}(\tilde{{\boldsymbol{b}}}),-a_{n})\text{ and }-P_{n}{\boldsymbol{b}}=-\tilde{{\boldsymbol{b}}}.

It immediately follows that Q=T𝒃Q=T-{\boldsymbol{b}}, is a translation of the Tesler polytope TT. By Theorem 3.1, the polytope TT is a deformation of Tesn(𝟏)\operatorname{Tes}_{n}({\boldsymbol{1}}), thus so is QQ by Remark 2.3. Moreover, one sees that the linear inequality description (4.1) for QQ is precisely obtained from the linear inequality description (4.2) for TT by translating 𝒎\boldsymbol{m} to 𝒎𝒃\boldsymbol{m}-{\boldsymbol{b}}. Therefore, the tightness of (4.1) follows from the tightness of (4.2). Hence, we conclude that (𝒂,𝒃~)Def(Tesn(𝟏))({\boldsymbol{a}},\tilde{{\boldsymbol{b}}})\in\operatorname{Def}(\operatorname{Tes}_{n}(\boldsymbol{1})), completing the proof of the first assertion of the theorem.

Finally, as we have shown above, for any (𝒂,𝒃~)A({\boldsymbol{a}},\tilde{{\boldsymbol{b}}})\in A, the polytope Q(𝒂,𝒃~)Q({\boldsymbol{a}},\tilde{{\boldsymbol{b}}}) is a translation of a Tesler polytope. Hence, the second statement of the theorem follows. ∎

We now proceed to prove Theorem 3.9. For all the discussion in the rest of this section, we assume 𝒂0>0n.{\boldsymbol{a}}_{0}\in\mathbb{R}_{>0}^{n}. As we mentioned in the introduction each inequality in the description (1.1) for Def(Tesn(𝒂0))\operatorname{Def}(\operatorname{Tes}_{n}({\boldsymbol{a}}_{0})) defines a facet, but we have more than that:

Lemma 4.3.

For each I[n1]I\subseteq[n-1], let

FI:={(𝒂,𝒃~)n×𝕌~(n)|ηi(𝒃~)ai for all iIηi(𝒃~)=ai for all i[n1]I}F_{I}:=\left\{({\boldsymbol{a}},\tilde{{\boldsymbol{b}}})\in\mathbb{R}^{n}\times\widetilde{\mathbb{U}}(n)~{}~{}\left|~{}~{}\begin{array}[]{c}\eta_{i}(\tilde{{\boldsymbol{b}}})\geq-a_{i}\text{ for all $i\in I$}\\ \eta_{i}(\tilde{{\boldsymbol{b}}})=-a_{i}\text{ for all $i\in[n-1]\setminus I$}\end{array}\right.\right\}

be a face of Def(Tesn(𝐚0))\operatorname{Def}(\operatorname{Tes}_{n}({\boldsymbol{a}}_{0})). Then IFII\mapsto F_{I} is an inclusion-preserving bijection from subsets II of [n1][n-1] and faces of Def(Tesn(𝐚0))\operatorname{Def}(\operatorname{Tes}_{n}({\boldsymbol{a}}_{0})).

Furthermore, for any 𝐚0n{\boldsymbol{a}}\in\mathbb{R}_{\geq 0}^{n}, we have that (𝐚)=I\mathcal{I}({\boldsymbol{a}})=I if and only if (𝐚,𝟎)({\boldsymbol{a}},{\boldsymbol{0}}) is in the relative interior of FIF_{I}.

Proof.

It follows from the definition of FIF_{I} that IJI\subseteq J if and only if FIFJF_{I}\subseteq F_{J}. It is also clearly, every face of Def(Tesn(𝒂0))\operatorname{Def}(\operatorname{Tes}_{n}({\boldsymbol{a}}_{0})) arises as an FIF_{I} for some II. So in order to prove the first conclusion, it is left to show that if IJI\subsetneq J, then FIFJF_{I}\neq F_{J}. However, notice that if (𝒂)=I\mathcal{I}({\boldsymbol{a}})=I, then (𝒂,𝟎)({\boldsymbol{a}},{\boldsymbol{0}}) belongs to the set

(4.3) {(𝒂,𝒃~)n×𝕌~(n)|ηi(𝒃~)>ai for all iIηi(𝒃~)=ai for all i[n1]I},\left\{({\boldsymbol{a}},\tilde{{\boldsymbol{b}}})\in\mathbb{R}^{n}\times\widetilde{\mathbb{U}}(n)~{}~{}\left|~{}~{}\begin{array}[]{c}\eta_{i}(\tilde{{\boldsymbol{b}}})>-a_{i}\text{ for all $i\in I$}\\ \eta_{i}(\tilde{{\boldsymbol{b}}})=-a_{i}\text{ for all $i\in[n-1]\setminus I$}\end{array}\right.\right\},

which is a subset of FIF_{I} but clearly has no intersection with FJF_{J} if IJI\subsetneq J. Therefore, we conclude that IFII\mapsto F_{I} is indeed an inclusion-preserving bijection from subsets II of [n1][n-1] and faces of Def(Tesn(𝒂0))\operatorname{Def}(\operatorname{Tes}_{n}({\boldsymbol{a}}_{0})).

Next, we observe that the above discussion implies that (4.3) actually is the relataive interior of FIF_{I}. Then the second conslusion follows. ∎

Proof of Theorem 3.9.

By Lemma 3.8, the Tesler polytope Tesn(𝒂)\operatorname{Tes}_{n}({\boldsymbol{a}}) is a deformation of Tesn(𝒂0)\operatorname{Tes}_{n}({\boldsymbol{a}}_{0}) with deforming vector (𝒂,𝟎)({\boldsymbol{a}},{\boldsymbol{0}}). Hence, the conclusion follows from Lemma 4.3 and Corollary 2.8. ∎

5. Flow polytopes that are deformations of Tesler polytopes

The goal of this subsection is to prove Theorem 1.2 which is a result about flow polytopes. We start by giving a formal definition of flow polytopes on the directed complete graph Kn+1\vec{K}_{n+1}. Recall that Kn+1\vec{K}_{n+1} is the directed complete graph on the set of vertices [n+1][n+1] with edge set En+1E_{n+1}. A flow on Kn+1\vec{K}_{n+1} is a function f:En+10f:E_{n+1}\rightarrow\mathbb{R}_{\geq 0} that assigns a non-negative real number to each edge of Kn+1\vec{K}_{n+1}. Given a flow ff, the net flow of ff on vertex ii is defined to be

fi:=j>if(i,j)j<if(j,i), for all 1in+1.f^{i}:=\displaystyle\sum_{j>i}f(i,j)-\sum_{j<i}f(j,i),\qquad\text{ for all }1\leq i\leq n+1.

Note that fn+1=1infif^{n+1}=-\sum_{1\leq i\leq n}f^{i}. Therefore, we often neglect the net flow on the vertex n+1n+1, and only discuss net flows on other vertices.

Definition 5.1.

