This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

thanks: Corresponding author:[email protected]

Decoherence Effect of Qubits in 1D Transverse Ising Model

Bobin Li Department of Physics, Lanzhou University of Technology, Lanzhou 730050, China
Abstract

With the development of lab technology, the low-order correlation function can no longer describe the main effect of decoherence in quantum many-body system, so it is imperative to study the higher-order correlation function of the system. In this paper, we study the changes of the correlation functions in the decoherence effect, analytically. And explore when it is possible to approach the qubit decoherence process only by low-order correlation function, and when third-order or higher correlation functions are needed in 1D transverse Ising model. It indicates that, under strong coupling and long coherence time, the effect of high-order correlation functions can not be ignored, and the approximation of classical Markov process is limited. But, in the case of weak coupling and short coherence time, low-order correlation function can describe well.

Qubit; 1D Transverse Ising Models; Correlation Functions; Decoherence
pacs:
03.65.Yz, 64.60.De, 82.20.Sb
preprint: APS/123-QED

I Introduction

The decoherence of a qubit is caused by its bath, which is essentially a quantum many-body system. Previously, people studied the decoherence of qubits, and the decoherence effect of the bath is generally approached by the classical Markov process, which is described by the second-order correlation function. Under this approximation, the effect of higher-order correlation function are ignored. In recent years, with the development of quantum control and dynamic decoupling technology, the coherent time of qubits has been greatly extended, so the effect of quantum many body increasingly stand out, then the markov approximation cannot satisfy the needs of the quantum many body system, and, namely, the second-order correlation function cannot cover the main effect of baths, and the papers[1] can obtain strict solutions and comprehensive properties of higher order correlation functions for many-body systems.

For example, it can be solved strictly to 1D Ising model and 2D Ising model with zero magnetic field by analytic method. It is available for thosed systems with not very strong many-body interaction[2,3,4] by using more advanced numerical methods, such as CCE so on. And the numerical solution[5] of higher order correlation function is obtained. For systems with strong many-body interaction but small numbers of particles(less than 30 particles), they can be solved by the method of numerically strict diagonalization, citing Haiqing Lin [5]. For systems with strong many-body interaction and large numbers of particles, it will be available by the methods of extrapolation that is to extrapolate from the weak interaction strength and less particle numbers to those cases that is strong interaction and large numbers, and it could obtain some properties of higher order correlation function qualitatively.

At the same time, with the update of experimental technology, it becomes feasible for the experimental measurement of high-order correlation function , which has promoted the theoretical improvement for the research of correlation function, and the study of high-order correlation function is imperative. Therefore, this work mainly focuses on the role of higher-order correlation function in the process of decoherence of qubit. By theoretical analysis for many-body quantum effect in complex baths, it is obtained strictly analytically for the form of higher order correlation function. The contribution of the high-order correlation function is proposed by comparing with the exact solution in 1D transverse Ising model. It is found that in the process of strong coupling and long time interaction between system and bath, the contribution of high-order correlation function will increase for to the decoherence of qubit.

II Theory method

II.1 Correlation function

The reduced density matrix of the central spin Qubit ρS(t)\rho^{S}(t) is

ρS(t)\displaystyle\rho^{S}(t) =TrBρ(t)=TrB(𝒯exp(0t𝑑τ(τ))ρ(0))\displaystyle=Tr_{B}\rho(t)=Tr_{B}(\mathcal{T}exp(\int_{0}^{t}d\tau\mathcal{L}(\tau))\rho(0))
=n1n!TrB(0t𝒯[(t1)(t2)(tn)ρ(0)]𝑑t1𝑑t2𝑑tn)\displaystyle=\sum_{n}\frac{1}{n!}Tr_{B}(\int_{0}^{t}\mathcal{T}[\mathcal{L}(t_{1})\mathcal{L}(t_{2})\cdots\mathcal{L}(t_{n})\rho(0)]dt_{1}dt_{2}\cdots dt_{n})
=n2nn!{αn}{ηn}0t𝑑t1𝑑tnCαnα1ηnη1×(𝒯[𝒮α1η¯1(t1)𝒮αnη¯n(tn)]ρS(0))\displaystyle=\sum_{n}\frac{2^{n}}{n!}\sum_{\{\alpha_{n}\}}\sum_{\{\eta_{n}\}}\int_{0}^{t}dt_{1}\cdots dt_{n}\cdot C_{\alpha_{n}\cdots\alpha_{1}}^{\eta_{n}\cdots\eta_{1}}\times(\mathcal{T}[\mathcal{S}_{\alpha_{1}}^{\overline{\eta}_{1}}(t_{1})\cdots\mathcal{S}_{\alpha_{n}}^{\overline{\eta}_{n}}(t_{n})]\rho^{S}(0))

where (t)=2α(𝒮α+(t)α(t)+𝒮α(t)α+(t))\mathcal{L}(t)=2\sum_{\alpha}(\mathcal{S}_{\alpha}^{+}(t)\mathcal{B}_{\alpha}^{-}(t)+\mathcal{S}_{\alpha}^{-}(t)\mathcal{B}_{\alpha}^{+}(t)) So Cαnα1ηnη1=TrB(Tα1η1(t1)αnηn(tn)ρB)C_{\alpha_{n}\cdots\alpha_{1}}^{\eta_{n}\cdots\eta_{1}}=Tr_{B}(T\mathcal{B}_{\alpha_{1}}^{\eta_{1}}(t_{1})\cdots\mathcal{B}_{\alpha_{n}}^{\eta_{n}}(t_{n})\rho^{B}) Is the correlation function, while the irreducible correlation function is C~αnα1ηnη1\tilde{C}_{\alpha_{n}\cdots\alpha_{1}}^{\eta_{n}\cdots\eta_{1}}[8], The system dynamics can be described as

ρS(t)=𝒯exp(N=12NN!0tdt1dtnC~αnα1ηnη1×(𝒮αnη¯n(tn)𝒮α1η¯1(t1))ρS(0)\displaystyle\rho^{S}(t)=\mathcal{T}\exp(\sum_{N=1}^{\infty}\frac{2^{N}}{N!}\int_{0}^{t}dt_{1}\cdots dt_{n}\cdot\tilde{C}_{\alpha_{n}\cdots\alpha_{1}}^{\eta_{n}\cdots\eta_{1}}\times(\mathcal{S}_{\alpha_{n}}^{\overline{\eta}_{n}}(t_{n})\cdots\mathcal{S}_{\alpha_{1}}^{\overline{\eta}_{1}}(t_{1}))\rho^{S}(0) (1)

II.2 1D Transverse Ising model

The bath is regarded as a 1D transverse Ising model. In this model, Surrounded by a circle of bath spins, the qubit is located on the central axis of the circle. In this bath, the bath spins are coupled in only one direction, and there is an external magnetic field in the whole environment. The exact solution of 1D transverse Ising model is shown in Appendix A. Since it is applied to be periodic boundary conditions, qubit is located in the center of the circle of 1D transverse Ising model chain, and the system Hamiltonian in the Schrodinger representation is:

H=H0+V=ω0σzj=1Nσjxσj+1xλj=1Nσjz+j=1Nσz(gσjz)\displaystyle H=H_{0}+V=\omega_{0}\sigma^{z}-\sum_{j=1}^{N}\sigma_{j}^{x}\sigma_{j+1}^{x}-\lambda\sum_{j=1}^{N}\sigma_{j}^{z}+\sum_{j=1}^{N}\sigma^{z}\otimes(-g\sigma_{j}^{z}) (2)

where H0=ω0σzj=1Nσjxσj+1xλj=1NσjzH_{0}=\omega_{0}\sigma^{z}-\sum_{j=1}^{N}\sigma_{j}^{x}\sigma_{j+1}^{x}-\lambda\sum_{j=1}^{N}\sigma_{j}^{z}and V=j=1Nσz(gσjz)V=\sum_{j=1}^{N}\sigma^{z}\otimes(-g\sigma_{j}^{z}). Use the Jordan–Wigner transform

σjz=12ajaj,σjx+iσjy=2(i<jσiz)aj\sigma_{j}^{z}=1-2a_{j}^{\dagger}a_{j},\sigma_{j}^{x}+i\sigma_{j}^{y}=2(\prod_{i<j}\sigma_{i}^{z})a_{j}

The system Hamiltonian was changed to a Fermi system

Hλ=j=1N[(ajaj)(aj+1+aj+1)2λajaj]λN+ω0σzgj=1Nσz(12ajaj)H_{\lambda}=-\sum_{j=1}^{N}[(a_{j}^{\dagger}-a_{j})(a_{j+1}^{\dagger}+a_{j+1})-2\lambda a_{j}^{\dagger}a_{j}]-\lambda N+\omega_{0}\sigma^{z}-g\sum_{j=1}^{N}\sigma^{z}\otimes(1-2a_{j}^{\dagger}a_{j})

By the Fourier transform aj=kckexp(ikj)Na_{j}=\sum_{k}c_{k}exp(-ikj)\sqrt{N},The spin system is mapped to the spin-free Fermi system

Hλ=k[(2cosk2λ)ckck+isink(ckck+ckck)]Nλ+ω0σzgkσz(12ckck)H_{\lambda}=-\sum_{k}[(2cosk-2\lambda)c_{k}^{\dagger}c_{k}+isink(c_{-k}^{\dagger}c_{k}^{\dagger}+c_{-k}c_{k})]-N\lambda+\omega_{0}\sigma^{z}-g\sum_{k}\sigma^{z}\otimes(1-2c_{k}^{\dagger}c_{k})

whereckckc_{k}^{\dagger}c_{k} is the creation annihilation operator of fermions with wave vector K. The system Hamiltonian can be diagonally transformed by the Bogoliubov transformation

[bkbkbkbk]=[uk00ivk0ukivk00ivkuk0ivk00uk][ckckckck]\begin{bmatrix}b_{-k}\\ b_{k}\\ b_{-k}^{\dagger}\\ b_{k}^{\dagger}\end{bmatrix}=\begin{bmatrix}u_{k}&0&0&iv_{k}\\ 0&u_{k}&-iv_{k}&0\\ 0&-iv_{k}&u_{k}&0\\ iv_{k}&0&0&u_{k}\end{bmatrix}\begin{bmatrix}c_{-k}\\ c_{k}\\ c_{-k}^{\dagger}\\ c_{k}^{\dagger}\end{bmatrix}

Here, uk=cosθk,vk=sinθku_{k}=cos\theta_{k},v_{k}=sin\theta_{k}with tan(2θk)=sink/(coskλ)tan(2\theta_{k})=sink/(cosk-\lambda). After the transformation, the diagonalized Fermionic Hamiltonian is

Hλ=kεk(bkbk1/2)+ω0σzgkσz(cos2θk2bkbkisin2θk(bkbkbkbk)))=H+V\displaystyle H_{\lambda}=\sum_{k}\varepsilon_{k}(b_{k}^{\dagger}b_{k}-1/2)+\omega_{0}\sigma^{z}-g\sum_{k}\sigma^{z}\otimes(cos2\theta_{k}-2b_{k}^{\dagger}b_{k}-isin2\theta_{k}(b_{k}^{\dagger}b_{-k}^{\dagger}-b_{-k}b_{k})))=H+V (3)

The interaction representation, the interaction HamiltonianV(t)V(t)

V(t)=(gσz)k(cos2θk2bkbkisin2θk(bkbkexp(i2εkt)bkbkexp(i2εkt)))=S1B1\displaystyle V(t)=(-g\sigma^{z})\otimes\sum_{k}(cos2\theta_{k}-2b_{k}^{\dagger}b_{k}-isin2\theta_{k}\cdot(b_{k}^{\dagger}b_{-k}^{\dagger}\cdot exp(-i2\varepsilon_{k}t)-b_{-k}b_{k}\cdot exp(i2\varepsilon_{k}t)))=S_{1}B_{1} (4)

At the same times

S1\displaystyle S_{1} =gσz\displaystyle=-g\sigma^{z} (5)
B1\displaystyle B_{1} =k(cos2θk2bkbkisin2θk(bkbkexp(i2εkt)bkbkexp(i2εkt)))\displaystyle=\sum_{k}(cos2\theta_{k}-2b_{k}^{\dagger}b_{k}-isin2\theta_{k}\cdot(b_{k}^{\dagger}b_{-k}^{\dagger}\cdot exp(-i2\varepsilon_{k}t)-b_{-k}b_{k}\cdot exp(i2\varepsilon_{k}t))) (6)

where uk=cosθk,vk=sinθku_{k}=cos\theta_{k},v_{k}=sin\theta_{k}with tan(2θk)=sink/(coskλ)tan(2\theta_{k})=sink/(cosk-\lambda) where εk=212λcosk+λ2\varepsilon_{k}=2\sqrt{1-2\lambda cosk+\lambda^{2}}

III Results and Discussion

For the density matrix of the system, there is an initial state relation

ρ(0)=ρS(0)ρB(0)\rho(0)=\rho^{S}(0)\otimes\rho^{B}(0)

Where bath is ρB(0)=1ZeβH0\rho^{B}(0)=\frac{1}{Z}e^{-\beta H_{0}},The density matrix of the qubit

ρ10S(t)=ρ01S(t)=ρ10S(0)eΓ(t)\rho_{10}^{S}(t)=\rho_{01}^{S*}(t)=\rho_{10}^{S}(0)e^{\Gamma(t)}

where Γ(t)\Gamma(t) Is the decoherence function. Since 1D transverse Field Ising model is a pure dephasing model, so

