This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Defining the (Black Hole)-Spheroid Connection with the Discovery of Morphology-Dependent Substructure in the MBHM_{\rm BH}nsph\rm n_{sph} and MBHM_{\rm BH}Re,sph\rm R_{e,sph} Diagrams: New Tests for Advanced Theories and Realistic Simulations

Nandini Sahu OzGrav-Swinburne, Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, VIC 3122, Australia Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, VIC 3122, Australia Alister W. Graham Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, VIC 3122, Australia Benjamin L. Davis Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
Abstract

For 123 local galaxies with directly-measured black hole masses (MBHM_{\rm BH}), we provide the host spheroid’s Sérsic index (nsph\rm n_{sph}), effective half-light radius (Re,sph\rm R_{e,sph}), and effective surface brightness (μe\mu_{e}), obtained from careful multi-component decompositions, and we use these to derive the morphology-dependent MBHM_{\rm BH}nsph\rm n_{sph} and MBHM_{\rm BH}Re,sph\rm R_{e,sph} relations. We additionally present the morphology-dependent M,sphM_{\rm*,sph}nsph\rm n_{sph} and M,sphM_{\rm*,sph}Re,sph\rm R_{e,sph} relations. We explored differences due to: early-type galaxies (ETGs) versus late-type galaxies (LTGs); Sérsic versus core-Sérsic galaxies; barred versus non-barred galaxies; and galaxies with and without a stellar disk. We detect two different MBHM_{\rm BH}nsph\rm n_{sph} relations due to ETGs and LTGs with power-law slopes 3.95±0.343.95\pm 0.34 and 2.85±0.312.85\pm 0.31. We additionally quantified the correlation between MBHM_{\rm BH} and the spheroid’s central concentration index, which varies monotonically with the Sérsic index. Furthermore, we observe a single, near-linear M,sphM_{\rm*,sph}Re,sph1.08±0.04\rm R_{e,sph}^{1.08\pm 0.04} relation for ETGs and LTGs, which encompasses both classical and alleged pseudobulges. In contrast, ETGs and LTGs define two distinct MBHM_{\rm BH}Re,sph\rm R_{e,sph} relations with Δrms|BH0.60dex\Delta_{\rm rms|BH}\sim\rm 0.60~{}dex (cf. \sim0.51 dex for the MBHM_{\rm BH}σ\sigma relation and \sim0.58 dex for the MBHM_{\rm BH}M,sphM_{\rm*,sph} relation), and the ETGs alone define two steeper MBHM_{\rm BH}Re,sph\rm R_{e,sph} relations, offset by \sim1 dex in the logMBH\log M_{\rm BH}-direction, depending on whether they have a disk or not and explaining their similar offset in the MBHM_{\rm BH}M,sphM_{\rm*,sph} diagram. This trend holds using 10%10\%, 50%50\%, or 90%90\% radii. These relations offer pivotal checks for simulations trying to reproduce realistic galaxies, and for theoretical studies investigating the dependency of black hole mass on basic spheroid properties.

black hole physics— galaxies: evolution — galaxies: elliptical and lenticular, cD —galaxies: spiral — galaxies: structure
\published

2020 November 06 in the Astrophysical Journal

1 Introduction

It is widely known that the mass of the black hole (BH) residing at the centre of most galaxies is correlated with both the host spheroid’s stellar mass (M,sphM_{\rm*,sph}) and its central stellar velocity dispersion (σ\sigma). At the same time, bulgeless galaxies, for example, NGC 2478, NGC 4395, and NGC 6926, have also been observed to house massive BHs (e.g. Secrest et al., 2013; Simmons et al., 2013; den Brok et al., 2015; Davis et al., 2019, and references therein), and one of the tightest scaling relations is between black hole mass (MBHM_{\rm BH}) and the winding/pitch angle of the spiral arms in spiral galaxies (Seigar et al., 2008; Berrier et al., 2013; Davis et al., 2017). Additional correlations exist between MBHM_{\rm BH} and disk stellar mass (Davis et al., 2018), disk rotation, and dark matter halo mass (Ferrarese, 2002; Baes et al., 2003; Volonteri et al., 2011; Davis et al., 2019). Collectively, this goes beyond the notion of a single primary (causal) relation for all galaxies plus secondary (indirect/consequential) relations, and reveals a greater level of complexity. Indeed, the markedly different MBHM_{\rm BH}M,galM_{\rm*,gal} and MBHM_{\rm BH}M,sphM_{\rm*,sph} relations for early-type galaxies (ETGs, comprised of E-, ES111ES-type represents ellicular galaxies which have an intermediate-scale stellar disk confined to within their spheroid (Liller, 1966; Graham, 2019a).-, and S0-types) and late-type galaxies (LTGs), i.e. spiral (Sp) galaxies (Davis et al., 2018, 2019; Sahu et al., 2019a), undoubtedly reflects the different physical processes, gas supply history, net angular momentum, involved in building these systems.

The review of the BH scaling relations by Graham (2016) highlighted the need to achieve internal consistency among the various scaling relations, in particular between the MBHM_{\rm BH}σ\sigma, MBHM_{\rm BH}M,sphM_{\rm*,sph}, and σ\sigmaM,sphM_{\rm*,sph} relations. This followed Graham (2012) who reported on a near-linear and super-quadratic MBHM_{\rm BH}M,sphM_{\rm*,sph} relation, respectively, for spheroids with a Sérsic or core-Sérsic222Core-Sérsic galaxies have a deficit of light at their centre; hence, their central (bulge) light profile is described using a shallow power-law followed by a Sérsic (1963) function beyond the core (Graham et al., 2003b). This population was first discussed by King & Minkowski (1966, 1972). light profile (see also Graham & Scott (2013) and Scott et al. (2013)). Savorgnan et al. (2016) subsequently discovered an improved division due to ETGs and LTGs (none of LTGs have core-Sérsic bulge profiles) in the MBHM_{\rm BH}M,sphM_{\rm*,sph} diagram, and in the MBHM_{\rm BH}–(Lgal\rm L_{gal}, galaxy luminosity) diagram. This was also later reported by van den Bosch (2016). Savorgnan et al. (2016) coined the notion of a red and blue sequence when two tracks, due to ETGs and LTGs, are evident in a BH mass scaling diagram (see also Terrazas et al., 2016; Dullo et al., 2020). Sahu et al. (2019a) additionally found that the MBHM_{\rm BH}M,sphM_{\rm*,sph} relation for ETGs with a disk (ES and S0) and ETGs without a disk (E-type) is roughly quadratic, while the two relations are offset by more than an order of magnitude in the MBHM_{\rm BH}-direction. This has since been found in a recent simulation by Marshall et al. (2020). Clearly, it is not simply the amount of stellar mass that matters, but also how it was accumulated and is now distributed. In this vein, we explore the relationship that the BH mass has with the size and shape (centrally concentrated or diffused) of the surrounding bulge/spheroid— terms that we use interchangeably—and as a function of the morphology of the host galaxy.

The above mentioned developments represent a key advance in our understanding of the coevolution of galaxies and black holes. It built upon works such as Wandel (1999), Salucci et al. (2000), Laor (2001), and Graham (2012) and voided the notion (Dressler, 1989; Kormendy & Richstone, 1995; Magorrian et al., 1998) that the black hole mass simply co-evolved linearly with the spheroid mass. The recognition of a more nuanced situation is perhaps not surprising given the variety of accretion/merger histories, and resulting structures among galaxies. For example, core-Sérsic galaxies, thought to be built from the dry merger of galaxies with pre-existing black holes (Begelman, 1984), appear to follow a steeper relation in the MBHM_{\rm BH}σ\sigma diagram (Sahu et al., 2019b), see also Terrazas et al. (2016, their Figure 3a) and Bogdán et al. (2018, their Figure 5).

Based on the low intrinsic scatter about the MBHM_{\rm BH}σ\sigma relation (Ferrarese & Merritt, 2000; Gebhardt et al., 2000), some studies have concluded that it is the most fundamental relation between black hole mass and galaxy (e.g. van den Bosch, 2016; de Nicola et al., 2019). However, it may be a premature conclusion without considering the correlations between BH mass and other basic galaxy properties, or allowing for the morphology-dependence and thus (formation physics)-dependence of galaxies. Moreover, it overlooks that the MBHM_{BH}–pitch angle (ϕ\phi) relation has the least total scatter at 0.43 dex (Davis et al., 2017) compared to 0.51 dex in the latest MBHM_{\rm BH}σ\sigma diagram (Sahu et al., 2019b).

Establishing if a, and which, single relation is the most fundamental, i.e., the primary relation, and how it depends upon morphology is important for understanding the co-evolution of galaxies and BHs. The secondary scaling relations — not to be confused with the morphology dependent substructure which reveals an additional parameter/factor modulating the co-joined growth of galaxies and BHs333We could re-frame these results by constructing a simplified ‘fundamental plane’, i.e. a 3-parameter equation involving MBHM_{\rm BH}, σ\sigma (or MM_{*}) and morphological type (even if just a binary parameter). This would effectively unite the morphology-dependent MBHM_{\rm BH}σ\sigma (MBHM_{\rm BH}MM_{*}) relations and reduce the scatter about the two-parameter relations which ignore the morphological type. We will pursue this in future work. — are, however, also important. They can still be used, for example, to predict BH masses or to check on the accuracy of computer simulations e.g., CLUES (Yepes et al., 2009), Magneticum (Dolag, 2015), Bolshoi (Klypin et al., 2011), EAGLE (Schaye et al., 2015), Illustris (Vogelsberger et al., 2014), IllustrisTNG (Pillepich et al., 2018), FIRE (Hopkins et al., 2018), and SIMBA (Davé et al., 2019), which are trying to produce realistic galaxies444Simulations lacking primary information about the spheroid can still be tested against the non-linear, morphology-dependent, MBHM_{\rm BH}M,galM_{\rm*,gal} relations (Davis et al., 2018; Sahu et al., 2019a).. These empirical relations help to decipher the physics behind the effect of the central supermassive black hole on the host spheroid/galaxy properties and vice versa. How such black hole feedback drives galaxy evolution is the challenge yet to be fully answered (Choi et al., 2018; Ruszkowski et al., 2019; Terrazas et al., 2020; Martín-Navarro et al., 2020).

Here, we will expand upon the previous efforts in establishing the MBHM_{\rm BH}nsph\rm n_{sph} relation (e.g., Graham et al., 2003a; Graham & Driver, 2007a; Vika et al., 2012; Beifiori et al., 2012; Savorgnan et al., 2013; Savorgnan, 2016), the M,sphM_{\rm*,sph}nsph\rm n_{sph} relation (e.g., Andredakis et al., 1995; Jerjen et al., 2000; Graham & Guzmán, 2003; Ferrarese et al., 2006; Savorgnan, 2016), the M,sphM_{\rm*,sph}Re,sph\rm R_{e,sph} relation (e.g., Sérsic, 1968a; Graham & Worley, 2008; Lange et al., 2015), and the MBHM_{\rm BH}Re,sph\rm R_{e,sph} relation (e.g., de Nicola et al., 2019) using our extensive sample of 83 ETGs and 40 LTGs with careful (individual, not automated) multi-component decompositions. Importantly, we explore potential substructures due to galaxy sub-morphologies, i.e., Sérsic versus core-Sérsic galaxies, barred versus non-barred galaxies, galaxies with a stellar disk versus galaxies without a stellar disk, and ETGs versus LTGs. We also investigate the relation between MBHM_{\rm BH} and the central concentration index (Graham et al., 2001a), which is known to vary monotonically with the Sérsic index (Trujillo et al., 2001; Graham et al., 2001b).

As with the MBHM_{\rm BH}M,sphM_{\rm*,sph} relation, the MBHM_{\rm BH}nsph\rm n_{sph} and MBHM_{\rm BH}Re,sph\rm R_{e,sph} relations can be applied to large surveys of galaxies (e.g., Casura et al., 2019) — if their bulge Sérsic parameters are reliable — to estimate their black hole masses and further construct the black hole mass function (BHMF). The BHMF holds interesting information for cosmologists, e.g., to estimate the mass density of the Universe contained in BHs (e.g. Fukugita & Peebles, 2004; Graham & Driver, 2007b), to map the growth of BHs and constrain theoretical models of BH evolution (e.g. Kelly & Merloni, 2012). In addition, the latest BHMF, which takes part in calculating the black hole merger rate (Chen et al., 2019; Volonteri et al., 2020), will help improve the prediction for the amplitude and time until detection of the long-wavelength (micro to nano Hertz) gravitation wave background — as generated from merging supermassive black holes — using pulsar timing arrays (Siemens et al., 2013; Shannon et al., 2015; Sesana et al., 2016) and using the upcoming Laser Interferometer Space Antenna (LISA, Danzmann, 2017; Baker et al., 2019).

Section 2 details the galaxy sample and parameters which we used for our investigation, and the regression routines applied to obtain the correlations. Various correlations we observed, including their dependencies on galaxy morphology, are described in the subsections of Section 3. In sub-section 3.1, we present the scaling relations observed between the spheroid stellar mass and spheroid Sérsic index. Sub-section 3.2 presents the expected correlation between black hole mass and the bulge Sérsic index by combing the correlation observed between spheroid stellar mass and spheroid Sérsic index with our latest correlation between black hole mass and spheroid stellar mass. It then presents the observed correlations between black hole mass and the bulge Sérsic index based on our data-set. We also show the relationship between the Sérsic index and the central light concentration, and we present the correlation observed between the black hole mass and the central concentration index. In sub-section 3.3, we present the correlations observed between the spheroid stellar mass and the effective spheroid half-light radius. Here, we also explore the correlations of the spheroid stellar mass with the spheroid radii containing 10%\rm 10\% and 90%\rm 90\% of the light of the spheroid. Sub-section 3.4 provides the expected correlation that the spheroid half-light radius might have with the black hole mass, before presenting the observed correlations between the black hole mass and the spheroid effective half-light radius, along with the correlations between the black hole mass and the spheroid radii containing 10%\rm 10\% and 90%\rm 90\% of spheroid’s light. These subsections additionally provide a discussion and some explanation for the correlations that we find. Finally, Section 4 presents a summary of our main results.

2 Data

The Sérsic (1963, 1968a) function is nowadays used to describe the light profiles of elliptical galaxies (E) and, when present, the spheroidal component of galaxies with a disk (ES/S0/Sp). A review of the Sérsic function, and its many associated expressions, can be found in Graham & Driver (2005). Briefly, the intensity of a Sérsic light profile can be expressed as a function of the projected galactic radius (R), such that {IEEEeqnarray}rCl I(R)= I_e exp[-b_n { (RRe )^1/n-1 }], where Ie\rm I_{e}, Re\rm R_{e}, and n\rm n are profile parameters. The term Ie\rm I_{e} is the effective intensity at the effective radius Re\rm R_{e}, which bounds 50% of the total light in the associated 2D image. Graham (2019b) provides a detailed review of this popular radius and addresses the misconceptions about its physical significance. The surface brightness at this effective radius (μe\rm\mu_{e}) is related to Ie\rm I_{e} through μe2.5log(Ie)\rm\mu_{e}\equiv-2.5\log(I_{e}).

The Sérsic index n (also known as the shape parameter), describes the curvature of the light profile, such that a Sérsic light profile with a higher Sérsic index is steeper at the centre and has a shallower distribution at larger radius, whereas, a profile with a smaller Sérsic index is shallower at the centre followed by a steeper drop at outer radii (see Figure 2 in Graham, 2019b). Thus, the Sérsic index traces the central concentration of the light within the spheroid (Trujillo et al., 2001; Graham et al., 2001b, their Figure 2); and also the inner gradient of the gravitational potential555This holds when dark matter is negligible, and there is no significant stellar mass-to-light ratio gradient. (Terzić & Graham, 2005, their Figures 2 and 3). The value of the term bn\rm b_{n} in Equation 2 depends on n, and is obtained by solving Γ(2n)=2γ(2n,bn)\Gamma(\rm 2n)=2\gamma(\rm 2n,b_{n}), where Γ\Gamma denotes the gamma function and γ\gamma is the incomplete gamma function. It can also be approximated by bn1.9992n0.3271\rm b_{n}\approx 1.9992\,n-0.3271 for 0.5<n<100.5<n<10 (Capaccioli, 1989).

In this work, we have used a sample of 123 galaxies with directly-measured black hole masses, for whom the Sérsic model parameters (n,Re,andμe\rm n,R_{e},and\,\mu_{e}) describing their spheroid’s surface brightness distribution were obtained by a careful multi-component decomposition of the galaxy’s light. These parameters are collectively taken from Savorgnan & Graham (2016), Davis et al. (2019), and Sahu et al. (2019a). These studies performed a 2-dimensional (2D) isophotal analysis, first extracting a 2D luminosity model using Isofit and Cmodel (Ciambur, 2015) to capture the radial gradients in the ellipticity, position angle, and Fourier harmonic coefficients describing the isophote’s deviations from a pure ellipse, and then performing a multi-component decomposition using the isophotal-averaged 1D surface-brightness profile along the major and geometric-mean666The geometric-mean axis, which is also known as the “equivalent axis”, is the radius of the circularized form of the elliptical isophote with major axis radius Rmaj\rm R_{maj} and minor axis radius Rmin\rm R_{min}, which conserves the same amount of flux. This results in the equivalent axis radius (ReqR_{\rm eq}) being the geometric mean of Rmaj\rm R_{maj} and Rmin\rm R_{min} (Req=RmajRmin\rm R_{eq}=\sqrt{\rm R_{maj}*R_{min}}), which is also represented as Rgeom\rm R_{geom} (for more details see the appendix section in Ciambur, 2015). axis of the galaxies. For this purpose, they used the software Profiler (Ciambur, 2016), which is inbuilt with many functions for specific galaxy components, including the Sérsic function for galactic spheroids. The major and geometric-mean axis were modelled independently (see Section 3 in Sahu et al., 2019a, for more details).

Table 3 in our appendix lists both the major-axis bulge parameters (nmaj,Re,maj,μe,maj\rm n_{maj},\,R_{e,maj},\,\mu_{e,maj}), and the equivalent-axis bulge parameters (neq,Re,eq,μe,eq\rm n_{eq},\,R_{e,eq},\,\mu_{e,eq}), plus the morphologies, and the bulge masses (M,sphM_{*,\rm sph}) taken from Savorgnan & Graham (2016), Davis et al. (2019), and Sahu et al. (2019a), along with the distances and the directly-measured black hole masses of the galaxies. To show the consistency between the structural decomposition of the major- and equivalent-axis surface brightness profiles, we have plotted μe,sph,maj\rm\mu_{e,sph,maj} versus μe,sph,eq\rm\mu_{e,sph,eq} in Figure 1. The 1σ\sigma scatter in this diagram is 0.58magarcsec2\rm 0.58\,mag\,arcsec^{-2} which corresponds to a 1σ\sigma scatter in Re\rm R_{e} of \approx30% given that the Sérsic model’s surface brightness profile has slopes of \sim1.8 to \sim2.1 (for n=1\rm n=1 to 10) at R=Re\rm R=R_{\rm e}, where dμ(R)/dR|Re=2.5bn/(ln(10)nRe)[2.170.36/n]/Re\rm{\rm d}\mu(R)/{\rm dR}|_{R_{e}}=2.5b_{n}/(\ln(10)\,n\,R_{e})\approx[2.17-0.36/n]/Re. Table 3 also provides the radial concentration index (C: see Section 3) and the physical (arcsec to kpc) size scale of the galaxies777The physical scale is calculated using the python version of Edward (Ned) L. Wright’s cosmological calculator (Wright, 2006), written by James Schombert, assuming the cosmological parameters H0=67.4(kms1)/Mpc\rm H_{0}=67.4\,(km\,s^{-1})/Mpc, Ωm\Omega_{m}=0.315, and Ωv\Omega_{v}=0.685 (Planck Collaboration et al., 2018).. The morphologies of these galaxies are based on the multi-component decompositions found in Savorgnan & Graham (2016), Davis et al. (2019), and Sahu et al. (2019a).

The black hole masses used here have been obtained from various sources in the literature. Their original sources are listed in Savorgnan et al. (2016) and Sahu et al. (2019a) for the ETGs, and in Davis et al. (2019) for the LTGs. These black hole masses have been directly-measured using either the stellar dynamical modelling, gas dynamical modelling, megamaser kinematics, proper motions (Sgr AA^{*}), or the latest direct imaging method (M87*). As the distances to the galaxies have been revised over time, the BH masses have also been updated to keep pace with this, and thereby provide a consistent analysis with the arcsecond-to-kpc and apparent-to-absolute magnitude conversions.

Our total sample is comprised of 123 galaxies, of which 83 are ETGs, and 40 are LTGs. We have used the Bivariate Correlated Errors and Intrinsic Scatter (BCES) regression (Akritas & Bershady, 1996) to obtain the symmetric (bisector) best-fit lines for all our correlations. The BCES888We used the Python module from (Nemmen et al., 2012), which is available at https://github.com/rsnemmen/BCES regression considers the measurement errors in both variables and allows for intrinsic scatter in the data. It is a modified form of the ordinary least square (OLS) regression. It calculates the OLS(Y|XY|X) line by minimizing the scatter in the Y-direction, and the OLS(X|YX|Y) line by minimizing the scatter in the X-direction. The BCES(Bisector) line symmetrically bisects the OLS(Y|XY|X) and OLS(X|YX|Y) lines. We prefer to use the bisector line as it offers equal treatment to the quantities plotted on the X-and Y-axes. Additionally, we also checked the consistency of our correlations by employing the modified-FITEXY (MPFITEXY) regression (Press et al., 1992; Tremaine et al., 2002; Williams et al., 2010; Markwardt, 2012), where we had to bisect the best-fit lines obtained from the forward MPFITEXY(Y|XY|X) and inverse MPFITEXY(X|YX|Y) regressions to obtain the symmetric fit to our data (see Novak et al., 2006, for more details about the MPFITEXY regression).