For 𝒂=(a1,,an)n{\boldsymbol{a}}=(a_{1},\dots,a_{n})\in\mathbb{R}^{n}, the flow polytope on Kn+1\vec{K}_{n+1} with net flow 𝒂{\boldsymbol{a}} is defined to be

Flown(𝒂)={f:En+10|fi=ai for all 1in}.\operatorname{Flow}_{n}({\boldsymbol{a}})=\{f:E_{n+1}\rightarrow\mathbb{R}_{\geq 0}~{}~{}|~{}~{}f^{i}=a_{i}\text{ for all }1\leq i\leq n\}.

Since 𝕌(n)=En+1\mathbb{U}(n)=\mathbb{R}^{E_{n+1}}, any flow ff on Kn+1\vec{K}_{n+1} can be considered as an element in 𝕌(n)\mathbb{U}(n). Therefore, we have a natural correspondence between elements in 𝕌(n)\mathbb{U}(n) and flows on Kn+1.\vec{K}_{n+1}.

Example 5.2.

Let 𝒎𝕌(3)\boldsymbol{m}\in\mathbb{U}(3) be the same upper triangular matrix as in Example 2.9. The picture below shows 𝒎\boldsymbol{m} together with its corresponding flow ff on K4\vec{K}_{4}. Note that on the right, the number on each edge ee is the number f(e)f(e) assigned to e,e, and the number below each vertex ii is the net flow fif^{i} of ff on i.i.

𝒎=[1234510] 672-152510341\boldsymbol{m}=\begin{bmatrix}1&{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}2}&3\\ &{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}4}&{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}5}\\ &&10\\ \end{bmatrix}\quad\longleftrightarrow\quad\raisebox{-30.00005pt}{ \leavevmode\hbox to146.86pt{\vbox to67.01pt{\pgfpicture\makeatletter\hbox{\hskip 9.01958pt\lower-22.6086pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} \par\par\par{{}}{{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{1.69717pt}{0.0pt}\pgfsys@curveto{1.69717pt}{0.93733pt}{0.93733pt}{1.69717pt}{0.0pt}{1.69717pt}\pgfsys@curveto{-0.93733pt}{1.69717pt}{-1.69717pt}{0.93733pt}{-1.69717pt}{0.0pt}\pgfsys@curveto{-1.69717pt}{-0.93733pt}{-0.93733pt}{-1.69717pt}{0.0pt}{-1.69717pt}\pgfsys@curveto{0.93733pt}{-1.69717pt}{1.69717pt}{-0.93733pt}{1.69717pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.6}{0.0}{0.0}{0.6}{0.0pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-5.68657pt}{-16.72333pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\leavevmode\hbox to11.37pt{\vbox to11.37pt{\pgfpicture\makeatletter\hbox{\hskip 5.68657pt\lower-11.37314pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{5.48657pt}{-5.68657pt}\pgfsys@curveto{5.48657pt}{-2.65639pt}{3.03018pt}{-0.2pt}{0.0pt}{-0.2pt}\pgfsys@curveto{-3.03018pt}{-0.2pt}{-5.48657pt}{-2.65639pt}{-5.48657pt}{-5.68657pt}\pgfsys@curveto{-5.48657pt}{-8.71675pt}{-3.03018pt}{-11.17314pt}{0.0pt}{-11.17314pt}\pgfsys@curveto{3.03018pt}{-11.17314pt}{5.48657pt}{-8.71675pt}{5.48657pt}{-5.68657pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{-5.68657pt}\pgfsys@stroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{-8.90878pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{6}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{{}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{44.37631pt}{0.0pt}\pgfsys@curveto{44.37631pt}{0.93733pt}{43.61647pt}{1.69717pt}{42.67914pt}{1.69717pt}\pgfsys@curveto{41.7418pt}{1.69717pt}{40.98196pt}{0.93733pt}{40.98196pt}{0.0pt}\pgfsys@curveto{40.98196pt}{-0.93733pt}{41.7418pt}{-1.69717pt}{42.67914pt}{-1.69717pt}\pgfsys@curveto{43.61647pt}{-1.69717pt}{44.37631pt}{-0.93733pt}{44.37631pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{42.67914pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.6}{0.0}{0.0}{0.6}{42.67914pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{36.99289pt}{-16.72333pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\leavevmode\hbox to11.37pt{\vbox to11.37pt{\pgfpicture\makeatletter\hbox{\hskip 5.68657pt\lower-11.37314pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{5.48657pt}{-5.68657pt}\pgfsys@curveto{5.48657pt}{-2.65639pt}{3.03018pt}{-0.2pt}{0.0pt}{-0.2pt}\pgfsys@curveto{-3.03018pt}{-0.2pt}{-5.48657pt}{-2.65639pt}{-5.48657pt}{-5.68657pt}\pgfsys@curveto{-5.48657pt}{-8.71675pt}{-3.03018pt}{-11.17314pt}{0.0pt}{-11.17314pt}\pgfsys@curveto{3.03018pt}{-11.17314pt}{5.48657pt}{-8.71675pt}{5.48657pt}{-5.68657pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{-5.68657pt}\pgfsys@stroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{-8.90878pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{7}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{{}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{87.05545pt}{0.0pt}\pgfsys@curveto{87.05545pt}{0.93733pt}{86.29561pt}{1.69717pt}{85.35828pt}{1.69717pt}\pgfsys@curveto{84.42094pt}{1.69717pt}{83.6611pt}{0.93733pt}{83.6611pt}{0.0pt}\pgfsys@curveto{83.6611pt}{-0.93733pt}{84.42094pt}{-1.69717pt}{85.35828pt}{-1.69717pt}\pgfsys@curveto{86.29561pt}{-1.69717pt}{87.05545pt}{-0.93733pt}{87.05545pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{85.35828pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.6}{0.0}{0.0}{0.6}{85.35828pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{79.67235pt}{-16.72333pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\leavevmode\hbox to11.37pt{\vbox to11.37pt{\pgfpicture\makeatletter\hbox{\hskip 5.68657pt\lower-11.37314pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{5.48657pt}{-5.68657pt}\pgfsys@curveto{5.48657pt}{-2.65639pt}{3.03018pt}{-0.2pt}{0.0pt}{-0.2pt}\pgfsys@curveto{-3.03018pt}{-0.2pt}{-5.48657pt}{-2.65639pt}{-5.48657pt}{-5.68657pt}\pgfsys@curveto{-5.48657pt}{-8.71675pt}{-3.03018pt}{-11.17314pt}{0.0pt}{-11.17314pt}\pgfsys@curveto{3.03018pt}{-11.17314pt}{5.48657pt}{-8.71675pt}{5.48657pt}{-5.68657pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{-5.68657pt}\pgfsys@stroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{-8.90878pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{2}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{{}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{129.73459pt}{0.0pt}\pgfsys@curveto{129.73459pt}{0.93733pt}{128.97475pt}{1.69717pt}{128.03741pt}{1.69717pt}\pgfsys@curveto{127.10008pt}{1.69717pt}{126.34024pt}{0.93733pt}{126.34024pt}{0.0pt}\pgfsys@curveto{126.34024pt}{-0.93733pt}{127.10008pt}{-1.69717pt}{128.03741pt}{-1.69717pt}\pgfsys@curveto{128.97475pt}{-1.69717pt}{129.73459pt}{-0.93733pt}{129.73459pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{128.03741pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.6}{0.0}{0.0}{0.6}{128.03741pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \par{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}}{}{}{}{}{} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.8}{0.0}{0.0}{0.8}{120.89908pt}{-19.94218pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\leavevmode\hbox to17.85pt{\vbox to17.85pt{\pgfpicture\makeatletter\hbox{\hskip 8.9229pt\lower-8.9229pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{8.7229pt}{0.0pt}\pgfsys@curveto{8.7229pt}{4.81758pt}{4.81758pt}{8.7229pt}{0.0pt}{8.7229pt}\pgfsys@curveto{-4.81758pt}{8.7229pt}{-8.7229pt}{4.81758pt}{-8.7229pt}{0.0pt}\pgfsys@curveto{-8.7229pt}{-4.81758pt}{-4.81758pt}{-8.7229pt}{0.0pt}{-8.7229pt}\pgfsys@curveto{4.81758pt}{-8.7229pt}{8.7229pt}{-4.81758pt}{8.7229pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-6.66667pt}{-3.22221pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{-15}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{{}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \par{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{18.83957pt}{-3.22221pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}2}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{61.5187pt}{-3.22221pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}5}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{101.69783pt}{-3.22221pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{10}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{40.17914pt}{18.11736pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{3}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{82.85828pt}{18.11736pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}4}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{61.5187pt}{30.9212pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{1}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \par{{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}{{ {\pgfsys@beginscope\pgfsys@setlinewidth{0.32pt}\pgfsys@setdash{}{0.0pt}\pgfsys@roundcap\pgfsys@roundjoin{} {}{}{} {}{}{} \pgfsys@moveto{-1.19998pt}{1.59998pt}\pgfsys@curveto{-1.09998pt}{0.99998pt}{0.0pt}{0.09999pt}{0.29999pt}{0.0pt}\pgfsys@curveto{0.0pt}{-0.09999pt}{-1.09998pt}{-0.99998pt}{-1.19998pt}{-1.59998pt}\pgfsys@stroke\pgfsys@endscope}} }{}{}{{}}\pgfsys@moveto{1.81718pt}{0.0pt}\pgfsys@lineto{40.40225pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{40.40225pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}{}{}{}{{}}\pgfsys@moveto{44.49664pt}{0.0pt}\pgfsys@lineto{83.08171pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{83.08171pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} {{}}{}{{}}{{}}{{{{}}{{}}{{}}{{}}}{{{{}}{}{}{}{}{{}}}} }{{{{}}{{}}{{}}{{}}{{}}}{{{{}}{}{}{}{}{{}}}} }{{}{}}{{}} {}{}{}{{{}}{{}}{{}}} {{{}}{{}}{{}}} {}{{}}{}{{}}{}{{}}{}{}{}{}{}{}{}{{}}{}{{}}{}{}{}{}{}{{}}{}{}{}{}{{}}\pgfsys@moveto{0.90857pt}{1.57372pt}\pgfsys@curveto{17.198pt}{29.78792pt}{68.16092pt}{29.78792pt}{84.22035pt}{1.97208pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.5}{-0.86603}{0.86603}{0.5}{84.22035pt}{1.97208pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{42.67943pt}{26.26733pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}}{{}}{{{{}}{{}}{{}}{{}}}{{{{}}{}{}{}{}{{}}}} }{{{{}}{{}}{{}}{{}}{{}}}{{{{}}{}{}{}{}{{}}}} }{{}{}}{{}} {}{}{}{{{}}{{}}{{}}} {{{}}{{}}{{}}} {}{{}}{}{{}}{}{{}}{}{}{}{}{}{}{}{{}}{}{{}}{}{}{}{}{}{{}}{}{}{}{}{{}}\pgfsys@moveto{0.90857pt}{1.57372pt}\pgfsys@curveto{25.51988pt}{44.2019pt}{102.51851pt}{44.2019pt}{126.89983pt}{1.97208pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.5}{-0.86603}{0.86603}{0.5}{126.89983pt}{1.97208pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{64.01917pt}{37.07784pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}}{{}}{{{{}}{{}}{{}}{{}}}{{{{}}{}{}{}{}{{}}}} }{{{{}}{{}}{{}}{{}}{{}}}{{{{}}{}{}{}{}{{}}}} }{{}{}}{{}} {}{}{}{{{}}{{}}{{}}} {{{}}{{}}{{}}} {}{{}}{}{{}}{}{{}}{}{}{}{}{}{}{}{{}}{}{{}}{}{}{}{}{}{{}}{}{}{}{}{{}}\pgfsys@moveto{43.58804pt}{1.57367pt}\pgfsys@curveto{59.87747pt}{29.78787pt}{110.8404pt}{29.78792pt}{126.89983pt}{1.97208pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.5}{-0.86603}{0.86603}{0.5}{126.89983pt}{1.97208pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{85.35889pt}{26.2673pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}{}{}{}{}{{}}\pgfsys@moveto{87.17612pt}{0.0pt}\pgfsys@lineto{125.7612pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{125.7612pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{106.69864pt}{3.533pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} The numbers below the vertices indicate the net flows on the corresponding vertices and the numbers above the edges indicate the weight on the corresponding edges. \par \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}