ρS(t)\displaystyle\rho^{S}(t) =exp[N=0+2NN!0t𝑑tN𝑑t1C~11++𝒮1𝒮1]ρS(0)\displaystyle=exp[\sum_{N=0}^{+\infty}\frac{2^{N}}{N!}\int_{0}^{t}dt_{N}\cdots dt_{1}\tilde{C}_{1\cdots 1}^{+\cdots+}\mathcal{S}_{1}^{-}\cdots\mathcal{S}_{1}^{-}]\rho^{S}(0)
=N=0n=0+(1n![2NN!0t𝑑tN𝑑t1C~11++]n[ig]nN)[0c(1)nNc0]\displaystyle=\prod_{N=0}^{\infty}\sum_{n=0}^{+\infty}(\frac{1}{n!}[\frac{2^{N}}{N!}\int_{0}^{t}dt_{N}\cdots dt_{1}\tilde{C}_{1\cdots 1}^{+\cdots+}]^{n}[ig]^{nN})\left[\begin{array}[]{cc}0&c\\ (-1)^{nN}\cdot c&0\end{array}\right]

So

ρ10S(t)=exp[N=0+(2NN!0t𝑑tN𝑑t1C~11++[ig]N)]c\displaystyle\rho_{10}^{S}(t)=exp[\sum_{N=0}^{+\infty}(\frac{2^{N}}{N!}\int_{0}^{t}dt_{N}\cdots dt_{1}\tilde{C}_{1\cdots 1}^{+\cdots+}[ig]^{N})]\cdot c

So the series representation of the decoherence function is obtained as follow

Γ(t)=N=0+(2NN!0t𝑑tN𝑑t1C~11++[ig]N)\displaystyle\Gamma(t)=\sum_{N=0}^{+\infty}(\frac{2^{N}}{N!}\int_{0}^{t}dt_{N}\cdots dt_{1}\tilde{C}_{1\cdots 1}^{+\cdots+}[ig]^{N}) (7)

The first-order correlation function

C1+=k(cos2θk2eβεk+1)\displaystyle C_{1}^{+}=\sum_{k}(cos2\theta_{k}-\frac{2}{e^{\beta\varepsilon_{k}}+1})

The first-order irreducible correlation function

C1+=C~1+=k(cos2θk2eβεk+1)=βkcos2θk\displaystyle C_{1}^{+}=\tilde{C}_{1}^{+}=\sum_{k}(cos2\theta_{k}-\frac{2}{e^{\beta\varepsilon_{k}}+1})\stackrel{{\scriptstyle\beta\rightarrow\infty}}{{=}}\sum_{k}cos2\theta_{k} (8)

The second-order correlation function

C11++\displaystyle C_{11}^{++} =k,k(cos2θk(cos2θk2eβεk+1)2eβεk+1(cos2θk2eβεk+1))\displaystyle=\sum_{k,k^{\prime}}(cos2\theta_{k}(cos2\theta_{k^{\prime}}-\frac{2}{e^{\beta\varepsilon_{k^{\prime}}}+1})-\frac{2}{e^{\beta\varepsilon_{k}}+1}(cos2\theta_{k^{\prime}}-\frac{2}{e^{\beta\varepsilon_{k^{\prime}}}+1}))
+k(sin22θk(cos(2εk(t1t2))1(eβεk+1)2+cos(2εk(t1t2))(1eβεk+1+1)2)\displaystyle+\sum_{k}(sin^{2}2\theta_{k}(cos(2\varepsilon_{k}(t_{1}-t_{2}))\frac{1}{(e^{\beta\varepsilon_{k}}+1)^{2}}+cos(2\varepsilon_{k}(t_{1}-t_{2}))(\frac{1}{e^{\beta\varepsilon_{k}}+1}+1)^{2})
=βk,kcos2θkcos2θk+kcos(2εk(t1t2))\displaystyle\stackrel{{\scriptstyle\beta\rightarrow\infty}}{{=}}\sum_{k,k^{\prime}}cos2\theta_{k}cos2\theta_{k^{\prime}}+\sum_{k}cos(2\varepsilon_{k}(t_{1}-t_{2}))

The second-order irreducible correlation function

C~11++=kcos(2εk(t1t2))(1eβεk+1+1)2=βkcos(2εk(t1t2))\displaystyle\tilde{C}_{11}^{++}=\sum_{k}cos(2\varepsilon_{k}(t_{1}-t_{2}))(\frac{1}{e^{\beta\varepsilon_{k}}+1}+1)^{2}\stackrel{{\scriptstyle\beta\rightarrow\infty}}{{=}}\sum_{k}cos(2\varepsilon_{k}(t_{1}-t_{2})) (9)

The third-order correlation function

C~111+++\displaystyle\tilde{C}_{111}^{+++} =βk1sin22θk1[[1θ(t3t1)θ(t1t2)θ(t1t3)θ(t3t2)]cos(2εk1(t1t3))\displaystyle\stackrel{{\scriptstyle\beta\rightarrow\infty}}{{=}}-\sum_{k_{1}}sin^{2}2\theta_{k_{1}}[[1-\theta(t_{3}-t_{1})\theta(t_{1}-t_{2})-\theta(t_{1}-t_{3})\theta(t_{3}-t_{2})]cos(2\varepsilon_{k_{1}}(t_{1}-t_{3}))
+[1θ(t2t1)θ(t1t3)θ(t1t2)θ(t2t3)]cos(2εk1(t1t2))\displaystyle+[1-\theta(t_{2}-t_{1})\theta(t_{1}-t_{3})-\theta(t_{1}-t_{2})\theta(t_{2}-t_{3})]cos(2\varepsilon_{k_{1}}(t_{1}-t_{2}))
+[1θ(t3t2)θ(t2t1)θ(t2t3)θ(t3t1)]cos(2εk1(t2t3))]\displaystyle+[1-\theta(t_{3}-t_{2})\theta(t_{2}-t_{1})-\theta(t_{2}-t_{3})\theta(t_{3}-t_{1})]cos(2\varepsilon_{k_{1}}(t_{2}-t_{3}))] (10)

where tan(2θk)=sink/(coskλ)tan(2\theta_{k})=sink/(cosk-\lambda) and εk=212λcosk+λ2\varepsilon_{k}=2\sqrt{1-2\lambda cosk+\lambda^{2}}, Applied sin(2θk)=sink/12λcosk+λ2sin(2\theta_{k})=sink\text{/$\sqrt{1-2\lambda cosk+\lambda^{2}}$}, cos(2θk)=(coskλ)/12λcosk+λ2cos(2\theta_{k})=(cosk-\lambda)/\sqrt{1-2\lambda cosk+\lambda^{2}}. See Appendix B for the derivation of the third-order correlation function in detail.