For our investigation, we adopt a 20%20\% uncertainty for the Sérsic bulge parameter n. Various factors which can contribute to the uncertainty in the measurement of the Sérsic bulge parameters include: inappropriate sky subtraction; incomplete masking; inaccurate point-spread function (PSF) for the telescope; uncertainties in the identification of components; especially the nuclear (bar/disk/ring/star cluster) or faint components during the multi-component decomposition of the galaxy luminosity. Thus, it is challenging to quantify the uncertainty in the bulge parameters for every galaxy individually.

In past studies, various measures have been taken to quantify realistic errors on the bulge/galaxy Sérsic index. For example, Caon et al. (1993a) noted a typical error of 25%\sim 25\% corresponding to a 25%25\% variation in the (observed - fitted) residual, while some studies (e.g. Graham & Driver, 2007a; Savorgnan et al., 2013) adopted a constant uncertainty of 20%\sim 20\%, and others employed Monte Carlo simulations (e.g. Beifiori et al. (2012) obtaining up to a 15%\sim 15\% error-bar). Others varied the sky subtraction by ±1σ\pm 1\sigma to estimate error-bars (Vika et al., 2012), some used mean/median errors based on a broader comparison with published parameters from other studies (Graham & Worley, 2008; Laurikainen et al., 2010) producing up to 30%\sim 30\% uncertainty, whereas Savorgnan (2016) used 20%20\%, 42%42\%, and 52%52\% uncertainties, respectively, for their grade 1, grade 2, and grade 3 galaxies following Savorgnan & Graham (2016, their Section 4.2). As Savorgnan & Graham (2016) noted, their generous uncertainties arose when comparing published parameters based upon an array of differing decompositions for the same galaxy. For example, sometimes a single Sérsic component had been fit while other times the image analysis additionally included, as separate components, a disk and sometimes also a bar.

Given that our sky-background intensities are measured carefully (Sahu et al., 2019a, see their Figure 1 and Section 2.2 ), and that our parameters are obtained from multi-component decompositions, we have ruled out our two major sources of systematic errors (i.e. over/under-estimation of the sky and failing to account for a biasing component), and as such we adopt a 20% uncertainty for n, and a 30% uncertainty for Re\rm R_{e} based on the 1σ1\sigma scatter in μe\rm\mu_{e} for our galaxy sample as already described in this section. We do, however, test and confirm that our scaling relations are not significantly dependent upon this. Our results are stable (no change in slope or intercept at the 1σ1\sigma uncertainty level) upon using an uncertainty up to 30% in n\rm n and 40% in Re\rm R_{e}. Furthermore, we also performed all the correlations using the major subsample of our total sample for whom the spheroid parameters are derived using 3.6μm\rm 3.6\,\mu m images (see Table 3), and the correlations are found to be consistent with the correlations obtained using the total sample within the ±1σ\pm 1\sigma uncertainty bounds of the slopes and intercepts.

During our linear regressions, we have excluded certain potentially biasing galaxies, which are either stripped galaxies (NGC 4342 and NGC 4486B), a single galaxy with MBH<105MM_{\rm BH}<10^{5}M_{\odot} (NGC 404), or more than 2σ2\sigma outliers (NGC 1300, NGC 3377, NGC 3998, NGC 4945, NGC 5419) in any of the correlations presented here. NGC 4342 and NGC 4486B are stripped of their stellar mass due to the gravitational pull of their massive companion galaxies NGC 4365 (Blom et al., 2014) and NGC 4486 (Batcheldor et al., 2010), respectively. Hence, NGC 4342 and NGC 4486B can bias the black hole scaling relations as they have smaller n\rm n or Re\rm R_{e} than they would have had if they weren’t stripped of their mass. NGC 404, the only galaxy in our sample with a BH mass below 106M10^{6}M_{\odot}, can bias the best-fit lines due to its location at the end of the distribution and thus its elevated torque strength. The galaxies NGC 3377, NGC 3998, NGC 4945, and NGC 5419 in the MBHM_{\rm BH}n\rm n diagram, and NGC 1300 in the MBHM_{\rm BH}Re\rm R_{e} diagram, are more than ±2σrms\pm 2\sigma_{\rm rms} outliers from the corresponding best-fit lines and slightly alter their slopes999Including these galaxies in the regressions changes the slopes by 1σ\sim 1\sigma uncertainty level of current slopes.. Hence, these galaxies are better excluded in all our regressions to obtain robust correlations. These eight excluded galaxies are indicated in all the plots. This exclusion leaves us with a reduced sample of 115 galaxies.

Refer to caption
Figure 1: The spheroid surface brightness at the effective half-light radius from a Sérsic fit to the major-axis light profile (μe,sph,maj\mu_{\rm e,sph,maj}) plotted against the spheroid surface brightness at the effective half-light radius from a Sérsic fit to the the geometric mean-axis light profile (μe,sph,eq\mu_{\rm e,sph,eq}). This tight distribution of data-points over the one-to-one line demonstrates the consistency between the two independent decompositions.

3 Scaling relations

The stellar masses of our galactic spheroids (M,sphM_{\rm*,sph}) are derived from the luminosities measured using the Sérsic model (for the bulge) fit to the equivalent- (or geometric-mean) axis light profile, parameterized by nsph,eq\rm n_{sph,eq}, Re,sph,eq\rm R_{e,sph,eq}, and Ie,sph,eq\rm I_{e,sph,eq}. Therefore, it is expected to find some correlation between M,sphM_{\rm*,sph} and the Sérsic index, and also between M,sphM_{\rm*,sph} and the effective half-light radius. The issue of parameter coupling potentially explaining the trends between the Sérsic parameters and the luminosity was explored and dismissed using model-independent measures of both luminosity and size (Caon et al., 1993b; Trujillo et al., 2001), implying the observed correlation between luminosity versus Sérsic properties (n and Re\rm R_{e}) are indeed real. Moreover, the errors in n and Re\rm R_{e} adopted here are not big enough for parameter coupling in the fitting process to explain the observed trends.

3.1 The 𝑴,𝐬𝐩𝐡𝐧𝐬𝐩𝐡M_{\rm*,sph}-\rm n_{sph} diagram

Refer to caption
Figure 2: Spheroid mass versus major-axis (left panel) and equivalent-axis (right panel) Sérsic index describing the bulge/spheroidal component of the galaxies. In both panels, ETGs and LTGs are represented in red and blue, respectively. The bold red line for ETGs and blue line for LTGs represent the (symmetric) best-fit relations obtained using the BCES(Bisector) regression. The dark shaded region around these lines represents the ±1σ\pm 1\sigma uncertainty bound on the slopes and intercepts of these lines. The light-shaded region about these lines represent the ±1σ\pm 1\sigma scatter bound of the corresponding dataset. Both panels display the different M,sphM_{\rm*,sph}nsph\rm n_{sph} relations defined by ETGs and LTGs (see Equations 2 and 2 for ETGs and LTGs, respectively). Galaxies excluded from our regressions, as discussed in Section 2, are marked in magenta and cyan. Additionally, excluding the two extreme right LTGs (blue data-points) still yields consistent relation within 1σ1\sigma uncertainty bound of the M,sphM_{\rm*,sph}nsph\rm n_{sph} relation for LTGs plotted here.

We find two different relations in the M,sphM_{\rm*,sph}nsph\rm n_{sph} diagram (Figure 2) for the two morphological classes: ETGs and LTGs. Note that the (galaxy absolute magnitude, 𝔐gal\rm\mathfrak{M}_{gal})–n\rm n relation for ETGs in Young & Currie (1994), Graham et al. (1996), Jerjen et al. (2000), Graham & Guzmán (2003), and Ferrarese et al. (2006) pertains to the whole galaxy, not the spheroidal component of the ETG (unless it is an elliptical galaxy). The 𝔐sph\rm\mathfrak{M}_{sph}n\rm n relation in Andredakis et al. (1995), Graham (2001), Khosroshahi et al. (2000), and Möllenhoff & Heidt (2001) pertains to the spheroid component of predominantly spiral galaxies.

The M,sphM_{\rm*,sph}nsph,maj\rm n_{sph,maj} relation that we derived for ETGs can be expressed as {IEEEeqnarray}rCl log(M_*,sph/M_⊙) &= (3.27±0.25)log(n_sph,maj/3 )
+  (10.50±0.06), with a total root mean square (rms) scatter of Δrms|sph=0.46\rm\Delta_{\rm rms|sph}=0.46 dex in the log(M,sph)\log(M_{\rm*,sph})-direction. The intrinsic scatter and correlation coefficients for Equation 2 and all other relations presented in this paper are provided in Tables 1 and 2. As mentioned in Section 2, we used the BCES bisector regression that treats the ordinate and abscissa symmetrically. Additionally, using the bisector line from the MPFITEXY regressions, we obtain the slope=3.30±0.18=3.30\pm 0.18 and intercept=10.50±0.04=10.50\pm 0.04, which is closely consistent with the above relation obtained using the BCES regression. It should be noted that equation 2 is for spheroids, and is thus different from the (Galaxy mass, M,galM_{\rm*,gal})–(galaxy Sérsic index) relation for ETG sample containing disk galaxies.

The bulges of LTGs follow a shallower relation which can be expressed as {IEEEeqnarray}rCl log(M_*,sph/M_⊙) &= (1.31±0.22)log(n_sph,maj/3 )
+  (10.41±0.07), with Δrms|sph=0.32\rm\Delta_{\rm rms|sph}=0.32 dex. The correlation of M,sphM_{\rm*,sph} with the equivalent axis Sérsic indices (nsph,eq\rm n_{sph,eq}) for ETGs and LTGs are consistent with the above Equations 2 and 2, respectively, and are provided in Table 2. Equation 2 is also consistent with the relation obtained from the bisector MPFITEXY regression which provided the slope=1.32±0.19=1.32\pm 0.19 and intercept=10.41±0.06=10.41\pm 0.06 for LTGs. Similarly, for other correlations established in this paper, we have checked the best-fit lines using the MPFITEXY regression and these correlations with equivalent-axis bulge parameters are provided in the appendix Table 4.

Our M,sphM_{\rm*,sph}n\rm n relations for ETGs and LTGs support the dual sequences seen in the spheroid luminosity (absolute magnitude)–(Sérsic index) diagram for ETGs and LTGs by Savorgnan (2016, and references therein), which was based on a sub-sample of our current sample. Importantly, our greater sample size has enabled a reduced uncertainty on the slope and intercept of the relations.

We also searched for substructures based on the other morphological information (core-Sérsic vs Sérsic galaxies, galaxies with a stellar disk versus galaxies without a stellar disk, and barred vs non-barred galaxies) and found no statistically significant division, except for a small difference between the best-fit lines for barred and non-barred galaxies (because the majority of our barred galaxies are LTGs)

Each of these relations implies that galaxies with greater spheroid stellar masses have higher spheroid Sérsic indices (Andredakis et al., 1995, their figure 5), i.e., a higher central stellar light concentration. Moreover, the M,sphM_{\rm*,sph}nsph\rm n_{sph} relations with different slopes for the two morphological types (ETGs and LTGs) imply two different progressions of spheroid mass with the central light concentration. This might be reflecting two different ways the stellar mass evolves in the bulges of ETGs and LTGs. Hence, these distinct relations should be helpful for simulations and semi-analytic models studying the formation and evolution of galaxies with different morphology. We refrain from attempting a classical bulge versus pseudo-bulge classification. However, we note that no extra component for the (peanut shell)-shaped structure associated with a buckled bar (Combes et al., 1990; Athanassoula et al., 2015) is included in the galaxy decomposition because such features are effectively encapsulated by the B6 Fourier harmonic term (Ciambur, 2016; Ciambur & Graham, 2016; Ciambur et al., 2020) and the bar component of the decomposition. Inner discs are modelled as such.

3.2 The 𝑴𝐁𝐇𝐧𝐬𝐩𝐡M_{\rm BH}-\rm n_{sph} diagram

Obtaining the Sérsic index of a galactic spheroid is in some ways more straightforward than measuring its mass, or stellar velocity dispersion. This is because the Sérsic index can be obtained from the decomposition of the galaxy light even if the image is not photometrically calibrated. Whereas, measuring the spheroid stellar mass requires decomposition of a flux-calibrated image, which further requires the distance to the galaxy and an appropriate stellar mass-to-light ratio. Similarly, the stellar velocity dispersion measurement requires reducing and analyzing telescope-time-expensive spectra of the central stars of the galaxy.

The correlation between black hole mass and Sérsic index will, obviously, be beneficial for estimating the black hole mass of a galaxy using the Sérsic index of its spheroid (should it have one). Graham et al. (2003a) were the first to establish a log-linear MBHM_{\rm BH}nsph\rm n_{sph} relation using a sample of 22 galaxies, which yielded logMBH=(6.37±0.21)+(2.91±0.38)log(nsph)\rm\log M_{\rm BH}=(6.37\pm 0.21)+(2.91\pm 0.38)\log(\rm n_{sph}). It had a comparable rms scatter of Δrms|BH\Delta_{\rm rms|BH}=0.33 dex with the contemporary MBHM_{\rm BH}σ\sigma relation (Δrms|BH\Delta_{\rm rms|BH}=0.31 dex) of the day. Graham & Driver (2007a) subsequently advocated the log-quadratic relation logMBH=(7.98±0.09)+(3.70±0.46)log(nsph/3)(3.10±0.84)[lognsph/3]2\rm\log M_{\rm BH}=(7.98\pm 0.09)+(3.70\pm 0.46)\log(\rm n_{sph}/3)-(3.10\pm 0.84)[\log\rm n_{sph}/3]^{2}, based on a sample of 27 galaxies. This resulted in a notably smaller intrinsic scatter (of just 0.18 dex) than that (0.31 dex) about their updated log-linear relation logMBH=(7.81±0.08)+(2.69±0.28)log(nsph/3)\rm\log M_{\rm BH}=(7.81\pm 0.08)+(2.69\pm 0.28)\log(\rm n_{sph}/3). In their log-quadratic MBHM_{\rm BH}nsph\rm n_{sph} relation, galaxies with smaller Sérsic indices resided on the steeper part of the curve, and galaxies with higher Sérsic indices defined a shallower part of the curve. This might have been an indication of two different relations for low-nsph\rm n_{sph} and high-nsph\rm n_{sph} galaxies that they were not able to see because of a small sample.

In consultation with the published literature, Savorgnan et al. (2013) doubled the sample size and derived the MBHM_{\rm BH}nsphn_{\rm sph} relations for Sérsic and core-Sérsic galaxies, however, the slopes of the two sub-samples were consistent within their ±1σ\pm 1\sigma uncertainty bound. Savorgnan (2016) subsequently used their own measurement of spheroid Sérsic index based on multi-component decompositions, to establish a single log-linear MBHnsph(3.51±0.28)M_{\rm BH}\propto\rm n_{sph}^{(3.51\pm 0.28)} relation, which was steeper than the relation reported by Graham & Driver (2007a). This is not surprising, as the slope from a single regression will vary arbitrarily according to the number of low- and high-n spheroids in one’s sample. This difference in the MBHM_{\rm BH}nsph\rm n_{sph} relation was also because Graham & Driver (2007a) used the forward (Y over X) FITEXY regression routine from Tremaine et al. (2002), which minimized the scatter in the quantity to be predicted, i.e., MBHM_{\rm BH}, yielding a shallower slope for their MBHM_{\rm BH}nsph\rm n_{sph} relation. Though Graham & Driver (2007a) did not calculate the bisector/symmetric-fit relation using the FITEXY routine, the BCES bisector regression over their dataset yielded a slope of 2.85±0.402.85\pm 0.40 consistent with Savorgnan (2016)’s relation within the ±1σ\pm 1\sigma uncertainty bound. Savorgnan (2016) additionally explored the possibility of two different MBHM_{\rm BH}nsphn_{\rm sph} relations for ETGs and LTGs, however, due to just 17 LTGs in her sample, she could not find a statistically reliable best-fit line for the LTGs.

Here, we reinvestigate the MBHM_{\rm BH}nsph\rm n_{sph} relation, roughly doubling the sample size of 64 from Savorgnan (2016). Upon combining the latest MBHM_{\rm BH}M,sphM_{\rm*,sph} relations for ETGs and LTGs from Sahu et al. (2019a) and Davis et al. (2019) with our M,sphM_{\rm*,sph}nsph\rm n_{sph} relations defined by ETGs and LTGs (Equations 2 and 2), we expect MBHnsph4.15±0.39M_{\rm BH}\propto\rm n_{sph}^{4.15\pm 0.39} and MBHnsph2.83±0.63M_{\rm BH}\propto\rm n_{sph}^{2.83\pm 0.63} for ETGs and LTGs, respectively.

We started by performing a single symmetric regression between MBHM_{\rm BH} and nsph\rm n_{sph} for ETGs and LTGs combined (see Figure 3), which gives {IEEEeqnarray}rCl log(M_BH/M_⊙) &= (3.79±0.23)log(n_sph,maj/3 )
+  (8.15±0.06), between MBHM_{\rm BH} and nsph,maj\rm n_{sph,maj} with a total rms scatter of Δrms|BH=0.69\Delta_{\rm rms|BH}=0.69 dex. Similarly, we obtained the single-regression relation between MBHM_{\rm BH} and nsph,eq\rm n_{sph,eq}, presented in Table 2, which is closely consistent with the above MBHM_{\rm BH}nsph,maj\rm n_{sph,maj} relation. Notably, this single-regression MBHM_{\rm BH}nsph,maj\rm n_{sph,maj} relation is consistent with the Savorgnan (2016) relation within her larger ±1σ\pm 1\sigma error bound of the slope and intercept. The asymmetric BCES(MBH|nM_{BH}|n) regression for our total sample yields MBHM_{\rm BH}nsph,maj(3.15±0.22)\rm n_{sph,maj}^{(3.15\pm 0.22)}, which is still consistent with the relation observed in Graham & Driver (2007a), again, within the ±1σ\pm 1\sigma uncertainty limit of slopes. The intercept, however, has changed. This may partly be due to our use of majorly 3.6μm\rm 3.6\,\mu m data while Graham & Driver (2007a) used R-band data101010Many studies (e.g., Kelvin et al., 2012; Häußler et al., 2013; Kennedy et al., 2016) have quantified the dependence of galaxy Sérsic index on the wavelength band of image used..

Refer to caption
Figure 3: Black hole mass versus major-axis (left panel) and equivalent-axis (right panel) spheroid Sérsic index. Sérsic and core-Sérsic galaxies are shown in red and blue, respectively, and seem to follow the same single-regression MBHM_{\rm BH}nsph\rm n_{sph} relation.

We further performed separate regressions for the ETGs and LTGs. The symmetric MBHM_{\rm BH}nsph,maj\rm n_{sph,maj} relation defined by ETGs can be expressed as {IEEEeqnarray}rCl log(M_BH/M_⊙) &= (3.95±0.34)log(n_sph,maj/3 )
+  (8.15±0.08), with Δrms|BH=0.65\Delta_{\rm rms|BH}=0.65 dex. The LTGs defined the shallower relation {IEEEeqnarray}rCl log(M_BH/M_⊙) &= (2.85±0.31)log(n_sph,maj/3 )
+  (7.90±0.14), with Δrms|BH=0.67\Delta_{\rm rms|BH}=0.67 dex. The MBHM_{\rm BH}nsph,maj\rm n_{sph,maj} and MBHM_{\rm BH}nsph,eq\rm n_{sph,eq} relations obtained for ETGs versus LTGs are shown in the left- and right- hand panels of Figure 4, respectively. The MBHM_{\rm BH}nsph,eq\rm n_{sph,eq} relations for ETGs and LTGs are consistent with the above MBHM_{\rm BH}nsph,maj\rm n_{sph,maj} relations and are presented in Table 2. Importantly, the two relations for ETGs and LTGs in the MBHM_{\rm BH}nsph,maj\rm n_{sph,maj} (and also in MBHM_{\rm BH}nsph,eq\rm n_{sph,eq}) diagram are consistent with the expected relations obtained after combining the MBHM_{\rm BH}M,sphM_{*,sph} and M,sphM_{*,sph}nsph\rm n_{sph} relations (as mentioned before) for ETGs and LTGs within the ±1σ\pm 1\sigma uncertainty bound.