As discussed in Example 2.9, we have η(𝒎)=(6,7,2)\eta(\boldsymbol{m})=(6,7,2). Thus, we have fi=ηi(𝒎)f^{i}=\eta_{i}(\boldsymbol{m}) for i=1,2,3i=1,2,3.

It is not hard to see that in general if 𝒎𝕌(n)\boldsymbol{m}\in\mathbb{U}(n) is corresponding to the flow ff on Kn+1\vec{K}_{n+1}, then fi=ηi(𝒎)f^{i}=\eta_{i}(\boldsymbol{m}) for 1in1\leq i\leq n. Therefore, in the matrix notation, we can write the flow polytope with net flow 𝒂{\boldsymbol{a}} as:

(5.1) Flown(𝒂)={𝒎𝕌(n)|Ln𝒎=𝒂 and 𝒎𝟎}.\operatorname{Flow}_{n}({\boldsymbol{a}})=\{\boldsymbol{m}\in\mathbb{U}(n)~{}~{}|~{}~{}L_{n}\boldsymbol{m}={\boldsymbol{a}}\text{ and }-\boldsymbol{m}\leq\boldsymbol{0}\}.

In order to be consistent with the bold fonts we have been using for elements in 𝕌(n),\mathbb{U}(n), below we will use 𝒇\boldsymbol{f} instead of ff to denote a flow in Flown(𝒂).\operatorname{Flow}_{n}({\boldsymbol{a}}).