[Uncaptioned image]

Fig. 1.  N=10000,g=0.01N=10000,g=0.01, Under weak coupling, the first three order correlation function changes with the external field intensity. (a)λ=0.0\lambda=0.0,(b)λ=0.5\lambda=0.5,(c)phase transition pointλ=1.0\lambda=1.0,(d)λ=2.0\lambda=2.0

Firstly, qubit is approximated to the weak coupling of G=0.01G=0.01in the thermodynamic limit. With the increase of external magnetic field λ\lambda, the bath system transfers from ferromagnetic phase0.0λ<1.00.0\leqslant\lambda<1.0 to paramagnetic phase λ>1.0\lambda>1.0. In λ=1.0\lambda=1.0,the system underwent a quantum phase transition. As shown in Figure 1(c), at this phase point, the total correlation function of the system diverges, because that the correlation length of the system tends to infinity. Specifically, the odd-order of the obtained correlation function diverges, and only the second-order correlation function remains limited. In the weak field condition, the first two order correlation functions shows the feasibility of Markov approximation that are always larger than the third-order, with time evolving.

The proportion of the third order correlation function is increasing with time, but it always contributes less to the total correlation function.It can be foreseen that, with the evolution time continues, it will become more and more important for the proportion of the correlation function above the second order. Therefore, when the time evolution of the decoherence process is relatively long, The Markov approximation faces the dilemma of too large accumulation error. And this change is independent of the phase in which the system is located, as shown in FIG. 1(b) and 1(d).

[Uncaptioned image]

Fig. 2. N=10000,g=1.0N=10000,g=1.0,Under strong coupling, the first three order correlation function changes with the external field intensity. (a)λ=0.0\lambda=0.0,(b)λ=0.5\lambda=0.5,(c)phase transition pointλ=1.0\lambda=1.0,(d)λ=2.0\lambda=2.0 Under the same parameters, the coupling strength of the system is increased to g=1.0g=1.0 ,becoming a strongly coupled system. FIG. 2 is consistent with FIG. 1 for the phase transformation process of the system. However, the difference is that the third-order correlation function, that is, the non-Markov term, exceeds the second-order correlation function in a relatively short time. This shows that in the case of strong coupling, non-Markov terms will become important.

[Uncaptioned image]

Fig. 3.  N=10000,λ=0.97N=10000,\lambda=0.97,Near phase transition pointλ=1.0\lambda=1.0,The first three order changes.(a)g=0.01g=0.01,(b)g=1.0g=1.0

[Uncaptioned image]

Fig. 4.  N=10000N=10000,The three order changes.(a)λ=0.0\lambda=0.0,(b)λ=0.5\lambda=0.5,(c)λ=0.97\lambda=0.97,(d)λ=2.0\lambda=2.0

Since the correlation function diverges at the phase transition point λ=1.0\lambda=1.0, it is difficult to explore the effect of phase transition on the system. So in FIG. 3, the state of the system immediately adjacent to the phase transition point λ=0.97\lambda=0.97is applied. First, as before, non-Markov terms become important as the coupling strength increases. Moreover, when the phase transition point is approached, the quantum interference effect disappears, showing a smooth relationship, indicating that the phase transition is a statistical effect rather than a quantum effect.

In FIG. 4, it can be clearly seen that with the increase of coupling strength GGof the system, non-Markov term modes become larger and larger, and this growth almost linearly increases with the increase of coupling strength. When the system is in different phase states, the non-Markov terms have different trends with the change of coherent time. In ferromagnetic and paramagnetic states, far from the phase transition point, the non-Markov term has quantum interference effect. There is a monotone increase as we approach the phase transition.

IV Conclusion

We study the effect of bath on the decoherence of qubit, which mainly refers to the contribution of the high-order correlation function of 1D transverse Ising model.The larger the coupling strength of the quantum many-body system, the more obvious the effect of the higher order correlation function.The longer coherent time of the qubit in the quantum many-body bath, the more obvious the effect of the higher order correlation function.The closer the quantum many-body system is to the phase transition point, the more obvious the effect of the higher order correlation function is.At the phase transition point, the higher-order correlation function should also mutate.

Appendix A The exact solution of the transverse field Ising model

H=HS+Hb+gσZB=||H++||H\displaystyle H=H_{S}+H_{b}+g\sigma_{Z}B=|\uparrow\rangle\langle\uparrow|\otimes H_{+}+|\downarrow\rangle\langle\downarrow|\otimes H_{-} (11)

WhereH+=(ω0+Hb+gB)H_{+}=(\omega_{0}+H_{b}+gB) and H=(ω0+HbgB)H_{-}=(-\omega_{0}+H_{b}-gB) At the same times,

ρ(0)=ρS(0)ρB(0)andρB(0)=1ZeβH0\displaystyle\rho(0)=\rho^{S}(0)\otimes\rho^{B}(0)and\rho^{B}(0)=\frac{1}{Z}e^{-\beta H_{0}} (12)

Secondly

ρS(t)=trb(ρ(t))=trb(U(t,0)ρ(0)U+(t,0))\displaystyle\rho^{S}(t)=tr_{b}(\rho(t))=tr_{b}(U(t,0)\rho(0)U^{+}(t,0)) (13)

Finally

U(t,0)=eitH=||eitH++||eitH\displaystyle U(t,0)=e^{-itH}=|\uparrow\rangle\langle\uparrow|e^{-itH_{+}}+|\downarrow\rangle\langle\downarrow|e^{-itH_{-}} (14)

So

ρS(t)=|trb(ρ(t))|=ctrb[eitH+1ZeβHbeitH]\displaystyle\rho_{\downarrow\uparrow}^{S}(t)=\langle\uparrow|tr_{b}(\rho(t))|\downarrow\rangle=c\cdot tr_{b}[e^{-itH_{+}}\frac{1}{Z}e^{-\beta H_{b}}e^{itH_{-}}] (15)

when temperature is zero β\beta\rightarrow\infty,we have

ρS(t)\displaystyle\rho_{\downarrow\uparrow}^{S}(t) =|trb(ρ(t))|\displaystyle=\langle\uparrow|tr_{b}(\rho(t))|\downarrow\rangle (16)
=ceit2ω0g|eit(Hb+gB)eit(HbgB)|g\displaystyle=c\cdot e^{-it2\omega_{0}}\langle g|e^{-it(H_{b}+gB)}e^{it(H_{b}-gB)}|g\rangle

The bases of Hilbert space

{|0k,0k~,|1k,1k~,|0k,1k~,|1k,0k~}\displaystyle\{\tilde{|0_{-k},0_{k}\rangle},\tilde{|1_{-k},1_{k}\rangle},\tilde{|0_{-k},1_{k}\rangle},\tilde{|1_{-k},0_{k}\rangle}\} (17)