We also performed multiple double regressions by dividing our sample into Sérsic versus core-Sérsic galaxies, galaxies with a disk (ES-, S0-, Sp-Types) versus galaxies without a disk (E-Type), and barred versus non-barred galaxies. In the former two cases, we did not find statistically different relations. Whereas, we see two slightly different MBHM_{\rm BH}nsph\rm n_{sph} lines for barred and non-barred galaxies because most of our LTGs are barred while most of our ETGs are non-barred. Moreover, the difference between the two relations followed by ETGs and LTGs is more prominent and consistent with the expected relations; hence, we conclude that the substructure in the MBHM_{\rm BH}nsph\rm n_{sph} diagram is due to ETG versus LTG categorization. Notably higher scatters around the MBHM_{\rm BH}nsph\rm n_{sph} relations depicted in Figure 4 obstruct the visibility of distinct relations for ETGs and LTGs, even though our statistical analysis suggests different relations. We reckon that, in future, a bigger data set will enable visibly distinct MBHM_{\rm BH}nsphn_{\rm sph} relations defined by ETGs and LTGs. For a comparison with the barred versus non-barred case, we also provide the MBHM_{\rm BH}nsph,maj\rm n_{sph,maj} (and MBHM_{\rm BH}nsph,eq\rm n_{sph,eq}) relations obtained for the barred and non-barred galaxies along with the relations for ETGs and LTGs in Tables 1 and 2.

Refer to caption
Figure 4: Similar to Figure 3, but now showing the separate regressions for ETGs and LTGs as expressed in Equations 3 and 3, resepectively. These relations are consistent with the predicted MBHM_{BH}nsph\rm n_{sph} relations obtained by combining the latest morphology-dependent MBHM_{BH}M,sphM_{\rm*,sph} relations (Davis et al., 2019; Sahu et al., 2019a) with the M,sphM_{\rm*,sph}nsph\rm n_{sph} relations from Figure 2.

3.2.1 The 𝑴𝐁𝐇M_{\rm BH}𝐂𝐨𝐧𝐜𝐞𝐧𝐭𝐫𝐚𝐭𝐢𝐨𝐧\rm Concentration diagram

We also analyzed the relation between black hole mass and the light concentration of spheroids. Trujillo et al. (2001) quantified a central concentration index, for the light profile captured by a Sérsic function, as “a flux ratio” which can be expressed as C(α)=γ(2n,bnα1/n)/γ(2n,bn)\rm C(\alpha)=\gamma(2n,b_{n}\alpha^{1/n})/\gamma(2n,b_{n}). Where, α\alpha is equal to r/Re\rm r/R_{e}, and 0<α<10<\alpha<1. For a particular α\alpha, a higher value of C(α)\rm C(\alpha) represents a spheroid or an elliptical galaxy with a greater central light or mass concentration.

To calculate the concentration index for our spheroids, we use the equivalent axis Sérsic index and the exact value of bn\rm b_{n} obtained using the equation Γ(2n)=2γ(2n,bn)\Gamma(2n)=2\gamma(2n,b_{n}). In Figure 5, we have plotted C(α)\rm C(\alpha) for our spheroids, for a range of α\alpha values, against their equivalent axis Sérsic indices, revealing how both quantities are related monotonically, as already seen in Trujillo et al. (2001).

Graham et al. (2001a) explored a range of values of α\alpha and found that α=1/3\alpha=1/3 produces a minimum scatter in the vertical direction in the MBHM_{\rm BH}C(α)\rm C(\alpha) diagram. Moreover, for α>0.5\alpha>0.5 the range of concentration index values is so small that it becomes indistinguishable for different profile shapes (i.e., n), which is evident in our Figure 5, while low values of α(<0.2)\alpha(<0.2) are not so practical, especially for high redshift galaxies, as they require high spatial resolution Graham et al. (2001b). Therefore, in our investigation of the MBHM_{\rm BH}C(α)\rm C(\alpha) relation, we use C(α)\rm C(\alpha) at α=1/3\alpha=1/3 for our spheroids. The uncertainty in C(1/3)\rm C(1/3) is calculated via error propagation based on a 20%20\% uncertainty in the Sérsic index.

Refer to caption
Figure 5: Central light concentration index plotted against equivalent axis Sérsic index for a range of α\alpha (fraction of effective half-light radius), representing the monotonicity between the concentration index and the Sérsic index. This plot also shows that for a high value of α\alpha (\gtrsim0.5), the range of C(α)\rm C(\alpha) values is very small such that the increment in the C(α)\rm C(\alpha) with increasing n becomes minimal for n2\rm n\gtrsim 2.

The correlation we obtained upon performing a symmetric regression between MBHM_{\rm BH} and C(1/3)\rm C(1/3) for the total (ETGs+LTGs) sample can be expressed as, {IEEEeqnarray}rCl log(M_BH/M_⊙) &= (8.81±0.53)log[C(1/3) /0.4 ]
+  (8.10±0.07). with Δrms|BH=0.73\Delta_{\rm rms|BH}=0.73 dex in MBHM_{\rm BH}-direction. This is represented in Figure 6. This relation is steeper than the relation MBHC(1/3)(6.81±0.95)M_{\rm BH}\propto\rm C(1/3)^{(6.81\pm 0.95)} reported by Graham et al. (2001a) which was based on a set of only 21 galaxies.

Refer to caption
Figure 6: Black hole mass versus the spheroid’s central concentration index calculated using the equivalent-axis Sérsic index.

Here, again, we looked for substructures due to Sérsic versus core-Sérsic galaxies, galaxies with a disk versus galaxies without a disk, barred versus non-barred galaxies, and ETGs versus LTGs. We find two slightly different relations only for the latter two cases, similar to the MBHM_{\rm BH}nsph\rm n_{sph} diagram, which is represented in Figure 7. Again, the substructure in the MBHM_{\rm BH}C(α)\rm C(\alpha) diagram due to barred and non-barred galaxies is likely due to most of the LTGs being barred, while the dominant substructuring is due to the ETG and LTG morphology. The parameters of the MBHM_{\rm BH}C(1/3)\rm C(1/3) relations defined by ETGs and LTGs are provided in Table 2. The best-fit lines obtained for the barred and non-barred galaxies are also provided in Table 2 for comparison.

Refer to caption
Figure 7: Similar to Figure 6, but now showing the best-fit lines obtained for ETGs and LTGs (left panel) plus barred and non-barred galaxies (right panel). The different lines obtained for barred and non-barred galaxies (right panel) is a consequence of most of our barred galaxies being LTGs.

3.3 The 𝑴,𝐬𝐩𝐡𝐑𝐞,𝐬𝐩𝐡M_{\rm\rm*,sph}-\rm R_{e,sph}diagram

There is a long history of studies which have worked on the galaxy size–luminosity (Lgal\rm L_{gal}Re,gal\rm R_{e,gal}) relation for ETGs and found it to be curved (see Graham, 2019b, for a review). Here we explore the M,sphM_{\rm*,sph}Re,sph\rm R_{e,sph} diagram for the spheroids of ETGs and LTGs in our sample, for whom Re,sph\rm R_{e,sph} values were obtained from a careful image analysis.

Refer to caption
Figure 8: Spheroid stellar mass versus major-axis (left panel) and equivalent-axis (right panel) effective half-light radius of the spheroid. Both panels reveal that the spheroids of ETGs and LTGs follow closely consistent relations suggesting that a single M,sphM_{\rm*,sph}Re,sph\rm R_{e,sph} relation (Equation 8) for all galaxy types is sufficient for the current data-set. The black curve is the M,galM_{\rm*,gal}Re,gal\rm R_{e,gal} relation for ETGs taken from Graham (2019b, their Figure 18) abbreviated as “G19”.

Upon performing two different regressions for our ETGs and LTGs, we find a tight correlation between M,sphM_{\rm*,sph} and Re,sph\rm R_{e,sph} (see Figure 8) for both cases with remarkably smaller scatter (Δrms|sph\Delta_{\rm rms|sph}\sim 0.26 dex) in the M,sphM_{\rm*,sph}-direction than the M,sphM_{\rm\rm*,sph}nsph\rm n_{sph} relations111111The rms scatters in the horizontal direction for Equations 2, 2, and 8 are Δrms|n=\rm\Delta_{\rm rms|n}=0.14 dex, Δrms|n=\rm\Delta_{\rm rms|n}=0.24 dex, and Δrms|Re=\rm\Delta_{\rm rms|Re}=0.25 dex, respectively. (Equations 2 and 2 with Δrms|sph=\rm\Delta_{\rm rms|sph}= 0.46 and 0.32 dex). The left- and right-hand panels in Figure 8 show the major-axis and equivalent-axis effective half-light radii (Re,sph,maj\rm R_{e,sph,maj} and Re,sph,eq\rm R_{e,sph,eq}), respectively, on the horizontal-axes. The parameters for the M,sphM_{\rm*,sph}Re,sph\rm R_{e,sph} relations for both ETGs and LTGs are provided in Tables 1 (major-axis) and 2 (equivalent-axis).

The best-fit M,sphM_{\rm*,sph}Re,sph\rm R_{e,sph} lines for both ETGs and LTGs are log-linear and very close, such that their ±1σ\pm 1\sigma scatter region (shaded red and blue area in Figure 8) almost overlap with each other. Therefore, we further perform a single symmetric regression for our total (ETG+LTG) sample, obtaining {IEEEeqnarray}rCl log(M_*,sph/M_⊙) &= (1.08±0.04)log(R_e,sph, maj/kpc )
+  (10.32±0.03), with Δrms|sph=0.27\Delta_{\rm rms|sph}=0.27 dex. This single-regression is represented in Figure 9, where the left-hand and right-hand panels show the M,sphM_{\rm*,sph}Re,sph,maj\rm R_{e,sph,maj} and M,sphM_{\rm*,sph}Re,sph,eq\rm R_{e,sph,eq} relations, respectively. The parameters for the single-regression M,sphM_{\rm*,sph}Re,sph,eq\rm R_{e,sph,eq} relation can be found in Table 2, which has consistent slope with the above M,sphM_{\rm*,sph}Re,sph,maj\rm R_{e,sph,maj} relation.

Our total (ETG+LTG) sample also includes some alleged pseudo-bulges, marked in Table-1 of Sahu et al. (2019b) along with their source of identification, suggesting that the above single log-linear M,sphM_{\rm*,sph}Re,sph\rm R_{e,sph} relation applies for both alleged pseudo-bulges and the normal/classical bulges.

Refer to caption
Figure 9: Similar to Figure 8, but now showing the single-regression M,sphM_{\rm\rm*,sph}Re,sph\rm R_{e,sph} relation defined by the total (ETG+LTG) sample.

For a comparison, we have plotted the M,galM_{\rm*,gal}Re,gal\rm R_{e,gal} curve for ETGs from Graham (2019b, their Figure 18) in our Figures 8 and 9. The shallower part of this curve, at the high mass (and size) end, seems to match well with our near-linear M,sphM_{\rm*,sph}Re,sph\rm R_{e,sph} relation for bulges, however, the Re,sph\rm R_{e,sph} of our spheroids becomes smaller than their Re,gal\rm R_{e,gal} at log(M,sph) 10.5dex\rm\log(M_{\rm*,sph})\lesssim\,10.5\,dex (or Re2kpc\rm R_{e}\lesssim 2\,kpc) due to the presence of disks enabling bigger Re,gal\rm R_{e,gal} for their ETGs121212This is also partly intuitive because, for a given stellar density, a 2D disk (or a galaxy with a dominant disk) having the same total stellar mass as a 3D spheroidal distribution of stars will extend to a larger radii.. We do not obtain a curved M,sphM_{\rm*,sph}Re,sph\rm R_{e,sph} relation, possibly, because our sample does not include many dwarf/low-mass ETGs or late-type spiral (Sc-, Sd-types) galaxies.

The bend-point of the curved Lgal\rm L_{gal}Re,gal\rm R_{e,gal} relation for ETGs has been of past interest, because many studies have claimed that this bend-point is the point of distinction between dwarf elliptical (dE) and classical spheroids or (normal) elliptical galaxies (Sérsic, 1968b; Kormendy et al., 2009; Fisher & Drory, 2010, 2016). Different physical formation processes have been invoked for these alleged disjoint classes of galaxies (e.g., Tolstoy et al., 2009; Kormendy & Bender, 2012; Somerville & Davé, 2015). Providing a detailed investigation of this curved relation, Graham (2019b, their figure 4) present a (galaxy luminosity)–Rz\rm R_{z} diagram, where Rz\rm R_{z} represents the radius of the projected galaxy image enclosing z% of the total light, for z varying from 2% to 97%, including Re\rm R_{e} for which z=50%. Graham (2019b) find that all the LB,gal\rm L_{B,gal}Rzgal\rm R_{z_{gal}} relations are curved but the location (the absolute magnitude) of the bend-point of each curve changes with z, revealing that the bend-point in the L\rm LRe(orz=50%)\rm R_{e\,(or\,z=50\%)} relation has been used to artificially divide galaxies at a random magnitude based on the random percentage of light used to measure galaxy sizes.

Following Graham (2019b), using their Equation 22, we also calculated the radii containing z=10%\rm z=10\% and z=90%\rm z=90\% of the spheroid’s light, i.e., R10,sph\rm R_{10,sph} and R90,sph\rm R_{90,sph}, respectively. Figure 10 demonstrates how the spheroid stellar mass correlates with the equivalent axis radii R10,sph,eq\rm R_{10,sph,eq}, R50,sph,eq\rm R_{50,sph,eq} (or Re,sph,eq\rm R_{e,sph,eq}), and R90,sph,eq\rm R_{90,sph,eq}, in the left, middle, and right panels, respectively. In all three cases, we find that ETGs and LTGs follow consistent relations suggesting a single M,sphM_{*,sph}Rz,sph\rm R_{z,sph} relation in each panel, however, the slope (and intercepts) of the relations change gradually with z. For comparison, we also show the M,galM_{\rm*,gal}Rz,gal\rm R_{z,gal} curves from Graham (2019b), which seem to agree well with the elliptical galaxies at the high mass end of our M,sphM_{\rm*,sph}Rz,sph\rm R_{z,sph} relations. Whereas for galaxies with a disk (i.e., ES-, S0-, Sp-types), the radius containing z%z\% of the spheroid’s light (Rz,sph\rm R_{z,sph}) is smaller than the radius containing z%z\% of whole galaxy’s light (Rz,gal\rm R_{z,gal}). The parameters for the M,sphM_{\rm*,sph}R10,sph,eq\rm R_{10,sph,eq} and M,sphM_{\rm*,sph}R90,sph,eq\rm R_{90,sph,eq} relations are also provided in Table 2. Though for the range of our data-set we observe a (log)-linear relation between M,sphM_{\rm*,sph} and Rz,sph\rm R_{z,sph}, addition of galaxies at the low-mass and small size end might reveal a curved M,sphM_{\rm*,sph}Rz,sph\rm R_{z,sph} relation similar to the M,galM_{\rm*,gal}Rz,gal\rm R_{z,gal} curve for ETGs.

Refer to caption
Figure 10: Similar to Figure 8 and 9, but now showing R10,sph,eq\rm R_{10,sph,eq}, R50,sph,eq\rm R_{50,sph,eq} (or Re,sph,eq\rm R_{e,sph,eq}), and R90,sph,eq\rm R_{90,sph,eq} on the horizontal axis in the left, middle, and right panels, respectively. Black curves are the M,galM_{\rm*,gal}Rz,gal\rm R_{z,gal} curves from Graham (2019b) for the corresponding percentage (z%\rm z\%) of enclosed light. The top panels demonstrate that in all three cases ETGs and LTGs define consistent relations between M,sphM_{\rm*,sph} and Rz,sph\rm R_{z,sph} for the range of our sample, suggesting a single M,sphM_{\rm*,sph}Rz,sphR_{\rm z,sph} relation for the total (ETG+LTG) sample, presented in the bottom panels for each case. Importantly, the M,sphM_{*,sph}Rz,sph\rm R_{z,sph} relations become shallower with increasing z. All the parameters for the M,sphM_{*,sph}Rz,sph\rm R_{z,sph} relations are provided in Table 2.

3.4 The 𝑴𝐁𝐇M_{\rm BH}𝐑𝐞,𝐬𝐩𝐡\rm R_{e,sph} diagram

Combining the MBHM_{\rm BH}M,sphM_{\rm*,sph} relations defined by ETGs and LTGs, from Sahu et al. (2019a) and Davis et al. (2019), with the single-regression M,sphM_{\rm*,sph}Re,sph,maj\rm R_{e,sph,maj} relation (Equation 8) followed by our combined sample of ETGs and LTGs, we expect MBHRe,sph,maj1.37±0.09M_{\rm BH}\propto\rm R_{e,sph,maj}^{1.37\pm 0.09} and MBHRe,sph,maj2.33±0.36M_{\rm BH}\propto\rm R_{e,sph,maj}^{2.33\pm 0.36} for ETGs and LTGs, respectively.

We first used a single regression for the total (ETG+LTG) sample, which yielded a good relation, provided in Tables 1 and 2 for the major- and equivalent-axis Re,sph\rm R_{e,sph}, respectively, but with a higher scatter than the soon to be revealed separate relations for ETGs and LTGs. Moreover, it is inconsistent with the above prediction of the two relations in the MBHM_{\rm BH}Re,sph\rm R_{e,sph} diagram.

Upon performing separate regressions for ETGs and LTGs in the MBHM_{\rm BH}Re,sph\rm R_{e,sph} diagram, we do find two different relations for the two morphological classes. These relations are presented in Figure 11 with the left-hand and right-hand panels displaying Re,sph,maj\rm R_{e,sph,maj} and Re,sph,eq\rm R_{e,sph,eq}, respectively. The relation defined by all ETGs can be expressed as, {IEEEeqnarray}rCl log(M_BH/M_⊙) &= (1.26±0.08)log(R_e,sph, maj/kpc )
+  (8.00±0.07), with Δrms|BH=0.58\Delta_{\rm rms|BH}=0.58 dex, while LTGs define the relation {IEEEeqnarray}rCl log(M_BH/M_⊙) &= (2.33±0.31)log(R_e,sph, maj/kpc )
+  (7.54±0.10), with Δrms|BH=0.62\Delta_{\rm rms|BH}=0.62 dex. The slope of the MBHM_{\rm BH}Re,sph,eq\rm R_{e,sph,eq} relations for ETGs and LTGs are consistent with the corresponding MBHM_{\rm BH}Re,sph,maj\rm R_{e,sph,maj} relations, and their fit parameters are provided in Table 2. These two relations (Equations 3.4 & 3.4) for ETGs and LTGs are in agreement with the expected MBHM_{\rm BH}Re,sph\rm R_{e,sph} relations mentioned at the beginning of this sub-section. Additionally, we note that our MBHM_{\rm BH}Re,sph,maj\rm R_{e,sph,maj} relation for ETGs is also consistent with the relation obtained by de Nicola et al. (2019), based on an ETG-dominated sample.

Refer to caption
Figure 11: Black hole mass versus major-axis (left panel) and equivalent-axis (right panel) effective half-light radius of the spheroid. Both panels reveal that ETGs and LTGs follow two different MBHM_{\rm BH}Re,sph\rm R_{e,sph} relations (Equations 3.4 and 3.4).
Refer to caption
Figure 12: Similar to Figure 11, but now showing only the ETGs with a disk (ES and S0-types) and ETGs without a disk (E-type), which define two almost parallel MBHM_{\rm BH}Re,sph\rm R_{e,sph} relations (listed in Tables 1 and 2) with an offset of \sim1 dex in the vertical direction. This explains the related offset in the MBHM_{\rm BH}M,sphM_{\rm*,sph} diagram (Sahu et al., 2019a).
Refer to caption
Figure 13: Similar to Figure 12, but now also showing the MBHM_{\rm BH}Re,sph\rm R_{e,sph} relation defined by LTGs in the same diagram. Just for clarity, we are not showing the (light-shaded) 1σ1\sigma scatter regions, which are visible in Figures 11 and 12.

Each of our non-linear, but log-linear, MBHM_{\rm BH}Re,sph\rm R_{e,sph} relations reveal that galaxies with more massive black holes tend to have a larger (bulge) half-light radii. However, the two different slopes of the MBHM_{\rm BH}Re,sph\rm R_{e,sph} relations for ETGs and LTGs suggest that the process of evolution between black hole mass and spheroid size (Re,sphR_{e,sph}), which further relates to the spheroid stellar mass, tends to be different for these different morphological types. This also supports our morphology-dependent MBHM_{\rm BH}M,sphM_{\rm\rm*,sph}, and MBHM_{\rm BH}M,galM_{\rm\rm*,gal} relations (Davis et al., 2018; Sahu et al., 2019a), where ETGs and LTGs are found to follow two different relations. The total rms scatter about the MBHM_{\rm BH}Re,sph\rm R_{e,sph} relation is smaller than the total rms scatter about the MBHM_{\rm BH}M,sphM_{\rm*,sph} relation for LTGs (cf. Δrms|BH\Delta_{\rm rms|BH}= 0.64 dex), whereas, for ETGs it is a bit higher about the MBHM_{\rm BH}Re,sph\rm R_{e,sph} relation (cf. Δrms|BH\Delta_{\rm rms|BH}= 0.52 dex about the MBHM_{\rm BH}M,sphM_{\rm*,sph} relation).