One sees that if 𝒂0n{\boldsymbol{a}}\in\mathbb{R}_{\geq 0}^{n}, then Tesn(𝒂)=Flown(𝒂).\operatorname{Tes}_{n}({\boldsymbol{a}})=\operatorname{Flow}_{n}({\boldsymbol{a}}). However, since for flow polytopes, we are allowed to use 𝒂{\boldsymbol{a}} with negative entries, the family of flow polytopes contains more polytopes than the family of Tesler polytopes. For convenience, for the rest of the paper, we fix 𝒂0{\boldsymbol{a}}_{0} as an arbitrary element in >0n\mathbb{R}_{>0}^{n}. By Theorem 1.1, any deformation of Tesn(𝒂0)\operatorname{Tes}_{n}({\boldsymbol{a}}_{0}) is a Tesler polytope up to a translation. Therefore, it is meaningful to ask when a flow polytope is a deformation of Tesn(𝒂0)\operatorname{Tes}_{n}({\boldsymbol{a}}_{0}). Theorem 1.2 provides an answer to this question.

Remark 5.3.

Description (5.1) is different from

(5.2) {𝒎𝕌(n)|Ln𝒎=𝒂 and Pn𝒎𝟎}.,\{\boldsymbol{m}\in\mathbb{U}(n)~{}~{}|~{}~{}L_{n}\boldsymbol{m}={\boldsymbol{a}}\text{ and }-P_{n}\boldsymbol{m}\leq\boldsymbol{0}\}.,

because (5.1) has one additional inequality mn,n0m_{n,n}\geq 0. Only when this inequality is redundant in the description (5.1) for Flown(𝒂)\operatorname{Flow}_{n}({\boldsymbol{a}}), we can describe Flown(𝒂)\operatorname{Flow}_{n}({\boldsymbol{a}}) by (5.2), and then it is possible for Flown(𝒂)\operatorname{Flow}_{n}({\boldsymbol{a}}) to be a deformation of Tesn(𝒂0).\operatorname{Tes}_{n}({\boldsymbol{a}}_{0}). If mn,n0m_{n,n}\geq 0 is not a redundant inequality in (5.1), then Flown(𝒂)\operatorname{Flow}_{n}({\boldsymbol{a}}) cannot be described by (5.2), and thus cannot be a deformation of Tesn(𝒂0)\operatorname{Tes}_{n}({\boldsymbol{a}}_{0}).

Before we can prove Theorem 1.2, we need to clarify and define conditions given in the statement of the theorem. First, one observes that

Flown(𝒂) is non-empty if and only if i=1kai0 for all 1kn.\operatorname{Flow}_{n}({\boldsymbol{a}})\text{ is non-empty if and only if }\sum_{i=1}^{k}a_{i}\geq 0\text{ for all }1\leq k\leq n.

For convenience, we let AnA_{n} be the set of all 𝒂n{\boldsymbol{a}}\in\mathbb{R}^{n} that satisfies the above condition.

Definition 5.4.

Let 𝒂=(a1,,an)An{\boldsymbol{a}}=(a_{1},\dots,a_{n})\in A_{n}. For each 1in11\leq i\leq n-1, if ai>0a_{i}>0 and ai+ai+1=0a_{i}+a_{i+1}=0, we say the positive entry aia_{i} is voided.

We say ll (1ln11\leq l\leq n-1) is the critical position of 𝒂{\boldsymbol{a}} if ala_{l} is the first positive entry in 𝒂{\boldsymbol{a}} that is not voided. If such a positive entry does not exist, we say l=nl=n is the critical position of 𝒂{\boldsymbol{a}}.

The following lemma gives a characterization for the entries that appear before the critical position of a point 𝒂An{\boldsymbol{a}}\in A_{n}.

Lemma 5.5.

Let 𝐚=(a1,,an)An{\boldsymbol{a}}=(a_{1},\dots,a_{n})\in A_{n}. Suppose ll is the critical position of 𝐚.{\boldsymbol{a}}. Then for each 1i<l1\leq i<l, exactly one of the following three situations happens:

  1. (1)

    ai=0a_{i}=0.

  2. (2)

    aia_{i} is a voided positive entry.

  3. (3)

    ai<0a_{i}<0 and ai1a_{i-1} is a voided positive entry.

Moreover, if 1ln11\leq l\leq n-1, then i=1l1ai=0,\displaystyle\sum_{i=1}^{l-1}a_{i}=0, and hence al+al+1>0a_{l}+a_{l+1}>0.

Proof.

The first part (which charaterizes entries aia_{i} for i<li<l) follows directly from the definition of the critical position, and the second conclusion follows immediately from the first part. ∎

Lemma 5.6.

Let 𝐚=(a1,,an)An{\boldsymbol{a}}=(a_{1},\dots,a_{n})\in A_{n} where ll is the critical position of 𝐚{\boldsymbol{a}} and let ai1,ai2,,aima_{i_{1}},a_{i_{2}},\dots,a_{i_{m}} be all the voided positive entries before the critical position where 1i1<i2<<im<l1\leq i_{1}<i_{2}<\dots<i_{m}<l. Then all flows 𝐟=(fi,j)Flown(𝐚)\boldsymbol{f}=(f_{i,j})\in\operatorname{Flow}_{n}({\boldsymbol{a}}) have fixed entries in their first l1l-1 rows as described below:

  1. (1)

    For each 1pm1\leq p\leq m, the (ip,ip+1)({i_{p},i_{p}+1})-th entry fip,ip+1f_{i_{p},i_{p}+1} of 𝒇\boldsymbol{f} is always aipa_{i_{p}}.

  2. (2)

    The remaining entries in the first l1l-1 rows of 𝒇\boldsymbol{f} are zeros.

Proof.

Using Lemma 5.5 together with the hypothesis of this lemma, we obtain that

ai={ai+1,if i=ip for some 1pm;0,if 1i<l and iip or ip+1 for all 1pm.a_{i}=\begin{cases}-a_{i+1},\quad&\text{if $i=i_{p}$ for some $1\leq p\leq m$;}\\ 0,\quad&\text{if $1\leq i<l$ and $i\neq i_{p}$ or $i_{p}+1$ for all $1\leq p\leq m$.}\end{cases}

Since the first i11i_{1}-1 entries of 𝒂{\boldsymbol{a}} are zeros and all the entries in 𝒇\boldsymbol{f} are non-negative, we conclude that the first i11i_{1}-1 rows of 𝒇\boldsymbol{f} have to be zero rows. In particular,

fi,i1=0,for all 1ii11.f_{i,i_{1}}=0,\quad\text{for all $1\leq i\leq i_{1}-1$}.

Hence, the i1i_{1}-th and the (i1+1)(i_{1}+1)-st hook sums of 𝒇\boldsymbol{f} are

(5.3) ηi1(𝒇)=\displaystyle\eta_{i_{1}}(\boldsymbol{f})= fi1,i1++fi1,n(f1,i1++fi11,i1)=fi1,i1++fi1,n=ai1,\displaystyle\ f_{i_{1},i_{1}}+\dots+f_{i_{1},n}-(f_{1,i_{1}}+\cdots+f_{i_{1}-1,i_{1}})=f_{i_{1},i_{1}}+\dots+f_{i_{1},n}=a_{i_{1}},
(5.4) ηi1+1(𝒇)=\displaystyle\eta_{i_{1}+1}(\boldsymbol{f})= fi1+1,i1+1++fi1+1,n(f1,i1+1++fi1,i1+1)\displaystyle\ f_{i_{1}+1,i_{1}+1}+\dots+f_{i_{1}+1,n}-(f_{1,i_{1}+1}+\cdots+f_{i_{1},i_{1}+1})
=\displaystyle= fi1+1,i1+1++fi1+1,nfi1,i1+1=ai1+1=ai1.\displaystyle\ f_{i_{1}+1,i_{1}+1}+\dots+f_{i_{1}+1,n}-f_{i_{1},i_{1}+1}=a_{i_{1}+1}=-a_{i_{1}}.