Under those bases

Hb\displaystyle H_{b} =[12kεk000012k(1)δk,±kεk000012k(1δk,±k)εk000012k(1δk,±k)εk]\displaystyle=\left[\begin{array}[]{cccc}-\frac{1}{2}\sum_{k^{\prime}}\varepsilon_{k^{\prime}}&0&0&0\\ 0&-\frac{1}{2}\sum_{k^{\prime}}(-1)^{\delta_{k^{\prime},\pm k}}\varepsilon_{k^{\prime}}&0&0\\ 0&0&-\frac{1}{2}\sum_{k^{\prime}}(1-\delta_{k^{\prime},\pm k})\varepsilon_{k^{\prime}}&0\\ 0&0&0&-\frac{1}{2}\sum_{k^{\prime}}(1-\delta_{k^{\prime},\pm k})\varepsilon_{k^{\prime}}\end{array}\right]
=Hbk12k±kεk\displaystyle=H_{b}^{k}-\frac{1}{2}\sum_{k^{\prime}\neq\pm k}\varepsilon_{k^{\prime}}

So

B\displaystyle B =[kcos2θkisin2θkei2εkt00isin2θkei2εktkcos2θk40000kcos2θk20000kcos2θk2]\displaystyle=\left[\begin{array}[]{cccc}\sum_{k^{\prime}}cos2\theta_{k^{\prime}}&isin2\theta_{k}\cdot e^{i2\varepsilon_{k}t}&0&0\\ -isin2\theta_{k}\cdot e^{-i2\varepsilon_{k}t}&\sum_{k^{\prime}}cos2\theta_{k^{\prime}}-4&0&0\\ 0&0&\sum_{k^{\prime}}cos2\theta_{k^{\prime}}-2&0\\ 0&0&0&\sum_{k^{\prime}}cos2\theta_{k^{\prime}}-2\end{array}\right]
=Bk+kcos2θk\displaystyle=B^{k}+\sum_{k^{\prime}}cos2\theta_{k^{\prime}}

So

ρS(t)\displaystyle\rho_{\downarrow\uparrow}^{S}(t) =|trb(ρ(t))|\displaystyle=\langle\uparrow|tr_{b}(\rho(t))|\downarrow\rangle
=ceit2ω0g|eit(Hb+gB)eit(HbgB)|g\displaystyle=c\cdot e^{-it2\omega_{0}}\langle g|e^{-it(H_{b}+gB)}e^{it(H_{b}-gB)}|g\rangle
=ceit2(ω0+gkcos2θk)k>0g|Uk(t)Uk(t)|g\displaystyle=c\cdot e^{-it2(\omega_{0}+g\sum_{k^{\prime}}cos2\theta_{k^{\prime}})}\prod_{k>0}\langle g|U_{k}^{\dagger}(t)U_{k}(t)|g\rangle

So

Uk(t)Uk(t)\displaystyle U_{k}^{\dagger}(t)U_{k}(t) =eit(Hbk+gBk)eit(HbkgBk)\displaystyle=e^{-it(H_{b}^{k}+gB^{k})}e^{it(H_{b}^{k}-gB^{k})}
=[eitM1eitM200ei4tgI]\displaystyle=\left[\begin{array}[]{cc}e^{-itM_{1}}\cdot e^{itM_{2}}&0\\ 0&e^{i4tg}I\end{array}\right]

Where

eitM1eitM2=e4itgeitaσeitbσ\displaystyle e^{-itM_{1}}\cdot e^{itM_{2}}=e^{4itg}\cdot e^{-it\vec{a}\cdot\vec{\sigma}}\cdot e^{it\vec{b}\cdot\vec{\sigma}}

where a=(sin2θksin(2εkt)g,sin2θkcos(2εkt)g,(2gεk)),b=(sin2θksin(2εkt)g,sin2θkcos(2εkt)g,(2gεk))\vec{a}=(-sin2\theta_{k}sin(2\varepsilon_{k}t)g,-sin2\theta_{k}cos(2\varepsilon_{k}t)g,(2g-\varepsilon_{k})),\\ \vec{b}=(sin2\theta_{k}sin(2\varepsilon_{k}t)g,sin2\theta_{k}cos(2\varepsilon_{k}t)g,(-2g-\varepsilon_{k}))and σ=(σ1,σ2,σ3)\vec{\sigma}=(\sigma_{1},\sigma_{2},\sigma_{3}) is vector of Puli matrix.

eitM1eitM2\displaystyle e^{-itM_{1}}\cdot e^{itM_{2}} =e4itgeitaσeitbσ\displaystyle=e^{4itg}\cdot e^{-it\vec{a}\cdot\vec{\sigma}}\cdot e^{it\vec{b}\cdot\vec{\sigma}}
=e4itg[ABCD]\displaystyle=e^{4itg}\cdot\left[\begin{array}[]{cc}A&B\\ C&D\end{array}\right]

Where

A\displaystyle A =cos(ta)cos(tb)+(εk2sin22θk)sin(ta)sin(tb)ab+iεk[sin(ta)cos(tb)acos(ta)sin(tb)b]\displaystyle=cos(ta)cos(tb)+(\varepsilon_{k}^{2}-sin^{2}2\theta_{k})\frac{sin(ta)sin(tb)}{ab}+i\varepsilon_{k}[\frac{sin(ta)cos(tb)}{a}-\frac{cos(ta)sin(tb)}{b}]
B\displaystyle B =sin2θkei2εkt[cos(ta)sin(tb)b+sin(ta)cos(tb)a+i2(εk+2)sin(ta)sin(tb)ab]\displaystyle=sin2\theta_{k}\cdot e^{i2\varepsilon_{k}t}[\frac{cos(ta)sin(tb)}{b}+\frac{sin(ta)cos(tb)}{a}+i2(\varepsilon_{k}+2)\frac{sin(ta)sin(tb)}{ab}]
C\displaystyle C =sin2θkei2εkt[sin(ta)cos(tb)a+cos(ta)sin(tb)bi2(εk2)sin(ta)sin(tb)ab]\displaystyle=-sin2\theta_{k}\cdot e^{-i2\varepsilon_{k}t}[\frac{sin(ta)cos(tb)}{a}+\frac{cos(ta)sin(tb)}{b}-i2(\varepsilon_{k}-2)\frac{sin(ta)sin(tb)}{ab}]
D\displaystyle D =cos(ta)cos(tb)+(εk216sin22θk)sin(ta)sin(tb)ab+i[(εk+4)sin(tb)cos(ta)a\displaystyle=cos(ta)cos(tb)+(\varepsilon_{k}^{2}-16-sin^{2}2\theta_{k})\frac{sin(ta)sin(tb)}{ab}+i[(\varepsilon_{k}+4)\frac{sin(tb)cos(ta)}{a}
(εk4)cos(tb)sin(ta)b]\displaystyle-(\varepsilon_{k}-4)\frac{cos(tb)sin(ta)}{b}]

Where a=(gsin2θk)2+(2gεk)2,b=(gsin2θk)2+(2g+εk)2a=\sqrt{(gsin2\theta_{k})^{2}+(2g-\varepsilon_{k})^{2}},b=\sqrt{(gsin2\theta_{k})^{2}+(2g+\varepsilon_{k})^{2}} As a same times

ρS(t)=eΓ(t)ρS(0)\displaystyle\rho_{\downarrow\uparrow}^{S}(t)=e^{\Gamma(t)}\rho_{\downarrow\uparrow}^{S}(0) (18)