We did not find significantly different relations upon dividing our total sample into Sérsic versus core-Sérsic galaxies, or barred versus non-barred galaxies, in the MBHM_{\rm BH}Re,sphR_{e,sph} diagram. However, when we perform separate regressions for ETGs with a stellar disk (ES-, and S0-types) and ETGs without a stellar disk (E-type), we find two almost parallel relations which are offset by 1dex\sim\rm 1\,dex in the log(MBH)\log(M_{\rm BH})-direction (see Figure 12). ETGs with a disk follow the relation {IEEEeqnarray}rCl log(M_BH/M_⊙) &= (2.13±0.22)log(R_e,sph, maj/kpc )
+  (8.34±0.09), with Δrms|BH=0.55\Delta_{\rm rms|BH}=0.55 dex, and ETGs without a disk define {IEEEeqnarray}rCl log(M_BH/M_⊙) &= (1.78±0.24)log(R_e,sph, maj/kpc )
+  (7.24±0.25), with Δrms|BH=0.60\Delta_{\rm rms|BH}=0.60 dex. The MBHM_{\rm BH}Re,sph,eq\rm R_{e,sph,eq} relations for ETGs with disk and ETGs without a disk, which are consistent with above Equations 13 and 13, respectively, are provided in Table 2. The two relations defined by ETGs with and without a disk are steeper than the single-regression MBHM_{\rm BH}Re,sph\rm R_{e,sph} relation for ETGs (Equation 3.4); however, the vertical scatter is comparable. The MBHM_{\rm BH}Re,sph\rm R_{e,sph} relation for the LTGs (Equation 3.4) is slightly steeper, but still its slope is consistent with the slope of the relations for ETGs with and without a disk at the 1σ1\sigma level; however the intercepts are different. The final substructures in the MBHM_{\rm BH}Re,sph\rm R_{e,sph} diagram, i.e., the relations followed by ETGs with a disk, ETGs without a disk, and LTGs, are presented together in Figure 13.

In passing, we note that the MBHM_{\rm BH}Re,sph\rm R_{e,sph} relation that we obtained for ETGs without a disk (elliptical galaxies) —most of which are core-Sérsic galaxies—is also consistent with the relation MBHRe1.86±0.26M_{\rm BH}\propto\rm R_{e}^{1.86\pm 0.26} obtained by combining the MBHM_{\rm BH}–(break radius or depleted core radius, Rb\rm R_{b}) and Rb\rm R_{b}Re\rm R_{e} relations observed for cored galaxies in Dullo & Graham (2014).

This offset between ETGs with and without a disk in the MBHM_{\rm BH}Re,sph\rm R_{e,sph} diagram is analogous to the offset found between the parallel relations for ETGs with and without a disk in the MBHM_{\rm BH}M,sphM_{\rm*,sph} diagram (Sahu et al., 2019a, their figure 8). Also, on combining the MBHM_{\rm BH}M,sphM_{\rm*,sph} relations defined by ETGs with and without a disk (Sahu et al., 2019a, their Equations 12 and 13), with our M,sphM_{\rm*,sph}Re,sph\rm R_{e,sph} relation (Equation 8), we obtain MBHRe,sph,maj2.01±0.23M_{\rm BH}\propto\rm R_{e,sph,maj}^{2.01\pm 0.23} and MBHRe,sph,maj2.05±0.23M_{\rm BH}\propto\rm R_{e,sph,maj}^{2.05\pm 0.23} (MBHRe,sph,eq2.05±0.23M_{\rm BH}\propto\rm R_{e,sph,eq}^{2.05\pm 0.23} and MBHRe,sph,eq2.09±0.23M_{\rm BH}\propto\rm R_{e,sph,eq}^{2.09\pm 0.23}, for Re,sph,eq\rm R_{e,sph,eq}), which are consistent with the observed relations for ETGs with a disk and ETGs without a disk, respectively (Equation 13 & 13, see Table 2 for MBHRe,sph,eqM_{\rm BH}-\rm R_{e,sph,eq} parameters).

Importantly, as mentioned in Sahu et al. (2019a), this order of magnitude offset has little to do with the black hole masses of these two categories. Qualitatively, this offset can be understood by the different sizes of the spheroid effective half-light radius corresponding to ETGs with a disk (ES and S0) and ETGs without a disk (E). The ellicular (ES) and lenticular (S0) galaxies, which have intermediate/large-scale stellar disks in addition to their spheroids, have a smaller Re,sph\rm R_{e,sph} relative to the elliptical galaxies which are comprised (almost) entirely of spheroids. This difference in Re,sph\rm R_{e,sph} between the two sub-populations of ETGs creates the offset between the MBHM_{\rm BH}Re,sph\rm R_{e,sph} relations defined by them, and because of the non-zero slope of the MBHM_{\rm BH}Re,sph\rm R_{e,sph} relations, we see an offset in the vertical direction.

The relation M,sph=(M/L)2πRe2IeM_{\rm*,sph}=(M/L)2\pi R_{e}^{2}\langle I\rangle_{e} (e.g. Equation 8 in Graham, 2019b), where (M/L) represents the stellar mass-to-light ratio and Ie\rm\langle I\rangle_{e} is the averaged intensity within Re\rm R_{e}, suggests that log(M,sph)log(Ie)+2log(Re)\rm\log(M_{\rm*,sph})\propto\log(\langle I\rangle_{e})+2\log(R_{e}), for a constant mass-to-light ratio. This can help us quantitatively understand the origin of the offset (of 1.12±0.201.12\pm 0.20 dex) found in the log(MBH)\log(M_{\rm BH})log(M,sph)\log(M_{\rm*,sph}) diagram (Sahu et al., 2019a, their section 4.2) between ETGs with and without a stellar disk. We find a vertical offset of 1.41±0.231.41\pm 0.23 dex between the two sub-samples of ETGs in the log(MBH)\log(M_{\rm BH})2log(Re,sph,eq)\rm 2\log(R_{e,sph,eq}) diagram. Whereas, we do not find separate statistically significant log(MBH)\log(M_{\rm BH})log(Ie)\rm log(\langle I\rangle_{e}) relations for these two populations, implying a single log(MBH)\log(M_{\rm BH})log(Ie)\rm log(\langle I\rangle_{e}) for ETGs with and with out a disk. This suggests that the offset observed in the log(MBH)\log(M_{\rm BH})log(M,sph)\log(M_{\rm*,sph}) diagram by Sahu et al. (2019a) originates mainly from the offset in the log(MBH)\log(M_{\rm BH})log(Re,sph)\rm\log(R_{e,sph}) diagram.

Furthermore, in the plot of MBHM_{\rm BH} versus the effective radius of the whole galaxy (Re,gal\rm R_{e,gal}), this offset is expected to disappear, such that all the ETGs will follow a single MBHM_{\rm BH}Re,gal\rm R_{e,gal} relation, analogous to the combined behaviour of ETGs with and without a disk in the MBHM_{\rm BH}M,galM_{\rm*,gal} diagram (Sahu et al., 2019a, see the right-hand panel of their Figure 8), where the two sub-populations of ETGs follow consistent MBHM_{\rm BH}M,galM_{\rm*,gal} relations.

Refer to caption
Figure 14: Similar to Figure 11 and 12, but now also showing the correlations of MBHM_{\rm BH} with the radius containing z=10%z=10\% (R10,sph,eq\rm R_{10,sph,eq}) and z=90%z=90\% (R90,sph,eq\rm R_{90,sph,eq}) of the spheroid’s light in the left and right panels, in addition to MBHM_{\rm BH}Re,sph,eq\rm R_{e,sph,eq} relations in the middle panel. Top panels reveal that ETGs and LTGs follow two different relations in all three cases. The bottom panel reveals that the offset between ETGs with and without a disk is obtained in all cases, where the offset varies with z. Additionally, due to the more massive systems having larger Sérsic indices, for all sub-morphologies the slope of the MBHM_{\rm BH}Rz,sph,eq\rm R_{z,sph,eq} relation gradually decreases with increasing z. Intercepts and the scatter about these relations can be found in Table 2.

Similar to the previous subsection, here also we investigate the correlations of black hole mass with radii containing z=10%\rm z=10\% and z=90%\rm z=90\% of the spheroid’s total light, in addition to the 50%\rm 50\% (Re,sph\rm R_{e,sph}) radius discussed above. Figure 14 presents the correlations we observed between black hole mass and R10,sph,eq\rm R_{10,sph,eq}, R50,sph,eq\rm R_{50,sph,eq} (or Re,sph,eq\rm R_{e,sph,eq}), and R90,sph,eq\rm R_{90,sph,eq}, respectively in the left, middle, and right panels. The top panels show that ETGs and LTGs define two different MBHM_{\rm BH}Rz,sph,eq\rm R_{z,sph,eq} relations irrespective of z, however, the slopes of the relations become shallower with increasing z. The bottom panels reveal that the offset between the MBHM_{\rm BH}Rz,sph,eq\rm R_{z,sph,eq} relations followed by ETGs with a disk and ETGs without a disk are found in all cases; however, as expected, the amount of the offset varies with z and also the slopes of these relations become shallower with increasing z. The parameters for the MBHM_{\rm BH}Rz,sph,eq\rm R_{z,sph,eq} relations obtained for z=10%\rm z=10\% and z=90%\rm z=90\% are also presented in Table 2.

\startlongtable
Table 1: Correlations of M,sphM_{\rm\rm*,sph} and MBHM_{\rm BH} with the bulge/spheroid major-axis properties (nsph,majandRe,sph,maj\rm n_{sph,maj}\,and\,R_{e,sph,maj})
Category Number α\alpha β\beta ϵ\epsilon Δrms\Delta_{\rm rms} rr logp\log p rsr_{s} logps\log p_{s}
dex dex dex dex dex
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
log(M,sph/M)=αlog(nsph,maj/3)+β\log(M_{*,\rm sph}/{\rm M_{\sun}})=\alpha\log(\rm n_{sph,maj}/3)+\beta
ETGs 77 3.27±0.253.27\pm 0.25 10.50±0.0610.50\pm 0.06 0.27 0.46 0.79 -17.14 0.80 -17.32
LTGs 38 1.31±0.221.31\pm 0.22 10.41±0.0710.41\pm 0.07 0.23 0.32 0.54 -3.28 0.41 -2.01
log(MBH/M)=αlog(nsph,maj/3)+β\log(M_{\rm BH}/{\rm M_{\sun}})=\alpha\log(\rm n_{sph,maj}/3)+\beta
All Galaxies 115 3.79±0.233.79\pm 0.23 8.15±0.068.15\pm 0.06 0.60 0.69 0.77 -22.85 0.76 -22.36
ETGs 77 3.95±0.343.95\pm 0.34 8.15±0.088.15\pm 0.08 0.54 0.65 0.71 -12.46 0.69 -11.42
LTGs 38 2.85±0.312.85\pm 0.31 7.90±0.147.90\pm 0.14 0.62 0.67 0.53 -3.20 0.45 -2.36
Non-Barred 71 3.89±0.313.89\pm 0.31 8.15±0.108.15\pm 0.10 0.61 0.70 0.72 -11.80 0.64 -8.61
Barred 44 3.08±0.363.08\pm 0.36 8.00±0.118.00\pm 0.11 0.55 0.61 0.54 -3.76 0.47 -2.95
log(M,sph/M)=αlog(Re,sph,maj)+β\log(M_{*,\rm sph}/{\rm M_{\sun}})=\alpha\log(\rm R_{e,sph,maj})+\beta
All Galaxies 115 1.08±0.041.08\pm 0.04 10.32±0.0310.32\pm 0.03 0.13 0.27 0.92 -47.92 0.90 -42.83
ETGs 77 1.03±0.051.03\pm 0.05 10.39±0.0410.39\pm 0.04 0.09 0.25 0.93 -34.73 0.94 -36.98
LTGs 38 1.01±0.151.01\pm 0.15 10.24±0.0510.24\pm 0.05 0.16 0.27 0.66 -5.26 0.58 -3.84
log(MBH/M)=αlog(Re,sph,maj)+β\log(M_{\rm BH}/{\rm M_{\sun}})=\alpha\log(\rm R_{e,sph,maj})+\beta
ETGs with a disk 39 2.13±0.222.13\pm 0.22 8.34±0.098.34\pm 0.09 0.47 0.55 0.74 -7.21 0.76 -7.81
ETGs without a disk 38 1.78±0.241.78\pm 0.24 7.24±0.257.24\pm 0.25 0.55 0.60 0.55 -3.45 0.52 -3.13
ETGs (All) 77 1.26±0.081.26\pm 0.08 8.00±0.078.00\pm 0.07 0.54 0.58 0.76 -15.10 0.74 -13.95
LTGs 38 2.33±0.312.33\pm 0.31 7.54±0.107.54\pm 0.10 0.54 0.62 0.63 -4.66 0.62 -4.43
All Galaxies 115 1.59±0.091.59\pm 0.09 7.73±0.077.73\pm 0.07 0.63 0.67 0.78 -23.56 0.78 -24.26

Note. — Columns: (1) Subclass of galaxies. (2) Number of galaxies in a subclass. (3) Slope of the line obtained from the BCES(Bisector) regression. (4) Intercept of the line obtained from the BCES(Bisector) regression. (5) Intrinsic scatter in the vertical (logM,sph\log M_{\rm*,sph} or logMBH\log M_{\rm BH})-direction (see Equation 1 from Graham & Driver, 2007a). (6) Total root mean square (rms) scatter in the vertical direction. (7) Pearson correlation coefficient. (8) Pearson correlation probability value. (9) Spearman rank-order correlation coefficient. (10) Spearman rank-order correlation probability value.

\startlongtable
Table 2: Correlations of M,sphM_{\rm*,sph} and MBHM_{\rm BH} with the bulge/spheroid equivalent-axis properties (neq,sph,C(1/3),Re,sph,eq,R10,sph,eq,andR90,sph,eq\rm n_{eq,sph},C(1/3),R_{e,sph,eq},R_{10,sph,eq},and\,R_{90,sph,eq})
Category Number α\alpha β\beta ϵ\epsilon Δrms\Delta_{\rm rms} rr logp\log p rsr_{s} logps\log p_{s}
dex dex dex dex dex
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
log(M,sph/M)=αlog(nsph,eq/3)+β\log(M_{*,\rm sph}/{\rm M_{\sun}})=\alpha\log(\rm n_{sph,eq}/3)+\beta
ETGs 77 3.34±0.243.34\pm 0.24 10.52±0.0610.52\pm 0.06 0.32 0.49 0.77 -15.63 0.74 -13.86
LTGs 38 1.37±0.201.37\pm 0.20 10.46±0.0710.46\pm 0.07 0.20 0.28 0.63 -4.61 0.55 -3.39
log(MBH/M)=αlog(nsph,eq/3)+β\log(M_{\rm BH}/{\rm M_{\sun}})=\alpha\log(\rm n_{sph,eq}/3)+\beta
All Galaxies 115 3.72±0.233.72\pm 0.23 8.20±0.078.20\pm 0.07 0.65 0.73 0.74 -20.14 0.74 -20.22
ETGs 77 3.94±0.373.94\pm 0.37 8.18±0.098.18\pm 0.09 0.63 0.73 0.64 -9.37 0.60 -8.13
LTGs 38 2.86±0.332.86\pm 0.33 7.99±0.167.99\pm 0.16 0.64 0.68 0.49 -2.78 0.50 -2.86
Non-Barred 71 4.20±0.384.20\pm 0.38 8.11±0.108.11\pm 0.10 0.69 0.79 0.64 -8.89 0.54 -5.88
Barred 44 2.91±0.302.91\pm 0.30 8.08±0.138.08\pm 0.13 0.56 0.61 0.52 -3.54 0.45 -2.66
log(MBH/M)=αC(1/3)/0.4+β\log(M_{\rm BH}/{\rm M_{\sun}})=\alpha\,\rm C(1/3)/0.4+\beta
All Galaxies 115 8.81±0.538.81\pm 0.53 8.10±0.078.10\pm 0.07 0.65 0.73 0.74 -20.16 0.74 -20.17
ETGs 77 8.94±0.868.94\pm 0.86 8.10±0.098.10\pm 0.09 0.63 0.72 0.64 -9.45 0.60 -8.13
LTGs 38 6.88±0.976.88\pm 0.97 7.91±0.167.91\pm 0.16 0.64 0.68 0.47 -2.57 0.50 -2.83
Non-Barred 71 9.75±0.939.75\pm 0.93 8.00±0.118.00\pm 0.11 0.70 0.79 0.64 -8.77 0.54 -5.88
Barred 44 7.03±0.887.03\pm 0.88 8.02±0.138.02\pm 0.13 0.56 0.61 0.51 -3.36 0.45 -2.63
log(M,sph/M)=αlog(Re,sph,eq)+β\log(M_{*,\rm sph}/{\rm M_{\sun}})=\alpha\log(\rm R_{e,sph,eq})+\beta
All Galaxies 115 1.10±0.041.10\pm 0.04 10.42±0.0310.42\pm 0.03 0.08 0.26 0.93 -50.60 0.92 -46.02
ETGs 77 1.06±0.051.06\pm 0.05 10.46±0.0410.46\pm 0.04 0.08 0.26 0.93 -33.85 0.94 -35.31
LTGs 38 1.03±0.121.03\pm 0.12 10.34±0.0510.34\pm 0.05 0.00 0.22 0.78 -7.98 0.67 -5.39
log(MBH/M)=αlog(Re,sph,eq)+β\log(M_{\rm BH}/{\rm M_{\sun}})=\alpha\log(\rm R_{e,sph,eq})+\beta
ETGs with a disk 39 2.07±0.232.07\pm 0.23 8.49±0.098.49\pm 0.09 0.52 0.59 0.70 -6.19 0.71 -6.33
ETGs without a disk 38 2.11±0.312.11\pm 0.31 7.11±0.277.11\pm 0.27 0.55 0.61 0.53 -3.27 0.46 -2.43
ETGs 77 1.30±0.081.30\pm 0.08 8.10±0.078.10\pm 0.07 0.56 0.60 0.75 -14.41 0.72 -12.76
LTGs 38 2.39±0.332.39\pm 0.33 7.79±0.137.79\pm 0.13 0.52 0.60 0.66 -5.13 0.66 -5.21
All Galaxies 115 1.62±0.091.62\pm 0.09 7.86±0.067.86\pm 0.06 0.62 0.67 0.78 -23.81 0.78 -24.29
log(M,sph/M)=αlog(R10,sph,eq)+β\log(M_{*,\rm sph}/{\rm M_{\sun}})=\alpha\log(\rm R_{10,sph,eq})+\beta
All Galaxies 115 1.47±0.061.47\pm 0.06 11.51±0.0411.51\pm 0.04 0.17 0.33 0.88 -38.55 0.86 -34.27
log(MBH/M)=αlog(R10,sph,eq)+β\log(M_{\rm BH}/{\rm M_{\sun}})=\alpha\log(\rm R_{10,sph,eq})+\beta
ETGs with a disk 39 2.39±0.362.39\pm 0.36 10.30±0.3210.30\pm 0.32 0.60 0.68 0.61 -4.38 0.63 -4.78
ETGs without a disk 38 2.37±0.342.37\pm 0.34 9.25±0.109.25\pm 0.10 0.53 0.61 0.54 -3.37 0.47 -2.54
ETGs 77 1.65±0.121.65\pm 0.12 9.40±0.099.40\pm 0.09 0.56 0.62 0.73 -13.50 0.71 -12.24
LTGs 38 2.86±0.472.86\pm 0.47 9.67±0.449.67\pm 0.44 0.60 0.69 0.54 -3.30 0.50 -2.83
log(M,sph/M)=αlog(R90,sph,eq)+β\log(M_{*,\rm sph}/{\rm M_{\sun}})=\alpha\log(\rm R_{90,sph,eq})+\beta
All Galaxies 115 0.85±0.030.85\pm 0.03 9.90±0.039.90\pm 0.03 0.12 0.26 0.93 -50.53 0.92 -47.05
log(MBH/M)=αlog(R90,sph,eq)+β\log(M_{\rm BH}/{\rm M_{\sun}})=\alpha\log(\rm R_{90,sph,eq})+\beta
ETGs with a disk 39 1.68±0.171.68\pm 0.17 7.40±0.137.40\pm 0.13 0.51 0.56 0.73 -6.89 0.71 -6.35
ETGs without a disk 38 1.63±0.251.63\pm 0.25 6.11±0.426.11\pm 0.42 0.61 0.63 0.47 -2.52 0.41 -1.95
ETGs 77 1.04±0.071.04\pm 0.07 7.41±0.097.41\pm 0.09 0.58 0.60 0.74 -14.09 0.71 -12.17
LTGs 38 1.76±0.251.76\pm 0.25 6.78±0.106.78\pm 0.10 0.54 0.58 0.67 -5.30 0.68 -5.50

Note. — Column names are same as Table 1.

4 Summary

We have used the largest sample of galaxies to date with directly-measured black hole masses, and carefully measured bulge parameters obtained from multi-component decomposition of their galaxy light in our previous studies (Savorgnan & Graham, 2016; Davis et al., 2019; Sahu et al., 2019a). Using this extensive data-set, we have investigated the correlations between black hole mass (MBHM_{\rm BH}) and the bulge Sérsic index (nsph\rm n_{sph}), bulge central light concentration index (C), and the bulge effective half-light radius (Re,sph\rm R_{e,sph}).

For our sample, we also investigated the correlations between bulge mass (M,sphM_{\rm*,sph}) and both the bulge Sérsic index and bulge half-light radius. We then combined these with the latest MBHM_{\rm BH}M,sphM_{*,sph} relations to predict and check upon the observed correlations of MBHM_{\rm BH} with nsph\rm n_{sph} and Re,sph\rm R_{e,sph}.

In all of the relations we investigated, we explored the possibility of substructure due to various subcategories of galaxy morphology, i.e., Sérsic versus core-Sérsic galaxies, galaxies with a stellar disk versus galaxies without a stellar disk, barred versus non-barred galaxies, and ETGs versus LTGs.