Using the fact that 𝒇\boldsymbol{f} has non-negative entries again, one sees that (5.3) implies fi1,i1+1ai1f_{i_{1},i_{1}+1}\leq a_{i_{1}} and (5.4) implies fi1,i1+1ai1f_{i_{1},i_{1}+1}\geq a_{i_{1}}. Thus, fi1,i1+1=ai1f_{i_{1},i_{1}+1}=a_{i_{1}}. This forces the remaining entries in the i1i_{1}-th and (i1+1)(i_{1}+1)-st rows are zeros. We have shown that the first i1+1i_{1}+1 rows of 𝒇\boldsymbol{f} are given as described by the lemma. By iterating similar arguments, one can deduce that all the first l1l-1 rows are as described. ∎

The following two propositions are the key results that will be used in our proof for Theorem 1.2.

Proposition 5.7.

Let 𝐚=(a1,,an)An{\boldsymbol{a}}=(a_{1},\dots,a_{n})\in A_{n} and suppose ll is the critical position of 𝐚{\boldsymbol{a}}.

  1. (1)

    If 1l<n,1\leq l<n, then there exists 𝒂^=(a^1,,a^n)An\hat{{\boldsymbol{a}}}=(\hat{a}_{1},\dots,\hat{a}_{n})\in A_{n} satisfying

    a^1=a^2==a^l1=0,a^l>0,a^l+10, and a^i=ai for l+2in.\hat{a}_{1}=\hat{a}_{2}=\cdots=\hat{a}_{l-1}=0,\ \hat{a}_{l}>0,\ \hat{a}_{l+1}\geq 0,\text{ and $\hat{a}_{i}=a_{i}$ for $l+2\leq i\leq n$.}

    such that Flown(𝒂)\operatorname{Flow}_{n}({\boldsymbol{a}}) is a translation of Flown(𝒂^)\operatorname{Flow}_{n}(\hat{{\boldsymbol{a}}}).

  2. (2)

    If l=n,l=n, then Flown(𝒂)\operatorname{Flow}_{n}({\boldsymbol{a}}) is a point.

Proposition 5.8.

Let n3n\geq 3 and 𝐚=(a1,a2,,an)An{\boldsymbol{a}}=(a_{1},a_{2},\cdots,a_{n})\in A_{n}. Suppose for some integer 1ln11\leq l\leq n-1, we have a1=a2==al1=0a_{1}=a_{2}=\cdots=a_{l-1}=0, al>0a_{l}>0, and al+10a_{l+1}\geq 0. (Note that this implies that ll is the critical position of 𝐚.{\boldsymbol{a}}.) Assume further that ama_{m} is the first negative entry of 𝐚{\boldsymbol{a}}, where l+2mn.l+2\leq m\leq n. Then Flown(𝐚)\operatorname{Flow}_{n}({\boldsymbol{a}}) is not a deformation of Tesn(𝐚0)\operatorname{Tes}_{n}({\boldsymbol{a}}_{0}).

Before we prove each of these two propositions, we need a preliminary lemma. Recall that 𝒆k{\boldsymbol{e}}_{k} is the kk-th standard basis vector of n\mathbb{R}^{n}. For convenience, for every 1ijn,1\leq i\leq j\leq n, we denote by 𝒆i,j{\boldsymbol{e}}_{i,j} to be the unique upper triangular matrix in 𝕌(n)\mathbb{U}(n) whose (i,j)(i,j)-th entry is its only nonzero entry and has value 11. So {𝒆i,j}\{{\boldsymbol{e}}_{i,j}\} is the standard basis for 𝕌(n)\mathbb{U}(n).

Lemma 5.9.

Let 𝐚=(a1,,an)An{\boldsymbol{a}}=(a_{1},\dots,a_{n})\in A_{n} and c>0c>0. Suppose for a fixed pair of indices 1ijn,1\leq i\leq j\leq n, we have that every flow 𝐟=(fi,j)Flown(𝐚)\boldsymbol{f}=(f_{i,j})\in\operatorname{Flow}_{n}({\boldsymbol{a}}) satisfies fi,jc.f_{i,j}\geq c. Then

Flown(𝒂)c𝒆i,j={Flown(𝒂c𝒆i+c𝒆j),if i<j,Flown(𝒂c𝒆i),if i=j.\operatorname{Flow}_{n}({\boldsymbol{a}})-c{\boldsymbol{e}}_{i,j}=\begin{cases}\operatorname{Flow}_{n}({\boldsymbol{a}}-c{\boldsymbol{e}}_{i}+c{\boldsymbol{e}}_{j}),&\quad\text{if $i<j$},\\ \operatorname{Flow}_{n}({\boldsymbol{a}}-c{\boldsymbol{e}}_{i}),&\quad\text{if $i=j$}.\end{cases}
Proof.

We only prove the case when i<ji<j, as the case when i=ji=j can be proved similarly. Let 𝒇𝕌(n)\boldsymbol{f}\in\mathbb{U}(n) and 𝒈=𝒇c𝒆i,j.{\boldsymbol{g}}=\boldsymbol{f}-c{\boldsymbol{e}}_{i,j}. First, since 𝜼(𝒆i,j)=𝒆i𝒆j\boldsymbol{\eta}({\boldsymbol{e}}_{i,j})={\boldsymbol{e}}_{i}-{\boldsymbol{e}}_{j}, we have that 𝜼(𝒇)=𝒂\boldsymbol{\eta}(\boldsymbol{f})={\boldsymbol{a}} if and only only if 𝜼(𝒈)=𝒂c𝒆i+c𝒆j.\boldsymbol{\eta}({\boldsymbol{g}})={\boldsymbol{a}}-c{\boldsymbol{e}}_{i}+c{\boldsymbol{e}}_{j}. Next, if 𝒇Flown(𝒂)\boldsymbol{f}\in\operatorname{Flow}_{n}({\boldsymbol{a}}), because fi,jc,f_{i,j}\geq c, we see that all entries of 𝒈{\boldsymbol{g}} are non-negative. Conversely, if 𝒈Flown(𝒂c𝒆i+c𝒆j){\boldsymbol{g}}\in\operatorname{Flow}_{n}({\boldsymbol{a}}-c{\boldsymbol{e}}_{i}+c{\boldsymbol{e}}_{j}), since c>0,c>0, we must have that all entries of 𝒇=𝒈+c𝒆i,j\boldsymbol{f}={\boldsymbol{g}}+c{\boldsymbol{e}}_{i,j} are non-negative. Therefore, we conclude that 𝒇Flown(𝒂)\boldsymbol{f}\in\operatorname{Flow}_{n}({\boldsymbol{a}}) if and only if 𝒈Flown(𝒂c𝒆i+c𝒆j).{\boldsymbol{g}}\in\operatorname{Flow}_{n}({\boldsymbol{a}}-c{\boldsymbol{e}}_{i}+c{\boldsymbol{e}}_{j}). Then the conclusion of the lemma follows. ∎

Proof of Proposition 5.7.