So

eΓ(t)=k>0[cos(ta)cos(tb)+(εk2sin22θk)sin(ta)sin(tb)ab+iεk[sin(ta)cos(tb)acos(ta)sin(tb)b]]\displaystyle e^{\Gamma(t)}=\prod_{k>0}[cos(ta)cos(tb)+(\varepsilon_{k}^{2}-sin^{2}2\theta_{k})\frac{sin(ta)sin(tb)}{ab}+i\varepsilon_{k}[\frac{sin(ta)cos(tb)}{a}-\frac{cos(ta)sin(tb)}{b}]] (19)

So

Γ(t)=k>0In(cos(ta)cos(tb)+(εk2sin22θk)sin(ta)sin(tb)ab+iεk[sin(ta)cos(tb)acos(ta)sin(tb)b])\displaystyle\Gamma(t)=\sum_{k>0}In(cos(ta)cos(tb)+(\varepsilon_{k}^{2}-sin^{2}2\theta_{k})\frac{sin(ta)sin(tb)}{ab}+i\varepsilon_{k}[\frac{sin(ta)cos(tb)}{a}-\frac{cos(ta)sin(tb)}{b}]\text{)} (20)

Where a=(gsin2θk)2+(2gεk)2,b=(gsin2θk)2+(2g+εk)2a=\sqrt{(gsin2\theta_{k})^{2}+(2g-\varepsilon_{k})^{2}},b=\sqrt{(gsin2\theta_{k})^{2}+(2g+\varepsilon_{k})^{2}}and εk=212λcosk+λ2\varepsilon_{k}=2\sqrt{1-2\lambda cosk+\lambda^{2}}and sin2θk=sink/12λcosk+λ2sin2\theta_{k}=sink\text{/$\sqrt{1-2\lambda cosk+\lambda^{2}}$}and k=(2l1)πN,l=1,2,N2k=\frac{(2l-1)\pi}{N},l=1,2,\cdots\frac{N}{2}