Parameters for all the correlations presented in this paper are separately listed in Table 1 and Table 2. The slope of the correlations that we obtained for MBHM_{\rm BH} or M,sphM_{\rm*,sph} with the major-axis bulge parameters (nsph,maj\rm n_{sph,maj} and Re,sph,maj\rm R_{e,sph,maj}) are consistent with the slope from the corresponding correlations of MBHM_{\rm BH} or M,sphM_{*,sph} with the equivalent-axis bulge parameters (nsph,eq\rm n_{sph,eq} and Re,sph,eq\rm R_{e,sph,eq}).

Our prime results can be summarized as follows,

  • ETGs and LTGs follow two different M,sphM_{\rm*,sph}nsph\rm n_{sph} relations (see Figure 2), with slopes equal to 3.27±0.253.27\pm 0.25 and 1.31±0.221.31\pm 0.22, and total rms scatter equal to Δrms|sph\Delta_{\rm rms|sph}=0.46 dex and 0.32 dex, respectively (Equations 2 and 2), in the M,sphM_{\rm*,sph}nsph,maj\rm n_{sph,maj} diagram. As the Sérsic index is a measure of the central concentration of a bulge’s light, these different slopes for the M,sphM_{\rm*,sph}nsph\rm n_{sph} relation suggest distinct mechanisms for the evolution of spheroid mass and central light (or stellar mass) concentration in ETGs and LTGs.

  • In the MBHM_{\rm BH}nsph\rm n_{sph} diagram, ETGs and LTGs seem to follow two different relations with MBHnsph,maj3.95±0.34M_{\rm BH}\propto\rm n_{sph,maj}^{3.95\pm 0.34} and MBHnsph,maj2.85±0.31M_{\rm BH}\propto\rm n_{sph,maj}^{2.85\pm 0.31} with Δrms|BH\Delta_{\rm rms|BH} = 0.65 dex and 0.67 dex, respectively (Figure 4, Equations 3 and 3).

  • In the diagram showing the black hole mass versus the spheroid central concentration index, C(1/3), we again find two (slightly) different relations due to ETGs and LTGs (Figure 7, Table 2), analogous to the MBHM_{\rm BH}nsph\rm n_{sph} diagram. The slopes for the MBHM_{\rm BH}C(1/3)\rm C(1/3) relations are 8.94±0.868.94\pm 0.86 and 6.88±0.976.88\pm 0.97 with Δrms|BH\Delta_{\rm rms|BH}= 0.72 dex and 0.68 dex, respectively, for ETGs and LTGs.

  • We find a tight near-linear relation between M,sphM_{\rm*,sph} and Re,sph\rm R_{e,sph} for our range of data (Figures 8 and 9). Both ETGs and LTGs define the log-linear relation M,sphRe,sph,maj1.08±0.04M_{\rm*,sph}\propto\rm R_{e,sph,maj}^{1.08\pm 0.04} (Equation 8) with Δrms|sph\Delta_{\rm rms|sph}=0.27 dex. An extended view of the M,galM_{\rm*,gal}Re,gal\rm R_{e,gal} relation for ETGs is curved (Graham, 2019b), and our M,sphM_{\rm*,sph}Re,sph\rm R_{e,sph} relation, somewhat dominated by massive spheroids, agrees with the quasi-linear part of the curve at high-masses where E-type galaxies dominate.

  • ETGs and LTGs define two different relations between black hole mass and bulge Re\rm R_{e} (Figure 11), such that MBHM_{\rm BH}Re,sph,maj(1.26±0.08)\rm R_{e,sph,maj}^{(1.26\pm 0.08)} and MBHM_{\rm BH}Re,sph,maj(2.33±0.31)\rm R_{e,sph,maj}^{(2.33\pm 0.31)} for ETGs and LTGs, with Δrms|BH\Delta_{\rm rms|BH}=0.58 dex and 0.62 dex, respectively (Equation 3.4 and 3.4). This is analogous to the substructure in the MBHM_{\rm BH}M,sphM_{\rm*,sph} diagram due to ETGs and LTGs (Sahu et al., 2019a).

  • In the MBHM_{\rm BH}Re,sph\rm R_{e,sph} diagram, ETGs with a disk (ES, S0) and ETGs without a disk (E) follow two different, almost parallel, relations with slopes 2±0.2\sim 2\pm 0.2 (Figure 12), which are steeper than the above single-regression MBHM_{\rm BH}Re,sph\rm R_{e,sph} relation for all ETGs (see Tables 1 and 2 for parameters) and offset by a factor of \sim10 in the vertical MBHM_{\rm BH}-direction. This is again analogous to the offset observed between the MBHM_{\rm BH}M,sphM_{\rm*,sph} relations followed by ETGs with and without a disk (Sahu et al., 2019a). Given M,sphM_{\rm*,sph} depends on Re,sph\rm R_{e,sph} via M,sph=(M/L)2πRe2IeM_{\rm*,sph}=(M/L)2\pi R_{e}^{2}\langle I\rangle_{e}, we find that the offset in the MBHM_{\rm BH}M,sphM_{\rm*,sph} diagram originates from the offset between ETGs with and without a disk in the MBHM_{\rm BH}Re,sph\rm R_{e,sph} diagram. The reason behind the offset is the smaller spheroid half-light radius of ETGs with a disk relative to that of elliptical (purely spheroidal) galaxies.

  • In the M,sphM_{\rm*,sph}Rz,sph\rm R_{z,sph} and MBHM_{\rm BH}Rz,sph\rm R_{z,sph} diagrams for z=10%10\% and 90%90\% (see Figures 10 and 14), we recover the same substructures as the MBHM_{\rm BH}Re,sph\rm R_{e,sph} and M,sphM_{\rm*,sph}Re,sph\rm R_{e,sph} relations mentioned above, with the slopes of correlations gradually decreasing with increasing z (see Table 2 for parameters).

The MBHM_{\rm BH}nsph\rm n_{sph} and MBHM_{\rm BH}Re,sph\rm R_{e,sph} relations may be useful for predicting the black hole masses of galaxies using their bulge Sérsic index or bulge half-light radius parameters. These parameters can be obtained by performing a multi-component decomposition of a galaxy light profile obtained even from a photometrically uncalibrated image. One should be careful while using the MBHM_{\rm BH}Re,sph\rm R_{e,sph} relation, because ETGs with a disk (ES,S0), ETGs without a disk (E), and LTGs (spirals) are found to follow different trends (Figures 11 and 12). However, when extended ETG or LTG classification is not known, the single regression MBHM_{\rm BH}nsph\rm n_{sph} or MBHM_{\rm BH}Re,sph\rm R_{e,sph} relations (provided in Tables 1 and 2) can still be used to predict MBHM_{\rm BH}, albeit with a higher uncertainty.

Our BH scaling relations, based on local galaxies, form a benchmark for studies investigating the evolution of BH correlations with galaxy properties across cosmic time (Lapi et al., 2014; Park et al., 2015; Sexton et al., 2019; Suh et al., 2020). In addition to enabling one to determine the black hole mass function (e.g. McLure & Dunlop, 2004; Shankar et al., 2004; Graham et al., 2007; Vika et al., 2009; Davis et al., 2014; Mutlu-Pakdil et al., 2016), these BH scaling relations with bulge Sérsic parameters can also be employed to infer the lifetime of binary black holes (Biava et al., 2019; Li et al., 2020a) and further constrain the BH merger rate. The creation of merger-built spheroids with (initially) higher central stellar densities — which are associated with higher Sérsic indices — should, through dynamical friction (e.g., Chandrasekhar, 1943; Arca-Sedda & Capuzzo-Dolcetta, 2014), experience a quicker inspiral and hardening phase for their binary black holes. The imprint of such processes are the phase-space loss-cones (Begelman et al., 1980) observed as partially-depleted cores in massive spheroids (King & Minkowski, 1966, 1972; Lauer, 1985; Ferrarese et al., 1994; Trujillo et al., 2004; Dullo & Graham, 2014). The eventual coalescence of the black holes results in the emission of gravitational waves (Poincaré, 1906; Einstein, 1916, 1918; Abbott et al., 2016). Our BH scaling relations will play a key role in constraining the detection of low-frequency gravitational waves generated from BH mergers at high redshifts, which fall in the detection domain of pulsar timing arrays (Shannon et al., 2015; Lentati et al., 2015; Sesana et al., 2016; Arzoumanian et al., 2018) and LISA (Amaro-Seoane et al., 2017; Barack et al., 2019).

The different scaling relations for ETGs and LTGs also hold valuable information for simulations, analytical/semi-analytical, and theoretical models of galaxy formation and evolution (e.g. Volonteri & Ciotti, 2013; Heckman & Best, 2014; Conselice, 2014), as they reveal the trends of BH—host bulge/galaxy properties depending on galaxy morphology. These relations can be used for primary size and structure tests in simulations aiming to generate realistic galaxies with supermassive black holes at their center (e.g. Schaye et al., 2015; Hopkins et al., 2018; Mutlu-Pakdil et al., 2018; Davé et al., 2019; Li et al., 2020b). We plan to test our new constraints through a comparison with simulations in our future work. Using our extensive dataset, we will present the correlation of black hole mass with the internal stellar density of galactic spheroids (N. Sahu et al. 2021, in preparation). We will also explore the (first morphology aware) fundamental plane in our future work.

We thank the anonymous referee whose comments helped us improve the clarity of this paper. This research was conducted with the Australian Research Council Centre of Excellence for Gravitational Wave Discovery (OzGrav), through project number CE170100004. This project was supported under the Australian Research Council’s funding scheme DP17012923. This work has made use of the NASA/IPAC Infrared Science Archive, the NASA/IPAC Extragalactic Database (NED), and the HyperLeda Database http://leda.univ-lyon1.fr/.