Suppose l=nl=n. Then by Lemma 5.6, the first n1n-1 rows of all the flows in Flown(𝒂)\operatorname{Flow}_{n}({\boldsymbol{a}}) are fixed. However, the nn-th hook sum condition makes the only entry in the nn-th row to be fixed as well. Hence, (2) follows.

Suppose 1ln11\leq l\leq n-1 and assume ai1,ai2,,aima_{i_{1}},a_{i_{2}},\dots,a_{i_{m}} are all the voided positive entries before the critical position where 1i1<i2<<im<l1\leq i_{1}<i_{2}<\dots<i_{m}<l. It follows from Lemma 5.6 and Lemma 5.9 that

Flown(𝒂)p=1maip𝒆ip,ip+1=Flown(0,,0,al,al+1,,an).\operatorname{Flow}_{n}({\boldsymbol{a}})-\sum_{p=1}^{m}a_{i_{p}}{\boldsymbol{e}}_{i_{p},i_{p}+1}=\operatorname{Flow}_{n}(0,\dots,0,a_{l},a_{l+1},\dots,a_{n}).

If al+10a_{l+1}\geq 0, then we see that 𝒂:=(0,,0,al,al+1,,an){\boldsymbol{a}}^{\prime}:=(0,\dots,0,a_{l},a_{l+1},\dots,a_{n}) is a desired choice for a^\hat{a}.

Suppose al+1<0a_{l+1}<0. We now consider the flow polytope Flown(𝒂)\operatorname{Flow}_{n}({\boldsymbol{a}}^{\prime}). Clearly, ll is still the critical position of the vector 𝒂{\boldsymbol{a}}^{\prime}. Let 𝒈Flown(𝒂).{\boldsymbol{g}}\in\operatorname{Flow}_{n}({\boldsymbol{a}}^{\prime}). It is clear (or follows from Lemma 5.6) that the first l1l-1 rows of 𝒈{\boldsymbol{g}} are zero rows. Thus, the (l+1)(l+1)-th hook sum of 𝒈=(gi,j){\boldsymbol{g}}=(g_{i,j}) is:

ηl+1(𝒈)=gl+1,l+1++gl+1,ngl,l+1=al+1\eta_{l+1}({\boldsymbol{g}})=g_{l+1,l+1}+\cdots+g_{l+1,n}-g_{l,l+1}=a_{l+1}

Since gl+1,l+1,,gl+1,ng_{l+1,l+1},\cdots,g_{l+1,n} are all non-negative, we get that gl,l+1al+1>0g_{l,l+1}\geq-a_{l+1}>0. Now applying Lemma 5.9 with c=al+1c=-a_{l+1}, we get

Flown(𝒂)c𝒆l,l+1=Flown(𝒂c𝒆l+c𝒆l+1).\operatorname{Flow}_{n}({\boldsymbol{a}}^{\prime})-c{\boldsymbol{e}}_{l,l+1}=\operatorname{Flow}_{n}({\boldsymbol{a}}^{\prime}-c{\boldsymbol{e}}_{l}+c{\boldsymbol{e}}_{l+1}).

where

𝒂c𝒆l+c𝒆l+1=(0,,0,al+al+1,0,al+2,,an).{\boldsymbol{a}}^{\prime}-c{\boldsymbol{e}}_{l}+c{\boldsymbol{e}}_{l+1}=(0,\dots,0,a_{l}+a_{l+1},0,a_{l+2},\dots,a_{n}).

However, by the last conclusion of Lemma 5.5, we have al+al+1>0.a_{l}+a_{l+1}>0. Hence, 𝒂c𝒆l+c𝒆l+1{\boldsymbol{a}}^{\prime}-c{\boldsymbol{e}}_{l}+c{\boldsymbol{e}}_{l+1} is a desired choice for 𝒂^\hat{{\boldsymbol{a}}} for this case. Therefore, (1) holds. ∎

The next lemma shows the existence of a certain flow which will be used in the proof of Proposition 5.8.

Lemma 5.10.

Assume the hypothesis of Proposition 5.8. If mnm\neq n, i.e., l+2m<nl+2\leq m<n, then there exists a flow 𝐟=(fi,j)\boldsymbol{f}=(f_{i,j}) in Flown(𝐚)\operatorname{Flow}_{n}({\boldsymbol{a}}) satisfying the following conditions:

  1. (i)

    fl,m>0f_{l,m}>0.

  2. (ii)

    fl,m+fl+1,m++fm1,m=am.f_{l,m}+f_{l+1,m}+\cdots+f_{m-1,m}=-a_{m}.

  3. (iii)

    The mmth row of 𝒇\boldsymbol{f} is a zero row.

  4. (iv)

    The first l1l-1 rows of 𝒇\boldsymbol{f} are zero rows.

Proof.

We prove the lemma by constructing such a flow 𝒇\boldsymbol{f}. Because the first l1l-1 entries of 𝒂{\boldsymbol{a}} are all zero and ama_{m} is the first negative entry, we have that

p=1l1ap=0,p=1lap,p=1l+1ap,,p=1m1ap\sum_{p=1}^{l-1}a_{p}=0,\ \sum_{p=1}^{l}a_{p},\ \sum_{p=1}^{l+1}a_{p},\dots,\sum_{p=1}^{m-1}a_{p}

is a weakly increasing sequence. Since 𝒂An{\boldsymbol{a}}\in A_{n}, one sees that the last entry in the above sequence is at least am-a_{m}, which is strictly greater than the first entry in the sequence. Therefore, there exists (a unique) k{l,l+1,,m1}k\in\{l,l+1,\dots,m-1\} such that

p=1k1ap<amp=1kap.\sum_{p=1}^{k-1}a_{p}<-a_{m}\leq\sum_{p=1}^{k}a_{p}.

Let

ci={ai,if lik1amp=1k1ap,if i=k0,if k+1im1.,c_{i}=\begin{cases}a_{i},&\text{if $l\leq i\leq k-1$}\\ -a_{m}-\sum_{p=1}^{k-1}a_{p},&\text{if $i=k$}\\ 0,&\text{if $k+1\leq i\leq m-1$}.\end{cases},

and then let

di=aici, for lim1.d_{i}=a_{i}-c_{i},\text{ for $l\leq i\leq m-1$}.

One can verify that all cic_{i}’s and did_{i}’s are non-negative, and moreover,

(5.5) cl>0andcl+cl+1+cm1=am.c_{l}>0\quad\text{and}\quad c_{l}+c_{l+1}+\cdots c_{m-1}=-a_{m}.