Appendix B The third order correlation function

Part\displaystyle Part =tr(B1(t3)B1(t2)B1(t1)ρB(0))\displaystyle=tr(B_{1}(t_{3})B_{1}(t_{2})B_{1}(t_{1})\rho^{B}(0))
=k3k2k1(cos2θk321eβεk3+1)(cos2θk221eβεk2+1)(cos2θk121eβεk1+1)\displaystyle=\sum_{k_{3}k_{2}k_{1}}(cos2\theta_{k_{3}}-2\frac{1}{e^{\beta\varepsilon_{k_{3}}}+1})(cos2\theta_{k_{2}}-2\frac{1}{e^{\beta\varepsilon_{k_{2}}}+1})(cos2\theta_{k_{1}}-2\frac{1}{e^{\beta\varepsilon_{k_{1}}}+1})
+k3k1(cos2θk321eβεk3+1)(sin22θk1[1eβεk1+11eβεk1+1\displaystyle+\sum_{k_{3}k_{1}}(cos2\theta_{k_{3}}-2\frac{1}{e^{\beta\varepsilon_{k_{3}}}+1})(sin^{2}2\theta_{k_{1}}\cdot[\frac{1}{e^{\beta\varepsilon_{k_{1}}}+1}\frac{1}{e^{\beta\varepsilon_{-k_{1}}}+1}\cdot
exp(i2εk1(t1t2))+(1eβεk1+1+1)(1eβεk1+1+1)exp(i2εk1(t1t2))])\displaystyle exp(i2\varepsilon_{k_{1}}(t_{1}-t_{2}))+(\frac{1}{e^{\beta\varepsilon_{k_{1}}}+1}+1)(\frac{1}{e^{\beta\varepsilon_{-k_{1}}}+1}+1)\cdot exp(-i2\varepsilon_{k_{1}}(t_{1}-t_{2}))])
+k2k1(sin22θk1cos2θk21eβεk1+11eβεk1+1[exp(i2(εk1(t1t3))+exp(i2εk1(t1t3))])\displaystyle+\sum_{k_{2}k_{1}}(sin^{2}2\theta_{k_{1}}cos2\theta_{k_{2}}\cdot\frac{1}{e^{\beta\varepsilon_{k_{1}}}+1}\frac{1}{e^{\beta\varepsilon_{-k_{1}}}+1}\cdot[exp(i2(\varepsilon_{k_{1}}(t_{1}-t_{3}))+exp(-i2\varepsilon_{k_{1}}(t_{1}-t_{3}))])
+k2k1(2sin22θk1((1eβεk2+11)1eβεk1+11eβεk1+1)exp(i2(εk1(t1t3)))\displaystyle+\sum_{k_{2}k_{1}}(-2sin^{2}2\theta_{k_{1}}\cdot((\frac{1}{e^{\beta\varepsilon_{k_{2}}}+1}-1)\cdot\frac{1}{e^{\beta\varepsilon_{-k_{1}}}+1}\frac{1}{e^{\beta\varepsilon_{k_{1}}}+1})\cdot exp(i2(\varepsilon_{k_{1}}(t_{1}-t_{3})))
+k2k1(sin22θk2[1eβεk2+11eβεk2+1exp(i2εk2(t2t3))+(1eβεk2+1+1)(1eβεk2+1+1)\displaystyle+\sum_{k_{2}k_{1}}(sin^{2}2\theta_{k_{2}}\cdot[\frac{1}{e^{\beta\varepsilon_{k_{2}}}+1}\frac{1}{e^{\beta\varepsilon_{-k_{2}}}+1}\cdot exp(i2\varepsilon_{k_{2}}(t_{2}-t_{3}))+(\frac{1}{e^{\beta\varepsilon_{k_{2}}}+1}+1)(\frac{1}{e^{\beta\varepsilon_{-k_{2}}}+1}+1)\cdot
exp(i2εk2(t2t3))](cos2θk121eβεk1+1)\displaystyle exp(-i2\varepsilon_{k_{2}}(t_{2}-t_{3}))]\cdot(cos2\theta_{k_{1}}-2\frac{1}{e^{\beta\varepsilon_{k_{1}}}+1})
+k2k1(2sin22θk1(1+1eβεk2+1)(1+1eβεk1+1)(1+1eβεk1+1)exp(i2(εk1(t1t3)))\displaystyle+\sum_{k_{2}k_{1}}(-2sin^{2}2\theta_{k_{1}}\cdot(1+\frac{1}{e^{\beta\varepsilon_{k_{2}}}+1})(1+\frac{1}{e^{\beta\varepsilon_{k_{1}}}+1})(1+\frac{1}{e^{\beta\varepsilon_{-k_{1}}}+1})\cdot exp(-i2(\varepsilon_{k_{1}}(t_{1}-t_{3})))
=βk3k2k1[cos2θk3cos2θk2cos2θk1+cos2θk3sin22θk1\displaystyle\stackrel{{\scriptstyle\beta\rightarrow\infty}}{{=}}\sum_{k_{3}k_{2}k_{1}}[cos2\theta_{k_{3}}cos2\theta_{k_{2}}cos2\theta_{k_{1}}+cos2\theta_{k_{3}}sin^{2}2\theta_{k_{1}}\cdot
exp(i2εk1(t1t2))+cos2θk1sin22θk2exp(i2εk2(t2t3))2sin22θk1exp(i2(εk1(t1t3))]\displaystyle exp(-i2\varepsilon_{k_{1}}(t_{1}-t_{2}))+cos2\theta_{k_{1}}sin^{2}2\theta_{k_{2}}\cdot exp(-i2\varepsilon_{k_{2}}(t_{2}-t_{3}))-2sin^{2}2\theta_{k_{1}}\cdot exp(-i2(\varepsilon_{k_{1}}(t_{1}-t_{3}))]
Part=β\displaystyle Part\stackrel{{\scriptstyle\beta\rightarrow\infty}}{{=}} k3k2k1[cos2θk3cos2θk2cos2θk1+cos2θk3sin22θk1exp(i2εk1(t1t2))\displaystyle\sum_{k_{3}k_{2}k_{1}}[cos2\theta_{k_{3}}cos2\theta_{k_{2}}cos2\theta_{k_{1}}+cos2\theta_{k_{3}}sin^{2}2\theta_{k_{1}}\cdot exp(-i2\varepsilon_{k_{1}}(t_{1}-t_{2}))
+cos2θk1sin22θk2exp(i2εk2(t2t3))2sin22θk1exp(i2(εk1(t1t3))]\displaystyle+cos2\theta_{k_{1}}sin^{2}2\theta_{k_{2}}\cdot exp(-i2\varepsilon_{k_{2}}(t_{2}-t_{3}))-2sin^{2}2\theta_{k_{1}}\cdot exp(-i2(\varepsilon_{k_{1}}(t_{1}-t_{3}))] (21)
C111+++\displaystyle C_{111}^{+++}
=122[[1θ(t3t1)θ(t1t2)θ(t1t3)θ(t3t2)][Part+Part(t1t3)]\displaystyle=\frac{1}{2^{2}}[[1-\theta(t_{3}-t_{1})\theta(t_{1}-t_{2})-\theta(t_{1}-t_{3})\theta(t_{3}-t_{2})][Part+Part(t_{1}\leftrightarrow t_{3})]
+[1θ(t2t1)θ(t1t3)θ(t1t2)θ(t2t3)][Part(t1t2,t2t3,t3t1)+Part(t2t3)]\displaystyle+[1-\theta(t_{2}-t_{1})\theta(t_{1}-t_{3})-\theta(t_{1}-t_{2})\theta(t_{2}-t_{3})][Part(t_{1}\rightarrow t_{2},t_{2}\rightarrow t_{3},t_{3}\rightarrow t_{1})+Part(t_{2}\leftrightarrow t_{3})]
+[1θ(t3t2)θ(t2t1)θ(t2t3)θ(t3t1)][Part(t2t1)+Part(t1t3,t2t1,t3t2)]]\displaystyle+[1-\theta(t_{3}-t_{2})\theta(t_{2}-t_{1})-\theta(t_{2}-t_{3})\theta(t_{3}-t_{1})][Part(t_{2}\leftrightarrow t_{1})+Part(t_{1}\rightarrow t_{3},t_{2}\rightarrow t_{1},t_{3}\rightarrow t_{2})]]
=β122[[1θ(t3t1)θ(t1t2)θ(t1t3)θ(t3t2)]×[k3k2k1[2\displaystyle\overset{\beta\rightarrow\infty}{=}\frac{1}{2^{2}}[[1-\theta(t_{3}-t_{1})\theta(t_{1}-t_{2})-\theta(t_{1}-t_{3})\theta(t_{3}-t_{2})]\times[\sum_{k_{3}k_{2}k_{1}}[2\cdot
cos2θk3cos2θk2cos2θk1+cos2θk3sin22θk1(exp(i2εk1(t2t1))+exp(i2εk1(t2t3)))\displaystyle cos2\theta_{k_{3}}cos2\theta_{k_{2}}cos2\theta_{k_{1}}+cos2\theta_{k_{3}}sin^{2}2\theta_{k_{1}}\cdot(exp(i2\varepsilon_{k_{1}}(t_{2}-t_{1}))+exp(i2\varepsilon_{k_{1}}(t_{2}-t_{3})))
+cos2θk1sin22θk2(exp(i2εk2(t3t2))+exp(i2εk2(t1t2)))2sin22θk12cos(2εk1(t1t3))]\displaystyle+cos2\theta_{k_{1}}sin^{2}2\theta_{k_{2}}\cdot(exp(i2\varepsilon_{k_{2}}(t_{3}-t_{2}))+exp(i2\varepsilon_{k_{2}}(t_{1}-t_{2})))-2sin^{2}2\theta_{k_{1}}\cdot 2cos(2\varepsilon_{k_{1}}(t_{1}-t_{3}))]
+[1θ(t2t1)θ(t1t3)θ(t1t2)θ(t2t3)]\displaystyle+[1-\theta(t_{2}-t_{1})\theta(t_{1}-t_{3})-\theta(t_{1}-t_{2})\theta(t_{2}-t_{3})]
×[k3k2k1[2cos2θk3cos2θk2cos2θk1+cos2θk3sin22θk1(exp(i2εk1(t3t2))+exp(i2εk1(t3t1)))\displaystyle\times[\sum_{k_{3}k_{2}k_{1}}[2\cdot cos2\theta_{k_{3}}cos2\theta_{k_{2}}cos2\theta_{k_{1}}+cos2\theta_{k_{3}}sin^{2}2\theta_{k_{1}}\cdot(exp(i2\varepsilon_{k_{1}}(t_{3}-t_{2}))+exp(i2\varepsilon_{k_{1}}(t_{3}-t_{1})))
+cos2θk1sin22θk2(exp(i2εk2(t1t3))+exp(i2εk2(t2t3)))2sin22θk12cos(2εk1(t1t2))]\displaystyle+cos2\theta_{k_{1}}sin^{2}2\theta_{k_{2}}\cdot(exp(i2\varepsilon_{k_{2}}(t_{1}-t_{3}))+exp(i2\varepsilon_{k_{2}}(t_{2}-t_{3})))-2sin^{2}2\theta_{k_{1}}\cdot 2cos(2\varepsilon_{k_{1}}(t_{1}-t_{2}))]
+[1θ(t3t2)θ(t2t1)θ(t2t3)θ(t3t1)]\displaystyle+[1-\theta(t_{3}-t_{2})\theta(t_{2}-t_{1})-\theta(t_{2}-t_{3})\theta(t_{3}-t_{1})]
×[k3k2k1[2cos2θk3cos2θk2cos2θk1+cos2θk3sin22θk1(exp(i2εk1(t1t2))+exp(i2εk1(t1t3)))\displaystyle\times[\sum_{k_{3}k_{2}k_{1}}[2\cdot cos2\theta_{k_{3}}cos2\theta_{k_{2}}cos2\theta_{k_{1}}+cos2\theta_{k_{3}}sin^{2}2\theta_{k_{1}}\cdot(exp(i2\varepsilon_{k_{1}}(t_{1}-t_{2}))+exp(i2\varepsilon_{k_{1}}(t_{1}-t_{3})))
+cos2θk1sin22θk2(exp(i2εk2(t3t1))+exp(i2εk2(t2t1)))2sin22θk12cos(2εk1(t2t3))]]\displaystyle+cos2\theta_{k_{1}}sin^{2}2\theta_{k_{2}}\cdot(exp(i2\varepsilon_{k_{2}}(t_{3}-t_{1}))+exp(i2\varepsilon_{k_{2}}(t_{2}-t_{1})))-2sin^{2}2\theta_{k_{1}}\cdot 2cos(2\varepsilon_{k_{1}}(t_{2}-t_{3}))]]