References

  • Abbott et al. (2016) Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2016, Phys. Rev. Lett., 116, 061102, doi: 10.1103/PhysRevLett.116.061102
  • Akritas & Bershady (1996) Akritas, M. G., & Bershady, M. A. 1996, ApJ, 470, 706, doi: 10.1086/177901
  • Amaro-Seoane et al. (2017) Amaro-Seoane, P., Audley, H., Babak, S., et al. 2017, arXiv e-prints, arXiv:1702.00786. https://arxiv.org/abs/1702.00786
  • Andredakis et al. (1995) Andredakis, Y. C., Peletier, R. F., & Balcells, M. 1995, MNRAS, 275, 874, doi: 10.1093/mnras/275.3.874
  • Arca-Sedda & Capuzzo-Dolcetta (2014) Arca-Sedda, M., & Capuzzo-Dolcetta, R. 2014, ApJ, 785, 51, doi: 10.1088/0004-637X/785/1/51
  • Arzoumanian et al. (2018) Arzoumanian, Z., Baker, P. T., Brazier, A., et al. 2018, ApJ, 859, 47, doi: 10.3847/1538-4357/aabd3b
  • Athanassoula et al. (2015) Athanassoula, E., Laurikainen, E., Salo, H., & Bosma, A. 2015, MNRAS, 454, 3843, doi: 10.1093/mnras/stv2231
  • Baes et al. (2003) Baes, M., Buyle, P., Hau, G. K. T., & Dejonghe, H. 2003, MNRAS, 341, L44, doi: 10.1046/j.1365-8711.2003.06680.x
  • Baker et al. (2019) Baker, J., Barke, S. F., Bender, P. L., et al. 2019, arXiv e-prints, arXiv:1907.11305. https://arxiv.org/abs/1907.11305
  • Barack et al. (2019) Barack, L., Cardoso, V., Nissanke, S., et al. 2019, Classical and Quantum Gravity, 36, 143001, doi: 10.1088/1361-6382/ab0587
  • Batcheldor et al. (2010) Batcheldor, D., Robinson, A., Axon, D. J., Perlman, E. S., & Merritt, D. 2010, ApJ, 717, L6, doi: 10.1088/2041-8205/717/1/L6
  • Begelman (1984) Begelman, M. C. 1984, in IAU Symposium, Vol. 110, VLBI and Compact Radio Sources, ed. R. Fanti, K. I. Kellermann, & G. Setti, 227
  • Begelman et al. (1980) Begelman, M. C., Blandford, R. D., & Rees, M. J. 1980, Nature, 287, 307, doi: 10.1038/287307a0
  • Beifiori et al. (2012) Beifiori, A., Courteau, S., Corsini, E. M., & Zhu, Y. 2012, MNRAS, 419, 2497, doi: 10.1111/j.1365-2966.2011.19903.x
  • Berrier et al. (2013) Berrier, J. C., Davis, B. L., Kennefick, D., et al. 2013, ApJ, 769, 132, doi: 10.1088/0004-637X/769/2/132
  • Biava et al. (2019) Biava, N., Colpi, M., Capelo, P. R., et al. 2019, MNRAS, 487, 4985, doi: 10.1093/mnras/stz1614
  • Blom et al. (2014) Blom, C., Forbes, D. A., Foster, C., Romanowsky, A. J., & Brodie, J. P. 2014, MNRAS, 439, 2420, doi: 10.1093/mnras/stu095
  • Bogdán et al. (2018) Bogdán, Á., Lovisari, L., Volonteri, M., & Dubois, Y. 2018, ApJ, 852, 131, doi: 10.3847/1538-4357/aa9ab5
  • Caon et al. (1993a) Caon, N., Capaccioli, M., & D’Onofrio, M. 1993a, MNRAS, 265, 1013, doi: 10.1093/mnras/265.4.1013
  • Caon et al. (1993b) —. 1993b, MNRAS, 265, 1013, doi: 10.1093/mnras/265.4.1013
  • Capaccioli (1989) Capaccioli, M. 1989, in World of Galaxies (Le Monde des Galaxies), ed. J. Corwin, Harold G. & L. Bottinelli, 208–227
  • Casura et al. (2019) Casura, S., Liske, J., Robotham, A. S. G., Taranu, D. S., & Laine, J. 2019, in The Art of Measuring Galaxy Physical Properties, 26, doi: 10.5281/zenodo.3556629
  • Chandrasekhar (1943) Chandrasekhar, S. 1943, ApJ, 97, 255, doi: 10.1086/144517
  • Chen et al. (2019) Chen, S., Sesana, A., & Conselice, C. J. 2019, MNRAS, 488, 401, doi: 10.1093/mnras/stz1722
  • Choi et al. (2018) Choi, E., Somerville, R. S., Ostriker, J. P., Naab, T., & Hirschmann, M. 2018, ApJ, 866, 91, doi: 10.3847/1538-4357/aae076
  • Ciambur (2015) Ciambur, B. C. 2015, ApJ, 810, 120, doi: 10.1088/0004-637X/810/2/120
  • Ciambur (2016) —. 2016, PASA, 33, e062, doi: 10.1017/pasa.2016.60
  • Ciambur et al. (2020) Ciambur, B. C., Fragkoudi, F., Khoperskov, S., Di Matteo, P., & Combes, F. 2020, arXiv e-prints, arXiv:2003.00015. https://arxiv.org/abs/2003.00015
  • Ciambur & Graham (2016) Ciambur, B. C., & Graham, A. W. 2016, MNRAS, 459, 1276, doi: 10.1093/mnras/stw759
  • Combes et al. (1990) Combes, F., Debbasch, F., Friedli, D., & Pfenniger, D. 1990, A&A, 233, 82
  • Conselice (2014) Conselice, C. J. 2014, ARA&A, 52, 291, doi: 10.1146/annurev-astro-081913-040037
  • Danzmann (2017) Danzmann, K. 2017, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 10566, Proc. SPIE, 1056610, doi: 10.1117/12.2308272
  • Davé et al. (2019) Davé, R., Anglés-Alcázar, D., Narayanan, D., et al. 2019, MNRAS, 486, 2827, doi: 10.1093/mnras/stz937
  • Davis et al. (2018) Davis, B. L., Graham, A. W., & Cameron, E. 2018, ApJ, 869, 113, doi: 10.3847/1538-4357/aae820
  • Davis et al. (2019) Davis, B. L., Graham, A. W., & Cameron, E. 2019, ApJ, 873, 85, doi: 10.3847/1538-4357/aaf3b8
  • Davis et al. (2019) Davis, B. L., Graham, A. W., & Combes, F. 2019, ApJ, 877, 64, doi: 10.3847/1538-4357/ab1aa4
  • Davis et al. (2017) Davis, B. L., Graham, A. W., & Seigar, M. S. 2017, MNRAS, 471, 2187, doi: 10.1093/mnras/stx1794
  • Davis et al. (2014) Davis, B. L., Berrier, J. C., Johns, L., et al. 2014, ApJ, 789, 124, doi: 10.1088/0004-637X/789/2/124
  • de Nicola et al. (2019) de Nicola, S., Marconi, A., & Longo, G. 2019, MNRAS, 2130, doi: 10.1093/mnras/stz2472
  • den Brok et al. (2015) den Brok, M., Seth, A. C., Barth, A. J., et al. 2015, ApJ, 809, 101, doi: 10.1088/0004-637X/809/1/101
  • Dolag (2015) Dolag, K. 2015, in IAU General Assembly, Vol. 29, 2250156
  • Dressler (1989) Dressler, A. 1989, in Active Galactic Nuclei, Vol. 134, 217
  • Dullo et al. (2020) Dullo, B. T., Bouquin, A. Y. K., Gil De Paz, A., Knapen, J. H., & Gorgas, J. 2020, arXiv e-prints, arXiv:2006.10128. https://arxiv.org/abs/2006.10128
  • Dullo & Graham (2014) Dullo, B. T., & Graham, A. W. 2014, MNRAS, 444, 2700, doi: 10.1093/mnras/stu1590
  • Einstein (1916) Einstein, A. 1916, Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften (Berlin, 688
  • Einstein (1918) —. 1918, Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften (Berlin, 154
  • Ferrarese (2002) Ferrarese, L. 2002, ApJ, 578, 90, doi: 10.1086/342308
  • Ferrarese & Merritt (2000) Ferrarese, L., & Merritt, D. 2000, ApJ, 539, L9, doi: 10.1086/312838
  • Ferrarese et al. (1994) Ferrarese, L., van den Bosch, F. C., Ford, H. C., Jaffe, W., & O’Connell, R. W. 1994, AJ, 108, 1598, doi: 10.1086/117180
  • Ferrarese et al. (2006) Ferrarese, L., Côté, P., Jordán, A., et al. 2006, ApJS, 164, 334, doi: 10.1086/501350
  • Fisher & Drory (2010) Fisher, D. B., & Drory, N. 2010, ApJ, 716, 942, doi: 10.1088/0004-637X/716/2/942
  • Fisher & Drory (2016) Fisher, D. B., & Drory, N. 2016, in Astrophysics and Space Science Library, Vol. 418, Galactic Bulges, ed. E. Laurikainen, R. Peletier, & D. Gadotti, 41, doi: 10.1007/978-3-319-19378-6_3
  • Fukugita & Peebles (2004) Fukugita, M., & Peebles, P. J. E. 2004, ApJ, 616, 643, doi: 10.1086/425155
  • Gebhardt et al. (2000) Gebhardt, K., Bender, R., Bower, G., et al. 2000, ApJ, 539, L13, doi: 10.1086/312840
  • Graham et al. (1996) Graham, A., Lauer, T. R., Colless, M., & Postman, M. 1996, ApJ, 465, 534, doi: 10.1086/177440
  • Graham (2001) Graham, A. W. 2001, AJ, 121, 820, doi: 10.1086/318767
  • Graham (2012) —. 2012, ApJ, 746, 113, doi: 10.1088/0004-637X/746/1/113
  • Graham (2016) Graham, A. W. 2016, in Astrophysics and Space Science Library, Vol. 418, Galactic Bulges, ed. E. Laurikainen, R. Peletier, & D. Gadotti, 263, doi: 10.1007/978-3-319-19378-6_11
  • Graham (2019a) —. 2019a, MNRAS, 1547, doi: 10.1093/mnras/stz1623
  • Graham (2019b) —. 2019b, PASA, 36, e035, doi: 10.1017/pasa.2019.23
  • Graham et al. (2016a) Graham, A. W., Ciambur, B. C., & Savorgnan, G. A. D. 2016a, ApJ, 831, 132, doi: 10.3847/0004-637X/831/2/132
  • Graham & Driver (2005) Graham, A. W., & Driver, S. P. 2005, Publications of the Astronomical Society of Australia, 22, 118, doi: 10.1071/AS05001
  • Graham & Driver (2007a) —. 2007a, ApJ, 655, 77, doi: 10.1086/509758
  • Graham & Driver (2007b) —. 2007b, MNRAS, 380, L15, doi: 10.1111/j.1745-3933.2007.00340.x
  • Graham et al. (2016b) Graham, A. W., Durré, M., Savorgnan, G. A. D., et al. 2016b, ApJ, 819, 43, doi: 10.3847/0004-637X/819/1/43
  • Graham et al. (2001a) Graham, A. W., Erwin, P., Caon, N., & Trujillo, I. 2001a, ApJ, 563, L11, doi: 10.1086/338500
  • Graham et al. (2003a) Graham, A. W., Erwin, P., Caon, N., & Trujillo, I. 2003a, in Revista Mexicana de Astronomia y Astrofisica Conference Series, Vol. 17, Revista Mexicana de Astronomia y Astrofisica Conference Series, ed. V. Avila-Reese, C. Firmani, C. S. Frenk, & C. Allen, 196–197. https://arxiv.org/abs/astro-ph/0206248
  • Graham & Guzmán (2003) Graham, A. W., & Guzmán, R. 2003, AJ, 125, 2936, doi: 10.1086/374992
  • Graham et al. (2006) Graham, A. W., Merritt, D., Moore, B., Diemand , J., & Terzić, B. 2006, AJ, 132, 2711, doi: 10.1086/508992
  • Graham & Scott (2013) Graham, A. W., & Scott, N. 2013, ApJ, 764, 151, doi: 10.1088/0004-637X/764/2/151
  • Graham et al. (2001b) Graham, A. W., Trujillo, I., & Caon, N. 2001b, AJ, 122, 1707, doi: 10.1086/323090
  • Graham & Worley (2008) Graham, A. W., & Worley, C. C. 2008, MNRAS, 388, 1708, doi: 10.1111/j.1365-2966.2008.13506.x
  • Graham et al. (2003b) Graham, A. W., et al. 2003b, AJ, 125, 2951, doi: 10.1086/375320
  • Graham et al. (2007) —. 2007, MNRAS, 378, 198, doi: 10.1111/j.1365-2966.2007.11770.x
  • Häußler et al. (2013) Häußler, B., Bamford, S. P., Vika, M., et al. 2013, MNRAS, 430, 330, doi: 10.1093/mnras/sts633
  • Heckman & Best (2014) Heckman, T. M., & Best, P. N. 2014, ARA&A, 52, 589, doi: 10.1146/annurev-astro-081913-035722
  • Hopkins et al. (2018) Hopkins, P. F., Wetzel, A., Kereš, D., et al. 2018, MNRAS, 480, 800, doi: 10.1093/mnras/sty1690
  • Jerjen et al. (2000) Jerjen, H., Binggeli, B., & Freeman, K. C. 2000, AJ, 119, 593, doi: 10.1086/301216
  • Kelly & Merloni (2012) Kelly, B. C., & Merloni, A. 2012, Advances in Astronomy, 2012, 970858, doi: 10.1155/2012/970858
  • Kelvin et al. (2012) Kelvin, L. S., Driver, S. P., Robotham, A. S. G., et al. 2012, MNRAS, 421, 1007, doi: 10.1111/j.1365-2966.2012.20355.x
  • Kennedy et al. (2016) Kennedy, R., Bamford, S. P., Häußler, B., et al. 2016, MNRAS, 460, 3458, doi: 10.1093/mnras/stw1176
  • Kent et al. (1991) Kent, S. M., Dame, T. M., & Fazio, G. 1991, ApJ, 378, 131, doi: 10.1086/170413
  • Khosroshahi et al. (2000) Khosroshahi, H. G., Wadadekar, Y., & Kembhavi, A. 2000, ApJ, 533, 162, doi: 10.1086/308654
  • King & Minkowski (1966) King, I. R., & Minkowski, R. 1966, ApJ, 143, 1002, doi: 10.1086/148580
  • King & Minkowski (1972) King, I. R., & Minkowski, R. 1972, in IAU Symposium, Vol. 44, External Galaxies and Quasi-Stellar Objects, ed. D. S. Evans, D. Wills, & B. J. Wills, 87
  • Klypin et al. (2011) Klypin, A. A., Trujillo-Gomez, S., & Primack, J. 2011, ApJ, 740, 102, doi: 10.1088/0004-637X/740/2/102
  • Kormendy & Bender (2012) Kormendy, J., & Bender, R. 2012, ApJS, 198, 2, doi: 10.1088/0067-0049/198/1/2
  • Kormendy et al. (2009) Kormendy, J., Fisher, D. B., Cornell, M. E., & Bender, R. 2009, ApJS, 182, 216, doi: 10.1088/0067-0049/182/1/216
  • Kormendy & Richstone (1995) Kormendy, J., & Richstone, D. 1995, ARA&A, 33, 581, doi: 10.1146/annurev.aa.33.090195.003053
  • Lange et al. (2015) Lange, R., Driver, S. P., Robotham, A. S. G., et al. 2015, MNRAS, 447, 2603, doi: 10.1093/mnras/stu2467
  • Laor (2001) Laor, A. 2001, ApJ, 553, 677, doi: 10.1086/320989
  • Lapi et al. (2014) Lapi, A., Raimundo, S., Aversa, R., et al. 2014, ApJ, 782, 69, doi: 10.1088/0004-637X/782/2/69
  • Lauer (1985) Lauer, T. R. 1985, ApJ, 292, 104, doi: 10.1086/163136
  • Laurikainen et al. (2010) Laurikainen, E., Salo, H., Buta, R., Knapen, J. H., & Comerón, S. 2010, MNRAS, 405, 1089, doi: 10.1111/j.1365-2966.2010.16521.x
  • Lentati et al. (2015) Lentati, L., Taylor, S. R., Mingarelli, C. M. F., et al. 2015, MNRAS, 453, 2576, doi: 10.1093/mnras/stv1538
  • Li et al. (2020a) Li, K., Bogdanovic, T., & Ballantyne, D. R. 2020a, arXiv e-prints, arXiv:2007.02051. https://arxiv.org/abs/2007.02051
  • Li et al. (2020b) Li, Y., Habouzit, M., Genel, S., et al. 2020b, ApJ, 895, 102, doi: 10.3847/1538-4357/ab8f8d
  • Licquia & Newman (2015) Licquia, T. C., & Newman, J. A. 2015, ApJ, 806, 96, doi: 10.1088/0004-637X/806/1/96
  • Liller (1966) Liller, M. H. 1966, ApJ, 146, 28, doi: 10.1086/148857
  • Magorrian et al. (1998) Magorrian, J., Tremaine, S., Richstone, D., et al. 1998, AJ, 115, 2285, doi: 10.1086/300353
  • Markwardt (2012) Markwardt, C. 2012, MPFIT: Robust non-linear least squares curve fitting. http://ascl.net/1208.019
  • Marshall et al. (2020) Marshall, M. A., Mutch, S. J., Qin, Y., Poole, G. B., & Wyithe, J. S. B. 2020, MNRAS, 494, 2747, doi: 10.1093/mnras/staa936
  • Martín-Navarro et al. (2020) Martín-Navarro, I., Burchett, J. N., & Mezcua, M. 2020, MNRAS, 491, 1311, doi: 10.1093/mnras/stz3073
  • McLure & Dunlop (2004) McLure, R. J., & Dunlop, J. S. 2004, MNRAS, 352, 1390, doi: 10.1111/j.1365-2966.2004.08034.x
  • Möllenhoff & Heidt (2001) Möllenhoff, C., & Heidt, J. 2001, A&A, 368, 16, doi: 10.1051/0004-6361:20000335
  • Mutlu-Pakdil et al. (2016) Mutlu-Pakdil, B., Seigar, M. S., & Davis, B. L. 2016, ApJ, 830, 117, doi: 10.3847/0004-637X/830/2/117
  • Mutlu-Pakdil et al. (2018) Mutlu-Pakdil, B., Seigar, M. S., Hewitt, I. B., et al. 2018, MNRAS, 474, 2594, doi: 10.1093/mnras/stx2935
  • Nemmen et al. (2012) Nemmen, R. S., Georganopoulos, M., Guiriec, S., et al. 2012, Science, 338, 1445, doi: 10.1126/science.1227416
  • Novak et al. (2006) Novak, G. S., Faber, S. M., & Dekel, A. 2006, ApJ, 637, 96, doi: 10.1086/498333
  • Park et al. (2015) Park, D., Woo, J.-H., Bennert, V. N., et al. 2015, ApJ, 799, 164, doi: 10.1088/0004-637X/799/2/164
  • Paturel et al. (2003) Paturel, G., Petit, C., Prugniel, P., et al. 2003, A&A, 412, 45, doi: 10.1051/0004-6361:20031411
  • Pillepich et al. (2018) Pillepich, A., Springel, V., Nelson, D., et al. 2018, MNRAS, 473, 4077, doi: 10.1093/mnras/stx2656
  • Planck Collaboration et al. (2018) Planck Collaboration, Aghanim, N., Akrami, Y., et al. 2018, ArXiv e-prints, arXiv:1807.06209. https://arxiv.org/abs/1807.06209
  • Poincaré (1906) Poincaré, H. 1906, Academie des Sciences Paris Comptes Rendus, 150, 1504
  • Press et al. (1992) Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. 1992, Numerical recipes in FORTRAN. The art of scientific computing
  • Querejeta et al. (2015) Querejeta, M., Meidt, S. E., Schinnerer, E., et al. 2015, The Astrophysical Journal Supplement Series, 219, 5, doi: 10.1088/0067-0049/219/1/5
  • Ruszkowski et al. (2019) Ruszkowski, M., Nagai, D., Zhuravleva, I., et al. 2019, BAAS, 51, 326. https://arxiv.org/abs/1903.09686
  • Sahu et al. (2019a) Sahu, N., Graham, A. W., & Davis, B. L. 2019a, ApJ, 876, 155, doi: 10.3847/1538-4357/ab0f32
  • Sahu et al. (2019b) —. 2019b, ApJ, 887, 10, doi: 10.3847/1538-4357/ab50b7
  • Salucci et al. (2000) Salucci, P., et al. 2000, MNRAS, 317, 488, doi: 10.1046/j.1365-8711.2000.03622.x
  • Savorgnan et al. (2013) Savorgnan, G., Graham, A. W., Marconi, A., et al. 2013, MNRAS, 434, 387, doi: 10.1093/mnras/stt1027
  • Savorgnan (2016) Savorgnan, G. A. D. 2016, ApJ, 821, 88, doi: 10.3847/0004-637X/821/2/88
  • Savorgnan & Graham (2016) Savorgnan, G. A. D., & Graham, A. W. 2016, ApJS, 222, 10, doi: 10.3847/0067-0049/222/1/10
  • Savorgnan et al. (2016) Savorgnan, G. A. D., et al. 2016, ApJ, 817, 21, doi: 10.3847/0004-637X/817/1/21
  • Schaye et al. (2015) Schaye, J., Crain, R. A., Bower, R. G., et al. 2015, MNRAS, 446, 521, doi: 10.1093/mnras/stu2058
  • Scott et al. (2013) Scott, N., Graham, A. W., & Schombert, J. 2013, ApJ, 768, 76, doi: 10.1088/0004-637X/768/1/76
  • Secrest et al. (2013) Secrest, N. J., Satyapal, S., Moran, S. M., et al. 2013, ApJ, 777, 139, doi: 10.1088/0004-637X/777/2/139
  • Seigar et al. (2008) Seigar, M. S., Kennefick, D., Kennefick, J., & Lacy, C. H. S. 2008, ApJ, 678, L93, doi: 10.1086/588727
  • Sérsic (1963) Sérsic, J. L. 1963, BAAA, 6, 41
  • Sérsic (1968a) —. 1968a, Atlas de Galaxias Australes - English Translation of the chapter “Photometric Analysis”, Tech. rep., doi: 10.5281/zenodo.2562394
  • Sérsic (1968b) —. 1968b, Bulletin of the Astronomical Institutes of Czechoslovakia, 19, 105
  • Sesana et al. (2016) Sesana, A., Shankar, F., Bernardi, M., & Sheth, R. K. 2016, MNRAS, 463, L6, doi: 10.1093/mnrasl/slw139
  • Sexton et al. (2019) Sexton, R. O., Canalizo, G., Hiner, K. D., et al. 2019, ApJ, 878, 101, doi: 10.3847/1538-4357/ab21d5
  • Shankar et al. (2004) Shankar, F., Salucci, P., Granato, G. L., De Zotti, G., & Danese, L. 2004, MNRAS, 354, 1020, doi: 10.1111/j.1365-2966.2004.08261.x
  • Shannon et al. (2015) Shannon, R. M., Ravi, V., Lentati, L. T., et al. 2015, Science, 349, 1522, doi: 10.1126/science.aab1910
  • Siemens et al. (2013) Siemens, X., Ellis, J., Jenet, F., & Romano, J. D. 2013, Classical and Quantum Gravity, 30, 224015, doi: 10.1088/0264-9381/30/22/224015
  • Simmons et al. (2013) Simmons, B. D., Lintott, C., Schawinski, K., et al. 2013, MNRAS, 429, 2199, doi: 10.1093/mnras/sts491
  • Somerville & Davé (2015) Somerville, R. S., & Davé, R. 2015, ARA&A, 53, 51, doi: 10.1146/annurev-astro-082812-140951
  • Suh et al. (2020) Suh, H., Civano, F., Trakhtenbrot, B., et al. 2020, ApJ, 889, 32, doi: 10.3847/1538-4357/ab5f5f
  • Terrazas et al. (2016) Terrazas, B. A., Bell, E. F., Henriques, B. M. B., et al. 2016, ApJ, 830, L12, doi: 10.3847/2041-8205/830/1/L12
  • Terrazas et al. (2020) Terrazas, B. A., Bell, E. F., Pillepich, A., et al. 2020, MNRAS, 493, 1888, doi: 10.1093/mnras/staa374
  • Terzić & Graham (2005) Terzić, B., & Graham, A. W. 2005, MNRAS, 362, 197, doi: 10.1111/j.1365-2966.2005.09269.x
  • Tolstoy et al. (2009) Tolstoy, E., Hill, V., & Tosi, M. 2009, ARA&A, 47, 371, doi: 10.1146/annurev-astro-082708-101650
  • Tremaine et al. (2002) Tremaine, S., Gebhardt, K., Bender, R., et al. 2002, ApJ, 574, 740, doi: 10.1086/341002
  • Trujillo et al. (2004) Trujillo, I., Erwin, P., Asensio Ramos, A., & Graham, A. W. 2004, AJ, 127, 1917, doi: 10.1086/382712
  • Trujillo et al. (2001) Trujillo, I., Graham, A. W., & Caon, N. 2001, MNRAS, 326, 869, doi: 10.1046/j.1365-8711.2001.04471.x
  • van den Bosch (2016) van den Bosch, R. C. E. 2016, ApJ, 831, 134, doi: 10.3847/0004-637X/831/2/134
  • Vika et al. (2012) Vika, M., Driver, S. P., Cameron, E., Kelvin, L., & Robotham, A. 2012, MNRAS, 419, 2264, doi: 10.1111/j.1365-2966.2011.19881.x
  • Vika et al. (2009) Vika, M., Driver, S. P., Graham, A. W., & Liske, J. 2009, MNRAS, 400, 1451, doi: 10.1111/j.1365-2966.2009.15544.x
  • Vogelsberger et al. (2014) Vogelsberger, M., Genel, S., Springel, V., et al. 2014, MNRAS, 444, 1518, doi: 10.1093/mnras/stu1536
  • Volonteri & Ciotti (2013) Volonteri, M., & Ciotti, L. 2013, ApJ, 768, 29, doi: 10.1088/0004-637X/768/1/29
  • Volonteri et al. (2011) Volonteri, M., Natarajan, P., & Gültekin, K. 2011, ApJ, 737, 50, doi: 10.1088/0004-637X/737/2/50
  • Volonteri et al. (2020) Volonteri, M., Pfister, H., Beckman, R. S., et al. 2020, arXiv e-prints, arXiv:2005.04902. https://arxiv.org/abs/2005.04902
  • Wandel (1999) Wandel, A. 1999, ApJ, 519, L39, doi: 10.1086/312106
  • Williams et al. (2010) Williams, M. J., Bureau, M., & Cappellari, M. 2010, MNRAS, 409, 1330, doi: 10.1111/j.1365-2966.2010.17406.x
  • Wright (2006) Wright, E. L. 2006, PASP, 118, 1711, doi: 10.1086/510102
  • Yepes et al. (2009) Yepes, G., Martínez-Vaquero, L. A., Gottlöber, S., & Hoffman, Y. 2009, in American Institute of Physics Conference Series, Vol. 1178, American Institute of Physics Conference Series, ed. C. Balazs & F. Wang, 64–75, doi: 10.1063/1.3264558
  • Young & Currie (1994) Young, C. K., & Currie, M. J. 1994, MNRAS, 268, L11, doi: 10.1093/mnras/268.1.L11

Appendix A Data Set

In Table 3, first 83 galaxies are ETGs, and the remaining are LTGs, where the galaxies with a depleted core are marked with superscript “a” on their names in the first column. The spheroid Sérsic model parameters (n,Re,μ\rm n,Re,\mu), morphology, and spheroid stellar masses are taken from our previous studies Savorgnan & Graham (2016), Sahu et al. (2019a), and Davis et al. (2019). For NGC 1271 and NGC 1277 these parameters are borrowed from Graham et al. (2016a) and Graham et al. (2016b), respectively. Spheroid parameters for the Milky Way are taken from Graham & Driver (2007a) who used the uncalibrated bulge surface brightness profile of Milky Way from Kent et al. (1991). The spheroid mass of Milky Way is taken from Licquia & Newman (2015).

Correlations of M,sphM_{\rm*,sph} and MBHM_{\rm BH} with the equivalent-axis bulge parameters obtained using symmetric MPFITEXY regression are presented in Table 4. These relations are consistent with the corresponding relations obtained using the (bisector) BCES regression presented in Table 2.