Now we are ready to construct a desired flow 𝒇\boldsymbol{f}. We define 𝒇=(fi,j)𝕌(n)\boldsymbol{f}=(f_{i,j})\in\mathbb{U}(n) as

fi,j={ci,if lim1 and j=mdi,if lim1 and j=m+1p=1iap,if m+1in1 and j=i+1p=1nap,if i=j=n0,otherwise.f_{i,j}=\begin{cases}c_{i},&\text{if $l\leq i\leq m-1$ and $j=m$}\\ d_{i},&\text{if $l\leq i\leq m-1$ and $j=m+1$}\\ \sum_{p=1}^{i}a_{p},&\text{if $m+1\leq i\leq n-1$ and $j=i+1$}\\ \sum_{p=1}^{n}a_{p},&\text{if $i=j=n$}\\ 0,&\text{otherwise}.\end{cases}

It is straightforward to check that 𝒇Flown(𝒂)\boldsymbol{f}\in\operatorname{Flow}_{n}({\boldsymbol{a}}) and the desired properties of 𝒇\boldsymbol{f} follow from the definition of 𝒇\boldsymbol{f} and (5.5). ∎

Proof of Proposition 5.8.

Suppose m=n.m=n. Then a1,a2,,an10a_{1},a_{2},\dots,a_{n-1}\geq 0 and an<0.a_{n}<0. Consider 𝒈=(gi,j)𝕌(n){\boldsymbol{g}}=(g_{i,j})\in\mathbb{U}(n) defined by gi,i=aig_{i,i}=a_{i} for each ii and gi,j=0g_{i,j}=0 for each 1i<jn.1\leq i<j\leq n. Clearly 𝒈Flown(𝒂){\boldsymbol{g}}\notin\operatorname{Flow}_{n}({\boldsymbol{a}}) as gn,n=an<0.g_{n,n}=a_{n}<0. However, 𝒈{\boldsymbol{g}} is a point in the polytope defined by (5.2). This means if we remove the inequality mn,n0m_{n,n}\geq 0 from the inequality description (5.1) for Flown(𝒂)\operatorname{Flow}_{n}({\boldsymbol{a}}), we obtain a different polytope. Hence, the inequality mn,n0m_{n,n}\geq 0 is not redundant in (5.1). Hence, by Remark 5.3, we conclude that Flown(𝒂)\operatorname{Flow}_{n}({\boldsymbol{a}}) is not a deformation of Tesn(𝒂0)\operatorname{Tes}_{n}({\boldsymbol{a}}_{0}).

Suppose mn.m\neq n. By Remark 5.3, we only need to consider the situation when (5.2) is a linear inequality description for Flown(𝒂)\operatorname{Flow}_{n}({\boldsymbol{a}}). Note that the description is not necessarily tight. However, it is clear that there exists 𝒃~=(b~i,j)𝕌~(n)\tilde{{\boldsymbol{b}}}=(\tilde{b}_{i,j})\in\widetilde{\mathbb{U}}(n) such that

(5.6) Flown(𝒂)=Q(𝒂,𝒃~)={𝒎𝕌(n)|Ln𝒎=𝒂 and Pn𝒎𝒃~}.\operatorname{Flow}_{n}({\boldsymbol{a}})=Q({\boldsymbol{a}},\tilde{{\boldsymbol{b}}})=\{\boldsymbol{m}\in\mathbb{U}(n)~{}~{}|~{}~{}L_{n}\boldsymbol{m}={\boldsymbol{a}}\text{ and }-P_{n}\boldsymbol{m}\leq\tilde{{\boldsymbol{b}}}\}.

is a tight linear inequality description for Flown(𝒂).\operatorname{Flow}_{n}({\boldsymbol{a}}). By Remark 2.2, one sees that it is enough to show that (𝒂,𝒃~)({\boldsymbol{a}},\tilde{{\boldsymbol{b}}}) is not in the deformation cone of Tesn(𝒂0)\operatorname{Tes}_{n}({\boldsymbol{a}}_{0}), which by Theorem 1.1 is equivalent to that ηi(𝒃~)<ai\eta_{i}(\tilde{{\boldsymbol{b}}})<-a_{i} for some 1in1.1\leq i\leq n-1. We will show that ηm(𝒃~)<am\eta_{m}(\tilde{{\boldsymbol{b}}})<-a_{m}. Note that by the definition of tightness and the assumption that Flown(𝒂)\operatorname{Flow}_{n}({\boldsymbol{a}}) is defined by (5.2), the entries in 𝒃~\tilde{{\boldsymbol{b}}} satisfy:

(5.7) 0b~i,j=min𝒎Flown(𝒂)mi,j.0\leq-\tilde{b}_{i,j}=\min_{\boldsymbol{m}\in\operatorname{Flow}_{n}({\boldsymbol{a}})}m_{i,j}.

Let 𝒇=(fi,j)\boldsymbol{f}=(f_{i,j}) be the flow in Flown(𝒂)\operatorname{Flow}_{n}({\boldsymbol{a}}) assumed by Lemma 5.10. Then condition (5.7) implies that

b~i,mfi,m for lim1.-\tilde{b}_{i,m}\leq f_{i,m}\text{ for $l\leq i\leq m-1$}.

Using condition (5.7) together with Lemma 5.10/(iii)(iv), we conclude that

b~m,m=b~m,m+1==b~m,n=0 and b~1,m=b~2,m==b~l1,m=0.\tilde{b}_{m,m}=\tilde{b}_{m,m+1}=\cdots=\tilde{b}_{m,n}=0\text{ and }\tilde{b}_{1,m}=\tilde{b}_{2,m}=\cdots=\tilde{b}_{l-1,m}=0.

Next, by Lemma 5.10/(i), we may choose a number ϵ\epsilon such that 0<ϵ<fl,m0<\epsilon<f_{l,m}. Then we construct 𝒈=(gi,j)𝕌(n){\boldsymbol{g}}=(g_{i,j})\in\mathbb{U}(n) from 𝒇\boldsymbol{f} by letting

gl,m=fl,mϵ,gl+1,m=fl+1,m+ϵ,gl,l+1=fl,l+1+ϵ,g_{l,m}=f_{l,m}-\epsilon,\ g_{l+1,m}=f_{l+1,m}+\epsilon,\ g_{l,l+1}=f_{l,l+1}+\epsilon,

and keeping all the other entries. One can check that 𝒈{\boldsymbol{g}} is another flow in Flown(𝒂)\operatorname{Flow}_{n}({\boldsymbol{a}}). Applying (5.7) again for (i,j)=(l,m)(i,j)=(l,m), we get

b~l,mgl,m=fl,mϵ.-\tilde{b}_{l,m}\leq g_{l,m}=f_{l,m}-\epsilon.