where tan(2θk)=sink/(coskλ)tan(2\theta_{k})=sink/(cosk-\lambda) and εk=212λcosk+λ2\varepsilon_{k}=2\sqrt{1-2\lambda cosk+\lambda^{2}}, Applied sin(2θk)=sink/12λcosk+λ2sin(2\theta_{k})=sink\text{/$\sqrt{1-2\lambda cosk+\lambda^{2}}$}, cos(2θk)=(coskλ)/12λcosk+λ2cos(2\theta_{k})=(cosk-\lambda)/\sqrt{1-2\lambda cosk+\lambda^{2}}.

The irreducible correlation function as follow

C~111+++\displaystyle\tilde{C}_{111}^{+++} =122[[1θ(t3t1)θ(t1t2)θ(t1t3)θ(t3t2)][k12sin22θk12cos(2εk1(t1t3))]\displaystyle=\frac{1}{2^{2}}[[1-\theta(t_{3}-t_{1})\theta(t_{1}-t_{2})-\theta(t_{1}-t_{3})\theta(t_{3}-t_{2})][\sum_{k_{1}}-2sin^{2}2\theta_{k_{1}}\cdot 2cos(2\varepsilon_{k_{1}}(t_{1}-t_{3}))]
+[1θ(t2t1)θ(t1t3)θ(t1t2)θ(t2t3)][k12sin22θk12cos(2εk1(t1t2))]\displaystyle+[1-\theta(t_{2}-t_{1})\theta(t_{1}-t_{3})-\theta(t_{1}-t_{2})\theta(t_{2}-t_{3})][\sum_{k_{1}}-2sin^{2}2\theta_{k_{1}}\cdot 2cos(2\varepsilon_{k_{1}}(t_{1}-t_{2}))]
+[1θ(t3t2)θ(t2t1)θ(t2t3)θ(t3t1)][k12sin22θk12cos(2εk1(t2t3))]]\displaystyle+[1-\theta(t_{3}-t_{2})\theta(t_{2}-t_{1})-\theta(t_{2}-t_{3})\theta(t_{3}-t_{1})][\sum_{k_{1}}-2sin^{2}2\theta_{k_{1}}\cdot 2cos(2\varepsilon_{k_{1}}(t_{2}-t_{3}))]]
=k1sin22θk1[[1θ(t3t1)θ(t1t2)θ(t1t3)θ(t3t2)]cos(2εk1(t1t3))\displaystyle=-\sum_{k_{1}}sin^{2}2\theta_{k_{1}}[[1-\theta(t_{3}-t_{1})\theta(t_{1}-t_{2})-\theta(t_{1}-t_{3})\theta(t_{3}-t_{2})]cos(2\varepsilon_{k_{1}}(t_{1}-t_{3}))
+[1θ(t2t1)θ(t1t3)θ(t1t2)θ(t2t3)]cos(2εk1(t1t2))\displaystyle+[1-\theta(t_{2}-t_{1})\theta(t_{1}-t_{3})-\theta(t_{1}-t_{2})\theta(t_{2}-t_{3})]cos(2\varepsilon_{k_{1}}(t_{1}-t_{2}))
+[1θ(t3t2)θ(t2t1)θ(t2t3)θ(t3t1)]cos(2εk1(t2t3))]\displaystyle+[1-\theta(t_{3}-t_{2})\theta(t_{2}-t_{1})-\theta(t_{2}-t_{3})\theta(t_{3}-t_{1})]cos(2\varepsilon_{k_{1}}(t_{2}-t_{3}))]

So

C~111+++\displaystyle\tilde{C}_{111}^{+++} =k1sin22θk1[[1θ(t3t1)θ(t1t2)θ(t1t3)θ(t3t2)]cos(2εk1(t1t3))\displaystyle=-\sum_{k_{1}}sin^{2}2\theta_{k_{1}}[[1-\theta(t_{3}-t_{1})\theta(t_{1}-t_{2})-\theta(t_{1}-t_{3})\theta(t_{3}-t_{2})]cos(2\varepsilon_{k_{1}}(t_{1}-t_{3}))
+[1θ(t2t1)θ(t1t3)θ(t1t2)θ(t2t3)]cos(2εk1(t1t2))\displaystyle+[1-\theta(t_{2}-t_{1})\theta(t_{1}-t_{3})-\theta(t_{1}-t_{2})\theta(t_{2}-t_{3})]cos(2\varepsilon_{k_{1}}(t_{1}-t_{2}))
+[1θ(t3t2)θ(t2t1)θ(t2t3)θ(t3t1)]cos(2εk1(t2t3))]\displaystyle+[1-\theta(t_{3}-t_{2})\theta(t_{2}-t_{1})-\theta(t_{2}-t_{3})\theta(t_{3}-t_{1})]cos(2\varepsilon_{k_{1}}(t_{2}-t_{3}))] (22)

References

  • [1] G. Gasbarri and L. Ferialdi.Stochastic unravelings of non-Markovian completely positive and trace-preserving maps. PhysRevA.98.042111
  • [2] Wen Yang and Ren-Bao Liu.Quantum many-body theory of qubit decoherence in a finite-size spin bath. PhysRevB.78.085315
  • [3] Wang Yao, Ren-Bao Liu, and L. J. Sham. Theory of electron spin decoherence by interacting nuclear spins in a quantum dot. PhysRevB.74.195301(2006)
  • [4] W. M. Witzel and S. Das Sarma. Quantum theory for electron spin decoherence induced by nuclear spin dynamics in semiconductor quantum computer architectures: Spectral diffusion of localized electron spins in the nuclear solid-state environment. PhysRevB.74.035322(2006)
  • [5] Yan-Chao Li and Hai-Qing Lin. Thermal quantum and classical correlations and entanglement in the XY spin model with three-spin interaction. PhysRevA.83.052323