\restartappendixnumbering\startlongtable\movetableright

=-2in \movetabledown=0.5in

Table 3: Galaxy Sample
No. Galaxy Band Υλ&𝔐,λ\Upsilon_{\lambda}\,\&\,\mathfrak{M}_{\odot,\lambda} Type nmajn_{maj} Re,majR_{e,maj} μe,maj\mu_{e,maj} log(Ie,majM/pc2)\log(\frac{I_{e,maj}}{M_{\odot}/pc^{2}}) neqn_{eq} Re,eqR_{e,eq} μe,eq\mu_{e,eq} log(Ie,eqM/pc2)\log(\frac{I_{e,eq}}{M_{\odot}/pc^{2}}) C scale log(M,sphM)\log(\frac{M_{\rm*,sph}}{M_{\odot}}) Distance log(MBHM)\log(\frac{M_{\rm BH}}{M_{\odot}}) Ref.
(ML)&mag\rm(\frac{M_{\odot}}{L_{\odot}})\,\&\,mag arcsec magarcsec2\rm\frac{mag}{arcsec^{2}} dex arcsec magarcsec2\rm\frac{mag}{arcsec^{2}} dex kpcarcsec\rm\frac{kpc}{arcsec} dex Mpc dex
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18)
1 IC 1459aaGalaxies with a deficit of light at their center, for whom the spheroid profile is parameterized using a core-Sérsic function (Graham et al., 2003b). 3.6μm\rm 3.6\,\mu m (0.6, 3.26) E 6.60 63.10 18.49 2.32 7.00 57.30 18.59 2.28 0.60 0.1366 11.55 ±\pm 0.12 28.4 9.38 ±\pm 0.20 SG16
2 NGC 0821 3.6μm\rm 3.6\,\mu m (0.6, 3.26) E 5.30 36.50 18.40 2.36 6.10 18.90 17.83 2.58 0.62 0.1127 10.69 ±\pm 0.33 23.4 7.59 ±\pm 0.17 SG16
3 NGC 1023 3.6μm\rm 3.6\,\mu m (0.6, 3.26) SB0 2.10 9.20 14.96 3.73 2.00 7.40 14.79 3.80 0.32 0.0536 10.21 ±\pm 0.12 11.1 7.62 ±\pm 0.05 SG16
4 NGC 1316 3.6μm\rm 3.6\,\mu m (0.6, 3.26) SAB0\rm SAB0^{*} 2.00 21.50 15.55 3.50 1.80 15.90 15.43 3.54 0.30 0.0897 11.05 ±\pm 0.26 18.6 8.18 ±\pm 0.26 SG16
5 NGC 1332 3.6μm\rm 3.6\,\mu m (0.6, 3.26) ES 5.10 34.70 17.44 2.74 3.70 18.00 16.47 3.13 0.35 0.1074 11.05 ±\pm 0.33 22.3 9.16±\pm0.07 SG16
6 NGC 1399aaGalaxies with a deficit of light at their center, for whom the spheroid profile is parameterized using a core-Sérsic function (Graham et al., 2003b). 3.6μm\rm 3.6\,\mu m (0.6, 3.26) E 10.00 405.10 21.80 1.00 10.00 338.10 21.53 1.10 0.63 0.0935 11.66 ±\pm 0.12 19.4 8.67±\pm0.06 SG16
7 NGC 2549 3.6μm\rm 3.6\,\mu m (0.6, 3.26) SB0 2.30 6.10 15.57 3.49 1.50 3.10 14.54 3.90 0.24 0.0594 9.59 ±\pm 0.12 12.3 7.15±\pm0.6 SG16
8 NGC 2778 3.6μm\rm 3.6\,\mu m (0.6, 3.26) SAB0 1.30 2.30 15.61 3.47 1.20 2.20 15.46 3.53 0.24 0.1074 9.41 ±\pm 0.26 22.3 7.18±\pm0.34 SG16
9 NGC 3091aaGalaxies with a deficit of light at their center, for whom the spheroid profile is parameterized using a core-Sérsic function (Graham et al., 2003b). 3.6μm\rm 3.6\,\mu m (0.6, 3.26) E 7.60 100.50 20.43 1.55 6.60 51.20 19.47 1.94 0.49 0.2447 11.61 ±\pm 0.12 51.2 9.56±\pm0.04 SG16
10 NGC 3115 3.6μm\rm 3.6\,\mu m (0.6, 3.26) S0 4.40 43.60 16.67 3.04 5.10 34.40 16.85 2.97 0.58 0.0455 10.77 ±\pm 0.12 9.4 8.94±\pm0.25 SG16
11 NGC 3245 3.6μm\rm 3.6\,\mu m (0.6, 3.26) SAB0 2.90 4.40 14.96 3.73 1.70 2.40 14.00 4.12 0.24 0.0979 10.06 ±\pm 0.12 20.3 8.30 ±\pm0.12 SG16
12 NGC 3377 3.6μm\rm 3.6\,\mu m (0.6, 3.26) E 7.70 61.80 19.16 2.05 9.20 91.70 20.33 1.58 0.73 0.0527 10.48 ±\pm 0.26 10.9 7.89 ±\pm0.04 SG16
13 NGC 3379aaGalaxies with a deficit of light at their center, for whom the spheroid profile is parameterized using a core-Sérsic function (Graham et al., 2003b). 3.6μm\rm 3.6\,\mu m (0.6, 3.26) E 5.20 57.20 17.93 2.54 5.30 50.90 17.84 2.58 0.53 0.0498 10.8 ±\pm 0.26 10.3 8.60 ±\pm0.12 SG16
14 NGC 3384 3.6μm\rm 3.6\,\mu m (0.6, 3.26) SAB0 1.60 5.50 14.21 4.03 1.80 5.60 14.56 3.89 0.32 0.0546 10.06 ±\pm 0.12 11.3 7.23 ±\pm0.05 SG16
15 NGC 3414 3.6μm\rm 3.6\,\mu m (0.6, 3.26) E 4.80 28.00 18.10 2.48 4.50 25.50 18.08 2.48 0.46 0.118 10.83 ±\pm 0.12 24.5 8.38 ±\pm0.06 SG16
16 NGC 3489 3.6μm\rm 3.6\,\mu m (0.6, 3.26) SB0 1.50 2.20 13.47 4.33 1.30 1.70 13.25 4.41 0.25 0.0565 9.54 ±\pm 0.26 11.7 6.76 ±\pm0.07 SG16
17 NGC 3585 3.6μm\rm 3.6\,\mu m (0.6, 3.26) E 5.20 105.00 19.13 2.06 6.30 86.30 19.24 2.02 0.65 0.094 11.3 ±\pm 0.26 19.5 8.49 ±\pm0.13 SG16
18 NGC 3607 3.6μm\rm 3.6\,\mu m (0.6, 3.26) E 5.50 69.30 19.00 2.12 5.60 65.50 19.01 2.11 0.54 0.107 11.23 ±\pm 0.26 22.2 8.11 ±\pm0.18 SG16
19 NGC 3608aaGalaxies with a deficit of light at their center, for whom the spheroid profile is parameterized using a core-Sérsic function (Graham et al., 2003b). 3.6μm\rm 3.6\,\mu m (0.6, 3.26) E 5.20 47.50 18.93 2.14 5.70 43.40 19.00 2.12 0.58 0.1074 10.89 ±\pm 0.26 22.3 8.30 ±\pm0.18 SG16
20 NGC 3842aaGalaxies with a deficit of light at their center, for whom the spheroid profile is parameterized using a core-Sérsic function (Graham et al., 2003b). 3.6μm\rm 3.6\,\mu m (0.6, 3.26) E 8.10 100.70 21.43 1.16 8.20 73.60 21.07 1.31 0.61 0.4643 11.92 ±\pm 0.12 98.4 9.99 ±\pm 0.13 SG16
21 NGC 3998 3.6μm\rm 3.6\,\mu m (0.6, 3.26) SAB0 1.20 5.80 15.15 3.65 1.30 4.80 14.63 3.86 0.26 0.0662 10.02 ±\pm 0.33 13.7 8.91 ±\pm0.11 SG16
22 NGC 4261aaGalaxies with a deficit of light at their center, for whom the spheroid profile is parameterized using a core-Sérsic function (Graham et al., 2003b). 3.6μm\rm 3.6\,\mu m (0.6, 3.26) E 4.70 52.60 18.58 2.29 4.30 47.30 18.53 2.31 0.45 0.1481 11.38 ±\pm 0.26 30.8 8.70±\pm 0.09 SG16
23 NGC 4291aaGalaxies with a deficit of light at their center, for whom the spheroid profile is parameterized using a core-Sérsic function (Graham et al., 2003b). 3.6μm\rm 3.6\,\mu m (0.6, 3.26) E 4.20 15.00 17.14 2.86 5.90 15.40 17.51 2.71 0.70 0.1228 10.71 ±\pm 0.26 25.5 8.52±\pm 0.36 SG16
24 NGC 4374aaGalaxies with a deficit of light at their center, for whom the spheroid profile is parameterized using a core-Sérsic function (Graham et al., 2003b). 3.6μm\rm 3.6\,\mu m (0.6, 3.26) E 7.80 101.60 19.01 2.11 7.90 129.8 19.57 1.89 0.60 0.0864 11.49 ±\pm 0.26 17.9 8.95±\pm 0.05 SG16
25 NGC 4459 3.6μm\rm 3.6\,\mu m (0.6, 3.26) S0 3.10 18.40 16.69 3.04 2.60 13.00 16.23 3.22 0.34 0.0758 10.48 ±\pm 0.26 15.7 7.83±\pm 0.09 SG16
26 NGC 4472aaGalaxies with a deficit of light at their center, for whom the spheroid profile is parameterized using a core-Sérsic function (Graham et al., 2003b). 3.6μm\rm 3.6\,\mu m (0.6, 3.26) E 6.60 190.20 19.33 1.98 5.40 135.30 18.83 2.18 0.44 0.0825 11.7 ±\pm 0.12 17.1 9.40±\pm 0.05 SG16
27 NGC 4473 3.6μm\rm 3.6\,\mu m (0.6, 3.26) E 2.30 45.90 17.93 2.54 2.90 36.90 18.10 2.47 0.46 0.0739 10.64 ±\pm 0.26 15.3 8.08±\pm 0.36 SG16
28 NGC 4486aaGalaxies with a deficit of light at their center, for whom the spheroid profile is parameterized using a core-Sérsic function (Graham et al., 2003b). 3.6μm\rm 3.6\,\mu m (0.6, 3.26) E 10.00 203.00 19.87 1.77 5.90 87.10 18.26 2.41 0.33 0.0753 11.49 ±\pm 0.26 16.8 9.81±\pm 0.05 SG16
29 NGC 4564 3.6μm\rm 3.6\,\mu m (0.6, 3.26) S0 2.60 5.00 15.23 3.62 3.00 6.00 15.65 3.45 0.45 0.0705 10.01 ±\pm 0.12 14.6 7.78±\pm 0.06 SG16
30 NGC 4596 3.6μm\rm 3.6\,\mu m (0.6, 3.26) SB0 2.70 6.60 15.93 3.34 3.00 9.00 16.44 3.14 0.44 0.082 10.18 ±\pm 0.12 17.0 7.90±\pm 0.20 SG16
31 NGC 4621 3.6μm\rm 3.6\,\mu m (0.6, 3.26) E 5.50 48.00 18.02 2.51 8.80 90.90 19.67 1.85 0.87 0.0859 11.16 ±\pm 0.12 17.8 8.59±\pm 0.05 SG16
32 NGC 4697 3.6μm\rm 3.6\,\mu m (0.6, 3.26) E 7.20 239.30 20.62 1.47 6.70 226.40 20.90 1.35 0.53 0.0551 11.01 ±\pm 0.33 11.4 8.26±\pm 0.05 SG16
33 NGC 4889aaGalaxies with a deficit of light at their center, for whom the spheroid profile is parameterized using a core-Sérsic function (Graham et al., 2003b). 3.6μm\rm 3.6\,\mu m (0.6, 3.26) E 8.10 119.70 21.01 1.33 6.80 60.80 20.11 1.69 0.48 0.4863 12.14 ±\pm 0.12 103.2 10.32±\pm 0.44 SG16
34 NGC 5077aaGalaxies with a deficit of light at their center, for whom the spheroid profile is parameterized using a core-Sérsic function (Graham et al., 2003b). 3.6μm\rm 3.6\,\mu m (0.6, 3.26) E 4.20 23.50 17.67 2.65 5.70 23.00 18.01 2.52 0.68 0.1975 11.28 ±\pm 0.12 41.2 8.87±\pm 0.22 SG16
35 NGC 5128 3.6μm\rm 3.6\,\mu m (0.6, 3.26) S0\rm S0^{*} 1.20 61.30 15.73 3.42 2.20 60.80 16.01 3.30 0.42 0.0185 10.64 ±\pm 0.33 3.8 7.65±\pm 0.13 SG16
36 NGC 5576 3.6μm\rm 3.6\,\mu m (0.6, 3.26) E 3.30 61.50 19.41 1.95 3.70 49.30 19.34 1.98 0.49 0.1194 10.87±\pm 0.12 24.8 8.20±\pm 0.10 SG16
37 NGC 5846aaGalaxies with a deficit of light at their center, for whom the spheroid profile is parameterized using a core-Sérsic function (Graham et al., 2003b). 3.6μm\rm 3.6\,\mu m (0.6, 3.26) E 6.40 105.10 19.67 1.85 5.70 83.40 19.28 2.01 0.48 0.1165 11.42 ±\pm 0.26 24.2 9.04±\pm 0.05 SG16
38 NGC 6251aaGalaxies with a deficit of light at their center, for whom the spheroid profile is parameterized using a core-Sérsic function (Graham et al., 2003b). 3.6μm\rm 3.6\,\mu m (0.6, 3.26) E 6.80 41.70 19.82 1.81 5.60 30.10 19.31 2.01 0.44 0.4927 11.82 ±\pm 0.12 104.6 8.77±\pm 0.16 SG16
39 NGC 7619aaGalaxies with a deficit of light at their center, for whom the spheroid profile is parameterized using a core-Sérsic function (Graham et al., 2003b). 3.6μm\rm 3.6\,\mu m (0.6, 3.26) E 5.30 63.20 19.53 1.91 5.20 58.00 19.55 1.90 0.51 0.2461 11.64 ±\pm 0.26 51.5 9.40±\pm 0.09 SG16
40 NGC 7768aaGalaxies with a deficit of light at their center, for whom the spheroid profile is parameterized using a core-Sérsic function (Graham et al., 2003b). 3.6μm\rm 3.6\,\mu m (0.6, 3.26) E 8.40 92.90 21.37 1.19 6.70 42.10 20.15 1.68 0.45 0.5301 11.89 ±\pm 0.26 112.8 9.11±\pm 0.15 SG16
41 NGC 1271 H (HST) (1.4, 3.33) ES 4.26 3.25 16.75 3.43 4.16 3.07 16.79 3.41 0.46 0.3794 10.95±\pm 0.1 80.0 9.48±\pm 0.16 GCS16a
42 NGC 1277 V (HST) (11.65, 4.82) ES 5.34 6.00 20.73 3.35 5.63 5.60 21.05 3.22 0.56 0.3445 11.43 ±\pm 0.1 72.5 9.08±\pm 0.12 GDS16b
43 A1836 BCGaaGalaxies with a deficit of light at their center, for whom the spheroid profile is parameterized using a core-Sérsic function (Graham et al., 2003b). Ks\rm K_{s} (0.7, 5.08) E 4.10 23.99 19.36 2.80 3.47 14.75 20.66 2.28 0.39 0.7335 11.70 ±\pm 0.12 158 9.59±\pm 0.06 SGD19a
44 A3565 BCG 3.6μm\rm 3.6\,\mu m (0.6, 6.02) E 3.85 43.21 21.29 2.31 3.82 41.10 21.28 2.31 0.45 0.1951 11.47±\pm 0.26 40.7 9.04±\pm 0.09 SGD19a
45 NGC 0307 r(SDSS)\rm r^{{}^{\prime}}(SDSS) (2.8, 4.65) SAB0 3.33 3.00 18.82 3.42 3.76 3.33 19.44 3.17 0.49 0.2523 10.43 ±\pm 0.33 52.8 8.34±\pm 0.13 SGD19a
46 NGC 0404 3.6μm\rm 3.6\,\mu m (0.6, 6.02) S0 0.93 3.99 18.58 3.39 0.90 3.89 18.59 3.38 0.20 0.0148 7.96±\pm 0.27 3.1 4.85±\pm 0.13 SGD19a
47 NGC 0524aaGalaxies with a deficit of light at their center, for whom the spheroid profile is parameterized using a core-Sérsic function (Graham et al., 2003b). 3.6μm\rm 3.6\,\mu m (0.6, 6.02) SA0(rs) 2.29 8.79 18.67 3.35 2.16 8.35 18.57 3.39 0.34 0.1122 10.57±\pm 0.26 23.3 8.92±\pm 0.10 SGD19a
48 NGC 1194aaGalaxies with a deficit of light at their center, for whom the spheroid profile is parameterized using a core-Sérsic function (Graham et al., 2003b). 3.6μm\rm 3.6\,\mu m (0.6, 6.02) S0\rm S0^{*} 3.76 3.52 18.34 3.49 3.91 3.56 18.56 3.40 0.47 0.2542 10.71±\pm 0.33 53.2 7.81±\pm 0.04 SGD19a
49 NGC 1275 3.6μm\rm 3.6\,\mu m (0.6, 6.02) E 4.78 70.69 22.62 1.78 4.31 53.6 22.27 1.92 0.44 0.3464 11.84 ±\pm 0.26 72.9 8.90±\pm 0.20 SGD19a
50 NGC 1374 3.6μm\rm 3.6\,\mu m (0.6, 6.02) S0 1.68 12.56 19.65 2.96 1.65 11.74 19.62 2.97 0.29 0.0926 10.22 ±\pm 0.26 19.2 8.76±\pm 0.05 SGD19a
51 NGC 1407aaGalaxies with a deficit of light at their center, for whom the spheroid profile is parameterized using a core-Sérsic function (Graham et al., 2003b). 3.6μm\rm 3.6\,\mu m (0.6, 6.02) E 3.95 49.67 20.89 2.46 3.89 47.29 20.87 2.47 0.45 0.1349 11.46 ±\pm 0.27 28 9.65±\pm 0.08 SGD19a
52 NGC 1550aaGalaxies with a deficit of light at their center, for whom the spheroid profile is parameterized using a core-Sérsic function (Graham et al., 2003b). Ks\rm K_{s} (0.7, 5.08) E 7.50 24.80 20.87 2.17 7.48 24.8 21.16 2.05 0.58 0.2465 11.13 ±\pm 0.12 51.6 9.57±\pm 0.06 SGD19a
53 NGC 1600aaGalaxies with a deficit of light at their center, for whom the spheroid profile is parameterized using a core-Sérsic function (Graham et al., 2003b). 3.6μm\rm 3.6\,\mu m (0.6, 6.02) E 7.14 76.57 22.66 1.77 5.08 49.58 21.98 2.04 0.38 0.3048 11.82 ±\pm 0.12 64 10.23±\pm 0.05 SGD19a
54 NGC 2787 3.6μm\rm 3.6\,\mu m (0.6, 6.02) SB0(r) 1.36 4.06 17.32 3.89 1.27 2.88 17.08 3.99 0.25 0.0353 9.13 ±\pm 0.26 7.3 7.60±\pm 0.06 SGD19a
55 NGC 3665 3.6μm\rm 3.6\,\mu m (0.6, 6.02) S0 2.76 14.44 19.28 3.11 2.74 12.78 19.34 3.09 0.39 0.1666 11.03 ±\pm 0.26 34.7 8.76±\pm 0.10 SGD19a
56 NGC 3923aaGalaxies with a deficit of light at their center, for whom the spheroid profile is parameterized using a core-Sérsic function (Graham et al., 2003b). 3.6μm\rm 3.6\,\mu m (0.6, 6.02) E 4.78 85.97 21.50 2.22 4.77 78.78 21.55 2.20 0.5 0.1006 11.4 ±\pm 0.15 20.9 9.45±\pm 0.13 SGD19a
57 NGC 4026 3.6μm\rm 3.6\,\mu m (0.6, 6.02) SB0 3.45 3.10 16.14 4.36 3.98 2.35 16.04 4.40 0.51 0.0638 10.11 ±\pm 0.33 13.2 8.26±\pm 0.11 SGD19a
58 NGC 4339 3.6μm\rm 3.6\,\mu m (0.6, 6.02) S0 1.46 6.64 19.22 3.13 1.40 6.42 19.21 3.14 0.27 0.0772 9.67 ±\pm 0.26 16.0 7.63±\pm 0.33 SGD19a
59 NGC 4342 3.6μm\rm 3.6\,\mu m (0.6, 6.02) ES 3.48 4.22 18.48 3.43 3.99 4.69 19.23 3.13 0.51 0.1108 9.94 ±\pm 0.25 23.0 8.65±\pm 0.18 SGD19a
60 NGC 4350 3.6μm\rm 3.6\,\mu m (0.6, 6.02) EBS 4.30 18.84 20.8 2.50 3.97 19.45 20.75 2.52 0.44 0.0811 10.28 ±\pm 0.26 16.8 8.86±\pm 0.41 SGD19a
61 NGC 4371 3.6μm\rm 3.6\,\mu m (0.6, 6.02) SB(r)0 2.83 8.46 19.49 3.02 3.19 8.90 19.91 2.85 0.45 0.0816 9.89 ±\pm 0.26 16.9 6.85±\pm 0.08 SGD19a
62 NGC 4429 3.6μm\rm 3.6\,\mu m (0.6, 6.02) SB(r)0 2.56 16.42 19.05 3.20 2.31 11.29 18.78 3.31 0.34 0.0796 10.46±\pm 0.26 16.5 8.18±\pm 0.09 SGD19a
63 NGC 4434 3.6μm\rm 3.6\,\mu m (0.6, 6.02) S0 2.68 4.94 19.06 3.20 2.93 5.31 19.31 3.10 0.43 0.1079 9.91 ±\pm 0.26 22.4 7.85±\pm 0.17 SGD19a
64 NGC 4486B r(SDSS)\rm r^{{}^{\prime}}(SDSS) (2.8, 4.65) E 2.63 2.60 18.20 3.66 2.74 2.53 18.30 3.62 0.4 0.0739 9.47 ±\pm 0.33 15.3 8.76±\pm 0.24 SGD19a
65 NGC 4526 3.6μm\rm 3.6\,\mu m (0.6, 6.02) S0 2.28 13.01 18.19 3.54 2.96 14.88 18.98 3.23 0.47 0.0816 10.7 ±\pm 0.26 16.9 8.67±\pm 0.05 SGD19a
66 NGC 4552 3.6μm\rm 3.6\,\mu m (0.6, 6.02) E 5.42 83.62 22.12 1.97 5.36 71.5 21.92 2.05 0.52 0.0719 10.88 ±\pm 0.25 14.9 8.67±\pm 0.05 SGD19a
67 NGC 4578 3.6μm\rm 3.6\,\mu m (0.6, 6.02) S0(r) 2.30 7.82 19.26 3.11 1.99 6.32 19.14 3.16 0.31 0.0787 9.77 ±\pm 0.26 16.3 7.28±\pm 0.35 SGD19a
58 NGC 4649aaGalaxies with a deficit of light at their center, for whom the spheroid profile is parameterized using a core-Sérsic function (Graham et al., 2003b). 3.6μm\rm 3.6\,\mu m (0.6, 6.02) E 4.96 93.03 21.01 2.42 5.21 80.59 20.98 2.43 0.54 0.0791 11.44 ±\pm 0.12 16.4 9.67±\pm 0.10 SGD19a
69 NGC 4742 3.6μm\rm 3.6\,\mu m (0.6, 6.02) S0 2.62 3.37 17.13 3.97 3.20 3.41 17.62 3.77 0.48 0.0748 9.87 ±\pm 0.26 15.5 7.15±\pm 0.18 SGD19a
70 NGC 4751aaGalaxies with a deficit of light at their center, for whom the spheroid profile is parameterized using a core-Sérsic function (Graham et al., 2003b). Ks\rm K_{s} (0.7, 5.08) S0 3.79 12.47 18.74 3.02 3.25 5.48 17.76 3.41 0.38 0.1295 10.49 ±\pm 0.26 26.9 9.15±\pm 0.05 SGD19a
71 NGC 4762 3.6μm\rm 3.6\,\mu m (0.6, 6.02) SB0 2.36 4.39 17.89 3.66 1.85 2.24 17.09 3.98 0.29 0.1089 9.97 ±\pm 0.28 22.6 7.36±\pm 0.15 SGD19a
72 NGC 5018 3.6μm\rm 3.6\,\mu m (0.6, 6.02) S0\rm S0^{*} 2.64 8.29 18.4 3.46 2.51 6.20 18.22 3.54 0.36 0.1944 10.98 ±\pm 0.27 40.6 8.02±\pm 0.09 SGD19a
73 NGC 5252 3.6μm\rm 3.6\,\mu m (0.6, 6.02) S0 3.08 2.07 17.82 3.71 2.95 1.47 17.46 3.85 0.39 0.4569 10.85 ±\pm 0.26 96.8 9.00±\pm 0.40 SGD19a
74 NGC 5328aaGalaxies with a deficit of light at their center, for whom the spheroid profile is parameterized using a core-Sérsic function (Graham et al., 2003b). Ks\rm K_{s} (0.7, 5.08) E 6.58 25.11 20.29 2.40 5.21 22.46 20.26 2.42 0.42 0.3053 11.49 ±\pm 0.12 64.1 9.67±\pm 0.15 SGD19a
75 NGC 5419aaGalaxies with a deficit of light at their center, for whom the spheroid profile is parameterized using a core-Sérsic function (Graham et al., 2003b). 3.6μm\rm 3.6\,\mu m (0.6, 6.02) E 2.42 17.24 19.80 2.91 2.62 16.83 20.01 2.82 0.40 0.2683 11.45 ±\pm 0.12 56.2 9.86±\pm 0.14 SGD19a
76 NGC 5516aaGalaxies with a deficit of light at their center, for whom the spheroid profile is parameterized using a core-Sérsic function (Graham et al., 2003b). Ks\rm K_{s} (0.7, 5.08) E 5.99 51.27 21.54 1.90 5.32 32.30 20.86 2.18 0.47 0.2788 11.44 ±\pm 0.12 58.4 9.52±\pm 0.06 SGD19a
77 NGC 5813aaGalaxies with a deficit of light at their center, for whom the spheroid profile is parameterized using a core-Sérsic function (Graham et al., 2003b). 3.6μm\rm 3.6\,\mu m (0.6, 6.02) S0 4.02 18.54 20.74 2.53 3.65 14.16 19.81 2.90 0.42 0.1504 10.86 ±\pm 0.26 31.3 8.83±\pm 0.06 SGD19a
78 NGC 5845 3.6μm\rm 3.6\,\mu m (0.6, 6.02) ES 3.33 6.02 19.16 3.16 3.27 5.29 19.10 3.18 0.42 0.1213 10.12 ±\pm 0.26 25.2 8.41±\pm 0.22 SGD19a
79 NGC 6086aaGalaxies with a deficit of light at their center, for whom the spheroid profile is parameterized using a core-Sérsic function (Graham et al., 2003b). r(SDSS)\rm r^{{}^{\prime}}(SDSS) (2.8, 4.65) E 4.37 13.89 21.68 2.30 4.20 12.41 21.78 2.26 0.46 0.6441 11.52 ±\pm 0.26 138 9.57±\pm 0.17 SGD19a
80 NGC 6861 3.6μm\rm 3.6\,\mu m (0.6, 6.02) ES 3.07 18.69 19.35 3.08 3.52 20.13 20.17 2.75 0.48 0.1314 10.94±\pm 0.29 27.3 9.30±\pm 0.08 SGD19a
81 NGC 7052aaGalaxies with a deficit of light at their center, for whom the spheroid profile is parameterized using a core-Sérsic function (Graham et al., 2003b). 3.6μm\rm 3.6\,\mu m (0.6, 6.02) E 3.20 34.42 21.84 2.36 3.46 20.04 20.82 2.50 0.46 0.3161 11.46 ±\pm 0.12 66.4 8.57±\pm 0.23 SGD19a
82 NGC 7332 3.6μm\rm 3.6\,\mu m (0.6, 6.02) EB0 1.78 2.87 16.78 4.11 2.15 2.43 16.92 4.05 0.37 0.1198 10.22 ±\pm 0.34 24.9 7.11±\pm 0.20 SGD19a
83 NGC 7457 3.6μm\rm 3.6\,\mu m (0.6, 6.02) S0 2.63 6.31 19.62 2.97 2.84 6.51 19.98 2.83 0.42 0.0676 9.40 ±\pm 0.26 14 7.00±\pm 0.30 SGD19a
84 Circinus 3.6μm\rm 3.6\,\mu m (0.45, 6.02) SABb 2.21 33.26 18.29 3.37 1.80 23.13 18.06 3.47 0.29 0.0204 10.12 ±\pm 0.2 4.2 6.25±\pm 0.11 DGC19a
85 ESO558-G009 I (HST) (1.88, 4.52) Sbc 1.28 0.62 18.17 3.47 1.63 0.68 18.62 3.29 0.31 0.542 9.89 ±\pm 0.11 115.4 7.26±\pm 0.04 DGC19a
86 IC 2560 3.6μm\rm 3.6\,\mu m (0.45, 6.02) SBb 2.27 7.15 19.64 2.84 0.68 3.92 19.07 3.07 0.15 0.149 9.63 ±\pm 0.39 31.0 6.49±\pm 0.20 DGC19a
87 J0437+2456 I (HST) (1.88, 4.52) SB 1.73 1.22 19.42 2.96 1.97 0.87 19.40 2.97 0.35 0.343 9.90 ±\pm 0.2 72.8 6.51±\pm 0.05 DGC19a
88 Milky Way 2.4μm\rm 2.4\,\mu m SBbc 1.32 7.49°\rm 7.49\degree 1.32 5.85°\rm 5.85\degree 0.38E-4 9.96 ±\pm 0.05 7.86E-3 6.6±\pm 0.02 GD07
89 Mrk 1029 I (HST) (1.88, 4.52) S 1.15 0.47 16.53 4.13 1.07 0.28 16.29 4.23 0.23 0.6392 9.90 ±\pm 0.11 136.9 6.33±\pm 0.12 DGC19a
90 NGC 0224 3.6μm\rm 3.6\,\mu m (0.45, 6.02) SBb 2.20 418.6 19.58 2.87 1.30 173.6 18.41 3.33 0.22 0.0036 10.11 ±\pm 0.09 0.8 8.15±\pm 0.16 DGC19a
91 NGC 0253 3.6μm\rm 3.6\,\mu m (0.45, 6.02) SABc 2.53 55.55 19.22 3.00 2.33 27.89 18.82 3.16 0.34 0.0168 9.76 ±\pm 0.09 3.5 7.00±\pm 0.30 DGC19a
92 NGC 1068 Ks\rm K_{s} (0.62, 5.08) SBb 0.71 10.52 16.17 3.99 0.87 8.29 16.14 4.00 0.20 0.0488 10.27 ±\pm 0.24 10.1 6.75±\pm 0.08 DGC19a
93 NGC 1097 3.6μm\rm 3.6\,\mu m (0.45, 6.02) SBb 1.95 15.72 18.71 3.21 1.52 11.39 18.27 3.39 0.26 0.1199 10.83 ±\pm 0.2 24.9 8.38±\pm 0.04 DGC19a
94 NGC 1300 3.6μm\rm 3.6\,\mu m (0.45, 6.02) SBbc 4.20 24.37 21.97 1.91 2.83 7.39 19.99 2.70 0.31 0.07 9.42 ±\pm 0.25 14.5 7.71±\pm 0.16 DGC19a
95 NGC 1320 3.6μm\rm 3.6\,\mu m (0.45, 6.02) Sa 3.08 3.35 17.93 3.53 2.87 2.23 17.40 3.74 0.38 0.1809 10.25 ±\pm 0.4 37.7 6.78±\pm 0.29 DGC19a
96 NGC 1398 3.6μm\rm 3.6\,\mu m (0.45, 6.02) SBab 3.44 17.53 19.75 2.80 3.00 10.38 19.04 3.08 0.38 0.1194 10.57 ±\pm 0.2 24.8 8.03±\pm 0.11 DGC19a
97 NGC 2273 I (HST) (1.88, 4.52) SBa 2.24 2.99 18.13 3.47 2.49 3.15 18.52 3.31 0.39 0.1519 9.98 ±\pm 0.2 31.6 6.97±\pm 0.09 DGC19a
98 NGC 2960 3.6μm\rm 3.6\,\mu m (0.45, 6.02) Sa\rm Sa^{*} 2.59 2.35 18.04 3.49 2.86 2.19 18.30 3.39 0.42 0.338 10.44 ±\pm 0.36 71.1 7.06±\pm 0.17 DGC19a
99 NGC 2974 3.6μm\rm 3.6\,\mu m (0.45, 6.02) SB 1.56 9.21 18.49 3.30 1.17 6.53 18.12 3.45 0.23 0.1036 10.23 ±\pm 0.13 21.5 8.23±\pm 0.07 DGC19a
100 NGC 3031bbThe morphology of these spiral galaxies listed on HyperLeda (Paturel et al., 2003) or NASA/IPAC Extragalactic Database (NED) suggests a weak bar, however, Davis et al. (2019) did not find evidence of an extended/intermediate bar in these galaxies but rather a nuclear bar. 3.6μm\rm 3.6\,\mu m (0.45, 6.02) Sab 2.81 36.19 18.34 3.35 3.46 42.98 18.93 3.12 0.50 0.0169 10.16 ±\pm 0.11 3.5 7.83±\pm 0.09 DGC19a
101 NGC 3079 3.6μm\rm 3.6\,\mu m (0.45, 6.02) SBcd 0.52 5.91 16.79 3.98 0.58 4.35 17.13 3.84 0.16 0.0796 9.92 ±\pm 0.25 16.5 6.38±\pm 0.12 DGC19a
102 NGC 3227 3.6μm\rm 3.6\,\mu m (0.45, 6.02) SABa 2.60 17.91 20.26 2.59 1.90 8.34 19.32 2.97 0.28 0.1017 10.04 ±\pm 0.17 21.1 7.88±\pm 0.14 DGC19a
103 NGC 3368 3.6μm\rm 3.6\,\mu m (0.45, 6.02) SABa 1.19 5.98 17.07 3.86 1.00 4.83 16.92 3.92 0.21 0.0517 9.81 ±\pm 0.1 10.7 6.89±\pm 0.09 DGC19a
104 NGC 3393 I (HST) (1.88, 4.52) SBa 1.14 1.64 17.27 3.82 1.36 1.77 17.63 3.68 0.27 0.2664 10.23 ±\pm 0.12 55.8 7.49±\pm 0.05 DGC19a
105 NGC 3627 3.6μm\rm 3.6\,\mu m (0.45, 6.02) SBb 3.17 11.07 18.44 3.32 2.10 3.92 16.98 3.90 0.28 0.0512 9.74 ±\pm 0.2 10.6 6.95±\pm 0.05 DGC19a
106 NGC 4151 3.6μm\rm 3.6\,\mu m (0.45, 6.02) SABa 2.24 6.23 17.75 3.59 1.85 6.00 17.77 3.59 0.29 0.0916 10.27 ±\pm 0.15 19.0 7.68±\pm 0.37 DGC19a
107 NGC 4258 3.6μm\rm 3.6\,\mu m (0.45, 6.02) SABb 3.21 41.8 20.14 2.64 2.60 26.4 19.73 2.80 0.34 0.0368 10.05 ±\pm 0.18 7.6 7.60±\pm 0.01 DGC19a
108 NGC 4303 3.6μm\rm 3.6\,\mu m (0.45, 6.02) SBbc 1.02 2.28 16.51 4.09 0.90 2.16 15.78 4.38 0.20 0.0594 9.42 ±\pm 0.1 12.3 6.58±\pm 0.17 DGC19a
109 NGC 4388 3.6μm\rm 3.6\,\mu m (0.45, 6.02) SBcd 0.89 21.68 21.68 2.02 1.15 14.3 19.82 2.77 0.24 0.0859 10.07 ±\pm 0.22 17.8 6.90±\pm 0.11 DGC19a
110 NGC 4501 3.6μm\rm 3.6\,\mu m (0.45, 6.02) Sb 2.33 21.22 19.53 2.88 2.83 20.35 19.91 2.73 0.44 0.0541 10.11 ±\pm 0.16 11.2 7.13±\pm 0.08 DGC19a
111 NGC 4594 3.6μm\rm 3.6\,\mu m (0.45, 6.02) Sa 6.14 44.94 19.38 2.94 4.24 41.36 19.46 2.91 0.35 0.0462 10.81 ±\pm 0.2 9.6 8.81±\pm 0.03 DGC19a
112 NGC 4699 3.6μm\rm 3.6\,\mu m (0.45, 6.02) SABb 5.35 24.44 19.51 2.89 6.77 29.75 20.31 2.57 0.69 0.1141 11.12 ±\pm 0.26 23.7 8.34±\pm 0.10 DGC19a
113 NGC 4736bbThe morphology of these spiral galaxies listed on HyperLeda (Paturel et al., 2003) or NASA/IPAC Extragalactic Database (NED) suggests a weak bar, however, Davis et al. (2019) did not find evidence of an extended/intermediate bar in these galaxies but rather a nuclear bar. 3.6μm\rm 3.6\,\mu m (0.45, 6.02) Sab 0.93 9.79 16.17 4.22 1.03 9.65 16.31 4.17 0.22 0.0214 9.89 ±\pm 0.09 4.4 6.78±\pm 0.10 DGC19a
114 NGC 4826 3.6μm\rm 3.6\,\mu m (0.45, 6.02) Sab 0.73 13.89 17.86 3.55 0.76 11.93 17.98 3.50 0.18 0.0269 9.55 ±\pm 0.22 5.6 6.07±\pm 0.15 DGC19a
115 NGC 4945bbThe morphology of these spiral galaxies listed on HyperLeda (Paturel et al., 2003) or NASA/IPAC Extragalactic Database (NED) suggests a weak bar, however, Davis et al. (2019) did not find evidence of an extended/intermediate bar in these galaxies but rather a nuclear bar. Ks\rm K_{s} (0.62, 5.08) Sc 3.40 26.33 18.48 3.06 3.19 13.93 17.99 3.26 0.40 0.018 9.39 ±\pm 0.19 3.7 6.15±\pm 0.30 DGC19a
116 NGC 5055 3.6μm\rm 3.6\,\mu m (0.45, 6.02) Sbc 2.02 55.12 20.09 2.66 1.76 43.52 19.85 2.75 0.29 0.0429 10.49 ±\pm 0.11 8.9 8.94±\pm 0.10 DGC19a
117 NGC 5495 I (HST) (1.88, 4.52) SBc 2.60 3.75 20.21 2.65 2.46 3.99 20.23 2.64 0.36 0.4767 10.54 ±\pm 0.12 101.1 7.04±\pm 0.08 DGC19a
118 NGC 5765b I (HST) (1.88, 4.52) SABb 1.46 1.11 18.72 3.25 1.51 1.00 18.83 3.21 0.28 0.6257 10.04 ±\pm 0.13 133.9 7.72±\pm 0.05 DGC19a
119 NGC 6264 I (HST) (1.88, 4.52) SBb 1.04 1.13 19.23 3.06 1.35 1.05 19.37 3.00 0.27 0.7152 10.01 ±\pm 0.15 153.9 7.51±\pm 0.06 DGC19a
120 NGC 6323 I (HST) (1.88, 4.52) SBab 1.60 1.53 20.39 2.58 1.15 1.71 19.98 2.75 0.22 0.5488 9.86 ±\pm 0.31 116.9 7.02±\pm 0.14 DGC19a
121 NGC 7582 3.6μm\rm 3.6\,\mu m (0.45, 6.02) SBab 2.20 5.33 17.04 3.88 2.21 4.55 17.66 3.63 0.35 0.0959 10.15 ±\pm 0.2 19.9 7.67±\pm 0.09 DGC19a
122 UGC 3789 I (HST) (1.88, 4.52) SABa 2.37 1.60 18.38 3.37 2.67 3.11 19.03 3.11 0.41 0.2372 10.18 ±\pm 0.14 49.6 7.06±\pm 0.05 DGC19a
123 UGC 6093 I (HST) (1.88, 4.52) SBbc 1.55 1.84 19.27 3.04 1.41 1.27 18.87 3.20 0.26 0.7103 10.35 ±\pm 0.14 152.8 7.41±\pm 0.03 DGC19a