Therefore,

ηm(𝒃~)=\displaystyle\eta_{m}(\tilde{{\boldsymbol{b}}})= j=mnb~m,ji=1m1b~i,m=j=mnb~m,ji=1l1b~i,mi=lm1b~i,m=00i=lm1b~i,m\displaystyle\sum_{j=m}^{n}\tilde{b}_{m,j}-\sum_{i=1}^{m-1}\tilde{b}_{i,m}=\sum_{j=m}^{n}\tilde{b}_{m,j}-\sum_{i=1}^{l-1}\tilde{b}_{i,m}-\sum_{i=l}^{m-1}\tilde{b}_{i,m}=0-0-\sum_{i=l}^{m-1}\tilde{b}_{i,m}
\displaystyle\leq (fl,mϵ)+fl+1,m++fm1,m<f1,m+f2,m++fm1,m=am,\displaystyle(f_{l,m}-\epsilon)+f_{l+1,m}+\cdots+f_{m-1,m}<f_{1,m}+f_{2,m}+\cdots+f_{m-1,m}=-a_{m},

where the last equality follows from Lemma 5.10/(ii). This completes our proof. ∎

Proof of Theorem 1.2.

By Proposition 5.7/(2), if l=n,l=n, then Flown(𝒂)\operatorname{Flow}_{n}({\boldsymbol{a}}) is a point, which clearly is a deformation of Tesn(𝒂0)\operatorname{Tes}_{n}({\boldsymbol{a}}_{0}). Therefore, it is left to prove that if 1ln1,1\leq l\leq n-1, then

(5.8)  Flown(𝒂) is a deformation of Tesn(𝟏)al+2,al+3,,an0.\text{ $\operatorname{Flow}_{n}({\boldsymbol{a}})$ is a deformation of $\operatorname{Tes}_{n}(\boldsymbol{1})$}\quad\Longleftrightarrow\quad a_{l+2},a_{l+3},\dots,a_{n}\geq 0.

However, by Proposition 5.7 and Remark 2.3, one sees that it is enough to prove (5.8) with the assumption that 𝒂=(a1,,an){\boldsymbol{a}}=(a_{1},\dots,a_{n}) satisfies

a1=a2==al1=0,al>0, and al+10.a_{1}=a_{2}=\cdots=a_{l-1}=0,\ a_{l}>0,\ \text{ and }a_{l+1}\geq 0.

Then the forward direction of (5.8) immediately follows Proposition 5.8. If al+2,al+3,,an0,a_{l+2},a_{l+3},\dots,a_{n}\geq 0, then 𝒂0n{\boldsymbol{a}}\in\mathbb{R}^{n}_{\geq 0} and Flown(𝒂)=Tesn(𝒂)\operatorname{Flow}_{n}({\boldsymbol{a}})=\operatorname{Tes}_{n}({\boldsymbol{a}}), which by Theorem 3.1 is a deformation of Tesn(𝟏)\operatorname{Tes}_{n}(\boldsymbol{1}). Hence, the backward direction of (5.8) holds. ∎

References

  • [1] D. Armstrong, A. Garsia, J. Haglund, B. Rhoades, and B. Sagan. Combinatorics of Tesler matrices in the theory of parking functions and diagonal harmonics. Journal of Combinatorics, 3(3):451–494, 2012.
  • [2] W. Baldoni and M. Vergne. Kostant partitions functions and flow polytopes. Transformation Groups, 13:447–469, 2008.
  • [3] A. Barvinok. Integer points in polyhedra, volume 452. European Mathematical Society, 2008.
  • [4] C. Benedetti, R. González D’León, C. Hanusa, P. Harris, A. Khare, A. Morales, and M. Yip. A combinatorial model for computing volumes of flow polytopes. Transactions of the American Mathematical Society, 2019.
  • [5] E. R. Canfield and B. D. McKay. The asymptotic volume of the Birkhoff polytope. arXiv preprint arXiv:0705.2422, 2007.
  • [6] F. Castillo and F. Liu. Deformation cones of nested braid fans. Int. Math. Res. Not. IMRN, (3):1973–2026, 2022.
  • [7] C. S. Chan, D. P. Robbins, and D. S. Yuen. On the volume of a certain polytope. Experimental Mathematics, 9(1):91–99, 2000.
  • [8] S. Corteel, J. S. Kim, and K. Mészáros. Volumes of generalized Chan–Robbins–Yuen polytopes. Discrete & Computational Geometry, pages 1–21, 2017.
  • [9] D. A. Cox, J. B. Little, and H. K. Schenck. Toric varieties, volume 124 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2011.
  • [10] J. A. De Loera, F. Liu, and R. Yoshida. A generating function for all semi-magic squares and the volume of the Birkhoff polytope. Journal of Algebraic Combinatorics, 30(1):113–139, 2009.
  • [11] J. Edmonds. Submodular functions, matroids, and certain polyhedra. In Combinatorial Structures and their Applications (Proc. Calgary Internat. Conf., Calgary, Alta., 1969), pages 69–87. Gordon and Breach, New York-London-Paris, 1970.
  • [12] A. Garsia, J. Haglund, and G. Xin. Constant term methods in the theory of Tesler matrices and Macdonald polynomial operators. Annals of Combinatorics, 18(1):83–109, 2014.
  • [13] E. Gorsky and A. Neguţ. Refined knot invariants and Hilbert schemes. Journal de mathématiques pures et appliquées, 104(3):403–435, 2015.
  • [14] J. Haglund. A polynomial expression for the Hilbert series of the quotient ring of diagonal coinvariants. Advances in Mathematics, 227(5):2092–2106, 2011.
  • [15] J. Haglund, J. Remmel, and A. Wilson. The delta conjecture. Transactions of the American Mathematical Society, 370(6):4029–4057, 2018.
  • [16] Y. Lee and F. Liu. Ehrhart positivity of Tesler polytopes and Berline-Vergne’s valuation. Discrete Comput. Geom., 69(3):896–918, 2023.
  • [17] P. McMullen. Representations of polytopes and polyhedral sets. Geometriae Dedicata, 2:83–99, 1973.
  • [18] K. Mészáros, A. H. Morales, and B. Rhoades. The polytope of Tesler matrices. Selecta Mathematica, New Series, 23(1):425–454, 2017.
  • [19] A. H. Morales. Ehrhart polynomials of examples of flow polytopes. https://sites.google.com/site/flowpolytopes/ehrhart.
  • [20] A. Padrol, V. Pilaud, and G. Poullot. Deformation cones of graph associahedra and nestohedra. European J. Combin., 107:Paper No. 103594, 27, 2023.
  • [21] I. Pak. Four questions on Birkhoff polytope. Annals of Combinatorics, 4(1):83–90, 2000.
  • [22] A. Postnikov. Permutohedra, associahedra, and beyond. Int. Math. Res. Not. IMRN, (6):1026–1106, 2009.
  • [23] A. Postnikov, V. Reiner, and L. Williams. Faces of generalized permutohedra. Doc. Math., 13:207–273, 2008.
  • [24] A. Postnikov, V. Reiner, and L. Williams. Faces of generalized permutohedra. Doc. Math, 13(207-273):51, 2008.
  • [25] A. T. Wilson. A weighted sum over generalized Tesler matrices. Journal of Algebraic Combinatorics, 45(3):825–855, 2017.
  • [26] D. Zeilberger. Proof of a conjecture of Chan, Robbins, and Yuen. Electron. Trans. Numer. Anal, 9(147-148):1–2, 1999.
  • [27] G. M. Ziegler. Lectures on polytopes, volume 152. Springer Science & Business Media, 2012.