Note. — Column: (1) Galaxy name. (2) Wavelength-band (λ\lambda) of the image used in parent studies (Column 18). Images for the first 41 galaxies were calibrated to Vega magnitude system and the images of the remaining galaxies (except the Milky Way) were calibrated to AB magnitude system. (3) The stellar mass-to-light ratio (Υλ\Upsilon_{\lambda}) and the absolute magnitude of the Sun (𝔐,λ\mathfrak{M}_{\odot,\lambda}) used to obtain the bulge stellar mass. Davis et al. (2019) used a reduced (by 25%\rm 25\%) stellar mass-to-light ratio for their LTGs observed at 3.6μm3.6\,\mu\rm m-band following Querejeta et al. (2015) who reported on the dust glow at 3.6μm3.6\,\mu\rm m in LTGs. (4) Galaxy morphology based on the multi-component decomposition of the galaxy light performed in studies listed in Column 18. Galaxy mergers are highlighted with an *. (5) Bulge major-axis Sérsic index parameter. (6) Bulge major-axis effective half-light radius. (7) Bulge surface brightness at the corresponding major-axis half-light radius listed in column 6. (8) Logarithm of the bulge intensity at the major-axis half-light radius in the units of M/pc2\rm M_{\odot}/pc^{2}, calculated using [(μeDist.Mod.𝔐,λ2.5log(1/scale2)2.5log(Υλ))/(2.5)]\rm[(\mu_{e}-Dist.Mod.-\mathfrak{M}_{\odot,\lambda}-2.5\log(1/scale^{2})-2.5log(\Upsilon_{\lambda}))/(-2.5)] (Graham et al., 2006, their Equation 10). (9)-(12) Similar to columns (5)-(8), but obtained from an independent multi-component decomposition of the galaxy light profile along the equivalent-axis (Req=RmajRmin\rm R_{eq}=\sqrt{R_{maj}*R_{min}}). (13) Concentration index (C) calculated using the equivalent-axis bulge Sérsic index and Equation 6 from Trujillo et al. (2001) using α=1/3\alpha=1/3. (14) Physical scale in kpcarcsec1\rm kpc\,arcsec^{-1}, assuming cosmological parameters from Planck Collaboration et al. (2018). (15) Logarithm of the spheroid stellar mass in units of solar mass. (16) Galaxy distance in megaparsec. (17) Logarithm of the directly-measured black hole mass in units of solar mass. (18) Parent studies which performed multi-component decompositions to obtain the bulge parameters. Where SG16=Savorgnan & Graham (2016), SGD19a=Sahu et al. (2019a), DGC19a=Davis et al. (2019), GCS16a=Graham et al. (2016a) , GDS16b=Graham et al. (2016b), and GD07=Graham & Driver (2007a). Original sources for black hole mass and distances can be found in Savorgnan et al. (2016), and Sahu et al. (2019a) for ETGs and Davis et al. (2019) for LTGs.

\startlongtable
Table 4: Correlations of M,sphM_{\rm*,sph} and MBHM_{\rm BH} with the bulge equivalent-axis properties (neq,sph,C(1/3),andRe,sph,eq\rm n_{eq,sph},C(1/3),and\,R_{e,sph,eq}) calculated using a symmetric application of the MPFITEXY regression (see Section 2)
Category Number α\alpha β\beta ϵ\epsilon Δrms\Delta_{\rm rms}
dex dex dex
(1) (2) (3) (4) (5) (6)
log(M,sph/M)=αlog(nsph,eq/3)+β\log(M_{*,\rm sph}/{\rm M_{\sun}})=\alpha\log(\rm n_{sph,eq}/3)+\beta
ETGs 77 3.36±0.203.36\pm 0.20 10.52±0.0410.52\pm 0.04 0.30 0.48
LTGs 38 1.47±0.191.47\pm 0.19 10.48±0.0610.48\pm 0.06 0.20 0.29
log(MBH/M)=αlog(nsph,eq/3)+β\log(M_{\rm BH}/{\rm M_{\sun}})=\alpha\log(\rm n_{sph,eq}/3)+\beta
ETGs 77 3.94±0.363.94\pm 0.36 8.18±0.078.18\pm 0.07 0.62 0.73
LTGs 38 2.90±0.552.90\pm 0.55 8.00±0.188.00\pm 0.18 0.63 0.69
log(MBH/M)=αC(1/3)/0.4+β\log(M_{\rm BH}/{\rm M_{\sun}})=\alpha\,\rm C(1/3)/0.4+\beta
ETGs 77 8.85±0.818.85\pm 0.81 8.10±0.088.10\pm 0.08 0.62 0.72
LTGs 38 7.03±1.507.03\pm 1.50 7.94±0.187.94\pm 0.18 0.64 0.68
log(M,sph/M)=αlog(Re,sph,eq)+β\log(M_{*,\rm sph}/{\rm M_{\sun}})=\alpha\log(\rm R_{e,sph,eq})+\beta
All Galaxies 115 1.12±0.031.12\pm 0.03 10.42±0.0210.42\pm 0.02 0.07 0.25
log(MBH/M)=αlog(Re,sph,eq)+β\log(M_{\rm BH}/{\rm M_{\sun}})=\alpha\log(\rm R_{e,sph,eq})+\beta
ETGs with a disk 39 2.08±0.232.08\pm 0.23 8.49±0.098.49\pm 0.09 0.51 0.60
ETGs without a disk 38 2.09±0.352.09\pm 0.35 7.12±0.367.12\pm 0.36 0.53 0.61
ETGs 77 1.30±0.091.30\pm 0.09 8.10±0.068.10\pm 0.06 0.56 0.60
LTGs 38 2.41±0.292.41\pm 0.29 7.79±0.107.79\pm 0.10 0.51 0.60

Note. — Columns: (1) Subclass of galaxy. (2) Number of galaxies in subclass. (3) Slope of the line obtained from the MPFITEXY(Bisector) regression. (4) Intercept of the line obtained from the MPFITEXY(Bisector) regression. (5) Intrinsic scatter in the vertical (logM,sph\log M_{\rm*,sph} or logMBH\log M_{\rm BH})-direction. (6) Total root mean square (rms) scatter in the vertical direction.